[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMSubtarget.h
bloba8a9ae66b4abd71cb495cc4eefaae686cadc21f1
1 //===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the ARM specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
14 #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMISelLowering.h"
21 #include "ARMSelectionDAGInfo.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
25 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
26 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/MC/MCSchedule.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <memory>
35 #include <string>
37 #define GET_SUBTARGETINFO_HEADER
38 #include "ARMGenSubtargetInfo.inc"
40 namespace llvm {
42 class ARMBaseTargetMachine;
43 class GlobalValue;
44 class StringRef;
46 class ARMSubtarget : public ARMGenSubtargetInfo {
47 protected:
48 enum ARMProcFamilyEnum {
49 Others,
51 CortexA12,
52 CortexA15,
53 CortexA17,
54 CortexA32,
55 CortexA35,
56 CortexA5,
57 CortexA53,
58 CortexA55,
59 CortexA57,
60 CortexA7,
61 CortexA72,
62 CortexA73,
63 CortexA75,
64 CortexA76,
65 CortexA77,
66 CortexA78,
67 CortexA78C,
68 CortexA8,
69 CortexA9,
70 CortexM3,
71 CortexM7,
72 CortexR4,
73 CortexR4F,
74 CortexR5,
75 CortexR52,
76 CortexR7,
77 CortexX1,
78 Exynos,
79 Krait,
80 Kryo,
81 NeoverseN1,
82 NeoverseN2,
83 NeoverseV1,
84 Swift
86 enum ARMProcClassEnum {
87 None,
89 AClass,
90 MClass,
91 RClass
93 enum ARMArchEnum {
94 ARMv2,
95 ARMv2a,
96 ARMv3,
97 ARMv3m,
98 ARMv4,
99 ARMv4t,
100 ARMv5,
101 ARMv5t,
102 ARMv5te,
103 ARMv5tej,
104 ARMv6,
105 ARMv6k,
106 ARMv6kz,
107 ARMv6m,
108 ARMv6sm,
109 ARMv6t2,
110 ARMv7a,
111 ARMv7em,
112 ARMv7m,
113 ARMv7r,
114 ARMv7ve,
115 ARMv81a,
116 ARMv82a,
117 ARMv83a,
118 ARMv84a,
119 ARMv85a,
120 ARMv86a,
121 ARMv87a,
122 ARMv8a,
123 ARMv8mBaseline,
124 ARMv8mMainline,
125 ARMv8r,
126 ARMv81mMainline,
129 public:
130 /// What kind of timing do load multiple/store multiple instructions have.
131 enum ARMLdStMultipleTiming {
132 /// Can load/store 2 registers/cycle.
133 DoubleIssue,
134 /// Can load/store 2 registers/cycle, but needs an extra cycle if the access
135 /// is not 64-bit aligned.
136 DoubleIssueCheckUnalignedAccess,
137 /// Can load/store 1 register/cycle.
138 SingleIssue,
139 /// Can load/store 1 register/cycle, but needs an extra cycle for address
140 /// computation and potentially also for register writeback.
141 SingleIssuePlusExtras,
144 protected:
145 /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
146 ARMProcFamilyEnum ARMProcFamily = Others;
148 /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
149 ARMProcClassEnum ARMProcClass = None;
151 /// ARMArch - ARM architecture
152 ARMArchEnum ARMArch = ARMv4t;
154 /// HasV4TOps, HasV5TOps, HasV5TEOps,
155 /// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
156 /// Specify whether target support specific ARM ISA variants.
157 bool HasV4TOps = false;
158 bool HasV5TOps = false;
159 bool HasV5TEOps = false;
160 bool HasV6Ops = false;
161 bool HasV6MOps = false;
162 bool HasV6KOps = false;
163 bool HasV6T2Ops = false;
164 bool HasV7Ops = false;
165 bool HasV8Ops = false;
166 bool HasV8_1aOps = false;
167 bool HasV8_2aOps = false;
168 bool HasV8_3aOps = false;
169 bool HasV8_4aOps = false;
170 bool HasV8_5aOps = false;
171 bool HasV8_6aOps = false;
172 bool HasV8_7aOps = false;
173 bool HasV8MBaselineOps = false;
174 bool HasV8MMainlineOps = false;
175 bool HasV8_1MMainlineOps = false;
176 bool HasMVEIntegerOps = false;
177 bool HasMVEFloatOps = false;
178 bool HasCDEOps = false;
180 /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
181 /// floating point ISAs are supported.
182 bool HasVFPv2 = false;
183 bool HasVFPv3 = false;
184 bool HasVFPv4 = false;
185 bool HasFPARMv8 = false;
186 bool HasNEON = false;
187 bool HasFPRegs = false;
188 bool HasFPRegs16 = false;
189 bool HasFPRegs64 = false;
191 /// Versions of the VFP flags restricted to single precision, or to
192 /// 16 d-registers, or both.
193 bool HasVFPv2SP = false;
194 bool HasVFPv3SP = false;
195 bool HasVFPv4SP = false;
196 bool HasFPARMv8SP = false;
197 bool HasVFPv3D16 = false;
198 bool HasVFPv4D16 = false;
199 bool HasFPARMv8D16 = false;
200 bool HasVFPv3D16SP = false;
201 bool HasVFPv4D16SP = false;
202 bool HasFPARMv8D16SP = false;
204 /// HasDotProd - True if the ARMv8.2A dot product instructions are supported.
205 bool HasDotProd = false;
207 /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
208 /// specified. Use the method useNEONForSinglePrecisionFP() to
209 /// determine if NEON should actually be used.
210 bool UseNEONForSinglePrecisionFP = false;
212 /// UseMulOps - True if non-microcoded fused integer multiply-add and
213 /// multiply-subtract instructions should be used.
214 bool UseMulOps = false;
216 /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
217 /// whether the FP VML[AS] instructions are slow (if so, don't use them).
218 bool SlowFPVMLx = false;
220 /// SlowFPVFMx - If the VFP4 / NEON instructions are available, indicates
221 /// whether the FP VFM[AS] instructions are slow (if so, don't use them).
222 bool SlowFPVFMx = false;
224 /// HasVMLxForwarding - If true, NEON has special multiplier accumulator
225 /// forwarding to allow mul + mla being issued back to back.
226 bool HasVMLxForwarding = false;
228 /// SlowFPBrcc - True if floating point compare + branch is slow.
229 bool SlowFPBrcc = false;
231 /// InThumbMode - True if compiling for Thumb, false for ARM.
232 bool InThumbMode = false;
234 /// UseSoftFloat - True if we're using software floating point features.
235 bool UseSoftFloat = false;
237 /// UseMISched - True if MachineScheduler should be used for this subtarget.
238 bool UseMISched = false;
240 /// DisablePostRAScheduler - False if scheduling should happen again after
241 /// register allocation.
242 bool DisablePostRAScheduler = false;
244 /// HasThumb2 - True if Thumb2 instructions are supported.
245 bool HasThumb2 = false;
247 /// NoARM - True if subtarget does not support ARM mode execution.
248 bool NoARM = false;
250 /// ReserveR9 - True if R9 is not available as a general purpose register.
251 bool ReserveR9 = false;
253 /// NoMovt - True if MOVT / MOVW pairs are not used for materialization of
254 /// 32-bit imms (including global addresses).
255 bool NoMovt = false;
257 /// SupportsTailCall - True if the OS supports tail call. The dynamic linker
258 /// must be able to synthesize call stubs for interworking between ARM and
259 /// Thumb.
260 bool SupportsTailCall = false;
262 /// HasFP16 - True if subtarget supports half-precision FP conversions
263 bool HasFP16 = false;
265 /// HasFullFP16 - True if subtarget supports half-precision FP operations
266 bool HasFullFP16 = false;
268 /// HasFP16FML - True if subtarget supports half-precision FP fml operations
269 bool HasFP16FML = false;
271 /// HasBF16 - True if subtarget supports BFloat16 floating point operations
272 bool HasBF16 = false;
274 /// HasMatMulInt8 - True if subtarget supports 8-bit integer matrix multiply
275 bool HasMatMulInt8 = false;
277 /// HasD32 - True if subtarget has the full 32 double precision
278 /// FP registers for VFPv3.
279 bool HasD32 = false;
281 /// HasHardwareDivide - True if subtarget supports [su]div in Thumb mode
282 bool HasHardwareDivideInThumb = false;
284 /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
285 bool HasHardwareDivideInARM = false;
287 /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
288 /// instructions.
289 bool HasDataBarrier = false;
291 /// HasFullDataBarrier - True if the subtarget supports DFB data barrier
292 /// instruction.
293 bool HasFullDataBarrier = false;
295 /// HasV7Clrex - True if the subtarget supports CLREX instructions
296 bool HasV7Clrex = false;
298 /// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc)
299 /// instructions
300 bool HasAcquireRelease = false;
302 /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
303 /// over 16-bit ones.
304 bool Pref32BitThumb = false;
306 /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
307 /// that partially update CPSR and add false dependency on the previous
308 /// CPSR setting instruction.
309 bool AvoidCPSRPartialUpdate = false;
311 /// CheapPredicableCPSRDef - If true, disable +1 predication cost
312 /// for instructions updating CPSR. Enabled for Cortex-A57.
313 bool CheapPredicableCPSRDef = false;
315 /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
316 /// movs with shifter operand (i.e. asr, lsl, lsr).
317 bool AvoidMOVsShifterOperand = false;
319 /// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should
320 /// avoid issue "normal" call instructions to callees which do not return.
321 bool HasRetAddrStack = false;
323 /// HasBranchPredictor - True if the subtarget has a branch predictor. Having
324 /// a branch predictor or not changes the expected cost of taking a branch
325 /// which affects the choice of whether to use predicated instructions.
326 bool HasBranchPredictor = true;
328 /// HasMPExtension - True if the subtarget supports Multiprocessing
329 /// extension (ARMv7 only).
330 bool HasMPExtension = false;
332 /// HasVirtualization - True if the subtarget supports the Virtualization
333 /// extension.
334 bool HasVirtualization = false;
336 /// HasFP64 - If true, the floating point unit supports double
337 /// precision.
338 bool HasFP64 = false;
340 /// If true, the processor supports the Performance Monitor Extensions. These
341 /// include a generic cycle-counter as well as more fine-grained (often
342 /// implementation-specific) events.
343 bool HasPerfMon = false;
345 /// HasTrustZone - if true, processor supports TrustZone security extensions
346 bool HasTrustZone = false;
348 /// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions
349 bool Has8MSecExt = false;
351 /// HasSHA2 - if true, processor supports SHA1 and SHA256
352 bool HasSHA2 = false;
354 /// HasAES - if true, processor supports AES
355 bool HasAES = false;
357 /// HasCrypto - if true, processor supports Cryptography extensions
358 bool HasCrypto = false;
360 /// HasCRC - if true, processor supports CRC instructions
361 bool HasCRC = false;
363 /// HasRAS - if true, the processor supports RAS extensions
364 bool HasRAS = false;
366 /// HasLOB - if true, the processor supports the Low Overhead Branch extension
367 bool HasLOB = false;
369 /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
370 /// particularly effective at zeroing a VFP register.
371 bool HasZeroCycleZeroing = false;
373 /// HasFPAO - if true, processor does positive address offset computation faster
374 bool HasFPAO = false;
376 /// HasFuseAES - if true, processor executes back to back AES instruction
377 /// pairs faster.
378 bool HasFuseAES = false;
380 /// HasFuseLiterals - if true, processor executes back to back
381 /// bottom and top halves of literal generation faster.
382 bool HasFuseLiterals = false;
384 /// If true, if conversion may decide to leave some instructions unpredicated.
385 bool IsProfitableToUnpredicate = false;
387 /// If true, VMOV will be favored over VGETLNi32.
388 bool HasSlowVGETLNi32 = false;
390 /// If true, VMOV will be favored over VDUP.
391 bool HasSlowVDUP32 = false;
393 /// If true, VMOVSR will be favored over VMOVDRR.
394 bool PreferVMOVSR = false;
396 /// If true, ISHST barriers will be used for Release semantics.
397 bool PreferISHST = false;
399 /// If true, a VLDM/VSTM starting with an odd register number is considered to
400 /// take more microops than single VLDRS/VSTRS.
401 bool SlowOddRegister = false;
403 /// If true, loading into a D subregister will be penalized.
404 bool SlowLoadDSubregister = false;
406 /// If true, use a wider stride when allocating VFP registers.
407 bool UseWideStrideVFP = false;
409 /// If true, the AGU and NEON/FPU units are multiplexed.
410 bool HasMuxedUnits = false;
412 /// If true, VMOVS will never be widened to VMOVD.
413 bool DontWidenVMOVS = false;
415 /// If true, splat a register between VFP and NEON instructions.
416 bool SplatVFPToNeon = false;
418 /// If true, run the MLx expansion pass.
419 bool ExpandMLx = false;
421 /// If true, VFP/NEON VMLA/VMLS have special RAW hazards.
422 bool HasVMLxHazards = false;
424 // If true, read thread pointer from coprocessor register.
425 bool ReadTPHard = false;
427 /// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON.
428 bool UseNEONForFPMovs = false;
430 /// If true, VLDn instructions take an extra cycle for unaligned accesses.
431 bool CheckVLDnAlign = false;
433 /// If true, VFP instructions are not pipelined.
434 bool NonpipelinedVFP = false;
436 /// StrictAlign - If true, the subtarget disallows unaligned memory
437 /// accesses for some types. For details, see
438 /// ARMTargetLowering::allowsMisalignedMemoryAccesses().
439 bool StrictAlign = false;
441 /// RestrictIT - If true, the subtarget disallows generation of deprecated IT
442 /// blocks to conform to ARMv8 rule.
443 bool RestrictIT = false;
445 /// HasDSP - If true, the subtarget supports the DSP (saturating arith
446 /// and such) instructions.
447 bool HasDSP = false;
449 /// NaCl TRAP instruction is generated instead of the regular TRAP.
450 bool UseNaClTrap = false;
452 /// Generate calls via indirect call instructions.
453 bool GenLongCalls = false;
455 /// Generate code that does not contain data access to code sections.
456 bool GenExecuteOnly = false;
458 /// Target machine allowed unsafe FP math (such as use of NEON fp)
459 bool UnsafeFPMath = false;
461 /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
462 bool UseSjLjEH = false;
464 /// Has speculation barrier
465 bool HasSB = false;
467 /// Implicitly convert an instruction to a different one if its immediates
468 /// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1.
469 bool NegativeImmediates = true;
471 /// Harden against Straight Line Speculation for Returns and Indirect
472 /// Branches.
473 bool HardenSlsRetBr = false;
475 /// Harden against Straight Line Speculation for indirect calls.
476 bool HardenSlsBlr = false;
478 /// Generate thunk code for SLS mitigation in the normal text section.
479 bool HardenSlsNoComdat = false;
481 /// stackAlignment - The minimum alignment known to hold of the stack frame on
482 /// entry to the function and which must be maintained by every function.
483 Align stackAlignment = Align(4);
485 /// CPUString - String name of used CPU.
486 std::string CPUString;
488 unsigned MaxInterleaveFactor = 1;
490 /// Clearance before partial register updates (in number of instructions)
491 unsigned PartialUpdateClearance = 0;
493 /// What kind of timing do load multiple/store multiple have (double issue,
494 /// single issue etc).
495 ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;
497 /// The adjustment that we need to apply to get the operand latency from the
498 /// operand cycle returned by the itinerary data for pre-ISel operands.
499 int PreISelOperandLatencyAdjustment = 2;
501 /// What alignment is preferred for loop bodies, in log2(bytes).
502 unsigned PrefLoopLogAlignment = 0;
504 /// The cost factor for MVE instructions, representing the multiple beats an
505 // instruction can take. The default is 2, (set in initSubtargetFeatures so
506 // that we can use subtarget features less than 2).
507 unsigned MVEVectorCostFactor = 0;
509 /// OptMinSize - True if we're optimising for minimum code size, equal to
510 /// the function attribute.
511 bool OptMinSize = false;
513 /// IsLittle - The target is Little Endian
514 bool IsLittle;
516 /// TargetTriple - What processor and OS we're targeting.
517 Triple TargetTriple;
519 /// SchedModel - Processor specific instruction costs.
520 MCSchedModel SchedModel;
522 /// Selected instruction itineraries (one entry per itinerary class.)
523 InstrItineraryData InstrItins;
525 /// Options passed via command line that could influence the target
526 const TargetOptions &Options;
528 const ARMBaseTargetMachine &TM;
530 public:
531 /// This constructor initializes the data members to match that
532 /// of the specified triple.
534 ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
535 const ARMBaseTargetMachine &TM, bool IsLittle,
536 bool MinSize = false);
538 /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
539 /// that still makes it profitable to inline the call.
540 unsigned getMaxInlineSizeThreshold() const {
541 return 64;
544 /// getMaxMemcpyTPInlineSizeThreshold - Returns the maximum size
545 /// that still makes it profitable to inline a llvm.memcpy as a Tail
546 /// Predicated loop.
547 /// This threshold should only be used for constant size inputs.
548 unsigned getMaxMemcpyTPInlineSizeThreshold() const { return 128; }
550 /// ParseSubtargetFeatures - Parses features string setting specified
551 /// subtarget options. Definition of function is auto generated by tblgen.
552 void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
554 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
555 /// so that we can use initializer lists for subtarget initialization.
556 ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
558 const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
559 return &TSInfo;
562 const ARMBaseInstrInfo *getInstrInfo() const override {
563 return InstrInfo.get();
566 const ARMTargetLowering *getTargetLowering() const override {
567 return &TLInfo;
570 const ARMFrameLowering *getFrameLowering() const override {
571 return FrameLowering.get();
574 const ARMBaseRegisterInfo *getRegisterInfo() const override {
575 return &InstrInfo->getRegisterInfo();
578 const CallLowering *getCallLowering() const override;
579 InstructionSelector *getInstructionSelector() const override;
580 const LegalizerInfo *getLegalizerInfo() const override;
581 const RegisterBankInfo *getRegBankInfo() const override;
583 private:
584 ARMSelectionDAGInfo TSInfo;
585 // Either Thumb1FrameLowering or ARMFrameLowering.
586 std::unique_ptr<ARMFrameLowering> FrameLowering;
587 // Either Thumb1InstrInfo or Thumb2InstrInfo.
588 std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
589 ARMTargetLowering TLInfo;
591 /// GlobalISel related APIs.
592 std::unique_ptr<CallLowering> CallLoweringInfo;
593 std::unique_ptr<InstructionSelector> InstSelector;
594 std::unique_ptr<LegalizerInfo> Legalizer;
595 std::unique_ptr<RegisterBankInfo> RegBankInfo;
597 void initializeEnvironment();
598 void initSubtargetFeatures(StringRef CPU, StringRef FS);
599 ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
601 std::bitset<8> CoprocCDE = {};
602 public:
603 void computeIssueWidth();
605 bool hasV4TOps() const { return HasV4TOps; }
606 bool hasV5TOps() const { return HasV5TOps; }
607 bool hasV5TEOps() const { return HasV5TEOps; }
608 bool hasV6Ops() const { return HasV6Ops; }
609 bool hasV6MOps() const { return HasV6MOps; }
610 bool hasV6KOps() const { return HasV6KOps; }
611 bool hasV6T2Ops() const { return HasV6T2Ops; }
612 bool hasV7Ops() const { return HasV7Ops; }
613 bool hasV8Ops() const { return HasV8Ops; }
614 bool hasV8_1aOps() const { return HasV8_1aOps; }
615 bool hasV8_2aOps() const { return HasV8_2aOps; }
616 bool hasV8_3aOps() const { return HasV8_3aOps; }
617 bool hasV8_4aOps() const { return HasV8_4aOps; }
618 bool hasV8_5aOps() const { return HasV8_5aOps; }
619 bool hasV8_6aOps() const { return HasV8_6aOps; }
620 bool hasV8_7aOps() const { return HasV8_7aOps; }
621 bool hasV8MBaselineOps() const { return HasV8MBaselineOps; }
622 bool hasV8MMainlineOps() const { return HasV8MMainlineOps; }
623 bool hasV8_1MMainlineOps() const { return HasV8_1MMainlineOps; }
624 bool hasMVEIntegerOps() const { return HasMVEIntegerOps; }
625 bool hasMVEFloatOps() const { return HasMVEFloatOps; }
626 bool hasCDEOps() const { return HasCDEOps; }
627 bool hasFPRegs() const { return HasFPRegs; }
628 bool hasFPRegs16() const { return HasFPRegs16; }
629 bool hasFPRegs64() const { return HasFPRegs64; }
631 /// @{
632 /// These functions are obsolete, please consider adding subtarget features
633 /// or properties instead of calling them.
634 bool isCortexA5() const { return ARMProcFamily == CortexA5; }
635 bool isCortexA7() const { return ARMProcFamily == CortexA7; }
636 bool isCortexA8() const { return ARMProcFamily == CortexA8; }
637 bool isCortexA9() const { return ARMProcFamily == CortexA9; }
638 bool isCortexA15() const { return ARMProcFamily == CortexA15; }
639 bool isSwift() const { return ARMProcFamily == Swift; }
640 bool isCortexM3() const { return ARMProcFamily == CortexM3; }
641 bool isCortexM7() const { return ARMProcFamily == CortexM7; }
642 bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
643 bool isCortexR5() const { return ARMProcFamily == CortexR5; }
644 bool isKrait() const { return ARMProcFamily == Krait; }
645 /// @}
647 bool hasARMOps() const { return !NoARM; }
649 bool hasVFP2Base() const { return HasVFPv2SP; }
650 bool hasVFP3Base() const { return HasVFPv3D16SP; }
651 bool hasVFP4Base() const { return HasVFPv4D16SP; }
652 bool hasFPARMv8Base() const { return HasFPARMv8D16SP; }
653 bool hasNEON() const { return HasNEON; }
654 bool hasSHA2() const { return HasSHA2; }
655 bool hasAES() const { return HasAES; }
656 bool hasCrypto() const { return HasCrypto; }
657 bool hasDotProd() const { return HasDotProd; }
658 bool hasCRC() const { return HasCRC; }
659 bool hasRAS() const { return HasRAS; }
660 bool hasLOB() const { return HasLOB; }
661 bool hasVirtualization() const { return HasVirtualization; }
663 bool useNEONForSinglePrecisionFP() const {
664 return hasNEON() && UseNEONForSinglePrecisionFP;
667 bool hasDivideInThumbMode() const { return HasHardwareDivideInThumb; }
668 bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
669 bool hasDataBarrier() const { return HasDataBarrier; }
670 bool hasFullDataBarrier() const { return HasFullDataBarrier; }
671 bool hasV7Clrex() const { return HasV7Clrex; }
672 bool hasAcquireRelease() const { return HasAcquireRelease; }
674 bool hasAnyDataBarrier() const {
675 return HasDataBarrier || (hasV6Ops() && !isThumb());
678 bool useMulOps() const { return UseMulOps; }
679 bool useFPVMLx() const { return !SlowFPVMLx; }
680 bool useFPVFMx() const {
681 return !isTargetDarwin() && hasVFP4Base() && !SlowFPVFMx;
683 bool useFPVFMx16() const { return useFPVFMx() && hasFullFP16(); }
684 bool useFPVFMx64() const { return useFPVFMx() && hasFP64(); }
685 bool hasVMLxForwarding() const { return HasVMLxForwarding; }
686 bool isFPBrccSlow() const { return SlowFPBrcc; }
687 bool hasFP64() const { return HasFP64; }
688 bool hasPerfMon() const { return HasPerfMon; }
689 bool hasTrustZone() const { return HasTrustZone; }
690 bool has8MSecExt() const { return Has8MSecExt; }
691 bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
692 bool hasFPAO() const { return HasFPAO; }
693 bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; }
694 bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; }
695 bool hasSlowVDUP32() const { return HasSlowVDUP32; }
696 bool preferVMOVSR() const { return PreferVMOVSR; }
697 bool preferISHSTBarriers() const { return PreferISHST; }
698 bool expandMLx() const { return ExpandMLx; }
699 bool hasVMLxHazards() const { return HasVMLxHazards; }
700 bool hasSlowOddRegister() const { return SlowOddRegister; }
701 bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; }
702 bool useWideStrideVFP() const { return UseWideStrideVFP; }
703 bool hasMuxedUnits() const { return HasMuxedUnits; }
704 bool dontWidenVMOVS() const { return DontWidenVMOVS; }
705 bool useSplatVFPToNeon() const { return SplatVFPToNeon; }
706 bool useNEONForFPMovs() const { return UseNEONForFPMovs; }
707 bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; }
708 bool nonpipelinedVFP() const { return NonpipelinedVFP; }
709 bool prefers32BitThumb() const { return Pref32BitThumb; }
710 bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
711 bool cheapPredicableCPSRDef() const { return CheapPredicableCPSRDef; }
712 bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
713 bool hasRetAddrStack() const { return HasRetAddrStack; }
714 bool hasBranchPredictor() const { return HasBranchPredictor; }
715 bool hasMPExtension() const { return HasMPExtension; }
716 bool hasDSP() const { return HasDSP; }
717 bool useNaClTrap() const { return UseNaClTrap; }
718 bool useSjLjEH() const { return UseSjLjEH; }
719 bool hasSB() const { return HasSB; }
720 bool genLongCalls() const { return GenLongCalls; }
721 bool genExecuteOnly() const { return GenExecuteOnly; }
722 bool hasBaseDSP() const {
723 if (isThumb())
724 return hasDSP();
725 else
726 return hasV5TEOps();
729 bool hasFP16() const { return HasFP16; }
730 bool hasD32() const { return HasD32; }
731 bool hasFullFP16() const { return HasFullFP16; }
732 bool hasFP16FML() const { return HasFP16FML; }
733 bool hasBF16() const { return HasBF16; }
735 bool hasFuseAES() const { return HasFuseAES; }
736 bool hasFuseLiterals() const { return HasFuseLiterals; }
737 /// Return true if the CPU supports any kind of instruction fusion.
738 bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }
740 bool hasMatMulInt8() const { return HasMatMulInt8; }
742 const Triple &getTargetTriple() const { return TargetTriple; }
744 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
745 bool isTargetIOS() const { return TargetTriple.isiOS(); }
746 bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
747 bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
748 bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
749 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
750 bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
751 bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
753 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
754 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
755 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
757 // ARM EABI is the bare-metal EABI described in ARM ABI documents and
758 // can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
759 // FIXME: Add a flag for bare-metal for that target and set Triple::EABI
760 // even for GNUEABI, so we can make a distinction here and still conform to
761 // the EABI on GNU (and Android) mode. This requires change in Clang, too.
762 // FIXME: The Darwin exception is temporary, while we move users to
763 // "*-*-*-macho" triples as quickly as possible.
764 bool isTargetAEABI() const {
765 return (TargetTriple.getEnvironment() == Triple::EABI ||
766 TargetTriple.getEnvironment() == Triple::EABIHF) &&
767 !isTargetDarwin() && !isTargetWindows();
769 bool isTargetGNUAEABI() const {
770 return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
771 TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
772 !isTargetDarwin() && !isTargetWindows();
774 bool isTargetMuslAEABI() const {
775 return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
776 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
777 !isTargetDarwin() && !isTargetWindows();
780 // ARM Targets that support EHABI exception handling standard
781 // Darwin uses SjLj. Other targets might need more checks.
782 bool isTargetEHABICompatible() const {
783 return (TargetTriple.getEnvironment() == Triple::EABI ||
784 TargetTriple.getEnvironment() == Triple::GNUEABI ||
785 TargetTriple.getEnvironment() == Triple::MuslEABI ||
786 TargetTriple.getEnvironment() == Triple::EABIHF ||
787 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
788 TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
789 isTargetAndroid()) &&
790 !isTargetDarwin() && !isTargetWindows();
793 bool isTargetHardFloat() const;
795 bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
797 bool isXRaySupported() const override;
799 bool isAPCS_ABI() const;
800 bool isAAPCS_ABI() const;
801 bool isAAPCS16_ABI() const;
803 bool isROPI() const;
804 bool isRWPI() const;
806 bool useMachineScheduler() const { return UseMISched; }
807 bool disablePostRAScheduler() const { return DisablePostRAScheduler; }
808 bool useSoftFloat() const { return UseSoftFloat; }
809 bool isThumb() const { return InThumbMode; }
810 bool hasMinSize() const { return OptMinSize; }
811 bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
812 bool isThumb2() const { return InThumbMode && HasThumb2; }
813 bool hasThumb2() const { return HasThumb2; }
814 bool isMClass() const { return ARMProcClass == MClass; }
815 bool isRClass() const { return ARMProcClass == RClass; }
816 bool isAClass() const { return ARMProcClass == AClass; }
817 bool isReadTPHard() const { return ReadTPHard; }
819 bool isR9Reserved() const {
820 return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
823 MCPhysReg getFramePointerReg() const {
824 if (isTargetDarwin() || (!isTargetWindows() && isThumb()))
825 return ARM::R7;
826 return ARM::R11;
829 /// Returns true if the frame setup is split into two separate pushes (first
830 /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
831 /// to lr. This is always required on Thumb1-only targets, as the push and
832 /// pop instructions can't access the high registers.
833 bool splitFramePushPop(const MachineFunction &MF) const {
834 return (getFramePointerReg() == ARM::R7 &&
835 MF.getTarget().Options.DisableFramePointerElim(MF)) ||
836 isThumb1Only();
839 bool useStride4VFPs() const;
841 bool useMovt() const;
843 bool supportsTailCall() const { return SupportsTailCall; }
845 bool allowsUnalignedMem() const { return !StrictAlign; }
847 bool restrictIT() const { return RestrictIT; }
849 const std::string & getCPUString() const { return CPUString; }
851 bool isLittle() const { return IsLittle; }
853 unsigned getMispredictionPenalty() const;
855 /// Returns true if machine scheduler should be enabled.
856 bool enableMachineScheduler() const override;
858 /// True for some subtargets at > -O0.
859 bool enablePostRAScheduler() const override;
861 /// True for some subtargets at > -O0.
862 bool enablePostRAMachineScheduler() const override;
864 /// Check whether this subtarget wants to use subregister liveness.
865 bool enableSubRegLiveness() const override;
867 /// Enable use of alias analysis during code generation (during MI
868 /// scheduling, DAGCombine, etc.).
869 bool useAA() const override { return true; }
871 // enableAtomicExpand- True if we need to expand our atomics.
872 bool enableAtomicExpand() const override;
874 /// getInstrItins - Return the instruction itineraries based on subtarget
875 /// selection.
876 const InstrItineraryData *getInstrItineraryData() const override {
877 return &InstrItins;
880 /// getStackAlignment - Returns the minimum alignment known to hold of the
881 /// stack frame on entry to the function and which must be maintained by every
882 /// function for this subtarget.
883 Align getStackAlignment() const { return stackAlignment; }
885 unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }
887 unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }
889 ARMLdStMultipleTiming getLdStMultipleTiming() const {
890 return LdStMultipleTiming;
893 int getPreISelOperandLatencyAdjustment() const {
894 return PreISelOperandLatencyAdjustment;
897 /// True if the GV will be accessed via an indirect symbol.
898 bool isGVIndirectSymbol(const GlobalValue *GV) const;
900 /// Returns the constant pool modifier needed to access the GV.
901 bool isGVInGOT(const GlobalValue *GV) const;
903 /// True if fast-isel is used.
904 bool useFastISel() const;
906 /// Returns the correct return opcode for the current feature set.
907 /// Use BX if available to allow mixing thumb/arm code, but fall back
908 /// to plain mov pc,lr on ARMv4.
909 unsigned getReturnOpcode() const {
910 if (isThumb())
911 return ARM::tBX_RET;
912 if (hasV4TOps())
913 return ARM::BX_RET;
914 return ARM::MOVPCLR;
917 /// Allow movt+movw for PIC global address calculation.
918 /// ELF does not have GOT relocations for movt+movw.
919 /// ROPI does not use GOT.
920 bool allowPositionIndependentMovt() const {
921 return isROPI() || !isTargetELF();
924 unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; }
926 unsigned
927 getMVEVectorCostFactor(TargetTransformInfo::TargetCostKind CostKind) const {
928 if (CostKind == TargetTransformInfo::TCK_CodeSize)
929 return 1;
930 return MVEVectorCostFactor;
933 bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
934 unsigned PhysReg) const override;
935 unsigned getGPRAllocationOrder(const MachineFunction &MF) const;
937 bool hardenSlsRetBr() const { return HardenSlsRetBr; }
938 bool hardenSlsBlr() const { return HardenSlsBlr; }
939 bool hardenSlsNoComdat() const { return HardenSlsNoComdat; }
942 } // end namespace llvm
944 #endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H