1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/IntrinsicsARM.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/MC/SubtargetFeature.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
43 #define DEBUG_TYPE "armtti"
45 static cl::opt
<bool> EnableMaskedLoadStores(
46 "enable-arm-maskedldst", cl::Hidden
, cl::init(true),
47 cl::desc("Enable the generation of masked loads and stores"));
49 static cl::opt
<bool> DisableLowOverheadLoops(
50 "disable-arm-loloops", cl::Hidden
, cl::init(false),
51 cl::desc("Disable the generation of low-overhead loops"));
54 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden
, cl::init(true),
55 cl::desc("Enable the generation of WLS loops"));
57 extern cl::opt
<TailPredication::Mode
> EnableTailPredication
;
59 extern cl::opt
<bool> EnableMaskedGatherScatters
;
61 extern cl::opt
<unsigned> MVEMaxSupportedInterleaveFactor
;
63 /// Convert a vector load intrinsic into a simple llvm load instruction.
64 /// This is beneficial when the underlying object being addressed comes
65 /// from a constant, since we get constant-folding for free.
66 static Value
*simplifyNeonVld1(const IntrinsicInst
&II
, unsigned MemAlign
,
67 InstCombiner::BuilderTy
&Builder
) {
68 auto *IntrAlign
= dyn_cast
<ConstantInt
>(II
.getArgOperand(1));
73 unsigned Alignment
= IntrAlign
->getLimitedValue() < MemAlign
75 : IntrAlign
->getLimitedValue();
77 if (!isPowerOf2_32(Alignment
))
80 auto *BCastInst
= Builder
.CreateBitCast(II
.getArgOperand(0),
81 PointerType::get(II
.getType(), 0));
82 return Builder
.CreateAlignedLoad(II
.getType(), BCastInst
, Align(Alignment
));
85 bool ARMTTIImpl::areInlineCompatible(const Function
*Caller
,
86 const Function
*Callee
) const {
87 const TargetMachine
&TM
= getTLI()->getTargetMachine();
88 const FeatureBitset
&CallerBits
=
89 TM
.getSubtargetImpl(*Caller
)->getFeatureBits();
90 const FeatureBitset
&CalleeBits
=
91 TM
.getSubtargetImpl(*Callee
)->getFeatureBits();
93 // To inline a callee, all features not in the allowed list must match exactly.
94 bool MatchExact
= (CallerBits
& ~InlineFeaturesAllowed
) ==
95 (CalleeBits
& ~InlineFeaturesAllowed
);
96 // For features in the allowed list, the callee's features must be a subset of
98 bool MatchSubset
= ((CallerBits
& CalleeBits
) & InlineFeaturesAllowed
) ==
99 (CalleeBits
& InlineFeaturesAllowed
);
100 return MatchExact
&& MatchSubset
;
103 TTI::AddressingModeKind
104 ARMTTIImpl::getPreferredAddressingMode(const Loop
*L
,
105 ScalarEvolution
*SE
) const {
106 if (ST
->hasMVEIntegerOps())
107 return TTI::AMK_PostIndexed
;
109 if (L
->getHeader()->getParent()->hasOptSize())
110 return TTI::AMK_None
;
112 if (ST
->isMClass() && ST
->isThumb2() &&
113 L
->getNumBlocks() == 1)
114 return TTI::AMK_PreIndexed
;
116 return TTI::AMK_None
;
119 Optional
<Instruction
*>
120 ARMTTIImpl::instCombineIntrinsic(InstCombiner
&IC
, IntrinsicInst
&II
) const {
121 using namespace PatternMatch
;
122 Intrinsic::ID IID
= II
.getIntrinsicID();
126 case Intrinsic::arm_neon_vld1
: {
128 getKnownAlignment(II
.getArgOperand(0), IC
.getDataLayout(), &II
,
129 &IC
.getAssumptionCache(), &IC
.getDominatorTree());
130 if (Value
*V
= simplifyNeonVld1(II
, MemAlign
.value(), IC
.Builder
)) {
131 return IC
.replaceInstUsesWith(II
, V
);
136 case Intrinsic::arm_neon_vld2
:
137 case Intrinsic::arm_neon_vld3
:
138 case Intrinsic::arm_neon_vld4
:
139 case Intrinsic::arm_neon_vld2lane
:
140 case Intrinsic::arm_neon_vld3lane
:
141 case Intrinsic::arm_neon_vld4lane
:
142 case Intrinsic::arm_neon_vst1
:
143 case Intrinsic::arm_neon_vst2
:
144 case Intrinsic::arm_neon_vst3
:
145 case Intrinsic::arm_neon_vst4
:
146 case Intrinsic::arm_neon_vst2lane
:
147 case Intrinsic::arm_neon_vst3lane
:
148 case Intrinsic::arm_neon_vst4lane
: {
150 getKnownAlignment(II
.getArgOperand(0), IC
.getDataLayout(), &II
,
151 &IC
.getAssumptionCache(), &IC
.getDominatorTree());
152 unsigned AlignArg
= II
.getNumArgOperands() - 1;
153 Value
*AlignArgOp
= II
.getArgOperand(AlignArg
);
154 MaybeAlign Align
= cast
<ConstantInt
>(AlignArgOp
)->getMaybeAlignValue();
155 if (Align
&& *Align
< MemAlign
) {
156 return IC
.replaceOperand(
158 ConstantInt::get(Type::getInt32Ty(II
.getContext()), MemAlign
.value(),
164 case Intrinsic::arm_mve_pred_i2v
: {
165 Value
*Arg
= II
.getArgOperand(0);
167 if (match(Arg
, PatternMatch::m_Intrinsic
<Intrinsic::arm_mve_pred_v2i
>(
168 PatternMatch::m_Value(ArgArg
))) &&
169 II
.getType() == ArgArg
->getType()) {
170 return IC
.replaceInstUsesWith(II
, ArgArg
);
173 if (match(Arg
, m_Xor(PatternMatch::m_Intrinsic
<Intrinsic::arm_mve_pred_v2i
>(
174 PatternMatch::m_Value(ArgArg
)),
175 PatternMatch::m_Constant(XorMask
))) &&
176 II
.getType() == ArgArg
->getType()) {
177 if (auto *CI
= dyn_cast
<ConstantInt
>(XorMask
)) {
178 if (CI
->getValue().trunc(16).isAllOnesValue()) {
179 auto TrueVector
= IC
.Builder
.CreateVectorSplat(
180 cast
<FixedVectorType
>(II
.getType())->getNumElements(),
181 IC
.Builder
.getTrue());
182 return BinaryOperator::Create(Instruction::Xor
, ArgArg
, TrueVector
);
186 KnownBits
ScalarKnown(32);
187 if (IC
.SimplifyDemandedBits(&II
, 0, APInt::getLowBitsSet(32, 16),
193 case Intrinsic::arm_mve_pred_v2i
: {
194 Value
*Arg
= II
.getArgOperand(0);
196 if (match(Arg
, PatternMatch::m_Intrinsic
<Intrinsic::arm_mve_pred_i2v
>(
197 PatternMatch::m_Value(ArgArg
)))) {
198 return IC
.replaceInstUsesWith(II
, ArgArg
);
200 if (!II
.getMetadata(LLVMContext::MD_range
)) {
201 Type
*IntTy32
= Type::getInt32Ty(II
.getContext());
203 ConstantAsMetadata::get(ConstantInt::get(IntTy32
, 0)),
204 ConstantAsMetadata::get(ConstantInt::get(IntTy32
, 0x10000))};
205 II
.setMetadata(LLVMContext::MD_range
, MDNode::get(II
.getContext(), M
));
210 case Intrinsic::arm_mve_vadc
:
211 case Intrinsic::arm_mve_vadc_predicated
: {
213 (II
.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated
) ? 3 : 2;
214 assert(II
.getArgOperand(CarryOp
)->getType()->getScalarSizeInBits() == 32 &&
215 "Bad type for intrinsic!");
217 KnownBits
CarryKnown(32);
218 if (IC
.SimplifyDemandedBits(&II
, CarryOp
, APInt::getOneBitSet(32, 29),
224 case Intrinsic::arm_mve_vmldava
: {
225 Instruction
*I
= cast
<Instruction
>(&II
);
226 if (I
->hasOneUse()) {
227 auto *User
= cast
<Instruction
>(*I
->user_begin());
229 if (match(User
, m_c_Add(m_Specific(I
), m_Value(OpZ
))) &&
230 match(I
->getOperand(3), m_Zero())) {
231 Value
*OpX
= I
->getOperand(4);
232 Value
*OpY
= I
->getOperand(5);
233 Type
*OpTy
= OpX
->getType();
235 IC
.Builder
.SetInsertPoint(User
);
237 IC
.Builder
.CreateIntrinsic(Intrinsic::arm_mve_vmldava
, {OpTy
},
238 {I
->getOperand(0), I
->getOperand(1),
239 I
->getOperand(2), OpZ
, OpX
, OpY
});
241 IC
.replaceInstUsesWith(*User
, V
);
242 return IC
.eraseInstFromFunction(*User
);
251 InstructionCost
ARMTTIImpl::getIntImmCost(const APInt
&Imm
, Type
*Ty
,
252 TTI::TargetCostKind CostKind
) {
253 assert(Ty
->isIntegerTy());
255 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
256 if (Bits
== 0 || Imm
.getActiveBits() >= 64)
259 int64_t SImmVal
= Imm
.getSExtValue();
260 uint64_t ZImmVal
= Imm
.getZExtValue();
261 if (!ST
->isThumb()) {
262 if ((SImmVal
>= 0 && SImmVal
< 65536) ||
263 (ARM_AM::getSOImmVal(ZImmVal
) != -1) ||
264 (ARM_AM::getSOImmVal(~ZImmVal
) != -1))
266 return ST
->hasV6T2Ops() ? 2 : 3;
268 if (ST
->isThumb2()) {
269 if ((SImmVal
>= 0 && SImmVal
< 65536) ||
270 (ARM_AM::getT2SOImmVal(ZImmVal
) != -1) ||
271 (ARM_AM::getT2SOImmVal(~ZImmVal
) != -1))
273 return ST
->hasV6T2Ops() ? 2 : 3;
275 // Thumb1, any i8 imm cost 1.
276 if (Bits
== 8 || (SImmVal
>= 0 && SImmVal
< 256))
278 if ((~SImmVal
< 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal
))
280 // Load from constantpool.
284 // Constants smaller than 256 fit in the immediate field of
285 // Thumb1 instructions so we return a zero cost and 1 otherwise.
286 InstructionCost
ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode
, unsigned Idx
,
287 const APInt
&Imm
, Type
*Ty
) {
288 if (Imm
.isNonNegative() && Imm
.getLimitedValue() < 256)
294 // Checks whether Inst is part of a min(max()) or max(min()) pattern
295 // that will match to an SSAT instruction
296 static bool isSSATMinMaxPattern(Instruction
*Inst
, const APInt
&Imm
) {
299 SelectPatternFlavor InstSPF
= matchSelectPattern(Inst
, LHS
, RHS
).Flavor
;
301 if (InstSPF
== SPF_SMAX
&&
302 PatternMatch::match(RHS
, PatternMatch::m_ConstantInt(C
)) &&
303 C
->getValue() == Imm
&& Imm
.isNegative() && (-Imm
).isPowerOf2()) {
305 auto isSSatMin
= [&](Value
*MinInst
) {
306 if (isa
<SelectInst
>(MinInst
)) {
307 Value
*MinLHS
, *MinRHS
;
309 SelectPatternFlavor MinSPF
=
310 matchSelectPattern(MinInst
, MinLHS
, MinRHS
).Flavor
;
311 if (MinSPF
== SPF_SMIN
&&
312 PatternMatch::match(MinRHS
, PatternMatch::m_ConstantInt(MinC
)) &&
313 MinC
->getValue() == ((-Imm
) - 1))
319 if (isSSatMin(Inst
->getOperand(1)) ||
320 (Inst
->hasNUses(2) && (isSSatMin(*Inst
->user_begin()) ||
321 isSSatMin(*(++Inst
->user_begin())))))
327 InstructionCost
ARMTTIImpl::getIntImmCostInst(unsigned Opcode
, unsigned Idx
,
328 const APInt
&Imm
, Type
*Ty
,
329 TTI::TargetCostKind CostKind
,
331 // Division by a constant can be turned into multiplication, but only if we
332 // know it's constant. So it's not so much that the immediate is cheap (it's
333 // not), but that the alternative is worse.
334 // FIXME: this is probably unneeded with GlobalISel.
335 if ((Opcode
== Instruction::SDiv
|| Opcode
== Instruction::UDiv
||
336 Opcode
== Instruction::SRem
|| Opcode
== Instruction::URem
) &&
340 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
341 // splitting any large offsets.
342 if (Opcode
== Instruction::GetElementPtr
&& Idx
!= 0)
345 if (Opcode
== Instruction::And
) {
347 if (Imm
== 255 || Imm
== 65535)
349 // Conversion to BIC is free, and means we can use ~Imm instead.
350 return std::min(getIntImmCost(Imm
, Ty
, CostKind
),
351 getIntImmCost(~Imm
, Ty
, CostKind
));
354 if (Opcode
== Instruction::Add
)
355 // Conversion to SUB is free, and means we can use -Imm instead.
356 return std::min(getIntImmCost(Imm
, Ty
, CostKind
),
357 getIntImmCost(-Imm
, Ty
, CostKind
));
359 if (Opcode
== Instruction::ICmp
&& Imm
.isNegative() &&
360 Ty
->getIntegerBitWidth() == 32) {
361 int64_t NegImm
= -Imm
.getSExtValue();
362 if (ST
->isThumb2() && NegImm
< 1<<12)
363 // icmp X, #-C -> cmn X, #C
365 if (ST
->isThumb() && NegImm
< 1<<8)
366 // icmp X, #-C -> adds X, #C
370 // xor a, -1 can always be folded to MVN
371 if (Opcode
== Instruction::Xor
&& Imm
.isAllOnesValue())
374 // Ensures negative constant of min(max()) or max(min()) patterns that
375 // match to SSAT instructions don't get hoisted
376 if (Inst
&& ((ST
->hasV6Ops() && !ST
->isThumb()) || ST
->isThumb2()) &&
377 Ty
->getIntegerBitWidth() <= 32) {
378 if (isSSATMinMaxPattern(Inst
, Imm
) ||
379 (isa
<ICmpInst
>(Inst
) && Inst
->hasOneUse() &&
380 isSSATMinMaxPattern(cast
<Instruction
>(*Inst
->user_begin()), Imm
)))
384 return getIntImmCost(Imm
, Ty
, CostKind
);
387 InstructionCost
ARMTTIImpl::getCFInstrCost(unsigned Opcode
,
388 TTI::TargetCostKind CostKind
,
389 const Instruction
*I
) {
390 if (CostKind
== TTI::TCK_RecipThroughput
&&
391 (ST
->hasNEON() || ST
->hasMVEIntegerOps())) {
392 // FIXME: The vectorizer is highly sensistive to the cost of these
393 // instructions, which suggests that it may be using the costs incorrectly.
394 // But, for now, just make them free to avoid performance regressions for
398 return BaseT::getCFInstrCost(Opcode
, CostKind
, I
);
401 InstructionCost
ARMTTIImpl::getCastInstrCost(unsigned Opcode
, Type
*Dst
,
403 TTI::CastContextHint CCH
,
404 TTI::TargetCostKind CostKind
,
405 const Instruction
*I
) {
406 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
407 assert(ISD
&& "Invalid opcode");
409 // TODO: Allow non-throughput costs that aren't binary.
410 auto AdjustCost
= [&CostKind
](InstructionCost Cost
) -> InstructionCost
{
411 if (CostKind
!= TTI::TCK_RecipThroughput
)
412 return Cost
== 0 ? 0 : 1;
415 auto IsLegalFPType
= [this](EVT VT
) {
416 EVT EltVT
= VT
.getScalarType();
417 return (EltVT
== MVT::f32
&& ST
->hasVFP2Base()) ||
418 (EltVT
== MVT::f64
&& ST
->hasFP64()) ||
419 (EltVT
== MVT::f16
&& ST
->hasFullFP16());
422 EVT SrcTy
= TLI
->getValueType(DL
, Src
);
423 EVT DstTy
= TLI
->getValueType(DL
, Dst
);
425 if (!SrcTy
.isSimple() || !DstTy
.isSimple())
427 BaseT::getCastInstrCost(Opcode
, Dst
, Src
, CCH
, CostKind
, I
));
429 // Extending masked load/Truncating masked stores is expensive because we
430 // currently don't split them. This means that we'll likely end up
431 // loading/storing each element individually (hence the high cost).
432 if ((ST
->hasMVEIntegerOps() &&
433 (Opcode
== Instruction::Trunc
|| Opcode
== Instruction::ZExt
||
434 Opcode
== Instruction::SExt
)) ||
435 (ST
->hasMVEFloatOps() &&
436 (Opcode
== Instruction::FPExt
|| Opcode
== Instruction::FPTrunc
) &&
437 IsLegalFPType(SrcTy
) && IsLegalFPType(DstTy
)))
438 if (CCH
== TTI::CastContextHint::Masked
&& DstTy
.getSizeInBits() > 128)
439 return 2 * DstTy
.getVectorNumElements() *
440 ST
->getMVEVectorCostFactor(CostKind
);
442 // The extend of other kinds of load is free
443 if (CCH
== TTI::CastContextHint::Normal
||
444 CCH
== TTI::CastContextHint::Masked
) {
445 static const TypeConversionCostTblEntry LoadConversionTbl
[] = {
446 {ISD::SIGN_EXTEND
, MVT::i32
, MVT::i16
, 0},
447 {ISD::ZERO_EXTEND
, MVT::i32
, MVT::i16
, 0},
448 {ISD::SIGN_EXTEND
, MVT::i32
, MVT::i8
, 0},
449 {ISD::ZERO_EXTEND
, MVT::i32
, MVT::i8
, 0},
450 {ISD::SIGN_EXTEND
, MVT::i16
, MVT::i8
, 0},
451 {ISD::ZERO_EXTEND
, MVT::i16
, MVT::i8
, 0},
452 {ISD::SIGN_EXTEND
, MVT::i64
, MVT::i32
, 1},
453 {ISD::ZERO_EXTEND
, MVT::i64
, MVT::i32
, 1},
454 {ISD::SIGN_EXTEND
, MVT::i64
, MVT::i16
, 1},
455 {ISD::ZERO_EXTEND
, MVT::i64
, MVT::i16
, 1},
456 {ISD::SIGN_EXTEND
, MVT::i64
, MVT::i8
, 1},
457 {ISD::ZERO_EXTEND
, MVT::i64
, MVT::i8
, 1},
459 if (const auto *Entry
= ConvertCostTableLookup(
460 LoadConversionTbl
, ISD
, DstTy
.getSimpleVT(), SrcTy
.getSimpleVT()))
461 return AdjustCost(Entry
->Cost
);
463 static const TypeConversionCostTblEntry MVELoadConversionTbl
[] = {
464 {ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 0},
465 {ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 0},
466 {ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i8
, 0},
467 {ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i8
, 0},
468 {ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i8
, 0},
469 {ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i8
, 0},
470 // The following extend from a legal type to an illegal type, so need to
471 // split the load. This introduced an extra load operation, but the
472 // extend is still "free".
473 {ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i16
, 1},
474 {ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i16
, 1},
475 {ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 3},
476 {ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 3},
477 {ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i8
, 1},
478 {ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i8
, 1},
480 if (SrcTy
.isVector() && ST
->hasMVEIntegerOps()) {
481 if (const auto *Entry
=
482 ConvertCostTableLookup(MVELoadConversionTbl
, ISD
,
483 DstTy
.getSimpleVT(), SrcTy
.getSimpleVT()))
484 return Entry
->Cost
* ST
->getMVEVectorCostFactor(CostKind
);
487 static const TypeConversionCostTblEntry MVEFLoadConversionTbl
[] = {
488 // FPExtends are similar but also require the VCVT instructions.
489 {ISD::FP_EXTEND
, MVT::v4f32
, MVT::v4f16
, 1},
490 {ISD::FP_EXTEND
, MVT::v8f32
, MVT::v8f16
, 3},
492 if (SrcTy
.isVector() && ST
->hasMVEFloatOps()) {
493 if (const auto *Entry
=
494 ConvertCostTableLookup(MVEFLoadConversionTbl
, ISD
,
495 DstTy
.getSimpleVT(), SrcTy
.getSimpleVT()))
496 return Entry
->Cost
* ST
->getMVEVectorCostFactor(CostKind
);
499 // The truncate of a store is free. This is the mirror of extends above.
500 static const TypeConversionCostTblEntry MVEStoreConversionTbl
[] = {
501 {ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i16
, 0},
502 {ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i8
, 0},
503 {ISD::TRUNCATE
, MVT::v8i16
, MVT::v8i8
, 0},
504 {ISD::TRUNCATE
, MVT::v8i32
, MVT::v8i16
, 1},
505 {ISD::TRUNCATE
, MVT::v8i32
, MVT::v8i8
, 1},
506 {ISD::TRUNCATE
, MVT::v16i32
, MVT::v16i8
, 3},
507 {ISD::TRUNCATE
, MVT::v16i16
, MVT::v16i8
, 1},
509 if (SrcTy
.isVector() && ST
->hasMVEIntegerOps()) {
510 if (const auto *Entry
=
511 ConvertCostTableLookup(MVEStoreConversionTbl
, ISD
,
512 SrcTy
.getSimpleVT(), DstTy
.getSimpleVT()))
513 return Entry
->Cost
* ST
->getMVEVectorCostFactor(CostKind
);
516 static const TypeConversionCostTblEntry MVEFStoreConversionTbl
[] = {
517 {ISD::FP_ROUND
, MVT::v4f32
, MVT::v4f16
, 1},
518 {ISD::FP_ROUND
, MVT::v8f32
, MVT::v8f16
, 3},
520 if (SrcTy
.isVector() && ST
->hasMVEFloatOps()) {
521 if (const auto *Entry
=
522 ConvertCostTableLookup(MVEFStoreConversionTbl
, ISD
,
523 SrcTy
.getSimpleVT(), DstTy
.getSimpleVT()))
524 return Entry
->Cost
* ST
->getMVEVectorCostFactor(CostKind
);
528 // NEON vector operations that can extend their inputs.
529 if ((ISD
== ISD::SIGN_EXTEND
|| ISD
== ISD::ZERO_EXTEND
) &&
530 I
&& I
->hasOneUse() && ST
->hasNEON() && SrcTy
.isVector()) {
531 static const TypeConversionCostTblEntry NEONDoubleWidthTbl
[] = {
533 { ISD::ADD
, MVT::v4i32
, MVT::v4i16
, 0 },
534 { ISD::ADD
, MVT::v8i16
, MVT::v8i8
, 0 },
536 { ISD::SUB
, MVT::v4i32
, MVT::v4i16
, 0 },
537 { ISD::SUB
, MVT::v8i16
, MVT::v8i8
, 0 },
539 { ISD::MUL
, MVT::v4i32
, MVT::v4i16
, 0 },
540 { ISD::MUL
, MVT::v8i16
, MVT::v8i8
, 0 },
542 { ISD::SHL
, MVT::v4i32
, MVT::v4i16
, 0 },
543 { ISD::SHL
, MVT::v8i16
, MVT::v8i8
, 0 },
546 auto *User
= cast
<Instruction
>(*I
->user_begin());
547 int UserISD
= TLI
->InstructionOpcodeToISD(User
->getOpcode());
548 if (auto *Entry
= ConvertCostTableLookup(NEONDoubleWidthTbl
, UserISD
,
550 SrcTy
.getSimpleVT())) {
551 return AdjustCost(Entry
->Cost
);
555 // Single to/from double precision conversions.
556 if (Src
->isVectorTy() && ST
->hasNEON() &&
557 ((ISD
== ISD::FP_ROUND
&& SrcTy
.getScalarType() == MVT::f64
&&
558 DstTy
.getScalarType() == MVT::f32
) ||
559 (ISD
== ISD::FP_EXTEND
&& SrcTy
.getScalarType() == MVT::f32
&&
560 DstTy
.getScalarType() == MVT::f64
))) {
561 static const CostTblEntry NEONFltDblTbl
[] = {
562 // Vector fptrunc/fpext conversions.
563 {ISD::FP_ROUND
, MVT::v2f64
, 2},
564 {ISD::FP_EXTEND
, MVT::v2f32
, 2},
565 {ISD::FP_EXTEND
, MVT::v4f32
, 4}};
567 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Src
);
568 if (const auto *Entry
= CostTableLookup(NEONFltDblTbl
, ISD
, LT
.second
))
569 return AdjustCost(LT
.first
* Entry
->Cost
);
572 // Some arithmetic, load and store operations have specific instructions
573 // to cast up/down their types automatically at no extra cost.
574 // TODO: Get these tables to know at least what the related operations are.
575 static const TypeConversionCostTblEntry NEONVectorConversionTbl
[] = {
576 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
577 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
578 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i32
, 1 },
579 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i32
, 1 },
580 { ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i64
, 0 },
581 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i32
, 1 },
583 // The number of vmovl instructions for the extension.
584 { ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
585 { ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
586 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i8
, 2 },
587 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i8
, 2 },
588 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i8
, 3 },
589 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i8
, 3 },
590 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i16
, 2 },
591 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i16
, 2 },
592 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
593 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
594 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
595 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
596 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
597 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
598 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
599 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
600 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
601 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
603 // Operations that we legalize using splitting.
604 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i32
, 6 },
605 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 3 },
607 // Vector float <-> i32 conversions.
608 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
609 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
611 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
612 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
613 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 2 },
614 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 2 },
615 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
616 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
617 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i1
, 3 },
618 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i1
, 3 },
619 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 3 },
620 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 3 },
621 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
622 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
623 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
624 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
625 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 2 },
626 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 2 },
627 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i16
, 8 },
628 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i16
, 8 },
629 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i32
, 4 },
630 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i32
, 4 },
632 { ISD::FP_TO_SINT
, MVT::v4i32
, MVT::v4f32
, 1 },
633 { ISD::FP_TO_UINT
, MVT::v4i32
, MVT::v4f32
, 1 },
634 { ISD::FP_TO_SINT
, MVT::v4i8
, MVT::v4f32
, 3 },
635 { ISD::FP_TO_UINT
, MVT::v4i8
, MVT::v4f32
, 3 },
636 { ISD::FP_TO_SINT
, MVT::v4i16
, MVT::v4f32
, 2 },
637 { ISD::FP_TO_UINT
, MVT::v4i16
, MVT::v4f32
, 2 },
639 // Vector double <-> i32 conversions.
640 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
641 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
643 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
644 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
645 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 3 },
646 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 3 },
647 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
648 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
650 { ISD::FP_TO_SINT
, MVT::v2i32
, MVT::v2f64
, 2 },
651 { ISD::FP_TO_UINT
, MVT::v2i32
, MVT::v2f64
, 2 },
652 { ISD::FP_TO_SINT
, MVT::v8i16
, MVT::v8f32
, 4 },
653 { ISD::FP_TO_UINT
, MVT::v8i16
, MVT::v8f32
, 4 },
654 { ISD::FP_TO_SINT
, MVT::v16i16
, MVT::v16f32
, 8 },
655 { ISD::FP_TO_UINT
, MVT::v16i16
, MVT::v16f32
, 8 }
658 if (SrcTy
.isVector() && ST
->hasNEON()) {
659 if (const auto *Entry
= ConvertCostTableLookup(NEONVectorConversionTbl
, ISD
,
661 SrcTy
.getSimpleVT()))
662 return AdjustCost(Entry
->Cost
);
665 // Scalar float to integer conversions.
666 static const TypeConversionCostTblEntry NEONFloatConversionTbl
[] = {
667 { ISD::FP_TO_SINT
, MVT::i1
, MVT::f32
, 2 },
668 { ISD::FP_TO_UINT
, MVT::i1
, MVT::f32
, 2 },
669 { ISD::FP_TO_SINT
, MVT::i1
, MVT::f64
, 2 },
670 { ISD::FP_TO_UINT
, MVT::i1
, MVT::f64
, 2 },
671 { ISD::FP_TO_SINT
, MVT::i8
, MVT::f32
, 2 },
672 { ISD::FP_TO_UINT
, MVT::i8
, MVT::f32
, 2 },
673 { ISD::FP_TO_SINT
, MVT::i8
, MVT::f64
, 2 },
674 { ISD::FP_TO_UINT
, MVT::i8
, MVT::f64
, 2 },
675 { ISD::FP_TO_SINT
, MVT::i16
, MVT::f32
, 2 },
676 { ISD::FP_TO_UINT
, MVT::i16
, MVT::f32
, 2 },
677 { ISD::FP_TO_SINT
, MVT::i16
, MVT::f64
, 2 },
678 { ISD::FP_TO_UINT
, MVT::i16
, MVT::f64
, 2 },
679 { ISD::FP_TO_SINT
, MVT::i32
, MVT::f32
, 2 },
680 { ISD::FP_TO_UINT
, MVT::i32
, MVT::f32
, 2 },
681 { ISD::FP_TO_SINT
, MVT::i32
, MVT::f64
, 2 },
682 { ISD::FP_TO_UINT
, MVT::i32
, MVT::f64
, 2 },
683 { ISD::FP_TO_SINT
, MVT::i64
, MVT::f32
, 10 },
684 { ISD::FP_TO_UINT
, MVT::i64
, MVT::f32
, 10 },
685 { ISD::FP_TO_SINT
, MVT::i64
, MVT::f64
, 10 },
686 { ISD::FP_TO_UINT
, MVT::i64
, MVT::f64
, 10 }
688 if (SrcTy
.isFloatingPoint() && ST
->hasNEON()) {
689 if (const auto *Entry
= ConvertCostTableLookup(NEONFloatConversionTbl
, ISD
,
691 SrcTy
.getSimpleVT()))
692 return AdjustCost(Entry
->Cost
);
695 // Scalar integer to float conversions.
696 static const TypeConversionCostTblEntry NEONIntegerConversionTbl
[] = {
697 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i1
, 2 },
698 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i1
, 2 },
699 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i1
, 2 },
700 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i1
, 2 },
701 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i8
, 2 },
702 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i8
, 2 },
703 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i8
, 2 },
704 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i8
, 2 },
705 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i16
, 2 },
706 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i16
, 2 },
707 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i16
, 2 },
708 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i16
, 2 },
709 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i32
, 2 },
710 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i32
, 2 },
711 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i32
, 2 },
712 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i32
, 2 },
713 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i64
, 10 },
714 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i64
, 10 },
715 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i64
, 10 },
716 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i64
, 10 }
719 if (SrcTy
.isInteger() && ST
->hasNEON()) {
720 if (const auto *Entry
= ConvertCostTableLookup(NEONIntegerConversionTbl
,
721 ISD
, DstTy
.getSimpleVT(),
722 SrcTy
.getSimpleVT()))
723 return AdjustCost(Entry
->Cost
);
726 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
727 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
728 // are linearised so take more.
729 static const TypeConversionCostTblEntry MVEVectorConversionTbl
[] = {
730 { ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
731 { ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
732 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i8
, 2 },
733 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i8
, 2 },
734 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i8
, 10 },
735 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i8
, 2 },
736 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
737 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
738 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i16
, 10 },
739 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i16
, 2 },
740 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i32
, 8 },
741 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i32
, 2 },
744 if (SrcTy
.isVector() && ST
->hasMVEIntegerOps()) {
745 if (const auto *Entry
= ConvertCostTableLookup(MVEVectorConversionTbl
,
746 ISD
, DstTy
.getSimpleVT(),
747 SrcTy
.getSimpleVT()))
748 return Entry
->Cost
* ST
->getMVEVectorCostFactor(CostKind
);
751 if (ISD
== ISD::FP_ROUND
|| ISD
== ISD::FP_EXTEND
) {
752 // As general rule, fp converts that were not matched above are scalarized
753 // and cost 1 vcvt for each lane, so long as the instruction is available.
754 // If not it will become a series of function calls.
755 const InstructionCost CallCost
=
756 getCallInstrCost(nullptr, Dst
, {Src
}, CostKind
);
758 if (SrcTy
.isFixedLengthVector())
759 Lanes
= SrcTy
.getVectorNumElements();
761 if (IsLegalFPType(SrcTy
) && IsLegalFPType(DstTy
))
764 return Lanes
* CallCost
;
767 if (ISD
== ISD::TRUNCATE
&& ST
->hasMVEIntegerOps() &&
768 SrcTy
.isFixedLengthVector()) {
769 // Treat a truncate with larger than legal source (128bits for MVE) as
770 // expensive, 2 instructions per lane.
771 if ((SrcTy
.getScalarType() == MVT::i8
||
772 SrcTy
.getScalarType() == MVT::i16
||
773 SrcTy
.getScalarType() == MVT::i32
) &&
774 SrcTy
.getSizeInBits() > 128 &&
775 SrcTy
.getSizeInBits() > DstTy
.getSizeInBits())
776 return SrcTy
.getVectorNumElements() * 2;
779 // Scalar integer conversion costs.
780 static const TypeConversionCostTblEntry ARMIntegerConversionTbl
[] = {
781 // i16 -> i64 requires two dependent operations.
782 { ISD::SIGN_EXTEND
, MVT::i64
, MVT::i16
, 2 },
784 // Truncates on i64 are assumed to be free.
785 { ISD::TRUNCATE
, MVT::i32
, MVT::i64
, 0 },
786 { ISD::TRUNCATE
, MVT::i16
, MVT::i64
, 0 },
787 { ISD::TRUNCATE
, MVT::i8
, MVT::i64
, 0 },
788 { ISD::TRUNCATE
, MVT::i1
, MVT::i64
, 0 }
791 if (SrcTy
.isInteger()) {
792 if (const auto *Entry
= ConvertCostTableLookup(ARMIntegerConversionTbl
, ISD
,
794 SrcTy
.getSimpleVT()))
795 return AdjustCost(Entry
->Cost
);
798 int BaseCost
= ST
->hasMVEIntegerOps() && Src
->isVectorTy()
799 ? ST
->getMVEVectorCostFactor(CostKind
)
802 BaseCost
* BaseT::getCastInstrCost(Opcode
, Dst
, Src
, CCH
, CostKind
, I
));
805 InstructionCost
ARMTTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*ValTy
,
807 // Penalize inserting into an D-subregister. We end up with a three times
808 // lower estimated throughput on swift.
809 if (ST
->hasSlowLoadDSubregister() && Opcode
== Instruction::InsertElement
&&
810 ValTy
->isVectorTy() && ValTy
->getScalarSizeInBits() <= 32)
813 if (ST
->hasNEON() && (Opcode
== Instruction::InsertElement
||
814 Opcode
== Instruction::ExtractElement
)) {
815 // Cross-class copies are expensive on many microarchitectures,
816 // so assume they are expensive by default.
817 if (cast
<VectorType
>(ValTy
)->getElementType()->isIntegerTy())
820 // Even if it's not a cross class copy, this likely leads to mixing
821 // of NEON and VFP code and should be therefore penalized.
822 if (ValTy
->isVectorTy() &&
823 ValTy
->getScalarSizeInBits() <= 32)
824 return std::max
<InstructionCost
>(
825 BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
), 2U);
828 if (ST
->hasMVEIntegerOps() && (Opcode
== Instruction::InsertElement
||
829 Opcode
== Instruction::ExtractElement
)) {
830 // Integer cross-lane moves are more expensive than float, which can
831 // sometimes just be vmovs. Integer involve being passes to GPR registers,
832 // causing more of a delay.
833 std::pair
<InstructionCost
, MVT
> LT
=
834 getTLI()->getTypeLegalizationCost(DL
, ValTy
->getScalarType());
835 return LT
.first
* (ValTy
->getScalarType()->isIntegerTy() ? 4 : 1);
838 return BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
);
841 InstructionCost
ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
843 CmpInst::Predicate VecPred
,
844 TTI::TargetCostKind CostKind
,
845 const Instruction
*I
) {
846 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
848 // Thumb scalar code size cost for select.
849 if (CostKind
== TTI::TCK_CodeSize
&& ISD
== ISD::SELECT
&&
850 ST
->isThumb() && !ValTy
->isVectorTy()) {
851 // Assume expensive structs.
852 if (TLI
->getValueType(DL
, ValTy
, true) == MVT::Other
)
853 return TTI::TCC_Expensive
;
855 // Select costs can vary because they:
856 // - may require one or more conditional mov (including an IT),
857 // - can't operate directly on immediates,
858 // - require live flags, which we can't copy around easily.
859 InstructionCost Cost
= TLI
->getTypeLegalizationCost(DL
, ValTy
).first
;
861 // Possible IT instruction for Thumb2, or more for Thumb1.
864 // i1 values may need rematerialising by using mov immediates and/or
865 // flag setting instructions.
866 if (ValTy
->isIntegerTy(1))
872 // If this is a vector min/max/abs, use the cost of that intrinsic directly
873 // instead. Hopefully when min/max intrinsics are more prevalent this code
874 // will not be needed.
875 const Instruction
*Sel
= I
;
876 if ((Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
) && Sel
&&
878 Sel
= cast
<Instruction
>(Sel
->user_back());
879 if (Sel
&& ValTy
->isVectorTy() &&
880 (ValTy
->isIntOrIntVectorTy() || ValTy
->isFPOrFPVectorTy())) {
881 const Value
*LHS
, *RHS
;
882 SelectPatternFlavor SPF
= matchSelectPattern(Sel
, LHS
, RHS
).Flavor
;
886 IID
= Intrinsic::abs
;
889 IID
= Intrinsic::smin
;
892 IID
= Intrinsic::smax
;
895 IID
= Intrinsic::umin
;
898 IID
= Intrinsic::umax
;
901 IID
= Intrinsic::minnum
;
904 IID
= Intrinsic::maxnum
;
910 // The ICmp is free, the select gets the cost of the min/max/etc
913 IntrinsicCostAttributes
CostAttrs(IID
, ValTy
, {ValTy
, ValTy
});
914 return getIntrinsicInstrCost(CostAttrs
, CostKind
);
918 // On NEON a vector select gets lowered to vbsl.
919 if (ST
->hasNEON() && ValTy
->isVectorTy() && ISD
== ISD::SELECT
&& CondTy
) {
920 // Lowering of some vector selects is currently far from perfect.
921 static const TypeConversionCostTblEntry NEONVectorSelectTbl
[] = {
922 { ISD::SELECT
, MVT::v4i1
, MVT::v4i64
, 4*4 + 1*2 + 1 },
923 { ISD::SELECT
, MVT::v8i1
, MVT::v8i64
, 50 },
924 { ISD::SELECT
, MVT::v16i1
, MVT::v16i64
, 100 }
927 EVT SelCondTy
= TLI
->getValueType(DL
, CondTy
);
928 EVT SelValTy
= TLI
->getValueType(DL
, ValTy
);
929 if (SelCondTy
.isSimple() && SelValTy
.isSimple()) {
930 if (const auto *Entry
= ConvertCostTableLookup(NEONVectorSelectTbl
, ISD
,
931 SelCondTy
.getSimpleVT(),
932 SelValTy
.getSimpleVT()))
936 std::pair
<InstructionCost
, MVT
> LT
=
937 TLI
->getTypeLegalizationCost(DL
, ValTy
);
941 if (ST
->hasMVEIntegerOps() && ValTy
->isVectorTy() &&
942 (Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
) &&
943 cast
<FixedVectorType
>(ValTy
)->getNumElements() > 1) {
944 FixedVectorType
*VecValTy
= cast
<FixedVectorType
>(ValTy
);
945 FixedVectorType
*VecCondTy
= dyn_cast_or_null
<FixedVectorType
>(CondTy
);
947 VecCondTy
= cast
<FixedVectorType
>(CmpInst::makeCmpResultType(VecValTy
));
949 // If we don't have mve.fp any fp operations will need to be scalarized.
950 if (Opcode
== Instruction::FCmp
&& !ST
->hasMVEFloatOps()) {
951 // One scalaization insert, one scalarization extract and the cost of the
953 return BaseT::getScalarizationOverhead(VecValTy
, false, true) +
954 BaseT::getScalarizationOverhead(VecCondTy
, true, false) +
955 VecValTy
->getNumElements() *
956 getCmpSelInstrCost(Opcode
, ValTy
->getScalarType(),
957 VecCondTy
->getScalarType(), VecPred
, CostKind
,
961 std::pair
<InstructionCost
, MVT
> LT
=
962 TLI
->getTypeLegalizationCost(DL
, ValTy
);
963 int BaseCost
= ST
->getMVEVectorCostFactor(CostKind
);
964 // There are two types - the input that specifies the type of the compare
965 // and the output vXi1 type. Because we don't know how the output will be
966 // split, we may need an expensive shuffle to get two in sync. This has the
967 // effect of making larger than legal compares (v8i32 for example)
969 if (LT
.second
.getVectorNumElements() > 2) {
971 return LT
.first
* BaseCost
+
972 BaseT::getScalarizationOverhead(VecCondTy
, true, false);
977 // Default to cheap (throughput/size of 1 instruction) but adjust throughput
978 // for "multiple beats" potentially needed by MVE instructions.
980 if (ST
->hasMVEIntegerOps() && ValTy
->isVectorTy())
981 BaseCost
= ST
->getMVEVectorCostFactor(CostKind
);
984 BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, VecPred
, CostKind
, I
);
987 InstructionCost
ARMTTIImpl::getAddressComputationCost(Type
*Ty
,
990 // Address computations in vectorized code with non-consecutive addresses will
991 // likely result in more instructions compared to scalar code where the
992 // computation can more often be merged into the index mode. The resulting
993 // extra micro-ops can significantly decrease throughput.
994 unsigned NumVectorInstToHideOverhead
= 10;
995 int MaxMergeDistance
= 64;
998 if (Ty
->isVectorTy() && SE
&&
999 !BaseT::isConstantStridedAccessLessThan(SE
, Ptr
, MaxMergeDistance
+ 1))
1000 return NumVectorInstToHideOverhead
;
1002 // In many cases the address computation is not merged into the instruction
1006 return BaseT::getAddressComputationCost(Ty
, SE
, Ptr
);
1009 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction
*I
) {
1010 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
1011 // If a VCTP is part of a chain, it's already profitable and shouldn't be
1012 // optimized, else LSR may block tail-predication.
1013 switch (II
->getIntrinsicID()) {
1014 case Intrinsic::arm_mve_vctp8
:
1015 case Intrinsic::arm_mve_vctp16
:
1016 case Intrinsic::arm_mve_vctp32
:
1017 case Intrinsic::arm_mve_vctp64
:
1026 bool ARMTTIImpl::isLegalMaskedLoad(Type
*DataTy
, Align Alignment
) {
1027 if (!EnableMaskedLoadStores
|| !ST
->hasMVEIntegerOps())
1030 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(DataTy
)) {
1031 // Don't support v2i1 yet.
1032 if (VecTy
->getNumElements() == 2)
1035 // We don't support extending fp types.
1036 unsigned VecWidth
= DataTy
->getPrimitiveSizeInBits();
1037 if (VecWidth
!= 128 && VecTy
->getElementType()->isFloatingPointTy())
1041 unsigned EltWidth
= DataTy
->getScalarSizeInBits();
1042 return (EltWidth
== 32 && Alignment
>= 4) ||
1043 (EltWidth
== 16 && Alignment
>= 2) || (EltWidth
== 8);
1046 bool ARMTTIImpl::isLegalMaskedGather(Type
*Ty
, Align Alignment
) {
1047 if (!EnableMaskedGatherScatters
|| !ST
->hasMVEIntegerOps())
1050 // This method is called in 2 places:
1051 // - from the vectorizer with a scalar type, in which case we need to get
1052 // this as good as we can with the limited info we have (and rely on the cost
1053 // model for the rest).
1054 // - from the masked intrinsic lowering pass with the actual vector type.
1055 // For MVE, we have a custom lowering pass that will already have custom
1056 // legalised any gathers that we can to MVE intrinsics, and want to expand all
1057 // the rest. The pass runs before the masked intrinsic lowering pass, so if we
1058 // are here, we know we want to expand.
1059 if (isa
<VectorType
>(Ty
))
1062 unsigned EltWidth
= Ty
->getScalarSizeInBits();
1063 return ((EltWidth
== 32 && Alignment
>= 4) ||
1064 (EltWidth
== 16 && Alignment
>= 2) || EltWidth
== 8);
1067 /// Given a memcpy/memset/memmove instruction, return the number of memory
1068 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1070 int ARMTTIImpl::getNumMemOps(const IntrinsicInst
*I
) const {
1072 unsigned DstAddrSpace
= ~0u;
1073 unsigned SrcAddrSpace
= ~0u;
1074 const Function
*F
= I
->getParent()->getParent();
1076 if (const auto *MC
= dyn_cast
<MemTransferInst
>(I
)) {
1077 ConstantInt
*C
= dyn_cast
<ConstantInt
>(MC
->getLength());
1078 // If 'size' is not a constant, a library call will be generated.
1082 const unsigned Size
= C
->getValue().getZExtValue();
1083 const Align DstAlign
= *MC
->getDestAlign();
1084 const Align SrcAlign
= *MC
->getSourceAlign();
1086 MOp
= MemOp::Copy(Size
, /*DstAlignCanChange*/ false, DstAlign
, SrcAlign
,
1087 /*IsVolatile*/ false);
1088 DstAddrSpace
= MC
->getDestAddressSpace();
1089 SrcAddrSpace
= MC
->getSourceAddressSpace();
1091 else if (const auto *MS
= dyn_cast
<MemSetInst
>(I
)) {
1092 ConstantInt
*C
= dyn_cast
<ConstantInt
>(MS
->getLength());
1093 // If 'size' is not a constant, a library call will be generated.
1097 const unsigned Size
= C
->getValue().getZExtValue();
1098 const Align DstAlign
= *MS
->getDestAlign();
1100 MOp
= MemOp::Set(Size
, /*DstAlignCanChange*/ false, DstAlign
,
1101 /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1102 DstAddrSpace
= MS
->getDestAddressSpace();
1105 llvm_unreachable("Expected a memcpy/move or memset!");
1107 unsigned Limit
, Factor
= 2;
1108 switch(I
->getIntrinsicID()) {
1109 case Intrinsic::memcpy
:
1110 Limit
= TLI
->getMaxStoresPerMemcpy(F
->hasMinSize());
1112 case Intrinsic::memmove
:
1113 Limit
= TLI
->getMaxStoresPerMemmove(F
->hasMinSize());
1115 case Intrinsic::memset
:
1116 Limit
= TLI
->getMaxStoresPerMemset(F
->hasMinSize());
1120 llvm_unreachable("Expected a memcpy/move or memset!");
1123 // MemOps will be poplulated with a list of data types that needs to be
1124 // loaded and stored. That's why we multiply the number of elements by 2 to
1125 // get the cost for this memcpy.
1126 std::vector
<EVT
> MemOps
;
1127 if (getTLI()->findOptimalMemOpLowering(
1128 MemOps
, Limit
, MOp
, DstAddrSpace
,
1129 SrcAddrSpace
, F
->getAttributes()))
1130 return MemOps
.size() * Factor
;
1132 // If we can't find an optimal memop lowering, return the default cost
1136 InstructionCost
ARMTTIImpl::getMemcpyCost(const Instruction
*I
) {
1137 int NumOps
= getNumMemOps(cast
<IntrinsicInst
>(I
));
1139 // To model the cost of a library call, we assume 1 for the call, and
1140 // 3 for the argument setup.
1146 InstructionCost
ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind
,
1147 VectorType
*Tp
, ArrayRef
<int> Mask
,
1148 int Index
, VectorType
*SubTp
) {
1149 Kind
= improveShuffleKindFromMask(Kind
, Mask
);
1150 if (ST
->hasNEON()) {
1151 if (Kind
== TTI::SK_Broadcast
) {
1152 static const CostTblEntry NEONDupTbl
[] = {
1153 // VDUP handles these cases.
1154 {ISD::VECTOR_SHUFFLE
, MVT::v2i32
, 1},
1155 {ISD::VECTOR_SHUFFLE
, MVT::v2f32
, 1},
1156 {ISD::VECTOR_SHUFFLE
, MVT::v2i64
, 1},
1157 {ISD::VECTOR_SHUFFLE
, MVT::v2f64
, 1},
1158 {ISD::VECTOR_SHUFFLE
, MVT::v4i16
, 1},
1159 {ISD::VECTOR_SHUFFLE
, MVT::v8i8
, 1},
1161 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 1},
1162 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 1},
1163 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 1},
1164 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 1}};
1166 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
1167 if (const auto *Entry
=
1168 CostTableLookup(NEONDupTbl
, ISD::VECTOR_SHUFFLE
, LT
.second
))
1169 return LT
.first
* Entry
->Cost
;
1171 if (Kind
== TTI::SK_Reverse
) {
1172 static const CostTblEntry NEONShuffleTbl
[] = {
1173 // Reverse shuffle cost one instruction if we are shuffling within a
1174 // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1175 {ISD::VECTOR_SHUFFLE
, MVT::v2i32
, 1},
1176 {ISD::VECTOR_SHUFFLE
, MVT::v2f32
, 1},
1177 {ISD::VECTOR_SHUFFLE
, MVT::v2i64
, 1},
1178 {ISD::VECTOR_SHUFFLE
, MVT::v2f64
, 1},
1179 {ISD::VECTOR_SHUFFLE
, MVT::v4i16
, 1},
1180 {ISD::VECTOR_SHUFFLE
, MVT::v8i8
, 1},
1182 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 2},
1183 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 2},
1184 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 2},
1185 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 2}};
1187 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
1188 if (const auto *Entry
=
1189 CostTableLookup(NEONShuffleTbl
, ISD::VECTOR_SHUFFLE
, LT
.second
))
1190 return LT
.first
* Entry
->Cost
;
1192 if (Kind
== TTI::SK_Select
) {
1193 static const CostTblEntry NEONSelShuffleTbl
[] = {
1194 // Select shuffle cost table for ARM. Cost is the number of
1196 // required to create the shuffled vector.
1198 {ISD::VECTOR_SHUFFLE
, MVT::v2f32
, 1},
1199 {ISD::VECTOR_SHUFFLE
, MVT::v2i64
, 1},
1200 {ISD::VECTOR_SHUFFLE
, MVT::v2f64
, 1},
1201 {ISD::VECTOR_SHUFFLE
, MVT::v2i32
, 1},
1203 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 2},
1204 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 2},
1205 {ISD::VECTOR_SHUFFLE
, MVT::v4i16
, 2},
1207 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 16},
1209 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 32}};
1211 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
1212 if (const auto *Entry
= CostTableLookup(NEONSelShuffleTbl
,
1213 ISD::VECTOR_SHUFFLE
, LT
.second
))
1214 return LT
.first
* Entry
->Cost
;
1217 if (ST
->hasMVEIntegerOps()) {
1218 if (Kind
== TTI::SK_Broadcast
) {
1219 static const CostTblEntry MVEDupTbl
[] = {
1220 // VDUP handles these cases.
1221 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 1},
1222 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 1},
1223 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 1},
1224 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 1},
1225 {ISD::VECTOR_SHUFFLE
, MVT::v8f16
, 1}};
1227 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
1228 if (const auto *Entry
= CostTableLookup(MVEDupTbl
, ISD::VECTOR_SHUFFLE
,
1230 return LT
.first
* Entry
->Cost
*
1231 ST
->getMVEVectorCostFactor(TTI::TCK_RecipThroughput
);
1234 if (!Mask
.empty()) {
1235 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
1236 if (Mask
.size() <= LT
.second
.getVectorNumElements() &&
1237 (isVREVMask(Mask
, LT
.second
, 16) || isVREVMask(Mask
, LT
.second
, 32) ||
1238 isVREVMask(Mask
, LT
.second
, 64)))
1239 return ST
->getMVEVectorCostFactor(TTI::TCK_RecipThroughput
) * LT
.first
;
1243 int BaseCost
= ST
->hasMVEIntegerOps() && Tp
->isVectorTy()
1244 ? ST
->getMVEVectorCostFactor(TTI::TCK_RecipThroughput
)
1246 return BaseCost
* BaseT::getShuffleCost(Kind
, Tp
, Mask
, Index
, SubTp
);
1249 InstructionCost
ARMTTIImpl::getArithmeticInstrCost(
1250 unsigned Opcode
, Type
*Ty
, TTI::TargetCostKind CostKind
,
1251 TTI::OperandValueKind Op1Info
, TTI::OperandValueKind Op2Info
,
1252 TTI::OperandValueProperties Opd1PropInfo
,
1253 TTI::OperandValueProperties Opd2PropInfo
, ArrayRef
<const Value
*> Args
,
1254 const Instruction
*CxtI
) {
1255 int ISDOpcode
= TLI
->InstructionOpcodeToISD(Opcode
);
1256 if (ST
->isThumb() && CostKind
== TTI::TCK_CodeSize
&& Ty
->isIntegerTy(1)) {
1257 // Make operations on i1 relatively expensive as this often involves
1258 // combining predicates. AND and XOR should be easier to handle with IT
1260 switch (ISDOpcode
) {
1271 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
1273 if (ST
->hasNEON()) {
1274 const unsigned FunctionCallDivCost
= 20;
1275 const unsigned ReciprocalDivCost
= 10;
1276 static const CostTblEntry CostTbl
[] = {
1278 // These costs are somewhat random. Choose a cost of 20 to indicate that
1279 // vectorizing devision (added function call) is going to be very expensive.
1280 // Double registers types.
1281 { ISD::SDIV
, MVT::v1i64
, 1 * FunctionCallDivCost
},
1282 { ISD::UDIV
, MVT::v1i64
, 1 * FunctionCallDivCost
},
1283 { ISD::SREM
, MVT::v1i64
, 1 * FunctionCallDivCost
},
1284 { ISD::UREM
, MVT::v1i64
, 1 * FunctionCallDivCost
},
1285 { ISD::SDIV
, MVT::v2i32
, 2 * FunctionCallDivCost
},
1286 { ISD::UDIV
, MVT::v2i32
, 2 * FunctionCallDivCost
},
1287 { ISD::SREM
, MVT::v2i32
, 2 * FunctionCallDivCost
},
1288 { ISD::UREM
, MVT::v2i32
, 2 * FunctionCallDivCost
},
1289 { ISD::SDIV
, MVT::v4i16
, ReciprocalDivCost
},
1290 { ISD::UDIV
, MVT::v4i16
, ReciprocalDivCost
},
1291 { ISD::SREM
, MVT::v4i16
, 4 * FunctionCallDivCost
},
1292 { ISD::UREM
, MVT::v4i16
, 4 * FunctionCallDivCost
},
1293 { ISD::SDIV
, MVT::v8i8
, ReciprocalDivCost
},
1294 { ISD::UDIV
, MVT::v8i8
, ReciprocalDivCost
},
1295 { ISD::SREM
, MVT::v8i8
, 8 * FunctionCallDivCost
},
1296 { ISD::UREM
, MVT::v8i8
, 8 * FunctionCallDivCost
},
1297 // Quad register types.
1298 { ISD::SDIV
, MVT::v2i64
, 2 * FunctionCallDivCost
},
1299 { ISD::UDIV
, MVT::v2i64
, 2 * FunctionCallDivCost
},
1300 { ISD::SREM
, MVT::v2i64
, 2 * FunctionCallDivCost
},
1301 { ISD::UREM
, MVT::v2i64
, 2 * FunctionCallDivCost
},
1302 { ISD::SDIV
, MVT::v4i32
, 4 * FunctionCallDivCost
},
1303 { ISD::UDIV
, MVT::v4i32
, 4 * FunctionCallDivCost
},
1304 { ISD::SREM
, MVT::v4i32
, 4 * FunctionCallDivCost
},
1305 { ISD::UREM
, MVT::v4i32
, 4 * FunctionCallDivCost
},
1306 { ISD::SDIV
, MVT::v8i16
, 8 * FunctionCallDivCost
},
1307 { ISD::UDIV
, MVT::v8i16
, 8 * FunctionCallDivCost
},
1308 { ISD::SREM
, MVT::v8i16
, 8 * FunctionCallDivCost
},
1309 { ISD::UREM
, MVT::v8i16
, 8 * FunctionCallDivCost
},
1310 { ISD::SDIV
, MVT::v16i8
, 16 * FunctionCallDivCost
},
1311 { ISD::UDIV
, MVT::v16i8
, 16 * FunctionCallDivCost
},
1312 { ISD::SREM
, MVT::v16i8
, 16 * FunctionCallDivCost
},
1313 { ISD::UREM
, MVT::v16i8
, 16 * FunctionCallDivCost
},
1317 if (const auto *Entry
= CostTableLookup(CostTbl
, ISDOpcode
, LT
.second
))
1318 return LT
.first
* Entry
->Cost
;
1320 InstructionCost Cost
= BaseT::getArithmeticInstrCost(
1321 Opcode
, Ty
, CostKind
, Op1Info
, Op2Info
, Opd1PropInfo
, Opd2PropInfo
);
1323 // This is somewhat of a hack. The problem that we are facing is that SROA
1324 // creates a sequence of shift, and, or instructions to construct values.
1325 // These sequences are recognized by the ISel and have zero-cost. Not so for
1326 // the vectorized code. Because we have support for v2i64 but not i64 those
1327 // sequences look particularly beneficial to vectorize.
1328 // To work around this we increase the cost of v2i64 operations to make them
1329 // seem less beneficial.
1330 if (LT
.second
== MVT::v2i64
&&
1331 Op2Info
== TargetTransformInfo::OK_UniformConstantValue
)
1337 // If this operation is a shift on arm/thumb2, it might well be folded into
1338 // the following instruction, hence having a cost of 0.
1339 auto LooksLikeAFreeShift
= [&]() {
1340 if (ST
->isThumb1Only() || Ty
->isVectorTy())
1343 if (!CxtI
|| !CxtI
->hasOneUse() || !CxtI
->isShift())
1345 if (Op2Info
!= TargetTransformInfo::OK_UniformConstantValue
)
1348 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1349 switch (cast
<Instruction
>(CxtI
->user_back())->getOpcode()) {
1350 case Instruction::Add
:
1351 case Instruction::Sub
:
1352 case Instruction::And
:
1353 case Instruction::Xor
:
1354 case Instruction::Or
:
1355 case Instruction::ICmp
:
1361 if (LooksLikeAFreeShift())
1364 // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1365 // for "multiple beats" potentially needed by MVE instructions.
1367 if (ST
->hasMVEIntegerOps() && Ty
->isVectorTy())
1368 BaseCost
= ST
->getMVEVectorCostFactor(CostKind
);
1370 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1371 // without treating floats as more expensive that scalars or increasing the
1372 // costs for custom operations. The results is also multiplied by the
1373 // MVEVectorCostFactor where appropriate.
1374 if (TLI
->isOperationLegalOrCustomOrPromote(ISDOpcode
, LT
.second
))
1375 return LT
.first
* BaseCost
;
1377 // Else this is expand, assume that we need to scalarize this op.
1378 if (auto *VTy
= dyn_cast
<FixedVectorType
>(Ty
)) {
1379 unsigned Num
= VTy
->getNumElements();
1380 InstructionCost Cost
=
1381 getArithmeticInstrCost(Opcode
, Ty
->getScalarType(), CostKind
);
1382 // Return the cost of multiple scalar invocation plus the cost of
1383 // inserting and extracting the values.
1384 SmallVector
<Type
*> Tys(Args
.size(), Ty
);
1385 return BaseT::getScalarizationOverhead(VTy
, Args
, Tys
) + Num
* Cost
;
1391 InstructionCost
ARMTTIImpl::getMemoryOpCost(unsigned Opcode
, Type
*Src
,
1392 MaybeAlign Alignment
,
1393 unsigned AddressSpace
,
1394 TTI::TargetCostKind CostKind
,
1395 const Instruction
*I
) {
1396 // TODO: Handle other cost kinds.
1397 if (CostKind
!= TTI::TCK_RecipThroughput
)
1400 // Type legalization can't handle structs
1401 if (TLI
->getValueType(DL
, Src
, true) == MVT::Other
)
1402 return BaseT::getMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
,
1405 if (ST
->hasNEON() && Src
->isVectorTy() &&
1406 (Alignment
&& *Alignment
!= Align(16)) &&
1407 cast
<VectorType
>(Src
)->getElementType()->isDoubleTy()) {
1408 // Unaligned loads/stores are extremely inefficient.
1409 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1410 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Src
);
1411 return LT
.first
* 4;
1414 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1416 if (ST
->hasMVEFloatOps() && isa
<FixedVectorType
>(Src
) && I
&&
1417 ((Opcode
== Instruction::Load
&& I
->hasOneUse() &&
1418 isa
<FPExtInst
>(*I
->user_begin())) ||
1419 (Opcode
== Instruction::Store
&& isa
<FPTruncInst
>(I
->getOperand(0))))) {
1420 FixedVectorType
*SrcVTy
= cast
<FixedVectorType
>(Src
);
1422 Opcode
== Instruction::Load
1423 ? (*I
->user_begin())->getType()
1424 : cast
<Instruction
>(I
->getOperand(0))->getOperand(0)->getType();
1425 if (SrcVTy
->getNumElements() == 4 && SrcVTy
->getScalarType()->isHalfTy() &&
1426 DstTy
->getScalarType()->isFloatTy())
1427 return ST
->getMVEVectorCostFactor(CostKind
);
1430 int BaseCost
= ST
->hasMVEIntegerOps() && Src
->isVectorTy()
1431 ? ST
->getMVEVectorCostFactor(CostKind
)
1433 return BaseCost
* BaseT::getMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
,
1438 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode
, Type
*Src
, Align Alignment
,
1439 unsigned AddressSpace
,
1440 TTI::TargetCostKind CostKind
) {
1441 if (ST
->hasMVEIntegerOps()) {
1442 if (Opcode
== Instruction::Load
&& isLegalMaskedLoad(Src
, Alignment
))
1443 return ST
->getMVEVectorCostFactor(CostKind
);
1444 if (Opcode
== Instruction::Store
&& isLegalMaskedStore(Src
, Alignment
))
1445 return ST
->getMVEVectorCostFactor(CostKind
);
1447 if (!isa
<FixedVectorType
>(Src
))
1448 return BaseT::getMaskedMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
,
1450 // Scalar cost, which is currently very high due to the efficiency of the
1452 return cast
<FixedVectorType
>(Src
)->getNumElements() * 8;
1455 InstructionCost
ARMTTIImpl::getInterleavedMemoryOpCost(
1456 unsigned Opcode
, Type
*VecTy
, unsigned Factor
, ArrayRef
<unsigned> Indices
,
1457 Align Alignment
, unsigned AddressSpace
, TTI::TargetCostKind CostKind
,
1458 bool UseMaskForCond
, bool UseMaskForGaps
) {
1459 assert(Factor
>= 2 && "Invalid interleave factor");
1460 assert(isa
<VectorType
>(VecTy
) && "Expect a vector type");
1462 // vldN/vstN doesn't support vector types of i64/f64 element.
1463 bool EltIs64Bits
= DL
.getTypeSizeInBits(VecTy
->getScalarType()) == 64;
1465 if (Factor
<= TLI
->getMaxSupportedInterleaveFactor() && !EltIs64Bits
&&
1466 !UseMaskForCond
&& !UseMaskForGaps
) {
1467 unsigned NumElts
= cast
<FixedVectorType
>(VecTy
)->getNumElements();
1469 FixedVectorType::get(VecTy
->getScalarType(), NumElts
/ Factor
);
1471 // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1472 // Accesses having vector types that are a multiple of 128 bits can be
1473 // matched to more than one vldN/vstN instruction.
1475 ST
->hasMVEIntegerOps() ? ST
->getMVEVectorCostFactor(CostKind
) : 1;
1476 if (NumElts
% Factor
== 0 &&
1477 TLI
->isLegalInterleavedAccessType(Factor
, SubVecTy
, Alignment
, DL
))
1478 return Factor
* BaseCost
* TLI
->getNumInterleavedAccesses(SubVecTy
, DL
);
1480 // Some smaller than legal interleaved patterns are cheap as we can make
1481 // use of the vmovn or vrev patterns to interleave a standard load. This is
1482 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1483 // promoted differently). The cost of 2 here is then a load and vrev or
1485 if (ST
->hasMVEIntegerOps() && Factor
== 2 && NumElts
/ Factor
> 2 &&
1486 VecTy
->isIntOrIntVectorTy() &&
1487 DL
.getTypeSizeInBits(SubVecTy
).getFixedSize() <= 64)
1488 return 2 * BaseCost
;
1491 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
1492 Alignment
, AddressSpace
, CostKind
,
1493 UseMaskForCond
, UseMaskForGaps
);
1496 InstructionCost
ARMTTIImpl::getGatherScatterOpCost(
1497 unsigned Opcode
, Type
*DataTy
, const Value
*Ptr
, bool VariableMask
,
1498 Align Alignment
, TTI::TargetCostKind CostKind
, const Instruction
*I
) {
1499 using namespace PatternMatch
;
1500 if (!ST
->hasMVEIntegerOps() || !EnableMaskedGatherScatters
)
1501 return BaseT::getGatherScatterOpCost(Opcode
, DataTy
, Ptr
, VariableMask
,
1502 Alignment
, CostKind
, I
);
1504 assert(DataTy
->isVectorTy() && "Can't do gather/scatters on scalar!");
1505 auto *VTy
= cast
<FixedVectorType
>(DataTy
);
1507 // TODO: Splitting, once we do that.
1509 unsigned NumElems
= VTy
->getNumElements();
1510 unsigned EltSize
= VTy
->getScalarSizeInBits();
1511 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, DataTy
);
1513 // For now, it is assumed that for the MVE gather instructions the loads are
1514 // all effectively serialised. This means the cost is the scalar cost
1515 // multiplied by the number of elements being loaded. This is possibly very
1516 // conservative, but even so we still end up vectorising loops because the
1517 // cost per iteration for many loops is lower than for scalar loops.
1518 InstructionCost VectorCost
=
1519 NumElems
* LT
.first
* ST
->getMVEVectorCostFactor(CostKind
);
1520 // The scalarization cost should be a lot higher. We use the number of vector
1521 // elements plus the scalarization overhead.
1522 InstructionCost ScalarCost
=
1523 NumElems
* LT
.first
+ BaseT::getScalarizationOverhead(VTy
, true, false) +
1524 BaseT::getScalarizationOverhead(VTy
, false, true);
1526 if (EltSize
< 8 || Alignment
< EltSize
/ 8)
1529 unsigned ExtSize
= EltSize
;
1530 // Check whether there's a single user that asks for an extended type
1532 // Dependent of the caller of this function, a gather instruction will
1533 // either have opcode Instruction::Load or be a call to the masked_gather
1535 if ((I
->getOpcode() == Instruction::Load
||
1536 match(I
, m_Intrinsic
<Intrinsic::masked_gather
>())) &&
1538 const User
*Us
= *I
->users().begin();
1539 if (isa
<ZExtInst
>(Us
) || isa
<SExtInst
>(Us
)) {
1540 // only allow valid type combinations
1542 cast
<Instruction
>(Us
)->getType()->getScalarSizeInBits();
1543 if (((TypeSize
== 32 && (EltSize
== 8 || EltSize
== 16)) ||
1544 (TypeSize
== 16 && EltSize
== 8)) &&
1545 TypeSize
* NumElems
== 128) {
1550 // Check whether the input data needs to be truncated
1552 if ((I
->getOpcode() == Instruction::Store
||
1553 match(I
, m_Intrinsic
<Intrinsic::masked_scatter
>())) &&
1554 (T
= dyn_cast
<TruncInst
>(I
->getOperand(0)))) {
1555 // Only allow valid type combinations
1556 unsigned TypeSize
= T
->getOperand(0)->getType()->getScalarSizeInBits();
1557 if (((EltSize
== 16 && TypeSize
== 32) ||
1558 (EltSize
== 8 && (TypeSize
== 32 || TypeSize
== 16))) &&
1559 TypeSize
* NumElems
== 128)
1564 if (ExtSize
* NumElems
!= 128 || NumElems
< 4)
1567 // Any (aligned) i32 gather will not need to be scalarised.
1570 // For smaller types, we need to ensure that the gep's inputs are correctly
1571 // extended from a small enough value. Other sizes (including i64) are
1572 // scalarized for now.
1573 if (ExtSize
!= 8 && ExtSize
!= 16)
1576 if (const auto *BC
= dyn_cast
<BitCastInst
>(Ptr
))
1577 Ptr
= BC
->getOperand(0);
1578 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
1579 if (GEP
->getNumOperands() != 2)
1581 unsigned Scale
= DL
.getTypeAllocSize(GEP
->getResultElementType());
1582 // Scale needs to be correct (which is only relevant for i16s).
1583 if (Scale
!= 1 && Scale
* 8 != ExtSize
)
1585 // And we need to zext (not sext) the indexes from a small enough type.
1586 if (const auto *ZExt
= dyn_cast
<ZExtInst
>(GEP
->getOperand(1))) {
1587 if (ZExt
->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize
)
1596 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode
, VectorType
*ValTy
,
1597 Optional
<FastMathFlags
> FMF
,
1598 TTI::TargetCostKind CostKind
) {
1599 if (TTI::requiresOrderedReduction(FMF
))
1600 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, FMF
, CostKind
);
1602 EVT ValVT
= TLI
->getValueType(DL
, ValTy
);
1603 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
1604 if (!ST
->hasMVEIntegerOps() || !ValVT
.isSimple() || ISD
!= ISD::ADD
)
1605 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, FMF
, CostKind
);
1607 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
1609 static const CostTblEntry CostTblAdd
[]{
1610 {ISD::ADD
, MVT::v16i8
, 1},
1611 {ISD::ADD
, MVT::v8i16
, 1},
1612 {ISD::ADD
, MVT::v4i32
, 1},
1614 if (const auto *Entry
= CostTableLookup(CostTblAdd
, ISD
, LT
.second
))
1615 return Entry
->Cost
* ST
->getMVEVectorCostFactor(CostKind
) * LT
.first
;
1617 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, FMF
, CostKind
);
1621 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA
, bool IsUnsigned
,
1622 Type
*ResTy
, VectorType
*ValTy
,
1623 TTI::TargetCostKind CostKind
) {
1624 EVT ValVT
= TLI
->getValueType(DL
, ValTy
);
1625 EVT ResVT
= TLI
->getValueType(DL
, ResTy
);
1627 if (ST
->hasMVEIntegerOps() && ValVT
.isSimple() && ResVT
.isSimple()) {
1628 std::pair
<InstructionCost
, MVT
> LT
=
1629 TLI
->getTypeLegalizationCost(DL
, ValTy
);
1631 // The legal cases are:
1632 // VADDV u/s 8/16/32
1633 // VMLAV u/s 8/16/32
1636 // Codegen currently cannot always handle larger than legal vectors very
1637 // well, especially for predicated reductions where the mask needs to be
1638 // split, so restrict to 128bit or smaller input types.
1639 unsigned RevVTSize
= ResVT
.getSizeInBits();
1640 if (ValVT
.getSizeInBits() <= 128 &&
1641 ((LT
.second
== MVT::v16i8
&& RevVTSize
<= 32) ||
1642 (LT
.second
== MVT::v8i16
&& RevVTSize
<= (IsMLA
? 64u : 32u)) ||
1643 (LT
.second
== MVT::v4i32
&& RevVTSize
<= 64)))
1644 return ST
->getMVEVectorCostFactor(CostKind
) * LT
.first
;
1647 return BaseT::getExtendedAddReductionCost(IsMLA
, IsUnsigned
, ResTy
, ValTy
,
1652 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes
&ICA
,
1653 TTI::TargetCostKind CostKind
) {
1654 switch (ICA
.getID()) {
1655 case Intrinsic::get_active_lane_mask
:
1656 // Currently we make a somewhat optimistic assumption that
1657 // active_lane_mask's are always free. In reality it may be freely folded
1658 // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1659 // of add/icmp code. We may need to improve this in the future, but being
1660 // able to detect if it is free or not involves looking at a lot of other
1661 // code. We currently assume that the vectorizer inserted these, and knew
1662 // what it was doing in adding one.
1663 if (ST
->hasMVEIntegerOps())
1666 case Intrinsic::sadd_sat
:
1667 case Intrinsic::ssub_sat
:
1668 case Intrinsic::uadd_sat
:
1669 case Intrinsic::usub_sat
: {
1670 if (!ST
->hasMVEIntegerOps())
1672 Type
*VT
= ICA
.getReturnType();
1674 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, VT
);
1675 if (LT
.second
== MVT::v4i32
|| LT
.second
== MVT::v8i16
||
1676 LT
.second
== MVT::v16i8
) {
1677 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1678 // need to extend the type, as it uses shr(qadd(shl, shl)).
1680 LT
.second
.getScalarSizeInBits() == VT
->getScalarSizeInBits() ? 1 : 4;
1681 return LT
.first
* ST
->getMVEVectorCostFactor(CostKind
) * Instrs
;
1685 case Intrinsic::abs
:
1686 case Intrinsic::smin
:
1687 case Intrinsic::smax
:
1688 case Intrinsic::umin
:
1689 case Intrinsic::umax
: {
1690 if (!ST
->hasMVEIntegerOps())
1692 Type
*VT
= ICA
.getReturnType();
1694 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, VT
);
1695 if (LT
.second
== MVT::v4i32
|| LT
.second
== MVT::v8i16
||
1696 LT
.second
== MVT::v16i8
)
1697 return LT
.first
* ST
->getMVEVectorCostFactor(CostKind
);
1700 case Intrinsic::minnum
:
1701 case Intrinsic::maxnum
: {
1702 if (!ST
->hasMVEFloatOps())
1704 Type
*VT
= ICA
.getReturnType();
1705 std::pair
<InstructionCost
, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, VT
);
1706 if (LT
.second
== MVT::v4f32
|| LT
.second
== MVT::v8f16
)
1707 return LT
.first
* ST
->getMVEVectorCostFactor(CostKind
);
1712 return BaseT::getIntrinsicInstrCost(ICA
, CostKind
);
1715 bool ARMTTIImpl::isLoweredToCall(const Function
*F
) {
1716 if (!F
->isIntrinsic())
1717 BaseT::isLoweredToCall(F
);
1719 // Assume all Arm-specific intrinsics map to an instruction.
1720 if (F
->getName().startswith("llvm.arm"))
1723 switch (F
->getIntrinsicID()) {
1725 case Intrinsic::powi
:
1726 case Intrinsic::sin
:
1727 case Intrinsic::cos
:
1728 case Intrinsic::pow
:
1729 case Intrinsic::log
:
1730 case Intrinsic::log10
:
1731 case Intrinsic::log2
:
1732 case Intrinsic::exp
:
1733 case Intrinsic::exp2
:
1735 case Intrinsic::sqrt
:
1736 case Intrinsic::fabs
:
1737 case Intrinsic::copysign
:
1738 case Intrinsic::floor
:
1739 case Intrinsic::ceil
:
1740 case Intrinsic::trunc
:
1741 case Intrinsic::rint
:
1742 case Intrinsic::nearbyint
:
1743 case Intrinsic::round
:
1744 case Intrinsic::canonicalize
:
1745 case Intrinsic::lround
:
1746 case Intrinsic::llround
:
1747 case Intrinsic::lrint
:
1748 case Intrinsic::llrint
:
1749 if (F
->getReturnType()->isDoubleTy() && !ST
->hasFP64())
1751 if (F
->getReturnType()->isHalfTy() && !ST
->hasFullFP16())
1753 // Some operations can be handled by vector instructions and assume
1754 // unsupported vectors will be expanded into supported scalar ones.
1755 // TODO Handle scalar operations properly.
1756 return !ST
->hasFPARMv8Base() && !ST
->hasVFP2Base();
1757 case Intrinsic::masked_store
:
1758 case Intrinsic::masked_load
:
1759 case Intrinsic::masked_gather
:
1760 case Intrinsic::masked_scatter
:
1761 return !ST
->hasMVEIntegerOps();
1762 case Intrinsic::sadd_with_overflow
:
1763 case Intrinsic::uadd_with_overflow
:
1764 case Intrinsic::ssub_with_overflow
:
1765 case Intrinsic::usub_with_overflow
:
1766 case Intrinsic::sadd_sat
:
1767 case Intrinsic::uadd_sat
:
1768 case Intrinsic::ssub_sat
:
1769 case Intrinsic::usub_sat
:
1773 return BaseT::isLoweredToCall(F
);
1776 bool ARMTTIImpl::maybeLoweredToCall(Instruction
&I
) {
1777 unsigned ISD
= TLI
->InstructionOpcodeToISD(I
.getOpcode());
1778 EVT VT
= TLI
->getValueType(DL
, I
.getType(), true);
1779 if (TLI
->getOperationAction(ISD
, VT
) == TargetLowering::LibCall
)
1782 // Check if an intrinsic will be lowered to a call and assume that any
1783 // other CallInst will generate a bl.
1784 if (auto *Call
= dyn_cast
<CallInst
>(&I
)) {
1785 if (auto *II
= dyn_cast
<IntrinsicInst
>(Call
)) {
1786 switch(II
->getIntrinsicID()) {
1787 case Intrinsic::memcpy
:
1788 case Intrinsic::memset
:
1789 case Intrinsic::memmove
:
1790 return getNumMemOps(II
) == -1;
1792 if (const Function
*F
= Call
->getCalledFunction())
1793 return isLoweredToCall(F
);
1799 // FPv5 provides conversions between integer, double-precision,
1800 // single-precision, and half-precision formats.
1801 switch (I
.getOpcode()) {
1804 case Instruction::FPToSI
:
1805 case Instruction::FPToUI
:
1806 case Instruction::SIToFP
:
1807 case Instruction::UIToFP
:
1808 case Instruction::FPTrunc
:
1809 case Instruction::FPExt
:
1810 return !ST
->hasFPARMv8Base();
1813 // FIXME: Unfortunately the approach of checking the Operation Action does
1814 // not catch all cases of Legalization that use library calls. Our
1815 // Legalization step categorizes some transformations into library calls as
1816 // Custom, Expand or even Legal when doing type legalization. So for now
1817 // we have to special case for instance the SDIV of 64bit integers and the
1818 // use of floating point emulation.
1819 if (VT
.isInteger() && VT
.getSizeInBits() >= 64) {
1833 // Assume all other non-float operations are supported.
1834 if (!VT
.isFloatingPoint())
1837 // We'll need a library call to handle most floats when using soft.
1838 if (TLI
->useSoftFloat()) {
1839 switch (I
.getOpcode()) {
1842 case Instruction::Alloca
:
1843 case Instruction::Load
:
1844 case Instruction::Store
:
1845 case Instruction::Select
:
1846 case Instruction::PHI
:
1851 // We'll need a libcall to perform double precision operations on a single
1852 // precision only FPU.
1853 if (I
.getType()->isDoubleTy() && !ST
->hasFP64())
1856 // Likewise for half precision arithmetic.
1857 if (I
.getType()->isHalfTy() && !ST
->hasFullFP16())
1863 bool ARMTTIImpl::isHardwareLoopProfitable(Loop
*L
, ScalarEvolution
&SE
,
1864 AssumptionCache
&AC
,
1865 TargetLibraryInfo
*LibInfo
,
1866 HardwareLoopInfo
&HWLoopInfo
) {
1867 // Low-overhead branches are only supported in the 'low-overhead branch'
1868 // extension of v8.1-m.
1869 if (!ST
->hasLOB() || DisableLowOverheadLoops
) {
1870 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
1874 if (!SE
.hasLoopInvariantBackedgeTakenCount(L
)) {
1875 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
1879 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
1880 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
1881 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
1885 const SCEV
*TripCountSCEV
=
1886 SE
.getAddExpr(BackedgeTakenCount
,
1887 SE
.getOne(BackedgeTakenCount
->getType()));
1889 // We need to store the trip count in LR, a 32-bit register.
1890 if (SE
.getUnsignedRangeMax(TripCountSCEV
).getBitWidth() > 32) {
1891 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
1895 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
1896 // point in generating a hardware loop if that's going to happen.
1898 auto IsHardwareLoopIntrinsic
= [](Instruction
&I
) {
1899 if (auto *Call
= dyn_cast
<IntrinsicInst
>(&I
)) {
1900 switch (Call
->getIntrinsicID()) {
1903 case Intrinsic::start_loop_iterations
:
1904 case Intrinsic::test_start_loop_iterations
:
1905 case Intrinsic::loop_decrement
:
1906 case Intrinsic::loop_decrement_reg
:
1913 // Scan the instructions to see if there's any that we know will turn into a
1914 // call or if this loop is already a low-overhead loop or will become a tail
1916 bool IsTailPredLoop
= false;
1917 auto ScanLoop
= [&](Loop
*L
) {
1918 for (auto *BB
: L
->getBlocks()) {
1919 for (auto &I
: *BB
) {
1920 if (maybeLoweredToCall(I
) || IsHardwareLoopIntrinsic(I
) ||
1921 isa
<InlineAsm
>(I
)) {
1922 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I
<< "\n");
1925 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
))
1927 II
->getIntrinsicID() == Intrinsic::get_active_lane_mask
||
1928 II
->getIntrinsicID() == Intrinsic::arm_mve_vctp8
||
1929 II
->getIntrinsicID() == Intrinsic::arm_mve_vctp16
||
1930 II
->getIntrinsicID() == Intrinsic::arm_mve_vctp32
||
1931 II
->getIntrinsicID() == Intrinsic::arm_mve_vctp64
;
1937 // Visit inner loops.
1938 for (auto Inner
: *L
)
1939 if (!ScanLoop(Inner
))
1945 // TODO: Check whether the trip count calculation is expensive. If L is the
1946 // inner loop but we know it has a low trip count, calculating that trip
1947 // count (in the parent loop) may be detrimental.
1949 LLVMContext
&C
= L
->getHeader()->getContext();
1950 HWLoopInfo
.CounterInReg
= true;
1951 HWLoopInfo
.IsNestingLegal
= false;
1952 HWLoopInfo
.PerformEntryTest
= AllowWLSLoops
&& !IsTailPredLoop
;
1953 HWLoopInfo
.CountType
= Type::getInt32Ty(C
);
1954 HWLoopInfo
.LoopDecrement
= ConstantInt::get(HWLoopInfo
.CountType
, 1);
1958 static bool canTailPredicateInstruction(Instruction
&I
, int &ICmpCount
) {
1959 // We don't allow icmp's, and because we only look at single block loops,
1960 // we simply count the icmps, i.e. there should only be 1 for the backedge.
1961 if (isa
<ICmpInst
>(&I
) && ++ICmpCount
> 1)
1964 if (isa
<FCmpInst
>(&I
))
1967 // We could allow extending/narrowing FP loads/stores, but codegen is
1968 // too inefficient so reject this for now.
1969 if (isa
<FPExtInst
>(&I
) || isa
<FPTruncInst
>(&I
))
1972 // Extends have to be extending-loads
1973 if (isa
<SExtInst
>(&I
) || isa
<ZExtInst
>(&I
) )
1974 if (!I
.getOperand(0)->hasOneUse() || !isa
<LoadInst
>(I
.getOperand(0)))
1977 // Truncs have to be narrowing-stores
1978 if (isa
<TruncInst
>(&I
) )
1979 if (!I
.hasOneUse() || !isa
<StoreInst
>(*I
.user_begin()))
1985 // To set up a tail-predicated loop, we need to know the total number of
1986 // elements processed by that loop. Thus, we need to determine the element
1988 // 1) it should be uniform for all operations in the vector loop, so we
1989 // e.g. don't want any widening/narrowing operations.
1990 // 2) it should be smaller than i64s because we don't have vector operations
1991 // that work on i64s.
1992 // 3) we don't want elements to be reversed or shuffled, to make sure the
1993 // tail-predication masks/predicates the right lanes.
1995 static bool canTailPredicateLoop(Loop
*L
, LoopInfo
*LI
, ScalarEvolution
&SE
,
1996 const DataLayout
&DL
,
1997 const LoopAccessInfo
*LAI
) {
1998 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2000 // If there are live-out values, it is probably a reduction. We can predicate
2001 // most reduction operations freely under MVE using a combination of
2002 // prefer-predicated-reduction-select and inloop reductions. We limit this to
2003 // floating point and integer reductions, but don't check for operators
2004 // specifically here. If the value ends up not being a reduction (and so the
2005 // vectorizer cannot tailfold the loop), we should fall back to standard
2006 // vectorization automatically.
2007 SmallVector
< Instruction
*, 8 > LiveOuts
;
2008 LiveOuts
= llvm::findDefsUsedOutsideOfLoop(L
);
2009 bool ReductionsDisabled
=
2010 EnableTailPredication
== TailPredication::EnabledNoReductions
||
2011 EnableTailPredication
== TailPredication::ForceEnabledNoReductions
;
2013 for (auto *I
: LiveOuts
) {
2014 if (!I
->getType()->isIntegerTy() && !I
->getType()->isFloatTy() &&
2015 !I
->getType()->isHalfTy()) {
2016 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2017 "live-out value\n");
2020 if (ReductionsDisabled
) {
2021 LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2026 // Next, check that all instructions can be tail-predicated.
2027 PredicatedScalarEvolution PSE
= LAI
->getPSE();
2028 SmallVector
<Instruction
*, 16> LoadStores
;
2031 for (BasicBlock
*BB
: L
->blocks()) {
2032 for (Instruction
&I
: BB
->instructionsWithoutDebug()) {
2033 if (isa
<PHINode
>(&I
))
2035 if (!canTailPredicateInstruction(I
, ICmpCount
)) {
2036 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I
.dump());
2040 Type
*T
= I
.getType();
2041 if (T
->isPointerTy())
2042 T
= T
->getPointerElementType();
2044 if (T
->getScalarSizeInBits() > 32) {
2045 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T
->dump());
2048 if (isa
<StoreInst
>(I
) || isa
<LoadInst
>(I
)) {
2049 Value
*Ptr
= isa
<LoadInst
>(I
) ? I
.getOperand(0) : I
.getOperand(1);
2050 int64_t NextStride
= getPtrStride(PSE
, Ptr
, L
);
2051 if (NextStride
== 1) {
2052 // TODO: for now only allow consecutive strides of 1. We could support
2053 // other strides as long as it is uniform, but let's keep it simple
2056 } else if (NextStride
== -1 ||
2057 (NextStride
== 2 && MVEMaxSupportedInterleaveFactor
>= 2) ||
2058 (NextStride
== 4 && MVEMaxSupportedInterleaveFactor
>= 4)) {
2060 << "Consecutive strides of 2 found, vld2/vstr2 can't "
2061 "be tail-predicated\n.");
2063 // TODO: don't tail predicate if there is a reversed load?
2064 } else if (EnableMaskedGatherScatters
) {
2065 // Gather/scatters do allow loading from arbitrary strides, at
2066 // least if they are loop invariant.
2067 // TODO: Loop variant strides should in theory work, too, but
2068 // this requires further testing.
2069 const SCEV
*PtrScev
=
2070 replaceSymbolicStrideSCEV(PSE
, llvm::ValueToValueMap(), Ptr
);
2071 if (auto AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
)) {
2072 const SCEV
*Step
= AR
->getStepRecurrence(*PSE
.getSE());
2073 if (PSE
.getSE()->isLoopInvariant(Step
, L
))
2077 LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2078 "tail-predicate\n.");
2084 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2088 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop
*L
, LoopInfo
*LI
,
2089 ScalarEvolution
&SE
,
2090 AssumptionCache
&AC
,
2091 TargetLibraryInfo
*TLI
,
2093 const LoopAccessInfo
*LAI
) {
2094 if (!EnableTailPredication
) {
2095 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2099 // Creating a predicated vector loop is the first step for generating a
2100 // tail-predicated hardware loop, for which we need the MVE masked
2101 // load/stores instructions:
2102 if (!ST
->hasMVEIntegerOps())
2105 // For now, restrict this to single block loops.
2106 if (L
->getNumBlocks() > 1) {
2107 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2112 assert(L
->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2114 HardwareLoopInfo
HWLoopInfo(L
);
2115 if (!HWLoopInfo
.canAnalyze(*LI
)) {
2116 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2121 // This checks if we have the low-overhead branch architecture
2122 // extension, and if we will create a hardware-loop:
2123 if (!isHardwareLoopProfitable(L
, SE
, AC
, TLI
, HWLoopInfo
)) {
2124 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2129 if (!HWLoopInfo
.isHardwareLoopCandidate(SE
, *LI
, *DT
)) {
2130 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2135 return canTailPredicateLoop(L
, LI
, SE
, DL
, LAI
);
2138 bool ARMTTIImpl::emitGetActiveLaneMask() const {
2139 if (!ST
->hasMVEIntegerOps() || !EnableTailPredication
)
2142 // Intrinsic @llvm.get.active.lane.mask is supported.
2143 // It is used in the MVETailPredication pass, which requires the number of
2144 // elements processed by this vector loop to setup the tail-predicated
2148 void ARMTTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
2149 TTI::UnrollingPreferences
&UP
,
2150 OptimizationRemarkEmitter
*ORE
) {
2151 // Enable Upper bound unrolling universally, not dependant upon the conditions
2153 UP
.UpperBound
= true;
2155 // Only currently enable these preferences for M-Class cores.
2156 if (!ST
->isMClass())
2157 return BasicTTIImplBase::getUnrollingPreferences(L
, SE
, UP
, ORE
);
2159 // Disable loop unrolling for Oz and Os.
2160 UP
.OptSizeThreshold
= 0;
2161 UP
.PartialOptSizeThreshold
= 0;
2162 if (L
->getHeader()->getParent()->hasOptSize())
2165 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
2166 L
->getExitingBlocks(ExitingBlocks
);
2167 LLVM_DEBUG(dbgs() << "Loop has:\n"
2168 << "Blocks: " << L
->getNumBlocks() << "\n"
2169 << "Exit blocks: " << ExitingBlocks
.size() << "\n");
2171 // Only allow another exit other than the latch. This acts as an early exit
2172 // as it mirrors the profitability calculation of the runtime unroller.
2173 if (ExitingBlocks
.size() > 2)
2176 // Limit the CFG of the loop body for targets with a branch predictor.
2177 // Allowing 4 blocks permits if-then-else diamonds in the body.
2178 if (ST
->hasBranchPredictor() && L
->getNumBlocks() > 4)
2181 // Don't unroll vectorized loops, including the remainder loop
2182 if (getBooleanLoopAttribute(L
, "llvm.loop.isvectorized"))
2185 // Scan the loop: don't unroll loops with calls as this could prevent
2187 InstructionCost Cost
= 0;
2188 for (auto *BB
: L
->getBlocks()) {
2189 for (auto &I
: *BB
) {
2190 // Don't unroll vectorised loop. MVE does not benefit from it as much as
2192 if (I
.getType()->isVectorTy())
2195 if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) {
2196 if (const Function
*F
= cast
<CallBase
>(I
).getCalledFunction()) {
2197 if (!isLoweredToCall(F
))
2203 SmallVector
<const Value
*, 4> Operands(I
.operand_values());
2205 getUserCost(&I
, Operands
, TargetTransformInfo::TCK_SizeAndLatency
);
2209 // On v6m cores, there are very few registers available. We can easily end up
2210 // spilling and reloading more registers in an unrolled loop. Look at the
2211 // number of LCSSA phis as a rough measure of how many registers will need to
2212 // be live out of the loop, reducing the default unroll count if more than 1
2213 // value is needed. In the long run, all of this should be being learnt by a
2215 unsigned UnrollCount
= 4;
2216 if (ST
->isThumb1Only()) {
2217 unsigned ExitingValues
= 0;
2218 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
2219 L
->getExitBlocks(ExitBlocks
);
2220 for (auto *Exit
: ExitBlocks
) {
2221 // Count the number of LCSSA phis. Exclude values coming from GEP's as
2222 // only the last is expected to be needed for address operands.
2223 unsigned LiveOuts
= count_if(Exit
->phis(), [](auto &PH
) {
2224 return PH
.getNumOperands() != 1 ||
2225 !isa
<GetElementPtrInst
>(PH
.getOperand(0));
2227 ExitingValues
= ExitingValues
< LiveOuts
? LiveOuts
: ExitingValues
;
2230 UnrollCount
/= ExitingValues
;
2231 if (UnrollCount
<= 1)
2235 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost
<< "\n");
2236 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount
<< "\n");
2240 UP
.UnrollRemainder
= true;
2241 UP
.DefaultUnrollRuntimeCount
= UnrollCount
;
2242 UP
.UnrollAndJam
= true;
2243 UP
.UnrollAndJamInnerLoopThreshold
= 60;
2245 // Force unrolling small loops can be very useful because of the branch
2246 // taken cost of the backedge.
2251 void ARMTTIImpl::getPeelingPreferences(Loop
*L
, ScalarEvolution
&SE
,
2252 TTI::PeelingPreferences
&PP
) {
2253 BaseT::getPeelingPreferences(L
, SE
, PP
);
2256 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode
, Type
*Ty
,
2257 TTI::ReductionFlags Flags
) const {
2258 if (!ST
->hasMVEIntegerOps())
2261 unsigned ScalarBits
= Ty
->getScalarSizeInBits();
2263 case Instruction::Add
:
2264 return ScalarBits
<= 64;
2270 bool ARMTTIImpl::preferPredicatedReductionSelect(
2271 unsigned Opcode
, Type
*Ty
, TTI::ReductionFlags Flags
) const {
2272 if (!ST
->hasMVEIntegerOps())