[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMTargetTransformInfo.cpp
blobd27348255e37714455bb892ec35fcfc8525e9fa7
1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/IntrinsicsARM.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/MC/SubtargetFeature.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <utility>
41 using namespace llvm;
43 #define DEBUG_TYPE "armtti"
45 static cl::opt<bool> EnableMaskedLoadStores(
46 "enable-arm-maskedldst", cl::Hidden, cl::init(true),
47 cl::desc("Enable the generation of masked loads and stores"));
49 static cl::opt<bool> DisableLowOverheadLoops(
50 "disable-arm-loloops", cl::Hidden, cl::init(false),
51 cl::desc("Disable the generation of low-overhead loops"));
53 static cl::opt<bool>
54 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
55 cl::desc("Enable the generation of WLS loops"));
57 extern cl::opt<TailPredication::Mode> EnableTailPredication;
59 extern cl::opt<bool> EnableMaskedGatherScatters;
61 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
63 /// Convert a vector load intrinsic into a simple llvm load instruction.
64 /// This is beneficial when the underlying object being addressed comes
65 /// from a constant, since we get constant-folding for free.
66 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
67 InstCombiner::BuilderTy &Builder) {
68 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
70 if (!IntrAlign)
71 return nullptr;
73 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
74 ? MemAlign
75 : IntrAlign->getLimitedValue();
77 if (!isPowerOf2_32(Alignment))
78 return nullptr;
80 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
81 PointerType::get(II.getType(), 0));
82 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
85 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
86 const Function *Callee) const {
87 const TargetMachine &TM = getTLI()->getTargetMachine();
88 const FeatureBitset &CallerBits =
89 TM.getSubtargetImpl(*Caller)->getFeatureBits();
90 const FeatureBitset &CalleeBits =
91 TM.getSubtargetImpl(*Callee)->getFeatureBits();
93 // To inline a callee, all features not in the allowed list must match exactly.
94 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
95 (CalleeBits & ~InlineFeaturesAllowed);
96 // For features in the allowed list, the callee's features must be a subset of
97 // the callers'.
98 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
99 (CalleeBits & InlineFeaturesAllowed);
100 return MatchExact && MatchSubset;
103 TTI::AddressingModeKind
104 ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
105 ScalarEvolution *SE) const {
106 if (ST->hasMVEIntegerOps())
107 return TTI::AMK_PostIndexed;
109 if (L->getHeader()->getParent()->hasOptSize())
110 return TTI::AMK_None;
112 if (ST->isMClass() && ST->isThumb2() &&
113 L->getNumBlocks() == 1)
114 return TTI::AMK_PreIndexed;
116 return TTI::AMK_None;
119 Optional<Instruction *>
120 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
121 using namespace PatternMatch;
122 Intrinsic::ID IID = II.getIntrinsicID();
123 switch (IID) {
124 default:
125 break;
126 case Intrinsic::arm_neon_vld1: {
127 Align MemAlign =
128 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
129 &IC.getAssumptionCache(), &IC.getDominatorTree());
130 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
131 return IC.replaceInstUsesWith(II, V);
133 break;
136 case Intrinsic::arm_neon_vld2:
137 case Intrinsic::arm_neon_vld3:
138 case Intrinsic::arm_neon_vld4:
139 case Intrinsic::arm_neon_vld2lane:
140 case Intrinsic::arm_neon_vld3lane:
141 case Intrinsic::arm_neon_vld4lane:
142 case Intrinsic::arm_neon_vst1:
143 case Intrinsic::arm_neon_vst2:
144 case Intrinsic::arm_neon_vst3:
145 case Intrinsic::arm_neon_vst4:
146 case Intrinsic::arm_neon_vst2lane:
147 case Intrinsic::arm_neon_vst3lane:
148 case Intrinsic::arm_neon_vst4lane: {
149 Align MemAlign =
150 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
151 &IC.getAssumptionCache(), &IC.getDominatorTree());
152 unsigned AlignArg = II.getNumArgOperands() - 1;
153 Value *AlignArgOp = II.getArgOperand(AlignArg);
154 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
155 if (Align && *Align < MemAlign) {
156 return IC.replaceOperand(
157 II, AlignArg,
158 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
159 false));
161 break;
164 case Intrinsic::arm_mve_pred_i2v: {
165 Value *Arg = II.getArgOperand(0);
166 Value *ArgArg;
167 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
168 PatternMatch::m_Value(ArgArg))) &&
169 II.getType() == ArgArg->getType()) {
170 return IC.replaceInstUsesWith(II, ArgArg);
172 Constant *XorMask;
173 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
174 PatternMatch::m_Value(ArgArg)),
175 PatternMatch::m_Constant(XorMask))) &&
176 II.getType() == ArgArg->getType()) {
177 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
178 if (CI->getValue().trunc(16).isAllOnesValue()) {
179 auto TrueVector = IC.Builder.CreateVectorSplat(
180 cast<FixedVectorType>(II.getType())->getNumElements(),
181 IC.Builder.getTrue());
182 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
186 KnownBits ScalarKnown(32);
187 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
188 ScalarKnown, 0)) {
189 return &II;
191 break;
193 case Intrinsic::arm_mve_pred_v2i: {
194 Value *Arg = II.getArgOperand(0);
195 Value *ArgArg;
196 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
197 PatternMatch::m_Value(ArgArg)))) {
198 return IC.replaceInstUsesWith(II, ArgArg);
200 if (!II.getMetadata(LLVMContext::MD_range)) {
201 Type *IntTy32 = Type::getInt32Ty(II.getContext());
202 Metadata *M[] = {
203 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
204 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
205 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
206 return &II;
208 break;
210 case Intrinsic::arm_mve_vadc:
211 case Intrinsic::arm_mve_vadc_predicated: {
212 unsigned CarryOp =
213 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
214 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
215 "Bad type for intrinsic!");
217 KnownBits CarryKnown(32);
218 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
219 CarryKnown)) {
220 return &II;
222 break;
224 case Intrinsic::arm_mve_vmldava: {
225 Instruction *I = cast<Instruction>(&II);
226 if (I->hasOneUse()) {
227 auto *User = cast<Instruction>(*I->user_begin());
228 Value *OpZ;
229 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
230 match(I->getOperand(3), m_Zero())) {
231 Value *OpX = I->getOperand(4);
232 Value *OpY = I->getOperand(5);
233 Type *OpTy = OpX->getType();
235 IC.Builder.SetInsertPoint(User);
236 Value *V =
237 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
238 {I->getOperand(0), I->getOperand(1),
239 I->getOperand(2), OpZ, OpX, OpY});
241 IC.replaceInstUsesWith(*User, V);
242 return IC.eraseInstFromFunction(*User);
245 return None;
248 return None;
251 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
252 TTI::TargetCostKind CostKind) {
253 assert(Ty->isIntegerTy());
255 unsigned Bits = Ty->getPrimitiveSizeInBits();
256 if (Bits == 0 || Imm.getActiveBits() >= 64)
257 return 4;
259 int64_t SImmVal = Imm.getSExtValue();
260 uint64_t ZImmVal = Imm.getZExtValue();
261 if (!ST->isThumb()) {
262 if ((SImmVal >= 0 && SImmVal < 65536) ||
263 (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
264 (ARM_AM::getSOImmVal(~ZImmVal) != -1))
265 return 1;
266 return ST->hasV6T2Ops() ? 2 : 3;
268 if (ST->isThumb2()) {
269 if ((SImmVal >= 0 && SImmVal < 65536) ||
270 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
271 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
272 return 1;
273 return ST->hasV6T2Ops() ? 2 : 3;
275 // Thumb1, any i8 imm cost 1.
276 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
277 return 1;
278 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
279 return 2;
280 // Load from constantpool.
281 return 3;
284 // Constants smaller than 256 fit in the immediate field of
285 // Thumb1 instructions so we return a zero cost and 1 otherwise.
286 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
287 const APInt &Imm, Type *Ty) {
288 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
289 return 0;
291 return 1;
294 // Checks whether Inst is part of a min(max()) or max(min()) pattern
295 // that will match to an SSAT instruction
296 static bool isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
297 Value *LHS, *RHS;
298 ConstantInt *C;
299 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
301 if (InstSPF == SPF_SMAX &&
302 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
303 C->getValue() == Imm && Imm.isNegative() && (-Imm).isPowerOf2()) {
305 auto isSSatMin = [&](Value *MinInst) {
306 if (isa<SelectInst>(MinInst)) {
307 Value *MinLHS, *MinRHS;
308 ConstantInt *MinC;
309 SelectPatternFlavor MinSPF =
310 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
311 if (MinSPF == SPF_SMIN &&
312 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
313 MinC->getValue() == ((-Imm) - 1))
314 return true;
316 return false;
319 if (isSSatMin(Inst->getOperand(1)) ||
320 (Inst->hasNUses(2) && (isSSatMin(*Inst->user_begin()) ||
321 isSSatMin(*(++Inst->user_begin())))))
322 return true;
324 return false;
327 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
328 const APInt &Imm, Type *Ty,
329 TTI::TargetCostKind CostKind,
330 Instruction *Inst) {
331 // Division by a constant can be turned into multiplication, but only if we
332 // know it's constant. So it's not so much that the immediate is cheap (it's
333 // not), but that the alternative is worse.
334 // FIXME: this is probably unneeded with GlobalISel.
335 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
336 Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
337 Idx == 1)
338 return 0;
340 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
341 // splitting any large offsets.
342 if (Opcode == Instruction::GetElementPtr && Idx != 0)
343 return 0;
345 if (Opcode == Instruction::And) {
346 // UXTB/UXTH
347 if (Imm == 255 || Imm == 65535)
348 return 0;
349 // Conversion to BIC is free, and means we can use ~Imm instead.
350 return std::min(getIntImmCost(Imm, Ty, CostKind),
351 getIntImmCost(~Imm, Ty, CostKind));
354 if (Opcode == Instruction::Add)
355 // Conversion to SUB is free, and means we can use -Imm instead.
356 return std::min(getIntImmCost(Imm, Ty, CostKind),
357 getIntImmCost(-Imm, Ty, CostKind));
359 if (Opcode == Instruction::ICmp && Imm.isNegative() &&
360 Ty->getIntegerBitWidth() == 32) {
361 int64_t NegImm = -Imm.getSExtValue();
362 if (ST->isThumb2() && NegImm < 1<<12)
363 // icmp X, #-C -> cmn X, #C
364 return 0;
365 if (ST->isThumb() && NegImm < 1<<8)
366 // icmp X, #-C -> adds X, #C
367 return 0;
370 // xor a, -1 can always be folded to MVN
371 if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
372 return 0;
374 // Ensures negative constant of min(max()) or max(min()) patterns that
375 // match to SSAT instructions don't get hoisted
376 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
377 Ty->getIntegerBitWidth() <= 32) {
378 if (isSSATMinMaxPattern(Inst, Imm) ||
379 (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
380 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
381 return 0;
384 return getIntImmCost(Imm, Ty, CostKind);
387 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
388 TTI::TargetCostKind CostKind,
389 const Instruction *I) {
390 if (CostKind == TTI::TCK_RecipThroughput &&
391 (ST->hasNEON() || ST->hasMVEIntegerOps())) {
392 // FIXME: The vectorizer is highly sensistive to the cost of these
393 // instructions, which suggests that it may be using the costs incorrectly.
394 // But, for now, just make them free to avoid performance regressions for
395 // vector targets.
396 return 0;
398 return BaseT::getCFInstrCost(Opcode, CostKind, I);
401 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
402 Type *Src,
403 TTI::CastContextHint CCH,
404 TTI::TargetCostKind CostKind,
405 const Instruction *I) {
406 int ISD = TLI->InstructionOpcodeToISD(Opcode);
407 assert(ISD && "Invalid opcode");
409 // TODO: Allow non-throughput costs that aren't binary.
410 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
411 if (CostKind != TTI::TCK_RecipThroughput)
412 return Cost == 0 ? 0 : 1;
413 return Cost;
415 auto IsLegalFPType = [this](EVT VT) {
416 EVT EltVT = VT.getScalarType();
417 return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
418 (EltVT == MVT::f64 && ST->hasFP64()) ||
419 (EltVT == MVT::f16 && ST->hasFullFP16());
422 EVT SrcTy = TLI->getValueType(DL, Src);
423 EVT DstTy = TLI->getValueType(DL, Dst);
425 if (!SrcTy.isSimple() || !DstTy.isSimple())
426 return AdjustCost(
427 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
429 // Extending masked load/Truncating masked stores is expensive because we
430 // currently don't split them. This means that we'll likely end up
431 // loading/storing each element individually (hence the high cost).
432 if ((ST->hasMVEIntegerOps() &&
433 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
434 Opcode == Instruction::SExt)) ||
435 (ST->hasMVEFloatOps() &&
436 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
437 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
438 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
439 return 2 * DstTy.getVectorNumElements() *
440 ST->getMVEVectorCostFactor(CostKind);
442 // The extend of other kinds of load is free
443 if (CCH == TTI::CastContextHint::Normal ||
444 CCH == TTI::CastContextHint::Masked) {
445 static const TypeConversionCostTblEntry LoadConversionTbl[] = {
446 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
447 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
448 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
449 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
450 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
451 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
452 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
453 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
454 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
455 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
456 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
457 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
459 if (const auto *Entry = ConvertCostTableLookup(
460 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
461 return AdjustCost(Entry->Cost);
463 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
464 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
465 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
466 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
467 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
468 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
469 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
470 // The following extend from a legal type to an illegal type, so need to
471 // split the load. This introduced an extra load operation, but the
472 // extend is still "free".
473 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
474 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
475 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
476 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
477 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
478 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
480 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
481 if (const auto *Entry =
482 ConvertCostTableLookup(MVELoadConversionTbl, ISD,
483 DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
484 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
487 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
488 // FPExtends are similar but also require the VCVT instructions.
489 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
490 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
492 if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
493 if (const auto *Entry =
494 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
495 DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
496 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
499 // The truncate of a store is free. This is the mirror of extends above.
500 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
501 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
502 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
503 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
504 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
505 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
506 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
507 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
509 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
510 if (const auto *Entry =
511 ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
512 SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
513 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
516 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
517 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
518 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
520 if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
521 if (const auto *Entry =
522 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
523 SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
524 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
528 // NEON vector operations that can extend their inputs.
529 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
530 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
531 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
532 // vaddl
533 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
534 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 },
535 // vsubl
536 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
537 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 },
538 // vmull
539 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
540 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 },
541 // vshll
542 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
543 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 },
546 auto *User = cast<Instruction>(*I->user_begin());
547 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
548 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
549 DstTy.getSimpleVT(),
550 SrcTy.getSimpleVT())) {
551 return AdjustCost(Entry->Cost);
555 // Single to/from double precision conversions.
556 if (Src->isVectorTy() && ST->hasNEON() &&
557 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
558 DstTy.getScalarType() == MVT::f32) ||
559 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
560 DstTy.getScalarType() == MVT::f64))) {
561 static const CostTblEntry NEONFltDblTbl[] = {
562 // Vector fptrunc/fpext conversions.
563 {ISD::FP_ROUND, MVT::v2f64, 2},
564 {ISD::FP_EXTEND, MVT::v2f32, 2},
565 {ISD::FP_EXTEND, MVT::v4f32, 4}};
567 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
568 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
569 return AdjustCost(LT.first * Entry->Cost);
572 // Some arithmetic, load and store operations have specific instructions
573 // to cast up/down their types automatically at no extra cost.
574 // TODO: Get these tables to know at least what the related operations are.
575 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
576 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
577 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
578 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
579 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
580 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
581 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
583 // The number of vmovl instructions for the extension.
584 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
585 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
586 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
587 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
588 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
589 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
590 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
591 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
592 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
593 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
594 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
595 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
596 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
597 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
598 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
599 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
600 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
601 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
603 // Operations that we legalize using splitting.
604 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
605 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
607 // Vector float <-> i32 conversions.
608 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
609 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
611 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
612 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
613 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
614 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
615 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
616 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
617 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
618 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
619 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
620 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
621 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
622 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
623 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
624 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
625 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
626 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
627 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
628 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
629 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
630 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
632 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
633 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
634 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
635 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
636 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
637 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
639 // Vector double <-> i32 conversions.
640 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
641 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
643 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
644 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
645 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
646 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
647 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
648 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
650 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
651 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
652 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
653 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
654 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
655 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
658 if (SrcTy.isVector() && ST->hasNEON()) {
659 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
660 DstTy.getSimpleVT(),
661 SrcTy.getSimpleVT()))
662 return AdjustCost(Entry->Cost);
665 // Scalar float to integer conversions.
666 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
667 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
668 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
669 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
670 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
671 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
672 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
673 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
674 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
675 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
676 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
677 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
678 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
679 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
680 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
681 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
682 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
683 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
684 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
685 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
686 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
688 if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
689 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
690 DstTy.getSimpleVT(),
691 SrcTy.getSimpleVT()))
692 return AdjustCost(Entry->Cost);
695 // Scalar integer to float conversions.
696 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
697 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
698 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
699 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
700 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
701 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
702 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
703 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
704 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
705 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
706 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
707 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
708 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
709 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
710 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
711 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
712 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
713 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
714 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
715 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
716 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
719 if (SrcTy.isInteger() && ST->hasNEON()) {
720 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
721 ISD, DstTy.getSimpleVT(),
722 SrcTy.getSimpleVT()))
723 return AdjustCost(Entry->Cost);
726 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
727 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
728 // are linearised so take more.
729 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
730 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
731 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
732 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
733 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
734 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
735 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
736 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
737 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
738 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
739 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
740 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
741 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
744 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
745 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
746 ISD, DstTy.getSimpleVT(),
747 SrcTy.getSimpleVT()))
748 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
751 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
752 // As general rule, fp converts that were not matched above are scalarized
753 // and cost 1 vcvt for each lane, so long as the instruction is available.
754 // If not it will become a series of function calls.
755 const InstructionCost CallCost =
756 getCallInstrCost(nullptr, Dst, {Src}, CostKind);
757 int Lanes = 1;
758 if (SrcTy.isFixedLengthVector())
759 Lanes = SrcTy.getVectorNumElements();
761 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
762 return Lanes;
763 else
764 return Lanes * CallCost;
767 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
768 SrcTy.isFixedLengthVector()) {
769 // Treat a truncate with larger than legal source (128bits for MVE) as
770 // expensive, 2 instructions per lane.
771 if ((SrcTy.getScalarType() == MVT::i8 ||
772 SrcTy.getScalarType() == MVT::i16 ||
773 SrcTy.getScalarType() == MVT::i32) &&
774 SrcTy.getSizeInBits() > 128 &&
775 SrcTy.getSizeInBits() > DstTy.getSizeInBits())
776 return SrcTy.getVectorNumElements() * 2;
779 // Scalar integer conversion costs.
780 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
781 // i16 -> i64 requires two dependent operations.
782 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
784 // Truncates on i64 are assumed to be free.
785 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
786 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
787 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
788 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
791 if (SrcTy.isInteger()) {
792 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
793 DstTy.getSimpleVT(),
794 SrcTy.getSimpleVT()))
795 return AdjustCost(Entry->Cost);
798 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
799 ? ST->getMVEVectorCostFactor(CostKind)
800 : 1;
801 return AdjustCost(
802 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
805 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
806 unsigned Index) {
807 // Penalize inserting into an D-subregister. We end up with a three times
808 // lower estimated throughput on swift.
809 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
810 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
811 return 3;
813 if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
814 Opcode == Instruction::ExtractElement)) {
815 // Cross-class copies are expensive on many microarchitectures,
816 // so assume they are expensive by default.
817 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
818 return 3;
820 // Even if it's not a cross class copy, this likely leads to mixing
821 // of NEON and VFP code and should be therefore penalized.
822 if (ValTy->isVectorTy() &&
823 ValTy->getScalarSizeInBits() <= 32)
824 return std::max<InstructionCost>(
825 BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
828 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
829 Opcode == Instruction::ExtractElement)) {
830 // Integer cross-lane moves are more expensive than float, which can
831 // sometimes just be vmovs. Integer involve being passes to GPR registers,
832 // causing more of a delay.
833 std::pair<InstructionCost, MVT> LT =
834 getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType());
835 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
838 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
841 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
842 Type *CondTy,
843 CmpInst::Predicate VecPred,
844 TTI::TargetCostKind CostKind,
845 const Instruction *I) {
846 int ISD = TLI->InstructionOpcodeToISD(Opcode);
848 // Thumb scalar code size cost for select.
849 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
850 ST->isThumb() && !ValTy->isVectorTy()) {
851 // Assume expensive structs.
852 if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
853 return TTI::TCC_Expensive;
855 // Select costs can vary because they:
856 // - may require one or more conditional mov (including an IT),
857 // - can't operate directly on immediates,
858 // - require live flags, which we can't copy around easily.
859 InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first;
861 // Possible IT instruction for Thumb2, or more for Thumb1.
862 ++Cost;
864 // i1 values may need rematerialising by using mov immediates and/or
865 // flag setting instructions.
866 if (ValTy->isIntegerTy(1))
867 ++Cost;
869 return Cost;
872 // If this is a vector min/max/abs, use the cost of that intrinsic directly
873 // instead. Hopefully when min/max intrinsics are more prevalent this code
874 // will not be needed.
875 const Instruction *Sel = I;
876 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
877 Sel->hasOneUse())
878 Sel = cast<Instruction>(Sel->user_back());
879 if (Sel && ValTy->isVectorTy() &&
880 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
881 const Value *LHS, *RHS;
882 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
883 unsigned IID = 0;
884 switch (SPF) {
885 case SPF_ABS:
886 IID = Intrinsic::abs;
887 break;
888 case SPF_SMIN:
889 IID = Intrinsic::smin;
890 break;
891 case SPF_SMAX:
892 IID = Intrinsic::smax;
893 break;
894 case SPF_UMIN:
895 IID = Intrinsic::umin;
896 break;
897 case SPF_UMAX:
898 IID = Intrinsic::umax;
899 break;
900 case SPF_FMINNUM:
901 IID = Intrinsic::minnum;
902 break;
903 case SPF_FMAXNUM:
904 IID = Intrinsic::maxnum;
905 break;
906 default:
907 break;
909 if (IID) {
910 // The ICmp is free, the select gets the cost of the min/max/etc
911 if (Sel != I)
912 return 0;
913 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
914 return getIntrinsicInstrCost(CostAttrs, CostKind);
918 // On NEON a vector select gets lowered to vbsl.
919 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
920 // Lowering of some vector selects is currently far from perfect.
921 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
922 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
923 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
924 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
927 EVT SelCondTy = TLI->getValueType(DL, CondTy);
928 EVT SelValTy = TLI->getValueType(DL, ValTy);
929 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
930 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
931 SelCondTy.getSimpleVT(),
932 SelValTy.getSimpleVT()))
933 return Entry->Cost;
936 std::pair<InstructionCost, MVT> LT =
937 TLI->getTypeLegalizationCost(DL, ValTy);
938 return LT.first;
941 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
942 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
943 cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
944 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
945 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
946 if (!VecCondTy)
947 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
949 // If we don't have mve.fp any fp operations will need to be scalarized.
950 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
951 // One scalaization insert, one scalarization extract and the cost of the
952 // fcmps.
953 return BaseT::getScalarizationOverhead(VecValTy, false, true) +
954 BaseT::getScalarizationOverhead(VecCondTy, true, false) +
955 VecValTy->getNumElements() *
956 getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
957 VecCondTy->getScalarType(), VecPred, CostKind,
961 std::pair<InstructionCost, MVT> LT =
962 TLI->getTypeLegalizationCost(DL, ValTy);
963 int BaseCost = ST->getMVEVectorCostFactor(CostKind);
964 // There are two types - the input that specifies the type of the compare
965 // and the output vXi1 type. Because we don't know how the output will be
966 // split, we may need an expensive shuffle to get two in sync. This has the
967 // effect of making larger than legal compares (v8i32 for example)
968 // expensive.
969 if (LT.second.getVectorNumElements() > 2) {
970 if (LT.first > 1)
971 return LT.first * BaseCost +
972 BaseT::getScalarizationOverhead(VecCondTy, true, false);
973 return BaseCost;
977 // Default to cheap (throughput/size of 1 instruction) but adjust throughput
978 // for "multiple beats" potentially needed by MVE instructions.
979 int BaseCost = 1;
980 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
981 BaseCost = ST->getMVEVectorCostFactor(CostKind);
983 return BaseCost *
984 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
987 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
988 ScalarEvolution *SE,
989 const SCEV *Ptr) {
990 // Address computations in vectorized code with non-consecutive addresses will
991 // likely result in more instructions compared to scalar code where the
992 // computation can more often be merged into the index mode. The resulting
993 // extra micro-ops can significantly decrease throughput.
994 unsigned NumVectorInstToHideOverhead = 10;
995 int MaxMergeDistance = 64;
997 if (ST->hasNEON()) {
998 if (Ty->isVectorTy() && SE &&
999 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1000 return NumVectorInstToHideOverhead;
1002 // In many cases the address computation is not merged into the instruction
1003 // addressing mode.
1004 return 1;
1006 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1009 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
1010 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1011 // If a VCTP is part of a chain, it's already profitable and shouldn't be
1012 // optimized, else LSR may block tail-predication.
1013 switch (II->getIntrinsicID()) {
1014 case Intrinsic::arm_mve_vctp8:
1015 case Intrinsic::arm_mve_vctp16:
1016 case Intrinsic::arm_mve_vctp32:
1017 case Intrinsic::arm_mve_vctp64:
1018 return true;
1019 default:
1020 break;
1023 return false;
1026 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
1027 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
1028 return false;
1030 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
1031 // Don't support v2i1 yet.
1032 if (VecTy->getNumElements() == 2)
1033 return false;
1035 // We don't support extending fp types.
1036 unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
1037 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
1038 return false;
1041 unsigned EltWidth = DataTy->getScalarSizeInBits();
1042 return (EltWidth == 32 && Alignment >= 4) ||
1043 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
1046 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
1047 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
1048 return false;
1050 // This method is called in 2 places:
1051 // - from the vectorizer with a scalar type, in which case we need to get
1052 // this as good as we can with the limited info we have (and rely on the cost
1053 // model for the rest).
1054 // - from the masked intrinsic lowering pass with the actual vector type.
1055 // For MVE, we have a custom lowering pass that will already have custom
1056 // legalised any gathers that we can to MVE intrinsics, and want to expand all
1057 // the rest. The pass runs before the masked intrinsic lowering pass, so if we
1058 // are here, we know we want to expand.
1059 if (isa<VectorType>(Ty))
1060 return false;
1062 unsigned EltWidth = Ty->getScalarSizeInBits();
1063 return ((EltWidth == 32 && Alignment >= 4) ||
1064 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
1067 /// Given a memcpy/memset/memmove instruction, return the number of memory
1068 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1069 /// call is used.
1070 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
1071 MemOp MOp;
1072 unsigned DstAddrSpace = ~0u;
1073 unsigned SrcAddrSpace = ~0u;
1074 const Function *F = I->getParent()->getParent();
1076 if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
1077 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
1078 // If 'size' is not a constant, a library call will be generated.
1079 if (!C)
1080 return -1;
1082 const unsigned Size = C->getValue().getZExtValue();
1083 const Align DstAlign = *MC->getDestAlign();
1084 const Align SrcAlign = *MC->getSourceAlign();
1086 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
1087 /*IsVolatile*/ false);
1088 DstAddrSpace = MC->getDestAddressSpace();
1089 SrcAddrSpace = MC->getSourceAddressSpace();
1091 else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
1092 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
1093 // If 'size' is not a constant, a library call will be generated.
1094 if (!C)
1095 return -1;
1097 const unsigned Size = C->getValue().getZExtValue();
1098 const Align DstAlign = *MS->getDestAlign();
1100 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
1101 /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1102 DstAddrSpace = MS->getDestAddressSpace();
1104 else
1105 llvm_unreachable("Expected a memcpy/move or memset!");
1107 unsigned Limit, Factor = 2;
1108 switch(I->getIntrinsicID()) {
1109 case Intrinsic::memcpy:
1110 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
1111 break;
1112 case Intrinsic::memmove:
1113 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
1114 break;
1115 case Intrinsic::memset:
1116 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
1117 Factor = 1;
1118 break;
1119 default:
1120 llvm_unreachable("Expected a memcpy/move or memset!");
1123 // MemOps will be poplulated with a list of data types that needs to be
1124 // loaded and stored. That's why we multiply the number of elements by 2 to
1125 // get the cost for this memcpy.
1126 std::vector<EVT> MemOps;
1127 if (getTLI()->findOptimalMemOpLowering(
1128 MemOps, Limit, MOp, DstAddrSpace,
1129 SrcAddrSpace, F->getAttributes()))
1130 return MemOps.size() * Factor;
1132 // If we can't find an optimal memop lowering, return the default cost
1133 return -1;
1136 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
1137 int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
1139 // To model the cost of a library call, we assume 1 for the call, and
1140 // 3 for the argument setup.
1141 if (NumOps == -1)
1142 return 4;
1143 return NumOps;
1146 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1147 VectorType *Tp, ArrayRef<int> Mask,
1148 int Index, VectorType *SubTp) {
1149 Kind = improveShuffleKindFromMask(Kind, Mask);
1150 if (ST->hasNEON()) {
1151 if (Kind == TTI::SK_Broadcast) {
1152 static const CostTblEntry NEONDupTbl[] = {
1153 // VDUP handles these cases.
1154 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1155 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1156 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1157 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1158 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1159 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1161 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1162 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1163 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1164 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
1166 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1167 if (const auto *Entry =
1168 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
1169 return LT.first * Entry->Cost;
1171 if (Kind == TTI::SK_Reverse) {
1172 static const CostTblEntry NEONShuffleTbl[] = {
1173 // Reverse shuffle cost one instruction if we are shuffling within a
1174 // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1175 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1176 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1177 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1178 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1179 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1180 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1182 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1183 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1184 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
1185 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
1187 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1188 if (const auto *Entry =
1189 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
1190 return LT.first * Entry->Cost;
1192 if (Kind == TTI::SK_Select) {
1193 static const CostTblEntry NEONSelShuffleTbl[] = {
1194 // Select shuffle cost table for ARM. Cost is the number of
1195 // instructions
1196 // required to create the shuffled vector.
1198 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1199 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1200 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1201 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1203 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1204 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1205 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
1207 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
1209 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
1211 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1212 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
1213 ISD::VECTOR_SHUFFLE, LT.second))
1214 return LT.first * Entry->Cost;
1217 if (ST->hasMVEIntegerOps()) {
1218 if (Kind == TTI::SK_Broadcast) {
1219 static const CostTblEntry MVEDupTbl[] = {
1220 // VDUP handles these cases.
1221 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1222 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1223 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
1224 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1225 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
1227 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1228 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
1229 LT.second))
1230 return LT.first * Entry->Cost *
1231 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
1234 if (!Mask.empty()) {
1235 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1236 if (Mask.size() <= LT.second.getVectorNumElements() &&
1237 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
1238 isVREVMask(Mask, LT.second, 64)))
1239 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
1243 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
1244 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
1245 : 1;
1246 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
1249 InstructionCost ARMTTIImpl::getArithmeticInstrCost(
1250 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1251 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
1252 TTI::OperandValueProperties Opd1PropInfo,
1253 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1254 const Instruction *CxtI) {
1255 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
1256 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
1257 // Make operations on i1 relatively expensive as this often involves
1258 // combining predicates. AND and XOR should be easier to handle with IT
1259 // blocks.
1260 switch (ISDOpcode) {
1261 default:
1262 break;
1263 case ISD::AND:
1264 case ISD::XOR:
1265 return 2;
1266 case ISD::OR:
1267 return 3;
1271 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1273 if (ST->hasNEON()) {
1274 const unsigned FunctionCallDivCost = 20;
1275 const unsigned ReciprocalDivCost = 10;
1276 static const CostTblEntry CostTbl[] = {
1277 // Division.
1278 // These costs are somewhat random. Choose a cost of 20 to indicate that
1279 // vectorizing devision (added function call) is going to be very expensive.
1280 // Double registers types.
1281 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1282 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1283 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
1284 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
1285 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1286 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1287 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
1288 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
1289 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
1290 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
1291 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
1292 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
1293 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
1294 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
1295 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
1296 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
1297 // Quad register types.
1298 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1299 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1300 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
1301 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
1302 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1303 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1304 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
1305 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
1306 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1307 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1308 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
1309 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
1310 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1311 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1312 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
1313 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
1314 // Multiplication.
1317 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
1318 return LT.first * Entry->Cost;
1320 InstructionCost Cost = BaseT::getArithmeticInstrCost(
1321 Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
1323 // This is somewhat of a hack. The problem that we are facing is that SROA
1324 // creates a sequence of shift, and, or instructions to construct values.
1325 // These sequences are recognized by the ISel and have zero-cost. Not so for
1326 // the vectorized code. Because we have support for v2i64 but not i64 those
1327 // sequences look particularly beneficial to vectorize.
1328 // To work around this we increase the cost of v2i64 operations to make them
1329 // seem less beneficial.
1330 if (LT.second == MVT::v2i64 &&
1331 Op2Info == TargetTransformInfo::OK_UniformConstantValue)
1332 Cost += 4;
1334 return Cost;
1337 // If this operation is a shift on arm/thumb2, it might well be folded into
1338 // the following instruction, hence having a cost of 0.
1339 auto LooksLikeAFreeShift = [&]() {
1340 if (ST->isThumb1Only() || Ty->isVectorTy())
1341 return false;
1343 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
1344 return false;
1345 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
1346 return false;
1348 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1349 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
1350 case Instruction::Add:
1351 case Instruction::Sub:
1352 case Instruction::And:
1353 case Instruction::Xor:
1354 case Instruction::Or:
1355 case Instruction::ICmp:
1356 return true;
1357 default:
1358 return false;
1361 if (LooksLikeAFreeShift())
1362 return 0;
1364 // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1365 // for "multiple beats" potentially needed by MVE instructions.
1366 int BaseCost = 1;
1367 if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
1368 BaseCost = ST->getMVEVectorCostFactor(CostKind);
1370 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1371 // without treating floats as more expensive that scalars or increasing the
1372 // costs for custom operations. The results is also multiplied by the
1373 // MVEVectorCostFactor where appropriate.
1374 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
1375 return LT.first * BaseCost;
1377 // Else this is expand, assume that we need to scalarize this op.
1378 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1379 unsigned Num = VTy->getNumElements();
1380 InstructionCost Cost =
1381 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
1382 // Return the cost of multiple scalar invocation plus the cost of
1383 // inserting and extracting the values.
1384 SmallVector<Type *> Tys(Args.size(), Ty);
1385 return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
1388 return BaseCost;
1391 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1392 MaybeAlign Alignment,
1393 unsigned AddressSpace,
1394 TTI::TargetCostKind CostKind,
1395 const Instruction *I) {
1396 // TODO: Handle other cost kinds.
1397 if (CostKind != TTI::TCK_RecipThroughput)
1398 return 1;
1400 // Type legalization can't handle structs
1401 if (TLI->getValueType(DL, Src, true) == MVT::Other)
1402 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1403 CostKind);
1405 if (ST->hasNEON() && Src->isVectorTy() &&
1406 (Alignment && *Alignment != Align(16)) &&
1407 cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
1408 // Unaligned loads/stores are extremely inefficient.
1409 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1410 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1411 return LT.first * 4;
1414 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1415 // Same for stores.
1416 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
1417 ((Opcode == Instruction::Load && I->hasOneUse() &&
1418 isa<FPExtInst>(*I->user_begin())) ||
1419 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
1420 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
1421 Type *DstTy =
1422 Opcode == Instruction::Load
1423 ? (*I->user_begin())->getType()
1424 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
1425 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
1426 DstTy->getScalarType()->isFloatTy())
1427 return ST->getMVEVectorCostFactor(CostKind);
1430 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
1431 ? ST->getMVEVectorCostFactor(CostKind)
1432 : 1;
1433 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1434 CostKind, I);
1437 InstructionCost
1438 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1439 unsigned AddressSpace,
1440 TTI::TargetCostKind CostKind) {
1441 if (ST->hasMVEIntegerOps()) {
1442 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
1443 return ST->getMVEVectorCostFactor(CostKind);
1444 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
1445 return ST->getMVEVectorCostFactor(CostKind);
1447 if (!isa<FixedVectorType>(Src))
1448 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1449 CostKind);
1450 // Scalar cost, which is currently very high due to the efficiency of the
1451 // generated code.
1452 return cast<FixedVectorType>(Src)->getNumElements() * 8;
1455 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
1456 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1457 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1458 bool UseMaskForCond, bool UseMaskForGaps) {
1459 assert(Factor >= 2 && "Invalid interleave factor");
1460 assert(isa<VectorType>(VecTy) && "Expect a vector type");
1462 // vldN/vstN doesn't support vector types of i64/f64 element.
1463 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
1465 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
1466 !UseMaskForCond && !UseMaskForGaps) {
1467 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1468 auto *SubVecTy =
1469 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1471 // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1472 // Accesses having vector types that are a multiple of 128 bits can be
1473 // matched to more than one vldN/vstN instruction.
1474 int BaseCost =
1475 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1476 if (NumElts % Factor == 0 &&
1477 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
1478 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1480 // Some smaller than legal interleaved patterns are cheap as we can make
1481 // use of the vmovn or vrev patterns to interleave a standard load. This is
1482 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1483 // promoted differently). The cost of 2 here is then a load and vrev or
1484 // vmovn.
1485 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
1486 VecTy->isIntOrIntVectorTy() &&
1487 DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64)
1488 return 2 * BaseCost;
1491 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1492 Alignment, AddressSpace, CostKind,
1493 UseMaskForCond, UseMaskForGaps);
1496 InstructionCost ARMTTIImpl::getGatherScatterOpCost(
1497 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1498 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1499 using namespace PatternMatch;
1500 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
1501 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1502 Alignment, CostKind, I);
1504 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
1505 auto *VTy = cast<FixedVectorType>(DataTy);
1507 // TODO: Splitting, once we do that.
1509 unsigned NumElems = VTy->getNumElements();
1510 unsigned EltSize = VTy->getScalarSizeInBits();
1511 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);
1513 // For now, it is assumed that for the MVE gather instructions the loads are
1514 // all effectively serialised. This means the cost is the scalar cost
1515 // multiplied by the number of elements being loaded. This is possibly very
1516 // conservative, but even so we still end up vectorising loops because the
1517 // cost per iteration for many loops is lower than for scalar loops.
1518 InstructionCost VectorCost =
1519 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
1520 // The scalarization cost should be a lot higher. We use the number of vector
1521 // elements plus the scalarization overhead.
1522 InstructionCost ScalarCost =
1523 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) +
1524 BaseT::getScalarizationOverhead(VTy, false, true);
1526 if (EltSize < 8 || Alignment < EltSize / 8)
1527 return ScalarCost;
1529 unsigned ExtSize = EltSize;
1530 // Check whether there's a single user that asks for an extended type
1531 if (I != nullptr) {
1532 // Dependent of the caller of this function, a gather instruction will
1533 // either have opcode Instruction::Load or be a call to the masked_gather
1534 // intrinsic
1535 if ((I->getOpcode() == Instruction::Load ||
1536 match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
1537 I->hasOneUse()) {
1538 const User *Us = *I->users().begin();
1539 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
1540 // only allow valid type combinations
1541 unsigned TypeSize =
1542 cast<Instruction>(Us)->getType()->getScalarSizeInBits();
1543 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
1544 (TypeSize == 16 && EltSize == 8)) &&
1545 TypeSize * NumElems == 128) {
1546 ExtSize = TypeSize;
1550 // Check whether the input data needs to be truncated
1551 TruncInst *T;
1552 if ((I->getOpcode() == Instruction::Store ||
1553 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
1554 (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
1555 // Only allow valid type combinations
1556 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
1557 if (((EltSize == 16 && TypeSize == 32) ||
1558 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
1559 TypeSize * NumElems == 128)
1560 ExtSize = TypeSize;
1564 if (ExtSize * NumElems != 128 || NumElems < 4)
1565 return ScalarCost;
1567 // Any (aligned) i32 gather will not need to be scalarised.
1568 if (ExtSize == 32)
1569 return VectorCost;
1570 // For smaller types, we need to ensure that the gep's inputs are correctly
1571 // extended from a small enough value. Other sizes (including i64) are
1572 // scalarized for now.
1573 if (ExtSize != 8 && ExtSize != 16)
1574 return ScalarCost;
1576 if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
1577 Ptr = BC->getOperand(0);
1578 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1579 if (GEP->getNumOperands() != 2)
1580 return ScalarCost;
1581 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
1582 // Scale needs to be correct (which is only relevant for i16s).
1583 if (Scale != 1 && Scale * 8 != ExtSize)
1584 return ScalarCost;
1585 // And we need to zext (not sext) the indexes from a small enough type.
1586 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
1587 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
1588 return VectorCost;
1590 return ScalarCost;
1592 return ScalarCost;
1595 InstructionCost
1596 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
1597 Optional<FastMathFlags> FMF,
1598 TTI::TargetCostKind CostKind) {
1599 if (TTI::requiresOrderedReduction(FMF))
1600 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1602 EVT ValVT = TLI->getValueType(DL, ValTy);
1603 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1604 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
1605 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1607 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1609 static const CostTblEntry CostTblAdd[]{
1610 {ISD::ADD, MVT::v16i8, 1},
1611 {ISD::ADD, MVT::v8i16, 1},
1612 {ISD::ADD, MVT::v4i32, 1},
1614 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
1615 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1617 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1620 InstructionCost
1621 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
1622 Type *ResTy, VectorType *ValTy,
1623 TTI::TargetCostKind CostKind) {
1624 EVT ValVT = TLI->getValueType(DL, ValTy);
1625 EVT ResVT = TLI->getValueType(DL, ResTy);
1627 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1628 std::pair<InstructionCost, MVT> LT =
1629 TLI->getTypeLegalizationCost(DL, ValTy);
1631 // The legal cases are:
1632 // VADDV u/s 8/16/32
1633 // VMLAV u/s 8/16/32
1634 // VADDLV u/s 32
1635 // VMLALV u/s 16/32
1636 // Codegen currently cannot always handle larger than legal vectors very
1637 // well, especially for predicated reductions where the mask needs to be
1638 // split, so restrict to 128bit or smaller input types.
1639 unsigned RevVTSize = ResVT.getSizeInBits();
1640 if (ValVT.getSizeInBits() <= 128 &&
1641 ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1642 (LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) ||
1643 (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1644 return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1647 return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy,
1648 CostKind);
1651 InstructionCost
1652 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1653 TTI::TargetCostKind CostKind) {
1654 switch (ICA.getID()) {
1655 case Intrinsic::get_active_lane_mask:
1656 // Currently we make a somewhat optimistic assumption that
1657 // active_lane_mask's are always free. In reality it may be freely folded
1658 // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1659 // of add/icmp code. We may need to improve this in the future, but being
1660 // able to detect if it is free or not involves looking at a lot of other
1661 // code. We currently assume that the vectorizer inserted these, and knew
1662 // what it was doing in adding one.
1663 if (ST->hasMVEIntegerOps())
1664 return 0;
1665 break;
1666 case Intrinsic::sadd_sat:
1667 case Intrinsic::ssub_sat:
1668 case Intrinsic::uadd_sat:
1669 case Intrinsic::usub_sat: {
1670 if (!ST->hasMVEIntegerOps())
1671 break;
1672 Type *VT = ICA.getReturnType();
1674 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1675 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1676 LT.second == MVT::v16i8) {
1677 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1678 // need to extend the type, as it uses shr(qadd(shl, shl)).
1679 unsigned Instrs =
1680 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
1681 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
1683 break;
1685 case Intrinsic::abs:
1686 case Intrinsic::smin:
1687 case Intrinsic::smax:
1688 case Intrinsic::umin:
1689 case Intrinsic::umax: {
1690 if (!ST->hasMVEIntegerOps())
1691 break;
1692 Type *VT = ICA.getReturnType();
1694 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1695 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1696 LT.second == MVT::v16i8)
1697 return LT.first * ST->getMVEVectorCostFactor(CostKind);
1698 break;
1700 case Intrinsic::minnum:
1701 case Intrinsic::maxnum: {
1702 if (!ST->hasMVEFloatOps())
1703 break;
1704 Type *VT = ICA.getReturnType();
1705 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1706 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
1707 return LT.first * ST->getMVEVectorCostFactor(CostKind);
1708 break;
1712 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1715 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
1716 if (!F->isIntrinsic())
1717 BaseT::isLoweredToCall(F);
1719 // Assume all Arm-specific intrinsics map to an instruction.
1720 if (F->getName().startswith("llvm.arm"))
1721 return false;
1723 switch (F->getIntrinsicID()) {
1724 default: break;
1725 case Intrinsic::powi:
1726 case Intrinsic::sin:
1727 case Intrinsic::cos:
1728 case Intrinsic::pow:
1729 case Intrinsic::log:
1730 case Intrinsic::log10:
1731 case Intrinsic::log2:
1732 case Intrinsic::exp:
1733 case Intrinsic::exp2:
1734 return true;
1735 case Intrinsic::sqrt:
1736 case Intrinsic::fabs:
1737 case Intrinsic::copysign:
1738 case Intrinsic::floor:
1739 case Intrinsic::ceil:
1740 case Intrinsic::trunc:
1741 case Intrinsic::rint:
1742 case Intrinsic::nearbyint:
1743 case Intrinsic::round:
1744 case Intrinsic::canonicalize:
1745 case Intrinsic::lround:
1746 case Intrinsic::llround:
1747 case Intrinsic::lrint:
1748 case Intrinsic::llrint:
1749 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
1750 return true;
1751 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
1752 return true;
1753 // Some operations can be handled by vector instructions and assume
1754 // unsupported vectors will be expanded into supported scalar ones.
1755 // TODO Handle scalar operations properly.
1756 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
1757 case Intrinsic::masked_store:
1758 case Intrinsic::masked_load:
1759 case Intrinsic::masked_gather:
1760 case Intrinsic::masked_scatter:
1761 return !ST->hasMVEIntegerOps();
1762 case Intrinsic::sadd_with_overflow:
1763 case Intrinsic::uadd_with_overflow:
1764 case Intrinsic::ssub_with_overflow:
1765 case Intrinsic::usub_with_overflow:
1766 case Intrinsic::sadd_sat:
1767 case Intrinsic::uadd_sat:
1768 case Intrinsic::ssub_sat:
1769 case Intrinsic::usub_sat:
1770 return false;
1773 return BaseT::isLoweredToCall(F);
1776 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
1777 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
1778 EVT VT = TLI->getValueType(DL, I.getType(), true);
1779 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
1780 return true;
1782 // Check if an intrinsic will be lowered to a call and assume that any
1783 // other CallInst will generate a bl.
1784 if (auto *Call = dyn_cast<CallInst>(&I)) {
1785 if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
1786 switch(II->getIntrinsicID()) {
1787 case Intrinsic::memcpy:
1788 case Intrinsic::memset:
1789 case Intrinsic::memmove:
1790 return getNumMemOps(II) == -1;
1791 default:
1792 if (const Function *F = Call->getCalledFunction())
1793 return isLoweredToCall(F);
1796 return true;
1799 // FPv5 provides conversions between integer, double-precision,
1800 // single-precision, and half-precision formats.
1801 switch (I.getOpcode()) {
1802 default:
1803 break;
1804 case Instruction::FPToSI:
1805 case Instruction::FPToUI:
1806 case Instruction::SIToFP:
1807 case Instruction::UIToFP:
1808 case Instruction::FPTrunc:
1809 case Instruction::FPExt:
1810 return !ST->hasFPARMv8Base();
1813 // FIXME: Unfortunately the approach of checking the Operation Action does
1814 // not catch all cases of Legalization that use library calls. Our
1815 // Legalization step categorizes some transformations into library calls as
1816 // Custom, Expand or even Legal when doing type legalization. So for now
1817 // we have to special case for instance the SDIV of 64bit integers and the
1818 // use of floating point emulation.
1819 if (VT.isInteger() && VT.getSizeInBits() >= 64) {
1820 switch (ISD) {
1821 default:
1822 break;
1823 case ISD::SDIV:
1824 case ISD::UDIV:
1825 case ISD::SREM:
1826 case ISD::UREM:
1827 case ISD::SDIVREM:
1828 case ISD::UDIVREM:
1829 return true;
1833 // Assume all other non-float operations are supported.
1834 if (!VT.isFloatingPoint())
1835 return false;
1837 // We'll need a library call to handle most floats when using soft.
1838 if (TLI->useSoftFloat()) {
1839 switch (I.getOpcode()) {
1840 default:
1841 return true;
1842 case Instruction::Alloca:
1843 case Instruction::Load:
1844 case Instruction::Store:
1845 case Instruction::Select:
1846 case Instruction::PHI:
1847 return false;
1851 // We'll need a libcall to perform double precision operations on a single
1852 // precision only FPU.
1853 if (I.getType()->isDoubleTy() && !ST->hasFP64())
1854 return true;
1856 // Likewise for half precision arithmetic.
1857 if (I.getType()->isHalfTy() && !ST->hasFullFP16())
1858 return true;
1860 return false;
1863 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1864 AssumptionCache &AC,
1865 TargetLibraryInfo *LibInfo,
1866 HardwareLoopInfo &HWLoopInfo) {
1867 // Low-overhead branches are only supported in the 'low-overhead branch'
1868 // extension of v8.1-m.
1869 if (!ST->hasLOB() || DisableLowOverheadLoops) {
1870 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
1871 return false;
1874 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
1875 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
1876 return false;
1879 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1880 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1881 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
1882 return false;
1885 const SCEV *TripCountSCEV =
1886 SE.getAddExpr(BackedgeTakenCount,
1887 SE.getOne(BackedgeTakenCount->getType()));
1889 // We need to store the trip count in LR, a 32-bit register.
1890 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
1891 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
1892 return false;
1895 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
1896 // point in generating a hardware loop if that's going to happen.
1898 auto IsHardwareLoopIntrinsic = [](Instruction &I) {
1899 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
1900 switch (Call->getIntrinsicID()) {
1901 default:
1902 break;
1903 case Intrinsic::start_loop_iterations:
1904 case Intrinsic::test_start_loop_iterations:
1905 case Intrinsic::loop_decrement:
1906 case Intrinsic::loop_decrement_reg:
1907 return true;
1910 return false;
1913 // Scan the instructions to see if there's any that we know will turn into a
1914 // call or if this loop is already a low-overhead loop or will become a tail
1915 // predicated loop.
1916 bool IsTailPredLoop = false;
1917 auto ScanLoop = [&](Loop *L) {
1918 for (auto *BB : L->getBlocks()) {
1919 for (auto &I : *BB) {
1920 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
1921 isa<InlineAsm>(I)) {
1922 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
1923 return false;
1925 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1926 IsTailPredLoop |=
1927 II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
1928 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
1929 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
1930 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
1931 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
1934 return true;
1937 // Visit inner loops.
1938 for (auto Inner : *L)
1939 if (!ScanLoop(Inner))
1940 return false;
1942 if (!ScanLoop(L))
1943 return false;
1945 // TODO: Check whether the trip count calculation is expensive. If L is the
1946 // inner loop but we know it has a low trip count, calculating that trip
1947 // count (in the parent loop) may be detrimental.
1949 LLVMContext &C = L->getHeader()->getContext();
1950 HWLoopInfo.CounterInReg = true;
1951 HWLoopInfo.IsNestingLegal = false;
1952 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
1953 HWLoopInfo.CountType = Type::getInt32Ty(C);
1954 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
1955 return true;
1958 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
1959 // We don't allow icmp's, and because we only look at single block loops,
1960 // we simply count the icmps, i.e. there should only be 1 for the backedge.
1961 if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
1962 return false;
1964 if (isa<FCmpInst>(&I))
1965 return false;
1967 // We could allow extending/narrowing FP loads/stores, but codegen is
1968 // too inefficient so reject this for now.
1969 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
1970 return false;
1972 // Extends have to be extending-loads
1973 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
1974 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
1975 return false;
1977 // Truncs have to be narrowing-stores
1978 if (isa<TruncInst>(&I) )
1979 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
1980 return false;
1982 return true;
1985 // To set up a tail-predicated loop, we need to know the total number of
1986 // elements processed by that loop. Thus, we need to determine the element
1987 // size and:
1988 // 1) it should be uniform for all operations in the vector loop, so we
1989 // e.g. don't want any widening/narrowing operations.
1990 // 2) it should be smaller than i64s because we don't have vector operations
1991 // that work on i64s.
1992 // 3) we don't want elements to be reversed or shuffled, to make sure the
1993 // tail-predication masks/predicates the right lanes.
1995 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1996 const DataLayout &DL,
1997 const LoopAccessInfo *LAI) {
1998 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2000 // If there are live-out values, it is probably a reduction. We can predicate
2001 // most reduction operations freely under MVE using a combination of
2002 // prefer-predicated-reduction-select and inloop reductions. We limit this to
2003 // floating point and integer reductions, but don't check for operators
2004 // specifically here. If the value ends up not being a reduction (and so the
2005 // vectorizer cannot tailfold the loop), we should fall back to standard
2006 // vectorization automatically.
2007 SmallVector< Instruction *, 8 > LiveOuts;
2008 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
2009 bool ReductionsDisabled =
2010 EnableTailPredication == TailPredication::EnabledNoReductions ||
2011 EnableTailPredication == TailPredication::ForceEnabledNoReductions;
2013 for (auto *I : LiveOuts) {
2014 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
2015 !I->getType()->isHalfTy()) {
2016 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2017 "live-out value\n");
2018 return false;
2020 if (ReductionsDisabled) {
2021 LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2022 return false;
2026 // Next, check that all instructions can be tail-predicated.
2027 PredicatedScalarEvolution PSE = LAI->getPSE();
2028 SmallVector<Instruction *, 16> LoadStores;
2029 int ICmpCount = 0;
2031 for (BasicBlock *BB : L->blocks()) {
2032 for (Instruction &I : BB->instructionsWithoutDebug()) {
2033 if (isa<PHINode>(&I))
2034 continue;
2035 if (!canTailPredicateInstruction(I, ICmpCount)) {
2036 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
2037 return false;
2040 Type *T = I.getType();
2041 if (T->isPointerTy())
2042 T = T->getPointerElementType();
2044 if (T->getScalarSizeInBits() > 32) {
2045 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
2046 return false;
2048 if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
2049 Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1);
2050 int64_t NextStride = getPtrStride(PSE, Ptr, L);
2051 if (NextStride == 1) {
2052 // TODO: for now only allow consecutive strides of 1. We could support
2053 // other strides as long as it is uniform, but let's keep it simple
2054 // for now.
2055 continue;
2056 } else if (NextStride == -1 ||
2057 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
2058 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
2059 LLVM_DEBUG(dbgs()
2060 << "Consecutive strides of 2 found, vld2/vstr2 can't "
2061 "be tail-predicated\n.");
2062 return false;
2063 // TODO: don't tail predicate if there is a reversed load?
2064 } else if (EnableMaskedGatherScatters) {
2065 // Gather/scatters do allow loading from arbitrary strides, at
2066 // least if they are loop invariant.
2067 // TODO: Loop variant strides should in theory work, too, but
2068 // this requires further testing.
2069 const SCEV *PtrScev =
2070 replaceSymbolicStrideSCEV(PSE, llvm::ValueToValueMap(), Ptr);
2071 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
2072 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
2073 if (PSE.getSE()->isLoopInvariant(Step, L))
2074 continue;
2077 LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2078 "tail-predicate\n.");
2079 return false;
2084 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2085 return true;
2088 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
2089 ScalarEvolution &SE,
2090 AssumptionCache &AC,
2091 TargetLibraryInfo *TLI,
2092 DominatorTree *DT,
2093 const LoopAccessInfo *LAI) {
2094 if (!EnableTailPredication) {
2095 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2096 return false;
2099 // Creating a predicated vector loop is the first step for generating a
2100 // tail-predicated hardware loop, for which we need the MVE masked
2101 // load/stores instructions:
2102 if (!ST->hasMVEIntegerOps())
2103 return false;
2105 // For now, restrict this to single block loops.
2106 if (L->getNumBlocks() > 1) {
2107 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2108 "loop.\n");
2109 return false;
2112 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2114 HardwareLoopInfo HWLoopInfo(L);
2115 if (!HWLoopInfo.canAnalyze(*LI)) {
2116 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2117 "analyzable.\n");
2118 return false;
2121 // This checks if we have the low-overhead branch architecture
2122 // extension, and if we will create a hardware-loop:
2123 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
2124 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2125 "profitable.\n");
2126 return false;
2129 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
2130 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2131 "a candidate.\n");
2132 return false;
2135 return canTailPredicateLoop(L, LI, SE, DL, LAI);
2138 bool ARMTTIImpl::emitGetActiveLaneMask() const {
2139 if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
2140 return false;
2142 // Intrinsic @llvm.get.active.lane.mask is supported.
2143 // It is used in the MVETailPredication pass, which requires the number of
2144 // elements processed by this vector loop to setup the tail-predicated
2145 // loop.
2146 return true;
2148 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2149 TTI::UnrollingPreferences &UP,
2150 OptimizationRemarkEmitter *ORE) {
2151 // Enable Upper bound unrolling universally, not dependant upon the conditions
2152 // below.
2153 UP.UpperBound = true;
2155 // Only currently enable these preferences for M-Class cores.
2156 if (!ST->isMClass())
2157 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
2159 // Disable loop unrolling for Oz and Os.
2160 UP.OptSizeThreshold = 0;
2161 UP.PartialOptSizeThreshold = 0;
2162 if (L->getHeader()->getParent()->hasOptSize())
2163 return;
2165 SmallVector<BasicBlock*, 4> ExitingBlocks;
2166 L->getExitingBlocks(ExitingBlocks);
2167 LLVM_DEBUG(dbgs() << "Loop has:\n"
2168 << "Blocks: " << L->getNumBlocks() << "\n"
2169 << "Exit blocks: " << ExitingBlocks.size() << "\n");
2171 // Only allow another exit other than the latch. This acts as an early exit
2172 // as it mirrors the profitability calculation of the runtime unroller.
2173 if (ExitingBlocks.size() > 2)
2174 return;
2176 // Limit the CFG of the loop body for targets with a branch predictor.
2177 // Allowing 4 blocks permits if-then-else diamonds in the body.
2178 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
2179 return;
2181 // Don't unroll vectorized loops, including the remainder loop
2182 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
2183 return;
2185 // Scan the loop: don't unroll loops with calls as this could prevent
2186 // inlining.
2187 InstructionCost Cost = 0;
2188 for (auto *BB : L->getBlocks()) {
2189 for (auto &I : *BB) {
2190 // Don't unroll vectorised loop. MVE does not benefit from it as much as
2191 // scalar code.
2192 if (I.getType()->isVectorTy())
2193 return;
2195 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2196 if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2197 if (!isLoweredToCall(F))
2198 continue;
2200 return;
2203 SmallVector<const Value*, 4> Operands(I.operand_values());
2204 Cost +=
2205 getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
2209 // On v6m cores, there are very few registers available. We can easily end up
2210 // spilling and reloading more registers in an unrolled loop. Look at the
2211 // number of LCSSA phis as a rough measure of how many registers will need to
2212 // be live out of the loop, reducing the default unroll count if more than 1
2213 // value is needed. In the long run, all of this should be being learnt by a
2214 // machine.
2215 unsigned UnrollCount = 4;
2216 if (ST->isThumb1Only()) {
2217 unsigned ExitingValues = 0;
2218 SmallVector<BasicBlock *, 4> ExitBlocks;
2219 L->getExitBlocks(ExitBlocks);
2220 for (auto *Exit : ExitBlocks) {
2221 // Count the number of LCSSA phis. Exclude values coming from GEP's as
2222 // only the last is expected to be needed for address operands.
2223 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
2224 return PH.getNumOperands() != 1 ||
2225 !isa<GetElementPtrInst>(PH.getOperand(0));
2227 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
2229 if (ExitingValues)
2230 UnrollCount /= ExitingValues;
2231 if (UnrollCount <= 1)
2232 return;
2235 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
2236 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
2238 UP.Partial = true;
2239 UP.Runtime = true;
2240 UP.UnrollRemainder = true;
2241 UP.DefaultUnrollRuntimeCount = UnrollCount;
2242 UP.UnrollAndJam = true;
2243 UP.UnrollAndJamInnerLoopThreshold = 60;
2245 // Force unrolling small loops can be very useful because of the branch
2246 // taken cost of the backedge.
2247 if (Cost < 12)
2248 UP.Force = true;
2251 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2252 TTI::PeelingPreferences &PP) {
2253 BaseT::getPeelingPreferences(L, SE, PP);
2256 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
2257 TTI::ReductionFlags Flags) const {
2258 if (!ST->hasMVEIntegerOps())
2259 return false;
2261 unsigned ScalarBits = Ty->getScalarSizeInBits();
2262 switch (Opcode) {
2263 case Instruction::Add:
2264 return ScalarBits <= 64;
2265 default:
2266 return false;
2270 bool ARMTTIImpl::preferPredicatedReductionSelect(
2271 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
2272 if (!ST->hasMVEIntegerOps())
2273 return false;
2274 return true;