1 //===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 include "ARMSystemRegister.td"
11 //===----------------------------------------------------------------------===//
12 // Declarations that describe the ARM register file
13 //===----------------------------------------------------------------------===//
15 // Registers are identified with 4-bit ID numbers.
16 class ARMReg<bits<16> Enc, string n, list<Register> subregs = [],
17 list<string> altNames = []> : Register<n, altNames> {
19 let Namespace = "ARM";
20 let SubRegs = subregs;
21 // All bits of ARM registers with sub-registers are covered by sub-registers.
22 let CoveredBySubRegs = 1;
25 class ARMFReg<bits<16> Enc, string n> : Register<n> {
27 let Namespace = "ARM";
30 let Namespace = "ARM",
31 FallbackRegAltNameIndex = NoRegAltName in {
32 def RegNamesRaw : RegAltNameIndex;
35 // Subregister indices.
36 let Namespace = "ARM" in {
37 def qqsub_0 : SubRegIndex<256>;
38 def qqsub_1 : SubRegIndex<256, 256>;
40 // Note: Code depends on these having consecutive numbers.
41 def qsub_0 : SubRegIndex<128>;
42 def qsub_1 : SubRegIndex<128, 128>;
43 def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
44 def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;
46 def dsub_0 : SubRegIndex<64>;
47 def dsub_1 : SubRegIndex<64, 64>;
48 def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
49 def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
50 def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
51 def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
52 def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
53 def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;
55 def ssub_0 : SubRegIndex<32>;
56 def ssub_1 : SubRegIndex<32, 32>;
57 def ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>;
58 def ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>;
59 def ssub_4 : ComposedSubRegIndex<dsub_2, ssub_0>;
60 def ssub_5 : ComposedSubRegIndex<dsub_2, ssub_1>;
61 def ssub_6 : ComposedSubRegIndex<dsub_3, ssub_0>;
62 def ssub_7 : ComposedSubRegIndex<dsub_3, ssub_1>;
63 def ssub_8 : ComposedSubRegIndex<dsub_4, ssub_0>;
64 def ssub_9 : ComposedSubRegIndex<dsub_4, ssub_1>;
65 def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>;
66 def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>;
67 def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>;
68 def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>;
69 def ssub_14 : ComposedSubRegIndex<dsub_7, ssub_0>;
70 def ssub_15 : ComposedSubRegIndex<dsub_7, ssub_1>;
72 def gsub_0 : SubRegIndex<32>;
73 def gsub_1 : SubRegIndex<32, 32>;
74 // Let TableGen synthesize the remaining 12 ssub_* indices.
75 // We don't need to name them.
79 def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>;
80 def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>;
81 def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>;
82 def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>;
83 def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>;
84 def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>;
85 def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>;
86 def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>;
87 // These require 32-bit instructions.
88 let CostPerUse = [1] in {
89 def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>;
90 def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>;
91 def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
92 def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
93 def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
94 let RegAltNameIndices = [RegNamesRaw] in {
95 def SP : ARMReg<13, "sp", [], ["r13"]>, DwarfRegNum<[13]>;
96 def LR : ARMReg<14, "lr", [], ["r14"]>, DwarfRegNum<[14]>;
97 def PC : ARMReg<15, "pc", [], ["r15"]>, DwarfRegNum<[15]>;
102 def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">;
103 def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">;
104 def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">;
105 def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">;
106 def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">;
107 def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
108 def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
109 def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
110 def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
111 def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
112 def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
113 def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
114 def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
115 def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
116 def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
117 def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
119 // Aliases of the F* registers used to hold 64-bit fp values (doubles)
120 let SubRegIndices = [ssub_0, ssub_1] in {
121 def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>;
122 def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>;
123 def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>;
124 def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>;
125 def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>;
126 def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>;
127 def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>;
128 def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>;
129 def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>;
130 def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>;
131 def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
132 def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
133 def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
134 def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
135 def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
136 def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
139 // VFP3 defines 16 additional double registers
140 def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
141 def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
142 def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
143 def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
144 def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
145 def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
146 def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
147 def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
148 def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
149 def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
150 def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
151 def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
152 def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
153 def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
154 def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
155 def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
157 // Advanced SIMD (NEON) defines 16 quad-word aliases
158 let SubRegIndices = [dsub_0, dsub_1] in {
159 def Q0 : ARMReg< 0, "q0", [D0, D1]>;
160 def Q1 : ARMReg< 1, "q1", [D2, D3]>;
161 def Q2 : ARMReg< 2, "q2", [D4, D5]>;
162 def Q3 : ARMReg< 3, "q3", [D6, D7]>;
163 def Q4 : ARMReg< 4, "q4", [D8, D9]>;
164 def Q5 : ARMReg< 5, "q5", [D10, D11]>;
165 def Q6 : ARMReg< 6, "q6", [D12, D13]>;
166 def Q7 : ARMReg< 7, "q7", [D14, D15]>;
168 let SubRegIndices = [dsub_0, dsub_1] in {
169 def Q8 : ARMReg< 8, "q8", [D16, D17]>;
170 def Q9 : ARMReg< 9, "q9", [D18, D19]>;
171 def Q10 : ARMReg<10, "q10", [D20, D21]>;
172 def Q11 : ARMReg<11, "q11", [D22, D23]>;
173 def Q12 : ARMReg<12, "q12", [D24, D25]>;
174 def Q13 : ARMReg<13, "q13", [D26, D27]>;
175 def Q14 : ARMReg<14, "q14", [D28, D29]>;
176 def Q15 : ARMReg<15, "q15", [D30, D31]>;
179 // Current Program Status Register.
180 // We model fpscr with two registers: FPSCR models the control bits and will be
181 // reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
182 // models the APSR when it's accessed by some special instructions. In such cases
183 // it has the same encoding as PC.
184 def CPSR : ARMReg<0, "cpsr">;
185 def APSR : ARMReg<15, "apsr">;
186 def APSR_NZCV : ARMReg<15, "apsr_nzcv">;
187 def SPSR : ARMReg<2, "spsr">;
188 def FPSCR : ARMReg<3, "fpscr">;
189 def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> {
190 let Aliases = [FPSCR];
192 def ITSTATE : ARMReg<4, "itstate">;
194 // Special Registers - only available in privileged mode.
195 def FPSID : ARMReg<0, "fpsid">;
196 def MVFR2 : ARMReg<5, "mvfr2">;
197 def MVFR1 : ARMReg<6, "mvfr1">;
198 def MVFR0 : ARMReg<7, "mvfr0">;
199 def FPEXC : ARMReg<8, "fpexc">;
200 def FPINST : ARMReg<9, "fpinst">;
201 def FPINST2 : ARMReg<10, "fpinst2">;
202 // These encodings aren't actual instruction encodings, their encoding depends
203 // on the instruction they are used in and for VPR 32 was chosen such that it
204 // always comes last in spr_reglist_with_vpr.
205 def VPR : ARMReg<32, "vpr">;
207 : ARMReg<2, "fpscr_nzcvqc">;
208 def P0 : ARMReg<13, "p0">;
209 def FPCXTNS : ARMReg<14, "fpcxtns">;
210 def FPCXTS : ARMReg<15, "fpcxts">;
212 def ZR : ARMReg<15, "zr">, DwarfRegNum<[15]>;
216 // pc == Program Counter
217 // lr == Link Register
218 // sp == Stack Pointer
219 // r12 == ip (scratch)
220 // r7 == Frame Pointer (thumb-style backtraces)
221 // r9 == May be reserved as Thread Register
222 // r11 == Frame Pointer (arm-style backtraces)
223 // r10 == Stack Limit
225 def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
227 // Allocate LR as the first CSR since it is always saved anyway.
228 // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
229 // know how to spill them. If we make our prologue/epilogue code smarter at
230 // some point, we can go back to using the above allocation orders for the
231 // Thumb1 instructions that know how to use hi regs.
232 let AltOrders = [(add LR, GPR), (trunc GPR, 8),
233 (add (trunc GPR, 8), R12, LR, (shl GPR, 8))];
234 let AltOrderSelect = [{
235 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
237 let DiagnosticString = "operand must be a register in range [r0, r15]";
240 // Register set that excludes registers that are reserved for procedure calls.
241 // This is used for pseudo-instructions that are actually implemented using a
243 def GPRnoip : RegisterClass<"ARM", [i32], 32, (sub GPR, R12, LR)> {
244 // Allocate LR as the first CSR since it is always saved anyway.
245 // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
246 // know how to spill them. If we make our prologue/epilogue code smarter at
247 // some point, we can go back to using the above allocation orders for the
248 // Thumb1 instructions that know how to use hi regs.
249 let AltOrders = [(add GPRnoip, GPRnoip), (trunc GPRnoip, 8),
250 (add (trunc GPRnoip, 8), (shl GPRnoip, 8))];
251 let AltOrderSelect = [{
252 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
254 let DiagnosticString = "operand must be a register in range [r0, r14]";
257 // GPRs without the PC. Some ARM instructions do not allow the PC in
258 // certain operand slots, particularly as the destination. Primarily
259 // useful for disassembly.
260 def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
261 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8),
262 (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))];
263 let AltOrderSelect = [{
264 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
266 let DiagnosticString = "operand must be a register in range [r0, r14]";
269 // GPRs without the PC but with APSR. Some instructions allow accessing the
270 // APSR, while actually encoding PC in the register field. This is useful
271 // for assembly and disassembly only.
272 def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
273 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
274 let AltOrderSelect = [{
275 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
277 let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv";
280 // GPRs without the PC and SP registers but with APSR. Used by CLRM instruction.
281 def GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> {
282 let isAllocatable = 0;
285 def GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> {
286 let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)];
287 let AltOrderSelect = [{
288 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
290 let DiagnosticString = "operand must be a register in range [r0, r14] or zr";
293 def GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> {
294 let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)];
295 let AltOrderSelect = [{
296 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
298 let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr";
301 // GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
302 // implied SP argument list.
303 // FIXME: It would be better to not use this at all and refactor the
304 // instructions to not have SP an an explicit argument. That makes
305 // frame index resolution a bit trickier, though.
306 def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> {
307 let DiagnosticString = "operand must be a register sp";
310 // GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions
311 // where LR is the only legal loop counter register.
312 def GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>;
314 // restricted GPR register class. Many Thumb2 instructions allow the full
315 // register range for operands, but have undefined behaviours when PC
316 // or SP (R13 or R15) are used. The ARM ISA refers to these operands
317 // via the BadReg() pseudo-code description.
318 def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
319 let AltOrders = [(add LR, rGPR), (trunc rGPR, 8),
320 (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))];
321 let AltOrderSelect = [{
322 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
324 let DiagnosticType = "rGPR";
327 // GPRs without the PC and SP but with APSR_NZCV.Some instructions allow
328 // accessing the APSR_NZCV, while actually encoding PC in the register field.
329 // This is useful for assembly and disassembly only.
330 // Currently used by the CDE extension.
331 def GPRwithAPSR_NZCVnosp
332 : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR_NZCV)> {
333 let isAllocatable = 0;
334 let DiagnosticString =
335 "operand must be a register in the range [r0, r12], r14 or apsr_nzcv";
338 // Thumb registers are R0-R7 normally. Some instructions can still use
339 // the general GPR register class above (MOV, e.g.)
340 def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> {
341 let DiagnosticString = "operand must be a register in range [r0, r7]";
344 // Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow
345 // the PC to be used as a destination operand as well.
346 def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>;
348 // The high registers in thumb mode, R8-R15.
349 def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> {
350 let DiagnosticString = "operand must be a register in range [r8, r15]";
353 // For tail calls, we can't use callee-saved registers, as they are restored
354 // to the saved value before the tail call, which would clobber a call address.
355 // Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
356 // this class and the preceding one(!) This is what we want.
357 def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
358 let AltOrders = [(and tcGPR, tGPR)];
359 let AltOrderSelect = [{
360 return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
364 def tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> {
365 let AltOrders = [(and tGPROdd, tGPR)];
366 let AltOrderSelect = [{
367 return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
369 let DiagnosticString =
370 "operand must be an odd-numbered register in range [r1,r11]";
373 def tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> {
374 let AltOrders = [(and tGPREven, tGPR)];
375 let AltOrderSelect = [{
376 return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
378 let DiagnosticString = "operand must be an even-numbered register";
381 // Condition code registers.
382 def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
383 let CopyCost = -1; // Don't allow copying of status registers.
384 let isAllocatable = 0;
387 // MVE Condition code register.
388 def VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> {
389 // let CopyCost = -1; // Don't allow copying of status registers.
392 // FPSCR, when the flags at the top of it are used as the input or
393 // output to an instruction such as MVE VADC.
394 def cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>;
396 // Scalar single precision floating point register class..
397 // FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack
398 // to avoid partial-write dependencies on D or Q (depending on platform)
399 // registers (S registers are renamed as portions of D/Q registers).
400 def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> {
401 let AltOrders = [(add (decimate SPR, 2), SPR),
402 (add (decimate SPR, 4),
404 (decimate (rotl SPR, 1), 4),
405 (decimate (rotl SPR, 1), 2))];
406 let AltOrderSelect = [{
407 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
409 let DiagnosticString = "operand must be a register in range [s0, s31]";
412 def HPR : RegisterClass<"ARM", [f16, bf16], 32, (sequence "S%u", 0, 31)> {
413 let AltOrders = [(add (decimate HPR, 2), SPR),
414 (add (decimate HPR, 4),
416 (decimate (rotl HPR, 1), 4),
417 (decimate (rotl HPR, 1), 2))];
418 let AltOrderSelect = [{
419 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
421 let DiagnosticString = "operand must be a register in range [s0, s31]";
424 // Subset of SPR which can be used as a source of NEON scalars for 16-bit
426 def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> {
427 let DiagnosticString = "operand must be a register in range [s0, s15]";
430 // Scalar double precision floating point / generic 64-bit vector register
432 // ARM requires only word alignment for double. It's more performant if it
433 // is double-word alignment though.
434 def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
435 (sequence "D%u", 0, 31)> {
436 // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on
438 let AltOrders = [(rotl DPR, 16),
439 (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))];
440 let AltOrderSelect = [{
441 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
443 let DiagnosticType = "DPR";
446 // Scalar single and double precision floating point and VPR register class,
447 // this is only used for parsing, don't use it anywhere else as the size and
448 // types don't match!
449 def FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> {
450 let isAllocatable = 0;
453 // Subset of DPR that are accessible with VFP2 (and so that also have
454 // 32-bit SPR subregs).
455 def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
457 let DiagnosticString = "operand must be a register in range [d0, d15]";
460 // Subset of DPR which can be used as a source of NEON scalars for 16-bit
462 def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
464 let DiagnosticString = "operand must be a register in range [d0, d7]";
467 // Generic 128-bit vector register class.
468 def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16, v8bf16], 128,
469 (sequence "Q%u", 0, 15)> {
470 // Allocate non-VFP2 aliases Q8-Q15 first.
471 let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)];
472 let AltOrderSelect = [{
473 return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
475 let DiagnosticString = "operand must be a register in range [q0, q15]";
478 // Subset of QPR that have 32-bit SPR subregs.
479 def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
480 128, (trunc QPR, 8)> {
481 let DiagnosticString = "operand must be a register in range [q0, q7]";
484 // Subset of QPR that have DPR_8 and SPR_8 subregs.
485 def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
486 128, (trunc QPR, 4)> {
487 let DiagnosticString = "operand must be a register in range [q0, q3]";
490 // MVE 128-bit vector register class. This class is only really needed for
491 // parsing assembly, since we still have to truncate the register set in the QPR
493 def MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16],
494 128, (trunc QPR, 8)>;
496 // Pseudo-registers representing odd-even pairs of D registers. The even-odd
497 // pairs are already represented by the Q registers.
498 // These are needed by NEON instructions requiring two consecutive D registers.
499 // There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
500 def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
501 [(decimate (shl DPR, 1), 2),
502 (decimate (shl DPR, 2), 2)]>;
504 // Register class representing a pair of consecutive D registers.
505 // Use the Q registers for the even-odd pairs.
506 def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
507 128, (interleave QPR, TuplesOE2D)> {
508 // Allocate starting at non-VFP2 registers D16-D31 first.
509 // Prefer even-odd pairs as they are easier to copy.
510 let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16)),
511 (add (trunc QPR, 8), (trunc DPair, 16))];
512 let AltOrderSelect = [{
513 return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
517 // Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
518 // These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
519 def Tuples2Rnosp : RegisterTuples<[gsub_0, gsub_1],
520 [(add R0, R2, R4, R6, R8, R10),
521 (add R1, R3, R5, R7, R9, R11)]>;
523 def Tuples2Rsp : RegisterTuples<[gsub_0, gsub_1],
524 [(add R12), (add SP)]>;
526 // Register class representing a pair of even-odd GPRs.
527 def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp, Tuples2Rsp)> {
528 let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
531 // Register class representing a pair of even-odd GPRs, except (R12, SP).
532 def GPRPairnosp : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp)> {
533 let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
536 // Pseudo-registers representing 3 consecutive D registers.
537 def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
542 // 3 consecutive D registers.
543 def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
544 let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
547 // Pseudo 256-bit registers to represent pairs of Q registers. These should
548 // never be present in the emitted code.
549 // These are used for NEON load / store instructions, e.g., vld4, vst3.
550 def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
552 // Pseudo 256-bit vector register class to model pairs of Q registers
553 // (4 consecutive D registers).
554 def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
555 // Allocate non-VFP2 aliases first.
556 let AltOrders = [(rotl QQPR, 8)];
557 let AltOrderSelect = [{ return 1; }];
560 // Same as QQPR but for MVE, containing the 7 register pairs made up from Q0-Q7.
561 def MQQPR : RegisterClass<"ARM", [v4i64], 256, (trunc QQPR, 7)>;
563 // Tuples of 4 D regs that isn't also a pair of Q regs.
564 def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
565 [(decimate (shl DPR, 1), 2),
566 (decimate (shl DPR, 2), 2),
567 (decimate (shl DPR, 3), 2),
568 (decimate (shl DPR, 4), 2)]>;
570 // 4 consecutive D registers.
571 def DQuad : RegisterClass<"ARM", [v4i64], 256,
572 (interleave Tuples2Q, TuplesOE4D)>;
574 // Pseudo 512-bit registers to represent four consecutive Q registers.
575 def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
576 [(shl QQPR, 0), (shl QQPR, 2)]>;
578 // Pseudo 512-bit vector register class to model 4 consecutive Q registers
579 // (8 consecutive D registers).
580 def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
581 // Allocate non-VFP2 aliases first.
582 let AltOrders = [(rotl QQQQPR, 8)];
583 let AltOrderSelect = [{ return 1; }];
586 // Same as QQPR but for MVE, containing the 5 register quads made up from Q0-Q7.
587 def MQQQQPR : RegisterClass<"ARM", [v8i64], 256, (trunc QQQQPR, 5)>;
590 // Pseudo-registers representing 2-spaced consecutive D registers.
591 def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
595 // Spaced pairs of D registers.
596 def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
598 def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
603 // Spaced triples of D registers.
604 def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
605 let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
608 def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
614 // Spaced quads of D registers.
615 def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;
617 // FP context payload
618 def FPCXTRegs : RegisterClass<"ARM", [i32], 32, (add FPCXTNS)>;