1 //===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the Thumb instruction set.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // Thumb specific DAG Nodes.
17 def ARMtsecall : SDNode<"ARMISD::tSECALL", SDT_ARMcall,
18 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
21 def imm_sr_XFORM: SDNodeXForm<imm, [{
22 unsigned Imm = N->getZExtValue();
23 return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), SDLoc(N), MVT::i32);
25 def ThumbSRImmAsmOperand: ImmAsmOperand<1,32> { let Name = "ImmThumbSR"; }
26 def imm_sr : Operand<i32>, PatLeaf<(imm), [{
27 uint64_t Imm = N->getZExtValue();
28 return Imm > 0 && Imm <= 32;
30 let PrintMethod = "printThumbSRImm";
31 let ParserMatchClass = ThumbSRImmAsmOperand;
34 def imm0_7_neg : PatLeaf<(i32 imm), [{
35 return (uint32_t)-N->getZExtValue() < 8;
38 def ThumbModImmNeg1_7AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg1_7"; }
39 def mod_imm1_7_neg : Operand<i32>, PatLeaf<(imm), [{
40 unsigned Value = -(unsigned)N->getZExtValue();
41 return 0 < Value && Value < 8;
43 let ParserMatchClass = ThumbModImmNeg1_7AsmOperand;
46 def ThumbModImmNeg8_255AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg8_255"; }
47 def mod_imm8_255_neg : Operand<i32>, PatLeaf<(imm), [{
48 unsigned Value = -(unsigned)N->getZExtValue();
49 return 7 < Value && Value < 256;
51 let ParserMatchClass = ThumbModImmNeg8_255AsmOperand;
55 def imm0_255_comp : PatLeaf<(i32 imm), [{
56 return ~((uint32_t)N->getZExtValue()) < 256;
59 def imm8_255_neg : PatLeaf<(i32 imm), [{
60 unsigned Val = -N->getZExtValue();
61 return Val >= 8 && Val < 256;
64 // Break imm's up into two pieces: an immediate + a left shift. This uses
65 // thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt
66 // to get the val/shift pieces.
67 def thumb_immshifted : PatLeaf<(imm), [{
68 return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
71 def thumb_immshifted_val : SDNodeXForm<imm, [{
72 unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
73 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);
76 def thumb_immshifted_shamt : SDNodeXForm<imm, [{
77 unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
78 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);
81 def imm256_510 : ImmLeaf<i32, [{
82 return Imm >= 256 && Imm < 511;
85 def thumb_imm256_510_addend : SDNodeXForm<imm, [{
86 return CurDAG->getTargetConstant(N->getZExtValue() - 255, SDLoc(N), MVT::i32);
89 // Scaled 4 immediate.
90 def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; }
91 def t_imm0_1020s4 : Operand<i32> {
92 let PrintMethod = "printThumbS4ImmOperand";
93 let ParserMatchClass = t_imm0_1020s4_asmoperand;
94 let OperandType = "OPERAND_IMMEDIATE";
97 def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; }
98 def t_imm0_508s4 : Operand<i32> {
99 let PrintMethod = "printThumbS4ImmOperand";
100 let ParserMatchClass = t_imm0_508s4_asmoperand;
101 let OperandType = "OPERAND_IMMEDIATE";
103 // Alias use only, so no printer is necessary.
104 def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; }
105 def t_imm0_508s4_neg : Operand<i32> {
106 let ParserMatchClass = t_imm0_508s4_neg_asmoperand;
107 let OperandType = "OPERAND_IMMEDIATE";
110 // Define Thumb specific addressing modes.
112 // unsigned 8-bit, 2-scaled memory offset
113 class OperandUnsignedOffset_b8s2 : AsmOperandClass {
114 let Name = "UnsignedOffset_b8s2";
115 let PredicateMethod = "isUnsignedOffset<8, 2>";
118 def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2;
120 // thumb style PC relative operand. signed, 8 bits magnitude,
121 // two bits shift. can be represented as either [pc, #imm], #imm,
122 // or relocatable expression...
123 def ThumbMemPC : AsmOperandClass {
124 let Name = "ThumbMemPC";
127 let OperandType = "OPERAND_PCREL" in {
128 def t_brtarget : Operand<OtherVT> {
129 let EncoderMethod = "getThumbBRTargetOpValue";
130 let DecoderMethod = "DecodeThumbBROperand";
133 // ADR instruction labels.
134 def t_adrlabel : Operand<i32> {
135 let EncoderMethod = "getThumbAdrLabelOpValue";
136 let PrintMethod = "printAdrLabelOperand<2>";
137 let ParserMatchClass = UnsignedOffset_b8s2;
141 def thumb_br_target : Operand<OtherVT> {
142 let ParserMatchClass = ThumbBranchTarget;
143 let EncoderMethod = "getThumbBranchTargetOpValue";
144 let OperandType = "OPERAND_PCREL";
147 def thumb_bl_target : Operand<i32> {
148 let ParserMatchClass = ThumbBranchTarget;
149 let EncoderMethod = "getThumbBLTargetOpValue";
150 let DecoderMethod = "DecodeThumbBLTargetOperand";
153 // Target for BLX *from* thumb mode.
154 def thumb_blx_target : Operand<i32> {
155 let ParserMatchClass = ARMBranchTarget;
156 let EncoderMethod = "getThumbBLXTargetOpValue";
157 let DecoderMethod = "DecodeThumbBLXOffset";
160 def thumb_bcc_target : Operand<OtherVT> {
161 let ParserMatchClass = ThumbBranchTarget;
162 let EncoderMethod = "getThumbBCCTargetOpValue";
163 let DecoderMethod = "DecodeThumbBCCTargetOperand";
166 def thumb_cb_target : Operand<OtherVT> {
167 let ParserMatchClass = ThumbBranchTarget;
168 let EncoderMethod = "getThumbCBTargetOpValue";
169 let DecoderMethod = "DecodeThumbCmpBROperand";
171 } // OperandType = "OPERAND_PCREL"
173 // t_addrmode_pc := <label> => pc + imm8 * 4
175 def t_addrmode_pc : MemOperand {
176 let EncoderMethod = "getAddrModePCOpValue";
177 let DecoderMethod = "DecodeThumbAddrModePC";
178 let PrintMethod = "printThumbLdrLabelOperand";
179 let ParserMatchClass = ThumbMemPC;
182 // t_addrmode_rr := reg + reg
184 def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; }
185 def t_addrmode_rr : MemOperand,
186 ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
187 let EncoderMethod = "getThumbAddrModeRegRegOpValue";
188 let PrintMethod = "printThumbAddrModeRROperand";
189 let DecoderMethod = "DecodeThumbAddrModeRR";
190 let ParserMatchClass = t_addrmode_rr_asm_operand;
191 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
194 // t_addrmode_rr_sext := reg + reg
196 // This is similar to t_addrmode_rr, but uses different heuristics for
198 def t_addrmode_rr_sext : MemOperand,
199 ComplexPattern<i32, 2, "SelectThumbAddrModeRRSext", []> {
200 let EncoderMethod = "getThumbAddrModeRegRegOpValue";
201 let PrintMethod = "printThumbAddrModeRROperand";
202 let DecoderMethod = "DecodeThumbAddrModeRR";
203 let ParserMatchClass = t_addrmode_rr_asm_operand;
204 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
207 // t_addrmode_rrs := reg + reg
209 // We use separate scaled versions because the Select* functions need
210 // to explicitly check for a matching constant and return false here so that
211 // the reg+imm forms will match instead. This is a horrible way to do that,
212 // as it forces tight coupling between the methods, but it's how selectiondag
214 def t_addrmode_rrs1 : MemOperand,
215 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> {
216 let EncoderMethod = "getThumbAddrModeRegRegOpValue";
217 let PrintMethod = "printThumbAddrModeRROperand";
218 let DecoderMethod = "DecodeThumbAddrModeRR";
219 let ParserMatchClass = t_addrmode_rr_asm_operand;
220 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
222 def t_addrmode_rrs2 : MemOperand,
223 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> {
224 let EncoderMethod = "getThumbAddrModeRegRegOpValue";
225 let DecoderMethod = "DecodeThumbAddrModeRR";
226 let PrintMethod = "printThumbAddrModeRROperand";
227 let ParserMatchClass = t_addrmode_rr_asm_operand;
228 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
230 def t_addrmode_rrs4 : MemOperand,
231 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> {
232 let EncoderMethod = "getThumbAddrModeRegRegOpValue";
233 let DecoderMethod = "DecodeThumbAddrModeRR";
234 let PrintMethod = "printThumbAddrModeRROperand";
235 let ParserMatchClass = t_addrmode_rr_asm_operand;
236 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
239 // t_addrmode_is4 := reg + imm5 * 4
241 def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; }
242 def t_addrmode_is4 : MemOperand,
243 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> {
244 let EncoderMethod = "getAddrModeISOpValue";
245 let DecoderMethod = "DecodeThumbAddrModeIS";
246 let PrintMethod = "printThumbAddrModeImm5S4Operand";
247 let ParserMatchClass = t_addrmode_is4_asm_operand;
248 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
251 // t_addrmode_is2 := reg + imm5 * 2
253 def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; }
254 def t_addrmode_is2 : MemOperand,
255 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> {
256 let EncoderMethod = "getAddrModeISOpValue";
257 let DecoderMethod = "DecodeThumbAddrModeIS";
258 let PrintMethod = "printThumbAddrModeImm5S2Operand";
259 let ParserMatchClass = t_addrmode_is2_asm_operand;
260 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
263 // t_addrmode_is1 := reg + imm5
265 def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; }
266 def t_addrmode_is1 : MemOperand,
267 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> {
268 let EncoderMethod = "getAddrModeISOpValue";
269 let DecoderMethod = "DecodeThumbAddrModeIS";
270 let PrintMethod = "printThumbAddrModeImm5S1Operand";
271 let ParserMatchClass = t_addrmode_is1_asm_operand;
272 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
275 // t_addrmode_sp := sp + imm8 * 4
277 // FIXME: This really shouldn't have an explicit SP operand at all. It should
278 // be implicit, just like in the instruction encoding itself.
279 def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; }
280 def t_addrmode_sp : MemOperand,
281 ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
282 let EncoderMethod = "getAddrModeThumbSPOpValue";
283 let DecoderMethod = "DecodeThumbAddrModeSP";
284 let PrintMethod = "printThumbAddrModeSPOperand";
285 let ParserMatchClass = t_addrmode_sp_asm_operand;
286 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
289 // Inspects parent to determine whether an or instruction can be implemented as
290 // an add (i.e. whether we know overflow won't occur in the add).
291 def AddLikeOrOp : ComplexPattern<i32, 1, "SelectAddLikeOr", [],
294 // Pattern to exclude immediates from matching
295 def non_imm32 : PatLeaf<(i32 GPR), [{ return !isa<ConstantSDNode>(N); }]>;
297 //===----------------------------------------------------------------------===//
298 // Miscellaneous Instructions.
301 // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
302 // from removing one half of the matched pairs. That breaks PEI, which assumes
303 // these will always be in pairs, and asserts if it finds otherwise. Better way?
304 let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
305 def tADJCALLSTACKUP :
306 PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
307 [(ARMcallseq_end imm:$amt1, imm:$amt2)]>,
308 Requires<[IsThumb, IsThumb1Only]>;
310 def tADJCALLSTACKDOWN :
311 PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2), NoItinerary,
312 [(ARMcallseq_start imm:$amt, imm:$amt2)]>,
313 Requires<[IsThumb, IsThumb1Only]>;
316 class T1SystemEncoding<bits<8> opc>
317 : T1Encoding<0b101111> {
318 let Inst{9-8} = 0b11;
322 def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm",
323 [(int_arm_hint imm0_15:$imm)]>,
324 T1SystemEncoding<0x00>,
325 Requires<[IsThumb, HasV6M]> {
330 // Note: When EmitPriority == 1, the alias will be used for printing
331 class tHintAlias<string Asm, dag Result, bit EmitPriority = 0> : tInstAlias<Asm, Result, EmitPriority> {
332 let Predicates = [IsThumb, HasV6M];
335 def : tHintAlias<"nop$p", (tHINT 0, pred:$p), 1>; // A8.6.110
336 def : tHintAlias<"yield$p", (tHINT 1, pred:$p), 1>; // A8.6.410
337 def : tHintAlias<"wfe$p", (tHINT 2, pred:$p), 1>; // A8.6.408
338 def : tHintAlias<"wfi$p", (tHINT 3, pred:$p), 1>; // A8.6.409
339 def : tHintAlias<"sev$p", (tHINT 4, pred:$p), 1>; // A8.6.157
340 def : tInstAlias<"sevl$p", (tHINT 5, pred:$p), 1> {
341 let Predicates = [IsThumb2, HasV8];
344 // The imm operand $val can be used by a debugger to store more information
345 // about the breakpoint.
346 def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val",
348 T1Encoding<0b101111> {
349 let Inst{9-8} = 0b10;
354 // default immediate for breakpoint mnemonic
355 def : InstAlias<"bkpt", (tBKPT 0), 0>, Requires<[IsThumb]>;
357 def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val",
358 []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> {
359 let Inst{9-6} = 0b1010;
364 def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end",
365 []>, T1Encoding<0b101101>, Requires<[IsThumb, IsNotMClass]>, Deprecated<HasV8Ops> {
368 let Inst{9-5} = 0b10010;
371 let Inst{2-0} = 0b000;
374 // Change Processor State is a system instruction -- for disassembly only.
375 def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags),
376 NoItinerary, "cps$imod $iflags", []>,
384 let Inst{2-0} = iflags;
385 let DecoderMethod = "DecodeThumbCPS";
388 // For both thumb1 and thumb2.
389 let isNotDuplicable = 1, isCodeGenOnly = 1 in
390 def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "",
391 [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
392 T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
395 let Inst{6-3} = 0b1111; // Rm = pc
399 // ADD <Rd>, sp, #<imm8>
400 // FIXME: This should not be marked as having side effects, and it should be
401 // rematerializable. Clearing the side effect bit causes miscompilations,
402 // probably because the instruction can be moved around.
403 def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm),
404 IIC_iALUi, "add", "\t$dst, $sp, $imm", []>,
405 T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> {
409 let Inst{10-8} = dst;
411 let DecoderMethod = "DecodeThumbAddSpecialReg";
414 // Thumb1 frame lowering is rather fragile, we hope to be able to use
415 // tADDrSPi, but we may need to insert a sequence that clobbers CPSR.
416 def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset),
418 Requires<[IsThumb, IsThumb1Only]> {
422 // ADD sp, sp, #<imm7>
423 def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
424 IIC_iALUi, "add", "\t$Rdn, $imm", []>,
425 T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> {
429 let DecoderMethod = "DecodeThumbAddSPImm";
432 // SUB sp, sp, #<imm7>
433 // FIXME: The encoding and the ASM string don't match up.
434 def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
435 IIC_iALUi, "sub", "\t$Rdn, $imm", []>,
436 T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> {
440 let DecoderMethod = "DecodeThumbAddSPImm";
443 def : tInstSubst<"add${p} sp, $imm",
444 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
445 def : tInstSubst<"add${p} sp, sp, $imm",
446 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
448 // Can optionally specify SP as a three operand instruction.
449 def : tInstAlias<"add${p} sp, sp, $imm",
450 (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>;
451 def : tInstAlias<"sub${p} sp, sp, $imm",
452 (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>;
455 def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr,
456 "add", "\t$Rdn, $sp, $Rn", []>,
457 T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
458 // A8.6.9 Encoding T1
460 let Inst{7} = Rdn{3};
461 let Inst{6-3} = 0b1101;
462 let Inst{2-0} = Rdn{2-0};
463 let DecoderMethod = "DecodeThumbAddSPReg";
467 def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr,
468 "add", "\t$Rdn, $Rm", []>,
469 T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
470 // A8.6.9 Encoding T2
474 let Inst{2-0} = 0b101;
475 let DecoderMethod = "DecodeThumbAddSPReg";
478 //===----------------------------------------------------------------------===//
479 // Control Flow Instructions.
483 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
484 def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>,
485 T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
489 let Inst{2-0} = 0b000;
490 let Unpredictable{2-0} = 0b111;
492 def tBXNS : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bxns${p}\t$Rm", []>,
493 Requires<[IsThumb, Has8MSecExt]>,
494 T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
497 let Inst{2-0} = 0b100;
498 let Unpredictable{1-0} = 0b11;
502 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
503 def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br,
504 [(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>;
506 // alternative return for CMSE entry functions
507 def tBXNS_RET : tPseudoInst<(outs), (ins), 2, IIC_Br,
508 [(ARMseretflag)]>, Sched<[WriteBr]>;
510 // Alternative return instruction used by vararg functions.
511 def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p),
513 (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
516 // All calls clobber the non-callee saved registers. SP is marked as a use to
517 // prevent stack-pointer assignments that appear immediately before calls from
518 // potentially appearing dead.
520 Defs = [LR], Uses = [SP] in {
521 // Also used for Thumb2
522 def tBL : TIx2<0b11110, 0b11, 1,
523 (outs), (ins pred:$p, thumb_bl_target:$func), IIC_Br,
525 [(ARMcall tglobaladdr:$func)]>,
526 Requires<[IsThumb]>, Sched<[WriteBrL]> {
528 let Inst{26} = func{23};
529 let Inst{25-16} = func{20-11};
530 let Inst{13} = func{22};
531 let Inst{11} = func{21};
532 let Inst{10-0} = func{10-0};
535 // ARMv5T and above, also used for Thumb2
536 def tBLXi : TIx2<0b11110, 0b11, 0,
537 (outs), (ins pred:$p, thumb_blx_target:$func), IIC_Br,
538 "blx${p}\t$func", []>,
539 Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> {
541 let Inst{26} = func{23};
542 let Inst{25-16} = func{20-11};
543 let Inst{13} = func{22};
544 let Inst{11} = func{21};
545 let Inst{10-1} = func{10-1};
546 let Inst{0} = 0; // func{0} is assumed zero
549 // Also used for Thumb2
550 def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br,
551 "blx${p}\t$func", []>,
552 Requires<[IsThumb, HasV5T]>,
553 T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24;
555 let Inst{6-3} = func;
556 let Inst{2-0} = 0b000;
558 def tBLXr_noip : ARMPseudoExpand<(outs), (ins pred:$p, GPRnoip:$func),
559 2, IIC_Br, [], (tBLXr pred:$p, GPR:$func)>,
560 Requires<[IsThumb, HasV5T]>,
564 // ARMv8-M Security Extensions
565 def tBLXNSr : TI<(outs), (ins pred:$p, GPRnopc:$func), IIC_Br,
566 "blxns${p}\t$func", []>,
567 Requires<[IsThumb, Has8MSecExt]>,
568 T1Special<{1,1,1,?}>, Sched<[WriteBrL]> {
570 let Inst{6-3} = func;
571 let Inst{2-0} = 0b100;
572 let Unpredictable{1-0} = 0b11;
575 def tBLXNS_CALL : PseudoInst<(outs), (ins GPRnopc:$func), IIC_Br,
576 [(ARMtsecall GPRnopc:$func)]>,
577 Requires<[IsThumb, Has8MSecExt]>, Sched<[WriteBr]>;
580 def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func),
582 [(ARMcall_nolink tGPR:$func)]>,
583 Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>;
585 // Also used for Thumb2
586 // push lr before the call
587 def tBL_PUSHLR : tPseudoInst<(outs), (ins GPRlr:$ra, pred:$p, thumb_bl_target:$func),
590 Requires<[IsThumb]>, Sched<[WriteBr]>;
593 def : ARMPat<(ARMcall GPR:$func), (tBLXr $func)>,
594 Requires<[IsThumb, HasV5T, NoSLSBLRMitigation]>;
595 def : ARMPat<(ARMcall GPRnoip:$func), (tBLXr_noip $func)>,
596 Requires<[IsThumb, HasV5T, SLSBLRMitigation]>;
598 let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
599 let isPredicable = 1 in
600 def tB : T1pI<(outs), (ins t_brtarget:$target), IIC_Br,
601 "b", "\t$target", [(br bb:$target)]>,
602 T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> {
604 let Inst{10-0} = target;
605 let AsmMatchConverter = "cvtThumbBranches";
609 // Just a pseudo for a tBL instruction. Needed to let regalloc know about
610 // the clobber of LR.
612 def tBfar : tPseudoExpand<(outs), (ins thumb_bl_target:$target, pred:$p),
614 (tBL pred:$p, thumb_bl_target:$target)>,
617 def tBR_JTr : tPseudoInst<(outs),
618 (ins tGPR:$target, i32imm:$jt),
620 [(ARMbrjt tGPR:$target, tjumptable:$jt)]>,
621 Sched<[WriteBrTbl]> {
623 let isNotDuplicable = 1;
624 list<Predicate> Predicates = [IsThumb, IsThumb1Only];
628 // FIXME: should be able to write a pattern for ARMBrcond, but can't use
629 // a two-value operand where a dag node expects two operands. :(
630 let isBranch = 1, isTerminator = 1 in
631 def tBcc : T1I<(outs), (ins thumb_bcc_target:$target, pred:$p), IIC_Br,
633 [/*(ARMbrcond bb:$target, imm:$cc)*/]>,
634 T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> {
638 let Inst{7-0} = target;
639 let AsmMatchConverter = "cvtThumbBranches";
644 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
647 def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst),
649 (tBX GPR:$dst, (ops 14, zero_reg))>,
650 Requires<[IsThumb]>, Sched<[WriteBr]>;
652 // tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls
653 // on MachO), so it's in ARMInstrThumb2.td.
654 // Non-MachO version:
656 def tTAILJMPdND : tPseudoExpand<(outs),
657 (ins t_brtarget:$dst, pred:$p),
659 (tB t_brtarget:$dst, pred:$p)>,
660 Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>;
665 // A8.6.218 Supervisor Call (Software Interrupt)
666 // A8.6.16 B: Encoding T1
667 // If Inst{11-8} == 0b1111 then SEE SVC
668 let isCall = 1, Uses = [SP] in
669 def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br,
670 "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> {
672 let Inst{15-12} = 0b1101;
673 let Inst{11-8} = 0b1111;
677 // The assembler uses 0xDEFE for a trap instruction.
678 let isBarrier = 1, isTerminator = 1 in
679 def tTRAP : TI<(outs), (ins), IIC_Br,
680 "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> {
684 //===----------------------------------------------------------------------===//
685 // Load Store Instructions.
688 // PC-relative loads need to be matched first as constant pool accesses need to
689 // always be PC-relative. We do this using AddedComplexity, as the pattern is
690 // simpler than the patterns of the other load instructions.
691 let canFoldAsLoad = 1, isReMaterializable = 1, AddedComplexity = 10 in
692 def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i,
693 "ldr", "\t$Rt, $addr",
694 [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>,
695 T1Encoding<{0,1,0,0,1,?}>, Sched<[WriteLd]> {
700 let Inst{7-0} = addr;
703 // SP-relative loads should be matched before standard immediate-offset loads as
704 // it means we avoid having to move SP to another register.
705 let canFoldAsLoad = 1 in
706 def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
707 "ldr", "\t$Rt, $addr",
708 [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>,
709 T1LdStSP<{1,?,?}>, Sched<[WriteLd]> {
713 let Inst{7-0} = addr;
716 // Loads: reg/reg and reg/imm5
717 let canFoldAsLoad = 1, isReMaterializable = 1 in
718 multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
719 Operand AddrMode_r, Operand AddrMode_i,
720 AddrMode am, InstrItinClass itin_r,
721 InstrItinClass itin_i, string asm,
723 // Immediate-offset loads should be matched before register-offset loads as
724 // when the offset is a constant it's simpler to first check if it fits in the
725 // immediate offset field then fall back to register-offset if it doesn't.
727 T1pILdStEncodeImm<imm_opc, 1 /* Load */,
728 (outs tGPR:$Rt), (ins AddrMode_i:$addr),
729 am, itin_i, asm, "\t$Rt, $addr",
730 [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>;
731 // Register-offset loads are matched last.
733 T1pILdStEncode<reg_opc,
734 (outs tGPR:$Rt), (ins AddrMode_r:$addr),
735 am, itin_r, asm, "\t$Rt, $addr",
736 [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>;
738 // Stores: reg/reg and reg/imm5
739 multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
740 Operand AddrMode_r, Operand AddrMode_i,
741 AddrMode am, InstrItinClass itin_r,
742 InstrItinClass itin_i, string asm,
745 T1pILdStEncodeImm<imm_opc, 0 /* Store */,
746 (outs), (ins tGPR:$Rt, AddrMode_i:$addr),
747 am, itin_i, asm, "\t$Rt, $addr",
748 [(opnode tGPR:$Rt, AddrMode_i:$addr)]>;
750 T1pILdStEncode<reg_opc,
751 (outs), (ins tGPR:$Rt, AddrMode_r:$addr),
752 am, itin_r, asm, "\t$Rt, $addr",
753 [(opnode tGPR:$Rt, AddrMode_r:$addr)]>;
757 defm tLDR : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rr,
758 t_addrmode_is4, AddrModeT1_4,
759 IIC_iLoad_r, IIC_iLoad_i, "ldr",
760 load>, Sched<[WriteLd]>;
763 defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rr,
764 t_addrmode_is1, AddrModeT1_1,
765 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb",
766 zextloadi8>, Sched<[WriteLd]>;
769 defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rr,
770 t_addrmode_is2, AddrModeT1_2,
771 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh",
772 zextloadi16>, Sched<[WriteLd]>;
774 let AddedComplexity = 10 in
775 def tLDRSB : // A8.6.80
776 T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr),
777 AddrModeT1_1, IIC_iLoad_bh_r,
778 "ldrsb", "\t$Rt, $addr",
779 [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>;
781 let AddedComplexity = 10 in
782 def tLDRSH : // A8.6.84
783 T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr),
784 AddrModeT1_2, IIC_iLoad_bh_r,
785 "ldrsh", "\t$Rt, $addr",
786 [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>;
789 def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
790 "str", "\t$Rt, $addr",
791 [(store tGPR:$Rt, t_addrmode_sp:$addr)]>,
792 T1LdStSP<{0,?,?}>, Sched<[WriteST]> {
796 let Inst{7-0} = addr;
799 // A8.6.194 & A8.6.192
800 defm tSTR : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rr,
801 t_addrmode_is4, AddrModeT1_4,
802 IIC_iStore_r, IIC_iStore_i, "str",
803 store>, Sched<[WriteST]>;
805 // A8.6.197 & A8.6.195
806 defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rr,
807 t_addrmode_is1, AddrModeT1_1,
808 IIC_iStore_bh_r, IIC_iStore_bh_i, "strb",
809 truncstorei8>, Sched<[WriteST]>;
811 // A8.6.207 & A8.6.205
812 defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rr,
813 t_addrmode_is2, AddrModeT1_2,
814 IIC_iStore_bh_r, IIC_iStore_bh_i, "strh",
815 truncstorei16>, Sched<[WriteST]>;
818 //===----------------------------------------------------------------------===//
819 // Load / store multiple Instructions.
822 // These require base address to be written back or one of the loaded regs.
823 let hasSideEffects = 0 in {
825 let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
826 def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
827 IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> {
831 let Inst{7-0} = regs;
834 // Writeback version is just a pseudo, as there's no encoding difference.
835 // Writeback happens iff the base register is not in the destination register
837 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
839 InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain,
840 "$Rn = $wb", IIC_iLoad_mu>,
841 PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> {
843 let OutOperandList = (outs tGPR:$wb);
844 let InOperandList = (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops);
846 let isCodeGenOnly = 1;
848 list<Predicate> Predicates = [IsThumb];
851 // There is no non-writeback version of STM for Thumb.
852 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
853 def tSTMIA_UPD : Thumb1I<(outs tGPR:$wb),
854 (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
855 AddrModeNone, 2, IIC_iStore_mu,
856 "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>,
857 T1Encoding<{1,1,0,0,0,?}> {
861 let Inst{7-0} = regs;
866 def : InstAlias<"ldm${p} $Rn!, $regs",
867 (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs), 0>,
868 Requires<[IsThumb, IsThumb1Only]>;
870 let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1,
871 variadicOpsAreDefs = 1 in
872 def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
874 "pop${p}\t$regs", []>,
875 T1Misc<{1,1,0,?,?,?,?}>, Sched<[WriteLd]> {
877 let Inst{8} = regs{15};
878 let Inst{7-0} = regs{7-0};
881 let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
882 def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
884 "push${p}\t$regs", []>,
885 T1Misc<{0,1,0,?,?,?,?}>, Sched<[WriteST]> {
887 let Inst{8} = regs{14};
888 let Inst{7-0} = regs{7-0};
891 //===----------------------------------------------------------------------===//
892 // Arithmetic Instructions.
895 // Helper classes for encoding T1pI patterns:
896 class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
897 string opc, string asm, list<dag> pattern>
898 : T1pI<oops, iops, itin, opc, asm, pattern>,
899 T1DataProcessing<opA> {
905 class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin,
906 string opc, string asm, list<dag> pattern>
907 : T1pI<oops, iops, itin, opc, asm, pattern>,
915 // Helper classes for encoding T1sI patterns:
916 class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
917 string opc, string asm, list<dag> pattern>
918 : T1sI<oops, iops, itin, opc, asm, pattern>,
919 T1DataProcessing<opA> {
925 class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
926 string opc, string asm, list<dag> pattern>
927 : T1sI<oops, iops, itin, opc, asm, pattern>,
936 class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
937 string opc, string asm, list<dag> pattern>
938 : T1sI<oops, iops, itin, opc, asm, pattern>,
946 // Helper classes for encoding T1sIt patterns:
947 class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
948 string opc, string asm, list<dag> pattern>
949 : T1sIt<oops, iops, itin, opc, asm, pattern>,
950 T1DataProcessing<opA> {
956 class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
957 string opc, string asm, list<dag> pattern>
958 : T1sIt<oops, iops, itin, opc, asm, pattern>,
962 let Inst{10-8} = Rdn;
963 let Inst{7-0} = imm8;
967 // Add with carry register
968 let isCommutable = 1, Uses = [CPSR] in
970 T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr,
971 "adc", "\t$Rdn, $Rm",
972 []>, Sched<[WriteALU]>;
975 def tADDi3 : // A8.6.4 T1
976 T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
978 "add", "\t$Rd, $Rm, $imm3",
979 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>,
982 let Inst{8-6} = imm3;
985 def tADDi8 : // A8.6.4 T2
986 T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn),
987 (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
988 "add", "\t$Rdn, $imm8",
989 [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>,
993 let isCommutable = 1 in
994 def tADDrr : // A8.6.6 T1
995 T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
997 "add", "\t$Rd, $Rn, $Rm",
998 [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1000 /// Similar to the above except these set the 's' bit so the
1001 /// instruction modifies the CPSR register.
1003 /// These opcodes will be converted to the real non-S opcodes by
1004 /// AdjustInstrPostInstrSelection after giving then an optional CPSR operand.
1005 let hasPostISelHook = 1, Defs = [CPSR] in {
1006 let isCommutable = 1, Uses = [CPSR] in
1007 def tADCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1009 [(set tGPR:$Rdn, CPSR, (ARMadde tGPR:$Rn, tGPR:$Rm,
1011 Requires<[IsThumb1Only]>,
1014 def tADDSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
1016 [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rm,
1018 Requires<[IsThumb1Only]>,
1021 def tADDSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8),
1023 [(set tGPR:$Rdn, CPSR, (ARMaddc tGPR:$Rn,
1025 Requires<[IsThumb1Only]>,
1028 let isCommutable = 1 in
1029 def tADDSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
1031 [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rn,
1033 Requires<[IsThumb1Only]>,
1037 let hasSideEffects = 0 in
1038 def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
1039 "add", "\t$Rdn, $Rm", []>,
1040 T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
1044 let Inst{7} = Rdn{3};
1046 let Inst{2-0} = Rdn{2-0};
1050 // Thumb has more flexible short encodings for ADD than ORR, so use those where
1052 def : T1Pat<(or AddLikeOrOp:$Rn, imm0_7:$imm), (tADDi3 $Rn, imm0_7:$imm)>;
1054 def : T1Pat<(or AddLikeOrOp:$Rn, imm8_255:$imm), (tADDi8 $Rn, imm8_255:$imm)>;
1056 def : T1Pat<(or AddLikeOrOp:$Rn, tGPR:$Rm), (tADDrr $Rn, $Rm)>;
1059 def : tInstAlias <"add${s}${p} $Rdn, $Rm",
1060 (tADDrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>;
1062 def : tInstSubst<"sub${s}${p} $rd, $rn, $imm",
1063 (tADDi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>;
1064 def : tInstSubst<"sub${s}${p} $rdn, $imm",
1065 (tADDi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>;
1069 let isCommutable = 1 in
1070 def tAND : // A8.6.12
1071 T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1073 "and", "\t$Rdn, $Rm",
1074 [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1077 def tASRri : // A8.6.14
1078 T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
1080 "asr", "\t$Rd, $Rm, $imm5",
1081 [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
1084 let Inst{10-6} = imm5;
1088 def tASRrr : // A8.6.15
1089 T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1091 "asr", "\t$Rdn, $Rm",
1092 [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1095 def tBIC : // A8.6.20
1096 T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1098 "bic", "\t$Rdn, $Rm",
1099 [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>,
1103 let isCompare = 1, Defs = [CPSR] in {
1104 //FIXME: Disable CMN, as CCodes are backwards from compare expectations
1105 // Compare-to-zero still works out, just not the relationals
1106 //def tCMN : // A8.6.33
1107 // T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs),
1109 // "cmn", "\t$lhs, $rhs",
1110 // [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
1112 def tCMNz : // A8.6.33
1113 T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm),
1115 "cmn", "\t$Rn, $Rm",
1116 [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>;
1118 } // isCompare = 1, Defs = [CPSR]
1121 let isCompare = 1, Defs = [CPSR] in {
1122 def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi,
1123 "cmp", "\t$Rn, $imm8",
1124 [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>,
1125 T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> {
1129 let Inst{10-8} = Rn;
1130 let Inst{7-0} = imm8;
1134 def tCMPr : // A8.6.36 T1
1135 T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm),
1137 "cmp", "\t$Rn, $Rm",
1138 [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>;
1140 def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr,
1141 "cmp", "\t$Rn, $Rm", []>,
1142 T1Special<{0,1,?,?}>, Sched<[WriteCMP]> {
1146 let Inst{7} = Rn{3};
1148 let Inst{2-0} = Rn{2-0};
1150 } // isCompare = 1, Defs = [CPSR]
1154 let isCommutable = 1 in
1155 def tEOR : // A8.6.45
1156 T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1158 "eor", "\t$Rdn, $Rm",
1159 [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1162 def tLSLri : // A8.6.88
1163 T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5),
1165 "lsl", "\t$Rd, $Rm, $imm5",
1166 [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>,
1169 let Inst{10-6} = imm5;
1173 def tLSLrr : // A8.6.89
1174 T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1176 "lsl", "\t$Rdn, $Rm",
1177 [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1180 def tLSRri : // A8.6.90
1181 T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
1183 "lsr", "\t$Rd, $Rm, $imm5",
1184 [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
1187 let Inst{10-6} = imm5;
1191 def tLSRrr : // A8.6.91
1192 T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1194 "lsr", "\t$Rdn, $Rm",
1195 [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1198 let isMoveImm = 1 in
1199 def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi,
1200 "mov", "\t$Rd, $imm8",
1201 [(set tGPR:$Rd, imm0_255:$imm8)]>,
1202 T1General<{1,0,0,?,?}>, Sched<[WriteALU]> {
1206 let Inst{10-8} = Rd;
1207 let Inst{7-0} = imm8;
1209 // Because we have an explicit tMOVSr below, we need an alias to handle
1210 // the immediate "movs" form here. Blech.
1211 def : tInstAlias <"movs $Rdn, $imm",
1212 (tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>;
1214 // A7-73: MOV(2) - mov setting flag.
1216 let hasSideEffects = 0, isMoveReg = 1 in {
1217 def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone,
1219 "mov", "\t$Rd, $Rm", "", []>,
1220 T1Special<{1,0,?,?}>, Sched<[WriteALU]> {
1224 let Inst{7} = Rd{3};
1226 let Inst{2-0} = Rd{2-0};
1228 let Defs = [CPSR] in
1229 def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
1230 "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> {
1234 let Inst{15-6} = 0b0000000000;
1240 // Multiply register
1241 let isCommutable = 1 in
1242 def tMUL : // A8.6.105 T1
1243 Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2,
1244 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd",
1245 [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>,
1246 T1DataProcessing<0b1101>, Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
1251 let AsmMatchConverter = "cvtThumbMultiply";
1254 def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn,
1257 // Move inverse register
1258 def tMVN : // A8.6.107
1259 T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr,
1260 "mvn", "\t$Rd, $Rn",
1261 [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>;
1263 // Bitwise or register
1264 let isCommutable = 1 in
1265 def tORR : // A8.6.114
1266 T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1268 "orr", "\t$Rdn, $Rm",
1269 [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1272 def tREV : // A8.6.134
1273 T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1275 "rev", "\t$Rd, $Rm",
1276 [(set tGPR:$Rd, (bswap tGPR:$Rm))]>,
1277 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1279 def tREV16 : // A8.6.135
1280 T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1282 "rev16", "\t$Rd, $Rm",
1283 [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>,
1284 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1286 def tREVSH : // A8.6.136
1287 T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1289 "revsh", "\t$Rd, $Rm",
1290 [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>,
1291 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1293 // Rotate right register
1294 def tROR : // A8.6.139
1295 T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1297 "ror", "\t$Rdn, $Rm",
1298 [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>,
1302 def tRSB : // A8.6.141
1303 T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn),
1305 "rsb", "\t$Rd, $Rn, #0",
1306 [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>;
1308 // Subtract with carry register
1309 let Uses = [CPSR] in
1310 def tSBC : // A8.6.151
1311 T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1313 "sbc", "\t$Rdn, $Rm",
1317 // Subtract immediate
1318 def tSUBi3 : // A8.6.210 T1
1319 T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
1321 "sub", "\t$Rd, $Rm, $imm3",
1322 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>,
1325 let Inst{8-6} = imm3;
1328 def tSUBi8 : // A8.6.210 T2
1329 T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn),
1330 (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
1331 "sub", "\t$Rdn, $imm8",
1332 [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>,
1335 def : tInstSubst<"add${s}${p} $rd, $rn, $imm",
1336 (tSUBi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>;
1339 def : tInstSubst<"add${s}${p} $rdn, $imm",
1340 (tSUBi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>;
1343 // Subtract register
1344 def tSUBrr : // A8.6.212
1345 T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
1347 "sub", "\t$Rd, $Rn, $Rm",
1348 [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>,
1351 def : tInstAlias <"sub${s}${p} $Rdn, $Rm",
1352 (tSUBrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>;
1354 /// Similar to the above except these set the 's' bit so the
1355 /// instruction modifies the CPSR register.
1357 /// These opcodes will be converted to the real non-S opcodes by
1358 /// AdjustInstrPostInstrSelection after giving then an optional CPSR operand.
1359 let hasPostISelHook = 1, Defs = [CPSR] in {
1360 let Uses = [CPSR] in
1361 def tSBCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1363 [(set tGPR:$Rdn, CPSR, (ARMsube tGPR:$Rn, tGPR:$Rm,
1365 Requires<[IsThumb1Only]>,
1368 def tSUBSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
1370 [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rm,
1372 Requires<[IsThumb1Only]>,
1375 def tSUBSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8),
1377 [(set tGPR:$Rdn, CPSR, (ARMsubc tGPR:$Rn,
1379 Requires<[IsThumb1Only]>,
1382 def tSUBSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
1384 [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rn,
1386 Requires<[IsThumb1Only]>,
1389 def tRSBS : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn),
1391 [(set tGPR:$Rd, CPSR, (ARMsubc 0, tGPR:$Rn))]>,
1392 Requires<[IsThumb1Only]>,
1395 def tLSLSri : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, imm0_31:$imm5),
1397 [(set tGPR:$Rd, CPSR, (ARMlsls tGPR:$Rn, imm0_31:$imm5))]>,
1398 Requires<[IsThumb1Only]>,
1403 def : T1Pat<(ARMsubs tGPR:$Rn, tGPR:$Rm), (tSUBSrr $Rn, $Rm)>;
1404 def : T1Pat<(ARMsubs tGPR:$Rn, imm0_7:$imm3), (tSUBSi3 $Rn, imm0_7:$imm3)>;
1405 def : T1Pat<(ARMsubs tGPR:$Rn, imm0_255:$imm8), (tSUBSi8 $Rn, imm0_255:$imm8)>;
1409 def tSXTB : // A8.6.222
1410 T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1412 "sxtb", "\t$Rd, $Rm",
1413 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>,
1414 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1417 // Sign-extend short
1418 def tSXTH : // A8.6.224
1419 T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1421 "sxth", "\t$Rd, $Rm",
1422 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>,
1423 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1427 let isCompare = 1, isCommutable = 1, Defs = [CPSR] in
1428 def tTST : // A8.6.230
1429 T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr,
1430 "tst", "\t$Rn, $Rm",
1431 [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>,
1434 // A8.8.247 UDF - Undefined (Encoding T1)
1435 def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8",
1436 [(int_arm_undefined imm0_255:$imm8)]>, Encoding16 {
1438 let Inst{15-12} = 0b1101;
1439 let Inst{11-8} = 0b1110;
1440 let Inst{7-0} = imm8;
1443 def : Pat<(debugtrap), (tBKPT 0)>, Requires<[IsThumb, HasV5T]>;
1444 def : Pat<(debugtrap), (tUDF 254)>, Requires<[IsThumb, NoV5T]>;
1446 def t__brkdiv0 : TI<(outs), (ins), IIC_Br, "__brkdiv0",
1447 [(int_arm_undefined 249)]>, Encoding16,
1448 Requires<[IsThumb, IsWindows]> {
1450 let isTerminator = 1;
1454 def tUXTB : // A8.6.262
1455 T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1457 "uxtb", "\t$Rd, $Rm",
1458 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>,
1459 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1462 // Zero-extend short
1463 def tUXTH : // A8.6.264
1464 T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1466 "uxth", "\t$Rd, $Rm",
1467 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>,
1468 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1470 // Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
1471 // Expanded after instruction selection into a branch sequence.
1472 let usesCustomInserter = 1 in // Expanded after instruction selection.
1473 def tMOVCCr_pseudo :
1474 PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p),
1476 [(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>;
1478 // tLEApcrel - Load a pc-relative address into a register without offending the
1481 def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p),
1482 IIC_iALUi, "adr{$p}\t$Rd, $addr", []>,
1483 T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> {
1486 let Inst{10-8} = Rd;
1487 let Inst{7-0} = addr;
1488 let DecoderMethod = "DecodeThumbAddSpecialReg";
1491 let hasSideEffects = 0, isReMaterializable = 1 in
1492 def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p),
1493 2, IIC_iALUi, []>, Sched<[WriteALU]>;
1495 let hasSideEffects = 1 in
1496 def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd),
1497 (ins i32imm:$label, pred:$p),
1498 2, IIC_iALUi, []>, Sched<[WriteALU]>;
1500 // Thumb-1 doesn't have the TBB or TBH instructions, but we can synthesize them
1501 // and make use of the same compressed jump table format as Thumb-2.
1502 let Size = 2, isBranch = 1, isTerminator = 1, isBarrier = 1,
1503 isIndirectBranch = 1, isNotDuplicable = 1 in {
1504 def tTBB_JT : tPseudoInst<(outs),
1505 (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0,
1506 IIC_Br, []>, Sched<[WriteBr]>;
1508 def tTBH_JT : tPseudoInst<(outs),
1509 (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0,
1510 IIC_Br, []>, Sched<[WriteBr]>;
1513 //===----------------------------------------------------------------------===//
1517 // __aeabi_read_tp preserves the registers r1-r3.
1518 // This is a pseudo inst so that we can get the encoding right,
1519 // complete with fixup for the aeabi_read_tp function.
1520 let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in
1521 def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br,
1522 [(set R0, ARMthread_pointer)]>,
1525 //===----------------------------------------------------------------------===//
1526 // SJLJ Exception handling intrinsics
1529 // eh_sjlj_setjmp() is an instruction sequence to store the return address and
1530 // save #0 in R0 for the non-longjmp case. Since by its nature we may be coming
1531 // from some other function to get here, and we're using the stack frame for the
1532 // containing function to save/restore registers, we can't keep anything live in
1533 // regs across the eh_sjlj_setjmp(), else it will almost certainly have been
1534 // tromped upon when we get here from a longjmp(). We force everything out of
1535 // registers except for our own input by listing the relevant registers in
1536 // Defs. By doing so, we also cause the prologue/epilogue code to actively
1537 // preserve all of the callee-saved registers, which is exactly what we want.
1538 // $val is a scratch register for our use.
1539 let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12, CPSR ],
1540 hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
1541 usesCustomInserter = 1 in
1542 def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
1543 AddrModeNone, 0, NoItinerary, "","",
1544 [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;
1546 // FIXME: Non-IOS version(s)
1547 let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
1548 Defs = [ R7, LR, SP ] in
1549 def tInt_eh_sjlj_longjmp : XI<(outs), (ins tGPR:$src, tGPR:$scratch),
1550 AddrModeNone, 0, IndexModeNone,
1551 Pseudo, NoItinerary, "", "",
1552 [(ARMeh_sjlj_longjmp tGPR:$src, tGPR:$scratch)]>,
1553 Requires<[IsThumb,IsNotWindows]>;
1555 // (Windows is Thumb2-only)
1556 let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
1557 Defs = [ R11, LR, SP ] in
1558 def tInt_WIN_eh_sjlj_longjmp
1559 : XI<(outs), (ins GPR:$src, GPR:$scratch), AddrModeNone, 0, IndexModeNone,
1560 Pseudo, NoItinerary, "", "", [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
1561 Requires<[IsThumb,IsWindows]>;
1563 //===----------------------------------------------------------------------===//
1564 // Non-Instruction Patterns
1568 def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8),
1569 (tCMPi8 tGPR:$Rn, imm0_255:$imm8)>;
1570 def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm),
1571 (tCMPr tGPR:$Rn, tGPR:$Rm)>;
1573 // Bswap 16 with load/store
1574 def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)),
1575 (tREV16 (tLDRHi t_addrmode_is2:$addr))>;
1576 def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rr:$addr)), (i32 16)),
1577 (tREV16 (tLDRHr t_addrmode_rr:$addr))>;
1578 def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
1579 t_addrmode_is2:$addr),
1580 (tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>;
1581 def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
1582 t_addrmode_rr:$addr),
1583 (tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rr:$addr)>;
1586 def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
1589 def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr),
1592 (ARMWrapperPIC tglobaladdr:$addr))]>,
1593 Requires<[IsThumb, DontUseMovtInPic]>;
1595 def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src),
1598 (ARMWrapper tglobaladdr:$src))]>,
1599 Requires<[IsThumb, DontUseMovt]>;
1602 def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
1603 (tLDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
1604 Requires<[IsThumb, DontUseMovtInPic]>;
1605 def : Pat<(ARMWrapper tglobaltlsaddr:$addr),
1606 (tLDRLIT_ga_abs tglobaltlsaddr:$addr)>,
1607 Requires<[IsThumb, DontUseMovt]>;
1611 def : T1Pat<(ARMWrapperJT tjumptable:$dst),
1612 (tLEApcrelJT tjumptable:$dst)>;
1615 def : T1Pat<(ARMcall texternalsym:$func), (tBL texternalsym:$func)>,
1616 Requires<[IsThumb]>;
1618 // zextload i1 -> zextload i8
1619 def : T1Pat<(zextloadi1 t_addrmode_is1:$addr),
1620 (tLDRBi t_addrmode_is1:$addr)>;
1621 def : T1Pat<(zextloadi1 t_addrmode_rr:$addr),
1622 (tLDRBr t_addrmode_rr:$addr)>;
1624 // extload from the stack -> word load from the stack, as it avoids having to
1625 // materialize the base in a separate register. This only works when a word
1626 // load puts the byte/halfword value in the same place in the register that the
1627 // byte/halfword load would, i.e. when little-endian.
1628 def : T1Pat<(extloadi1 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
1629 Requires<[IsThumb, IsThumb1Only, IsLE]>;
1630 def : T1Pat<(extloadi8 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
1631 Requires<[IsThumb, IsThumb1Only, IsLE]>;
1632 def : T1Pat<(extloadi16 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
1633 Requires<[IsThumb, IsThumb1Only, IsLE]>;
1635 // extload -> zextload
1636 def : T1Pat<(extloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
1637 def : T1Pat<(extloadi1 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>;
1638 def : T1Pat<(extloadi8 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
1639 def : T1Pat<(extloadi8 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>;
1640 def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>;
1641 def : T1Pat<(extloadi16 t_addrmode_rr:$addr), (tLDRHr t_addrmode_rr:$addr)>;
1643 // post-inc loads and stores
1645 // post-inc LDR -> LDM r0!, {r1}. The way operands are layed out in LDMs is
1646 // different to how ISel expects them for a post-inc load, so use a pseudo
1647 // and expand it just after ISel.
1648 let usesCustomInserter = 1, mayLoad =1,
1649 Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in
1650 def tLDR_postidx: tPseudoInst<(outs tGPR:$Rt, tGPR:$Rn_wb),
1651 (ins tGPR:$Rn, pred:$p),
1655 // post-inc STR -> STM r0!, {r1}. The layout of this (because it doesn't def
1656 // multiple registers) is the same in ISel as MachineInstr, so there's no need
1658 def : T1Pat<(post_store tGPR:$Rt, tGPR:$Rn, 4),
1659 (tSTMIA_UPD tGPR:$Rn, tGPR:$Rt)>;
1661 // If it's impossible to use [r,r] address mode for sextload, select to
1662 // ldsr{b|h} r, 0 instead, in a hope that the mov 0 will be more likely to be
1663 // commoned out than a sxth.
1664 let AddedComplexity = 10 in {
1665 def : T1Pat<(sextloadi8 tGPR:$Rn),
1666 (tLDRSB tGPR:$Rn, (tMOVi8 0))>,
1667 Requires<[IsThumb, IsThumb1Only, HasV6]>;
1668 def : T1Pat<(sextloadi16 tGPR:$Rn),
1669 (tLDRSH tGPR:$Rn, (tMOVi8 0))>,
1670 Requires<[IsThumb, IsThumb1Only, HasV6]>;
1673 def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
1674 (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>;
1675 def : T1Pat<(sextloadi8 t_addrmode_rr:$addr),
1676 (tASRri (tLSLri (tLDRBr t_addrmode_rr:$addr), 24), 24)>;
1677 def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
1678 (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>;
1679 def : T1Pat<(sextloadi16 t_addrmode_rr:$addr),
1680 (tASRri (tLSLri (tLDRHr t_addrmode_rr:$addr), 16), 16)>;
1682 def : T1Pat<(atomic_load_8 t_addrmode_is1:$src),
1683 (tLDRBi t_addrmode_is1:$src)>;
1684 def : T1Pat<(atomic_load_8 t_addrmode_rr:$src),
1685 (tLDRBr t_addrmode_rr:$src)>;
1686 def : T1Pat<(atomic_load_16 t_addrmode_is2:$src),
1687 (tLDRHi t_addrmode_is2:$src)>;
1688 def : T1Pat<(atomic_load_16 t_addrmode_rr:$src),
1689 (tLDRHr t_addrmode_rr:$src)>;
1690 def : T1Pat<(atomic_load_32 t_addrmode_is4:$src),
1691 (tLDRi t_addrmode_is4:$src)>;
1692 def : T1Pat<(atomic_load_32 t_addrmode_rr:$src),
1693 (tLDRr t_addrmode_rr:$src)>;
1694 def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val),
1695 (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>;
1696 def : T1Pat<(atomic_store_8 t_addrmode_rr:$ptr, tGPR:$val),
1697 (tSTRBr tGPR:$val, t_addrmode_rr:$ptr)>;
1698 def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val),
1699 (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>;
1700 def : T1Pat<(atomic_store_16 t_addrmode_rr:$ptr, tGPR:$val),
1701 (tSTRHr tGPR:$val, t_addrmode_rr:$ptr)>;
1702 def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val),
1703 (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>;
1704 def : T1Pat<(atomic_store_32 t_addrmode_rr:$ptr, tGPR:$val),
1705 (tSTRr tGPR:$val, t_addrmode_rr:$ptr)>;
1707 // Large immediate handling.
1710 def : T1Pat<(i32 thumb_immshifted:$src),
1711 (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
1712 (thumb_immshifted_shamt imm:$src))>;
1714 def : T1Pat<(i32 imm0_255_comp:$src),
1715 (tMVN (tMOVi8 (imm_not_XFORM imm:$src)))>;
1717 def : T1Pat<(i32 imm256_510:$src),
1718 (tADDi8 (tMOVi8 255),
1719 (thumb_imm256_510_addend imm:$src))>;
1721 // Pseudo instruction that combines ldr from constpool and add pc. This should
1722 // be expanded into two instructions late to allow if-conversion and
1724 let isReMaterializable = 1 in
1725 def tLDRpci_pic : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr, pclabel:$cp),
1727 [(set tGPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
1729 Requires<[IsThumb, IsThumb1Only]>;
1731 // Pseudo-instruction for merged POP and return.
1732 // FIXME: remove when we have a way to marking a MI with these properties.
1733 let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
1734 hasExtraDefRegAllocReq = 1 in
1735 def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops),
1737 (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>;
1739 // Indirect branch using "mov pc, $Rm"
1740 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
1741 def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p),
1742 2, IIC_Br, [(brind GPR:$Rm)],
1743 (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
1747 // In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00
1748 // encoding is available on ARMv6K, but we don't differentiate that finely.
1749 def : InstAlias<"nop", (tMOVr R8, R8, 14, 0), 0>, Requires<[IsThumb, IsThumb1Only]>;
1752 // "neg" is and alias for "rsb rd, rn, #0"
1753 def : tInstAlias<"neg${s}${p} $Rd, $Rm",
1754 (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>;
1757 // Implied destination operand forms for shifts.
1758 def : tInstAlias<"lsl${s}${p} $Rdm, $imm",
1759 (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>;
1760 def : tInstAlias<"lsr${s}${p} $Rdm, $imm",
1761 (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
1762 def : tInstAlias<"asr${s}${p} $Rdm, $imm",
1763 (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
1765 // Pseudo instruction ldr Rt, =immediate
1767 : tAsmPseudo<"ldr${p} $Rt, $immediate",
1768 (ins tGPR:$Rt, const_pool_asm_imm:$immediate, pred:$p)>;
1770 //===----------------------------------
1771 // Atomic cmpxchg for -O0
1772 //===----------------------------------
1774 // See ARMInstrInfo.td. These two thumb specific pseudos are required to
1775 // restrict the register class for the UXTB/UXTH ops used in the expansion.
1777 let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
1778 mayLoad = 1, mayStore = 1 in {
1779 def tCMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
1780 (ins GPR:$addr, tGPR:$desired, GPR:$new),
1781 NoItinerary, []>, Sched<[]>;
1783 def tCMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
1784 (ins GPR:$addr, tGPR:$desired, GPR:$new),
1785 NoItinerary, []>, Sched<[]>;