[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMSubtarget.cpp
blob2e5bbb66604dd498d73aa2588d026c15dc096d7a
1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #include "ARM.h"
15 #include "ARMCallLowering.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMSubtarget.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMInstrInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "MCTargetDesc/ARMMCTargetDesc.h"
24 #include "Thumb1FrameLowering.h"
25 #include "Thumb1InstrInfo.h"
26 #include "Thumb2InstrInfo.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCTargetOptions.h"
36 #include "llvm/Support/CodeGen.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Target/TargetOptions.h"
41 using namespace llvm;
43 #define DEBUG_TYPE "arm-subtarget"
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "ARMGenSubtargetInfo.inc"
49 static cl::opt<bool>
50 UseFusedMulOps("arm-use-mulops",
51 cl::init(true), cl::Hidden);
53 enum ITMode {
54 DefaultIT,
55 RestrictedIT,
56 NoRestrictedIT
59 static cl::opt<ITMode>
60 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61 cl::ZeroOrMore,
62 cl::values(clEnumValN(DefaultIT, "arm-default-it",
63 "Generate IT block based on arch"),
64 clEnumValN(RestrictedIT, "arm-restrict-it",
65 "Disallow deprecated IT based on ARMv8"),
66 clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
67 "Allow IT blocks based on ARMv7")));
69 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
70 /// currently supported (for testing only).
71 static cl::opt<bool>
72 ForceFastISel("arm-force-fast-isel",
73 cl::init(false), cl::Hidden);
75 static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
76 cl::init(false), cl::Hidden);
78 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
79 /// so that we can use initializer lists for subtarget initialization.
80 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
81 StringRef FS) {
82 initializeEnvironment();
83 initSubtargetFeatures(CPU, FS);
84 return *this;
87 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
88 StringRef FS) {
89 ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
90 if (STI.isThumb1Only())
91 return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
93 return new ARMFrameLowering(STI);
96 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
97 const std::string &FS,
98 const ARMBaseTargetMachine &TM, bool IsLittle,
99 bool MinSize)
100 : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
101 UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize),
102 IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM),
103 FrameLowering(initializeFrameLowering(CPU, FS)),
104 // At this point initializeSubtargetDependencies has been called so
105 // we can query directly.
106 InstrInfo(isThumb1Only()
107 ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
108 : !isThumb()
109 ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
110 : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
111 TLInfo(TM, *this) {
113 CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
114 Legalizer.reset(new ARMLegalizerInfo(*this));
116 auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
118 // FIXME: At this point, we can't rely on Subtarget having RBI.
119 // It's awkward to mix passing RBI and the Subtarget; should we pass
120 // TII/TRI as well?
121 InstSelector.reset(createARMInstructionSelector(
122 *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
124 RegBankInfo.reset(RBI);
127 const CallLowering *ARMSubtarget::getCallLowering() const {
128 return CallLoweringInfo.get();
131 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
132 return InstSelector.get();
135 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
136 return Legalizer.get();
139 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
140 return RegBankInfo.get();
143 bool ARMSubtarget::isXRaySupported() const {
144 // We don't currently suppport Thumb, but Windows requires Thumb.
145 return hasV6Ops() && hasARMOps() && !isTargetWindows();
148 void ARMSubtarget::initializeEnvironment() {
149 // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
150 // directly from it, but we can try to make sure they're consistent when both
151 // available.
152 UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
153 Options.ExceptionModel == ExceptionHandling::None) ||
154 Options.ExceptionModel == ExceptionHandling::SjLj;
155 assert((!TM.getMCAsmInfo() ||
156 (TM.getMCAsmInfo()->getExceptionHandlingType() ==
157 ExceptionHandling::SjLj) == UseSjLjEH) &&
158 "inconsistent sjlj choice between CodeGen and MC");
161 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
162 if (CPUString.empty()) {
163 CPUString = "generic";
165 if (isTargetDarwin()) {
166 StringRef ArchName = TargetTriple.getArchName();
167 ARM::ArchKind AK = ARM::parseArch(ArchName);
168 if (AK == ARM::ArchKind::ARMV7S)
169 // Default to the Swift CPU when targeting armv7s/thumbv7s.
170 CPUString = "swift";
171 else if (AK == ARM::ArchKind::ARMV7K)
172 // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
173 // ARMv7k does not use SjLj exception handling.
174 CPUString = "cortex-a7";
178 // Insert the architecture feature derived from the target triple into the
179 // feature string. This is important for setting features that are implied
180 // based on the architecture version.
181 std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
182 if (!FS.empty()) {
183 if (!ArchFS.empty())
184 ArchFS = (Twine(ArchFS) + "," + FS).str();
185 else
186 ArchFS = std::string(FS);
188 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS);
190 // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
191 // Assert this for now to make the change obvious.
192 assert(hasV6T2Ops() || !hasThumb2());
194 // Execute only support requires movt support
195 if (genExecuteOnly()) {
196 NoMovt = false;
197 assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
200 // Keep a pointer to static instruction cost data for the specified CPU.
201 SchedModel = getSchedModelForCPU(CPUString);
203 // Initialize scheduling itinerary for the specified CPU.
204 InstrItins = getInstrItineraryForCPU(CPUString);
206 // FIXME: this is invalid for WindowsCE
207 if (isTargetWindows())
208 NoARM = true;
210 if (isAAPCS_ABI())
211 stackAlignment = Align(8);
212 if (isTargetNaCl() || isAAPCS16_ABI())
213 stackAlignment = Align(16);
215 // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
216 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
217 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
218 // support in the assembler and linker to be used. This would need to be
219 // fixed to fully support tail calls in Thumb1.
221 // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M
222 // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This
223 // means if we need to reload LR, it takes extra instructions, which outweighs
224 // the value of the tail call; but here we don't know yet whether LR is going
225 // to be used. We take the optimistic approach of generating the tail call and
226 // perhaps taking a hit if we need to restore the LR.
228 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
229 // but we need to make sure there are enough registers; the only valid
230 // registers are the 4 used for parameters. We don't currently do this
231 // case.
233 SupportsTailCall = !isThumb1Only() || hasV8MBaselineOps();
235 if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
236 SupportsTailCall = false;
238 switch (IT) {
239 case DefaultIT:
240 RestrictIT = hasV8Ops() && !hasMinSize();
241 break;
242 case RestrictedIT:
243 RestrictIT = true;
244 break;
245 case NoRestrictedIT:
246 RestrictIT = false;
247 break;
250 // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
251 const FeatureBitset &Bits = getFeatureBits();
252 if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
253 (Options.UnsafeFPMath || isTargetDarwin()))
254 UseNEONForSinglePrecisionFP = true;
256 if (isRWPI())
257 ReserveR9 = true;
259 // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
260 if (MVEVectorCostFactor == 0)
261 MVEVectorCostFactor = 2;
263 // FIXME: Teach TableGen to deal with these instead of doing it manually here.
264 switch (ARMProcFamily) {
265 case Others:
266 case CortexA5:
267 break;
268 case CortexA7:
269 LdStMultipleTiming = DoubleIssue;
270 break;
271 case CortexA8:
272 LdStMultipleTiming = DoubleIssue;
273 break;
274 case CortexA9:
275 LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
276 PreISelOperandLatencyAdjustment = 1;
277 break;
278 case CortexA12:
279 break;
280 case CortexA15:
281 MaxInterleaveFactor = 2;
282 PreISelOperandLatencyAdjustment = 1;
283 PartialUpdateClearance = 12;
284 break;
285 case CortexA17:
286 case CortexA32:
287 case CortexA35:
288 case CortexA53:
289 case CortexA55:
290 case CortexA57:
291 case CortexA72:
292 case CortexA73:
293 case CortexA75:
294 case CortexA76:
295 case CortexA77:
296 case CortexA78:
297 case CortexA78C:
298 case CortexR4:
299 case CortexR4F:
300 case CortexR5:
301 case CortexR7:
302 case CortexM3:
303 case CortexM7:
304 case CortexR52:
305 case CortexX1:
306 break;
307 case Exynos:
308 LdStMultipleTiming = SingleIssuePlusExtras;
309 MaxInterleaveFactor = 4;
310 if (!isThumb())
311 PrefLoopLogAlignment = 3;
312 break;
313 case Kryo:
314 break;
315 case Krait:
316 PreISelOperandLatencyAdjustment = 1;
317 break;
318 case NeoverseN1:
319 case NeoverseN2:
320 case NeoverseV1:
321 break;
322 case Swift:
323 MaxInterleaveFactor = 2;
324 LdStMultipleTiming = SingleIssuePlusExtras;
325 PreISelOperandLatencyAdjustment = 1;
326 PartialUpdateClearance = 12;
327 break;
331 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
333 bool ARMSubtarget::isAPCS_ABI() const {
334 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
335 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
337 bool ARMSubtarget::isAAPCS_ABI() const {
338 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
339 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
340 TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
342 bool ARMSubtarget::isAAPCS16_ABI() const {
343 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
344 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
347 bool ARMSubtarget::isROPI() const {
348 return TM.getRelocationModel() == Reloc::ROPI ||
349 TM.getRelocationModel() == Reloc::ROPI_RWPI;
351 bool ARMSubtarget::isRWPI() const {
352 return TM.getRelocationModel() == Reloc::RWPI ||
353 TM.getRelocationModel() == Reloc::ROPI_RWPI;
356 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
357 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
358 return true;
360 // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
361 // the section that is being relocated. This means we have to use o load even
362 // for GVs that are known to be local to the dso.
363 if (isTargetMachO() && TM.isPositionIndependent() &&
364 (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
365 return true;
367 return false;
370 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
371 return isTargetELF() && TM.isPositionIndependent() &&
372 !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
375 unsigned ARMSubtarget::getMispredictionPenalty() const {
376 return SchedModel.MispredictPenalty;
379 bool ARMSubtarget::enableMachineScheduler() const {
380 // The MachineScheduler can increase register usage, so we use more high
381 // registers and end up with more T2 instructions that cannot be converted to
382 // T1 instructions. At least until we do better at converting to thumb1
383 // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
384 // Machine scheduler, relying on the DAG register pressure scheduler instead.
385 if (isMClass() && hasMinSize())
386 return false;
387 // Enable the MachineScheduler before register allocation for subtargets
388 // with the use-misched feature.
389 return useMachineScheduler();
392 bool ARMSubtarget::enableSubRegLiveness() const {
393 if (EnableSubRegLiveness.getNumOccurrences())
394 return EnableSubRegLiveness;
395 // Enable SubRegLiveness for MVE to better optimize s subregs for mqpr regs
396 // and q subregs for qqqqpr regs.
397 return hasMVEIntegerOps();
400 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
401 bool ARMSubtarget::enablePostRAScheduler() const {
402 if (enableMachineScheduler())
403 return false;
404 if (disablePostRAScheduler())
405 return false;
406 // Thumb1 cores will generally not benefit from post-ra scheduling
407 return !isThumb1Only();
410 bool ARMSubtarget::enablePostRAMachineScheduler() const {
411 if (!enableMachineScheduler())
412 return false;
413 if (disablePostRAScheduler())
414 return false;
415 return !isThumb1Only();
418 bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
420 bool ARMSubtarget::useStride4VFPs() const {
421 // For general targets, the prologue can grow when VFPs are allocated with
422 // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
423 // format which it's more important to get right.
424 return isTargetWatchABI() ||
425 (useWideStrideVFP() && !OptMinSize);
428 bool ARMSubtarget::useMovt() const {
429 // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
430 // immediates as it is inherently position independent, and may be out of
431 // range otherwise.
432 return !NoMovt && hasV8MBaselineOps() &&
433 (isTargetWindows() || !OptMinSize || genExecuteOnly());
436 bool ARMSubtarget::useFastISel() const {
437 // Enable fast-isel for any target, for testing only.
438 if (ForceFastISel)
439 return true;
441 // Limit fast-isel to the targets that are or have been tested.
442 if (!hasV6Ops())
443 return false;
445 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
446 return TM.Options.EnableFastISel &&
447 ((isTargetMachO() && !isThumb1Only()) ||
448 (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
451 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
452 // The GPR register class has multiple possible allocation orders, with
453 // tradeoffs preferred by different sub-architectures and optimisation goals.
454 // The allocation orders are:
455 // 0: (the default tablegen order, not used)
456 // 1: r14, r0-r13
457 // 2: r0-r7
458 // 3: r0-r7, r12, lr, r8-r11
459 // Note that the register allocator will change this order so that
460 // callee-saved registers are used later, as they require extra work in the
461 // prologue/epilogue (though we sometimes override that).
463 // For thumb1-only targets, only the low registers are allocatable.
464 if (isThumb1Only())
465 return 2;
467 // Allocate low registers first, so we can select more 16-bit instructions.
468 // We also (in ignoreCSRForAllocationOrder) override the default behaviour
469 // with regards to callee-saved registers, because pushing extra registers is
470 // much cheaper (in terms of code size) than using high registers. After
471 // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
472 // can return with the pop, don't need an extra "bx lr") and then the rest of
473 // the high registers.
474 if (isThumb2() && MF.getFunction().hasMinSize())
475 return 3;
477 // Otherwise, allocate in the default order, using LR first because saving it
478 // allows a shorter epilogue sequence.
479 return 1;
482 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
483 unsigned PhysReg) const {
484 // To minimize code size in Thumb2, we prefer the usage of low regs (lower
485 // cost per use) so we can use narrow encoding. By default, caller-saved
486 // registers (e.g. lr, r12) are always allocated first, regardless of
487 // their cost per use. When optForMinSize, we prefer the low regs even if
488 // they are CSR because usually push/pop can be folded into existing ones.
489 return isThumb2() && MF.getFunction().hasMinSize() &&
490 ARM::GPRRegClass.contains(PhysReg);