1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ARMFeatures.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMInstPrinter.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "TargetInfo/ARMTargetInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/ARMEHABI.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/SMLoc.h"
55 #include "llvm/Support/TargetParser.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
69 #define DEBUG_TYPE "asm-parser"
74 extern const MCInstrDesc ARMInsts
[];
75 } // end namespace llvm
79 enum class ImplicitItModeTy
{ Always
, Never
, ARMOnly
, ThumbOnly
};
81 static cl::opt
<ImplicitItModeTy
> ImplicitItMode(
82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly
),
83 cl::desc("Allow conditional instructions outdside of an IT block"),
84 cl::values(clEnumValN(ImplicitItModeTy::Always
, "always",
85 "Accept in both ISAs, emit implicit ITs in Thumb"),
86 clEnumValN(ImplicitItModeTy::Never
, "never",
87 "Warn in ARM, reject in Thumb"),
88 clEnumValN(ImplicitItModeTy::ARMOnly
, "arm",
89 "Accept in ARM, reject in Thumb"),
90 clEnumValN(ImplicitItModeTy::ThumbOnly
, "thumb",
91 "Warn in ARM, emit implicit ITs in Thumb")));
93 static cl::opt
<bool> AddBuildAttributes("arm-add-build-attributes",
96 enum VectorLaneTy
{ NoLanes
, AllLanes
, IndexedLane
};
98 static inline unsigned extractITMaskBit(unsigned Mask
, unsigned Position
) {
99 // Position==0 means we're not in an IT block at all. Position==1
100 // means we want the first state bit, which is always 0 (Then).
101 // Position==2 means we want the second state bit, stored at bit 3
102 // of Mask, and so on downwards. So (5 - Position) will shift the
103 // right bit down to bit 0, including the always-0 bit at bit 4 for
104 // the mandatory initial Then.
105 return (Mask
>> (5 - Position
) & 1);
108 class UnwindContext
{
109 using Locs
= SmallVector
<SMLoc
, 4>;
114 Locs PersonalityLocs
;
115 Locs PersonalityIndexLocs
;
116 Locs HandlerDataLocs
;
120 UnwindContext(MCAsmParser
&P
) : Parser(P
), FPReg(ARM::SP
) {}
122 bool hasFnStart() const { return !FnStartLocs
.empty(); }
123 bool cantUnwind() const { return !CantUnwindLocs
.empty(); }
124 bool hasHandlerData() const { return !HandlerDataLocs
.empty(); }
126 bool hasPersonality() const {
127 return !(PersonalityLocs
.empty() && PersonalityIndexLocs
.empty());
130 void recordFnStart(SMLoc L
) { FnStartLocs
.push_back(L
); }
131 void recordCantUnwind(SMLoc L
) { CantUnwindLocs
.push_back(L
); }
132 void recordPersonality(SMLoc L
) { PersonalityLocs
.push_back(L
); }
133 void recordHandlerData(SMLoc L
) { HandlerDataLocs
.push_back(L
); }
134 void recordPersonalityIndex(SMLoc L
) { PersonalityIndexLocs
.push_back(L
); }
136 void saveFPReg(int Reg
) { FPReg
= Reg
; }
137 int getFPReg() const { return FPReg
; }
139 void emitFnStartLocNotes() const {
140 for (Locs::const_iterator FI
= FnStartLocs
.begin(), FE
= FnStartLocs
.end();
142 Parser
.Note(*FI
, ".fnstart was specified here");
145 void emitCantUnwindLocNotes() const {
146 for (Locs::const_iterator UI
= CantUnwindLocs
.begin(),
147 UE
= CantUnwindLocs
.end(); UI
!= UE
; ++UI
)
148 Parser
.Note(*UI
, ".cantunwind was specified here");
151 void emitHandlerDataLocNotes() const {
152 for (Locs::const_iterator HI
= HandlerDataLocs
.begin(),
153 HE
= HandlerDataLocs
.end(); HI
!= HE
; ++HI
)
154 Parser
.Note(*HI
, ".handlerdata was specified here");
157 void emitPersonalityLocNotes() const {
158 for (Locs::const_iterator PI
= PersonalityLocs
.begin(),
159 PE
= PersonalityLocs
.end(),
160 PII
= PersonalityIndexLocs
.begin(),
161 PIE
= PersonalityIndexLocs
.end();
162 PI
!= PE
|| PII
!= PIE
;) {
163 if (PI
!= PE
&& (PII
== PIE
|| PI
->getPointer() < PII
->getPointer()))
164 Parser
.Note(*PI
++, ".personality was specified here");
165 else if (PII
!= PIE
&& (PI
== PE
|| PII
->getPointer() < PI
->getPointer()))
166 Parser
.Note(*PII
++, ".personalityindex was specified here");
168 llvm_unreachable(".personality and .personalityindex cannot be "
169 "at the same location");
174 FnStartLocs
= Locs();
175 CantUnwindLocs
= Locs();
176 PersonalityLocs
= Locs();
177 HandlerDataLocs
= Locs();
178 PersonalityIndexLocs
= Locs();
183 // Various sets of ARM instruction mnemonics which are used by the asm parser
184 class ARMMnemonicSets
{
186 StringSet
<> CDEWithVPTSuffix
;
188 ARMMnemonicSets(const MCSubtargetInfo
&STI
);
190 /// Returns true iff a given mnemonic is a CDE instruction
191 bool isCDEInstr(StringRef Mnemonic
) {
192 // Quick check before searching the set
193 if (!Mnemonic
.startswith("cx") && !Mnemonic
.startswith("vcx"))
195 return CDE
.count(Mnemonic
);
198 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
199 /// (possibly with a predication suffix "e" or "t")
200 bool isVPTPredicableCDEInstr(StringRef Mnemonic
) {
201 if (!Mnemonic
.startswith("vcx"))
203 return CDEWithVPTSuffix
.count(Mnemonic
);
206 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction
207 /// (possibly with a condition suffix)
208 bool isITPredicableCDEInstr(StringRef Mnemonic
) {
209 if (!Mnemonic
.startswith("cx"))
211 return Mnemonic
.startswith("cx1a") || Mnemonic
.startswith("cx1da") ||
212 Mnemonic
.startswith("cx2a") || Mnemonic
.startswith("cx2da") ||
213 Mnemonic
.startswith("cx3a") || Mnemonic
.startswith("cx3da");
216 /// Return true iff a given mnemonic is an integer CDE instruction with
217 /// dual-register destination
218 bool isCDEDualRegInstr(StringRef Mnemonic
) {
219 if (!Mnemonic
.startswith("cx"))
221 return Mnemonic
== "cx1d" || Mnemonic
== "cx1da" ||
222 Mnemonic
== "cx2d" || Mnemonic
== "cx2da" ||
223 Mnemonic
== "cx3d" || Mnemonic
== "cx3da";
227 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo
&STI
) {
228 for (StringRef Mnemonic
: { "cx1", "cx1a", "cx1d", "cx1da",
229 "cx2", "cx2a", "cx2d", "cx2da",
230 "cx3", "cx3a", "cx3d", "cx3da", })
231 CDE
.insert(Mnemonic
);
232 for (StringRef Mnemonic
:
233 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
234 CDE
.insert(Mnemonic
);
235 CDEWithVPTSuffix
.insert(Mnemonic
);
236 CDEWithVPTSuffix
.insert(std::string(Mnemonic
) + "t");
237 CDEWithVPTSuffix
.insert(std::string(Mnemonic
) + "e");
241 class ARMAsmParser
: public MCTargetAsmParser
{
242 const MCRegisterInfo
*MRI
;
246 ARMTargetStreamer
&getTargetStreamer() {
247 assert(getParser().getStreamer().getTargetStreamer() &&
248 "do not have a target streamer");
249 MCTargetStreamer
&TS
= *getParser().getStreamer().getTargetStreamer();
250 return static_cast<ARMTargetStreamer
&>(TS
);
253 // Map of register aliases registers via the .req directive.
254 StringMap
<unsigned> RegisterReqs
;
256 bool NextSymbolIsThumb
;
258 bool useImplicitITThumb() const {
259 return ImplicitItMode
== ImplicitItModeTy::Always
||
260 ImplicitItMode
== ImplicitItModeTy::ThumbOnly
;
263 bool useImplicitITARM() const {
264 return ImplicitItMode
== ImplicitItModeTy::Always
||
265 ImplicitItMode
== ImplicitItModeTy::ARMOnly
;
269 ARMCC::CondCodes Cond
; // Condition for IT block.
270 unsigned Mask
:4; // Condition mask for instructions.
271 // Starting at first 1 (from lsb).
272 // '1' condition as indicated in IT.
273 // '0' inverse of condition (else).
274 // Count of instructions in IT block is
275 // 4 - trailingzeroes(mask)
276 // Note that this does not have the same encoding
277 // as in the IT instruction, which also depends
278 // on the low bit of the condition code.
280 unsigned CurPosition
; // Current position in parsing of IT
281 // block. In range [0,4], with 0 being the IT
282 // instruction itself. Initialized according to
283 // count of instructions in block. ~0U if no
286 bool IsExplicit
; // true - The IT instruction was present in the
287 // input, we should not modify it.
288 // false - The IT instruction was added
289 // implicitly, we can extend it if that
293 SmallVector
<MCInst
, 4> PendingConditionalInsts
;
295 void flushPendingInstructions(MCStreamer
&Out
) override
{
296 if (!inImplicitITBlock()) {
297 assert(PendingConditionalInsts
.size() == 0);
301 // Emit the IT instruction
303 ITInst
.setOpcode(ARM::t2IT
);
304 ITInst
.addOperand(MCOperand::createImm(ITState
.Cond
));
305 ITInst
.addOperand(MCOperand::createImm(ITState
.Mask
));
306 Out
.emitInstruction(ITInst
, getSTI());
308 // Emit the conditonal instructions
309 assert(PendingConditionalInsts
.size() <= 4);
310 for (const MCInst
&Inst
: PendingConditionalInsts
) {
311 Out
.emitInstruction(Inst
, getSTI());
313 PendingConditionalInsts
.clear();
315 // Clear the IT state
317 ITState
.CurPosition
= ~0U;
320 bool inITBlock() { return ITState
.CurPosition
!= ~0U; }
321 bool inExplicitITBlock() { return inITBlock() && ITState
.IsExplicit
; }
322 bool inImplicitITBlock() { return inITBlock() && !ITState
.IsExplicit
; }
324 bool lastInITBlock() {
325 return ITState
.CurPosition
== 4 - countTrailingZeros(ITState
.Mask
);
328 void forwardITPosition() {
329 if (!inITBlock()) return;
330 // Move to the next instruction in the IT block, if there is one. If not,
331 // mark the block as done, except for implicit IT blocks, which we leave
332 // open until we find an instruction that can't be added to it.
333 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
334 if (++ITState
.CurPosition
== 5 - TZ
&& ITState
.IsExplicit
)
335 ITState
.CurPosition
= ~0U; // Done with the IT block after this.
338 // Rewind the state of the current IT block, removing the last slot from it.
339 void rewindImplicitITPosition() {
340 assert(inImplicitITBlock());
341 assert(ITState
.CurPosition
> 1);
342 ITState
.CurPosition
--;
343 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
344 unsigned NewMask
= 0;
345 NewMask
|= ITState
.Mask
& (0xC << TZ
);
346 NewMask
|= 0x2 << TZ
;
347 ITState
.Mask
= NewMask
;
350 // Rewind the state of the current IT block, removing the last slot from it.
351 // If we were at the first slot, this closes the IT block.
352 void discardImplicitITBlock() {
353 assert(inImplicitITBlock());
354 assert(ITState
.CurPosition
== 1);
355 ITState
.CurPosition
= ~0U;
358 // Return the low-subreg of a given Q register.
359 unsigned getDRegFromQReg(unsigned QReg
) const {
360 return MRI
->getSubReg(QReg
, ARM::dsub_0
);
363 // Get the condition code corresponding to the current IT block slot.
364 ARMCC::CondCodes
currentITCond() {
365 unsigned MaskBit
= extractITMaskBit(ITState
.Mask
, ITState
.CurPosition
);
366 return MaskBit
? ARMCC::getOppositeCondition(ITState
.Cond
) : ITState
.Cond
;
369 // Invert the condition of the current IT block slot without changing any
370 // other slots in the same block.
371 void invertCurrentITCondition() {
372 if (ITState
.CurPosition
== 1) {
373 ITState
.Cond
= ARMCC::getOppositeCondition(ITState
.Cond
);
375 ITState
.Mask
^= 1 << (5 - ITState
.CurPosition
);
379 // Returns true if the current IT block is full (all 4 slots used).
380 bool isITBlockFull() {
381 return inITBlock() && (ITState
.Mask
& 1);
384 // Extend the current implicit IT block to have one more slot with the given
386 void extendImplicitITBlock(ARMCC::CondCodes Cond
) {
387 assert(inImplicitITBlock());
388 assert(!isITBlockFull());
389 assert(Cond
== ITState
.Cond
||
390 Cond
== ARMCC::getOppositeCondition(ITState
.Cond
));
391 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
392 unsigned NewMask
= 0;
393 // Keep any existing condition bits.
394 NewMask
|= ITState
.Mask
& (0xE << TZ
);
395 // Insert the new condition bit.
396 NewMask
|= (Cond
!= ITState
.Cond
) << TZ
;
397 // Move the trailing 1 down one bit.
398 NewMask
|= 1 << (TZ
- 1);
399 ITState
.Mask
= NewMask
;
402 // Create a new implicit IT block with a dummy condition code.
403 void startImplicitITBlock() {
404 assert(!inITBlock());
405 ITState
.Cond
= ARMCC::AL
;
407 ITState
.CurPosition
= 1;
408 ITState
.IsExplicit
= false;
411 // Create a new explicit IT block with the given condition and mask.
412 // The mask should be in the format used in ARMOperand and
413 // MCOperand, with a 1 implying 'e', regardless of the low bit of
415 void startExplicitITBlock(ARMCC::CondCodes Cond
, unsigned Mask
) {
416 assert(!inITBlock());
419 ITState
.CurPosition
= 0;
420 ITState
.IsExplicit
= true;
425 unsigned CurPosition
;
427 bool inVPTBlock() { return VPTState
.CurPosition
!= ~0U; }
428 void forwardVPTPosition() {
429 if (!inVPTBlock()) return;
430 unsigned TZ
= countTrailingZeros(VPTState
.Mask
);
431 if (++VPTState
.CurPosition
== 5 - TZ
)
432 VPTState
.CurPosition
= ~0U;
435 void Note(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
436 return getParser().Note(L
, Msg
, Range
);
439 bool Warning(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
440 return getParser().Warning(L
, Msg
, Range
);
443 bool Error(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
444 return getParser().Error(L
, Msg
, Range
);
447 bool validatetLDMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
448 unsigned ListNo
, bool IsARPop
= false);
449 bool validatetSTMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
452 int tryParseRegister();
453 bool tryParseRegisterWithWriteBack(OperandVector
&);
454 int tryParseShiftRegister(OperandVector
&);
455 bool parseRegisterList(OperandVector
&, bool EnforceOrder
= true);
456 bool parseMemory(OperandVector
&);
457 bool parseOperand(OperandVector
&, StringRef Mnemonic
);
458 bool parsePrefix(ARMMCExpr::VariantKind
&RefKind
);
459 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc
&ShiftType
,
460 unsigned &ShiftAmount
);
461 bool parseLiteralValues(unsigned Size
, SMLoc L
);
462 bool parseDirectiveThumb(SMLoc L
);
463 bool parseDirectiveARM(SMLoc L
);
464 bool parseDirectiveThumbFunc(SMLoc L
);
465 bool parseDirectiveCode(SMLoc L
);
466 bool parseDirectiveSyntax(SMLoc L
);
467 bool parseDirectiveReq(StringRef Name
, SMLoc L
);
468 bool parseDirectiveUnreq(SMLoc L
);
469 bool parseDirectiveArch(SMLoc L
);
470 bool parseDirectiveEabiAttr(SMLoc L
);
471 bool parseDirectiveCPU(SMLoc L
);
472 bool parseDirectiveFPU(SMLoc L
);
473 bool parseDirectiveFnStart(SMLoc L
);
474 bool parseDirectiveFnEnd(SMLoc L
);
475 bool parseDirectiveCantUnwind(SMLoc L
);
476 bool parseDirectivePersonality(SMLoc L
);
477 bool parseDirectiveHandlerData(SMLoc L
);
478 bool parseDirectiveSetFP(SMLoc L
);
479 bool parseDirectivePad(SMLoc L
);
480 bool parseDirectiveRegSave(SMLoc L
, bool IsVector
);
481 bool parseDirectiveInst(SMLoc L
, char Suffix
= '\0');
482 bool parseDirectiveLtorg(SMLoc L
);
483 bool parseDirectiveEven(SMLoc L
);
484 bool parseDirectivePersonalityIndex(SMLoc L
);
485 bool parseDirectiveUnwindRaw(SMLoc L
);
486 bool parseDirectiveTLSDescSeq(SMLoc L
);
487 bool parseDirectiveMovSP(SMLoc L
);
488 bool parseDirectiveObjectArch(SMLoc L
);
489 bool parseDirectiveArchExtension(SMLoc L
);
490 bool parseDirectiveAlign(SMLoc L
);
491 bool parseDirectiveThumbSet(SMLoc L
);
493 bool isMnemonicVPTPredicable(StringRef Mnemonic
, StringRef ExtraToken
);
494 StringRef
splitMnemonic(StringRef Mnemonic
, StringRef ExtraToken
,
495 unsigned &PredicationCode
,
496 unsigned &VPTPredicationCode
, bool &CarrySetting
,
497 unsigned &ProcessorIMod
, StringRef
&ITMask
);
498 void getMnemonicAcceptInfo(StringRef Mnemonic
, StringRef ExtraToken
,
499 StringRef FullInst
, bool &CanAcceptCarrySet
,
500 bool &CanAcceptPredicationCode
,
501 bool &CanAcceptVPTPredicationCode
);
502 bool enableArchExtFeature(StringRef Name
, SMLoc
&ExtLoc
);
504 void tryConvertingToTwoOperandForm(StringRef Mnemonic
, bool CarrySetting
,
505 OperandVector
&Operands
);
506 bool CDEConvertDualRegOperand(StringRef Mnemonic
, OperandVector
&Operands
);
508 bool isThumb() const {
509 // FIXME: Can tablegen auto-generate this?
510 return getSTI().getFeatureBits()[ARM::ModeThumb
];
513 bool isThumbOne() const {
514 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2
];
517 bool isThumbTwo() const {
518 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2
];
521 bool hasThumb() const {
522 return getSTI().getFeatureBits()[ARM::HasV4TOps
];
525 bool hasThumb2() const {
526 return getSTI().getFeatureBits()[ARM::FeatureThumb2
];
529 bool hasV6Ops() const {
530 return getSTI().getFeatureBits()[ARM::HasV6Ops
];
533 bool hasV6T2Ops() const {
534 return getSTI().getFeatureBits()[ARM::HasV6T2Ops
];
537 bool hasV6MOps() const {
538 return getSTI().getFeatureBits()[ARM::HasV6MOps
];
541 bool hasV7Ops() const {
542 return getSTI().getFeatureBits()[ARM::HasV7Ops
];
545 bool hasV8Ops() const {
546 return getSTI().getFeatureBits()[ARM::HasV8Ops
];
549 bool hasV8MBaseline() const {
550 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps
];
553 bool hasV8MMainline() const {
554 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps
];
556 bool hasV8_1MMainline() const {
557 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps
];
559 bool hasMVE() const {
560 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps
];
562 bool hasMVEFloat() const {
563 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps
];
565 bool hasCDE() const {
566 return getSTI().getFeatureBits()[ARM::HasCDEOps
];
568 bool has8MSecExt() const {
569 return getSTI().getFeatureBits()[ARM::Feature8MSecExt
];
572 bool hasARM() const {
573 return !getSTI().getFeatureBits()[ARM::FeatureNoARM
];
576 bool hasDSP() const {
577 return getSTI().getFeatureBits()[ARM::FeatureDSP
];
580 bool hasD32() const {
581 return getSTI().getFeatureBits()[ARM::FeatureD32
];
584 bool hasV8_1aOps() const {
585 return getSTI().getFeatureBits()[ARM::HasV8_1aOps
];
588 bool hasRAS() const {
589 return getSTI().getFeatureBits()[ARM::FeatureRAS
];
593 MCSubtargetInfo
&STI
= copySTI();
594 auto FB
= ComputeAvailableFeatures(STI
.ToggleFeature(ARM::ModeThumb
));
595 setAvailableFeatures(FB
);
598 void FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
);
600 bool isMClass() const {
601 return getSTI().getFeatureBits()[ARM::FeatureMClass
];
604 /// @name Auto-generated Match Functions
607 #define GET_ASSEMBLER_HEADER
608 #include "ARMGenAsmMatcher.inc"
612 OperandMatchResultTy
parseITCondCode(OperandVector
&);
613 OperandMatchResultTy
parseCoprocNumOperand(OperandVector
&);
614 OperandMatchResultTy
parseCoprocRegOperand(OperandVector
&);
615 OperandMatchResultTy
parseCoprocOptionOperand(OperandVector
&);
616 OperandMatchResultTy
parseMemBarrierOptOperand(OperandVector
&);
617 OperandMatchResultTy
parseTraceSyncBarrierOptOperand(OperandVector
&);
618 OperandMatchResultTy
parseInstSyncBarrierOptOperand(OperandVector
&);
619 OperandMatchResultTy
parseProcIFlagsOperand(OperandVector
&);
620 OperandMatchResultTy
parseMSRMaskOperand(OperandVector
&);
621 OperandMatchResultTy
parseBankedRegOperand(OperandVector
&);
622 OperandMatchResultTy
parsePKHImm(OperandVector
&O
, StringRef Op
, int Low
,
624 OperandMatchResultTy
parsePKHLSLImm(OperandVector
&O
) {
625 return parsePKHImm(O
, "lsl", 0, 31);
627 OperandMatchResultTy
parsePKHASRImm(OperandVector
&O
) {
628 return parsePKHImm(O
, "asr", 1, 32);
630 OperandMatchResultTy
parseSetEndImm(OperandVector
&);
631 OperandMatchResultTy
parseShifterImm(OperandVector
&);
632 OperandMatchResultTy
parseRotImm(OperandVector
&);
633 OperandMatchResultTy
parseModImm(OperandVector
&);
634 OperandMatchResultTy
parseBitfield(OperandVector
&);
635 OperandMatchResultTy
parsePostIdxReg(OperandVector
&);
636 OperandMatchResultTy
parseAM3Offset(OperandVector
&);
637 OperandMatchResultTy
parseFPImm(OperandVector
&);
638 OperandMatchResultTy
parseVectorList(OperandVector
&);
639 OperandMatchResultTy
parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
,
642 // Asm Match Converter Methods
643 void cvtThumbMultiply(MCInst
&Inst
, const OperandVector
&);
644 void cvtThumbBranches(MCInst
&Inst
, const OperandVector
&);
645 void cvtMVEVMOVQtoDReg(MCInst
&Inst
, const OperandVector
&);
647 bool validateInstruction(MCInst
&Inst
, const OperandVector
&Ops
);
648 bool processInstruction(MCInst
&Inst
, const OperandVector
&Ops
, MCStreamer
&Out
);
649 bool shouldOmitCCOutOperand(StringRef Mnemonic
, OperandVector
&Operands
);
650 bool shouldOmitPredicateOperand(StringRef Mnemonic
, OperandVector
&Operands
);
651 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic
, OperandVector
&Operands
);
652 bool isITBlockTerminator(MCInst
&Inst
) const;
653 void fixupGNULDRDAlias(StringRef Mnemonic
, OperandVector
&Operands
);
654 bool validateLDRDSTRD(MCInst
&Inst
, const OperandVector
&Operands
,
655 bool Load
, bool ARMMode
, bool Writeback
);
658 enum ARMMatchResultTy
{
659 Match_RequiresITBlock
= FIRST_TARGET_MATCH_RESULT_TY
,
660 Match_RequiresNotITBlock
,
662 Match_RequiresThumb2
,
664 Match_RequiresFlagSetting
,
665 #define GET_OPERAND_DIAGNOSTIC_TYPES
666 #include "ARMGenAsmMatcher.inc"
670 ARMAsmParser(const MCSubtargetInfo
&STI
, MCAsmParser
&Parser
,
671 const MCInstrInfo
&MII
, const MCTargetOptions
&Options
)
672 : MCTargetAsmParser(Options
, STI
, MII
), UC(Parser
), MS(STI
) {
673 MCAsmParserExtension::Initialize(Parser
);
675 // Cache the MCRegisterInfo.
676 MRI
= getContext().getRegisterInfo();
678 // Initialize the set of available features.
679 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
681 // Add build attributes based on the selected target.
682 if (AddBuildAttributes
)
683 getTargetStreamer().emitTargetAttributes(STI
);
685 // Not in an ITBlock to start with.
686 ITState
.CurPosition
= ~0U;
688 VPTState
.CurPosition
= ~0U;
690 NextSymbolIsThumb
= false;
693 // Implementation of the MCTargetAsmParser interface:
694 bool ParseRegister(unsigned &RegNo
, SMLoc
&StartLoc
, SMLoc
&EndLoc
) override
;
695 OperandMatchResultTy
tryParseRegister(unsigned &RegNo
, SMLoc
&StartLoc
,
696 SMLoc
&EndLoc
) override
;
697 bool ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
698 SMLoc NameLoc
, OperandVector
&Operands
) override
;
699 bool ParseDirective(AsmToken DirectiveID
) override
;
701 unsigned validateTargetOperandClass(MCParsedAsmOperand
&Op
,
702 unsigned Kind
) override
;
703 unsigned checkTargetMatchPredicate(MCInst
&Inst
) override
;
705 bool MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
706 OperandVector
&Operands
, MCStreamer
&Out
,
708 bool MatchingInlineAsm
) override
;
709 unsigned MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
710 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
711 bool MatchingInlineAsm
, bool &EmitInITBlock
,
714 struct NearMissMessage
{
716 SmallString
<128> Message
;
719 const char *getCustomOperandDiag(ARMMatchResultTy MatchError
);
721 void FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
722 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
723 SMLoc IDLoc
, OperandVector
&Operands
);
724 void ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
, SMLoc IDLoc
,
725 OperandVector
&Operands
);
727 void doBeforeLabelEmit(MCSymbol
*Symbol
) override
;
729 void onLabelParsed(MCSymbol
*Symbol
) override
;
732 /// ARMOperand - Instances of this class represent a parsed ARM machine
734 class ARMOperand
: public MCParsedAsmOperand
{
745 k_InstSyncBarrierOpt
,
746 k_TraceSyncBarrierOpt
,
755 k_RegisterListWithAPSR
,
758 k_FPSRegisterListWithVPR
,
759 k_FPDRegisterListWithVPR
,
761 k_VectorListAllLanes
,
768 k_ConstantPoolImmediate
,
769 k_BitfieldDescriptor
,
773 SMLoc StartLoc
, EndLoc
, AlignmentLoc
;
774 SmallVector
<unsigned, 8> Registers
;
777 ARMCC::CondCodes Val
;
781 ARMVCC::VPTCodes Val
;
788 struct CoprocOptionOp
{
801 ARM_ISB::InstSyncBOpt Val
;
805 ARM_TSB::TraceSyncBOpt Val
;
809 ARM_PROC::IFlags Val
;
829 // A vector register list is a sequential list of 1 to 4 registers.
830 struct VectorListOp
{
837 struct VectorIndexOp
{
845 /// Combined record for all forms of ARM address expressions.
848 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
850 const MCExpr
*OffsetImm
; // Offset immediate value
851 unsigned OffsetRegNum
; // Offset register num, when OffsetImm == NULL
852 ARM_AM::ShiftOpc ShiftType
; // Shift type for OffsetReg
853 unsigned ShiftImm
; // shift for OffsetReg.
854 unsigned Alignment
; // 0 = no alignment specified
855 // n = alignment in bytes (2, 4, 8, 16, or 32)
856 unsigned isNegative
: 1; // Negated OffsetReg? (~'U' bit)
859 struct PostIdxRegOp
{
862 ARM_AM::ShiftOpc ShiftTy
;
866 struct ShifterImmOp
{
871 struct RegShiftedRegOp
{
872 ARM_AM::ShiftOpc ShiftTy
;
878 struct RegShiftedImmOp
{
879 ARM_AM::ShiftOpc ShiftTy
;
902 struct CoprocOptionOp CoprocOption
;
903 struct MBOptOp MBOpt
;
904 struct ISBOptOp ISBOpt
;
905 struct TSBOptOp TSBOpt
;
906 struct ITMaskOp ITMask
;
907 struct IFlagsOp IFlags
;
908 struct MMaskOp MMask
;
909 struct BankedRegOp BankedReg
;
912 struct VectorListOp VectorList
;
913 struct VectorIndexOp VectorIndex
;
915 struct MemoryOp Memory
;
916 struct PostIdxRegOp PostIdxReg
;
917 struct ShifterImmOp ShifterImm
;
918 struct RegShiftedRegOp RegShiftedReg
;
919 struct RegShiftedImmOp RegShiftedImm
;
920 struct RotImmOp RotImm
;
921 struct ModImmOp ModImm
;
922 struct BitfieldOp Bitfield
;
926 ARMOperand(KindTy K
) : MCParsedAsmOperand(), Kind(K
) {}
928 /// getStartLoc - Get the location of the first token of this operand.
929 SMLoc
getStartLoc() const override
{ return StartLoc
; }
931 /// getEndLoc - Get the location of the last token of this operand.
932 SMLoc
getEndLoc() const override
{ return EndLoc
; }
934 /// getLocRange - Get the range between the first and last token of this
936 SMRange
getLocRange() const { return SMRange(StartLoc
, EndLoc
); }
938 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
939 SMLoc
getAlignmentLoc() const {
940 assert(Kind
== k_Memory
&& "Invalid access!");
944 ARMCC::CondCodes
getCondCode() const {
945 assert(Kind
== k_CondCode
&& "Invalid access!");
949 ARMVCC::VPTCodes
getVPTPred() const {
950 assert(isVPTPred() && "Invalid access!");
954 unsigned getCoproc() const {
955 assert((Kind
== k_CoprocNum
|| Kind
== k_CoprocReg
) && "Invalid access!");
959 StringRef
getToken() const {
960 assert(Kind
== k_Token
&& "Invalid access!");
961 return StringRef(Tok
.Data
, Tok
.Length
);
964 unsigned getReg() const override
{
965 assert((Kind
== k_Register
|| Kind
== k_CCOut
) && "Invalid access!");
969 const SmallVectorImpl
<unsigned> &getRegList() const {
970 assert((Kind
== k_RegisterList
|| Kind
== k_RegisterListWithAPSR
||
971 Kind
== k_DPRRegisterList
|| Kind
== k_SPRRegisterList
||
972 Kind
== k_FPSRegisterListWithVPR
||
973 Kind
== k_FPDRegisterListWithVPR
) &&
978 const MCExpr
*getImm() const {
979 assert(isImm() && "Invalid access!");
983 const MCExpr
*getConstantPoolImm() const {
984 assert(isConstantPoolImm() && "Invalid access!");
988 unsigned getVectorIndex() const {
989 assert(Kind
== k_VectorIndex
&& "Invalid access!");
990 return VectorIndex
.Val
;
993 ARM_MB::MemBOpt
getMemBarrierOpt() const {
994 assert(Kind
== k_MemBarrierOpt
&& "Invalid access!");
998 ARM_ISB::InstSyncBOpt
getInstSyncBarrierOpt() const {
999 assert(Kind
== k_InstSyncBarrierOpt
&& "Invalid access!");
1003 ARM_TSB::TraceSyncBOpt
getTraceSyncBarrierOpt() const {
1004 assert(Kind
== k_TraceSyncBarrierOpt
&& "Invalid access!");
1008 ARM_PROC::IFlags
getProcIFlags() const {
1009 assert(Kind
== k_ProcIFlags
&& "Invalid access!");
1013 unsigned getMSRMask() const {
1014 assert(Kind
== k_MSRMask
&& "Invalid access!");
1018 unsigned getBankedReg() const {
1019 assert(Kind
== k_BankedReg
&& "Invalid access!");
1020 return BankedReg
.Val
;
1023 bool isCoprocNum() const { return Kind
== k_CoprocNum
; }
1024 bool isCoprocReg() const { return Kind
== k_CoprocReg
; }
1025 bool isCoprocOption() const { return Kind
== k_CoprocOption
; }
1026 bool isCondCode() const { return Kind
== k_CondCode
; }
1027 bool isVPTPred() const { return Kind
== k_VPTPred
; }
1028 bool isCCOut() const { return Kind
== k_CCOut
; }
1029 bool isITMask() const { return Kind
== k_ITCondMask
; }
1030 bool isITCondCode() const { return Kind
== k_CondCode
; }
1031 bool isImm() const override
{
1032 return Kind
== k_Immediate
;
1035 bool isARMBranchTarget() const {
1036 if (!isImm()) return false;
1038 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
1039 return CE
->getValue() % 4 == 0;
1044 bool isThumbBranchTarget() const {
1045 if (!isImm()) return false;
1047 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
1048 return CE
->getValue() % 2 == 0;
1052 // checks whether this operand is an unsigned offset which fits is a field
1053 // of specified width and scaled by a specific number of bits
1054 template<unsigned width
, unsigned scale
>
1055 bool isUnsignedOffset() const {
1056 if (!isImm()) return false;
1057 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
1058 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
1059 int64_t Val
= CE
->getValue();
1060 int64_t Align
= 1LL << scale
;
1061 int64_t Max
= Align
* ((1LL << width
) - 1);
1062 return ((Val
% Align
) == 0) && (Val
>= 0) && (Val
<= Max
);
1067 // checks whether this operand is an signed offset which fits is a field
1068 // of specified width and scaled by a specific number of bits
1069 template<unsigned width
, unsigned scale
>
1070 bool isSignedOffset() const {
1071 if (!isImm()) return false;
1072 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
1073 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
1074 int64_t Val
= CE
->getValue();
1075 int64_t Align
= 1LL << scale
;
1076 int64_t Max
= Align
* ((1LL << (width
-1)) - 1);
1077 int64_t Min
= -Align
* (1LL << (width
-1));
1078 return ((Val
% Align
) == 0) && (Val
>= Min
) && (Val
<= Max
);
1083 // checks whether this operand is an offset suitable for the LE /
1084 // LETP instructions in Arm v8.1M
1085 bool isLEOffset() const {
1086 if (!isImm()) return false;
1087 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
1088 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
1089 int64_t Val
= CE
->getValue();
1090 return Val
< 0 && Val
>= -4094 && (Val
& 1) == 0;
1095 // checks whether this operand is a memory operand computed as an offset
1096 // applied to PC. the offset may have 8 bits of magnitude and is represented
1097 // with two bits of shift. textually it may be either [pc, #imm], #imm or
1098 // relocable expression...
1099 bool isThumbMemPC() const {
1102 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
1103 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
);
1104 if (!CE
) return false;
1105 Val
= CE
->getValue();
1107 else if (isGPRMem()) {
1108 if(!Memory
.OffsetImm
|| Memory
.OffsetRegNum
) return false;
1109 if(Memory
.BaseRegNum
!= ARM::PC
) return false;
1110 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
))
1111 Val
= CE
->getValue();
1116 return ((Val
% 4) == 0) && (Val
>= 0) && (Val
<= 1020);
1119 bool isFPImm() const {
1120 if (!isImm()) return false;
1121 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1122 if (!CE
) return false;
1123 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
1127 template<int64_t N
, int64_t M
>
1128 bool isImmediate() const {
1129 if (!isImm()) return false;
1130 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1131 if (!CE
) return false;
1132 int64_t Value
= CE
->getValue();
1133 return Value
>= N
&& Value
<= M
;
1136 template<int64_t N
, int64_t M
>
1137 bool isImmediateS4() const {
1138 if (!isImm()) return false;
1139 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1140 if (!CE
) return false;
1141 int64_t Value
= CE
->getValue();
1142 return ((Value
& 3) == 0) && Value
>= N
&& Value
<= M
;
1144 template<int64_t N
, int64_t M
>
1145 bool isImmediateS2() const {
1146 if (!isImm()) return false;
1147 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1148 if (!CE
) return false;
1149 int64_t Value
= CE
->getValue();
1150 return ((Value
& 1) == 0) && Value
>= N
&& Value
<= M
;
1152 bool isFBits16() const {
1153 return isImmediate
<0, 17>();
1155 bool isFBits32() const {
1156 return isImmediate
<1, 33>();
1158 bool isImm8s4() const {
1159 return isImmediateS4
<-1020, 1020>();
1161 bool isImm7s4() const {
1162 return isImmediateS4
<-508, 508>();
1164 bool isImm7Shift0() const {
1165 return isImmediate
<-127, 127>();
1167 bool isImm7Shift1() const {
1168 return isImmediateS2
<-255, 255>();
1170 bool isImm7Shift2() const {
1171 return isImmediateS4
<-511, 511>();
1173 bool isImm7() const {
1174 return isImmediate
<-127, 127>();
1176 bool isImm0_1020s4() const {
1177 return isImmediateS4
<0, 1020>();
1179 bool isImm0_508s4() const {
1180 return isImmediateS4
<0, 508>();
1182 bool isImm0_508s4Neg() const {
1183 if (!isImm()) return false;
1184 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1185 if (!CE
) return false;
1186 int64_t Value
= -CE
->getValue();
1187 // explicitly exclude zero. we want that to use the normal 0_508 version.
1188 return ((Value
& 3) == 0) && Value
> 0 && Value
<= 508;
1191 bool isImm0_4095Neg() const {
1192 if (!isImm()) return false;
1193 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1194 if (!CE
) return false;
1195 // isImm0_4095Neg is used with 32-bit immediates only.
1196 // 32-bit immediates are zero extended to 64-bit when parsed,
1197 // thus simple -CE->getValue() results in a big negative number,
1198 // not a small positive number as intended
1199 if ((CE
->getValue() >> 32) > 0) return false;
1200 uint32_t Value
= -static_cast<uint32_t>(CE
->getValue());
1201 return Value
> 0 && Value
< 4096;
1204 bool isImm0_7() const {
1205 return isImmediate
<0, 7>();
1208 bool isImm1_16() const {
1209 return isImmediate
<1, 16>();
1212 bool isImm1_32() const {
1213 return isImmediate
<1, 32>();
1216 bool isImm8_255() const {
1217 return isImmediate
<8, 255>();
1220 bool isImm256_65535Expr() const {
1221 if (!isImm()) return false;
1222 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1223 // If it's not a constant expression, it'll generate a fixup and be
1225 if (!CE
) return true;
1226 int64_t Value
= CE
->getValue();
1227 return Value
>= 256 && Value
< 65536;
1230 bool isImm0_65535Expr() const {
1231 if (!isImm()) return false;
1232 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1233 // If it's not a constant expression, it'll generate a fixup and be
1235 if (!CE
) return true;
1236 int64_t Value
= CE
->getValue();
1237 return Value
>= 0 && Value
< 65536;
1240 bool isImm24bit() const {
1241 return isImmediate
<0, 0xffffff + 1>();
1244 bool isImmThumbSR() const {
1245 return isImmediate
<1, 33>();
1249 bool isExpImmValue(uint64_t Value
) const {
1250 uint64_t mask
= (1 << shift
) - 1;
1251 if ((Value
& mask
) != 0 || (Value
>> shift
) > 0xff)
1257 bool isExpImm() const {
1258 if (!isImm()) return false;
1259 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1260 if (!CE
) return false;
1262 return isExpImmValue
<shift
>(CE
->getValue());
1265 template<int shift
, int size
>
1266 bool isInvertedExpImm() const {
1267 if (!isImm()) return false;
1268 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1269 if (!CE
) return false;
1271 uint64_t OriginalValue
= CE
->getValue();
1272 uint64_t InvertedValue
= OriginalValue
^ (((uint64_t)1 << size
) - 1);
1273 return isExpImmValue
<shift
>(InvertedValue
);
1276 bool isPKHLSLImm() const {
1277 return isImmediate
<0, 32>();
1280 bool isPKHASRImm() const {
1281 return isImmediate
<0, 33>();
1284 bool isAdrLabel() const {
1285 // If we have an immediate that's not a constant, treat it as a label
1286 // reference needing a fixup.
1287 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1290 // If it is a constant, it must fit into a modified immediate encoding.
1291 if (!isImm()) return false;
1292 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1293 if (!CE
) return false;
1294 int64_t Value
= CE
->getValue();
1295 return (ARM_AM::getSOImmVal(Value
) != -1 ||
1296 ARM_AM::getSOImmVal(-Value
) != -1);
1299 bool isT2SOImm() const {
1300 // If we have an immediate that's not a constant, treat it as an expression
1302 if (isImm() && !isa
<MCConstantExpr
>(getImm())) {
1303 // We want to avoid matching :upper16: and :lower16: as we want these
1304 // expressions to match in isImm0_65535Expr()
1305 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(getImm());
1306 return (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
1307 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
));
1309 if (!isImm()) return false;
1310 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1311 if (!CE
) return false;
1312 int64_t Value
= CE
->getValue();
1313 return ARM_AM::getT2SOImmVal(Value
) != -1;
1316 bool isT2SOImmNot() const {
1317 if (!isImm()) return false;
1318 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1319 if (!CE
) return false;
1320 int64_t Value
= CE
->getValue();
1321 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1322 ARM_AM::getT2SOImmVal(~Value
) != -1;
1325 bool isT2SOImmNeg() const {
1326 if (!isImm()) return false;
1327 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1328 if (!CE
) return false;
1329 int64_t Value
= CE
->getValue();
1330 // Only use this when not representable as a plain so_imm.
1331 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1332 ARM_AM::getT2SOImmVal(-Value
) != -1;
1335 bool isSetEndImm() const {
1336 if (!isImm()) return false;
1337 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1338 if (!CE
) return false;
1339 int64_t Value
= CE
->getValue();
1340 return Value
== 1 || Value
== 0;
1343 bool isReg() const override
{ return Kind
== k_Register
; }
1344 bool isRegList() const { return Kind
== k_RegisterList
; }
1345 bool isRegListWithAPSR() const {
1346 return Kind
== k_RegisterListWithAPSR
|| Kind
== k_RegisterList
;
1348 bool isDPRRegList() const { return Kind
== k_DPRRegisterList
; }
1349 bool isSPRRegList() const { return Kind
== k_SPRRegisterList
; }
1350 bool isFPSRegListWithVPR() const { return Kind
== k_FPSRegisterListWithVPR
; }
1351 bool isFPDRegListWithVPR() const { return Kind
== k_FPDRegisterListWithVPR
; }
1352 bool isToken() const override
{ return Kind
== k_Token
; }
1353 bool isMemBarrierOpt() const { return Kind
== k_MemBarrierOpt
; }
1354 bool isInstSyncBarrierOpt() const { return Kind
== k_InstSyncBarrierOpt
; }
1355 bool isTraceSyncBarrierOpt() const { return Kind
== k_TraceSyncBarrierOpt
; }
1356 bool isMem() const override
{
1357 return isGPRMem() || isMVEMem();
1359 bool isMVEMem() const {
1360 if (Kind
!= k_Memory
)
1362 if (Memory
.BaseRegNum
&&
1363 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.BaseRegNum
) &&
1364 !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(Memory
.BaseRegNum
))
1366 if (Memory
.OffsetRegNum
&&
1367 !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1368 Memory
.OffsetRegNum
))
1372 bool isGPRMem() const {
1373 if (Kind
!= k_Memory
)
1375 if (Memory
.BaseRegNum
&&
1376 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.BaseRegNum
))
1378 if (Memory
.OffsetRegNum
&&
1379 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.OffsetRegNum
))
1383 bool isShifterImm() const { return Kind
== k_ShifterImmediate
; }
1384 bool isRegShiftedReg() const {
1385 return Kind
== k_ShiftedRegister
&&
1386 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1387 RegShiftedReg
.SrcReg
) &&
1388 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1389 RegShiftedReg
.ShiftReg
);
1391 bool isRegShiftedImm() const {
1392 return Kind
== k_ShiftedImmediate
&&
1393 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1394 RegShiftedImm
.SrcReg
);
1396 bool isRotImm() const { return Kind
== k_RotateImmediate
; }
1398 template<unsigned Min
, unsigned Max
>
1399 bool isPowerTwoInRange() const {
1400 if (!isImm()) return false;
1401 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1402 if (!CE
) return false;
1403 int64_t Value
= CE
->getValue();
1404 return Value
> 0 && countPopulation((uint64_t)Value
) == 1 &&
1405 Value
>= Min
&& Value
<= Max
;
1407 bool isModImm() const { return Kind
== k_ModifiedImmediate
; }
1409 bool isModImmNot() const {
1410 if (!isImm()) return false;
1411 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1412 if (!CE
) return false;
1413 int64_t Value
= CE
->getValue();
1414 return ARM_AM::getSOImmVal(~Value
) != -1;
1417 bool isModImmNeg() const {
1418 if (!isImm()) return false;
1419 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1420 if (!CE
) return false;
1421 int64_t Value
= CE
->getValue();
1422 return ARM_AM::getSOImmVal(Value
) == -1 &&
1423 ARM_AM::getSOImmVal(-Value
) != -1;
1426 bool isThumbModImmNeg1_7() const {
1427 if (!isImm()) return false;
1428 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1429 if (!CE
) return false;
1430 int32_t Value
= -(int32_t)CE
->getValue();
1431 return 0 < Value
&& Value
< 8;
1434 bool isThumbModImmNeg8_255() const {
1435 if (!isImm()) return false;
1436 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1437 if (!CE
) return false;
1438 int32_t Value
= -(int32_t)CE
->getValue();
1439 return 7 < Value
&& Value
< 256;
1442 bool isConstantPoolImm() const { return Kind
== k_ConstantPoolImmediate
; }
1443 bool isBitfield() const { return Kind
== k_BitfieldDescriptor
; }
1444 bool isPostIdxRegShifted() const {
1445 return Kind
== k_PostIndexRegister
&&
1446 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(PostIdxReg
.RegNum
);
1448 bool isPostIdxReg() const {
1449 return isPostIdxRegShifted() && PostIdxReg
.ShiftTy
== ARM_AM::no_shift
;
1451 bool isMemNoOffset(bool alignOK
= false, unsigned Alignment
= 0) const {
1454 // No offset of any kind.
1455 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1456 (alignOK
|| Memory
.Alignment
== Alignment
);
1458 bool isMemNoOffsetT2(bool alignOK
= false, unsigned Alignment
= 0) const {
1462 if (!ARMMCRegisterClasses
[ARM::GPRnopcRegClassID
].contains(
1466 // No offset of any kind.
1467 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1468 (alignOK
|| Memory
.Alignment
== Alignment
);
1470 bool isMemNoOffsetT2NoSp(bool alignOK
= false, unsigned Alignment
= 0) const {
1474 if (!ARMMCRegisterClasses
[ARM::rGPRRegClassID
].contains(
1478 // No offset of any kind.
1479 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1480 (alignOK
|| Memory
.Alignment
== Alignment
);
1482 bool isMemNoOffsetT(bool alignOK
= false, unsigned Alignment
= 0) const {
1486 if (!ARMMCRegisterClasses
[ARM::tGPRRegClassID
].contains(
1490 // No offset of any kind.
1491 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1492 (alignOK
|| Memory
.Alignment
== Alignment
);
1494 bool isMemPCRelImm12() const {
1495 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1497 // Base register must be PC.
1498 if (Memory
.BaseRegNum
!= ARM::PC
)
1500 // Immediate offset in range [-4095, 4095].
1501 if (!Memory
.OffsetImm
) return true;
1502 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1503 int64_t Val
= CE
->getValue();
1504 return (Val
> -4096 && Val
< 4096) ||
1505 (Val
== std::numeric_limits
<int32_t>::min());
1510 bool isAlignedMemory() const {
1511 return isMemNoOffset(true);
1514 bool isAlignedMemoryNone() const {
1515 return isMemNoOffset(false, 0);
1518 bool isDupAlignedMemoryNone() const {
1519 return isMemNoOffset(false, 0);
1522 bool isAlignedMemory16() const {
1523 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1525 return isMemNoOffset(false, 0);
1528 bool isDupAlignedMemory16() const {
1529 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1531 return isMemNoOffset(false, 0);
1534 bool isAlignedMemory32() const {
1535 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1537 return isMemNoOffset(false, 0);
1540 bool isDupAlignedMemory32() const {
1541 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1543 return isMemNoOffset(false, 0);
1546 bool isAlignedMemory64() const {
1547 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1549 return isMemNoOffset(false, 0);
1552 bool isDupAlignedMemory64() const {
1553 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1555 return isMemNoOffset(false, 0);
1558 bool isAlignedMemory64or128() const {
1559 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1561 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1563 return isMemNoOffset(false, 0);
1566 bool isDupAlignedMemory64or128() const {
1567 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1569 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1571 return isMemNoOffset(false, 0);
1574 bool isAlignedMemory64or128or256() const {
1575 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1577 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1579 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1581 return isMemNoOffset(false, 0);
1584 bool isAddrMode2() const {
1585 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1586 // Check for register offset.
1587 if (Memory
.OffsetRegNum
) return true;
1588 // Immediate offset in range [-4095, 4095].
1589 if (!Memory
.OffsetImm
) return true;
1590 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1591 int64_t Val
= CE
->getValue();
1592 return Val
> -4096 && Val
< 4096;
1597 bool isAM2OffsetImm() const {
1598 if (!isImm()) return false;
1599 // Immediate offset in range [-4095, 4095].
1600 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1601 if (!CE
) return false;
1602 int64_t Val
= CE
->getValue();
1603 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1604 (Val
> -4096 && Val
< 4096);
1607 bool isAddrMode3() const {
1608 // If we have an immediate that's not a constant, treat it as a label
1609 // reference needing a fixup. If it is a constant, it's something else
1610 // and we reject it.
1611 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1613 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1614 // No shifts are legal for AM3.
1615 if (Memory
.ShiftType
!= ARM_AM::no_shift
) return false;
1616 // Check for register offset.
1617 if (Memory
.OffsetRegNum
) return true;
1618 // Immediate offset in range [-255, 255].
1619 if (!Memory
.OffsetImm
) return true;
1620 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1621 int64_t Val
= CE
->getValue();
1622 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and
1623 // we have to check for this too.
1624 return (Val
> -256 && Val
< 256) ||
1625 Val
== std::numeric_limits
<int32_t>::min();
1630 bool isAM3Offset() const {
1635 // Immediate offset in range [-255, 255].
1636 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1637 if (!CE
) return false;
1638 int64_t Val
= CE
->getValue();
1639 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1640 return (Val
> -256 && Val
< 256) ||
1641 Val
== std::numeric_limits
<int32_t>::min();
1644 bool isAddrMode5() const {
1645 // If we have an immediate that's not a constant, treat it as a label
1646 // reference needing a fixup. If it is a constant, it's something else
1647 // and we reject it.
1648 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1650 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1651 // Check for register offset.
1652 if (Memory
.OffsetRegNum
) return false;
1653 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1654 if (!Memory
.OffsetImm
) return true;
1655 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1656 int64_t Val
= CE
->getValue();
1657 return (Val
>= -1020 && Val
<= 1020 && ((Val
& 3) == 0)) ||
1658 Val
== std::numeric_limits
<int32_t>::min();
1663 bool isAddrMode5FP16() const {
1664 // If we have an immediate that's not a constant, treat it as a label
1665 // reference needing a fixup. If it is a constant, it's something else
1666 // and we reject it.
1667 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1669 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1670 // Check for register offset.
1671 if (Memory
.OffsetRegNum
) return false;
1672 // Immediate offset in range [-510, 510] and a multiple of 2.
1673 if (!Memory
.OffsetImm
) return true;
1674 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1675 int64_t Val
= CE
->getValue();
1676 return (Val
>= -510 && Val
<= 510 && ((Val
& 1) == 0)) ||
1677 Val
== std::numeric_limits
<int32_t>::min();
1682 bool isMemTBB() const {
1683 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1684 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1689 bool isMemTBH() const {
1690 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1691 Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
!= 1 ||
1692 Memory
.Alignment
!= 0 )
1697 bool isMemRegOffset() const {
1698 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.Alignment
!= 0)
1703 bool isT2MemRegOffset() const {
1704 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1705 Memory
.Alignment
!= 0 || Memory
.BaseRegNum
== ARM::PC
)
1707 // Only lsl #{0, 1, 2, 3} allowed.
1708 if (Memory
.ShiftType
== ARM_AM::no_shift
)
1710 if (Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
> 3)
1715 bool isMemThumbRR() const {
1716 // Thumb reg+reg addressing is simple. Just two registers, a base and
1717 // an offset. No shifts, negations or any other complicating factors.
1718 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1719 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1721 return isARMLowRegister(Memory
.BaseRegNum
) &&
1722 (!Memory
.OffsetRegNum
|| isARMLowRegister(Memory
.OffsetRegNum
));
1725 bool isMemThumbRIs4() const {
1726 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1727 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1729 // Immediate offset, multiple of 4 in range [0, 124].
1730 if (!Memory
.OffsetImm
) return true;
1731 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1732 int64_t Val
= CE
->getValue();
1733 return Val
>= 0 && Val
<= 124 && (Val
% 4) == 0;
1738 bool isMemThumbRIs2() const {
1739 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1740 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1742 // Immediate offset, multiple of 4 in range [0, 62].
1743 if (!Memory
.OffsetImm
) return true;
1744 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1745 int64_t Val
= CE
->getValue();
1746 return Val
>= 0 && Val
<= 62 && (Val
% 2) == 0;
1751 bool isMemThumbRIs1() const {
1752 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1753 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1755 // Immediate offset in range [0, 31].
1756 if (!Memory
.OffsetImm
) return true;
1757 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1758 int64_t Val
= CE
->getValue();
1759 return Val
>= 0 && Val
<= 31;
1764 bool isMemThumbSPI() const {
1765 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1766 Memory
.BaseRegNum
!= ARM::SP
|| Memory
.Alignment
!= 0)
1768 // Immediate offset, multiple of 4 in range [0, 1020].
1769 if (!Memory
.OffsetImm
) return true;
1770 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1771 int64_t Val
= CE
->getValue();
1772 return Val
>= 0 && Val
<= 1020 && (Val
% 4) == 0;
1777 bool isMemImm8s4Offset() const {
1778 // If we have an immediate that's not a constant, treat it as a label
1779 // reference needing a fixup. If it is a constant, it's something else
1780 // and we reject it.
1781 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1783 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1785 // Immediate offset a multiple of 4 in range [-1020, 1020].
1786 if (!Memory
.OffsetImm
) return true;
1787 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1788 int64_t Val
= CE
->getValue();
1789 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1790 return (Val
>= -1020 && Val
<= 1020 && (Val
& 3) == 0) ||
1791 Val
== std::numeric_limits
<int32_t>::min();
1796 bool isMemImm7s4Offset() const {
1797 // If we have an immediate that's not a constant, treat it as a label
1798 // reference needing a fixup. If it is a constant, it's something else
1799 // and we reject it.
1800 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1802 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0 ||
1803 !ARMMCRegisterClasses
[ARM::GPRnopcRegClassID
].contains(
1806 // Immediate offset a multiple of 4 in range [-508, 508].
1807 if (!Memory
.OffsetImm
) return true;
1808 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1809 int64_t Val
= CE
->getValue();
1810 // Special case, #-0 is INT32_MIN.
1811 return (Val
>= -508 && Val
<= 508 && (Val
& 3) == 0) || Val
== INT32_MIN
;
1816 bool isMemImm0_1020s4Offset() const {
1817 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1819 // Immediate offset a multiple of 4 in range [0, 1020].
1820 if (!Memory
.OffsetImm
) return true;
1821 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1822 int64_t Val
= CE
->getValue();
1823 return Val
>= 0 && Val
<= 1020 && (Val
& 3) == 0;
1828 bool isMemImm8Offset() const {
1829 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1831 // Base reg of PC isn't allowed for these encodings.
1832 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1833 // Immediate offset in range [-255, 255].
1834 if (!Memory
.OffsetImm
) return true;
1835 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1836 int64_t Val
= CE
->getValue();
1837 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1838 (Val
> -256 && Val
< 256);
1843 template<unsigned Bits
, unsigned RegClassID
>
1844 bool isMemImm7ShiftedOffset() const {
1845 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0 ||
1846 !ARMMCRegisterClasses
[RegClassID
].contains(Memory
.BaseRegNum
))
1849 // Expect an immediate offset equal to an element of the range
1850 // [-127, 127], shifted left by Bits.
1852 if (!Memory
.OffsetImm
) return true;
1853 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1854 int64_t Val
= CE
->getValue();
1856 // INT32_MIN is a special-case value (indicating the encoding with
1857 // zero offset and the subtract bit set)
1858 if (Val
== INT32_MIN
)
1861 unsigned Divisor
= 1U << Bits
;
1863 // Check that the low bits are zero
1864 if (Val
% Divisor
!= 0)
1867 // Check that the remaining offset is within range.
1869 return (Val
>= -127 && Val
<= 127);
1874 template <int shift
> bool isMemRegRQOffset() const {
1875 if (!isMVEMem() || Memory
.OffsetImm
!= 0 || Memory
.Alignment
!= 0)
1878 if (!ARMMCRegisterClasses
[ARM::GPRnopcRegClassID
].contains(
1881 if (!ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1882 Memory
.OffsetRegNum
))
1885 if (shift
== 0 && Memory
.ShiftType
!= ARM_AM::no_shift
)
1889 (Memory
.ShiftType
!= ARM_AM::uxtw
|| Memory
.ShiftImm
!= shift
))
1895 template <int shift
> bool isMemRegQOffset() const {
1896 if (!isMVEMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1899 if (!ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1903 if (!Memory
.OffsetImm
)
1905 static_assert(shift
< 56,
1906 "Such that we dont shift by a value higher than 62");
1907 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1908 int64_t Val
= CE
->getValue();
1910 // The value must be a multiple of (1 << shift)
1911 if ((Val
& ((1U << shift
) - 1)) != 0)
1914 // And be in the right range, depending on the amount that it is shifted
1915 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set
1917 int64_t Range
= (1U << (7 + shift
)) - 1;
1918 return (Val
== INT32_MIN
) || (Val
> -Range
&& Val
< Range
);
1923 bool isMemPosImm8Offset() const {
1924 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1926 // Immediate offset in range [0, 255].
1927 if (!Memory
.OffsetImm
) return true;
1928 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1929 int64_t Val
= CE
->getValue();
1930 return Val
>= 0 && Val
< 256;
1935 bool isMemNegImm8Offset() const {
1936 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1938 // Base reg of PC isn't allowed for these encodings.
1939 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1940 // Immediate offset in range [-255, -1].
1941 if (!Memory
.OffsetImm
) return false;
1942 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1943 int64_t Val
= CE
->getValue();
1944 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1945 (Val
> -256 && Val
< 0);
1950 bool isMemUImm12Offset() const {
1951 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1953 // Immediate offset in range [0, 4095].
1954 if (!Memory
.OffsetImm
) return true;
1955 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1956 int64_t Val
= CE
->getValue();
1957 return (Val
>= 0 && Val
< 4096);
1962 bool isMemImm12Offset() const {
1963 // If we have an immediate that's not a constant, treat it as a label
1964 // reference needing a fixup. If it is a constant, it's something else
1965 // and we reject it.
1967 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1970 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1972 // Immediate offset in range [-4095, 4095].
1973 if (!Memory
.OffsetImm
) return true;
1974 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
1975 int64_t Val
= CE
->getValue();
1976 return (Val
> -4096 && Val
< 4096) ||
1977 (Val
== std::numeric_limits
<int32_t>::min());
1979 // If we have an immediate that's not a constant, treat it as a
1980 // symbolic expression needing a fixup.
1984 bool isConstPoolAsmImm() const {
1985 // Delay processing of Constant Pool Immediate, this will turn into
1986 // a constant. Match no other operand
1987 return (isConstantPoolImm());
1990 bool isPostIdxImm8() const {
1991 if (!isImm()) return false;
1992 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1993 if (!CE
) return false;
1994 int64_t Val
= CE
->getValue();
1995 return (Val
> -256 && Val
< 256) ||
1996 (Val
== std::numeric_limits
<int32_t>::min());
1999 bool isPostIdxImm8s4() const {
2000 if (!isImm()) return false;
2001 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2002 if (!CE
) return false;
2003 int64_t Val
= CE
->getValue();
2004 return ((Val
& 3) == 0 && Val
>= -1020 && Val
<= 1020) ||
2005 (Val
== std::numeric_limits
<int32_t>::min());
2008 bool isMSRMask() const { return Kind
== k_MSRMask
; }
2009 bool isBankedReg() const { return Kind
== k_BankedReg
; }
2010 bool isProcIFlags() const { return Kind
== k_ProcIFlags
; }
2013 bool isSingleSpacedVectorList() const {
2014 return Kind
== k_VectorList
&& !VectorList
.isDoubleSpaced
;
2017 bool isDoubleSpacedVectorList() const {
2018 return Kind
== k_VectorList
&& VectorList
.isDoubleSpaced
;
2021 bool isVecListOneD() const {
2022 if (!isSingleSpacedVectorList()) return false;
2023 return VectorList
.Count
== 1;
2026 bool isVecListTwoMQ() const {
2027 return isSingleSpacedVectorList() && VectorList
.Count
== 2 &&
2028 ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
2032 bool isVecListDPair() const {
2033 if (!isSingleSpacedVectorList()) return false;
2034 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
2035 .contains(VectorList
.RegNum
));
2038 bool isVecListThreeD() const {
2039 if (!isSingleSpacedVectorList()) return false;
2040 return VectorList
.Count
== 3;
2043 bool isVecListFourD() const {
2044 if (!isSingleSpacedVectorList()) return false;
2045 return VectorList
.Count
== 4;
2048 bool isVecListDPairSpaced() const {
2049 if (Kind
!= k_VectorList
) return false;
2050 if (isSingleSpacedVectorList()) return false;
2051 return (ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
]
2052 .contains(VectorList
.RegNum
));
2055 bool isVecListThreeQ() const {
2056 if (!isDoubleSpacedVectorList()) return false;
2057 return VectorList
.Count
== 3;
2060 bool isVecListFourQ() const {
2061 if (!isDoubleSpacedVectorList()) return false;
2062 return VectorList
.Count
== 4;
2065 bool isVecListFourMQ() const {
2066 return isSingleSpacedVectorList() && VectorList
.Count
== 4 &&
2067 ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
2071 bool isSingleSpacedVectorAllLanes() const {
2072 return Kind
== k_VectorListAllLanes
&& !VectorList
.isDoubleSpaced
;
2075 bool isDoubleSpacedVectorAllLanes() const {
2076 return Kind
== k_VectorListAllLanes
&& VectorList
.isDoubleSpaced
;
2079 bool isVecListOneDAllLanes() const {
2080 if (!isSingleSpacedVectorAllLanes()) return false;
2081 return VectorList
.Count
== 1;
2084 bool isVecListDPairAllLanes() const {
2085 if (!isSingleSpacedVectorAllLanes()) return false;
2086 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
2087 .contains(VectorList
.RegNum
));
2090 bool isVecListDPairSpacedAllLanes() const {
2091 if (!isDoubleSpacedVectorAllLanes()) return false;
2092 return VectorList
.Count
== 2;
2095 bool isVecListThreeDAllLanes() const {
2096 if (!isSingleSpacedVectorAllLanes()) return false;
2097 return VectorList
.Count
== 3;
2100 bool isVecListThreeQAllLanes() const {
2101 if (!isDoubleSpacedVectorAllLanes()) return false;
2102 return VectorList
.Count
== 3;
2105 bool isVecListFourDAllLanes() const {
2106 if (!isSingleSpacedVectorAllLanes()) return false;
2107 return VectorList
.Count
== 4;
2110 bool isVecListFourQAllLanes() const {
2111 if (!isDoubleSpacedVectorAllLanes()) return false;
2112 return VectorList
.Count
== 4;
2115 bool isSingleSpacedVectorIndexed() const {
2116 return Kind
== k_VectorListIndexed
&& !VectorList
.isDoubleSpaced
;
2119 bool isDoubleSpacedVectorIndexed() const {
2120 return Kind
== k_VectorListIndexed
&& VectorList
.isDoubleSpaced
;
2123 bool isVecListOneDByteIndexed() const {
2124 if (!isSingleSpacedVectorIndexed()) return false;
2125 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 7;
2128 bool isVecListOneDHWordIndexed() const {
2129 if (!isSingleSpacedVectorIndexed()) return false;
2130 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 3;
2133 bool isVecListOneDWordIndexed() const {
2134 if (!isSingleSpacedVectorIndexed()) return false;
2135 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 1;
2138 bool isVecListTwoDByteIndexed() const {
2139 if (!isSingleSpacedVectorIndexed()) return false;
2140 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 7;
2143 bool isVecListTwoDHWordIndexed() const {
2144 if (!isSingleSpacedVectorIndexed()) return false;
2145 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
2148 bool isVecListTwoQWordIndexed() const {
2149 if (!isDoubleSpacedVectorIndexed()) return false;
2150 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
2153 bool isVecListTwoQHWordIndexed() const {
2154 if (!isDoubleSpacedVectorIndexed()) return false;
2155 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
2158 bool isVecListTwoDWordIndexed() const {
2159 if (!isSingleSpacedVectorIndexed()) return false;
2160 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
2163 bool isVecListThreeDByteIndexed() const {
2164 if (!isSingleSpacedVectorIndexed()) return false;
2165 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 7;
2168 bool isVecListThreeDHWordIndexed() const {
2169 if (!isSingleSpacedVectorIndexed()) return false;
2170 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
2173 bool isVecListThreeQWordIndexed() const {
2174 if (!isDoubleSpacedVectorIndexed()) return false;
2175 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
2178 bool isVecListThreeQHWordIndexed() const {
2179 if (!isDoubleSpacedVectorIndexed()) return false;
2180 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
2183 bool isVecListThreeDWordIndexed() const {
2184 if (!isSingleSpacedVectorIndexed()) return false;
2185 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
2188 bool isVecListFourDByteIndexed() const {
2189 if (!isSingleSpacedVectorIndexed()) return false;
2190 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 7;
2193 bool isVecListFourDHWordIndexed() const {
2194 if (!isSingleSpacedVectorIndexed()) return false;
2195 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
2198 bool isVecListFourQWordIndexed() const {
2199 if (!isDoubleSpacedVectorIndexed()) return false;
2200 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
2203 bool isVecListFourQHWordIndexed() const {
2204 if (!isDoubleSpacedVectorIndexed()) return false;
2205 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
2208 bool isVecListFourDWordIndexed() const {
2209 if (!isSingleSpacedVectorIndexed()) return false;
2210 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
2213 bool isVectorIndex() const { return Kind
== k_VectorIndex
; }
2215 template <unsigned NumLanes
>
2216 bool isVectorIndexInRange() const {
2217 if (Kind
!= k_VectorIndex
) return false;
2218 return VectorIndex
.Val
< NumLanes
;
2221 bool isVectorIndex8() const { return isVectorIndexInRange
<8>(); }
2222 bool isVectorIndex16() const { return isVectorIndexInRange
<4>(); }
2223 bool isVectorIndex32() const { return isVectorIndexInRange
<2>(); }
2224 bool isVectorIndex64() const { return isVectorIndexInRange
<1>(); }
2226 template<int PermittedValue
, int OtherPermittedValue
>
2227 bool isMVEPairVectorIndex() const {
2228 if (Kind
!= k_VectorIndex
) return false;
2229 return VectorIndex
.Val
== PermittedValue
||
2230 VectorIndex
.Val
== OtherPermittedValue
;
2233 bool isNEONi8splat() const {
2234 if (!isImm()) return false;
2235 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2236 // Must be a constant.
2237 if (!CE
) return false;
2238 int64_t Value
= CE
->getValue();
2239 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2241 return Value
>= 0 && Value
< 256;
2244 bool isNEONi16splat() const {
2245 if (isNEONByteReplicate(2))
2246 return false; // Leave that for bytes replication and forbid by default.
2249 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2250 // Must be a constant.
2251 if (!CE
) return false;
2252 unsigned Value
= CE
->getValue();
2253 return ARM_AM::isNEONi16splat(Value
);
2256 bool isNEONi16splatNot() const {
2259 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2260 // Must be a constant.
2261 if (!CE
) return false;
2262 unsigned Value
= CE
->getValue();
2263 return ARM_AM::isNEONi16splat(~Value
& 0xffff);
2266 bool isNEONi32splat() const {
2267 if (isNEONByteReplicate(4))
2268 return false; // Leave that for bytes replication and forbid by default.
2271 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2272 // Must be a constant.
2273 if (!CE
) return false;
2274 unsigned Value
= CE
->getValue();
2275 return ARM_AM::isNEONi32splat(Value
);
2278 bool isNEONi32splatNot() const {
2281 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2282 // Must be a constant.
2283 if (!CE
) return false;
2284 unsigned Value
= CE
->getValue();
2285 return ARM_AM::isNEONi32splat(~Value
);
2288 static bool isValidNEONi32vmovImm(int64_t Value
) {
2289 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2290 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2291 return ((Value
& 0xffffffffffffff00) == 0) ||
2292 ((Value
& 0xffffffffffff00ff) == 0) ||
2293 ((Value
& 0xffffffffff00ffff) == 0) ||
2294 ((Value
& 0xffffffff00ffffff) == 0) ||
2295 ((Value
& 0xffffffffffff00ff) == 0xff) ||
2296 ((Value
& 0xffffffffff00ffff) == 0xffff);
2299 bool isNEONReplicate(unsigned Width
, unsigned NumElems
, bool Inv
) const {
2300 assert((Width
== 8 || Width
== 16 || Width
== 32) &&
2301 "Invalid element width");
2302 assert(NumElems
* Width
<= 64 && "Invalid result width");
2306 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2307 // Must be a constant.
2310 int64_t Value
= CE
->getValue();
2312 return false; // Don't bother with zero.
2316 uint64_t Mask
= (1ull << Width
) - 1;
2317 uint64_t Elem
= Value
& Mask
;
2318 if (Width
== 16 && (Elem
& 0x00ff) != 0 && (Elem
& 0xff00) != 0)
2320 if (Width
== 32 && !isValidNEONi32vmovImm(Elem
))
2323 for (unsigned i
= 1; i
< NumElems
; ++i
) {
2325 if ((Value
& Mask
) != Elem
)
2331 bool isNEONByteReplicate(unsigned NumBytes
) const {
2332 return isNEONReplicate(8, NumBytes
, false);
2335 static void checkNeonReplicateArgs(unsigned FromW
, unsigned ToW
) {
2336 assert((FromW
== 8 || FromW
== 16 || FromW
== 32) &&
2337 "Invalid source width");
2338 assert((ToW
== 16 || ToW
== 32 || ToW
== 64) &&
2339 "Invalid destination width");
2340 assert(FromW
< ToW
&& "ToW is not less than FromW");
2343 template<unsigned FromW
, unsigned ToW
>
2344 bool isNEONmovReplicate() const {
2345 checkNeonReplicateArgs(FromW
, ToW
);
2346 if (ToW
== 64 && isNEONi64splat())
2348 return isNEONReplicate(FromW
, ToW
/ FromW
, false);
2351 template<unsigned FromW
, unsigned ToW
>
2352 bool isNEONinvReplicate() const {
2353 checkNeonReplicateArgs(FromW
, ToW
);
2354 return isNEONReplicate(FromW
, ToW
/ FromW
, true);
2357 bool isNEONi32vmov() const {
2358 if (isNEONByteReplicate(4))
2359 return false; // Let it to be classified as byte-replicate case.
2362 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2363 // Must be a constant.
2366 return isValidNEONi32vmovImm(CE
->getValue());
2369 bool isNEONi32vmovNeg() const {
2370 if (!isImm()) return false;
2371 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2372 // Must be a constant.
2373 if (!CE
) return false;
2374 return isValidNEONi32vmovImm(~CE
->getValue());
2377 bool isNEONi64splat() const {
2378 if (!isImm()) return false;
2379 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2380 // Must be a constant.
2381 if (!CE
) return false;
2382 uint64_t Value
= CE
->getValue();
2383 // i64 value with each byte being either 0 or 0xff.
2384 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8)
2385 if ((Value
& 0xff) != 0 && (Value
& 0xff) != 0xff) return false;
2389 template<int64_t Angle
, int64_t Remainder
>
2390 bool isComplexRotation() const {
2391 if (!isImm()) return false;
2393 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2394 if (!CE
) return false;
2395 uint64_t Value
= CE
->getValue();
2397 return (Value
% Angle
== Remainder
&& Value
<= 270);
2400 bool isMVELongShift() const {
2401 if (!isImm()) return false;
2402 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2403 // Must be a constant.
2404 if (!CE
) return false;
2405 uint64_t Value
= CE
->getValue();
2406 return Value
>= 1 && Value
<= 32;
2409 bool isMveSaturateOp() const {
2410 if (!isImm()) return false;
2411 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2412 if (!CE
) return false;
2413 uint64_t Value
= CE
->getValue();
2414 return Value
== 48 || Value
== 64;
2417 bool isITCondCodeNoAL() const {
2418 if (!isITCondCode()) return false;
2419 ARMCC::CondCodes CC
= getCondCode();
2420 return CC
!= ARMCC::AL
;
2423 bool isITCondCodeRestrictedI() const {
2424 if (!isITCondCode())
2426 ARMCC::CondCodes CC
= getCondCode();
2427 return CC
== ARMCC::EQ
|| CC
== ARMCC::NE
;
2430 bool isITCondCodeRestrictedS() const {
2431 if (!isITCondCode())
2433 ARMCC::CondCodes CC
= getCondCode();
2434 return CC
== ARMCC::LT
|| CC
== ARMCC::GT
|| CC
== ARMCC::LE
||
2438 bool isITCondCodeRestrictedU() const {
2439 if (!isITCondCode())
2441 ARMCC::CondCodes CC
= getCondCode();
2442 return CC
== ARMCC::HS
|| CC
== ARMCC::HI
;
2445 bool isITCondCodeRestrictedFP() const {
2446 if (!isITCondCode())
2448 ARMCC::CondCodes CC
= getCondCode();
2449 return CC
== ARMCC::EQ
|| CC
== ARMCC::NE
|| CC
== ARMCC::LT
||
2450 CC
== ARMCC::GT
|| CC
== ARMCC::LE
|| CC
== ARMCC::GE
;
2453 void addExpr(MCInst
&Inst
, const MCExpr
*Expr
) const {
2454 // Add as immediates when possible. Null MCExpr = 0.
2456 Inst
.addOperand(MCOperand::createImm(0));
2457 else if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
))
2458 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2460 Inst
.addOperand(MCOperand::createExpr(Expr
));
2463 void addARMBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2464 assert(N
== 1 && "Invalid number of operands!");
2465 addExpr(Inst
, getImm());
2468 void addThumbBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2469 assert(N
== 1 && "Invalid number of operands!");
2470 addExpr(Inst
, getImm());
2473 void addCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2474 assert(N
== 2 && "Invalid number of operands!");
2475 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2476 unsigned RegNum
= getCondCode() == ARMCC::AL
? 0: ARM::CPSR
;
2477 Inst
.addOperand(MCOperand::createReg(RegNum
));
2480 void addVPTPredNOperands(MCInst
&Inst
, unsigned N
) const {
2481 assert(N
== 2 && "Invalid number of operands!");
2482 Inst
.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2483 unsigned RegNum
= getVPTPred() == ARMVCC::None
? 0: ARM::P0
;
2484 Inst
.addOperand(MCOperand::createReg(RegNum
));
2487 void addVPTPredROperands(MCInst
&Inst
, unsigned N
) const {
2488 assert(N
== 3 && "Invalid number of operands!");
2489 addVPTPredNOperands(Inst
, N
-1);
2491 if (getVPTPred() == ARMVCC::None
) {
2494 unsigned NextOpIndex
= Inst
.getNumOperands();
2495 const MCInstrDesc
&MCID
= ARMInsts
[Inst
.getOpcode()];
2496 int TiedOp
= MCID
.getOperandConstraint(NextOpIndex
, MCOI::TIED_TO
);
2497 assert(TiedOp
>= 0 &&
2498 "Inactive register in vpred_r is not tied to an output!");
2499 RegNum
= Inst
.getOperand(TiedOp
).getReg();
2501 Inst
.addOperand(MCOperand::createReg(RegNum
));
2504 void addCoprocNumOperands(MCInst
&Inst
, unsigned N
) const {
2505 assert(N
== 1 && "Invalid number of operands!");
2506 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2509 void addCoprocRegOperands(MCInst
&Inst
, unsigned N
) const {
2510 assert(N
== 1 && "Invalid number of operands!");
2511 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2514 void addCoprocOptionOperands(MCInst
&Inst
, unsigned N
) const {
2515 assert(N
== 1 && "Invalid number of operands!");
2516 Inst
.addOperand(MCOperand::createImm(CoprocOption
.Val
));
2519 void addITMaskOperands(MCInst
&Inst
, unsigned N
) const {
2520 assert(N
== 1 && "Invalid number of operands!");
2521 Inst
.addOperand(MCOperand::createImm(ITMask
.Mask
));
2524 void addITCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2525 assert(N
== 1 && "Invalid number of operands!");
2526 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2529 void addITCondCodeInvOperands(MCInst
&Inst
, unsigned N
) const {
2530 assert(N
== 1 && "Invalid number of operands!");
2531 Inst
.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2534 void addCCOutOperands(MCInst
&Inst
, unsigned N
) const {
2535 assert(N
== 1 && "Invalid number of operands!");
2536 Inst
.addOperand(MCOperand::createReg(getReg()));
2539 void addRegOperands(MCInst
&Inst
, unsigned N
) const {
2540 assert(N
== 1 && "Invalid number of operands!");
2541 Inst
.addOperand(MCOperand::createReg(getReg()));
2544 void addRegShiftedRegOperands(MCInst
&Inst
, unsigned N
) const {
2545 assert(N
== 3 && "Invalid number of operands!");
2546 assert(isRegShiftedReg() &&
2547 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2548 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.SrcReg
));
2549 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.ShiftReg
));
2550 Inst
.addOperand(MCOperand::createImm(
2551 ARM_AM::getSORegOpc(RegShiftedReg
.ShiftTy
, RegShiftedReg
.ShiftImm
)));
2554 void addRegShiftedImmOperands(MCInst
&Inst
, unsigned N
) const {
2555 assert(N
== 2 && "Invalid number of operands!");
2556 assert(isRegShiftedImm() &&
2557 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2558 Inst
.addOperand(MCOperand::createReg(RegShiftedImm
.SrcReg
));
2559 // Shift of #32 is encoded as 0 where permitted
2560 unsigned Imm
= (RegShiftedImm
.ShiftImm
== 32 ? 0 : RegShiftedImm
.ShiftImm
);
2561 Inst
.addOperand(MCOperand::createImm(
2562 ARM_AM::getSORegOpc(RegShiftedImm
.ShiftTy
, Imm
)));
2565 void addShifterImmOperands(MCInst
&Inst
, unsigned N
) const {
2566 assert(N
== 1 && "Invalid number of operands!");
2567 Inst
.addOperand(MCOperand::createImm((ShifterImm
.isASR
<< 5) |
2571 void addRegListOperands(MCInst
&Inst
, unsigned N
) const {
2572 assert(N
== 1 && "Invalid number of operands!");
2573 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
2574 for (SmallVectorImpl
<unsigned>::const_iterator
2575 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ++I
)
2576 Inst
.addOperand(MCOperand::createReg(*I
));
2579 void addRegListWithAPSROperands(MCInst
&Inst
, unsigned N
) const {
2580 assert(N
== 1 && "Invalid number of operands!");
2581 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
2582 for (SmallVectorImpl
<unsigned>::const_iterator
2583 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ++I
)
2584 Inst
.addOperand(MCOperand::createReg(*I
));
2587 void addDPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2588 addRegListOperands(Inst
, N
);
2591 void addSPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2592 addRegListOperands(Inst
, N
);
2595 void addFPSRegListWithVPROperands(MCInst
&Inst
, unsigned N
) const {
2596 addRegListOperands(Inst
, N
);
2599 void addFPDRegListWithVPROperands(MCInst
&Inst
, unsigned N
) const {
2600 addRegListOperands(Inst
, N
);
2603 void addRotImmOperands(MCInst
&Inst
, unsigned N
) const {
2604 assert(N
== 1 && "Invalid number of operands!");
2605 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2606 Inst
.addOperand(MCOperand::createImm(RotImm
.Imm
>> 3));
2609 void addModImmOperands(MCInst
&Inst
, unsigned N
) const {
2610 assert(N
== 1 && "Invalid number of operands!");
2612 // Support for fixups (MCFixup)
2614 return addImmOperands(Inst
, N
);
2616 Inst
.addOperand(MCOperand::createImm(ModImm
.Bits
| (ModImm
.Rot
<< 7)));
2619 void addModImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2620 assert(N
== 1 && "Invalid number of operands!");
2621 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2622 uint32_t Enc
= ARM_AM::getSOImmVal(~CE
->getValue());
2623 Inst
.addOperand(MCOperand::createImm(Enc
));
2626 void addModImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2627 assert(N
== 1 && "Invalid number of operands!");
2628 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2629 uint32_t Enc
= ARM_AM::getSOImmVal(-CE
->getValue());
2630 Inst
.addOperand(MCOperand::createImm(Enc
));
2633 void addThumbModImmNeg8_255Operands(MCInst
&Inst
, unsigned N
) const {
2634 assert(N
== 1 && "Invalid number of operands!");
2635 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2636 uint32_t Val
= -CE
->getValue();
2637 Inst
.addOperand(MCOperand::createImm(Val
));
2640 void addThumbModImmNeg1_7Operands(MCInst
&Inst
, unsigned N
) const {
2641 assert(N
== 1 && "Invalid number of operands!");
2642 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2643 uint32_t Val
= -CE
->getValue();
2644 Inst
.addOperand(MCOperand::createImm(Val
));
2647 void addBitfieldOperands(MCInst
&Inst
, unsigned N
) const {
2648 assert(N
== 1 && "Invalid number of operands!");
2649 // Munge the lsb/width into a bitfield mask.
2650 unsigned lsb
= Bitfield
.LSB
;
2651 unsigned width
= Bitfield
.Width
;
2652 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2653 uint32_t Mask
= ~(((uint32_t)0xffffffff >> lsb
) << (32 - width
) >>
2654 (32 - (lsb
+ width
)));
2655 Inst
.addOperand(MCOperand::createImm(Mask
));
2658 void addImmOperands(MCInst
&Inst
, unsigned N
) const {
2659 assert(N
== 1 && "Invalid number of operands!");
2660 addExpr(Inst
, getImm());
2663 void addFBits16Operands(MCInst
&Inst
, unsigned N
) const {
2664 assert(N
== 1 && "Invalid number of operands!");
2665 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2666 Inst
.addOperand(MCOperand::createImm(16 - CE
->getValue()));
2669 void addFBits32Operands(MCInst
&Inst
, unsigned N
) const {
2670 assert(N
== 1 && "Invalid number of operands!");
2671 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2672 Inst
.addOperand(MCOperand::createImm(32 - CE
->getValue()));
2675 void addFPImmOperands(MCInst
&Inst
, unsigned N
) const {
2676 assert(N
== 1 && "Invalid number of operands!");
2677 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2678 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
2679 Inst
.addOperand(MCOperand::createImm(Val
));
2682 void addImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
2683 assert(N
== 1 && "Invalid number of operands!");
2684 // FIXME: We really want to scale the value here, but the LDRD/STRD
2685 // instruction don't encode operands that way yet.
2686 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2687 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2690 void addImm7s4Operands(MCInst
&Inst
, unsigned N
) const {
2691 assert(N
== 1 && "Invalid number of operands!");
2692 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2693 // instruction don't encode operands that way yet.
2694 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2695 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2698 void addImm7Shift0Operands(MCInst
&Inst
, unsigned N
) const {
2699 assert(N
== 1 && "Invalid number of operands!");
2700 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2701 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2704 void addImm7Shift1Operands(MCInst
&Inst
, unsigned N
) const {
2705 assert(N
== 1 && "Invalid number of operands!");
2706 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2707 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2710 void addImm7Shift2Operands(MCInst
&Inst
, unsigned N
) const {
2711 assert(N
== 1 && "Invalid number of operands!");
2712 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2713 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2716 void addImm7Operands(MCInst
&Inst
, unsigned N
) const {
2717 assert(N
== 1 && "Invalid number of operands!");
2718 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2719 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2722 void addImm0_1020s4Operands(MCInst
&Inst
, unsigned N
) const {
2723 assert(N
== 1 && "Invalid number of operands!");
2724 // The immediate is scaled by four in the encoding and is stored
2725 // in the MCInst as such. Lop off the low two bits here.
2726 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2727 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2730 void addImm0_508s4NegOperands(MCInst
&Inst
, unsigned N
) const {
2731 assert(N
== 1 && "Invalid number of operands!");
2732 // The immediate is scaled by four in the encoding and is stored
2733 // in the MCInst as such. Lop off the low two bits here.
2734 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2735 Inst
.addOperand(MCOperand::createImm(-(CE
->getValue() / 4)));
2738 void addImm0_508s4Operands(MCInst
&Inst
, unsigned N
) const {
2739 assert(N
== 1 && "Invalid number of operands!");
2740 // The immediate is scaled by four in the encoding and is stored
2741 // in the MCInst as such. Lop off the low two bits here.
2742 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2743 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2746 void addImm1_16Operands(MCInst
&Inst
, unsigned N
) const {
2747 assert(N
== 1 && "Invalid number of operands!");
2748 // The constant encodes as the immediate-1, and we store in the instruction
2749 // the bits as encoded, so subtract off one here.
2750 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2751 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2754 void addImm1_32Operands(MCInst
&Inst
, unsigned N
) const {
2755 assert(N
== 1 && "Invalid number of operands!");
2756 // The constant encodes as the immediate-1, and we store in the instruction
2757 // the bits as encoded, so subtract off one here.
2758 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2759 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2762 void addImmThumbSROperands(MCInst
&Inst
, unsigned N
) const {
2763 assert(N
== 1 && "Invalid number of operands!");
2764 // The constant encodes as the immediate, except for 32, which encodes as
2766 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2767 unsigned Imm
= CE
->getValue();
2768 Inst
.addOperand(MCOperand::createImm((Imm
== 32 ? 0 : Imm
)));
2771 void addPKHASRImmOperands(MCInst
&Inst
, unsigned N
) const {
2772 assert(N
== 1 && "Invalid number of operands!");
2773 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2774 // the instruction as well.
2775 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2776 int Val
= CE
->getValue();
2777 Inst
.addOperand(MCOperand::createImm(Val
== 32 ? 0 : Val
));
2780 void addT2SOImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2781 assert(N
== 1 && "Invalid number of operands!");
2782 // The operand is actually a t2_so_imm, but we have its bitwise
2783 // negation in the assembly source, so twiddle it here.
2784 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2785 Inst
.addOperand(MCOperand::createImm(~(uint32_t)CE
->getValue()));
2788 void addT2SOImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2789 assert(N
== 1 && "Invalid number of operands!");
2790 // The operand is actually a t2_so_imm, but we have its
2791 // negation in the assembly source, so twiddle it here.
2792 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2793 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2796 void addImm0_4095NegOperands(MCInst
&Inst
, unsigned N
) const {
2797 assert(N
== 1 && "Invalid number of operands!");
2798 // The operand is actually an imm0_4095, but we have its
2799 // negation in the assembly source, so twiddle it here.
2800 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2801 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2804 void addUnsignedOffset_b8s2Operands(MCInst
&Inst
, unsigned N
) const {
2805 if(const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm())) {
2806 Inst
.addOperand(MCOperand::createImm(CE
->getValue() >> 2));
2809 const MCSymbolRefExpr
*SR
= cast
<MCSymbolRefExpr
>(Imm
.Val
);
2810 Inst
.addOperand(MCOperand::createExpr(SR
));
2813 void addThumbMemPCOperands(MCInst
&Inst
, unsigned N
) const {
2814 assert(N
== 1 && "Invalid number of operands!");
2816 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2818 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2821 const MCSymbolRefExpr
*SR
= cast
<MCSymbolRefExpr
>(Imm
.Val
);
2822 Inst
.addOperand(MCOperand::createExpr(SR
));
2826 assert(isGPRMem() && "Unknown value type!");
2827 assert(isa
<MCConstantExpr
>(Memory
.OffsetImm
) && "Unknown value type!");
2828 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
))
2829 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2831 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
2834 void addMemBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2835 assert(N
== 1 && "Invalid number of operands!");
2836 Inst
.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2839 void addInstSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2840 assert(N
== 1 && "Invalid number of operands!");
2841 Inst
.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2844 void addTraceSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2845 assert(N
== 1 && "Invalid number of operands!");
2846 Inst
.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2849 void addMemNoOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2850 assert(N
== 1 && "Invalid number of operands!");
2851 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2854 void addMemNoOffsetT2Operands(MCInst
&Inst
, unsigned N
) const {
2855 assert(N
== 1 && "Invalid number of operands!");
2856 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2859 void addMemNoOffsetT2NoSpOperands(MCInst
&Inst
, unsigned N
) const {
2860 assert(N
== 1 && "Invalid number of operands!");
2861 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2864 void addMemNoOffsetTOperands(MCInst
&Inst
, unsigned N
) const {
2865 assert(N
== 1 && "Invalid number of operands!");
2866 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2869 void addMemPCRelImm12Operands(MCInst
&Inst
, unsigned N
) const {
2870 assert(N
== 1 && "Invalid number of operands!");
2871 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
))
2872 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2874 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
2877 void addAdrLabelOperands(MCInst
&Inst
, unsigned N
) const {
2878 assert(N
== 1 && "Invalid number of operands!");
2879 assert(isImm() && "Not an immediate!");
2881 // If we have an immediate that's not a constant, treat it as a label
2882 // reference needing a fixup.
2883 if (!isa
<MCConstantExpr
>(getImm())) {
2884 Inst
.addOperand(MCOperand::createExpr(getImm()));
2888 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2889 int Val
= CE
->getValue();
2890 Inst
.addOperand(MCOperand::createImm(Val
));
2893 void addAlignedMemoryOperands(MCInst
&Inst
, unsigned N
) const {
2894 assert(N
== 2 && "Invalid number of operands!");
2895 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2896 Inst
.addOperand(MCOperand::createImm(Memory
.Alignment
));
2899 void addDupAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2900 addAlignedMemoryOperands(Inst
, N
);
2903 void addAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2904 addAlignedMemoryOperands(Inst
, N
);
2907 void addAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2908 addAlignedMemoryOperands(Inst
, N
);
2911 void addDupAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2912 addAlignedMemoryOperands(Inst
, N
);
2915 void addAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2916 addAlignedMemoryOperands(Inst
, N
);
2919 void addDupAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2920 addAlignedMemoryOperands(Inst
, N
);
2923 void addAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2924 addAlignedMemoryOperands(Inst
, N
);
2927 void addDupAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2928 addAlignedMemoryOperands(Inst
, N
);
2931 void addAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2932 addAlignedMemoryOperands(Inst
, N
);
2935 void addDupAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2936 addAlignedMemoryOperands(Inst
, N
);
2939 void addAlignedMemory64or128or256Operands(MCInst
&Inst
, unsigned N
) const {
2940 addAlignedMemoryOperands(Inst
, N
);
2943 void addAddrMode2Operands(MCInst
&Inst
, unsigned N
) const {
2944 assert(N
== 3 && "Invalid number of operands!");
2945 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2946 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2947 if (!Memory
.OffsetRegNum
) {
2948 if (!Memory
.OffsetImm
)
2949 Inst
.addOperand(MCOperand::createImm(0));
2950 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
2951 int32_t Val
= CE
->getValue();
2952 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2953 // Special case for #-0
2954 if (Val
== std::numeric_limits
<int32_t>::min())
2958 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2959 Inst
.addOperand(MCOperand::createImm(Val
));
2961 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
2963 // For register offset, we encode the shift type and negation flag
2966 ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
2967 Memory
.ShiftImm
, Memory
.ShiftType
);
2968 Inst
.addOperand(MCOperand::createImm(Val
));
2972 void addAM2OffsetImmOperands(MCInst
&Inst
, unsigned N
) const {
2973 assert(N
== 2 && "Invalid number of operands!");
2974 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2975 assert(CE
&& "non-constant AM2OffsetImm operand!");
2976 int32_t Val
= CE
->getValue();
2977 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2978 // Special case for #-0
2979 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2980 if (Val
< 0) Val
= -Val
;
2981 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2982 Inst
.addOperand(MCOperand::createReg(0));
2983 Inst
.addOperand(MCOperand::createImm(Val
));
2986 void addAddrMode3Operands(MCInst
&Inst
, unsigned N
) const {
2987 assert(N
== 3 && "Invalid number of operands!");
2988 // If we have an immediate that's not a constant, treat it as a label
2989 // reference needing a fixup. If it is a constant, it's something else
2990 // and we reject it.
2992 Inst
.addOperand(MCOperand::createExpr(getImm()));
2993 Inst
.addOperand(MCOperand::createReg(0));
2994 Inst
.addOperand(MCOperand::createImm(0));
2998 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2999 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3000 if (!Memory
.OffsetRegNum
) {
3001 if (!Memory
.OffsetImm
)
3002 Inst
.addOperand(MCOperand::createImm(0));
3003 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
3004 int32_t Val
= CE
->getValue();
3005 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
3006 // Special case for #-0
3007 if (Val
== std::numeric_limits
<int32_t>::min())
3011 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
3012 Inst
.addOperand(MCOperand::createImm(Val
));
3014 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
3016 // For register offset, we encode the shift type and negation flag
3019 ARM_AM::getAM3Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
, 0);
3020 Inst
.addOperand(MCOperand::createImm(Val
));
3024 void addAM3OffsetOperands(MCInst
&Inst
, unsigned N
) const {
3025 assert(N
== 2 && "Invalid number of operands!");
3026 if (Kind
== k_PostIndexRegister
) {
3028 ARM_AM::getAM3Opc(PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
, 0);
3029 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
3030 Inst
.addOperand(MCOperand::createImm(Val
));
3035 const MCConstantExpr
*CE
= static_cast<const MCConstantExpr
*>(getImm());
3036 int32_t Val
= CE
->getValue();
3037 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
3038 // Special case for #-0
3039 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
3040 if (Val
< 0) Val
= -Val
;
3041 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
3042 Inst
.addOperand(MCOperand::createReg(0));
3043 Inst
.addOperand(MCOperand::createImm(Val
));
3046 void addAddrMode5Operands(MCInst
&Inst
, unsigned N
) const {
3047 assert(N
== 2 && "Invalid number of operands!");
3048 // If we have an immediate that's not a constant, treat it as a label
3049 // reference needing a fixup. If it is a constant, it's something else
3050 // and we reject it.
3052 Inst
.addOperand(MCOperand::createExpr(getImm()));
3053 Inst
.addOperand(MCOperand::createImm(0));
3057 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3058 if (!Memory
.OffsetImm
)
3059 Inst
.addOperand(MCOperand::createImm(0));
3060 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
3061 // The lower two bits are always zero and as such are not encoded.
3062 int32_t Val
= CE
->getValue() / 4;
3063 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
3064 // Special case for #-0
3065 if (Val
== std::numeric_limits
<int32_t>::min())
3069 Val
= ARM_AM::getAM5Opc(AddSub
, Val
);
3070 Inst
.addOperand(MCOperand::createImm(Val
));
3072 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
3075 void addAddrMode5FP16Operands(MCInst
&Inst
, unsigned N
) const {
3076 assert(N
== 2 && "Invalid number of operands!");
3077 // If we have an immediate that's not a constant, treat it as a label
3078 // reference needing a fixup. If it is a constant, it's something else
3079 // and we reject it.
3081 Inst
.addOperand(MCOperand::createExpr(getImm()));
3082 Inst
.addOperand(MCOperand::createImm(0));
3086 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3087 // The lower bit is always zero and as such is not encoded.
3088 if (!Memory
.OffsetImm
)
3089 Inst
.addOperand(MCOperand::createImm(0));
3090 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
)) {
3091 int32_t Val
= CE
->getValue() / 2;
3092 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
3093 // Special case for #-0
3094 if (Val
== std::numeric_limits
<int32_t>::min())
3098 Val
= ARM_AM::getAM5FP16Opc(AddSub
, Val
);
3099 Inst
.addOperand(MCOperand::createImm(Val
));
3101 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
3104 void addMemImm8s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
3105 assert(N
== 2 && "Invalid number of operands!");
3106 // If we have an immediate that's not a constant, treat it as a label
3107 // reference needing a fixup. If it is a constant, it's something else
3108 // and we reject it.
3110 Inst
.addOperand(MCOperand::createExpr(getImm()));
3111 Inst
.addOperand(MCOperand::createImm(0));
3115 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3116 addExpr(Inst
, Memory
.OffsetImm
);
3119 void addMemImm7s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
3120 assert(N
== 2 && "Invalid number of operands!");
3121 // If we have an immediate that's not a constant, treat it as a label
3122 // reference needing a fixup. If it is a constant, it's something else
3123 // and we reject it.
3125 Inst
.addOperand(MCOperand::createExpr(getImm()));
3126 Inst
.addOperand(MCOperand::createImm(0));
3130 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3131 addExpr(Inst
, Memory
.OffsetImm
);
3134 void addMemImm0_1020s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
3135 assert(N
== 2 && "Invalid number of operands!");
3136 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3137 if (!Memory
.OffsetImm
)
3138 Inst
.addOperand(MCOperand::createImm(0));
3139 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
))
3140 // The lower two bits are always zero and as such are not encoded.
3141 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
3143 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
3146 void addMemImmOffsetOperands(MCInst
&Inst
, unsigned N
) const {
3147 assert(N
== 2 && "Invalid number of operands!");
3148 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3149 addExpr(Inst
, Memory
.OffsetImm
);
3152 void addMemRegRQOffsetOperands(MCInst
&Inst
, unsigned N
) const {
3153 assert(N
== 2 && "Invalid number of operands!");
3154 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3155 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3158 void addMemUImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
3159 assert(N
== 2 && "Invalid number of operands!");
3160 // If this is an immediate, it's a label reference.
3162 addExpr(Inst
, getImm());
3163 Inst
.addOperand(MCOperand::createImm(0));
3167 // Otherwise, it's a normal memory reg+offset.
3168 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3169 addExpr(Inst
, Memory
.OffsetImm
);
3172 void addMemImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
3173 assert(N
== 2 && "Invalid number of operands!");
3174 // If this is an immediate, it's a label reference.
3176 addExpr(Inst
, getImm());
3177 Inst
.addOperand(MCOperand::createImm(0));
3181 // Otherwise, it's a normal memory reg+offset.
3182 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3183 addExpr(Inst
, Memory
.OffsetImm
);
3186 void addConstPoolAsmImmOperands(MCInst
&Inst
, unsigned N
) const {
3187 assert(N
== 1 && "Invalid number of operands!");
3188 // This is container for the immediate that we will create the constant
3190 addExpr(Inst
, getConstantPoolImm());
3193 void addMemTBBOperands(MCInst
&Inst
, unsigned N
) const {
3194 assert(N
== 2 && "Invalid number of operands!");
3195 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3196 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3199 void addMemTBHOperands(MCInst
&Inst
, unsigned N
) const {
3200 assert(N
== 2 && "Invalid number of operands!");
3201 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3202 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3205 void addMemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
3206 assert(N
== 3 && "Invalid number of operands!");
3208 ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
3209 Memory
.ShiftImm
, Memory
.ShiftType
);
3210 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3211 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3212 Inst
.addOperand(MCOperand::createImm(Val
));
3215 void addT2MemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
3216 assert(N
== 3 && "Invalid number of operands!");
3217 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3218 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3219 Inst
.addOperand(MCOperand::createImm(Memory
.ShiftImm
));
3222 void addMemThumbRROperands(MCInst
&Inst
, unsigned N
) const {
3223 assert(N
== 2 && "Invalid number of operands!");
3224 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3225 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3228 void addMemThumbRIs4Operands(MCInst
&Inst
, unsigned N
) const {
3229 assert(N
== 2 && "Invalid number of operands!");
3230 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3231 if (!Memory
.OffsetImm
)
3232 Inst
.addOperand(MCOperand::createImm(0));
3233 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
))
3234 // The lower two bits are always zero and as such are not encoded.
3235 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
3237 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
3240 void addMemThumbRIs2Operands(MCInst
&Inst
, unsigned N
) const {
3241 assert(N
== 2 && "Invalid number of operands!");
3242 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3243 if (!Memory
.OffsetImm
)
3244 Inst
.addOperand(MCOperand::createImm(0));
3245 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
))
3246 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 2));
3248 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
3251 void addMemThumbRIs1Operands(MCInst
&Inst
, unsigned N
) const {
3252 assert(N
== 2 && "Invalid number of operands!");
3253 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3254 addExpr(Inst
, Memory
.OffsetImm
);
3257 void addMemThumbSPIOperands(MCInst
&Inst
, unsigned N
) const {
3258 assert(N
== 2 && "Invalid number of operands!");
3259 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3260 if (!Memory
.OffsetImm
)
3261 Inst
.addOperand(MCOperand::createImm(0));
3262 else if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Memory
.OffsetImm
))
3263 // The lower two bits are always zero and as such are not encoded.
3264 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
3266 Inst
.addOperand(MCOperand::createExpr(Memory
.OffsetImm
));
3269 void addPostIdxImm8Operands(MCInst
&Inst
, unsigned N
) const {
3270 assert(N
== 1 && "Invalid number of operands!");
3271 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
3272 assert(CE
&& "non-constant post-idx-imm8 operand!");
3273 int Imm
= CE
->getValue();
3274 bool isAdd
= Imm
>= 0;
3275 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
3276 Imm
= (Imm
< 0 ? -Imm
: Imm
) | (int)isAdd
<< 8;
3277 Inst
.addOperand(MCOperand::createImm(Imm
));
3280 void addPostIdxImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
3281 assert(N
== 1 && "Invalid number of operands!");
3282 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
3283 assert(CE
&& "non-constant post-idx-imm8s4 operand!");
3284 int Imm
= CE
->getValue();
3285 bool isAdd
= Imm
>= 0;
3286 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
3287 // Immediate is scaled by 4.
3288 Imm
= ((Imm
< 0 ? -Imm
: Imm
) / 4) | (int)isAdd
<< 8;
3289 Inst
.addOperand(MCOperand::createImm(Imm
));
3292 void addPostIdxRegOperands(MCInst
&Inst
, unsigned N
) const {
3293 assert(N
== 2 && "Invalid number of operands!");
3294 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
3295 Inst
.addOperand(MCOperand::createImm(PostIdxReg
.isAdd
));
3298 void addPostIdxRegShiftedOperands(MCInst
&Inst
, unsigned N
) const {
3299 assert(N
== 2 && "Invalid number of operands!");
3300 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
3301 // The sign, shift type, and shift amount are encoded in a single operand
3302 // using the AM2 encoding helpers.
3303 ARM_AM::AddrOpc opc
= PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
;
3304 unsigned Imm
= ARM_AM::getAM2Opc(opc
, PostIdxReg
.ShiftImm
,
3305 PostIdxReg
.ShiftTy
);
3306 Inst
.addOperand(MCOperand::createImm(Imm
));
3309 void addPowerTwoOperands(MCInst
&Inst
, unsigned N
) const {
3310 assert(N
== 1 && "Invalid number of operands!");
3311 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3312 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
3315 void addMSRMaskOperands(MCInst
&Inst
, unsigned N
) const {
3316 assert(N
== 1 && "Invalid number of operands!");
3317 Inst
.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3320 void addBankedRegOperands(MCInst
&Inst
, unsigned N
) const {
3321 assert(N
== 1 && "Invalid number of operands!");
3322 Inst
.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3325 void addProcIFlagsOperands(MCInst
&Inst
, unsigned N
) const {
3326 assert(N
== 1 && "Invalid number of operands!");
3327 Inst
.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3330 void addVecListOperands(MCInst
&Inst
, unsigned N
) const {
3331 assert(N
== 1 && "Invalid number of operands!");
3332 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
3335 void addMVEVecListOperands(MCInst
&Inst
, unsigned N
) const {
3336 assert(N
== 1 && "Invalid number of operands!");
3338 // When we come here, the VectorList field will identify a range
3339 // of q-registers by its base register and length, and it will
3340 // have already been error-checked to be the expected length of
3341 // range and contain only q-regs in the range q0-q7. So we can
3342 // count on the base register being in the range q0-q6 (for 2
3343 // regs) or q0-q4 (for 4)
3345 // The MVE instructions taking a register range of this kind will
3346 // need an operand in the MQQPR or MQQQQPR class, representing the
3347 // entire range as a unit. So we must translate into that class,
3348 // by finding the index of the base register in the MQPR reg
3349 // class, and returning the super-register at the corresponding
3350 // index in the target class.
3352 const MCRegisterClass
*RC_in
= &ARMMCRegisterClasses
[ARM::MQPRRegClassID
];
3353 const MCRegisterClass
*RC_out
=
3354 (VectorList
.Count
== 2) ? &ARMMCRegisterClasses
[ARM::MQQPRRegClassID
]
3355 : &ARMMCRegisterClasses
[ARM::MQQQQPRRegClassID
];
3357 unsigned I
, E
= RC_out
->getNumRegs();
3358 for (I
= 0; I
< E
; I
++)
3359 if (RC_in
->getRegister(I
) == VectorList
.RegNum
)
3361 assert(I
< E
&& "Invalid vector list start register!");
3363 Inst
.addOperand(MCOperand::createReg(RC_out
->getRegister(I
)));
3366 void addVecListIndexedOperands(MCInst
&Inst
, unsigned N
) const {
3367 assert(N
== 2 && "Invalid number of operands!");
3368 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
3369 Inst
.addOperand(MCOperand::createImm(VectorList
.LaneIndex
));
3372 void addVectorIndex8Operands(MCInst
&Inst
, unsigned N
) const {
3373 assert(N
== 1 && "Invalid number of operands!");
3374 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3377 void addVectorIndex16Operands(MCInst
&Inst
, unsigned N
) const {
3378 assert(N
== 1 && "Invalid number of operands!");
3379 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3382 void addVectorIndex32Operands(MCInst
&Inst
, unsigned N
) const {
3383 assert(N
== 1 && "Invalid number of operands!");
3384 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3387 void addVectorIndex64Operands(MCInst
&Inst
, unsigned N
) const {
3388 assert(N
== 1 && "Invalid number of operands!");
3389 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3392 void addMVEVectorIndexOperands(MCInst
&Inst
, unsigned N
) const {
3393 assert(N
== 1 && "Invalid number of operands!");
3394 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3397 void addMVEPairVectorIndexOperands(MCInst
&Inst
, unsigned N
) const {
3398 assert(N
== 1 && "Invalid number of operands!");
3399 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3402 void addNEONi8splatOperands(MCInst
&Inst
, unsigned N
) const {
3403 assert(N
== 1 && "Invalid number of operands!");
3404 // The immediate encodes the type of constant as well as the value.
3405 // Mask in that this is an i8 splat.
3406 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3407 Inst
.addOperand(MCOperand::createImm(CE
->getValue() | 0xe00));
3410 void addNEONi16splatOperands(MCInst
&Inst
, unsigned N
) const {
3411 assert(N
== 1 && "Invalid number of operands!");
3412 // The immediate encodes the type of constant as well as the value.
3413 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3414 unsigned Value
= CE
->getValue();
3415 Value
= ARM_AM::encodeNEONi16splat(Value
);
3416 Inst
.addOperand(MCOperand::createImm(Value
));
3419 void addNEONi16splatNotOperands(MCInst
&Inst
, unsigned N
) const {
3420 assert(N
== 1 && "Invalid number of operands!");
3421 // The immediate encodes the type of constant as well as the value.
3422 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3423 unsigned Value
= CE
->getValue();
3424 Value
= ARM_AM::encodeNEONi16splat(~Value
& 0xffff);
3425 Inst
.addOperand(MCOperand::createImm(Value
));
3428 void addNEONi32splatOperands(MCInst
&Inst
, unsigned N
) const {
3429 assert(N
== 1 && "Invalid number of operands!");
3430 // The immediate encodes the type of constant as well as the value.
3431 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3432 unsigned Value
= CE
->getValue();
3433 Value
= ARM_AM::encodeNEONi32splat(Value
);
3434 Inst
.addOperand(MCOperand::createImm(Value
));
3437 void addNEONi32splatNotOperands(MCInst
&Inst
, unsigned N
) const {
3438 assert(N
== 1 && "Invalid number of operands!");
3439 // The immediate encodes the type of constant as well as the value.
3440 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3441 unsigned Value
= CE
->getValue();
3442 Value
= ARM_AM::encodeNEONi32splat(~Value
);
3443 Inst
.addOperand(MCOperand::createImm(Value
));
3446 void addNEONi8ReplicateOperands(MCInst
&Inst
, bool Inv
) const {
3447 // The immediate encodes the type of constant as well as the value.
3448 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3449 assert((Inst
.getOpcode() == ARM::VMOVv8i8
||
3450 Inst
.getOpcode() == ARM::VMOVv16i8
) &&
3451 "All instructions that wants to replicate non-zero byte "
3452 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3453 unsigned Value
= CE
->getValue();
3456 unsigned B
= Value
& 0xff;
3457 B
|= 0xe00; // cmode = 0b1110
3458 Inst
.addOperand(MCOperand::createImm(B
));
3461 void addNEONinvi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3462 assert(N
== 1 && "Invalid number of operands!");
3463 addNEONi8ReplicateOperands(Inst
, true);
3466 static unsigned encodeNeonVMOVImmediate(unsigned Value
) {
3467 if (Value
>= 256 && Value
<= 0xffff)
3468 Value
= (Value
>> 8) | ((Value
& 0xff) ? 0xc00 : 0x200);
3469 else if (Value
> 0xffff && Value
<= 0xffffff)
3470 Value
= (Value
>> 16) | ((Value
& 0xff) ? 0xd00 : 0x400);
3471 else if (Value
> 0xffffff)
3472 Value
= (Value
>> 24) | 0x600;
3476 void addNEONi32vmovOperands(MCInst
&Inst
, unsigned N
) const {
3477 assert(N
== 1 && "Invalid number of operands!");
3478 // The immediate encodes the type of constant as well as the value.
3479 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3480 unsigned Value
= encodeNeonVMOVImmediate(CE
->getValue());
3481 Inst
.addOperand(MCOperand::createImm(Value
));
3484 void addNEONvmovi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3485 assert(N
== 1 && "Invalid number of operands!");
3486 addNEONi8ReplicateOperands(Inst
, false);
3489 void addNEONvmovi16ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3490 assert(N
== 1 && "Invalid number of operands!");
3491 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3492 assert((Inst
.getOpcode() == ARM::VMOVv4i16
||
3493 Inst
.getOpcode() == ARM::VMOVv8i16
||
3494 Inst
.getOpcode() == ARM::VMVNv4i16
||
3495 Inst
.getOpcode() == ARM::VMVNv8i16
) &&
3496 "All instructions that want to replicate non-zero half-word "
3497 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3498 uint64_t Value
= CE
->getValue();
3499 unsigned Elem
= Value
& 0xffff;
3501 Elem
= (Elem
>> 8) | 0x200;
3502 Inst
.addOperand(MCOperand::createImm(Elem
));
3505 void addNEONi32vmovNegOperands(MCInst
&Inst
, unsigned N
) const {
3506 assert(N
== 1 && "Invalid number of operands!");
3507 // The immediate encodes the type of constant as well as the value.
3508 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3509 unsigned Value
= encodeNeonVMOVImmediate(~CE
->getValue());
3510 Inst
.addOperand(MCOperand::createImm(Value
));
3513 void addNEONvmovi32ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3514 assert(N
== 1 && "Invalid number of operands!");
3515 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3516 assert((Inst
.getOpcode() == ARM::VMOVv2i32
||
3517 Inst
.getOpcode() == ARM::VMOVv4i32
||
3518 Inst
.getOpcode() == ARM::VMVNv2i32
||
3519 Inst
.getOpcode() == ARM::VMVNv4i32
) &&
3520 "All instructions that want to replicate non-zero word "
3521 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3522 uint64_t Value
= CE
->getValue();
3523 unsigned Elem
= encodeNeonVMOVImmediate(Value
& 0xffffffff);
3524 Inst
.addOperand(MCOperand::createImm(Elem
));
3527 void addNEONi64splatOperands(MCInst
&Inst
, unsigned N
) const {
3528 assert(N
== 1 && "Invalid number of operands!");
3529 // The immediate encodes the type of constant as well as the value.
3530 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3531 uint64_t Value
= CE
->getValue();
3533 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8) {
3534 Imm
|= (Value
& 1) << i
;
3536 Inst
.addOperand(MCOperand::createImm(Imm
| 0x1e00));
3539 void addComplexRotationEvenOperands(MCInst
&Inst
, unsigned N
) const {
3540 assert(N
== 1 && "Invalid number of operands!");
3541 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3542 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 90));
3545 void addComplexRotationOddOperands(MCInst
&Inst
, unsigned N
) const {
3546 assert(N
== 1 && "Invalid number of operands!");
3547 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3548 Inst
.addOperand(MCOperand::createImm((CE
->getValue() - 90) / 180));
3551 void addMveSaturateOperands(MCInst
&Inst
, unsigned N
) const {
3552 assert(N
== 1 && "Invalid number of operands!");
3553 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3554 unsigned Imm
= CE
->getValue();
3555 assert((Imm
== 48 || Imm
== 64) && "Invalid saturate operand");
3556 Inst
.addOperand(MCOperand::createImm(Imm
== 48 ? 1 : 0));
3559 void print(raw_ostream
&OS
) const override
;
3561 static std::unique_ptr
<ARMOperand
> CreateITMask(unsigned Mask
, SMLoc S
) {
3562 auto Op
= std::make_unique
<ARMOperand
>(k_ITCondMask
);
3563 Op
->ITMask
.Mask
= Mask
;
3569 static std::unique_ptr
<ARMOperand
> CreateCondCode(ARMCC::CondCodes CC
,
3571 auto Op
= std::make_unique
<ARMOperand
>(k_CondCode
);
3578 static std::unique_ptr
<ARMOperand
> CreateVPTPred(ARMVCC::VPTCodes CC
,
3580 auto Op
= std::make_unique
<ARMOperand
>(k_VPTPred
);
3587 static std::unique_ptr
<ARMOperand
> CreateCoprocNum(unsigned CopVal
, SMLoc S
) {
3588 auto Op
= std::make_unique
<ARMOperand
>(k_CoprocNum
);
3589 Op
->Cop
.Val
= CopVal
;
3595 static std::unique_ptr
<ARMOperand
> CreateCoprocReg(unsigned CopVal
, SMLoc S
) {
3596 auto Op
= std::make_unique
<ARMOperand
>(k_CoprocReg
);
3597 Op
->Cop
.Val
= CopVal
;
3603 static std::unique_ptr
<ARMOperand
> CreateCoprocOption(unsigned Val
, SMLoc S
,
3605 auto Op
= std::make_unique
<ARMOperand
>(k_CoprocOption
);
3612 static std::unique_ptr
<ARMOperand
> CreateCCOut(unsigned RegNum
, SMLoc S
) {
3613 auto Op
= std::make_unique
<ARMOperand
>(k_CCOut
);
3614 Op
->Reg
.RegNum
= RegNum
;
3620 static std::unique_ptr
<ARMOperand
> CreateToken(StringRef Str
, SMLoc S
) {
3621 auto Op
= std::make_unique
<ARMOperand
>(k_Token
);
3622 Op
->Tok
.Data
= Str
.data();
3623 Op
->Tok
.Length
= Str
.size();
3629 static std::unique_ptr
<ARMOperand
> CreateReg(unsigned RegNum
, SMLoc S
,
3631 auto Op
= std::make_unique
<ARMOperand
>(k_Register
);
3632 Op
->Reg
.RegNum
= RegNum
;
3638 static std::unique_ptr
<ARMOperand
>
3639 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
3640 unsigned ShiftReg
, unsigned ShiftImm
, SMLoc S
,
3642 auto Op
= std::make_unique
<ARMOperand
>(k_ShiftedRegister
);
3643 Op
->RegShiftedReg
.ShiftTy
= ShTy
;
3644 Op
->RegShiftedReg
.SrcReg
= SrcReg
;
3645 Op
->RegShiftedReg
.ShiftReg
= ShiftReg
;
3646 Op
->RegShiftedReg
.ShiftImm
= ShiftImm
;
3652 static std::unique_ptr
<ARMOperand
>
3653 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
3654 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
3655 auto Op
= std::make_unique
<ARMOperand
>(k_ShiftedImmediate
);
3656 Op
->RegShiftedImm
.ShiftTy
= ShTy
;
3657 Op
->RegShiftedImm
.SrcReg
= SrcReg
;
3658 Op
->RegShiftedImm
.ShiftImm
= ShiftImm
;
3664 static std::unique_ptr
<ARMOperand
> CreateShifterImm(bool isASR
, unsigned Imm
,
3666 auto Op
= std::make_unique
<ARMOperand
>(k_ShifterImmediate
);
3667 Op
->ShifterImm
.isASR
= isASR
;
3668 Op
->ShifterImm
.Imm
= Imm
;
3674 static std::unique_ptr
<ARMOperand
> CreateRotImm(unsigned Imm
, SMLoc S
,
3676 auto Op
= std::make_unique
<ARMOperand
>(k_RotateImmediate
);
3677 Op
->RotImm
.Imm
= Imm
;
3683 static std::unique_ptr
<ARMOperand
> CreateModImm(unsigned Bits
, unsigned Rot
,
3685 auto Op
= std::make_unique
<ARMOperand
>(k_ModifiedImmediate
);
3686 Op
->ModImm
.Bits
= Bits
;
3687 Op
->ModImm
.Rot
= Rot
;
3693 static std::unique_ptr
<ARMOperand
>
3694 CreateConstantPoolImm(const MCExpr
*Val
, SMLoc S
, SMLoc E
) {
3695 auto Op
= std::make_unique
<ARMOperand
>(k_ConstantPoolImmediate
);
3702 static std::unique_ptr
<ARMOperand
>
3703 CreateBitfield(unsigned LSB
, unsigned Width
, SMLoc S
, SMLoc E
) {
3704 auto Op
= std::make_unique
<ARMOperand
>(k_BitfieldDescriptor
);
3705 Op
->Bitfield
.LSB
= LSB
;
3706 Op
->Bitfield
.Width
= Width
;
3712 static std::unique_ptr
<ARMOperand
>
3713 CreateRegList(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
3714 SMLoc StartLoc
, SMLoc EndLoc
) {
3715 assert(Regs
.size() > 0 && "RegList contains no registers?");
3716 KindTy Kind
= k_RegisterList
;
3718 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
3719 Regs
.front().second
)) {
3720 if (Regs
.back().second
== ARM::VPR
)
3721 Kind
= k_FPDRegisterListWithVPR
;
3723 Kind
= k_DPRRegisterList
;
3724 } else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(
3725 Regs
.front().second
)) {
3726 if (Regs
.back().second
== ARM::VPR
)
3727 Kind
= k_FPSRegisterListWithVPR
;
3729 Kind
= k_SPRRegisterList
;
3732 if (Kind
== k_RegisterList
&& Regs
.back().second
== ARM::APSR
)
3733 Kind
= k_RegisterListWithAPSR
;
3735 assert(llvm::is_sorted(Regs
) && "Register list must be sorted by encoding");
3737 auto Op
= std::make_unique
<ARMOperand
>(Kind
);
3738 for (const auto &P
: Regs
)
3739 Op
->Registers
.push_back(P
.second
);
3741 Op
->StartLoc
= StartLoc
;
3742 Op
->EndLoc
= EndLoc
;
3746 static std::unique_ptr
<ARMOperand
> CreateVectorList(unsigned RegNum
,
3748 bool isDoubleSpaced
,
3750 auto Op
= std::make_unique
<ARMOperand
>(k_VectorList
);
3751 Op
->VectorList
.RegNum
= RegNum
;
3752 Op
->VectorList
.Count
= Count
;
3753 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3759 static std::unique_ptr
<ARMOperand
>
3760 CreateVectorListAllLanes(unsigned RegNum
, unsigned Count
, bool isDoubleSpaced
,
3762 auto Op
= std::make_unique
<ARMOperand
>(k_VectorListAllLanes
);
3763 Op
->VectorList
.RegNum
= RegNum
;
3764 Op
->VectorList
.Count
= Count
;
3765 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3771 static std::unique_ptr
<ARMOperand
>
3772 CreateVectorListIndexed(unsigned RegNum
, unsigned Count
, unsigned Index
,
3773 bool isDoubleSpaced
, SMLoc S
, SMLoc E
) {
3774 auto Op
= std::make_unique
<ARMOperand
>(k_VectorListIndexed
);
3775 Op
->VectorList
.RegNum
= RegNum
;
3776 Op
->VectorList
.Count
= Count
;
3777 Op
->VectorList
.LaneIndex
= Index
;
3778 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3784 static std::unique_ptr
<ARMOperand
>
3785 CreateVectorIndex(unsigned Idx
, SMLoc S
, SMLoc E
, MCContext
&Ctx
) {
3786 auto Op
= std::make_unique
<ARMOperand
>(k_VectorIndex
);
3787 Op
->VectorIndex
.Val
= Idx
;
3793 static std::unique_ptr
<ARMOperand
> CreateImm(const MCExpr
*Val
, SMLoc S
,
3795 auto Op
= std::make_unique
<ARMOperand
>(k_Immediate
);
3802 static std::unique_ptr
<ARMOperand
>
3803 CreateMem(unsigned BaseRegNum
, const MCExpr
*OffsetImm
, unsigned OffsetRegNum
,
3804 ARM_AM::ShiftOpc ShiftType
, unsigned ShiftImm
, unsigned Alignment
,
3805 bool isNegative
, SMLoc S
, SMLoc E
, SMLoc AlignmentLoc
= SMLoc()) {
3806 auto Op
= std::make_unique
<ARMOperand
>(k_Memory
);
3807 Op
->Memory
.BaseRegNum
= BaseRegNum
;
3808 Op
->Memory
.OffsetImm
= OffsetImm
;
3809 Op
->Memory
.OffsetRegNum
= OffsetRegNum
;
3810 Op
->Memory
.ShiftType
= ShiftType
;
3811 Op
->Memory
.ShiftImm
= ShiftImm
;
3812 Op
->Memory
.Alignment
= Alignment
;
3813 Op
->Memory
.isNegative
= isNegative
;
3816 Op
->AlignmentLoc
= AlignmentLoc
;
3820 static std::unique_ptr
<ARMOperand
>
3821 CreatePostIdxReg(unsigned RegNum
, bool isAdd
, ARM_AM::ShiftOpc ShiftTy
,
3822 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
3823 auto Op
= std::make_unique
<ARMOperand
>(k_PostIndexRegister
);
3824 Op
->PostIdxReg
.RegNum
= RegNum
;
3825 Op
->PostIdxReg
.isAdd
= isAdd
;
3826 Op
->PostIdxReg
.ShiftTy
= ShiftTy
;
3827 Op
->PostIdxReg
.ShiftImm
= ShiftImm
;
3833 static std::unique_ptr
<ARMOperand
> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt
,
3835 auto Op
= std::make_unique
<ARMOperand
>(k_MemBarrierOpt
);
3836 Op
->MBOpt
.Val
= Opt
;
3842 static std::unique_ptr
<ARMOperand
>
3843 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt
, SMLoc S
) {
3844 auto Op
= std::make_unique
<ARMOperand
>(k_InstSyncBarrierOpt
);
3845 Op
->ISBOpt
.Val
= Opt
;
3851 static std::unique_ptr
<ARMOperand
>
3852 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt
, SMLoc S
) {
3853 auto Op
= std::make_unique
<ARMOperand
>(k_TraceSyncBarrierOpt
);
3854 Op
->TSBOpt
.Val
= Opt
;
3860 static std::unique_ptr
<ARMOperand
> CreateProcIFlags(ARM_PROC::IFlags IFlags
,
3862 auto Op
= std::make_unique
<ARMOperand
>(k_ProcIFlags
);
3863 Op
->IFlags
.Val
= IFlags
;
3869 static std::unique_ptr
<ARMOperand
> CreateMSRMask(unsigned MMask
, SMLoc S
) {
3870 auto Op
= std::make_unique
<ARMOperand
>(k_MSRMask
);
3871 Op
->MMask
.Val
= MMask
;
3877 static std::unique_ptr
<ARMOperand
> CreateBankedReg(unsigned Reg
, SMLoc S
) {
3878 auto Op
= std::make_unique
<ARMOperand
>(k_BankedReg
);
3879 Op
->BankedReg
.Val
= Reg
;
3886 } // end anonymous namespace.
3888 void ARMOperand::print(raw_ostream
&OS
) const {
3889 auto RegName
= [](unsigned Reg
) {
3891 return ARMInstPrinter::getRegisterName(Reg
);
3898 OS
<< "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3901 OS
<< "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3904 OS
<< "<ccout " << RegName(getReg()) << ">";
3906 case k_ITCondMask
: {
3907 static const char *const MaskStr
[] = {
3908 "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3909 "(tt)", "(ttet)", "(tte)", "(ttee)",
3910 "(t)", "(tett)", "(tet)", "(tete)",
3911 "(te)", "(teet)", "(tee)", "(teee)",
3913 assert((ITMask
.Mask
& 0xf) == ITMask
.Mask
);
3914 OS
<< "<it-mask " << MaskStr
[ITMask
.Mask
] << ">";
3918 OS
<< "<coprocessor number: " << getCoproc() << ">";
3921 OS
<< "<coprocessor register: " << getCoproc() << ">";
3923 case k_CoprocOption
:
3924 OS
<< "<coprocessor option: " << CoprocOption
.Val
<< ">";
3927 OS
<< "<mask: " << getMSRMask() << ">";
3930 OS
<< "<banked reg: " << getBankedReg() << ">";
3935 case k_MemBarrierOpt
:
3936 OS
<< "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3938 case k_InstSyncBarrierOpt
:
3939 OS
<< "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3941 case k_TraceSyncBarrierOpt
:
3942 OS
<< "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3946 if (Memory
.BaseRegNum
)
3947 OS
<< " base:" << RegName(Memory
.BaseRegNum
);
3948 if (Memory
.OffsetImm
)
3949 OS
<< " offset-imm:" << *Memory
.OffsetImm
;
3950 if (Memory
.OffsetRegNum
)
3951 OS
<< " offset-reg:" << (Memory
.isNegative
? "-" : "")
3952 << RegName(Memory
.OffsetRegNum
);
3953 if (Memory
.ShiftType
!= ARM_AM::no_shift
) {
3954 OS
<< " shift-type:" << ARM_AM::getShiftOpcStr(Memory
.ShiftType
);
3955 OS
<< " shift-imm:" << Memory
.ShiftImm
;
3957 if (Memory
.Alignment
)
3958 OS
<< " alignment:" << Memory
.Alignment
;
3961 case k_PostIndexRegister
:
3962 OS
<< "post-idx register " << (PostIdxReg
.isAdd
? "" : "-")
3963 << RegName(PostIdxReg
.RegNum
);
3964 if (PostIdxReg
.ShiftTy
!= ARM_AM::no_shift
)
3965 OS
<< ARM_AM::getShiftOpcStr(PostIdxReg
.ShiftTy
) << " "
3966 << PostIdxReg
.ShiftImm
;
3969 case k_ProcIFlags
: {
3970 OS
<< "<ARM_PROC::";
3971 unsigned IFlags
= getProcIFlags();
3972 for (int i
=2; i
>= 0; --i
)
3973 if (IFlags
& (1 << i
))
3974 OS
<< ARM_PROC::IFlagsToString(1 << i
);
3979 OS
<< "<register " << RegName(getReg()) << ">";
3981 case k_ShifterImmediate
:
3982 OS
<< "<shift " << (ShifterImm
.isASR
? "asr" : "lsl")
3983 << " #" << ShifterImm
.Imm
<< ">";
3985 case k_ShiftedRegister
:
3986 OS
<< "<so_reg_reg " << RegName(RegShiftedReg
.SrcReg
) << " "
3987 << ARM_AM::getShiftOpcStr(RegShiftedReg
.ShiftTy
) << " "
3988 << RegName(RegShiftedReg
.ShiftReg
) << ">";
3990 case k_ShiftedImmediate
:
3991 OS
<< "<so_reg_imm " << RegName(RegShiftedImm
.SrcReg
) << " "
3992 << ARM_AM::getShiftOpcStr(RegShiftedImm
.ShiftTy
) << " #"
3993 << RegShiftedImm
.ShiftImm
<< ">";
3995 case k_RotateImmediate
:
3996 OS
<< "<ror " << " #" << (RotImm
.Imm
* 8) << ">";
3998 case k_ModifiedImmediate
:
3999 OS
<< "<mod_imm #" << ModImm
.Bits
<< ", #"
4000 << ModImm
.Rot
<< ")>";
4002 case k_ConstantPoolImmediate
:
4003 OS
<< "<constant_pool_imm #" << *getConstantPoolImm();
4005 case k_BitfieldDescriptor
:
4006 OS
<< "<bitfield " << "lsb: " << Bitfield
.LSB
4007 << ", width: " << Bitfield
.Width
<< ">";
4009 case k_RegisterList
:
4010 case k_RegisterListWithAPSR
:
4011 case k_DPRRegisterList
:
4012 case k_SPRRegisterList
:
4013 case k_FPSRegisterListWithVPR
:
4014 case k_FPDRegisterListWithVPR
: {
4015 OS
<< "<register_list ";
4017 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
4018 for (SmallVectorImpl
<unsigned>::const_iterator
4019 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ) {
4021 if (++I
< E
) OS
<< ", ";
4028 OS
<< "<vector_list " << VectorList
.Count
<< " * "
4029 << RegName(VectorList
.RegNum
) << ">";
4031 case k_VectorListAllLanes
:
4032 OS
<< "<vector_list(all lanes) " << VectorList
.Count
<< " * "
4033 << RegName(VectorList
.RegNum
) << ">";
4035 case k_VectorListIndexed
:
4036 OS
<< "<vector_list(lane " << VectorList
.LaneIndex
<< ") "
4037 << VectorList
.Count
<< " * " << RegName(VectorList
.RegNum
) << ">";
4040 OS
<< "'" << getToken() << "'";
4043 OS
<< "<vectorindex " << getVectorIndex() << ">";
4048 /// @name Auto-generated Match Functions
4051 static unsigned MatchRegisterName(StringRef Name
);
4055 bool ARMAsmParser::ParseRegister(unsigned &RegNo
,
4056 SMLoc
&StartLoc
, SMLoc
&EndLoc
) {
4057 const AsmToken
&Tok
= getParser().getTok();
4058 StartLoc
= Tok
.getLoc();
4059 EndLoc
= Tok
.getEndLoc();
4060 RegNo
= tryParseRegister();
4062 return (RegNo
== (unsigned)-1);
4065 OperandMatchResultTy
ARMAsmParser::tryParseRegister(unsigned &RegNo
,
4068 if (ParseRegister(RegNo
, StartLoc
, EndLoc
))
4069 return MatchOperand_NoMatch
;
4070 return MatchOperand_Success
;
4073 /// Try to parse a register name. The token must be an Identifier when called,
4074 /// and if it is a register name the token is eaten and the register number is
4075 /// returned. Otherwise return -1.
4076 int ARMAsmParser::tryParseRegister() {
4077 MCAsmParser
&Parser
= getParser();
4078 const AsmToken
&Tok
= Parser
.getTok();
4079 if (Tok
.isNot(AsmToken::Identifier
)) return -1;
4081 std::string lowerCase
= Tok
.getString().lower();
4082 unsigned RegNum
= MatchRegisterName(lowerCase
);
4084 RegNum
= StringSwitch
<unsigned>(lowerCase
)
4085 .Case("r13", ARM::SP
)
4086 .Case("r14", ARM::LR
)
4087 .Case("r15", ARM::PC
)
4088 .Case("ip", ARM::R12
)
4089 // Additional register name aliases for 'gas' compatibility.
4090 .Case("a1", ARM::R0
)
4091 .Case("a2", ARM::R1
)
4092 .Case("a3", ARM::R2
)
4093 .Case("a4", ARM::R3
)
4094 .Case("v1", ARM::R4
)
4095 .Case("v2", ARM::R5
)
4096 .Case("v3", ARM::R6
)
4097 .Case("v4", ARM::R7
)
4098 .Case("v5", ARM::R8
)
4099 .Case("v6", ARM::R9
)
4100 .Case("v7", ARM::R10
)
4101 .Case("v8", ARM::R11
)
4102 .Case("sb", ARM::R9
)
4103 .Case("sl", ARM::R10
)
4104 .Case("fp", ARM::R11
)
4108 // Check for aliases registered via .req. Canonicalize to lower case.
4109 // That's more consistent since register names are case insensitive, and
4110 // it's how the original entry was passed in from MC/MCParser/AsmParser.
4111 StringMap
<unsigned>::const_iterator Entry
= RegisterReqs
.find(lowerCase
);
4112 // If no match, return failure.
4113 if (Entry
== RegisterReqs
.end())
4115 Parser
.Lex(); // Eat identifier token.
4116 return Entry
->getValue();
4119 // Some FPUs only have 16 D registers, so D16-D31 are invalid
4120 if (!hasD32() && RegNum
>= ARM::D16
&& RegNum
<= ARM::D31
)
4123 Parser
.Lex(); // Eat identifier token.
4128 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
4129 // If a recoverable error occurs, return 1. If an irrecoverable error
4130 // occurs, return -1. An irrecoverable error is one where tokens have been
4131 // consumed in the process of trying to parse the shifter (i.e., when it is
4132 // indeed a shifter operand, but malformed).
4133 int ARMAsmParser::tryParseShiftRegister(OperandVector
&Operands
) {
4134 MCAsmParser
&Parser
= getParser();
4135 SMLoc S
= Parser
.getTok().getLoc();
4136 const AsmToken
&Tok
= Parser
.getTok();
4137 if (Tok
.isNot(AsmToken::Identifier
))
4140 std::string lowerCase
= Tok
.getString().lower();
4141 ARM_AM::ShiftOpc ShiftTy
= StringSwitch
<ARM_AM::ShiftOpc
>(lowerCase
)
4142 .Case("asl", ARM_AM::lsl
)
4143 .Case("lsl", ARM_AM::lsl
)
4144 .Case("lsr", ARM_AM::lsr
)
4145 .Case("asr", ARM_AM::asr
)
4146 .Case("ror", ARM_AM::ror
)
4147 .Case("rrx", ARM_AM::rrx
)
4148 .Default(ARM_AM::no_shift
);
4150 if (ShiftTy
== ARM_AM::no_shift
)
4153 Parser
.Lex(); // Eat the operator.
4155 // The source register for the shift has already been added to the
4156 // operand list, so we need to pop it off and combine it into the shifted
4157 // register operand instead.
4158 std::unique_ptr
<ARMOperand
> PrevOp(
4159 (ARMOperand
*)Operands
.pop_back_val().release());
4160 if (!PrevOp
->isReg())
4161 return Error(PrevOp
->getStartLoc(), "shift must be of a register");
4162 int SrcReg
= PrevOp
->getReg();
4167 if (ShiftTy
== ARM_AM::rrx
) {
4168 // RRX Doesn't have an explicit shift amount. The encoder expects
4169 // the shift register to be the same as the source register. Seems odd,
4173 // Figure out if this is shifted by a constant or a register (for non-RRX).
4174 if (Parser
.getTok().is(AsmToken::Hash
) ||
4175 Parser
.getTok().is(AsmToken::Dollar
)) {
4176 Parser
.Lex(); // Eat hash.
4177 SMLoc ImmLoc
= Parser
.getTok().getLoc();
4178 const MCExpr
*ShiftExpr
= nullptr;
4179 if (getParser().parseExpression(ShiftExpr
, EndLoc
)) {
4180 Error(ImmLoc
, "invalid immediate shift value");
4183 // The expression must be evaluatable as an immediate.
4184 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftExpr
);
4186 Error(ImmLoc
, "invalid immediate shift value");
4189 // Range check the immediate.
4190 // lsl, ror: 0 <= imm <= 31
4191 // lsr, asr: 0 <= imm <= 32
4192 Imm
= CE
->getValue();
4194 ((ShiftTy
== ARM_AM::lsl
|| ShiftTy
== ARM_AM::ror
) && Imm
> 31) ||
4195 ((ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
) && Imm
> 32)) {
4196 Error(ImmLoc
, "immediate shift value out of range");
4199 // shift by zero is a nop. Always send it through as lsl.
4200 // ('as' compatibility)
4202 ShiftTy
= ARM_AM::lsl
;
4203 } else if (Parser
.getTok().is(AsmToken::Identifier
)) {
4204 SMLoc L
= Parser
.getTok().getLoc();
4205 EndLoc
= Parser
.getTok().getEndLoc();
4206 ShiftReg
= tryParseRegister();
4207 if (ShiftReg
== -1) {
4208 Error(L
, "expected immediate or register in shift operand");
4212 Error(Parser
.getTok().getLoc(),
4213 "expected immediate or register in shift operand");
4218 if (ShiftReg
&& ShiftTy
!= ARM_AM::rrx
)
4219 Operands
.push_back(ARMOperand::CreateShiftedRegister(ShiftTy
, SrcReg
,
4223 Operands
.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy
, SrcReg
, Imm
,
4229 /// Try to parse a register name. The token must be an Identifier when called.
4230 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4231 /// if there is a "writeback". 'true' if it's not a register.
4233 /// TODO this is likely to change to allow different register types and or to
4234 /// parse for a specific register type.
4235 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector
&Operands
) {
4236 MCAsmParser
&Parser
= getParser();
4237 SMLoc RegStartLoc
= Parser
.getTok().getLoc();
4238 SMLoc RegEndLoc
= Parser
.getTok().getEndLoc();
4239 int RegNo
= tryParseRegister();
4243 Operands
.push_back(ARMOperand::CreateReg(RegNo
, RegStartLoc
, RegEndLoc
));
4245 const AsmToken
&ExclaimTok
= Parser
.getTok();
4246 if (ExclaimTok
.is(AsmToken::Exclaim
)) {
4247 Operands
.push_back(ARMOperand::CreateToken(ExclaimTok
.getString(),
4248 ExclaimTok
.getLoc()));
4249 Parser
.Lex(); // Eat exclaim token
4253 // Also check for an index operand. This is only legal for vector registers,
4254 // but that'll get caught OK in operand matching, so we don't need to
4255 // explicitly filter everything else out here.
4256 if (Parser
.getTok().is(AsmToken::LBrac
)) {
4257 SMLoc SIdx
= Parser
.getTok().getLoc();
4258 Parser
.Lex(); // Eat left bracket token.
4260 const MCExpr
*ImmVal
;
4261 if (getParser().parseExpression(ImmVal
))
4263 const MCConstantExpr
*MCE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
4265 return TokError("immediate value expected for vector index");
4267 if (Parser
.getTok().isNot(AsmToken::RBrac
))
4268 return Error(Parser
.getTok().getLoc(), "']' expected");
4270 SMLoc E
= Parser
.getTok().getEndLoc();
4271 Parser
.Lex(); // Eat right bracket token.
4273 Operands
.push_back(ARMOperand::CreateVectorIndex(MCE
->getValue(),
4281 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4282 /// instruction with a symbolic operand name.
4283 /// We accept "crN" syntax for GAS compatibility.
4284 /// <operand-name> ::= <prefix><number>
4285 /// If CoprocOp is 'c', then:
4286 /// <prefix> ::= c | cr
4287 /// If CoprocOp is 'p', then :
4289 /// <number> ::= integer in range [0, 15]
4290 static int MatchCoprocessorOperandName(StringRef Name
, char CoprocOp
) {
4291 // Use the same layout as the tablegen'erated register name matcher. Ugly,
4293 if (Name
.size() < 2 || Name
[0] != CoprocOp
)
4295 Name
= (Name
[1] == 'r') ? Name
.drop_front(2) : Name
.drop_front();
4297 switch (Name
.size()) {
4318 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4319 // However, old cores (v5/v6) did use them in that way.
4320 case '0': return 10;
4321 case '1': return 11;
4322 case '2': return 12;
4323 case '3': return 13;
4324 case '4': return 14;
4325 case '5': return 15;
4330 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4331 OperandMatchResultTy
4332 ARMAsmParser::parseITCondCode(OperandVector
&Operands
) {
4333 MCAsmParser
&Parser
= getParser();
4334 SMLoc S
= Parser
.getTok().getLoc();
4335 const AsmToken
&Tok
= Parser
.getTok();
4336 if (!Tok
.is(AsmToken::Identifier
))
4337 return MatchOperand_NoMatch
;
4338 unsigned CC
= ARMCondCodeFromString(Tok
.getString());
4340 return MatchOperand_NoMatch
;
4341 Parser
.Lex(); // Eat the token.
4343 Operands
.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC
), S
));
4345 return MatchOperand_Success
;
4348 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4349 /// token must be an Identifier when called, and if it is a coprocessor
4350 /// number, the token is eaten and the operand is added to the operand list.
4351 OperandMatchResultTy
4352 ARMAsmParser::parseCoprocNumOperand(OperandVector
&Operands
) {
4353 MCAsmParser
&Parser
= getParser();
4354 SMLoc S
= Parser
.getTok().getLoc();
4355 const AsmToken
&Tok
= Parser
.getTok();
4356 if (Tok
.isNot(AsmToken::Identifier
))
4357 return MatchOperand_NoMatch
;
4359 int Num
= MatchCoprocessorOperandName(Tok
.getString().lower(), 'p');
4361 return MatchOperand_NoMatch
;
4362 if (!isValidCoprocessorNumber(Num
, getSTI().getFeatureBits()))
4363 return MatchOperand_NoMatch
;
4365 Parser
.Lex(); // Eat identifier token.
4366 Operands
.push_back(ARMOperand::CreateCoprocNum(Num
, S
));
4367 return MatchOperand_Success
;
4370 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4371 /// token must be an Identifier when called, and if it is a coprocessor
4372 /// number, the token is eaten and the operand is added to the operand list.
4373 OperandMatchResultTy
4374 ARMAsmParser::parseCoprocRegOperand(OperandVector
&Operands
) {
4375 MCAsmParser
&Parser
= getParser();
4376 SMLoc S
= Parser
.getTok().getLoc();
4377 const AsmToken
&Tok
= Parser
.getTok();
4378 if (Tok
.isNot(AsmToken::Identifier
))
4379 return MatchOperand_NoMatch
;
4381 int Reg
= MatchCoprocessorOperandName(Tok
.getString().lower(), 'c');
4383 return MatchOperand_NoMatch
;
4385 Parser
.Lex(); // Eat identifier token.
4386 Operands
.push_back(ARMOperand::CreateCoprocReg(Reg
, S
));
4387 return MatchOperand_Success
;
4390 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4391 /// coproc_option : '{' imm0_255 '}'
4392 OperandMatchResultTy
4393 ARMAsmParser::parseCoprocOptionOperand(OperandVector
&Operands
) {
4394 MCAsmParser
&Parser
= getParser();
4395 SMLoc S
= Parser
.getTok().getLoc();
4397 // If this isn't a '{', this isn't a coprocessor immediate operand.
4398 if (Parser
.getTok().isNot(AsmToken::LCurly
))
4399 return MatchOperand_NoMatch
;
4400 Parser
.Lex(); // Eat the '{'
4403 SMLoc Loc
= Parser
.getTok().getLoc();
4404 if (getParser().parseExpression(Expr
)) {
4405 Error(Loc
, "illegal expression");
4406 return MatchOperand_ParseFail
;
4408 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
4409 if (!CE
|| CE
->getValue() < 0 || CE
->getValue() > 255) {
4410 Error(Loc
, "coprocessor option must be an immediate in range [0, 255]");
4411 return MatchOperand_ParseFail
;
4413 int Val
= CE
->getValue();
4415 // Check for and consume the closing '}'
4416 if (Parser
.getTok().isNot(AsmToken::RCurly
))
4417 return MatchOperand_ParseFail
;
4418 SMLoc E
= Parser
.getTok().getEndLoc();
4419 Parser
.Lex(); // Eat the '}'
4421 Operands
.push_back(ARMOperand::CreateCoprocOption(Val
, S
, E
));
4422 return MatchOperand_Success
;
4425 // For register list parsing, we need to map from raw GPR register numbering
4426 // to the enumeration values. The enumeration values aren't sorted by
4427 // register number due to our using "sp", "lr" and "pc" as canonical names.
4428 static unsigned getNextRegister(unsigned Reg
) {
4429 // If this is a GPR, we need to do it manually, otherwise we can rely
4430 // on the sort ordering of the enumeration since the other reg-classes
4432 if (!ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
4435 default: llvm_unreachable("Invalid GPR number!");
4436 case ARM::R0
: return ARM::R1
; case ARM::R1
: return ARM::R2
;
4437 case ARM::R2
: return ARM::R3
; case ARM::R3
: return ARM::R4
;
4438 case ARM::R4
: return ARM::R5
; case ARM::R5
: return ARM::R6
;
4439 case ARM::R6
: return ARM::R7
; case ARM::R7
: return ARM::R8
;
4440 case ARM::R8
: return ARM::R9
; case ARM::R9
: return ARM::R10
;
4441 case ARM::R10
: return ARM::R11
; case ARM::R11
: return ARM::R12
;
4442 case ARM::R12
: return ARM::SP
; case ARM::SP
: return ARM::LR
;
4443 case ARM::LR
: return ARM::PC
; case ARM::PC
: return ARM::R0
;
4447 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4448 // success, or false, if duplicate encoding found.
4450 insertNoDuplicates(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
4451 unsigned Enc
, unsigned Reg
) {
4452 Regs
.emplace_back(Enc
, Reg
);
4453 for (auto I
= Regs
.rbegin(), J
= I
+ 1, E
= Regs
.rend(); J
!= E
; ++I
, ++J
) {
4454 if (J
->first
== Enc
) {
4455 Regs
.erase(J
.base());
4465 /// Parse a register list.
4466 bool ARMAsmParser::parseRegisterList(OperandVector
&Operands
,
4467 bool EnforceOrder
) {
4468 MCAsmParser
&Parser
= getParser();
4469 if (Parser
.getTok().isNot(AsmToken::LCurly
))
4470 return TokError("Token is not a Left Curly Brace");
4471 SMLoc S
= Parser
.getTok().getLoc();
4472 Parser
.Lex(); // Eat '{' token.
4473 SMLoc RegLoc
= Parser
.getTok().getLoc();
4475 // Check the first register in the list to see what register class
4476 // this is a list of.
4477 int Reg
= tryParseRegister();
4479 return Error(RegLoc
, "register expected");
4481 // The reglist instructions have at most 16 registers, so reserve
4482 // space for that many.
4484 SmallVector
<std::pair
<unsigned, unsigned>, 16> Registers
;
4486 // Allow Q regs and just interpret them as the two D sub-registers.
4487 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4488 Reg
= getDRegFromQReg(Reg
);
4489 EReg
= MRI
->getEncodingValue(Reg
);
4490 Registers
.emplace_back(EReg
, Reg
);
4493 const MCRegisterClass
*RC
;
4494 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
4495 RC
= &ARMMCRegisterClasses
[ARM::GPRRegClassID
];
4496 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
))
4497 RC
= &ARMMCRegisterClasses
[ARM::DPRRegClassID
];
4498 else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(Reg
))
4499 RC
= &ARMMCRegisterClasses
[ARM::SPRRegClassID
];
4500 else if (ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(Reg
))
4501 RC
= &ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
];
4503 return Error(RegLoc
, "invalid register in register list");
4505 // Store the register.
4506 EReg
= MRI
->getEncodingValue(Reg
);
4507 Registers
.emplace_back(EReg
, Reg
);
4509 // This starts immediately after the first register token in the list,
4510 // so we can see either a comma or a minus (range separator) as a legal
4512 while (Parser
.getTok().is(AsmToken::Comma
) ||
4513 Parser
.getTok().is(AsmToken::Minus
)) {
4514 if (Parser
.getTok().is(AsmToken::Minus
)) {
4515 Parser
.Lex(); // Eat the minus.
4516 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
4517 int EndReg
= tryParseRegister();
4519 return Error(AfterMinusLoc
, "register expected");
4520 // Allow Q regs and just interpret them as the two D sub-registers.
4521 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
4522 EndReg
= getDRegFromQReg(EndReg
) + 1;
4523 // If the register is the same as the start reg, there's nothing
4527 // The register must be in the same register class as the first.
4528 if (!RC
->contains(EndReg
))
4529 return Error(AfterMinusLoc
, "invalid register in register list");
4530 // Ranges must go from low to high.
4531 if (MRI
->getEncodingValue(Reg
) > MRI
->getEncodingValue(EndReg
))
4532 return Error(AfterMinusLoc
, "bad range in register list");
4534 // Add all the registers in the range to the register list.
4535 while (Reg
!= EndReg
) {
4536 Reg
= getNextRegister(Reg
);
4537 EReg
= MRI
->getEncodingValue(Reg
);
4538 if (!insertNoDuplicates(Registers
, EReg
, Reg
)) {
4539 Warning(AfterMinusLoc
, StringRef("duplicated register (") +
4540 ARMInstPrinter::getRegisterName(Reg
) +
4541 ") in register list");
4546 Parser
.Lex(); // Eat the comma.
4547 RegLoc
= Parser
.getTok().getLoc();
4549 const AsmToken RegTok
= Parser
.getTok();
4550 Reg
= tryParseRegister();
4552 return Error(RegLoc
, "register expected");
4553 // Allow Q regs and just interpret them as the two D sub-registers.
4554 bool isQReg
= false;
4555 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4556 Reg
= getDRegFromQReg(Reg
);
4559 if (!RC
->contains(Reg
) &&
4560 RC
->getID() == ARMMCRegisterClasses
[ARM::GPRRegClassID
].getID() &&
4561 ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(Reg
)) {
4562 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4563 // subset of GPRRegClassId except it contains APSR as well.
4564 RC
= &ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
];
4566 if (Reg
== ARM::VPR
&&
4567 (RC
== &ARMMCRegisterClasses
[ARM::SPRRegClassID
] ||
4568 RC
== &ARMMCRegisterClasses
[ARM::DPRRegClassID
] ||
4569 RC
== &ARMMCRegisterClasses
[ARM::FPWithVPRRegClassID
])) {
4570 RC
= &ARMMCRegisterClasses
[ARM::FPWithVPRRegClassID
];
4571 EReg
= MRI
->getEncodingValue(Reg
);
4572 if (!insertNoDuplicates(Registers
, EReg
, Reg
)) {
4573 Warning(RegLoc
, "duplicated register (" + RegTok
.getString() +
4574 ") in register list");
4578 // The register must be in the same register class as the first.
4579 if (!RC
->contains(Reg
))
4580 return Error(RegLoc
, "invalid register in register list");
4581 // In most cases, the list must be monotonically increasing. An
4582 // exception is CLRM, which is order-independent anyway, so
4583 // there's no potential for confusion if you write clrm {r2,r1}
4584 // instead of clrm {r1,r2}.
4586 MRI
->getEncodingValue(Reg
) < MRI
->getEncodingValue(OldReg
)) {
4587 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
4588 Warning(RegLoc
, "register list not in ascending order");
4589 else if (!ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(Reg
))
4590 return Error(RegLoc
, "register list not in ascending order");
4592 // VFP register lists must also be contiguous.
4593 if (RC
!= &ARMMCRegisterClasses
[ARM::GPRRegClassID
] &&
4594 RC
!= &ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
] &&
4596 return Error(RegLoc
, "non-contiguous register range");
4597 EReg
= MRI
->getEncodingValue(Reg
);
4598 if (!insertNoDuplicates(Registers
, EReg
, Reg
)) {
4599 Warning(RegLoc
, "duplicated register (" + RegTok
.getString() +
4600 ") in register list");
4603 EReg
= MRI
->getEncodingValue(++Reg
);
4604 Registers
.emplace_back(EReg
, Reg
);
4608 if (Parser
.getTok().isNot(AsmToken::RCurly
))
4609 return Error(Parser
.getTok().getLoc(), "'}' expected");
4610 SMLoc E
= Parser
.getTok().getEndLoc();
4611 Parser
.Lex(); // Eat '}' token.
4613 // Push the register list operand.
4614 Operands
.push_back(ARMOperand::CreateRegList(Registers
, S
, E
));
4616 // The ARM system instruction variants for LDM/STM have a '^' token here.
4617 if (Parser
.getTok().is(AsmToken::Caret
)) {
4618 Operands
.push_back(ARMOperand::CreateToken("^",Parser
.getTok().getLoc()));
4619 Parser
.Lex(); // Eat '^' token.
4625 // Helper function to parse the lane index for vector lists.
4626 OperandMatchResultTy
ARMAsmParser::
4627 parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
, SMLoc
&EndLoc
) {
4628 MCAsmParser
&Parser
= getParser();
4629 Index
= 0; // Always return a defined index value.
4630 if (Parser
.getTok().is(AsmToken::LBrac
)) {
4631 Parser
.Lex(); // Eat the '['.
4632 if (Parser
.getTok().is(AsmToken::RBrac
)) {
4633 // "Dn[]" is the 'all lanes' syntax.
4634 LaneKind
= AllLanes
;
4635 EndLoc
= Parser
.getTok().getEndLoc();
4636 Parser
.Lex(); // Eat the ']'.
4637 return MatchOperand_Success
;
4640 // There's an optional '#' token here. Normally there wouldn't be, but
4641 // inline assemble puts one in, and it's friendly to accept that.
4642 if (Parser
.getTok().is(AsmToken::Hash
))
4643 Parser
.Lex(); // Eat '#' or '$'.
4645 const MCExpr
*LaneIndex
;
4646 SMLoc Loc
= Parser
.getTok().getLoc();
4647 if (getParser().parseExpression(LaneIndex
)) {
4648 Error(Loc
, "illegal expression");
4649 return MatchOperand_ParseFail
;
4651 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LaneIndex
);
4653 Error(Loc
, "lane index must be empty or an integer");
4654 return MatchOperand_ParseFail
;
4656 if (Parser
.getTok().isNot(AsmToken::RBrac
)) {
4657 Error(Parser
.getTok().getLoc(), "']' expected");
4658 return MatchOperand_ParseFail
;
4660 EndLoc
= Parser
.getTok().getEndLoc();
4661 Parser
.Lex(); // Eat the ']'.
4662 int64_t Val
= CE
->getValue();
4664 // FIXME: Make this range check context sensitive for .8, .16, .32.
4665 if (Val
< 0 || Val
> 7) {
4666 Error(Parser
.getTok().getLoc(), "lane index out of range");
4667 return MatchOperand_ParseFail
;
4670 LaneKind
= IndexedLane
;
4671 return MatchOperand_Success
;
4674 return MatchOperand_Success
;
4677 // parse a vector register list
4678 OperandMatchResultTy
4679 ARMAsmParser::parseVectorList(OperandVector
&Operands
) {
4680 MCAsmParser
&Parser
= getParser();
4681 VectorLaneTy LaneKind
;
4683 SMLoc S
= Parser
.getTok().getLoc();
4684 // As an extension (to match gas), support a plain D register or Q register
4685 // (without encosing curly braces) as a single or double entry list,
4687 if (!hasMVE() && Parser
.getTok().is(AsmToken::Identifier
)) {
4688 SMLoc E
= Parser
.getTok().getEndLoc();
4689 int Reg
= tryParseRegister();
4691 return MatchOperand_NoMatch
;
4692 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
4693 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
4694 if (Res
!= MatchOperand_Success
)
4698 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 1, false, S
, E
));
4701 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 1, false,
4705 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 1,
4710 return MatchOperand_Success
;
4712 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4713 Reg
= getDRegFromQReg(Reg
);
4714 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
4715 if (Res
!= MatchOperand_Success
)
4719 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
4720 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
4721 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 2, false, S
, E
));
4724 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
4725 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
4726 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 2, false,
4730 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 2,
4735 return MatchOperand_Success
;
4737 Error(S
, "vector register expected");
4738 return MatchOperand_ParseFail
;
4741 if (Parser
.getTok().isNot(AsmToken::LCurly
))
4742 return MatchOperand_NoMatch
;
4744 Parser
.Lex(); // Eat '{' token.
4745 SMLoc RegLoc
= Parser
.getTok().getLoc();
4747 int Reg
= tryParseRegister();
4749 Error(RegLoc
, "register expected");
4750 return MatchOperand_ParseFail
;
4754 unsigned FirstReg
= Reg
;
4756 if (hasMVE() && !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(Reg
)) {
4757 Error(Parser
.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4758 return MatchOperand_ParseFail
;
4760 // The list is of D registers, but we also allow Q regs and just interpret
4761 // them as the two D sub-registers.
4762 else if (!hasMVE() && ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4763 FirstReg
= Reg
= getDRegFromQReg(Reg
);
4764 Spacing
= 1; // double-spacing requires explicit D registers, otherwise
4765 // it's ambiguous with four-register single spaced.
4771 if (parseVectorLane(LaneKind
, LaneIndex
, E
) != MatchOperand_Success
)
4772 return MatchOperand_ParseFail
;
4774 while (Parser
.getTok().is(AsmToken::Comma
) ||
4775 Parser
.getTok().is(AsmToken::Minus
)) {
4776 if (Parser
.getTok().is(AsmToken::Minus
)) {
4778 Spacing
= 1; // Register range implies a single spaced list.
4779 else if (Spacing
== 2) {
4780 Error(Parser
.getTok().getLoc(),
4781 "sequential registers in double spaced list");
4782 return MatchOperand_ParseFail
;
4784 Parser
.Lex(); // Eat the minus.
4785 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
4786 int EndReg
= tryParseRegister();
4788 Error(AfterMinusLoc
, "register expected");
4789 return MatchOperand_ParseFail
;
4791 // Allow Q regs and just interpret them as the two D sub-registers.
4792 if (!hasMVE() && ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
4793 EndReg
= getDRegFromQReg(EndReg
) + 1;
4794 // If the register is the same as the start reg, there's nothing
4798 // The register must be in the same register class as the first.
4800 !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(EndReg
)) ||
4802 !ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(EndReg
))) {
4803 Error(AfterMinusLoc
, "invalid register in register list");
4804 return MatchOperand_ParseFail
;
4806 // Ranges must go from low to high.
4808 Error(AfterMinusLoc
, "bad range in register list");
4809 return MatchOperand_ParseFail
;
4811 // Parse the lane specifier if present.
4812 VectorLaneTy NextLaneKind
;
4813 unsigned NextLaneIndex
;
4814 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4815 MatchOperand_Success
)
4816 return MatchOperand_ParseFail
;
4817 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4818 Error(AfterMinusLoc
, "mismatched lane index in register list");
4819 return MatchOperand_ParseFail
;
4822 // Add all the registers in the range to the register list.
4823 Count
+= EndReg
- Reg
;
4827 Parser
.Lex(); // Eat the comma.
4828 RegLoc
= Parser
.getTok().getLoc();
4830 Reg
= tryParseRegister();
4832 Error(RegLoc
, "register expected");
4833 return MatchOperand_ParseFail
;
4837 if (!ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(Reg
)) {
4838 Error(RegLoc
, "vector register in range Q0-Q7 expected");
4839 return MatchOperand_ParseFail
;
4843 // vector register lists must be contiguous.
4844 // It's OK to use the enumeration values directly here rather, as the
4845 // VFP register classes have the enum sorted properly.
4847 // The list is of D registers, but we also allow Q regs and just interpret
4848 // them as the two D sub-registers.
4849 else if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4851 Spacing
= 1; // Register range implies a single spaced list.
4852 else if (Spacing
== 2) {
4854 "invalid register in double-spaced list (must be 'D' register')");
4855 return MatchOperand_ParseFail
;
4857 Reg
= getDRegFromQReg(Reg
);
4858 if (Reg
!= OldReg
+ 1) {
4859 Error(RegLoc
, "non-contiguous register range");
4860 return MatchOperand_ParseFail
;
4864 // Parse the lane specifier if present.
4865 VectorLaneTy NextLaneKind
;
4866 unsigned NextLaneIndex
;
4867 SMLoc LaneLoc
= Parser
.getTok().getLoc();
4868 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4869 MatchOperand_Success
)
4870 return MatchOperand_ParseFail
;
4871 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4872 Error(LaneLoc
, "mismatched lane index in register list");
4873 return MatchOperand_ParseFail
;
4877 // Normal D register.
4878 // Figure out the register spacing (single or double) of the list if
4879 // we don't know it already.
4881 Spacing
= 1 + (Reg
== OldReg
+ 2);
4883 // Just check that it's contiguous and keep going.
4884 if (Reg
!= OldReg
+ Spacing
) {
4885 Error(RegLoc
, "non-contiguous register range");
4886 return MatchOperand_ParseFail
;
4889 // Parse the lane specifier if present.
4890 VectorLaneTy NextLaneKind
;
4891 unsigned NextLaneIndex
;
4892 SMLoc EndLoc
= Parser
.getTok().getLoc();
4893 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) != MatchOperand_Success
)
4894 return MatchOperand_ParseFail
;
4895 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4896 Error(EndLoc
, "mismatched lane index in register list");
4897 return MatchOperand_ParseFail
;
4901 if (Parser
.getTok().isNot(AsmToken::RCurly
)) {
4902 Error(Parser
.getTok().getLoc(), "'}' expected");
4903 return MatchOperand_ParseFail
;
4905 E
= Parser
.getTok().getEndLoc();
4906 Parser
.Lex(); // Eat '}' token.
4911 // Two-register operands have been converted to the
4912 // composite register classes.
4913 if (Count
== 2 && !hasMVE()) {
4914 const MCRegisterClass
*RC
= (Spacing
== 1) ?
4915 &ARMMCRegisterClasses
[ARM::DPairRegClassID
] :
4916 &ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
];
4917 FirstReg
= MRI
->getMatchingSuperReg(FirstReg
, ARM::dsub_0
, RC
);
4919 auto Create
= (LaneKind
== NoLanes
? ARMOperand::CreateVectorList
:
4920 ARMOperand::CreateVectorListAllLanes
);
4921 Operands
.push_back(Create(FirstReg
, Count
, (Spacing
== 2), S
, E
));
4925 Operands
.push_back(ARMOperand::CreateVectorListIndexed(FirstReg
, Count
,
4931 return MatchOperand_Success
;
4934 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4935 OperandMatchResultTy
4936 ARMAsmParser::parseMemBarrierOptOperand(OperandVector
&Operands
) {
4937 MCAsmParser
&Parser
= getParser();
4938 SMLoc S
= Parser
.getTok().getLoc();
4939 const AsmToken
&Tok
= Parser
.getTok();
4942 if (Tok
.is(AsmToken::Identifier
)) {
4943 StringRef OptStr
= Tok
.getString();
4945 Opt
= StringSwitch
<unsigned>(OptStr
.slice(0, OptStr
.size()).lower())
4946 .Case("sy", ARM_MB::SY
)
4947 .Case("st", ARM_MB::ST
)
4948 .Case("ld", ARM_MB::LD
)
4949 .Case("sh", ARM_MB::ISH
)
4950 .Case("ish", ARM_MB::ISH
)
4951 .Case("shst", ARM_MB::ISHST
)
4952 .Case("ishst", ARM_MB::ISHST
)
4953 .Case("ishld", ARM_MB::ISHLD
)
4954 .Case("nsh", ARM_MB::NSH
)
4955 .Case("un", ARM_MB::NSH
)
4956 .Case("nshst", ARM_MB::NSHST
)
4957 .Case("nshld", ARM_MB::NSHLD
)
4958 .Case("unst", ARM_MB::NSHST
)
4959 .Case("osh", ARM_MB::OSH
)
4960 .Case("oshst", ARM_MB::OSHST
)
4961 .Case("oshld", ARM_MB::OSHLD
)
4964 // ishld, oshld, nshld and ld are only available from ARMv8.
4965 if (!hasV8Ops() && (Opt
== ARM_MB::ISHLD
|| Opt
== ARM_MB::OSHLD
||
4966 Opt
== ARM_MB::NSHLD
|| Opt
== ARM_MB::LD
))
4970 return MatchOperand_NoMatch
;
4972 Parser
.Lex(); // Eat identifier token.
4973 } else if (Tok
.is(AsmToken::Hash
) ||
4974 Tok
.is(AsmToken::Dollar
) ||
4975 Tok
.is(AsmToken::Integer
)) {
4976 if (Parser
.getTok().isNot(AsmToken::Integer
))
4977 Parser
.Lex(); // Eat '#' or '$'.
4978 SMLoc Loc
= Parser
.getTok().getLoc();
4980 const MCExpr
*MemBarrierID
;
4981 if (getParser().parseExpression(MemBarrierID
)) {
4982 Error(Loc
, "illegal expression");
4983 return MatchOperand_ParseFail
;
4986 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(MemBarrierID
);
4988 Error(Loc
, "constant expression expected");
4989 return MatchOperand_ParseFail
;
4992 int Val
= CE
->getValue();
4994 Error(Loc
, "immediate value out of range");
4995 return MatchOperand_ParseFail
;
4998 Opt
= ARM_MB::RESERVED_0
+ Val
;
5000 return MatchOperand_ParseFail
;
5002 Operands
.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt
)Opt
, S
));
5003 return MatchOperand_Success
;
5006 OperandMatchResultTy
5007 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector
&Operands
) {
5008 MCAsmParser
&Parser
= getParser();
5009 SMLoc S
= Parser
.getTok().getLoc();
5010 const AsmToken
&Tok
= Parser
.getTok();
5012 if (Tok
.isNot(AsmToken::Identifier
))
5013 return MatchOperand_NoMatch
;
5015 if (!Tok
.getString().equals_insensitive("csync"))
5016 return MatchOperand_NoMatch
;
5018 Parser
.Lex(); // Eat identifier token.
5020 Operands
.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC
, S
));
5021 return MatchOperand_Success
;
5024 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
5025 OperandMatchResultTy
5026 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector
&Operands
) {
5027 MCAsmParser
&Parser
= getParser();
5028 SMLoc S
= Parser
.getTok().getLoc();
5029 const AsmToken
&Tok
= Parser
.getTok();
5032 if (Tok
.is(AsmToken::Identifier
)) {
5033 StringRef OptStr
= Tok
.getString();
5035 if (OptStr
.equals_insensitive("sy"))
5038 return MatchOperand_NoMatch
;
5040 Parser
.Lex(); // Eat identifier token.
5041 } else if (Tok
.is(AsmToken::Hash
) ||
5042 Tok
.is(AsmToken::Dollar
) ||
5043 Tok
.is(AsmToken::Integer
)) {
5044 if (Parser
.getTok().isNot(AsmToken::Integer
))
5045 Parser
.Lex(); // Eat '#' or '$'.
5046 SMLoc Loc
= Parser
.getTok().getLoc();
5048 const MCExpr
*ISBarrierID
;
5049 if (getParser().parseExpression(ISBarrierID
)) {
5050 Error(Loc
, "illegal expression");
5051 return MatchOperand_ParseFail
;
5054 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ISBarrierID
);
5056 Error(Loc
, "constant expression expected");
5057 return MatchOperand_ParseFail
;
5060 int Val
= CE
->getValue();
5062 Error(Loc
, "immediate value out of range");
5063 return MatchOperand_ParseFail
;
5066 Opt
= ARM_ISB::RESERVED_0
+ Val
;
5068 return MatchOperand_ParseFail
;
5070 Operands
.push_back(ARMOperand::CreateInstSyncBarrierOpt(
5071 (ARM_ISB::InstSyncBOpt
)Opt
, S
));
5072 return MatchOperand_Success
;
5076 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
5077 OperandMatchResultTy
5078 ARMAsmParser::parseProcIFlagsOperand(OperandVector
&Operands
) {
5079 MCAsmParser
&Parser
= getParser();
5080 SMLoc S
= Parser
.getTok().getLoc();
5081 const AsmToken
&Tok
= Parser
.getTok();
5082 if (!Tok
.is(AsmToken::Identifier
))
5083 return MatchOperand_NoMatch
;
5084 StringRef IFlagsStr
= Tok
.getString();
5086 // An iflags string of "none" is interpreted to mean that none of the AIF
5087 // bits are set. Not a terribly useful instruction, but a valid encoding.
5088 unsigned IFlags
= 0;
5089 if (IFlagsStr
!= "none") {
5090 for (int i
= 0, e
= IFlagsStr
.size(); i
!= e
; ++i
) {
5091 unsigned Flag
= StringSwitch
<unsigned>(IFlagsStr
.substr(i
, 1).lower())
5092 .Case("a", ARM_PROC::A
)
5093 .Case("i", ARM_PROC::I
)
5094 .Case("f", ARM_PROC::F
)
5097 // If some specific iflag is already set, it means that some letter is
5098 // present more than once, this is not acceptable.
5099 if (Flag
== ~0U || (IFlags
& Flag
))
5100 return MatchOperand_NoMatch
;
5106 Parser
.Lex(); // Eat identifier token.
5107 Operands
.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags
)IFlags
, S
));
5108 return MatchOperand_Success
;
5111 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
5112 OperandMatchResultTy
5113 ARMAsmParser::parseMSRMaskOperand(OperandVector
&Operands
) {
5114 MCAsmParser
&Parser
= getParser();
5115 SMLoc S
= Parser
.getTok().getLoc();
5116 const AsmToken
&Tok
= Parser
.getTok();
5118 if (Tok
.is(AsmToken::Integer
)) {
5119 int64_t Val
= Tok
.getIntVal();
5120 if (Val
> 255 || Val
< 0) {
5121 return MatchOperand_NoMatch
;
5123 unsigned SYSmvalue
= Val
& 0xFF;
5125 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
5126 return MatchOperand_Success
;
5129 if (!Tok
.is(AsmToken::Identifier
))
5130 return MatchOperand_NoMatch
;
5131 StringRef Mask
= Tok
.getString();
5134 auto TheReg
= ARMSysReg::lookupMClassSysRegByName(Mask
.lower());
5135 if (!TheReg
|| !TheReg
->hasRequiredFeatures(getSTI().getFeatureBits()))
5136 return MatchOperand_NoMatch
;
5138 unsigned SYSmvalue
= TheReg
->Encoding
& 0xFFF;
5140 Parser
.Lex(); // Eat identifier token.
5141 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
5142 return MatchOperand_Success
;
5145 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
5146 size_t Start
= 0, Next
= Mask
.find('_');
5147 StringRef Flags
= "";
5148 std::string SpecReg
= Mask
.slice(Start
, Next
).lower();
5149 if (Next
!= StringRef::npos
)
5150 Flags
= Mask
.slice(Next
+1, Mask
.size());
5152 // FlagsVal contains the complete mask:
5154 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5155 unsigned FlagsVal
= 0;
5157 if (SpecReg
== "apsr") {
5158 FlagsVal
= StringSwitch
<unsigned>(Flags
)
5159 .Case("nzcvq", 0x8) // same as CPSR_f
5160 .Case("g", 0x4) // same as CPSR_s
5161 .Case("nzcvqg", 0xc) // same as CPSR_fs
5164 if (FlagsVal
== ~0U) {
5166 return MatchOperand_NoMatch
;
5168 FlagsVal
= 8; // No flag
5170 } else if (SpecReg
== "cpsr" || SpecReg
== "spsr") {
5171 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
5172 if (Flags
== "all" || Flags
== "")
5174 for (int i
= 0, e
= Flags
.size(); i
!= e
; ++i
) {
5175 unsigned Flag
= StringSwitch
<unsigned>(Flags
.substr(i
, 1))
5182 // If some specific flag is already set, it means that some letter is
5183 // present more than once, this is not acceptable.
5184 if (Flag
== ~0U || (FlagsVal
& Flag
))
5185 return MatchOperand_NoMatch
;
5188 } else // No match for special register.
5189 return MatchOperand_NoMatch
;
5191 // Special register without flags is NOT equivalent to "fc" flags.
5192 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
5193 // two lines would enable gas compatibility at the expense of breaking
5199 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5200 if (SpecReg
== "spsr")
5203 Parser
.Lex(); // Eat identifier token.
5204 Operands
.push_back(ARMOperand::CreateMSRMask(FlagsVal
, S
));
5205 return MatchOperand_Success
;
5208 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5209 /// use in the MRS/MSR instructions added to support virtualization.
5210 OperandMatchResultTy
5211 ARMAsmParser::parseBankedRegOperand(OperandVector
&Operands
) {
5212 MCAsmParser
&Parser
= getParser();
5213 SMLoc S
= Parser
.getTok().getLoc();
5214 const AsmToken
&Tok
= Parser
.getTok();
5215 if (!Tok
.is(AsmToken::Identifier
))
5216 return MatchOperand_NoMatch
;
5217 StringRef RegName
= Tok
.getString();
5219 auto TheReg
= ARMBankedReg::lookupBankedRegByName(RegName
.lower());
5221 return MatchOperand_NoMatch
;
5222 unsigned Encoding
= TheReg
->Encoding
;
5224 Parser
.Lex(); // Eat identifier token.
5225 Operands
.push_back(ARMOperand::CreateBankedReg(Encoding
, S
));
5226 return MatchOperand_Success
;
5229 OperandMatchResultTy
5230 ARMAsmParser::parsePKHImm(OperandVector
&Operands
, StringRef Op
, int Low
,
5232 MCAsmParser
&Parser
= getParser();
5233 const AsmToken
&Tok
= Parser
.getTok();
5234 if (Tok
.isNot(AsmToken::Identifier
)) {
5235 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
5236 return MatchOperand_ParseFail
;
5238 StringRef ShiftName
= Tok
.getString();
5239 std::string LowerOp
= Op
.lower();
5240 std::string UpperOp
= Op
.upper();
5241 if (ShiftName
!= LowerOp
&& ShiftName
!= UpperOp
) {
5242 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
5243 return MatchOperand_ParseFail
;
5245 Parser
.Lex(); // Eat shift type token.
5247 // There must be a '#' and a shift amount.
5248 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5249 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5250 Error(Parser
.getTok().getLoc(), "'#' expected");
5251 return MatchOperand_ParseFail
;
5253 Parser
.Lex(); // Eat hash token.
5255 const MCExpr
*ShiftAmount
;
5256 SMLoc Loc
= Parser
.getTok().getLoc();
5258 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
5259 Error(Loc
, "illegal expression");
5260 return MatchOperand_ParseFail
;
5262 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
5264 Error(Loc
, "constant expression expected");
5265 return MatchOperand_ParseFail
;
5267 int Val
= CE
->getValue();
5268 if (Val
< Low
|| Val
> High
) {
5269 Error(Loc
, "immediate value out of range");
5270 return MatchOperand_ParseFail
;
5273 Operands
.push_back(ARMOperand::CreateImm(CE
, Loc
, EndLoc
));
5275 return MatchOperand_Success
;
5278 OperandMatchResultTy
5279 ARMAsmParser::parseSetEndImm(OperandVector
&Operands
) {
5280 MCAsmParser
&Parser
= getParser();
5281 const AsmToken
&Tok
= Parser
.getTok();
5282 SMLoc S
= Tok
.getLoc();
5283 if (Tok
.isNot(AsmToken::Identifier
)) {
5284 Error(S
, "'be' or 'le' operand expected");
5285 return MatchOperand_ParseFail
;
5287 int Val
= StringSwitch
<int>(Tok
.getString().lower())
5291 Parser
.Lex(); // Eat the token.
5294 Error(S
, "'be' or 'le' operand expected");
5295 return MatchOperand_ParseFail
;
5297 Operands
.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val
,
5299 S
, Tok
.getEndLoc()));
5300 return MatchOperand_Success
;
5303 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5304 /// instructions. Legal values are:
5305 /// lsl #n 'n' in [0,31]
5306 /// asr #n 'n' in [1,32]
5307 /// n == 32 encoded as n == 0.
5308 OperandMatchResultTy
5309 ARMAsmParser::parseShifterImm(OperandVector
&Operands
) {
5310 MCAsmParser
&Parser
= getParser();
5311 const AsmToken
&Tok
= Parser
.getTok();
5312 SMLoc S
= Tok
.getLoc();
5313 if (Tok
.isNot(AsmToken::Identifier
)) {
5314 Error(S
, "shift operator 'asr' or 'lsl' expected");
5315 return MatchOperand_ParseFail
;
5317 StringRef ShiftName
= Tok
.getString();
5319 if (ShiftName
== "lsl" || ShiftName
== "LSL")
5321 else if (ShiftName
== "asr" || ShiftName
== "ASR")
5324 Error(S
, "shift operator 'asr' or 'lsl' expected");
5325 return MatchOperand_ParseFail
;
5327 Parser
.Lex(); // Eat the operator.
5329 // A '#' and a shift amount.
5330 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5331 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5332 Error(Parser
.getTok().getLoc(), "'#' expected");
5333 return MatchOperand_ParseFail
;
5335 Parser
.Lex(); // Eat hash token.
5336 SMLoc ExLoc
= Parser
.getTok().getLoc();
5338 const MCExpr
*ShiftAmount
;
5340 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
5341 Error(ExLoc
, "malformed shift expression");
5342 return MatchOperand_ParseFail
;
5344 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
5346 Error(ExLoc
, "shift amount must be an immediate");
5347 return MatchOperand_ParseFail
;
5350 int64_t Val
= CE
->getValue();
5352 // Shift amount must be in [1,32]
5353 if (Val
< 1 || Val
> 32) {
5354 Error(ExLoc
, "'asr' shift amount must be in range [1,32]");
5355 return MatchOperand_ParseFail
;
5357 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5358 if (isThumb() && Val
== 32) {
5359 Error(ExLoc
, "'asr #32' shift amount not allowed in Thumb mode");
5360 return MatchOperand_ParseFail
;
5362 if (Val
== 32) Val
= 0;
5364 // Shift amount must be in [1,32]
5365 if (Val
< 0 || Val
> 31) {
5366 Error(ExLoc
, "'lsr' shift amount must be in range [0,31]");
5367 return MatchOperand_ParseFail
;
5371 Operands
.push_back(ARMOperand::CreateShifterImm(isASR
, Val
, S
, EndLoc
));
5373 return MatchOperand_Success
;
5376 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5377 /// of instructions. Legal values are:
5378 /// ror #n 'n' in {0, 8, 16, 24}
5379 OperandMatchResultTy
5380 ARMAsmParser::parseRotImm(OperandVector
&Operands
) {
5381 MCAsmParser
&Parser
= getParser();
5382 const AsmToken
&Tok
= Parser
.getTok();
5383 SMLoc S
= Tok
.getLoc();
5384 if (Tok
.isNot(AsmToken::Identifier
))
5385 return MatchOperand_NoMatch
;
5386 StringRef ShiftName
= Tok
.getString();
5387 if (ShiftName
!= "ror" && ShiftName
!= "ROR")
5388 return MatchOperand_NoMatch
;
5389 Parser
.Lex(); // Eat the operator.
5391 // A '#' and a rotate amount.
5392 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5393 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5394 Error(Parser
.getTok().getLoc(), "'#' expected");
5395 return MatchOperand_ParseFail
;
5397 Parser
.Lex(); // Eat hash token.
5398 SMLoc ExLoc
= Parser
.getTok().getLoc();
5400 const MCExpr
*ShiftAmount
;
5402 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
5403 Error(ExLoc
, "malformed rotate expression");
5404 return MatchOperand_ParseFail
;
5406 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
5408 Error(ExLoc
, "rotate amount must be an immediate");
5409 return MatchOperand_ParseFail
;
5412 int64_t Val
= CE
->getValue();
5413 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5414 // normally, zero is represented in asm by omitting the rotate operand
5416 if (Val
!= 8 && Val
!= 16 && Val
!= 24 && Val
!= 0) {
5417 Error(ExLoc
, "'ror' rotate amount must be 8, 16, or 24");
5418 return MatchOperand_ParseFail
;
5421 Operands
.push_back(ARMOperand::CreateRotImm(Val
, S
, EndLoc
));
5423 return MatchOperand_Success
;
5426 OperandMatchResultTy
5427 ARMAsmParser::parseModImm(OperandVector
&Operands
) {
5428 MCAsmParser
&Parser
= getParser();
5429 MCAsmLexer
&Lexer
= getLexer();
5432 SMLoc S
= Parser
.getTok().getLoc();
5434 // 1) A mod_imm operand can appear in the place of a register name:
5436 // add r0, r0, #mod_imm
5437 // to correctly handle the latter, we bail out as soon as we see an
5440 // 2) Similarly, we do not want to parse into complex operands:
5442 // mov r0, :lower16:(_foo)
5443 if (Parser
.getTok().is(AsmToken::Identifier
) ||
5444 Parser
.getTok().is(AsmToken::Colon
))
5445 return MatchOperand_NoMatch
;
5447 // Hash (dollar) is optional as per the ARMARM
5448 if (Parser
.getTok().is(AsmToken::Hash
) ||
5449 Parser
.getTok().is(AsmToken::Dollar
)) {
5450 // Avoid parsing into complex operands (#:)
5451 if (Lexer
.peekTok().is(AsmToken::Colon
))
5452 return MatchOperand_NoMatch
;
5454 // Eat the hash (dollar)
5459 Sx1
= Parser
.getTok().getLoc();
5460 const MCExpr
*Imm1Exp
;
5461 if (getParser().parseExpression(Imm1Exp
, Ex1
)) {
5462 Error(Sx1
, "malformed expression");
5463 return MatchOperand_ParseFail
;
5466 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm1Exp
);
5469 // Immediate must fit within 32-bits
5470 Imm1
= CE
->getValue();
5471 int Enc
= ARM_AM::getSOImmVal(Imm1
);
5472 if (Enc
!= -1 && Parser
.getTok().is(AsmToken::EndOfStatement
)) {
5474 Operands
.push_back(ARMOperand::CreateModImm((Enc
& 0xFF),
5477 return MatchOperand_Success
;
5480 // We have parsed an immediate which is not for us, fallback to a plain
5481 // immediate. This can happen for instruction aliases. For an example,
5482 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5483 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5484 // instruction with a mod_imm operand. The alias is defined such that the
5485 // parser method is shared, that's why we have to do this here.
5486 if (Parser
.getTok().is(AsmToken::EndOfStatement
)) {
5487 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
5488 return MatchOperand_Success
;
5491 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5492 // MCFixup). Fallback to a plain immediate.
5493 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
5494 return MatchOperand_Success
;
5497 // From this point onward, we expect the input to be a (#bits, #rot) pair
5498 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
5499 Error(Sx1
, "expected modified immediate operand: #[0, 255], #even[0-30]");
5500 return MatchOperand_ParseFail
;
5504 Error(Sx1
, "immediate operand must a number in the range [0, 255]");
5505 return MatchOperand_ParseFail
;
5513 Sx2
= Parser
.getTok().getLoc();
5515 // Eat the optional hash (dollar)
5516 if (Parser
.getTok().is(AsmToken::Hash
) ||
5517 Parser
.getTok().is(AsmToken::Dollar
))
5520 const MCExpr
*Imm2Exp
;
5521 if (getParser().parseExpression(Imm2Exp
, Ex2
)) {
5522 Error(Sx2
, "malformed expression");
5523 return MatchOperand_ParseFail
;
5526 CE
= dyn_cast
<MCConstantExpr
>(Imm2Exp
);
5529 Imm2
= CE
->getValue();
5530 if (!(Imm2
& ~0x1E)) {
5532 Operands
.push_back(ARMOperand::CreateModImm(Imm1
, Imm2
, S
, Ex2
));
5533 return MatchOperand_Success
;
5535 Error(Sx2
, "immediate operand must an even number in the range [0, 30]");
5536 return MatchOperand_ParseFail
;
5538 Error(Sx2
, "constant expression expected");
5539 return MatchOperand_ParseFail
;
5543 OperandMatchResultTy
5544 ARMAsmParser::parseBitfield(OperandVector
&Operands
) {
5545 MCAsmParser
&Parser
= getParser();
5546 SMLoc S
= Parser
.getTok().getLoc();
5547 // The bitfield descriptor is really two operands, the LSB and the width.
5548 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5549 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5550 Error(Parser
.getTok().getLoc(), "'#' expected");
5551 return MatchOperand_ParseFail
;
5553 Parser
.Lex(); // Eat hash token.
5555 const MCExpr
*LSBExpr
;
5556 SMLoc E
= Parser
.getTok().getLoc();
5557 if (getParser().parseExpression(LSBExpr
)) {
5558 Error(E
, "malformed immediate expression");
5559 return MatchOperand_ParseFail
;
5561 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LSBExpr
);
5563 Error(E
, "'lsb' operand must be an immediate");
5564 return MatchOperand_ParseFail
;
5567 int64_t LSB
= CE
->getValue();
5568 // The LSB must be in the range [0,31]
5569 if (LSB
< 0 || LSB
> 31) {
5570 Error(E
, "'lsb' operand must be in the range [0,31]");
5571 return MatchOperand_ParseFail
;
5573 E
= Parser
.getTok().getLoc();
5575 // Expect another immediate operand.
5576 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
5577 Error(Parser
.getTok().getLoc(), "too few operands");
5578 return MatchOperand_ParseFail
;
5580 Parser
.Lex(); // Eat hash token.
5581 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5582 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5583 Error(Parser
.getTok().getLoc(), "'#' expected");
5584 return MatchOperand_ParseFail
;
5586 Parser
.Lex(); // Eat hash token.
5588 const MCExpr
*WidthExpr
;
5590 if (getParser().parseExpression(WidthExpr
, EndLoc
)) {
5591 Error(E
, "malformed immediate expression");
5592 return MatchOperand_ParseFail
;
5594 CE
= dyn_cast
<MCConstantExpr
>(WidthExpr
);
5596 Error(E
, "'width' operand must be an immediate");
5597 return MatchOperand_ParseFail
;
5600 int64_t Width
= CE
->getValue();
5601 // The LSB must be in the range [1,32-lsb]
5602 if (Width
< 1 || Width
> 32 - LSB
) {
5603 Error(E
, "'width' operand must be in the range [1,32-lsb]");
5604 return MatchOperand_ParseFail
;
5607 Operands
.push_back(ARMOperand::CreateBitfield(LSB
, Width
, S
, EndLoc
));
5609 return MatchOperand_Success
;
5612 OperandMatchResultTy
5613 ARMAsmParser::parsePostIdxReg(OperandVector
&Operands
) {
5614 // Check for a post-index addressing register operand. Specifically:
5615 // postidx_reg := '+' register {, shift}
5616 // | '-' register {, shift}
5617 // | register {, shift}
5619 // This method must return MatchOperand_NoMatch without consuming any tokens
5620 // in the case where there is no match, as other alternatives take other
5622 MCAsmParser
&Parser
= getParser();
5623 AsmToken Tok
= Parser
.getTok();
5624 SMLoc S
= Tok
.getLoc();
5625 bool haveEaten
= false;
5627 if (Tok
.is(AsmToken::Plus
)) {
5628 Parser
.Lex(); // Eat the '+' token.
5630 } else if (Tok
.is(AsmToken::Minus
)) {
5631 Parser
.Lex(); // Eat the '-' token.
5636 SMLoc E
= Parser
.getTok().getEndLoc();
5637 int Reg
= tryParseRegister();
5640 return MatchOperand_NoMatch
;
5641 Error(Parser
.getTok().getLoc(), "register expected");
5642 return MatchOperand_ParseFail
;
5645 ARM_AM::ShiftOpc ShiftTy
= ARM_AM::no_shift
;
5646 unsigned ShiftImm
= 0;
5647 if (Parser
.getTok().is(AsmToken::Comma
)) {
5648 Parser
.Lex(); // Eat the ','.
5649 if (parseMemRegOffsetShift(ShiftTy
, ShiftImm
))
5650 return MatchOperand_ParseFail
;
5652 // FIXME: Only approximates end...may include intervening whitespace.
5653 E
= Parser
.getTok().getLoc();
5656 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ShiftTy
,
5659 return MatchOperand_Success
;
5662 OperandMatchResultTy
5663 ARMAsmParser::parseAM3Offset(OperandVector
&Operands
) {
5664 // Check for a post-index addressing register operand. Specifically:
5665 // am3offset := '+' register
5672 // This method must return MatchOperand_NoMatch without consuming any tokens
5673 // in the case where there is no match, as other alternatives take other
5675 MCAsmParser
&Parser
= getParser();
5676 AsmToken Tok
= Parser
.getTok();
5677 SMLoc S
= Tok
.getLoc();
5679 // Do immediates first, as we always parse those if we have a '#'.
5680 if (Parser
.getTok().is(AsmToken::Hash
) ||
5681 Parser
.getTok().is(AsmToken::Dollar
)) {
5682 Parser
.Lex(); // Eat '#' or '$'.
5683 // Explicitly look for a '-', as we need to encode negative zero
5685 bool isNegative
= Parser
.getTok().is(AsmToken::Minus
);
5686 const MCExpr
*Offset
;
5688 if (getParser().parseExpression(Offset
, E
))
5689 return MatchOperand_ParseFail
;
5690 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Offset
);
5692 Error(S
, "constant expression expected");
5693 return MatchOperand_ParseFail
;
5695 // Negative zero is encoded as the flag value
5696 // std::numeric_limits<int32_t>::min().
5697 int32_t Val
= CE
->getValue();
5698 if (isNegative
&& Val
== 0)
5699 Val
= std::numeric_limits
<int32_t>::min();
5702 ARMOperand::CreateImm(MCConstantExpr::create(Val
, getContext()), S
, E
));
5704 return MatchOperand_Success
;
5707 bool haveEaten
= false;
5709 if (Tok
.is(AsmToken::Plus
)) {
5710 Parser
.Lex(); // Eat the '+' token.
5712 } else if (Tok
.is(AsmToken::Minus
)) {
5713 Parser
.Lex(); // Eat the '-' token.
5718 Tok
= Parser
.getTok();
5719 int Reg
= tryParseRegister();
5722 return MatchOperand_NoMatch
;
5723 Error(Tok
.getLoc(), "register expected");
5724 return MatchOperand_ParseFail
;
5727 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ARM_AM::no_shift
,
5728 0, S
, Tok
.getEndLoc()));
5730 return MatchOperand_Success
;
5733 /// Convert parsed operands to MCInst. Needed here because this instruction
5734 /// only has two register operands, but multiplication is commutative so
5735 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5736 void ARMAsmParser::cvtThumbMultiply(MCInst
&Inst
,
5737 const OperandVector
&Operands
) {
5738 ((ARMOperand
&)*Operands
[3]).addRegOperands(Inst
, 1);
5739 ((ARMOperand
&)*Operands
[1]).addCCOutOperands(Inst
, 1);
5740 // If we have a three-operand form, make sure to set Rn to be the operand
5741 // that isn't the same as Rd.
5743 if (Operands
.size() == 6 &&
5744 ((ARMOperand
&)*Operands
[4]).getReg() ==
5745 ((ARMOperand
&)*Operands
[3]).getReg())
5747 ((ARMOperand
&)*Operands
[RegOp
]).addRegOperands(Inst
, 1);
5748 Inst
.addOperand(Inst
.getOperand(0));
5749 ((ARMOperand
&)*Operands
[2]).addCondCodeOperands(Inst
, 2);
5752 void ARMAsmParser::cvtThumbBranches(MCInst
&Inst
,
5753 const OperandVector
&Operands
) {
5754 int CondOp
= -1, ImmOp
= -1;
5755 switch(Inst
.getOpcode()) {
5757 case ARM::tBcc
: CondOp
= 1; ImmOp
= 2; break;
5760 case ARM::t2Bcc
: CondOp
= 1; ImmOp
= 3; break;
5762 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5764 // first decide whether or not the branch should be conditional
5765 // by looking at it's location relative to an IT block
5767 // inside an IT block we cannot have any conditional branches. any
5768 // such instructions needs to be converted to unconditional form
5769 switch(Inst
.getOpcode()) {
5770 case ARM::tBcc
: Inst
.setOpcode(ARM::tB
); break;
5771 case ARM::t2Bcc
: Inst
.setOpcode(ARM::t2B
); break;
5774 // outside IT blocks we can only have unconditional branches with AL
5775 // condition code or conditional branches with non-AL condition code
5776 unsigned Cond
= static_cast<ARMOperand
&>(*Operands
[CondOp
]).getCondCode();
5777 switch(Inst
.getOpcode()) {
5780 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::tB
: ARM::tBcc
);
5784 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::t2B
: ARM::t2Bcc
);
5789 // now decide on encoding size based on branch target range
5790 switch(Inst
.getOpcode()) {
5791 // classify tB as either t2B or t1B based on range of immediate operand
5793 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5794 if (!op
.isSignedOffset
<11, 1>() && isThumb() && hasV8MBaseline())
5795 Inst
.setOpcode(ARM::t2B
);
5798 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5800 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5801 if (!op
.isSignedOffset
<8, 1>() && isThumb() && hasV8MBaseline())
5802 Inst
.setOpcode(ARM::t2Bcc
);
5806 ((ARMOperand
&)*Operands
[ImmOp
]).addImmOperands(Inst
, 1);
5807 ((ARMOperand
&)*Operands
[CondOp
]).addCondCodeOperands(Inst
, 2);
5810 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5811 MCInst
&Inst
, const OperandVector
&Operands
) {
5813 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5814 assert(Operands
.size() == 8);
5816 ((ARMOperand
&)*Operands
[2]).addRegOperands(Inst
, 1); // Rt
5817 ((ARMOperand
&)*Operands
[3]).addRegOperands(Inst
, 1); // Rt2
5818 ((ARMOperand
&)*Operands
[4]).addRegOperands(Inst
, 1); // Qd
5819 ((ARMOperand
&)*Operands
[5]).addMVEPairVectorIndexOperands(Inst
, 1); // idx
5820 // skip second copy of Qd in Operands[6]
5821 ((ARMOperand
&)*Operands
[7]).addMVEPairVectorIndexOperands(Inst
, 1); // idx2
5822 ((ARMOperand
&)*Operands
[1]).addCondCodeOperands(Inst
, 2); // condition code
5825 /// Parse an ARM memory expression, return false if successful else return true
5826 /// or an error. The first token must be a '[' when called.
5827 bool ARMAsmParser::parseMemory(OperandVector
&Operands
) {
5828 MCAsmParser
&Parser
= getParser();
5830 if (Parser
.getTok().isNot(AsmToken::LBrac
))
5831 return TokError("Token is not a Left Bracket");
5832 S
= Parser
.getTok().getLoc();
5833 Parser
.Lex(); // Eat left bracket token.
5835 const AsmToken
&BaseRegTok
= Parser
.getTok();
5836 int BaseRegNum
= tryParseRegister();
5837 if (BaseRegNum
== -1)
5838 return Error(BaseRegTok
.getLoc(), "register expected");
5840 // The next token must either be a comma, a colon or a closing bracket.
5841 const AsmToken
&Tok
= Parser
.getTok();
5842 if (!Tok
.is(AsmToken::Colon
) && !Tok
.is(AsmToken::Comma
) &&
5843 !Tok
.is(AsmToken::RBrac
))
5844 return Error(Tok
.getLoc(), "malformed memory operand");
5846 if (Tok
.is(AsmToken::RBrac
)) {
5847 E
= Tok
.getEndLoc();
5848 Parser
.Lex(); // Eat right bracket token.
5850 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5851 ARM_AM::no_shift
, 0, 0, false,
5854 // If there's a pre-indexing writeback marker, '!', just add it as a token
5855 // operand. It's rather odd, but syntactically valid.
5856 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5857 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5858 Parser
.Lex(); // Eat the '!'.
5864 assert((Tok
.is(AsmToken::Colon
) || Tok
.is(AsmToken::Comma
)) &&
5865 "Lost colon or comma in memory operand?!");
5866 if (Tok
.is(AsmToken::Comma
)) {
5867 Parser
.Lex(); // Eat the comma.
5870 // If we have a ':', it's an alignment specifier.
5871 if (Parser
.getTok().is(AsmToken::Colon
)) {
5872 Parser
.Lex(); // Eat the ':'.
5873 E
= Parser
.getTok().getLoc();
5874 SMLoc AlignmentLoc
= Tok
.getLoc();
5877 if (getParser().parseExpression(Expr
))
5880 // The expression has to be a constant. Memory references with relocations
5881 // don't come through here, as they use the <label> forms of the relevant
5883 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
5885 return Error (E
, "constant expression expected");
5888 switch (CE
->getValue()) {
5891 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5892 case 16: Align
= 2; break;
5893 case 32: Align
= 4; break;
5894 case 64: Align
= 8; break;
5895 case 128: Align
= 16; break;
5896 case 256: Align
= 32; break;
5899 // Now we should have the closing ']'
5900 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5901 return Error(Parser
.getTok().getLoc(), "']' expected");
5902 E
= Parser
.getTok().getEndLoc();
5903 Parser
.Lex(); // Eat right bracket token.
5905 // Don't worry about range checking the value here. That's handled by
5906 // the is*() predicates.
5907 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5908 ARM_AM::no_shift
, 0, Align
,
5909 false, S
, E
, AlignmentLoc
));
5911 // If there's a pre-indexing writeback marker, '!', just add it as a token
5913 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5914 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5915 Parser
.Lex(); // Eat the '!'.
5921 // If we have a '#' or '$', it's an immediate offset, else assume it's a
5922 // register offset. Be friendly and also accept a plain integer or expression
5923 // (without a leading hash) for gas compatibility.
5924 if (Parser
.getTok().is(AsmToken::Hash
) ||
5925 Parser
.getTok().is(AsmToken::Dollar
) ||
5926 Parser
.getTok().is(AsmToken::LParen
) ||
5927 Parser
.getTok().is(AsmToken::Integer
)) {
5928 if (Parser
.getTok().is(AsmToken::Hash
) ||
5929 Parser
.getTok().is(AsmToken::Dollar
))
5930 Parser
.Lex(); // Eat '#' or '$'
5931 E
= Parser
.getTok().getLoc();
5933 bool isNegative
= getParser().getTok().is(AsmToken::Minus
);
5934 const MCExpr
*Offset
, *AdjustedOffset
;
5935 if (getParser().parseExpression(Offset
))
5938 if (const auto *CE
= dyn_cast
<MCConstantExpr
>(Offset
)) {
5939 // If the constant was #-0, represent it as
5940 // std::numeric_limits<int32_t>::min().
5941 int32_t Val
= CE
->getValue();
5942 if (isNegative
&& Val
== 0)
5943 CE
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
5945 // Don't worry about range checking the value here. That's handled by
5946 // the is*() predicates.
5947 AdjustedOffset
= CE
;
5949 AdjustedOffset
= Offset
;
5950 Operands
.push_back(ARMOperand::CreateMem(
5951 BaseRegNum
, AdjustedOffset
, 0, ARM_AM::no_shift
, 0, 0, false, S
, E
));
5953 // Now we should have the closing ']'
5954 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5955 return Error(Parser
.getTok().getLoc(), "']' expected");
5956 E
= Parser
.getTok().getEndLoc();
5957 Parser
.Lex(); // Eat right bracket token.
5959 // If there's a pre-indexing writeback marker, '!', just add it as a token
5961 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5962 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5963 Parser
.Lex(); // Eat the '!'.
5969 // The register offset is optionally preceded by a '+' or '-'
5970 bool isNegative
= false;
5971 if (Parser
.getTok().is(AsmToken::Minus
)) {
5973 Parser
.Lex(); // Eat the '-'.
5974 } else if (Parser
.getTok().is(AsmToken::Plus
)) {
5976 Parser
.Lex(); // Eat the '+'.
5979 E
= Parser
.getTok().getLoc();
5980 int OffsetRegNum
= tryParseRegister();
5981 if (OffsetRegNum
== -1)
5982 return Error(E
, "register expected");
5984 // If there's a shift operator, handle it.
5985 ARM_AM::ShiftOpc ShiftType
= ARM_AM::no_shift
;
5986 unsigned ShiftImm
= 0;
5987 if (Parser
.getTok().is(AsmToken::Comma
)) {
5988 Parser
.Lex(); // Eat the ','.
5989 if (parseMemRegOffsetShift(ShiftType
, ShiftImm
))
5993 // Now we should have the closing ']'
5994 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5995 return Error(Parser
.getTok().getLoc(), "']' expected");
5996 E
= Parser
.getTok().getEndLoc();
5997 Parser
.Lex(); // Eat right bracket token.
5999 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, OffsetRegNum
,
6000 ShiftType
, ShiftImm
, 0, isNegative
,
6003 // If there's a pre-indexing writeback marker, '!', just add it as a token
6005 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
6006 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
6007 Parser
.Lex(); // Eat the '!'.
6013 /// parseMemRegOffsetShift - one of these two:
6014 /// ( lsl | lsr | asr | ror ) , # shift_amount
6016 /// return true if it parses a shift otherwise it returns false.
6017 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc
&St
,
6019 MCAsmParser
&Parser
= getParser();
6020 SMLoc Loc
= Parser
.getTok().getLoc();
6021 const AsmToken
&Tok
= Parser
.getTok();
6022 if (Tok
.isNot(AsmToken::Identifier
))
6023 return Error(Loc
, "illegal shift operator");
6024 StringRef ShiftName
= Tok
.getString();
6025 if (ShiftName
== "lsl" || ShiftName
== "LSL" ||
6026 ShiftName
== "asl" || ShiftName
== "ASL")
6028 else if (ShiftName
== "lsr" || ShiftName
== "LSR")
6030 else if (ShiftName
== "asr" || ShiftName
== "ASR")
6032 else if (ShiftName
== "ror" || ShiftName
== "ROR")
6034 else if (ShiftName
== "rrx" || ShiftName
== "RRX")
6036 else if (ShiftName
== "uxtw" || ShiftName
== "UXTW")
6039 return Error(Loc
, "illegal shift operator");
6040 Parser
.Lex(); // Eat shift type token.
6042 // rrx stands alone.
6044 if (St
!= ARM_AM::rrx
) {
6045 Loc
= Parser
.getTok().getLoc();
6046 // A '#' and a shift amount.
6047 const AsmToken
&HashTok
= Parser
.getTok();
6048 if (HashTok
.isNot(AsmToken::Hash
) &&
6049 HashTok
.isNot(AsmToken::Dollar
))
6050 return Error(HashTok
.getLoc(), "'#' expected");
6051 Parser
.Lex(); // Eat hash token.
6054 if (getParser().parseExpression(Expr
))
6056 // Range check the immediate.
6057 // lsl, ror: 0 <= imm <= 31
6058 // lsr, asr: 0 <= imm <= 32
6059 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
6061 return Error(Loc
, "shift amount must be an immediate");
6062 int64_t Imm
= CE
->getValue();
6064 ((St
== ARM_AM::lsl
|| St
== ARM_AM::ror
) && Imm
> 31) ||
6065 ((St
== ARM_AM::lsr
|| St
== ARM_AM::asr
) && Imm
> 32))
6066 return Error(Loc
, "immediate shift value out of range");
6067 // If <ShiftTy> #0, turn it into a no_shift.
6070 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
6079 /// parseFPImm - A floating point immediate expression operand.
6080 OperandMatchResultTy
6081 ARMAsmParser::parseFPImm(OperandVector
&Operands
) {
6082 MCAsmParser
&Parser
= getParser();
6083 // Anything that can accept a floating point constant as an operand
6084 // needs to go through here, as the regular parseExpression is
6087 // This routine still creates a generic Immediate operand, containing
6088 // a bitcast of the 64-bit floating point value. The various operands
6089 // that accept floats can check whether the value is valid for them
6090 // via the standard is*() predicates.
6092 SMLoc S
= Parser
.getTok().getLoc();
6094 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
6095 Parser
.getTok().isNot(AsmToken::Dollar
))
6096 return MatchOperand_NoMatch
;
6098 // Disambiguate the VMOV forms that can accept an FP immediate.
6099 // vmov.f32 <sreg>, #imm
6100 // vmov.f64 <dreg>, #imm
6101 // vmov.f32 <dreg>, #imm @ vector f32x2
6102 // vmov.f32 <qreg>, #imm @ vector f32x4
6104 // There are also the NEON VMOV instructions which expect an
6105 // integer constant. Make sure we don't try to parse an FPImm
6107 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
6108 ARMOperand
&TyOp
= static_cast<ARMOperand
&>(*Operands
[2]);
6109 bool isVmovf
= TyOp
.isToken() &&
6110 (TyOp
.getToken() == ".f32" || TyOp
.getToken() == ".f64" ||
6111 TyOp
.getToken() == ".f16");
6112 ARMOperand
&Mnemonic
= static_cast<ARMOperand
&>(*Operands
[0]);
6113 bool isFconst
= Mnemonic
.isToken() && (Mnemonic
.getToken() == "fconstd" ||
6114 Mnemonic
.getToken() == "fconsts");
6115 if (!(isVmovf
|| isFconst
))
6116 return MatchOperand_NoMatch
;
6118 Parser
.Lex(); // Eat '#' or '$'.
6120 // Handle negation, as that still comes through as a separate token.
6121 bool isNegative
= false;
6122 if (Parser
.getTok().is(AsmToken::Minus
)) {
6126 const AsmToken
&Tok
= Parser
.getTok();
6127 SMLoc Loc
= Tok
.getLoc();
6128 if (Tok
.is(AsmToken::Real
) && isVmovf
) {
6129 APFloat
RealVal(APFloat::IEEEsingle(), Tok
.getString());
6130 uint64_t IntVal
= RealVal
.bitcastToAPInt().getZExtValue();
6131 // If we had a '-' in front, toggle the sign bit.
6132 IntVal
^= (uint64_t)isNegative
<< 31;
6133 Parser
.Lex(); // Eat the token.
6134 Operands
.push_back(ARMOperand::CreateImm(
6135 MCConstantExpr::create(IntVal
, getContext()),
6136 S
, Parser
.getTok().getLoc()));
6137 return MatchOperand_Success
;
6139 // Also handle plain integers. Instructions which allow floating point
6140 // immediates also allow a raw encoded 8-bit value.
6141 if (Tok
.is(AsmToken::Integer
) && isFconst
) {
6142 int64_t Val
= Tok
.getIntVal();
6143 Parser
.Lex(); // Eat the token.
6144 if (Val
> 255 || Val
< 0) {
6145 Error(Loc
, "encoded floating point value out of range");
6146 return MatchOperand_ParseFail
;
6148 float RealVal
= ARM_AM::getFPImmFloat(Val
);
6149 Val
= APFloat(RealVal
).bitcastToAPInt().getZExtValue();
6151 Operands
.push_back(ARMOperand::CreateImm(
6152 MCConstantExpr::create(Val
, getContext()), S
,
6153 Parser
.getTok().getLoc()));
6154 return MatchOperand_Success
;
6157 Error(Loc
, "invalid floating point immediate");
6158 return MatchOperand_ParseFail
;
6161 /// Parse a arm instruction operand. For now this parses the operand regardless
6162 /// of the mnemonic.
6163 bool ARMAsmParser::parseOperand(OperandVector
&Operands
, StringRef Mnemonic
) {
6164 MCAsmParser
&Parser
= getParser();
6167 // Check if the current operand has a custom associated parser, if so, try to
6168 // custom parse the operand, or fallback to the general approach.
6169 OperandMatchResultTy ResTy
= MatchOperandParserImpl(Operands
, Mnemonic
);
6170 if (ResTy
== MatchOperand_Success
)
6172 // If there wasn't a custom match, try the generic matcher below. Otherwise,
6173 // there was a match, but an error occurred, in which case, just return that
6174 // the operand parsing failed.
6175 if (ResTy
== MatchOperand_ParseFail
)
6178 switch (getLexer().getKind()) {
6180 Error(Parser
.getTok().getLoc(), "unexpected token in operand");
6182 case AsmToken::Identifier
: {
6183 // If we've seen a branch mnemonic, the next operand must be a label. This
6184 // is true even if the label is a register name. So "br r1" means branch to
6186 bool ExpectLabel
= Mnemonic
== "b" || Mnemonic
== "bl";
6188 if (!tryParseRegisterWithWriteBack(Operands
))
6190 int Res
= tryParseShiftRegister(Operands
);
6191 if (Res
== 0) // success
6193 else if (Res
== -1) // irrecoverable error
6195 // If this is VMRS, check for the apsr_nzcv operand.
6196 if (Mnemonic
== "vmrs" &&
6197 Parser
.getTok().getString().equals_insensitive("apsr_nzcv")) {
6198 S
= Parser
.getTok().getLoc();
6200 Operands
.push_back(ARMOperand::CreateToken("APSR_nzcv", S
));
6205 // Fall though for the Identifier case that is not a register or a
6209 case AsmToken::LParen
: // parenthesized expressions like (_strcmp-4)
6210 case AsmToken::Integer
: // things like 1f and 2b as a branch targets
6211 case AsmToken::String
: // quoted label names.
6212 case AsmToken::Dot
: { // . as a branch target
6213 // This was not a register so parse other operands that start with an
6214 // identifier (like labels) as expressions and create them as immediates.
6215 const MCExpr
*IdVal
;
6216 S
= Parser
.getTok().getLoc();
6217 if (getParser().parseExpression(IdVal
))
6219 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6220 Operands
.push_back(ARMOperand::CreateImm(IdVal
, S
, E
));
6223 case AsmToken::LBrac
:
6224 return parseMemory(Operands
);
6225 case AsmToken::LCurly
:
6226 return parseRegisterList(Operands
, !Mnemonic
.startswith("clr"));
6227 case AsmToken::Dollar
:
6228 case AsmToken::Hash
: {
6230 // $ 42 -> immediate
6231 // $foo -> symbol name
6232 // $42 -> symbol name
6233 S
= Parser
.getTok().getLoc();
6235 // Favor the interpretation of $-prefixed operands as symbol names.
6236 // Cases where immediates are explicitly expected are handled by their
6237 // specific ParseMethod implementations.
6238 auto AdjacentToken
= getLexer().peekTok(/*ShouldSkipSpace=*/false);
6239 bool ExpectIdentifier
= Parser
.getTok().is(AsmToken::Dollar
) &&
6240 (AdjacentToken
.is(AsmToken::Identifier
) ||
6241 AdjacentToken
.is(AsmToken::Integer
));
6242 if (!ExpectIdentifier
) {
6243 // Token is not part of identifier. Drop leading $ or # before parsing
6248 if (Parser
.getTok().isNot(AsmToken::Colon
)) {
6249 bool IsNegative
= Parser
.getTok().is(AsmToken::Minus
);
6250 const MCExpr
*ImmVal
;
6251 if (getParser().parseExpression(ImmVal
))
6253 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
6255 int32_t Val
= CE
->getValue();
6256 if (IsNegative
&& Val
== 0)
6257 ImmVal
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
6260 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6261 Operands
.push_back(ARMOperand::CreateImm(ImmVal
, S
, E
));
6263 // There can be a trailing '!' on operands that we want as a separate
6264 // '!' Token operand. Handle that here. For example, the compatibility
6265 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6266 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
6267 Operands
.push_back(ARMOperand::CreateToken(Parser
.getTok().getString(),
6268 Parser
.getTok().getLoc()));
6269 Parser
.Lex(); // Eat exclaim token
6273 // w/ a ':' after the '#', it's just like a plain ':'.
6276 case AsmToken::Colon
: {
6277 S
= Parser
.getTok().getLoc();
6278 // ":lower16:" and ":upper16:" expression prefixes
6279 // FIXME: Check it's an expression prefix,
6280 // e.g. (FOO - :lower16:BAR) isn't legal.
6281 ARMMCExpr::VariantKind RefKind
;
6282 if (parsePrefix(RefKind
))
6285 const MCExpr
*SubExprVal
;
6286 if (getParser().parseExpression(SubExprVal
))
6289 const MCExpr
*ExprVal
= ARMMCExpr::create(RefKind
, SubExprVal
,
6291 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6292 Operands
.push_back(ARMOperand::CreateImm(ExprVal
, S
, E
));
6295 case AsmToken::Equal
: {
6296 S
= Parser
.getTok().getLoc();
6297 if (Mnemonic
!= "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6298 return Error(S
, "unexpected token in operand");
6299 Parser
.Lex(); // Eat '='
6300 const MCExpr
*SubExprVal
;
6301 if (getParser().parseExpression(SubExprVal
))
6303 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6305 // execute-only: we assume that assembly programmers know what they are
6306 // doing and allow literal pool creation here
6307 Operands
.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal
, S
, E
));
6313 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6314 // :lower16: and :upper16:.
6315 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind
&RefKind
) {
6316 MCAsmParser
&Parser
= getParser();
6317 RefKind
= ARMMCExpr::VK_ARM_None
;
6319 // consume an optional '#' (GNU compatibility)
6320 if (getLexer().is(AsmToken::Hash
))
6323 // :lower16: and :upper16: modifiers
6324 assert(getLexer().is(AsmToken::Colon
) && "expected a :");
6325 Parser
.Lex(); // Eat ':'
6327 if (getLexer().isNot(AsmToken::Identifier
)) {
6328 Error(Parser
.getTok().getLoc(), "expected prefix identifier in operand");
6333 COFF
= (1 << MCContext::IsCOFF
),
6334 ELF
= (1 << MCContext::IsELF
),
6335 MACHO
= (1 << MCContext::IsMachO
),
6336 WASM
= (1 << MCContext::IsWasm
),
6338 static const struct PrefixEntry
{
6339 const char *Spelling
;
6340 ARMMCExpr::VariantKind VariantKind
;
6341 uint8_t SupportedFormats
;
6342 } PrefixEntries
[] = {
6343 { "lower16", ARMMCExpr::VK_ARM_LO16
, COFF
| ELF
| MACHO
},
6344 { "upper16", ARMMCExpr::VK_ARM_HI16
, COFF
| ELF
| MACHO
},
6347 StringRef IDVal
= Parser
.getTok().getIdentifier();
6349 const auto &Prefix
=
6350 llvm::find_if(PrefixEntries
, [&IDVal
](const PrefixEntry
&PE
) {
6351 return PE
.Spelling
== IDVal
;
6353 if (Prefix
== std::end(PrefixEntries
)) {
6354 Error(Parser
.getTok().getLoc(), "unexpected prefix in operand");
6358 uint8_t CurrentFormat
;
6359 switch (getContext().getObjectFileType()) {
6360 case MCContext::IsMachO
:
6361 CurrentFormat
= MACHO
;
6363 case MCContext::IsELF
:
6364 CurrentFormat
= ELF
;
6366 case MCContext::IsCOFF
:
6367 CurrentFormat
= COFF
;
6369 case MCContext::IsWasm
:
6370 CurrentFormat
= WASM
;
6372 case MCContext::IsGOFF
:
6373 case MCContext::IsXCOFF
:
6374 llvm_unreachable("unexpected object format");
6378 if (~Prefix
->SupportedFormats
& CurrentFormat
) {
6379 Error(Parser
.getTok().getLoc(),
6380 "cannot represent relocation in the current file format");
6384 RefKind
= Prefix
->VariantKind
;
6387 if (getLexer().isNot(AsmToken::Colon
)) {
6388 Error(Parser
.getTok().getLoc(), "unexpected token after prefix");
6391 Parser
.Lex(); // Eat the last ':'
6396 /// Given a mnemonic, split out possible predication code and carry
6397 /// setting letters to form a canonical mnemonic and flags.
6399 // FIXME: Would be nice to autogen this.
6400 // FIXME: This is a bit of a maze of special cases.
6401 StringRef
ARMAsmParser::splitMnemonic(StringRef Mnemonic
,
6402 StringRef ExtraToken
,
6403 unsigned &PredicationCode
,
6404 unsigned &VPTPredicationCode
,
6406 unsigned &ProcessorIMod
,
6407 StringRef
&ITMask
) {
6408 PredicationCode
= ARMCC::AL
;
6409 VPTPredicationCode
= ARMVCC::None
;
6410 CarrySetting
= false;
6413 // Ignore some mnemonics we know aren't predicated forms.
6415 // FIXME: Would be nice to autogen this.
6416 if ((Mnemonic
== "movs" && isThumb()) ||
6417 Mnemonic
== "teq" || Mnemonic
== "vceq" || Mnemonic
== "svc" ||
6418 Mnemonic
== "mls" || Mnemonic
== "smmls" || Mnemonic
== "vcls" ||
6419 Mnemonic
== "vmls" || Mnemonic
== "vnmls" || Mnemonic
== "vacge" ||
6420 Mnemonic
== "vcge" || Mnemonic
== "vclt" || Mnemonic
== "vacgt" ||
6421 Mnemonic
== "vaclt" || Mnemonic
== "vacle" || Mnemonic
== "hlt" ||
6422 Mnemonic
== "vcgt" || Mnemonic
== "vcle" || Mnemonic
== "smlal" ||
6423 Mnemonic
== "umaal" || Mnemonic
== "umlal" || Mnemonic
== "vabal" ||
6424 Mnemonic
== "vmlal" || Mnemonic
== "vpadal" || Mnemonic
== "vqdmlal" ||
6425 Mnemonic
== "fmuls" || Mnemonic
== "vmaxnm" || Mnemonic
== "vminnm" ||
6426 Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" || Mnemonic
== "vcvtp" ||
6427 Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" || Mnemonic
== "vrintn" ||
6428 Mnemonic
== "vrintp" || Mnemonic
== "vrintm" || Mnemonic
== "hvc" ||
6429 Mnemonic
.startswith("vsel") || Mnemonic
== "vins" || Mnemonic
== "vmovx" ||
6430 Mnemonic
== "bxns" || Mnemonic
== "blxns" ||
6431 Mnemonic
== "vdot" || Mnemonic
== "vmmla" ||
6432 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
6433 Mnemonic
== "vcmla" || Mnemonic
== "vcadd" ||
6434 Mnemonic
== "vfmal" || Mnemonic
== "vfmsl" ||
6435 Mnemonic
== "wls" || Mnemonic
== "le" || Mnemonic
== "dls" ||
6436 Mnemonic
== "csel" || Mnemonic
== "csinc" ||
6437 Mnemonic
== "csinv" || Mnemonic
== "csneg" || Mnemonic
== "cinc" ||
6438 Mnemonic
== "cinv" || Mnemonic
== "cneg" || Mnemonic
== "cset" ||
6439 Mnemonic
== "csetm")
6442 // First, split out any predication code. Ignore mnemonics we know aren't
6443 // predicated but do have a carry-set and so weren't caught above.
6444 if (Mnemonic
!= "adcs" && Mnemonic
!= "bics" && Mnemonic
!= "movs" &&
6445 Mnemonic
!= "muls" && Mnemonic
!= "smlals" && Mnemonic
!= "smulls" &&
6446 Mnemonic
!= "umlals" && Mnemonic
!= "umulls" && Mnemonic
!= "lsls" &&
6447 Mnemonic
!= "sbcs" && Mnemonic
!= "rscs" &&
6449 (Mnemonic
== "vmine" ||
6450 Mnemonic
== "vshle" || Mnemonic
== "vshlt" || Mnemonic
== "vshllt" ||
6451 Mnemonic
== "vrshle" || Mnemonic
== "vrshlt" ||
6452 Mnemonic
== "vmvne" || Mnemonic
== "vorne" ||
6453 Mnemonic
== "vnege" || Mnemonic
== "vnegt" ||
6454 Mnemonic
== "vmule" || Mnemonic
== "vmult" ||
6455 Mnemonic
== "vrintne" ||
6456 Mnemonic
== "vcmult" || Mnemonic
== "vcmule" ||
6457 Mnemonic
== "vpsele" || Mnemonic
== "vpselt" ||
6458 Mnemonic
.startswith("vq")))) {
6459 unsigned CC
= ARMCondCodeFromString(Mnemonic
.substr(Mnemonic
.size()-2));
6461 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 2);
6462 PredicationCode
= CC
;
6466 // Next, determine if we have a carry setting bit. We explicitly ignore all
6467 // the instructions we know end in 's'.
6468 if (Mnemonic
.endswith("s") &&
6469 !(Mnemonic
== "cps" || Mnemonic
== "mls" ||
6470 Mnemonic
== "mrs" || Mnemonic
== "smmls" || Mnemonic
== "vabs" ||
6471 Mnemonic
== "vcls" || Mnemonic
== "vmls" || Mnemonic
== "vmrs" ||
6472 Mnemonic
== "vnmls" || Mnemonic
== "vqabs" || Mnemonic
== "vrecps" ||
6473 Mnemonic
== "vrsqrts" || Mnemonic
== "srs" || Mnemonic
== "flds" ||
6474 Mnemonic
== "fmrs" || Mnemonic
== "fsqrts" || Mnemonic
== "fsubs" ||
6475 Mnemonic
== "fsts" || Mnemonic
== "fcpys" || Mnemonic
== "fdivs" ||
6476 Mnemonic
== "fmuls" || Mnemonic
== "fcmps" || Mnemonic
== "fcmpzs" ||
6477 Mnemonic
== "vfms" || Mnemonic
== "vfnms" || Mnemonic
== "fconsts" ||
6478 Mnemonic
== "bxns" || Mnemonic
== "blxns" || Mnemonic
== "vfmas" ||
6479 Mnemonic
== "vmlas" ||
6480 (Mnemonic
== "movs" && isThumb()))) {
6481 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 1);
6482 CarrySetting
= true;
6485 // The "cps" instruction can have a interrupt mode operand which is glued into
6486 // the mnemonic. Check if this is the case, split it and parse the imod op
6487 if (Mnemonic
.startswith("cps")) {
6488 // Split out any imod code.
6490 StringSwitch
<unsigned>(Mnemonic
.substr(Mnemonic
.size()-2, 2))
6491 .Case("ie", ARM_PROC::IE
)
6492 .Case("id", ARM_PROC::ID
)
6495 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size()-2);
6496 ProcessorIMod
= IMod
;
6500 if (isMnemonicVPTPredicable(Mnemonic
, ExtraToken
) && Mnemonic
!= "vmovlt" &&
6501 Mnemonic
!= "vshllt" && Mnemonic
!= "vrshrnt" && Mnemonic
!= "vshrnt" &&
6502 Mnemonic
!= "vqrshrunt" && Mnemonic
!= "vqshrunt" &&
6503 Mnemonic
!= "vqrshrnt" && Mnemonic
!= "vqshrnt" && Mnemonic
!= "vmullt" &&
6504 Mnemonic
!= "vqmovnt" && Mnemonic
!= "vqmovunt" &&
6505 Mnemonic
!= "vqmovnt" && Mnemonic
!= "vmovnt" && Mnemonic
!= "vqdmullt" &&
6506 Mnemonic
!= "vpnot" && Mnemonic
!= "vcvtt" && Mnemonic
!= "vcvt") {
6507 unsigned CC
= ARMVectorCondCodeFromString(Mnemonic
.substr(Mnemonic
.size()-1));
6509 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size()-1);
6510 VPTPredicationCode
= CC
;
6515 // The "it" instruction has the condition mask on the end of the mnemonic.
6516 if (Mnemonic
.startswith("it")) {
6517 ITMask
= Mnemonic
.slice(2, Mnemonic
.size());
6518 Mnemonic
= Mnemonic
.slice(0, 2);
6521 if (Mnemonic
.startswith("vpst")) {
6522 ITMask
= Mnemonic
.slice(4, Mnemonic
.size());
6523 Mnemonic
= Mnemonic
.slice(0, 4);
6525 else if (Mnemonic
.startswith("vpt")) {
6526 ITMask
= Mnemonic
.slice(3, Mnemonic
.size());
6527 Mnemonic
= Mnemonic
.slice(0, 3);
6533 /// Given a canonical mnemonic, determine if the instruction ever allows
6534 /// inclusion of carry set or predication code operands.
6536 // FIXME: It would be nice to autogen this.
6537 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic
,
6538 StringRef ExtraToken
,
6540 bool &CanAcceptCarrySet
,
6541 bool &CanAcceptPredicationCode
,
6542 bool &CanAcceptVPTPredicationCode
) {
6543 CanAcceptVPTPredicationCode
= isMnemonicVPTPredicable(Mnemonic
, ExtraToken
);
6546 Mnemonic
== "and" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
6547 Mnemonic
== "rrx" || Mnemonic
== "ror" || Mnemonic
== "sub" ||
6548 Mnemonic
== "add" || Mnemonic
== "adc" || Mnemonic
== "mul" ||
6549 Mnemonic
== "bic" || Mnemonic
== "asr" || Mnemonic
== "orr" ||
6550 Mnemonic
== "mvn" || Mnemonic
== "rsb" || Mnemonic
== "rsc" ||
6551 Mnemonic
== "orn" || Mnemonic
== "sbc" || Mnemonic
== "eor" ||
6552 Mnemonic
== "neg" || Mnemonic
== "vfm" || Mnemonic
== "vfnm" ||
6554 (Mnemonic
== "smull" || Mnemonic
== "mov" || Mnemonic
== "mla" ||
6555 Mnemonic
== "smlal" || Mnemonic
== "umlal" || Mnemonic
== "umull"));
6557 if (Mnemonic
== "bkpt" || Mnemonic
== "cbnz" || Mnemonic
== "setend" ||
6558 Mnemonic
== "cps" || Mnemonic
== "it" || Mnemonic
== "cbz" ||
6559 Mnemonic
== "trap" || Mnemonic
== "hlt" || Mnemonic
== "udf" ||
6560 Mnemonic
.startswith("crc32") || Mnemonic
.startswith("cps") ||
6561 Mnemonic
.startswith("vsel") || Mnemonic
== "vmaxnm" ||
6562 Mnemonic
== "vminnm" || Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" ||
6563 Mnemonic
== "vcvtp" || Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" ||
6564 Mnemonic
== "vrintn" || Mnemonic
== "vrintp" || Mnemonic
== "vrintm" ||
6565 Mnemonic
.startswith("aes") || Mnemonic
== "hvc" || Mnemonic
== "setpan" ||
6566 Mnemonic
.startswith("sha1") || Mnemonic
.startswith("sha256") ||
6567 (FullInst
.startswith("vmull") && FullInst
.endswith(".p64")) ||
6568 Mnemonic
== "vmovx" || Mnemonic
== "vins" ||
6569 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
6570 Mnemonic
== "vcmla" || Mnemonic
== "vcadd" ||
6571 Mnemonic
== "vfmal" || Mnemonic
== "vfmsl" ||
6572 Mnemonic
== "vfmat" || Mnemonic
== "vfmab" ||
6573 Mnemonic
== "vdot" || Mnemonic
== "vmmla" ||
6574 Mnemonic
== "sb" || Mnemonic
== "ssbb" ||
6575 Mnemonic
== "pssbb" || Mnemonic
== "vsmmla" ||
6576 Mnemonic
== "vummla" || Mnemonic
== "vusmmla" ||
6577 Mnemonic
== "vusdot" || Mnemonic
== "vsudot" ||
6578 Mnemonic
== "bfcsel" || Mnemonic
== "wls" ||
6579 Mnemonic
== "dls" || Mnemonic
== "le" || Mnemonic
== "csel" ||
6580 Mnemonic
== "csinc" || Mnemonic
== "csinv" || Mnemonic
== "csneg" ||
6581 Mnemonic
== "cinc" || Mnemonic
== "cinv" || Mnemonic
== "cneg" ||
6582 Mnemonic
== "cset" || Mnemonic
== "csetm" ||
6583 Mnemonic
.startswith("vpt") || Mnemonic
.startswith("vpst") ||
6584 (hasCDE() && MS
.isCDEInstr(Mnemonic
) &&
6585 !MS
.isITPredicableCDEInstr(Mnemonic
)) ||
6587 (Mnemonic
.startswith("vst2") || Mnemonic
.startswith("vld2") ||
6588 Mnemonic
.startswith("vst4") || Mnemonic
.startswith("vld4") ||
6589 Mnemonic
.startswith("wlstp") || Mnemonic
.startswith("dlstp") ||
6590 Mnemonic
.startswith("letp")))) {
6591 // These mnemonics are never predicable
6592 CanAcceptPredicationCode
= false;
6593 } else if (!isThumb()) {
6594 // Some instructions are only predicable in Thumb mode
6595 CanAcceptPredicationCode
=
6596 Mnemonic
!= "cdp2" && Mnemonic
!= "clrex" && Mnemonic
!= "mcr2" &&
6597 Mnemonic
!= "mcrr2" && Mnemonic
!= "mrc2" && Mnemonic
!= "mrrc2" &&
6598 Mnemonic
!= "dmb" && Mnemonic
!= "dfb" && Mnemonic
!= "dsb" &&
6599 Mnemonic
!= "isb" && Mnemonic
!= "pld" && Mnemonic
!= "pli" &&
6600 Mnemonic
!= "pldw" && Mnemonic
!= "ldc2" && Mnemonic
!= "ldc2l" &&
6601 Mnemonic
!= "stc2" && Mnemonic
!= "stc2l" &&
6602 Mnemonic
!= "tsb" &&
6603 !Mnemonic
.startswith("rfe") && !Mnemonic
.startswith("srs");
6604 } else if (isThumbOne()) {
6606 CanAcceptPredicationCode
= Mnemonic
!= "movs";
6608 CanAcceptPredicationCode
= Mnemonic
!= "nop" && Mnemonic
!= "movs";
6610 CanAcceptPredicationCode
= true;
6613 // Some Thumb instructions have two operand forms that are not
6614 // available as three operand, convert to two operand form if possible.
6616 // FIXME: We would really like to be able to tablegen'erate this.
6617 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic
,
6619 OperandVector
&Operands
) {
6620 if (Operands
.size() != 6)
6623 const auto &Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
6624 auto &Op4
= static_cast<ARMOperand
&>(*Operands
[4]);
6625 if (!Op3
.isReg() || !Op4
.isReg())
6628 auto Op3Reg
= Op3
.getReg();
6629 auto Op4Reg
= Op4
.getReg();
6631 // For most Thumb2 cases we just generate the 3 operand form and reduce
6632 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6633 // won't accept SP or PC so we do the transformation here taking care
6634 // with immediate range in the 'add sp, sp #imm' case.
6635 auto &Op5
= static_cast<ARMOperand
&>(*Operands
[5]);
6637 if (Mnemonic
!= "add")
6639 bool TryTransform
= Op3Reg
== ARM::PC
|| Op4Reg
== ARM::PC
||
6640 (Op5
.isReg() && Op5
.getReg() == ARM::PC
);
6641 if (!TryTransform
) {
6642 TryTransform
= (Op3Reg
== ARM::SP
|| Op4Reg
== ARM::SP
||
6643 (Op5
.isReg() && Op5
.getReg() == ARM::SP
)) &&
6644 !(Op3Reg
== ARM::SP
&& Op4Reg
== ARM::SP
&&
6645 Op5
.isImm() && !Op5
.isImm0_508s4());
6649 } else if (!isThumbOne())
6652 if (!(Mnemonic
== "add" || Mnemonic
== "sub" || Mnemonic
== "and" ||
6653 Mnemonic
== "eor" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
6654 Mnemonic
== "asr" || Mnemonic
== "adc" || Mnemonic
== "sbc" ||
6655 Mnemonic
== "ror" || Mnemonic
== "orr" || Mnemonic
== "bic"))
6658 // If first 2 operands of a 3 operand instruction are the same
6659 // then transform to 2 operand version of the same instruction
6660 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6661 bool Transform
= Op3Reg
== Op4Reg
;
6663 // For communtative operations, we might be able to transform if we swap
6664 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
6666 const ARMOperand
*LastOp
= &Op5
;
6668 if (!Transform
&& Op5
.isReg() && Op3Reg
== Op5
.getReg() &&
6669 ((Mnemonic
== "add" && Op4Reg
!= ARM::SP
) ||
6670 Mnemonic
== "and" || Mnemonic
== "eor" ||
6671 Mnemonic
== "adc" || Mnemonic
== "orr")) {
6677 // If both registers are the same then remove one of them from
6678 // the operand list, with certain exceptions.
6680 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6681 // 2 operand forms don't exist.
6682 if (((Mnemonic
== "add" && CarrySetting
) || Mnemonic
== "sub") &&
6686 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6687 // 3-bits because the ARMARM says not to.
6688 if ((Mnemonic
== "add" || Mnemonic
== "sub") && LastOp
->isImm0_7())
6694 std::swap(Op4
, Op5
);
6695 Operands
.erase(Operands
.begin() + 3);
6699 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic
,
6700 OperandVector
&Operands
) {
6701 // FIXME: This is all horribly hacky. We really need a better way to deal
6702 // with optional operands like this in the matcher table.
6704 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6705 // another does not. Specifically, the MOVW instruction does not. So we
6706 // special case it here and remove the defaulted (non-setting) cc_out
6707 // operand if that's the instruction we're trying to match.
6709 // We do this as post-processing of the explicit operands rather than just
6710 // conditionally adding the cc_out in the first place because we need
6711 // to check the type of the parsed immediate operand.
6712 if (Mnemonic
== "mov" && Operands
.size() > 4 && !isThumb() &&
6713 !static_cast<ARMOperand
&>(*Operands
[4]).isModImm() &&
6714 static_cast<ARMOperand
&>(*Operands
[4]).isImm0_65535Expr() &&
6715 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
6718 // Register-register 'add' for thumb does not have a cc_out operand
6719 // when there are only two register operands.
6720 if (isThumb() && Mnemonic
== "add" && Operands
.size() == 5 &&
6721 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6722 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6723 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
6725 // Register-register 'add' for thumb does not have a cc_out operand
6726 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6727 // have to check the immediate range here since Thumb2 has a variant
6728 // that can handle a different range and has a cc_out operand.
6729 if (((isThumb() && Mnemonic
== "add") ||
6730 (isThumbTwo() && Mnemonic
== "sub")) &&
6731 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6732 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6733 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::SP
&&
6734 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6735 ((Mnemonic
== "add" && static_cast<ARMOperand
&>(*Operands
[5]).isReg()) ||
6736 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_1020s4()))
6738 // For Thumb2, add/sub immediate does not have a cc_out operand for the
6739 // imm0_4095 variant. That's the least-preferred variant when
6740 // selecting via the generic "add" mnemonic, so to know that we
6741 // should remove the cc_out operand, we have to explicitly check that
6742 // it's not one of the other variants. Ugh.
6743 if (isThumbTwo() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
6744 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6745 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6746 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
6747 // Nest conditions rather than one big 'if' statement for readability.
6749 // If both registers are low, we're in an IT block, and the immediate is
6750 // in range, we should use encoding T1 instead, which has a cc_out.
6752 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) &&
6753 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) &&
6754 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_7())
6756 // Check against T3. If the second register is the PC, this is an
6757 // alternate form of ADR, which uses encoding T4, so check for that too.
6758 if (static_cast<ARMOperand
&>(*Operands
[4]).getReg() != ARM::PC
&&
6759 (static_cast<ARMOperand
&>(*Operands
[5]).isT2SOImm() ||
6760 static_cast<ARMOperand
&>(*Operands
[5]).isT2SOImmNeg()))
6763 // Otherwise, we use encoding T4, which does not have a cc_out
6768 // The thumb2 multiply instruction doesn't have a CCOut register, so
6769 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6770 // use the 16-bit encoding or not.
6771 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 6 &&
6772 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6773 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6774 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6775 static_cast<ARMOperand
&>(*Operands
[5]).isReg() &&
6776 // If the registers aren't low regs, the destination reg isn't the
6777 // same as one of the source regs, or the cc_out operand is zero
6778 // outside of an IT block, we have to use the 32-bit encoding, so
6779 // remove the cc_out operand.
6780 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
6781 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
6782 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[5]).getReg()) ||
6783 !inITBlock() || (static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
6784 static_cast<ARMOperand
&>(*Operands
[5]).getReg() &&
6785 static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
6786 static_cast<ARMOperand
&>(*Operands
[4]).getReg())))
6789 // Also check the 'mul' syntax variant that doesn't specify an explicit
6790 // destination register.
6791 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 5 &&
6792 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6793 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6794 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6795 // If the registers aren't low regs or the cc_out operand is zero
6796 // outside of an IT block, we have to use the 32-bit encoding, so
6797 // remove the cc_out operand.
6798 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
6799 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
6803 // Register-register 'add/sub' for thumb does not have a cc_out operand
6804 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6805 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6806 // right, this will result in better diagnostics (which operand is off)
6808 if (isThumb() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
6809 (Operands
.size() == 5 || Operands
.size() == 6) &&
6810 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6811 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::SP
&&
6812 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6813 (static_cast<ARMOperand
&>(*Operands
[4]).isImm() ||
6814 (Operands
.size() == 6 &&
6815 static_cast<ARMOperand
&>(*Operands
[5]).isImm()))) {
6816 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
6817 return (!(isThumbTwo() &&
6818 (static_cast<ARMOperand
&>(*Operands
[4]).isT2SOImm() ||
6819 static_cast<ARMOperand
&>(*Operands
[4]).isT2SOImmNeg())));
6821 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
6822 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
6823 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
6824 if (isThumbTwo() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
6825 (Operands
.size() == 5) &&
6826 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6827 static_cast<ARMOperand
&>(*Operands
[3]).getReg() != ARM::SP
&&
6828 static_cast<ARMOperand
&>(*Operands
[3]).getReg() != ARM::PC
&&
6829 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6830 static_cast<ARMOperand
&>(*Operands
[4]).isImm()) {
6831 const ARMOperand
&IMM
= static_cast<ARMOperand
&>(*Operands
[4]);
6832 if (IMM
.isT2SOImm() || IMM
.isT2SOImmNeg())
6833 return false; // add.w / sub.w
6834 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(IMM
.getImm())) {
6835 const int64_t Value
= CE
->getValue();
6836 // Thumb1 imm8 sub / add
6837 if ((Value
< ((1 << 7) - 1) << 2) && inITBlock() && (!(Value
& 3)) &&
6838 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()))
6840 return true; // Thumb2 T4 addw / subw
6846 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic
,
6847 OperandVector
&Operands
) {
6848 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6849 unsigned RegIdx
= 3;
6850 if ((((Mnemonic
== "vrintz" || Mnemonic
== "vrintx") && !hasMVE()) ||
6851 Mnemonic
== "vrintr") &&
6852 (static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f32" ||
6853 static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f16")) {
6854 if (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
6855 (static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f32" ||
6856 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f16"))
6859 if (static_cast<ARMOperand
&>(*Operands
[RegIdx
]).isReg() &&
6860 (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
6861 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg()) ||
6862 ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(
6863 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg())))
6869 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic
,
6870 OperandVector
&Operands
) {
6871 if (!hasMVE() || Operands
.size() < 3)
6874 if (Mnemonic
.startswith("vld2") || Mnemonic
.startswith("vld4") ||
6875 Mnemonic
.startswith("vst2") || Mnemonic
.startswith("vst4"))
6878 if (Mnemonic
.startswith("vctp") || Mnemonic
.startswith("vpnot"))
6881 if (Mnemonic
.startswith("vmov") &&
6882 !(Mnemonic
.startswith("vmovl") || Mnemonic
.startswith("vmovn") ||
6883 Mnemonic
.startswith("vmovx"))) {
6884 for (auto &Operand
: Operands
) {
6885 if (static_cast<ARMOperand
&>(*Operand
).isVectorIndex() ||
6886 ((*Operand
).isReg() &&
6887 (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(
6888 (*Operand
).getReg()) ||
6889 ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
6890 (*Operand
).getReg())))) {
6896 for (auto &Operand
: Operands
) {
6897 // We check the larger class QPR instead of just the legal class
6898 // MQPR, to more accurately report errors when using Q registers
6899 // outside of the allowed range.
6900 if (static_cast<ARMOperand
&>(*Operand
).isVectorIndex() ||
6901 (Operand
->isReg() &&
6902 (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(
6903 Operand
->getReg()))))
6910 static bool isDataTypeToken(StringRef Tok
) {
6911 return Tok
== ".8" || Tok
== ".16" || Tok
== ".32" || Tok
== ".64" ||
6912 Tok
== ".i8" || Tok
== ".i16" || Tok
== ".i32" || Tok
== ".i64" ||
6913 Tok
== ".u8" || Tok
== ".u16" || Tok
== ".u32" || Tok
== ".u64" ||
6914 Tok
== ".s8" || Tok
== ".s16" || Tok
== ".s32" || Tok
== ".s64" ||
6915 Tok
== ".p8" || Tok
== ".p16" || Tok
== ".f32" || Tok
== ".f64" ||
6916 Tok
== ".f" || Tok
== ".d";
6919 // FIXME: This bit should probably be handled via an explicit match class
6920 // in the .td files that matches the suffix instead of having it be
6921 // a literal string token the way it is now.
6922 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic
, StringRef DT
) {
6923 return Mnemonic
.startswith("vldm") || Mnemonic
.startswith("vstm");
6926 static void applyMnemonicAliases(StringRef
&Mnemonic
,
6927 const FeatureBitset
&Features
,
6928 unsigned VariantID
);
6930 // The GNU assembler has aliases of ldrd and strd with the second register
6931 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6933 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6934 // the assembly parser could then generate confusing diagnostics refering to
6935 // it. If we do find anything that prevents us from doing the transformation we
6936 // bail out, and let the assembly parser report an error on the instruction as
6938 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic
,
6939 OperandVector
&Operands
) {
6940 if (Mnemonic
!= "ldrd" && Mnemonic
!= "strd")
6942 if (Operands
.size() < 4)
6945 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[2]);
6946 ARMOperand
&Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
6950 if (!Op3
.isGPRMem())
6953 const MCRegisterClass
&GPR
= MRI
->getRegClass(ARM::GPRRegClassID
);
6954 if (!GPR
.contains(Op2
.getReg()))
6957 unsigned RtEncoding
= MRI
->getEncodingValue(Op2
.getReg());
6958 if (!isThumb() && (RtEncoding
& 1)) {
6959 // In ARM mode, the registers must be from an aligned pair, this
6960 // restriction does not apply in Thumb mode.
6963 if (Op2
.getReg() == ARM::PC
)
6965 unsigned PairedReg
= GPR
.getRegister(RtEncoding
+ 1);
6966 if (!PairedReg
|| PairedReg
== ARM::PC
||
6967 (PairedReg
== ARM::SP
&& !hasV8Ops()))
6971 Operands
.begin() + 3,
6972 ARMOperand::CreateReg(PairedReg
, Op2
.getStartLoc(), Op2
.getEndLoc()));
6975 // Dual-register instruction have the following syntax:
6976 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
6977 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair
6978 // operand. If the conversion fails an error is diagnosed, and the function
6980 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic
,
6981 OperandVector
&Operands
) {
6982 assert(MS
.isCDEDualRegInstr(Mnemonic
));
6984 Mnemonic
== "cx1da" || Mnemonic
== "cx2da" || Mnemonic
== "cx3da";
6985 size_t NumPredOps
= isPredicable
? 1 : 0;
6987 if (Operands
.size() <= 3 + NumPredOps
)
6991 "operand must be an even-numbered register in the range [r0, r10]");
6993 const MCParsedAsmOperand
&Op2
= *Operands
[2 + NumPredOps
];
6995 return Error(Op2
.getStartLoc(), Op2Diag
);
6999 switch (Op2
.getReg()) {
7001 return Error(Op2
.getStartLoc(), Op2Diag
);
7024 RPair
= ARM::R10_R11
;
7028 const MCParsedAsmOperand
&Op3
= *Operands
[3 + NumPredOps
];
7029 if (!Op3
.isReg() || Op3
.getReg() != RNext
)
7030 return Error(Op3
.getStartLoc(), "operand must be a consecutive register");
7032 Operands
.erase(Operands
.begin() + 3 + NumPredOps
);
7033 Operands
[2 + NumPredOps
] =
7034 ARMOperand::CreateReg(RPair
, Op2
.getStartLoc(), Op2
.getEndLoc());
7038 /// Parse an arm instruction mnemonic followed by its operands.
7039 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
7040 SMLoc NameLoc
, OperandVector
&Operands
) {
7041 MCAsmParser
&Parser
= getParser();
7043 // Apply mnemonic aliases before doing anything else, as the destination
7044 // mnemonic may include suffices and we want to handle them normally.
7045 // The generic tblgen'erated code does this later, at the start of
7046 // MatchInstructionImpl(), but that's too late for aliases that include
7047 // any sort of suffix.
7048 const FeatureBitset
&AvailableFeatures
= getAvailableFeatures();
7049 unsigned AssemblerDialect
= getParser().getAssemblerDialect();
7050 applyMnemonicAliases(Name
, AvailableFeatures
, AssemblerDialect
);
7052 // First check for the ARM-specific .req directive.
7053 if (Parser
.getTok().is(AsmToken::Identifier
) &&
7054 Parser
.getTok().getIdentifier().lower() == ".req") {
7055 parseDirectiveReq(Name
, NameLoc
);
7056 // We always return 'error' for this, as we're done with this
7057 // statement and don't need to match the 'instruction."
7061 // Create the leading tokens for the mnemonic, split by '.' characters.
7062 size_t Start
= 0, Next
= Name
.find('.');
7063 StringRef Mnemonic
= Name
.slice(Start
, Next
);
7064 StringRef ExtraToken
= Name
.slice(Next
, Name
.find(' ', Next
+ 1));
7066 // Split out the predication code and carry setting flag from the mnemonic.
7067 unsigned PredicationCode
;
7068 unsigned VPTPredicationCode
;
7069 unsigned ProcessorIMod
;
7072 Mnemonic
= splitMnemonic(Mnemonic
, ExtraToken
, PredicationCode
, VPTPredicationCode
,
7073 CarrySetting
, ProcessorIMod
, ITMask
);
7075 // In Thumb1, only the branch (B) instruction can be predicated.
7076 if (isThumbOne() && PredicationCode
!= ARMCC::AL
&& Mnemonic
!= "b") {
7077 return Error(NameLoc
, "conditional execution not supported in Thumb1");
7080 Operands
.push_back(ARMOperand::CreateToken(Mnemonic
, NameLoc
));
7082 // Handle the mask for IT and VPT instructions. In ARMOperand and
7083 // MCOperand, this is stored in a format independent of the
7084 // condition code: the lowest set bit indicates the end of the
7085 // encoding, and above that, a 1 bit indicates 'else', and an 0
7086 // indicates 'then'. E.g.
7088 // ITx -> x100 (ITT -> 0100, ITE -> 1100)
7089 // ITxy -> xy10 (e.g. ITET -> 1010)
7090 // ITxyz -> xyz1 (e.g. ITEET -> 1101)
7091 // Note: See the ARM::PredBlockMask enum in
7092 // /lib/Target/ARM/Utils/ARMBaseInfo.h
7093 if (Mnemonic
== "it" || Mnemonic
.startswith("vpt") ||
7094 Mnemonic
.startswith("vpst")) {
7095 SMLoc Loc
= Mnemonic
== "it" ? SMLoc::getFromPointer(NameLoc
.getPointer() + 2) :
7096 Mnemonic
== "vpt" ? SMLoc::getFromPointer(NameLoc
.getPointer() + 3) :
7097 SMLoc::getFromPointer(NameLoc
.getPointer() + 4);
7098 if (ITMask
.size() > 3) {
7099 if (Mnemonic
== "it")
7100 return Error(Loc
, "too many conditions on IT instruction");
7101 return Error(Loc
, "too many conditions on VPT instruction");
7104 for (unsigned i
= ITMask
.size(); i
!= 0; --i
) {
7105 char pos
= ITMask
[i
- 1];
7106 if (pos
!= 't' && pos
!= 'e') {
7107 return Error(Loc
, "illegal IT block condition mask '" + ITMask
+ "'");
7110 if (ITMask
[i
- 1] == 'e')
7113 Operands
.push_back(ARMOperand::CreateITMask(Mask
, Loc
));
7116 // FIXME: This is all a pretty gross hack. We should automatically handle
7117 // optional operands like this via tblgen.
7119 // Next, add the CCOut and ConditionCode operands, if needed.
7121 // For mnemonics which can ever incorporate a carry setting bit or predication
7122 // code, our matching model involves us always generating CCOut and
7123 // ConditionCode operands to match the mnemonic "as written" and then we let
7124 // the matcher deal with finding the right instruction or generating an
7125 // appropriate error.
7126 bool CanAcceptCarrySet
, CanAcceptPredicationCode
, CanAcceptVPTPredicationCode
;
7127 getMnemonicAcceptInfo(Mnemonic
, ExtraToken
, Name
, CanAcceptCarrySet
,
7128 CanAcceptPredicationCode
, CanAcceptVPTPredicationCode
);
7130 // If we had a carry-set on an instruction that can't do that, issue an
7132 if (!CanAcceptCarrySet
&& CarrySetting
) {
7133 return Error(NameLoc
, "instruction '" + Mnemonic
+
7134 "' can not set flags, but 's' suffix specified");
7136 // If we had a predication code on an instruction that can't do that, issue an
7138 if (!CanAcceptPredicationCode
&& PredicationCode
!= ARMCC::AL
) {
7139 return Error(NameLoc
, "instruction '" + Mnemonic
+
7140 "' is not predicable, but condition code specified");
7143 // If we had a VPT predication code on an instruction that can't do that, issue an
7145 if (!CanAcceptVPTPredicationCode
&& VPTPredicationCode
!= ARMVCC::None
) {
7146 return Error(NameLoc
, "instruction '" + Mnemonic
+
7147 "' is not VPT predicable, but VPT code T/E is specified");
7150 // Add the carry setting operand, if necessary.
7151 if (CanAcceptCarrySet
) {
7152 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size());
7153 Operands
.push_back(ARMOperand::CreateCCOut(CarrySetting
? ARM::CPSR
: 0,
7157 // Add the predication code operand, if necessary.
7158 if (CanAcceptPredicationCode
) {
7159 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size() +
7161 Operands
.push_back(ARMOperand::CreateCondCode(
7162 ARMCC::CondCodes(PredicationCode
), Loc
));
7165 // Add the VPT predication code operand, if necessary.
7166 // FIXME: We don't add them for the instructions filtered below as these can
7167 // have custom operands which need special parsing. This parsing requires
7168 // the operand to be in the same place in the OperandVector as their
7169 // definition in tblgen. Since these instructions may also have the
7170 // scalar predication operand we do not add the vector one and leave until
7171 // now to fix it up.
7172 if (CanAcceptVPTPredicationCode
&& Mnemonic
!= "vmov" &&
7173 !Mnemonic
.startswith("vcmp") &&
7174 !(Mnemonic
.startswith("vcvt") && Mnemonic
!= "vcvta" &&
7175 Mnemonic
!= "vcvtn" && Mnemonic
!= "vcvtp" && Mnemonic
!= "vcvtm")) {
7176 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size() +
7178 Operands
.push_back(ARMOperand::CreateVPTPred(
7179 ARMVCC::VPTCodes(VPTPredicationCode
), Loc
));
7182 // Add the processor imod operand, if necessary.
7183 if (ProcessorIMod
) {
7184 Operands
.push_back(ARMOperand::CreateImm(
7185 MCConstantExpr::create(ProcessorIMod
, getContext()),
7187 } else if (Mnemonic
== "cps" && isMClass()) {
7188 return Error(NameLoc
, "instruction 'cps' requires effect for M-class");
7191 // Add the remaining tokens in the mnemonic.
7192 while (Next
!= StringRef::npos
) {
7194 Next
= Name
.find('.', Start
+ 1);
7195 ExtraToken
= Name
.slice(Start
, Next
);
7197 // Some NEON instructions have an optional datatype suffix that is
7198 // completely ignored. Check for that.
7199 if (isDataTypeToken(ExtraToken
) &&
7200 doesIgnoreDataTypeSuffix(Mnemonic
, ExtraToken
))
7203 // For for ARM mode generate an error if the .n qualifier is used.
7204 if (ExtraToken
== ".n" && !isThumb()) {
7205 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
7206 return Error(Loc
, "instruction with .n (narrow) qualifier not allowed in "
7210 // The .n qualifier is always discarded as that is what the tables
7211 // and matcher expect. In ARM mode the .w qualifier has no effect,
7212 // so discard it to avoid errors that can be caused by the matcher.
7213 if (ExtraToken
!= ".n" && (isThumb() || ExtraToken
!= ".w")) {
7214 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
7215 Operands
.push_back(ARMOperand::CreateToken(ExtraToken
, Loc
));
7219 // Read the remaining operands.
7220 if (getLexer().isNot(AsmToken::EndOfStatement
)) {
7221 // Read the first operand.
7222 if (parseOperand(Operands
, Mnemonic
)) {
7226 while (parseOptionalToken(AsmToken::Comma
)) {
7227 // Parse and remember the operand.
7228 if (parseOperand(Operands
, Mnemonic
)) {
7234 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in argument list"))
7237 tryConvertingToTwoOperandForm(Mnemonic
, CarrySetting
, Operands
);
7239 if (hasCDE() && MS
.isCDEInstr(Mnemonic
)) {
7240 // Dual-register instructions use even-odd register pairs as their
7241 // destination operand, in assembly such pair is spelled as two
7242 // consecutive registers, without any special syntax. ConvertDualRegOperand
7243 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
7244 // It returns true, if an error message has been emitted. If the function
7245 // returns false, the function either succeeded or an error (e.g. missing
7246 // operand) will be diagnosed elsewhere.
7247 if (MS
.isCDEDualRegInstr(Mnemonic
)) {
7248 bool GotError
= CDEConvertDualRegOperand(Mnemonic
, Operands
);
7254 // Some instructions, mostly Thumb, have forms for the same mnemonic that
7255 // do and don't have a cc_out optional-def operand. With some spot-checks
7256 // of the operand list, we can figure out which variant we're trying to
7257 // parse and adjust accordingly before actually matching. We shouldn't ever
7258 // try to remove a cc_out operand that was explicitly set on the
7259 // mnemonic, of course (CarrySetting == true). Reason number #317 the
7260 // table driven matcher doesn't fit well with the ARM instruction set.
7261 if (!CarrySetting
&& shouldOmitCCOutOperand(Mnemonic
, Operands
))
7262 Operands
.erase(Operands
.begin() + 1);
7264 // Some instructions have the same mnemonic, but don't always
7265 // have a predicate. Distinguish them here and delete the
7266 // appropriate predicate if needed. This could be either the scalar
7267 // predication code or the vector predication code.
7268 if (PredicationCode
== ARMCC::AL
&&
7269 shouldOmitPredicateOperand(Mnemonic
, Operands
))
7270 Operands
.erase(Operands
.begin() + 1);
7274 if (!shouldOmitVectorPredicateOperand(Mnemonic
, Operands
) &&
7275 Mnemonic
== "vmov" && PredicationCode
== ARMCC::LT
) {
7276 // Very nasty hack to deal with the vector predicated variant of vmovlt
7277 // the scalar predicated vmov with condition 'lt'. We can not tell them
7278 // apart until we have parsed their operands.
7279 Operands
.erase(Operands
.begin() + 1);
7280 Operands
.erase(Operands
.begin());
7281 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
7282 SMLoc PLoc
= SMLoc::getFromPointer(NameLoc
.getPointer() +
7283 Mnemonic
.size() - 1 + CarrySetting
);
7284 Operands
.insert(Operands
.begin(),
7285 ARMOperand::CreateVPTPred(ARMVCC::None
, PLoc
));
7286 Operands
.insert(Operands
.begin(),
7287 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc
));
7288 } else if (Mnemonic
== "vcvt" && PredicationCode
== ARMCC::NE
&&
7289 !shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
7290 // Another nasty hack to deal with the ambiguity between vcvt with scalar
7291 // predication 'ne' and vcvtn with vector predication 'e'. As above we
7292 // can only distinguish between the two after we have parsed their
7294 Operands
.erase(Operands
.begin() + 1);
7295 Operands
.erase(Operands
.begin());
7296 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
7297 SMLoc PLoc
= SMLoc::getFromPointer(NameLoc
.getPointer() +
7298 Mnemonic
.size() - 1 + CarrySetting
);
7299 Operands
.insert(Operands
.begin(),
7300 ARMOperand::CreateVPTPred(ARMVCC::Else
, PLoc
));
7301 Operands
.insert(Operands
.begin(),
7302 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc
));
7303 } else if (Mnemonic
== "vmul" && PredicationCode
== ARMCC::LT
&&
7304 !shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
7305 // Another hack, this time to distinguish between scalar predicated vmul
7306 // with 'lt' predication code and the vector instruction vmullt with
7307 // vector predication code "none"
7308 Operands
.erase(Operands
.begin() + 1);
7309 Operands
.erase(Operands
.begin());
7310 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
7311 Operands
.insert(Operands
.begin(),
7312 ARMOperand::CreateToken(StringRef("vmullt"), MLoc
));
7314 // For vmov and vcmp, as mentioned earlier, we did not add the vector
7315 // predication code, since these may contain operands that require
7316 // special parsing. So now we have to see if they require vector
7317 // predication and replace the scalar one with the vector predication
7318 // operand if that is the case.
7319 else if (Mnemonic
== "vmov" || Mnemonic
.startswith("vcmp") ||
7320 (Mnemonic
.startswith("vcvt") && !Mnemonic
.startswith("vcvta") &&
7321 !Mnemonic
.startswith("vcvtn") && !Mnemonic
.startswith("vcvtp") &&
7322 !Mnemonic
.startswith("vcvtm"))) {
7323 if (!shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
7324 // We could not split the vector predicate off vcvt because it might
7325 // have been the scalar vcvtt instruction. Now we know its a vector
7326 // instruction, we still need to check whether its the vector
7327 // predicated vcvt with 'Then' predication or the vector vcvtt. We can
7328 // distinguish the two based on the suffixes, if it is any of
7329 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7330 if (Mnemonic
.startswith("vcvtt") && Operands
.size() >= 4) {
7331 auto Sz1
= static_cast<ARMOperand
&>(*Operands
[2]);
7332 auto Sz2
= static_cast<ARMOperand
&>(*Operands
[3]);
7333 if (!(Sz1
.isToken() && Sz1
.getToken().startswith(".f") &&
7334 Sz2
.isToken() && Sz2
.getToken().startswith(".f"))) {
7335 Operands
.erase(Operands
.begin());
7336 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
7337 VPTPredicationCode
= ARMVCC::Then
;
7339 Mnemonic
= Mnemonic
.substr(0, 4);
7340 Operands
.insert(Operands
.begin(),
7341 ARMOperand::CreateToken(Mnemonic
, MLoc
));
7344 Operands
.erase(Operands
.begin() + 1);
7345 SMLoc PLoc
= SMLoc::getFromPointer(NameLoc
.getPointer() +
7346 Mnemonic
.size() + CarrySetting
);
7347 Operands
.insert(Operands
.begin() + 1,
7348 ARMOperand::CreateVPTPred(
7349 ARMVCC::VPTCodes(VPTPredicationCode
), PLoc
));
7351 } else if (CanAcceptVPTPredicationCode
) {
7352 // For all other instructions, make sure only one of the two
7353 // predication operands is left behind, depending on whether we should
7354 // use the vector predication.
7355 if (shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
7356 if (CanAcceptPredicationCode
)
7357 Operands
.erase(Operands
.begin() + 2);
7359 Operands
.erase(Operands
.begin() + 1);
7360 } else if (CanAcceptPredicationCode
&& PredicationCode
== ARMCC::AL
) {
7361 Operands
.erase(Operands
.begin() + 1);
7366 if (VPTPredicationCode
!= ARMVCC::None
) {
7367 bool usedVPTPredicationCode
= false;
7368 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
7369 if (static_cast<ARMOperand
&>(*Operands
[I
]).isVPTPred())
7370 usedVPTPredicationCode
= true;
7371 if (!usedVPTPredicationCode
) {
7372 // If we have a VPT predication code and we haven't just turned it
7373 // into an operand, then it was a mistake for splitMnemonic to
7374 // separate it from the rest of the mnemonic in the first place,
7375 // and this may lead to wrong disassembly (e.g. scalar floating
7376 // point VCMPE is actually a different instruction from VCMP, so
7377 // we mustn't treat them the same). In that situation, glue it
7379 Mnemonic
= Name
.slice(0, Mnemonic
.size() + 1);
7380 Operands
.erase(Operands
.begin());
7381 Operands
.insert(Operands
.begin(),
7382 ARMOperand::CreateToken(Mnemonic
, NameLoc
));
7386 // ARM mode 'blx' need special handling, as the register operand version
7387 // is predicable, but the label operand version is not. So, we can't rely
7388 // on the Mnemonic based checking to correctly figure out when to put
7389 // a k_CondCode operand in the list. If we're trying to match the label
7390 // version, remove the k_CondCode operand here.
7391 if (!isThumb() && Mnemonic
== "blx" && Operands
.size() == 3 &&
7392 static_cast<ARMOperand
&>(*Operands
[2]).isImm())
7393 Operands
.erase(Operands
.begin() + 1);
7395 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7396 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7397 // a single GPRPair reg operand is used in the .td file to replace the two
7398 // GPRs. However, when parsing from asm, the two GRPs cannot be
7400 // expressed as a GPRPair, so we have to manually merge them.
7401 // FIXME: We would really like to be able to tablegen'erate this.
7402 if (!isThumb() && Operands
.size() > 4 &&
7403 (Mnemonic
== "ldrexd" || Mnemonic
== "strexd" || Mnemonic
== "ldaexd" ||
7404 Mnemonic
== "stlexd")) {
7405 bool isLoad
= (Mnemonic
== "ldrexd" || Mnemonic
== "ldaexd");
7406 unsigned Idx
= isLoad
? 2 : 3;
7407 ARMOperand
&Op1
= static_cast<ARMOperand
&>(*Operands
[Idx
]);
7408 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[Idx
+ 1]);
7410 const MCRegisterClass
&MRC
= MRI
->getRegClass(ARM::GPRRegClassID
);
7411 // Adjust only if Op1 and Op2 are GPRs.
7412 if (Op1
.isReg() && Op2
.isReg() && MRC
.contains(Op1
.getReg()) &&
7413 MRC
.contains(Op2
.getReg())) {
7414 unsigned Reg1
= Op1
.getReg();
7415 unsigned Reg2
= Op2
.getReg();
7416 unsigned Rt
= MRI
->getEncodingValue(Reg1
);
7417 unsigned Rt2
= MRI
->getEncodingValue(Reg2
);
7419 // Rt2 must be Rt + 1 and Rt must be even.
7420 if (Rt
+ 1 != Rt2
|| (Rt
& 1)) {
7421 return Error(Op2
.getStartLoc(),
7422 isLoad
? "destination operands must be sequential"
7423 : "source operands must be sequential");
7425 unsigned NewReg
= MRI
->getMatchingSuperReg(
7426 Reg1
, ARM::gsub_0
, &(MRI
->getRegClass(ARM::GPRPairRegClassID
)));
7428 ARMOperand::CreateReg(NewReg
, Op1
.getStartLoc(), Op2
.getEndLoc());
7429 Operands
.erase(Operands
.begin() + Idx
+ 1);
7433 // GNU Assembler extension (compatibility).
7434 fixupGNULDRDAlias(Mnemonic
, Operands
);
7436 // FIXME: As said above, this is all a pretty gross hack. This instruction
7437 // does not fit with other "subs" and tblgen.
7438 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7439 // so the Mnemonic is the original name "subs" and delete the predicate
7440 // operand so it will match the table entry.
7441 if (isThumbTwo() && Mnemonic
== "sub" && Operands
.size() == 6 &&
7442 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
7443 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::PC
&&
7444 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
7445 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::LR
&&
7446 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
7447 Operands
.front() = ARMOperand::CreateToken(Name
, NameLoc
);
7448 Operands
.erase(Operands
.begin() + 1);
7453 // Validate context-sensitive operand constraints.
7455 // return 'true' if register list contains non-low GPR registers,
7456 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7457 // 'containsReg' to true.
7458 static bool checkLowRegisterList(const MCInst
&Inst
, unsigned OpNo
,
7459 unsigned Reg
, unsigned HiReg
,
7460 bool &containsReg
) {
7461 containsReg
= false;
7462 for (unsigned i
= OpNo
; i
< Inst
.getNumOperands(); ++i
) {
7463 unsigned OpReg
= Inst
.getOperand(i
).getReg();
7466 // Anything other than a low register isn't legal here.
7467 if (!isARMLowRegister(OpReg
) && (!HiReg
|| OpReg
!= HiReg
))
7473 // Check if the specified regisgter is in the register list of the inst,
7474 // starting at the indicated operand number.
7475 static bool listContainsReg(const MCInst
&Inst
, unsigned OpNo
, unsigned Reg
) {
7476 for (unsigned i
= OpNo
, e
= Inst
.getNumOperands(); i
< e
; ++i
) {
7477 unsigned OpReg
= Inst
.getOperand(i
).getReg();
7484 // Return true if instruction has the interesting property of being
7485 // allowed in IT blocks, but not being predicable.
7486 static bool instIsBreakpoint(const MCInst
&Inst
) {
7487 return Inst
.getOpcode() == ARM::tBKPT
||
7488 Inst
.getOpcode() == ARM::BKPT
||
7489 Inst
.getOpcode() == ARM::tHLT
||
7490 Inst
.getOpcode() == ARM::HLT
;
7493 bool ARMAsmParser::validatetLDMRegList(const MCInst
&Inst
,
7494 const OperandVector
&Operands
,
7495 unsigned ListNo
, bool IsARPop
) {
7496 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
7497 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
7499 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
7500 bool ListContainsLR
= listContainsReg(Inst
, ListNo
, ARM::LR
);
7501 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
7503 if (!IsARPop
&& ListContainsSP
)
7504 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7505 "SP may not be in the register list");
7506 else if (ListContainsPC
&& ListContainsLR
)
7507 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7508 "PC and LR may not be in the register list simultaneously");
7512 bool ARMAsmParser::validatetSTMRegList(const MCInst
&Inst
,
7513 const OperandVector
&Operands
,
7515 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
7516 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
7518 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
7519 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
7521 if (ListContainsSP
&& ListContainsPC
)
7522 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7523 "SP and PC may not be in the register list");
7524 else if (ListContainsSP
)
7525 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7526 "SP may not be in the register list");
7527 else if (ListContainsPC
)
7528 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7529 "PC may not be in the register list");
7533 bool ARMAsmParser::validateLDRDSTRD(MCInst
&Inst
,
7534 const OperandVector
&Operands
,
7535 bool Load
, bool ARMMode
, bool Writeback
) {
7536 unsigned RtIndex
= Load
|| !Writeback
? 0 : 1;
7537 unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
).getReg());
7538 unsigned Rt2
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
+ 1).getReg());
7543 return Error(Operands
[3]->getStartLoc(),
7546 // Rt must be even-numbered.
7548 return Error(Operands
[3]->getStartLoc(),
7549 "Rt must be even-numbered");
7551 // Rt2 must be Rt + 1.
7552 if (Rt2
!= Rt
+ 1) {
7554 return Error(Operands
[3]->getStartLoc(),
7555 "destination operands must be sequential");
7557 return Error(Operands
[3]->getStartLoc(),
7558 "source operands must be sequential");
7561 // FIXME: Diagnose m == 15
7562 // FIXME: Diagnose ldrd with m == t || m == t2.
7565 if (!ARMMode
&& Load
) {
7567 return Error(Operands
[3]->getStartLoc(),
7568 "destination operands can't be identical");
7572 unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
7574 if (Rn
== Rt
|| Rn
== Rt2
) {
7576 return Error(Operands
[3]->getStartLoc(),
7577 "base register needs to be different from destination "
7580 return Error(Operands
[3]->getStartLoc(),
7581 "source register and base register can't be identical");
7584 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7585 // (Except the immediate form of ldrd?)
7591 static int findFirstVectorPredOperandIdx(const MCInstrDesc
&MCID
) {
7592 for (unsigned i
= 0; i
< MCID
.NumOperands
; ++i
) {
7593 if (ARM::isVpred(MCID
.OpInfo
[i
].OperandType
))
7599 static bool isVectorPredicable(const MCInstrDesc
&MCID
) {
7600 return findFirstVectorPredOperandIdx(MCID
) != -1;
7603 // FIXME: We would really like to be able to tablegen'erate this.
7604 bool ARMAsmParser::validateInstruction(MCInst
&Inst
,
7605 const OperandVector
&Operands
) {
7606 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
7607 SMLoc Loc
= Operands
[0]->getStartLoc();
7609 // Check the IT block state first.
7610 // NOTE: BKPT and HLT instructions have the interesting property of being
7611 // allowed in IT blocks, but not being predicable. They just always execute.
7612 if (inITBlock() && !instIsBreakpoint(Inst
)) {
7613 // The instruction must be predicable.
7614 if (!MCID
.isPredicable())
7615 return Error(Loc
, "instructions in IT block must be predicable");
7616 ARMCC::CondCodes Cond
= ARMCC::CondCodes(
7617 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm());
7618 if (Cond
!= currentITCond()) {
7619 // Find the condition code Operand to get its SMLoc information.
7621 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
7622 if (static_cast<ARMOperand
&>(*Operands
[I
]).isCondCode())
7623 CondLoc
= Operands
[I
]->getStartLoc();
7624 return Error(CondLoc
, "incorrect condition in IT block; got '" +
7625 StringRef(ARMCondCodeToString(Cond
)) +
7626 "', but expected '" +
7627 ARMCondCodeToString(currentITCond()) + "'");
7629 // Check for non-'al' condition codes outside of the IT block.
7630 } else if (isThumbTwo() && MCID
.isPredicable() &&
7631 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
7632 ARMCC::AL
&& Inst
.getOpcode() != ARM::tBcc
&&
7633 Inst
.getOpcode() != ARM::t2Bcc
&&
7634 Inst
.getOpcode() != ARM::t2BFic
) {
7635 return Error(Loc
, "predicated instructions must be in IT block");
7636 } else if (!isThumb() && !useImplicitITARM() && MCID
.isPredicable() &&
7637 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
7639 return Warning(Loc
, "predicated instructions should be in IT block");
7640 } else if (!MCID
.isPredicable()) {
7641 // Check the instruction doesn't have a predicate operand anyway
7642 // that it's not allowed to use. Sometimes this happens in order
7643 // to keep instructions the same shape even though one cannot
7644 // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7645 for (unsigned i
= 0, e
= MCID
.getNumOperands(); i
!= e
; ++i
) {
7646 if (MCID
.OpInfo
[i
].isPredicate()) {
7647 if (Inst
.getOperand(i
).getImm() != ARMCC::AL
)
7648 return Error(Loc
, "instruction is not predicable");
7654 // PC-setting instructions in an IT block, but not the last instruction of
7655 // the block, are UNPREDICTABLE.
7656 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst
)) {
7657 return Error(Loc
, "instruction must be outside of IT block or the last instruction in an IT block");
7660 if (inVPTBlock() && !instIsBreakpoint(Inst
)) {
7661 unsigned Bit
= extractITMaskBit(VPTState
.Mask
, VPTState
.CurPosition
);
7662 if (!isVectorPredicable(MCID
))
7663 return Error(Loc
, "instruction in VPT block must be predicable");
7664 unsigned Pred
= Inst
.getOperand(findFirstVectorPredOperandIdx(MCID
)).getImm();
7665 unsigned VPTPred
= Bit
? ARMVCC::Else
: ARMVCC::Then
;
7666 if (Pred
!= VPTPred
) {
7668 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
7669 if (static_cast<ARMOperand
&>(*Operands
[I
]).isVPTPred())
7670 PredLoc
= Operands
[I
]->getStartLoc();
7671 return Error(PredLoc
, "incorrect predication in VPT block; got '" +
7672 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred
))) +
7673 "', but expected '" +
7674 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred
)) + "'");
7677 else if (isVectorPredicable(MCID
) &&
7678 Inst
.getOperand(findFirstVectorPredOperandIdx(MCID
)).getImm() !=
7680 return Error(Loc
, "VPT predicated instructions must be in VPT block");
7682 const unsigned Opcode
= Inst
.getOpcode();
7685 // Encoding is unpredictable if it ever results in a notional 'NV'
7686 // predicate. Since we don't parse 'NV' directly this means an 'AL'
7687 // predicate with an "else" mask bit.
7688 unsigned Cond
= Inst
.getOperand(0).getImm();
7689 unsigned Mask
= Inst
.getOperand(1).getImm();
7691 // Conditions only allowing a 't' are those with no set bit except
7692 // the lowest-order one that indicates the end of the sequence. In
7693 // other words, powers of 2.
7694 if (Cond
== ARMCC::AL
&& countPopulation(Mask
) != 1)
7695 return Error(Loc
, "unpredictable IT predicate sequence");
7699 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
7700 /*Writeback*/false))
7704 case ARM::LDRD_POST
:
7705 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
7710 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
7711 /*Writeback*/false))
7714 case ARM::t2LDRD_PRE
:
7715 case ARM::t2LDRD_POST
:
7716 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
7721 const unsigned RmReg
= Inst
.getOperand(0).getReg();
7722 // Rm = SP is no longer unpredictable in v8-A
7723 if (RmReg
== ARM::SP
&& !hasV8Ops())
7724 return Error(Operands
[2]->getStartLoc(),
7725 "r13 (SP) is an unpredictable operand to BXJ");
7729 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
7730 /*Writeback*/false))
7734 case ARM::STRD_POST
:
7735 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
7739 case ARM::t2STRD_PRE
:
7740 case ARM::t2STRD_POST
:
7741 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/false,
7745 case ARM::STR_PRE_IMM
:
7746 case ARM::STR_PRE_REG
:
7747 case ARM::t2STR_PRE
:
7748 case ARM::STR_POST_IMM
:
7749 case ARM::STR_POST_REG
:
7750 case ARM::t2STR_POST
:
7752 case ARM::t2STRH_PRE
:
7753 case ARM::STRH_POST
:
7754 case ARM::t2STRH_POST
:
7755 case ARM::STRB_PRE_IMM
:
7756 case ARM::STRB_PRE_REG
:
7757 case ARM::t2STRB_PRE
:
7758 case ARM::STRB_POST_IMM
:
7759 case ARM::STRB_POST_REG
:
7760 case ARM::t2STRB_POST
: {
7761 // Rt must be different from Rn.
7762 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
7763 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
7766 return Error(Operands
[3]->getStartLoc(),
7767 "source register and base register can't be identical");
7770 case ARM::t2LDR_PRE_imm
:
7771 case ARM::t2LDR_POST_imm
:
7772 case ARM::t2STR_PRE_imm
:
7773 case ARM::t2STR_POST_imm
: {
7774 // Rt must be different from Rn.
7775 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
7776 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
7779 return Error(Operands
[3]->getStartLoc(),
7780 "destination register and base register can't be identical");
7781 if (Inst
.getOpcode() == ARM::t2LDR_POST_imm
||
7782 Inst
.getOpcode() == ARM::t2STR_POST_imm
) {
7783 int Imm
= Inst
.getOperand(2).getImm();
7784 if (Imm
> 255 || Imm
< -255)
7785 return Error(Operands
[5]->getStartLoc(),
7786 "operand must be in range [-255, 255]");
7788 if (Inst
.getOpcode() == ARM::t2STR_PRE_imm
||
7789 Inst
.getOpcode() == ARM::t2STR_POST_imm
) {
7790 if (Inst
.getOperand(0).getReg() == ARM::PC
) {
7791 return Error(Operands
[3]->getStartLoc(),
7792 "operand must be a register in range [r0, r14]");
7797 case ARM::LDR_PRE_IMM
:
7798 case ARM::LDR_PRE_REG
:
7799 case ARM::t2LDR_PRE
:
7800 case ARM::LDR_POST_IMM
:
7801 case ARM::LDR_POST_REG
:
7802 case ARM::t2LDR_POST
:
7804 case ARM::t2LDRH_PRE
:
7805 case ARM::LDRH_POST
:
7806 case ARM::t2LDRH_POST
:
7807 case ARM::LDRSH_PRE
:
7808 case ARM::t2LDRSH_PRE
:
7809 case ARM::LDRSH_POST
:
7810 case ARM::t2LDRSH_POST
:
7811 case ARM::LDRB_PRE_IMM
:
7812 case ARM::LDRB_PRE_REG
:
7813 case ARM::t2LDRB_PRE
:
7814 case ARM::LDRB_POST_IMM
:
7815 case ARM::LDRB_POST_REG
:
7816 case ARM::t2LDRB_POST
:
7817 case ARM::LDRSB_PRE
:
7818 case ARM::t2LDRSB_PRE
:
7819 case ARM::LDRSB_POST
:
7820 case ARM::t2LDRSB_POST
: {
7821 // Rt must be different from Rn.
7822 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
7823 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
7826 return Error(Operands
[3]->getStartLoc(),
7827 "destination register and base register can't be identical");
7831 case ARM::MVE_VLDRBU8_rq
:
7832 case ARM::MVE_VLDRBU16_rq
:
7833 case ARM::MVE_VLDRBS16_rq
:
7834 case ARM::MVE_VLDRBU32_rq
:
7835 case ARM::MVE_VLDRBS32_rq
:
7836 case ARM::MVE_VLDRHU16_rq
:
7837 case ARM::MVE_VLDRHU16_rq_u
:
7838 case ARM::MVE_VLDRHU32_rq
:
7839 case ARM::MVE_VLDRHU32_rq_u
:
7840 case ARM::MVE_VLDRHS32_rq
:
7841 case ARM::MVE_VLDRHS32_rq_u
:
7842 case ARM::MVE_VLDRWU32_rq
:
7843 case ARM::MVE_VLDRWU32_rq_u
:
7844 case ARM::MVE_VLDRDU64_rq
:
7845 case ARM::MVE_VLDRDU64_rq_u
:
7846 case ARM::MVE_VLDRWU32_qi
:
7847 case ARM::MVE_VLDRWU32_qi_pre
:
7848 case ARM::MVE_VLDRDU64_qi
:
7849 case ARM::MVE_VLDRDU64_qi_pre
: {
7850 // Qd must be different from Qm.
7851 unsigned QdIdx
= 0, QmIdx
= 2;
7852 bool QmIsPointer
= false;
7854 case ARM::MVE_VLDRWU32_qi
:
7855 case ARM::MVE_VLDRDU64_qi
:
7859 case ARM::MVE_VLDRWU32_qi_pre
:
7860 case ARM::MVE_VLDRDU64_qi_pre
:
7866 const unsigned Qd
= MRI
->getEncodingValue(Inst
.getOperand(QdIdx
).getReg());
7867 const unsigned Qm
= MRI
->getEncodingValue(Inst
.getOperand(QmIdx
).getReg());
7870 return Error(Operands
[3]->getStartLoc(),
7871 Twine("destination vector register and vector ") +
7872 (QmIsPointer
? "pointer" : "offset") +
7873 " register can't be identical");
7882 // Width must be in range [1, 32-lsb].
7883 unsigned LSB
= Inst
.getOperand(2).getImm();
7884 unsigned Widthm1
= Inst
.getOperand(3).getImm();
7885 if (Widthm1
>= 32 - LSB
)
7886 return Error(Operands
[5]->getStartLoc(),
7887 "bitfield width must be in range [1,32-lsb]");
7890 // Notionally handles ARM::tLDMIA_UPD too.
7892 // If we're parsing Thumb2, the .w variant is available and handles
7893 // most cases that are normally illegal for a Thumb1 LDM instruction.
7894 // We'll make the transformation in processInstruction() if necessary.
7896 // Thumb LDM instructions are writeback iff the base register is not
7897 // in the register list.
7898 unsigned Rn
= Inst
.getOperand(0).getReg();
7899 bool HasWritebackToken
=
7900 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
7901 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
7902 bool ListContainsBase
;
7903 if (checkLowRegisterList(Inst
, 3, Rn
, 0, ListContainsBase
) && !isThumbTwo())
7904 return Error(Operands
[3 + HasWritebackToken
]->getStartLoc(),
7905 "registers must be in range r0-r7");
7906 // If we should have writeback, then there should be a '!' token.
7907 if (!ListContainsBase
&& !HasWritebackToken
&& !isThumbTwo())
7908 return Error(Operands
[2]->getStartLoc(),
7909 "writeback operator '!' expected");
7910 // If we should not have writeback, there must not be a '!'. This is
7911 // true even for the 32-bit wide encodings.
7912 if (ListContainsBase
&& HasWritebackToken
)
7913 return Error(Operands
[3]->getStartLoc(),
7914 "writeback operator '!' not allowed when base register "
7915 "in register list");
7917 if (validatetLDMRegList(Inst
, Operands
, 3))
7921 case ARM::LDMIA_UPD
:
7922 case ARM::LDMDB_UPD
:
7923 case ARM::LDMIB_UPD
:
7924 case ARM::LDMDA_UPD
:
7925 // ARM variants loading and updating the same register are only officially
7926 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7929 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
7930 return Error(Operands
.back()->getStartLoc(),
7931 "writeback register not allowed in register list");
7935 if (validatetLDMRegList(Inst
, Operands
, 3))
7940 if (validatetSTMRegList(Inst
, Operands
, 3))
7943 case ARM::t2LDMIA_UPD
:
7944 case ARM::t2LDMDB_UPD
:
7945 case ARM::t2STMIA_UPD
:
7946 case ARM::t2STMDB_UPD
:
7947 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
7948 return Error(Operands
.back()->getStartLoc(),
7949 "writeback register not allowed in register list");
7951 if (Opcode
== ARM::t2LDMIA_UPD
|| Opcode
== ARM::t2LDMDB_UPD
) {
7952 if (validatetLDMRegList(Inst
, Operands
, 3))
7955 if (validatetSTMRegList(Inst
, Operands
, 3))
7960 case ARM::sysLDMIA_UPD
:
7961 case ARM::sysLDMDA_UPD
:
7962 case ARM::sysLDMDB_UPD
:
7963 case ARM::sysLDMIB_UPD
:
7964 if (!listContainsReg(Inst
, 3, ARM::PC
))
7965 return Error(Operands
[4]->getStartLoc(),
7966 "writeback register only allowed on system LDM "
7967 "if PC in register-list");
7969 case ARM::sysSTMIA_UPD
:
7970 case ARM::sysSTMDA_UPD
:
7971 case ARM::sysSTMDB_UPD
:
7972 case ARM::sysSTMIB_UPD
:
7973 return Error(Operands
[2]->getStartLoc(),
7974 "system STM cannot have writeback register");
7976 // The second source operand must be the same register as the destination
7979 // In this case, we must directly check the parsed operands because the
7980 // cvtThumbMultiply() function is written in such a way that it guarantees
7981 // this first statement is always true for the new Inst. Essentially, the
7982 // destination is unconditionally copied into the second source operand
7983 // without checking to see if it matches what we actually parsed.
7984 if (Operands
.size() == 6 && (((ARMOperand
&)*Operands
[3]).getReg() !=
7985 ((ARMOperand
&)*Operands
[5]).getReg()) &&
7986 (((ARMOperand
&)*Operands
[3]).getReg() !=
7987 ((ARMOperand
&)*Operands
[4]).getReg())) {
7988 return Error(Operands
[3]->getStartLoc(),
7989 "destination register must match source register");
7993 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
7994 // so only issue a diagnostic for thumb1. The instructions will be
7995 // switched to the t2 encodings in processInstruction() if necessary.
7997 bool ListContainsBase
;
7998 if (checkLowRegisterList(Inst
, 2, 0, ARM::PC
, ListContainsBase
) &&
8000 return Error(Operands
[2]->getStartLoc(),
8001 "registers must be in range r0-r7 or pc");
8002 if (validatetLDMRegList(Inst
, Operands
, 2, !isMClass()))
8007 bool ListContainsBase
;
8008 if (checkLowRegisterList(Inst
, 2, 0, ARM::LR
, ListContainsBase
) &&
8010 return Error(Operands
[2]->getStartLoc(),
8011 "registers must be in range r0-r7 or lr");
8012 if (validatetSTMRegList(Inst
, Operands
, 2))
8016 case ARM::tSTMIA_UPD
: {
8017 bool ListContainsBase
, InvalidLowList
;
8018 InvalidLowList
= checkLowRegisterList(Inst
, 4, Inst
.getOperand(0).getReg(),
8019 0, ListContainsBase
);
8020 if (InvalidLowList
&& !isThumbTwo())
8021 return Error(Operands
[4]->getStartLoc(),
8022 "registers must be in range r0-r7");
8024 // This would be converted to a 32-bit stm, but that's not valid if the
8025 // writeback register is in the list.
8026 if (InvalidLowList
&& ListContainsBase
)
8027 return Error(Operands
[4]->getStartLoc(),
8028 "writeback operator '!' not allowed when base register "
8029 "in register list");
8031 if (validatetSTMRegList(Inst
, Operands
, 4))
8036 // If the non-SP source operand and the destination operand are not the
8037 // same, we need thumb2 (for the wide encoding), or we have an error.
8038 if (!isThumbTwo() &&
8039 Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
8040 return Error(Operands
[4]->getStartLoc(),
8041 "source register must be the same as destination");
8049 if (Inst
.getOperand(0).getReg() == ARM::SP
&&
8050 Inst
.getOperand(1).getReg() != ARM::SP
)
8051 return Error(Operands
[4]->getStartLoc(),
8052 "source register must be sp if destination is sp");
8055 // Final range checking for Thumb unconditional branch instructions.
8057 if (!(static_cast<ARMOperand
&>(*Operands
[2])).isSignedOffset
<11, 1>())
8058 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
8061 int op
= (Operands
[2]->isImm()) ? 2 : 3;
8062 ARMOperand
&Operand
= static_cast<ARMOperand
&>(*Operands
[op
]);
8063 // Delay the checks of symbolic expressions until they are resolved.
8064 if (!isa
<MCBinaryExpr
>(Operand
.getImm()) &&
8065 !Operand
.isSignedOffset
<24, 1>())
8066 return Error(Operands
[op
]->getStartLoc(), "branch target out of range");
8069 // Final range checking for Thumb conditional branch instructions.
8071 if (!static_cast<ARMOperand
&>(*Operands
[2]).isSignedOffset
<8, 1>())
8072 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
8075 int Op
= (Operands
[2]->isImm()) ? 2 : 3;
8076 if (!static_cast<ARMOperand
&>(*Operands
[Op
]).isSignedOffset
<20, 1>())
8077 return Error(Operands
[Op
]->getStartLoc(), "branch target out of range");
8082 if (!static_cast<ARMOperand
&>(*Operands
[2]).isUnsignedOffset
<6, 1>())
8083 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
8089 case ARM::t2MOVTi16
:
8091 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
8092 // especially when we turn it into a movw and the expression <symbol> does
8093 // not have a :lower16: or :upper16 as part of the expression. We don't
8094 // want the behavior of silently truncating, which can be unexpected and
8095 // lead to bugs that are difficult to find since this is an easy mistake
8097 int i
= (Operands
[3]->isImm()) ? 3 : 4;
8098 ARMOperand
&Op
= static_cast<ARMOperand
&>(*Operands
[i
]);
8099 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm());
8101 const MCExpr
*E
= dyn_cast
<MCExpr
>(Op
.getImm());
8103 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(E
);
8104 if (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
8105 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
))
8108 "immediate expression for mov requires :lower16: or :upper16");
8113 unsigned Imm8
= Inst
.getOperand(0).getImm();
8114 unsigned Pred
= Inst
.getOperand(1).getImm();
8115 // ESB is not predicable (pred must be AL). Without the RAS extension, this
8116 // behaves as any other unallocated hint.
8117 if (Imm8
== 0x10 && Pred
!= ARMCC::AL
&& hasRAS())
8118 return Error(Operands
[1]->getStartLoc(), "instruction 'esb' is not "
8119 "predicable, but condition "
8121 if (Imm8
== 0x14 && Pred
!= ARMCC::AL
)
8122 return Error(Operands
[1]->getStartLoc(), "instruction 'csdb' is not "
8123 "predicable, but condition "
8131 if (!static_cast<ARMOperand
&>(*Operands
[2]).isUnsignedOffset
<4, 1>() ||
8132 (Inst
.getOperand(0).isImm() && Inst
.getOperand(0).getImm() == 0))
8133 return Error(Operands
[2]->getStartLoc(),
8134 "branch location out of range or not a multiple of 2");
8136 if (Opcode
== ARM::t2BFi
) {
8137 if (!static_cast<ARMOperand
&>(*Operands
[3]).isSignedOffset
<16, 1>())
8138 return Error(Operands
[3]->getStartLoc(),
8139 "branch target out of range or not a multiple of 2");
8140 } else if (Opcode
== ARM::t2BFLi
) {
8141 if (!static_cast<ARMOperand
&>(*Operands
[3]).isSignedOffset
<18, 1>())
8142 return Error(Operands
[3]->getStartLoc(),
8143 "branch target out of range or not a multiple of 2");
8148 if (!static_cast<ARMOperand
&>(*Operands
[1]).isUnsignedOffset
<4, 1>() ||
8149 (Inst
.getOperand(0).isImm() && Inst
.getOperand(0).getImm() == 0))
8150 return Error(Operands
[1]->getStartLoc(),
8151 "branch location out of range or not a multiple of 2");
8153 if (!static_cast<ARMOperand
&>(*Operands
[2]).isSignedOffset
<16, 1>())
8154 return Error(Operands
[2]->getStartLoc(),
8155 "branch target out of range or not a multiple of 2");
8157 assert(Inst
.getOperand(0).isImm() == Inst
.getOperand(2).isImm() &&
8158 "branch location and else branch target should either both be "
8159 "immediates or both labels");
8161 if (Inst
.getOperand(0).isImm() && Inst
.getOperand(2).isImm()) {
8162 int Diff
= Inst
.getOperand(2).getImm() - Inst
.getOperand(0).getImm();
8163 if (Diff
!= 4 && Diff
!= 2)
8165 Operands
[3]->getStartLoc(),
8166 "else branch target must be 2 or 4 greater than the branch location");
8171 for (unsigned i
= 2; i
< Inst
.getNumOperands(); i
++) {
8172 if (Inst
.getOperand(i
).isReg() &&
8173 !ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(
8174 Inst
.getOperand(i
).getReg())) {
8175 return Error(Operands
[2]->getStartLoc(),
8176 "invalid register in register list. Valid registers are "
8177 "r0-r12, lr/r14 and APSR.");
8185 if (Inst
.getNumOperands() < 2)
8188 unsigned Option
= Inst
.getOperand(0).getImm();
8189 unsigned Pred
= Inst
.getOperand(1).getImm();
8191 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
8192 if (Option
== 0 && Pred
!= ARMCC::AL
)
8193 return Error(Operands
[1]->getStartLoc(),
8194 "instruction 'ssbb' is not predicable, but condition code "
8196 if (Option
== 4 && Pred
!= ARMCC::AL
)
8197 return Error(Operands
[1]->getStartLoc(),
8198 "instruction 'pssbb' is not predicable, but condition code "
8202 case ARM::VMOVRRS
: {
8203 // Source registers must be sequential.
8204 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
8205 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
8207 return Error(Operands
[5]->getStartLoc(),
8208 "source operands must be sequential");
8211 case ARM::VMOVSRR
: {
8212 // Destination registers must be sequential.
8213 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
8214 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
8216 return Error(Operands
[3]->getStartLoc(),
8217 "destination operands must be sequential");
8221 case ARM::VSTMDIA
: {
8222 ARMOperand
&Op
= static_cast<ARMOperand
&>(*Operands
[3]);
8223 auto &RegList
= Op
.getRegList();
8224 if (RegList
.size() < 1 || RegList
.size() > 16)
8225 return Error(Operands
[3]->getStartLoc(),
8226 "list of registers must be at least 1 and at most 16");
8229 case ARM::MVE_VQDMULLs32bh
:
8230 case ARM::MVE_VQDMULLs32th
:
8231 case ARM::MVE_VCMULf32
:
8232 case ARM::MVE_VMULLBs32
:
8233 case ARM::MVE_VMULLTs32
:
8234 case ARM::MVE_VMULLBu32
:
8235 case ARM::MVE_VMULLTu32
: {
8236 if (Operands
[3]->getReg() == Operands
[4]->getReg()) {
8237 return Error (Operands
[3]->getStartLoc(),
8238 "Qd register and Qn register can't be identical");
8240 if (Operands
[3]->getReg() == Operands
[5]->getReg()) {
8241 return Error (Operands
[3]->getStartLoc(),
8242 "Qd register and Qm register can't be identical");
8246 case ARM::MVE_VMOV_rr_q
: {
8247 if (Operands
[4]->getReg() != Operands
[6]->getReg())
8248 return Error (Operands
[4]->getStartLoc(), "Q-registers must be the same");
8249 if (static_cast<ARMOperand
&>(*Operands
[5]).getVectorIndex() !=
8250 static_cast<ARMOperand
&>(*Operands
[7]).getVectorIndex() + 2)
8251 return Error (Operands
[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8254 case ARM::MVE_VMOV_q_rr
: {
8255 if (Operands
[2]->getReg() != Operands
[4]->getReg())
8256 return Error (Operands
[2]->getStartLoc(), "Q-registers must be the same");
8257 if (static_cast<ARMOperand
&>(*Operands
[3]).getVectorIndex() !=
8258 static_cast<ARMOperand
&>(*Operands
[5]).getVectorIndex() + 2)
8259 return Error (Operands
[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8279 case ARM::t2SMLALBB
:
8280 case ARM::t2SMLALBT
:
8282 case ARM::t2SMLALDX
:
8283 case ARM::t2SMLALTB
:
8284 case ARM::t2SMLALTT
:
8286 case ARM::t2SMLSLDX
:
8287 case ARM::t2SMULL
: {
8288 unsigned RdHi
= Inst
.getOperand(0).getReg();
8289 unsigned RdLo
= Inst
.getOperand(1).getReg();
8292 "unpredictable instruction, RdHi and RdLo must be different");
8300 case ARM::CDE_CX1DA
:
8304 case ARM::CDE_CX2DA
:
8308 case ARM::CDE_CX3DA
:
8309 case ARM::CDE_VCX1_vec
:
8310 case ARM::CDE_VCX1_fpsp
:
8311 case ARM::CDE_VCX1_fpdp
:
8312 case ARM::CDE_VCX1A_vec
:
8313 case ARM::CDE_VCX1A_fpsp
:
8314 case ARM::CDE_VCX1A_fpdp
:
8315 case ARM::CDE_VCX2_vec
:
8316 case ARM::CDE_VCX2_fpsp
:
8317 case ARM::CDE_VCX2_fpdp
:
8318 case ARM::CDE_VCX2A_vec
:
8319 case ARM::CDE_VCX2A_fpsp
:
8320 case ARM::CDE_VCX2A_fpdp
:
8321 case ARM::CDE_VCX3_vec
:
8322 case ARM::CDE_VCX3_fpsp
:
8323 case ARM::CDE_VCX3_fpdp
:
8324 case ARM::CDE_VCX3A_vec
:
8325 case ARM::CDE_VCX3A_fpsp
:
8326 case ARM::CDE_VCX3A_fpdp
: {
8327 assert(Inst
.getOperand(1).isImm() &&
8328 "CDE operand 1 must be a coprocessor ID");
8329 int64_t Coproc
= Inst
.getOperand(1).getImm();
8330 if (Coproc
< 8 && !ARM::isCDECoproc(Coproc
, *STI
))
8331 return Error(Operands
[1]->getStartLoc(),
8332 "coprocessor must be configured as CDE");
8333 else if (Coproc
>= 8)
8334 return Error(Operands
[1]->getStartLoc(),
8335 "coprocessor must be in the range [p0, p7]");
8341 case ARM::t2LDC2L_OFFSET
:
8342 case ARM::t2LDC2L_OPTION
:
8343 case ARM::t2LDC2L_POST
:
8344 case ARM::t2LDC2L_PRE
:
8345 case ARM::t2LDC2_OFFSET
:
8346 case ARM::t2LDC2_OPTION
:
8347 case ARM::t2LDC2_POST
:
8348 case ARM::t2LDC2_PRE
:
8349 case ARM::t2LDCL_OFFSET
:
8350 case ARM::t2LDCL_OPTION
:
8351 case ARM::t2LDCL_POST
:
8352 case ARM::t2LDCL_PRE
:
8353 case ARM::t2LDC_OFFSET
:
8354 case ARM::t2LDC_OPTION
:
8355 case ARM::t2LDC_POST
:
8356 case ARM::t2LDC_PRE
:
8365 case ARM::t2STC2L_OFFSET
:
8366 case ARM::t2STC2L_OPTION
:
8367 case ARM::t2STC2L_POST
:
8368 case ARM::t2STC2L_PRE
:
8369 case ARM::t2STC2_OFFSET
:
8370 case ARM::t2STC2_OPTION
:
8371 case ARM::t2STC2_POST
:
8372 case ARM::t2STC2_PRE
:
8373 case ARM::t2STCL_OFFSET
:
8374 case ARM::t2STCL_OPTION
:
8375 case ARM::t2STCL_POST
:
8376 case ARM::t2STCL_PRE
:
8377 case ARM::t2STC_OFFSET
:
8378 case ARM::t2STC_OPTION
:
8379 case ARM::t2STC_POST
:
8380 case ARM::t2STC_PRE
: {
8381 unsigned Opcode
= Inst
.getOpcode();
8382 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
8383 // CopInd is the index of the coprocessor operand.
8385 if (Opcode
== ARM::t2MRRC
|| Opcode
== ARM::t2MRRC2
)
8387 else if (Opcode
== ARM::t2MRC
|| Opcode
== ARM::t2MRC2
)
8389 assert(Inst
.getOperand(CopInd
).isImm() &&
8390 "Operand must be a coprocessor ID");
8391 int64_t Coproc
= Inst
.getOperand(CopInd
).getImm();
8392 // Operands[2] is the coprocessor operand at syntactic level
8393 if (ARM::isCDECoproc(Coproc
, *STI
))
8394 return Error(Operands
[2]->getStartLoc(),
8395 "coprocessor must be configured as GCP");
8403 static unsigned getRealVSTOpcode(unsigned Opc
, unsigned &Spacing
) {
8405 default: llvm_unreachable("unexpected opcode!");
8407 case ARM::VST1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
8408 case ARM::VST1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
8409 case ARM::VST1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
8410 case ARM::VST1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
8411 case ARM::VST1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
8412 case ARM::VST1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
8413 case ARM::VST1LNdAsm_8
: Spacing
= 1; return ARM::VST1LNd8
;
8414 case ARM::VST1LNdAsm_16
: Spacing
= 1; return ARM::VST1LNd16
;
8415 case ARM::VST1LNdAsm_32
: Spacing
= 1; return ARM::VST1LNd32
;
8418 case ARM::VST2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
8419 case ARM::VST2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
8420 case ARM::VST2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
8421 case ARM::VST2LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
8422 case ARM::VST2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
8424 case ARM::VST2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
8425 case ARM::VST2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
8426 case ARM::VST2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
8427 case ARM::VST2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
8428 case ARM::VST2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
8430 case ARM::VST2LNdAsm_8
: Spacing
= 1; return ARM::VST2LNd8
;
8431 case ARM::VST2LNdAsm_16
: Spacing
= 1; return ARM::VST2LNd16
;
8432 case ARM::VST2LNdAsm_32
: Spacing
= 1; return ARM::VST2LNd32
;
8433 case ARM::VST2LNqAsm_16
: Spacing
= 2; return ARM::VST2LNq16
;
8434 case ARM::VST2LNqAsm_32
: Spacing
= 2; return ARM::VST2LNq32
;
8437 case ARM::VST3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
8438 case ARM::VST3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
8439 case ARM::VST3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
8440 case ARM::VST3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNq16_UPD
;
8441 case ARM::VST3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
8442 case ARM::VST3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
8443 case ARM::VST3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
8444 case ARM::VST3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
8445 case ARM::VST3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST3LNq16_UPD
;
8446 case ARM::VST3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
8447 case ARM::VST3LNdAsm_8
: Spacing
= 1; return ARM::VST3LNd8
;
8448 case ARM::VST3LNdAsm_16
: Spacing
= 1; return ARM::VST3LNd16
;
8449 case ARM::VST3LNdAsm_32
: Spacing
= 1; return ARM::VST3LNd32
;
8450 case ARM::VST3LNqAsm_16
: Spacing
= 2; return ARM::VST3LNq16
;
8451 case ARM::VST3LNqAsm_32
: Spacing
= 2; return ARM::VST3LNq32
;
8454 case ARM::VST3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
8455 case ARM::VST3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
8456 case ARM::VST3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
8457 case ARM::VST3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
8458 case ARM::VST3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
8459 case ARM::VST3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
8460 case ARM::VST3dWB_register_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
8461 case ARM::VST3dWB_register_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
8462 case ARM::VST3dWB_register_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
8463 case ARM::VST3qWB_register_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
8464 case ARM::VST3qWB_register_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
8465 case ARM::VST3qWB_register_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
8466 case ARM::VST3dAsm_8
: Spacing
= 1; return ARM::VST3d8
;
8467 case ARM::VST3dAsm_16
: Spacing
= 1; return ARM::VST3d16
;
8468 case ARM::VST3dAsm_32
: Spacing
= 1; return ARM::VST3d32
;
8469 case ARM::VST3qAsm_8
: Spacing
= 2; return ARM::VST3q8
;
8470 case ARM::VST3qAsm_16
: Spacing
= 2; return ARM::VST3q16
;
8471 case ARM::VST3qAsm_32
: Spacing
= 2; return ARM::VST3q32
;
8474 case ARM::VST4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
8475 case ARM::VST4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
8476 case ARM::VST4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
8477 case ARM::VST4LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNq16_UPD
;
8478 case ARM::VST4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
8479 case ARM::VST4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
8480 case ARM::VST4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
8481 case ARM::VST4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
8482 case ARM::VST4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST4LNq16_UPD
;
8483 case ARM::VST4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
8484 case ARM::VST4LNdAsm_8
: Spacing
= 1; return ARM::VST4LNd8
;
8485 case ARM::VST4LNdAsm_16
: Spacing
= 1; return ARM::VST4LNd16
;
8486 case ARM::VST4LNdAsm_32
: Spacing
= 1; return ARM::VST4LNd32
;
8487 case ARM::VST4LNqAsm_16
: Spacing
= 2; return ARM::VST4LNq16
;
8488 case ARM::VST4LNqAsm_32
: Spacing
= 2; return ARM::VST4LNq32
;
8491 case ARM::VST4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
8492 case ARM::VST4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
8493 case ARM::VST4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
8494 case ARM::VST4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
8495 case ARM::VST4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
8496 case ARM::VST4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
8497 case ARM::VST4dWB_register_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
8498 case ARM::VST4dWB_register_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
8499 case ARM::VST4dWB_register_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
8500 case ARM::VST4qWB_register_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
8501 case ARM::VST4qWB_register_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
8502 case ARM::VST4qWB_register_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
8503 case ARM::VST4dAsm_8
: Spacing
= 1; return ARM::VST4d8
;
8504 case ARM::VST4dAsm_16
: Spacing
= 1; return ARM::VST4d16
;
8505 case ARM::VST4dAsm_32
: Spacing
= 1; return ARM::VST4d32
;
8506 case ARM::VST4qAsm_8
: Spacing
= 2; return ARM::VST4q8
;
8507 case ARM::VST4qAsm_16
: Spacing
= 2; return ARM::VST4q16
;
8508 case ARM::VST4qAsm_32
: Spacing
= 2; return ARM::VST4q32
;
8512 static unsigned getRealVLDOpcode(unsigned Opc
, unsigned &Spacing
) {
8514 default: llvm_unreachable("unexpected opcode!");
8516 case ARM::VLD1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
8517 case ARM::VLD1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
8518 case ARM::VLD1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
8519 case ARM::VLD1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
8520 case ARM::VLD1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
8521 case ARM::VLD1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
8522 case ARM::VLD1LNdAsm_8
: Spacing
= 1; return ARM::VLD1LNd8
;
8523 case ARM::VLD1LNdAsm_16
: Spacing
= 1; return ARM::VLD1LNd16
;
8524 case ARM::VLD1LNdAsm_32
: Spacing
= 1; return ARM::VLD1LNd32
;
8527 case ARM::VLD2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
8528 case ARM::VLD2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
8529 case ARM::VLD2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
8530 case ARM::VLD2LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNq16_UPD
;
8531 case ARM::VLD2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
8532 case ARM::VLD2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
8533 case ARM::VLD2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
8534 case ARM::VLD2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
8535 case ARM::VLD2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD2LNq16_UPD
;
8536 case ARM::VLD2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
8537 case ARM::VLD2LNdAsm_8
: Spacing
= 1; return ARM::VLD2LNd8
;
8538 case ARM::VLD2LNdAsm_16
: Spacing
= 1; return ARM::VLD2LNd16
;
8539 case ARM::VLD2LNdAsm_32
: Spacing
= 1; return ARM::VLD2LNd32
;
8540 case ARM::VLD2LNqAsm_16
: Spacing
= 2; return ARM::VLD2LNq16
;
8541 case ARM::VLD2LNqAsm_32
: Spacing
= 2; return ARM::VLD2LNq32
;
8544 case ARM::VLD3DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
8545 case ARM::VLD3DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
8546 case ARM::VLD3DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
8547 case ARM::VLD3DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPq8_UPD
;
8548 case ARM::VLD3DUPqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
8549 case ARM::VLD3DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
8550 case ARM::VLD3DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
8551 case ARM::VLD3DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
8552 case ARM::VLD3DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
8553 case ARM::VLD3DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3DUPq8_UPD
;
8554 case ARM::VLD3DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
8555 case ARM::VLD3DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
8556 case ARM::VLD3DUPdAsm_8
: Spacing
= 1; return ARM::VLD3DUPd8
;
8557 case ARM::VLD3DUPdAsm_16
: Spacing
= 1; return ARM::VLD3DUPd16
;
8558 case ARM::VLD3DUPdAsm_32
: Spacing
= 1; return ARM::VLD3DUPd32
;
8559 case ARM::VLD3DUPqAsm_8
: Spacing
= 2; return ARM::VLD3DUPq8
;
8560 case ARM::VLD3DUPqAsm_16
: Spacing
= 2; return ARM::VLD3DUPq16
;
8561 case ARM::VLD3DUPqAsm_32
: Spacing
= 2; return ARM::VLD3DUPq32
;
8564 case ARM::VLD3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
8565 case ARM::VLD3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
8566 case ARM::VLD3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
8567 case ARM::VLD3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNq16_UPD
;
8568 case ARM::VLD3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
8569 case ARM::VLD3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
8570 case ARM::VLD3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
8571 case ARM::VLD3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
8572 case ARM::VLD3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3LNq16_UPD
;
8573 case ARM::VLD3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
8574 case ARM::VLD3LNdAsm_8
: Spacing
= 1; return ARM::VLD3LNd8
;
8575 case ARM::VLD3LNdAsm_16
: Spacing
= 1; return ARM::VLD3LNd16
;
8576 case ARM::VLD3LNdAsm_32
: Spacing
= 1; return ARM::VLD3LNd32
;
8577 case ARM::VLD3LNqAsm_16
: Spacing
= 2; return ARM::VLD3LNq16
;
8578 case ARM::VLD3LNqAsm_32
: Spacing
= 2; return ARM::VLD3LNq32
;
8581 case ARM::VLD3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
8582 case ARM::VLD3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
8583 case ARM::VLD3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
8584 case ARM::VLD3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
8585 case ARM::VLD3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
8586 case ARM::VLD3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
8587 case ARM::VLD3dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
8588 case ARM::VLD3dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
8589 case ARM::VLD3dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
8590 case ARM::VLD3qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
8591 case ARM::VLD3qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
8592 case ARM::VLD3qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
8593 case ARM::VLD3dAsm_8
: Spacing
= 1; return ARM::VLD3d8
;
8594 case ARM::VLD3dAsm_16
: Spacing
= 1; return ARM::VLD3d16
;
8595 case ARM::VLD3dAsm_32
: Spacing
= 1; return ARM::VLD3d32
;
8596 case ARM::VLD3qAsm_8
: Spacing
= 2; return ARM::VLD3q8
;
8597 case ARM::VLD3qAsm_16
: Spacing
= 2; return ARM::VLD3q16
;
8598 case ARM::VLD3qAsm_32
: Spacing
= 2; return ARM::VLD3q32
;
8601 case ARM::VLD4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
8602 case ARM::VLD4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
8603 case ARM::VLD4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
8604 case ARM::VLD4LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
8605 case ARM::VLD4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
8606 case ARM::VLD4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
8607 case ARM::VLD4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
8608 case ARM::VLD4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
8609 case ARM::VLD4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
8610 case ARM::VLD4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
8611 case ARM::VLD4LNdAsm_8
: Spacing
= 1; return ARM::VLD4LNd8
;
8612 case ARM::VLD4LNdAsm_16
: Spacing
= 1; return ARM::VLD4LNd16
;
8613 case ARM::VLD4LNdAsm_32
: Spacing
= 1; return ARM::VLD4LNd32
;
8614 case ARM::VLD4LNqAsm_16
: Spacing
= 2; return ARM::VLD4LNq16
;
8615 case ARM::VLD4LNqAsm_32
: Spacing
= 2; return ARM::VLD4LNq32
;
8618 case ARM::VLD4DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
8619 case ARM::VLD4DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
8620 case ARM::VLD4DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
8621 case ARM::VLD4DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPq8_UPD
;
8622 case ARM::VLD4DUPqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPq16_UPD
;
8623 case ARM::VLD4DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
8624 case ARM::VLD4DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
8625 case ARM::VLD4DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
8626 case ARM::VLD4DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
8627 case ARM::VLD4DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4DUPq8_UPD
;
8628 case ARM::VLD4DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4DUPq16_UPD
;
8629 case ARM::VLD4DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
8630 case ARM::VLD4DUPdAsm_8
: Spacing
= 1; return ARM::VLD4DUPd8
;
8631 case ARM::VLD4DUPdAsm_16
: Spacing
= 1; return ARM::VLD4DUPd16
;
8632 case ARM::VLD4DUPdAsm_32
: Spacing
= 1; return ARM::VLD4DUPd32
;
8633 case ARM::VLD4DUPqAsm_8
: Spacing
= 2; return ARM::VLD4DUPq8
;
8634 case ARM::VLD4DUPqAsm_16
: Spacing
= 2; return ARM::VLD4DUPq16
;
8635 case ARM::VLD4DUPqAsm_32
: Spacing
= 2; return ARM::VLD4DUPq32
;
8638 case ARM::VLD4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
8639 case ARM::VLD4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
8640 case ARM::VLD4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
8641 case ARM::VLD4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
8642 case ARM::VLD4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
8643 case ARM::VLD4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
8644 case ARM::VLD4dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
8645 case ARM::VLD4dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
8646 case ARM::VLD4dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
8647 case ARM::VLD4qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
8648 case ARM::VLD4qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
8649 case ARM::VLD4qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
8650 case ARM::VLD4dAsm_8
: Spacing
= 1; return ARM::VLD4d8
;
8651 case ARM::VLD4dAsm_16
: Spacing
= 1; return ARM::VLD4d16
;
8652 case ARM::VLD4dAsm_32
: Spacing
= 1; return ARM::VLD4d32
;
8653 case ARM::VLD4qAsm_8
: Spacing
= 2; return ARM::VLD4q8
;
8654 case ARM::VLD4qAsm_16
: Spacing
= 2; return ARM::VLD4q16
;
8655 case ARM::VLD4qAsm_32
: Spacing
= 2; return ARM::VLD4q32
;
8659 bool ARMAsmParser::processInstruction(MCInst
&Inst
,
8660 const OperandVector
&Operands
,
8662 // Check if we have the wide qualifier, because if it's present we
8663 // must avoid selecting a 16-bit thumb instruction.
8664 bool HasWideQualifier
= false;
8665 for (auto &Op
: Operands
) {
8666 ARMOperand
&ARMOp
= static_cast<ARMOperand
&>(*Op
);
8667 if (ARMOp
.isToken() && ARMOp
.getToken() == ".w") {
8668 HasWideQualifier
= true;
8673 switch (Inst
.getOpcode()) {
8674 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8675 case ARM::LDRT_POST
:
8676 case ARM::LDRBT_POST
: {
8677 const unsigned Opcode
=
8678 (Inst
.getOpcode() == ARM::LDRT_POST
) ? ARM::LDRT_POST_IMM
8679 : ARM::LDRBT_POST_IMM
;
8681 TmpInst
.setOpcode(Opcode
);
8682 TmpInst
.addOperand(Inst
.getOperand(0));
8683 TmpInst
.addOperand(Inst
.getOperand(1));
8684 TmpInst
.addOperand(Inst
.getOperand(1));
8685 TmpInst
.addOperand(MCOperand::createReg(0));
8686 TmpInst
.addOperand(MCOperand::createImm(0));
8687 TmpInst
.addOperand(Inst
.getOperand(2));
8688 TmpInst
.addOperand(Inst
.getOperand(3));
8692 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
8695 case ARM::LDRSHTii
: {
8698 if (Inst
.getOpcode() == ARM::LDRSBTii
)
8699 TmpInst
.setOpcode(ARM::LDRSBTi
);
8700 else if (Inst
.getOpcode() == ARM::LDRHTii
)
8701 TmpInst
.setOpcode(ARM::LDRHTi
);
8702 else if (Inst
.getOpcode() == ARM::LDRSHTii
)
8703 TmpInst
.setOpcode(ARM::LDRSHTi
);
8704 TmpInst
.addOperand(Inst
.getOperand(0));
8705 TmpInst
.addOperand(Inst
.getOperand(1));
8706 TmpInst
.addOperand(Inst
.getOperand(1));
8707 TmpInst
.addOperand(MCOperand::createImm(256));
8708 TmpInst
.addOperand(Inst
.getOperand(2));
8712 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8713 case ARM::STRT_POST
:
8714 case ARM::STRBT_POST
: {
8715 const unsigned Opcode
=
8716 (Inst
.getOpcode() == ARM::STRT_POST
) ? ARM::STRT_POST_IMM
8717 : ARM::STRBT_POST_IMM
;
8719 TmpInst
.setOpcode(Opcode
);
8720 TmpInst
.addOperand(Inst
.getOperand(1));
8721 TmpInst
.addOperand(Inst
.getOperand(0));
8722 TmpInst
.addOperand(Inst
.getOperand(1));
8723 TmpInst
.addOperand(MCOperand::createReg(0));
8724 TmpInst
.addOperand(MCOperand::createImm(0));
8725 TmpInst
.addOperand(Inst
.getOperand(2));
8726 TmpInst
.addOperand(Inst
.getOperand(3));
8730 // Alias for alternate form of 'ADR Rd, #imm' instruction.
8732 if (Inst
.getOperand(1).getReg() != ARM::PC
||
8733 Inst
.getOperand(5).getReg() != 0 ||
8734 !(Inst
.getOperand(2).isExpr() || Inst
.getOperand(2).isImm()))
8737 TmpInst
.setOpcode(ARM::ADR
);
8738 TmpInst
.addOperand(Inst
.getOperand(0));
8739 if (Inst
.getOperand(2).isImm()) {
8740 // Immediate (mod_imm) will be in its encoded form, we must unencode it
8741 // before passing it to the ADR instruction.
8742 unsigned Enc
= Inst
.getOperand(2).getImm();
8743 TmpInst
.addOperand(MCOperand::createImm(
8744 ARM_AM::rotr32(Enc
& 0xFF, (Enc
& 0xF00) >> 7)));
8746 // Turn PC-relative expression into absolute expression.
8747 // Reading PC provides the start of the current instruction + 8 and
8748 // the transform to adr is biased by that.
8749 MCSymbol
*Dot
= getContext().createTempSymbol();
8751 const MCExpr
*OpExpr
= Inst
.getOperand(2).getExpr();
8752 const MCExpr
*InstPC
= MCSymbolRefExpr::create(Dot
,
8753 MCSymbolRefExpr::VK_None
,
8755 const MCExpr
*Const8
= MCConstantExpr::create(8, getContext());
8756 const MCExpr
*ReadPC
= MCBinaryExpr::createAdd(InstPC
, Const8
,
8758 const MCExpr
*FixupAddr
= MCBinaryExpr::createAdd(ReadPC
, OpExpr
,
8760 TmpInst
.addOperand(MCOperand::createExpr(FixupAddr
));
8762 TmpInst
.addOperand(Inst
.getOperand(3));
8763 TmpInst
.addOperand(Inst
.getOperand(4));
8767 // Aliases for imm syntax of LDR instructions.
8768 case ARM::t2LDR_PRE_imm
:
8769 case ARM::t2LDR_POST_imm
: {
8771 TmpInst
.setOpcode(Inst
.getOpcode() == ARM::t2LDR_PRE_imm
? ARM::t2LDR_PRE
8773 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
8774 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt_wb
8775 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8776 TmpInst
.addOperand(Inst
.getOperand(2)); // imm
8777 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8781 // Aliases for imm syntax of STR instructions.
8782 case ARM::t2STR_PRE_imm
:
8783 case ARM::t2STR_POST_imm
: {
8785 TmpInst
.setOpcode(Inst
.getOpcode() == ARM::t2STR_PRE_imm
? ARM::t2STR_PRE
8787 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt_wb
8788 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
8789 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8790 TmpInst
.addOperand(Inst
.getOperand(2)); // imm
8791 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8795 // Aliases for alternate PC+imm syntax of LDR instructions.
8796 case ARM::t2LDRpcrel
:
8797 // Select the narrow version if the immediate will fit.
8798 if (Inst
.getOperand(1).getImm() > 0 &&
8799 Inst
.getOperand(1).getImm() <= 0xff &&
8801 Inst
.setOpcode(ARM::tLDRpci
);
8803 Inst
.setOpcode(ARM::t2LDRpci
);
8805 case ARM::t2LDRBpcrel
:
8806 Inst
.setOpcode(ARM::t2LDRBpci
);
8808 case ARM::t2LDRHpcrel
:
8809 Inst
.setOpcode(ARM::t2LDRHpci
);
8811 case ARM::t2LDRSBpcrel
:
8812 Inst
.setOpcode(ARM::t2LDRSBpci
);
8814 case ARM::t2LDRSHpcrel
:
8815 Inst
.setOpcode(ARM::t2LDRSHpci
);
8817 case ARM::LDRConstPool
:
8818 case ARM::tLDRConstPool
:
8819 case ARM::t2LDRConstPool
: {
8820 // Pseudo instruction ldr rt, =immediate is converted to a
8821 // MOV rt, immediate if immediate is known and representable
8822 // otherwise we create a constant pool entry that we load from.
8824 if (Inst
.getOpcode() == ARM::LDRConstPool
)
8825 TmpInst
.setOpcode(ARM::LDRi12
);
8826 else if (Inst
.getOpcode() == ARM::tLDRConstPool
)
8827 TmpInst
.setOpcode(ARM::tLDRpci
);
8828 else if (Inst
.getOpcode() == ARM::t2LDRConstPool
)
8829 TmpInst
.setOpcode(ARM::t2LDRpci
);
8830 const ARMOperand
&PoolOperand
=
8832 static_cast<ARMOperand
&>(*Operands
[4]) :
8833 static_cast<ARMOperand
&>(*Operands
[3]));
8834 const MCExpr
*SubExprVal
= PoolOperand
.getConstantPoolImm();
8835 // If SubExprVal is a constant we may be able to use a MOV
8836 if (isa
<MCConstantExpr
>(SubExprVal
) &&
8837 Inst
.getOperand(0).getReg() != ARM::PC
&&
8838 Inst
.getOperand(0).getReg() != ARM::SP
) {
8840 (int64_t) (cast
<MCConstantExpr
>(SubExprVal
))->getValue();
8842 bool MovHasS
= true;
8843 if (Inst
.getOpcode() == ARM::LDRConstPool
) {
8845 if (ARM_AM::getSOImmVal(Value
) != -1) {
8846 Value
= ARM_AM::getSOImmVal(Value
);
8847 TmpInst
.setOpcode(ARM::MOVi
);
8849 else if (ARM_AM::getSOImmVal(~Value
) != -1) {
8850 Value
= ARM_AM::getSOImmVal(~Value
);
8851 TmpInst
.setOpcode(ARM::MVNi
);
8853 else if (hasV6T2Ops() &&
8854 Value
>=0 && Value
< 65536) {
8855 TmpInst
.setOpcode(ARM::MOVi16
);
8862 // Thumb/Thumb2 Constant
8864 ARM_AM::getT2SOImmVal(Value
) != -1)
8865 TmpInst
.setOpcode(ARM::t2MOVi
);
8866 else if (hasThumb2() &&
8867 ARM_AM::getT2SOImmVal(~Value
) != -1) {
8868 TmpInst
.setOpcode(ARM::t2MVNi
);
8871 else if (hasV8MBaseline() &&
8872 Value
>=0 && Value
< 65536) {
8873 TmpInst
.setOpcode(ARM::t2MOVi16
);
8880 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
8881 TmpInst
.addOperand(MCOperand::createImm(Value
)); // Immediate
8882 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8883 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8885 TmpInst
.addOperand(MCOperand::createReg(0)); // S
8890 // No opportunity to use MOV/MVN create constant pool
8891 const MCExpr
*CPLoc
=
8892 getTargetStreamer().addConstantPoolEntry(SubExprVal
,
8893 PoolOperand
.getStartLoc());
8894 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
8895 TmpInst
.addOperand(MCOperand::createExpr(CPLoc
)); // offset to constpool
8896 if (TmpInst
.getOpcode() == ARM::LDRi12
)
8897 TmpInst
.addOperand(MCOperand::createImm(0)); // unused offset
8898 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8899 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8903 // Handle NEON VST complex aliases.
8904 case ARM::VST1LNdWB_register_Asm_8
:
8905 case ARM::VST1LNdWB_register_Asm_16
:
8906 case ARM::VST1LNdWB_register_Asm_32
: {
8908 // Shuffle the operands around so the lane index operand is in the
8911 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8912 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8913 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8914 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8915 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8916 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8917 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8918 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8919 TmpInst
.addOperand(Inst
.getOperand(6));
8924 case ARM::VST2LNdWB_register_Asm_8
:
8925 case ARM::VST2LNdWB_register_Asm_16
:
8926 case ARM::VST2LNdWB_register_Asm_32
:
8927 case ARM::VST2LNqWB_register_Asm_16
:
8928 case ARM::VST2LNqWB_register_Asm_32
: {
8930 // Shuffle the operands around so the lane index operand is in the
8933 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8934 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8935 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8936 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8937 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8938 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8939 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8941 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8942 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8943 TmpInst
.addOperand(Inst
.getOperand(6));
8948 case ARM::VST3LNdWB_register_Asm_8
:
8949 case ARM::VST3LNdWB_register_Asm_16
:
8950 case ARM::VST3LNdWB_register_Asm_32
:
8951 case ARM::VST3LNqWB_register_Asm_16
:
8952 case ARM::VST3LNqWB_register_Asm_32
: {
8954 // Shuffle the operands around so the lane index operand is in the
8957 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8958 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8959 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8960 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8961 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8962 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8963 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8965 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8967 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8968 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8969 TmpInst
.addOperand(Inst
.getOperand(6));
8974 case ARM::VST4LNdWB_register_Asm_8
:
8975 case ARM::VST4LNdWB_register_Asm_16
:
8976 case ARM::VST4LNdWB_register_Asm_32
:
8977 case ARM::VST4LNqWB_register_Asm_16
:
8978 case ARM::VST4LNqWB_register_Asm_32
: {
8980 // Shuffle the operands around so the lane index operand is in the
8983 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8984 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8985 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8986 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8987 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8988 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8989 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8991 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8993 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8995 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8996 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8997 TmpInst
.addOperand(Inst
.getOperand(6));
9002 case ARM::VST1LNdWB_fixed_Asm_8
:
9003 case ARM::VST1LNdWB_fixed_Asm_16
:
9004 case ARM::VST1LNdWB_fixed_Asm_32
: {
9006 // Shuffle the operands around so the lane index operand is in the
9009 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9010 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9011 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9012 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9013 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9014 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9015 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9016 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9017 TmpInst
.addOperand(Inst
.getOperand(5));
9022 case ARM::VST2LNdWB_fixed_Asm_8
:
9023 case ARM::VST2LNdWB_fixed_Asm_16
:
9024 case ARM::VST2LNdWB_fixed_Asm_32
:
9025 case ARM::VST2LNqWB_fixed_Asm_16
:
9026 case ARM::VST2LNqWB_fixed_Asm_32
: {
9028 // Shuffle the operands around so the lane index operand is in the
9031 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9032 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9033 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9034 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9035 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9036 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9037 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9039 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9040 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9041 TmpInst
.addOperand(Inst
.getOperand(5));
9046 case ARM::VST3LNdWB_fixed_Asm_8
:
9047 case ARM::VST3LNdWB_fixed_Asm_16
:
9048 case ARM::VST3LNdWB_fixed_Asm_32
:
9049 case ARM::VST3LNqWB_fixed_Asm_16
:
9050 case ARM::VST3LNqWB_fixed_Asm_32
: {
9052 // Shuffle the operands around so the lane index operand is in the
9055 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9056 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9057 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9058 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9059 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9060 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9061 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9063 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9065 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9066 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9067 TmpInst
.addOperand(Inst
.getOperand(5));
9072 case ARM::VST4LNdWB_fixed_Asm_8
:
9073 case ARM::VST4LNdWB_fixed_Asm_16
:
9074 case ARM::VST4LNdWB_fixed_Asm_32
:
9075 case ARM::VST4LNqWB_fixed_Asm_16
:
9076 case ARM::VST4LNqWB_fixed_Asm_32
: {
9078 // Shuffle the operands around so the lane index operand is in the
9081 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9082 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9083 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9084 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9085 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9086 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9087 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9089 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9091 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9093 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9094 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9095 TmpInst
.addOperand(Inst
.getOperand(5));
9100 case ARM::VST1LNdAsm_8
:
9101 case ARM::VST1LNdAsm_16
:
9102 case ARM::VST1LNdAsm_32
: {
9104 // Shuffle the operands around so the lane index operand is in the
9107 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9108 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9109 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9110 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9111 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9112 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9113 TmpInst
.addOperand(Inst
.getOperand(5));
9118 case ARM::VST2LNdAsm_8
:
9119 case ARM::VST2LNdAsm_16
:
9120 case ARM::VST2LNdAsm_32
:
9121 case ARM::VST2LNqAsm_16
:
9122 case ARM::VST2LNqAsm_32
: {
9124 // Shuffle the operands around so the lane index operand is in the
9127 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9128 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9129 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9130 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9131 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9133 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9134 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9135 TmpInst
.addOperand(Inst
.getOperand(5));
9140 case ARM::VST3LNdAsm_8
:
9141 case ARM::VST3LNdAsm_16
:
9142 case ARM::VST3LNdAsm_32
:
9143 case ARM::VST3LNqAsm_16
:
9144 case ARM::VST3LNqAsm_32
: {
9146 // Shuffle the operands around so the lane index operand is in the
9149 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9150 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9151 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9152 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9153 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9155 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9157 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9158 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9159 TmpInst
.addOperand(Inst
.getOperand(5));
9164 case ARM::VST4LNdAsm_8
:
9165 case ARM::VST4LNdAsm_16
:
9166 case ARM::VST4LNdAsm_32
:
9167 case ARM::VST4LNqAsm_16
:
9168 case ARM::VST4LNqAsm_32
: {
9170 // Shuffle the operands around so the lane index operand is in the
9173 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9174 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9175 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9176 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9177 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9179 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9181 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9183 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9184 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9185 TmpInst
.addOperand(Inst
.getOperand(5));
9190 // Handle NEON VLD complex aliases.
9191 case ARM::VLD1LNdWB_register_Asm_8
:
9192 case ARM::VLD1LNdWB_register_Asm_16
:
9193 case ARM::VLD1LNdWB_register_Asm_32
: {
9195 // Shuffle the operands around so the lane index operand is in the
9198 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9199 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9200 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9201 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9202 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9203 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
9204 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9205 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9206 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
9207 TmpInst
.addOperand(Inst
.getOperand(6));
9212 case ARM::VLD2LNdWB_register_Asm_8
:
9213 case ARM::VLD2LNdWB_register_Asm_16
:
9214 case ARM::VLD2LNdWB_register_Asm_32
:
9215 case ARM::VLD2LNqWB_register_Asm_16
:
9216 case ARM::VLD2LNqWB_register_Asm_32
: {
9218 // Shuffle the operands around so the lane index operand is in the
9221 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9222 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9223 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9225 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9226 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9227 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9228 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
9229 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9230 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9232 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9233 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
9234 TmpInst
.addOperand(Inst
.getOperand(6));
9239 case ARM::VLD3LNdWB_register_Asm_8
:
9240 case ARM::VLD3LNdWB_register_Asm_16
:
9241 case ARM::VLD3LNdWB_register_Asm_32
:
9242 case ARM::VLD3LNqWB_register_Asm_16
:
9243 case ARM::VLD3LNqWB_register_Asm_32
: {
9245 // Shuffle the operands around so the lane index operand is in the
9248 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9249 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9250 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9252 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9254 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9255 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9256 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9257 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
9258 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9259 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9261 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9263 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9264 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
9265 TmpInst
.addOperand(Inst
.getOperand(6));
9270 case ARM::VLD4LNdWB_register_Asm_8
:
9271 case ARM::VLD4LNdWB_register_Asm_16
:
9272 case ARM::VLD4LNdWB_register_Asm_32
:
9273 case ARM::VLD4LNqWB_register_Asm_16
:
9274 case ARM::VLD4LNqWB_register_Asm_32
: {
9276 // Shuffle the operands around so the lane index operand is in the
9279 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9280 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9281 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9283 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9285 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9287 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9288 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9289 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9290 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
9291 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9292 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9294 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9296 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9298 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9299 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
9300 TmpInst
.addOperand(Inst
.getOperand(6));
9305 case ARM::VLD1LNdWB_fixed_Asm_8
:
9306 case ARM::VLD1LNdWB_fixed_Asm_16
:
9307 case ARM::VLD1LNdWB_fixed_Asm_32
: {
9309 // Shuffle the operands around so the lane index operand is in the
9312 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9313 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9314 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9315 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9316 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9317 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9318 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9319 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9320 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9321 TmpInst
.addOperand(Inst
.getOperand(5));
9326 case ARM::VLD2LNdWB_fixed_Asm_8
:
9327 case ARM::VLD2LNdWB_fixed_Asm_16
:
9328 case ARM::VLD2LNdWB_fixed_Asm_32
:
9329 case ARM::VLD2LNqWB_fixed_Asm_16
:
9330 case ARM::VLD2LNqWB_fixed_Asm_32
: {
9332 // Shuffle the operands around so the lane index operand is in the
9335 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9336 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9337 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9339 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9340 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9341 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9342 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9343 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9344 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9346 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9347 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9348 TmpInst
.addOperand(Inst
.getOperand(5));
9353 case ARM::VLD3LNdWB_fixed_Asm_8
:
9354 case ARM::VLD3LNdWB_fixed_Asm_16
:
9355 case ARM::VLD3LNdWB_fixed_Asm_32
:
9356 case ARM::VLD3LNqWB_fixed_Asm_16
:
9357 case ARM::VLD3LNqWB_fixed_Asm_32
: {
9359 // Shuffle the operands around so the lane index operand is in the
9362 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9363 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9364 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9366 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9368 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9369 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9370 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9371 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9372 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9373 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9375 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9377 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9378 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9379 TmpInst
.addOperand(Inst
.getOperand(5));
9384 case ARM::VLD4LNdWB_fixed_Asm_8
:
9385 case ARM::VLD4LNdWB_fixed_Asm_16
:
9386 case ARM::VLD4LNdWB_fixed_Asm_32
:
9387 case ARM::VLD4LNqWB_fixed_Asm_16
:
9388 case ARM::VLD4LNqWB_fixed_Asm_32
: {
9390 // Shuffle the operands around so the lane index operand is in the
9393 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9394 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9395 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9397 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9399 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9401 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
9402 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9403 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9404 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9405 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9406 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9408 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9410 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9412 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9413 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9414 TmpInst
.addOperand(Inst
.getOperand(5));
9419 case ARM::VLD1LNdAsm_8
:
9420 case ARM::VLD1LNdAsm_16
:
9421 case ARM::VLD1LNdAsm_32
: {
9423 // Shuffle the operands around so the lane index operand is in the
9426 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9427 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9428 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9429 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9430 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9431 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9432 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9433 TmpInst
.addOperand(Inst
.getOperand(5));
9438 case ARM::VLD2LNdAsm_8
:
9439 case ARM::VLD2LNdAsm_16
:
9440 case ARM::VLD2LNdAsm_32
:
9441 case ARM::VLD2LNqAsm_16
:
9442 case ARM::VLD2LNqAsm_32
: {
9444 // Shuffle the operands around so the lane index operand is in the
9447 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9448 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9449 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9451 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9452 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9453 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9454 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9456 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9457 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9458 TmpInst
.addOperand(Inst
.getOperand(5));
9463 case ARM::VLD3LNdAsm_8
:
9464 case ARM::VLD3LNdAsm_16
:
9465 case ARM::VLD3LNdAsm_32
:
9466 case ARM::VLD3LNqAsm_16
:
9467 case ARM::VLD3LNqAsm_32
: {
9469 // Shuffle the operands around so the lane index operand is in the
9472 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9473 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9474 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9476 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9478 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9479 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9480 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9481 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9483 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9485 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9486 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9487 TmpInst
.addOperand(Inst
.getOperand(5));
9492 case ARM::VLD4LNdAsm_8
:
9493 case ARM::VLD4LNdAsm_16
:
9494 case ARM::VLD4LNdAsm_32
:
9495 case ARM::VLD4LNqAsm_16
:
9496 case ARM::VLD4LNqAsm_32
: {
9498 // Shuffle the operands around so the lane index operand is in the
9501 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9502 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9503 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9505 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9507 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9509 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9510 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9511 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9512 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9514 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9516 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9518 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9519 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9520 TmpInst
.addOperand(Inst
.getOperand(5));
9525 // VLD3DUP single 3-element structure to all lanes instructions.
9526 case ARM::VLD3DUPdAsm_8
:
9527 case ARM::VLD3DUPdAsm_16
:
9528 case ARM::VLD3DUPdAsm_32
:
9529 case ARM::VLD3DUPqAsm_8
:
9530 case ARM::VLD3DUPqAsm_16
:
9531 case ARM::VLD3DUPqAsm_32
: {
9534 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9535 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9536 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9538 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9540 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9541 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9542 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9543 TmpInst
.addOperand(Inst
.getOperand(4));
9548 case ARM::VLD3DUPdWB_fixed_Asm_8
:
9549 case ARM::VLD3DUPdWB_fixed_Asm_16
:
9550 case ARM::VLD3DUPdWB_fixed_Asm_32
:
9551 case ARM::VLD3DUPqWB_fixed_Asm_8
:
9552 case ARM::VLD3DUPqWB_fixed_Asm_16
:
9553 case ARM::VLD3DUPqWB_fixed_Asm_32
: {
9556 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9557 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9558 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9560 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9562 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9563 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9564 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9565 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9566 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9567 TmpInst
.addOperand(Inst
.getOperand(4));
9572 case ARM::VLD3DUPdWB_register_Asm_8
:
9573 case ARM::VLD3DUPdWB_register_Asm_16
:
9574 case ARM::VLD3DUPdWB_register_Asm_32
:
9575 case ARM::VLD3DUPqWB_register_Asm_8
:
9576 case ARM::VLD3DUPqWB_register_Asm_16
:
9577 case ARM::VLD3DUPqWB_register_Asm_32
: {
9580 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9581 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9582 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9584 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9586 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9587 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9588 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9589 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9590 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9591 TmpInst
.addOperand(Inst
.getOperand(5));
9596 // VLD3 multiple 3-element structure instructions.
9597 case ARM::VLD3dAsm_8
:
9598 case ARM::VLD3dAsm_16
:
9599 case ARM::VLD3dAsm_32
:
9600 case ARM::VLD3qAsm_8
:
9601 case ARM::VLD3qAsm_16
:
9602 case ARM::VLD3qAsm_32
: {
9605 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9606 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9607 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9609 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9611 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9612 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9613 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9614 TmpInst
.addOperand(Inst
.getOperand(4));
9619 case ARM::VLD3dWB_fixed_Asm_8
:
9620 case ARM::VLD3dWB_fixed_Asm_16
:
9621 case ARM::VLD3dWB_fixed_Asm_32
:
9622 case ARM::VLD3qWB_fixed_Asm_8
:
9623 case ARM::VLD3qWB_fixed_Asm_16
:
9624 case ARM::VLD3qWB_fixed_Asm_32
: {
9627 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9628 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9629 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9631 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9633 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9634 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9635 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9636 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9637 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9638 TmpInst
.addOperand(Inst
.getOperand(4));
9643 case ARM::VLD3dWB_register_Asm_8
:
9644 case ARM::VLD3dWB_register_Asm_16
:
9645 case ARM::VLD3dWB_register_Asm_32
:
9646 case ARM::VLD3qWB_register_Asm_8
:
9647 case ARM::VLD3qWB_register_Asm_16
:
9648 case ARM::VLD3qWB_register_Asm_32
: {
9651 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9652 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9653 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9655 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9657 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9658 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9659 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9660 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9661 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9662 TmpInst
.addOperand(Inst
.getOperand(5));
9667 // VLD4DUP single 3-element structure to all lanes instructions.
9668 case ARM::VLD4DUPdAsm_8
:
9669 case ARM::VLD4DUPdAsm_16
:
9670 case ARM::VLD4DUPdAsm_32
:
9671 case ARM::VLD4DUPqAsm_8
:
9672 case ARM::VLD4DUPqAsm_16
:
9673 case ARM::VLD4DUPqAsm_32
: {
9676 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9677 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9678 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9680 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9682 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9684 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9685 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9686 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9687 TmpInst
.addOperand(Inst
.getOperand(4));
9692 case ARM::VLD4DUPdWB_fixed_Asm_8
:
9693 case ARM::VLD4DUPdWB_fixed_Asm_16
:
9694 case ARM::VLD4DUPdWB_fixed_Asm_32
:
9695 case ARM::VLD4DUPqWB_fixed_Asm_8
:
9696 case ARM::VLD4DUPqWB_fixed_Asm_16
:
9697 case ARM::VLD4DUPqWB_fixed_Asm_32
: {
9700 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9701 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9702 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9704 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9706 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9708 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9709 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9710 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9711 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9712 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9713 TmpInst
.addOperand(Inst
.getOperand(4));
9718 case ARM::VLD4DUPdWB_register_Asm_8
:
9719 case ARM::VLD4DUPdWB_register_Asm_16
:
9720 case ARM::VLD4DUPdWB_register_Asm_32
:
9721 case ARM::VLD4DUPqWB_register_Asm_8
:
9722 case ARM::VLD4DUPqWB_register_Asm_16
:
9723 case ARM::VLD4DUPqWB_register_Asm_32
: {
9726 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9727 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9728 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9730 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9732 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9734 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9735 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9736 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9737 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9738 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9739 TmpInst
.addOperand(Inst
.getOperand(5));
9744 // VLD4 multiple 4-element structure instructions.
9745 case ARM::VLD4dAsm_8
:
9746 case ARM::VLD4dAsm_16
:
9747 case ARM::VLD4dAsm_32
:
9748 case ARM::VLD4qAsm_8
:
9749 case ARM::VLD4qAsm_16
:
9750 case ARM::VLD4qAsm_32
: {
9753 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9754 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9755 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9757 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9759 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9761 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9762 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9763 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9764 TmpInst
.addOperand(Inst
.getOperand(4));
9769 case ARM::VLD4dWB_fixed_Asm_8
:
9770 case ARM::VLD4dWB_fixed_Asm_16
:
9771 case ARM::VLD4dWB_fixed_Asm_32
:
9772 case ARM::VLD4qWB_fixed_Asm_8
:
9773 case ARM::VLD4qWB_fixed_Asm_16
:
9774 case ARM::VLD4qWB_fixed_Asm_32
: {
9777 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9778 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9779 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9781 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9783 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9785 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9786 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9787 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9788 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9789 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9790 TmpInst
.addOperand(Inst
.getOperand(4));
9795 case ARM::VLD4dWB_register_Asm_8
:
9796 case ARM::VLD4dWB_register_Asm_16
:
9797 case ARM::VLD4dWB_register_Asm_32
:
9798 case ARM::VLD4qWB_register_Asm_8
:
9799 case ARM::VLD4qWB_register_Asm_16
:
9800 case ARM::VLD4qWB_register_Asm_32
: {
9803 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9804 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9805 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9807 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9809 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9811 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9812 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9813 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9814 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9815 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9816 TmpInst
.addOperand(Inst
.getOperand(5));
9821 // VST3 multiple 3-element structure instructions.
9822 case ARM::VST3dAsm_8
:
9823 case ARM::VST3dAsm_16
:
9824 case ARM::VST3dAsm_32
:
9825 case ARM::VST3qAsm_8
:
9826 case ARM::VST3qAsm_16
:
9827 case ARM::VST3qAsm_32
: {
9830 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9831 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9832 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9833 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9834 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9836 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9838 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9839 TmpInst
.addOperand(Inst
.getOperand(4));
9844 case ARM::VST3dWB_fixed_Asm_8
:
9845 case ARM::VST3dWB_fixed_Asm_16
:
9846 case ARM::VST3dWB_fixed_Asm_32
:
9847 case ARM::VST3qWB_fixed_Asm_8
:
9848 case ARM::VST3qWB_fixed_Asm_16
:
9849 case ARM::VST3qWB_fixed_Asm_32
: {
9852 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9853 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9854 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9855 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9856 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9857 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9858 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9860 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9862 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9863 TmpInst
.addOperand(Inst
.getOperand(4));
9868 case ARM::VST3dWB_register_Asm_8
:
9869 case ARM::VST3dWB_register_Asm_16
:
9870 case ARM::VST3dWB_register_Asm_32
:
9871 case ARM::VST3qWB_register_Asm_8
:
9872 case ARM::VST3qWB_register_Asm_16
:
9873 case ARM::VST3qWB_register_Asm_32
: {
9876 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9877 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9878 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9879 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9880 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9881 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9882 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9884 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9886 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9887 TmpInst
.addOperand(Inst
.getOperand(5));
9892 // VST4 multiple 3-element structure instructions.
9893 case ARM::VST4dAsm_8
:
9894 case ARM::VST4dAsm_16
:
9895 case ARM::VST4dAsm_32
:
9896 case ARM::VST4qAsm_8
:
9897 case ARM::VST4qAsm_16
:
9898 case ARM::VST4qAsm_32
: {
9901 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9902 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9903 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9904 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9905 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9907 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9909 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9911 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9912 TmpInst
.addOperand(Inst
.getOperand(4));
9917 case ARM::VST4dWB_fixed_Asm_8
:
9918 case ARM::VST4dWB_fixed_Asm_16
:
9919 case ARM::VST4dWB_fixed_Asm_32
:
9920 case ARM::VST4qWB_fixed_Asm_8
:
9921 case ARM::VST4qWB_fixed_Asm_16
:
9922 case ARM::VST4qWB_fixed_Asm_32
: {
9925 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9926 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9927 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9928 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9929 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9930 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9931 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9933 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9935 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9937 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9938 TmpInst
.addOperand(Inst
.getOperand(4));
9943 case ARM::VST4dWB_register_Asm_8
:
9944 case ARM::VST4dWB_register_Asm_16
:
9945 case ARM::VST4dWB_register_Asm_32
:
9946 case ARM::VST4qWB_register_Asm_8
:
9947 case ARM::VST4qWB_register_Asm_16
:
9948 case ARM::VST4qWB_register_Asm_32
: {
9951 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9952 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9953 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9954 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9955 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9956 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9957 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9959 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9961 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9963 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9964 TmpInst
.addOperand(Inst
.getOperand(5));
9969 // Handle encoding choice for the shift-immediate instructions.
9973 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9974 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9975 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
9976 !HasWideQualifier
) {
9978 switch (Inst
.getOpcode()) {
9979 default: llvm_unreachable("unexpected opcode");
9980 case ARM::t2LSLri
: NewOpc
= ARM::tLSLri
; break;
9981 case ARM::t2LSRri
: NewOpc
= ARM::tLSRri
; break;
9982 case ARM::t2ASRri
: NewOpc
= ARM::tASRri
; break;
9984 // The Thumb1 operands aren't in the same order. Awesome, eh?
9986 TmpInst
.setOpcode(NewOpc
);
9987 TmpInst
.addOperand(Inst
.getOperand(0));
9988 TmpInst
.addOperand(Inst
.getOperand(5));
9989 TmpInst
.addOperand(Inst
.getOperand(1));
9990 TmpInst
.addOperand(Inst
.getOperand(2));
9991 TmpInst
.addOperand(Inst
.getOperand(3));
9992 TmpInst
.addOperand(Inst
.getOperand(4));
9998 // Handle the Thumb2 mode MOV complex aliases.
10000 case ARM::t2MOVSsr
: {
10001 // Which instruction to expand to depends on the CCOut operand and
10002 // whether we're in an IT block if the register operands are low
10004 bool isNarrow
= false;
10005 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
10006 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10007 isARMLowRegister(Inst
.getOperand(2).getReg()) &&
10008 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
10009 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsr
) &&
10014 switch(ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm())) {
10015 default: llvm_unreachable("unexpected opcode!");
10016 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRrr
: ARM::t2ASRrr
; break;
10017 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRrr
: ARM::t2LSRrr
; break;
10018 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLrr
: ARM::t2LSLrr
; break;
10019 case ARM_AM::ror
: newOpc
= isNarrow
? ARM::tROR
: ARM::t2RORrr
; break;
10021 TmpInst
.setOpcode(newOpc
);
10022 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
10024 TmpInst
.addOperand(MCOperand::createReg(
10025 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
10026 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10027 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
10028 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
10029 TmpInst
.addOperand(Inst
.getOperand(5));
10031 TmpInst
.addOperand(MCOperand::createReg(
10032 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
10037 case ARM::t2MOVSsi
: {
10038 // Which instruction to expand to depends on the CCOut operand and
10039 // whether we're in an IT block if the register operands are low
10041 bool isNarrow
= false;
10042 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
10043 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10044 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsi
) &&
10049 unsigned Shift
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
10050 unsigned Amount
= ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm());
10051 bool isMov
= false;
10052 // MOV rd, rm, LSL #0 is actually a MOV instruction
10053 if (Shift
== ARM_AM::lsl
&& Amount
== 0) {
10055 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
10056 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
10057 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
10062 newOpc
= isNarrow
? ARM::tMOVSr
: ARM::t2MOVr
;
10065 default: llvm_unreachable("unexpected opcode!");
10066 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRri
: ARM::t2ASRri
; break;
10067 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRri
: ARM::t2LSRri
; break;
10068 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLri
: ARM::t2LSLri
; break;
10069 case ARM_AM::ror
: newOpc
= ARM::t2RORri
; isNarrow
= false; break;
10070 case ARM_AM::rrx
: isNarrow
= false; newOpc
= ARM::t2RRX
; break;
10073 if (Amount
== 32) Amount
= 0;
10074 TmpInst
.setOpcode(newOpc
);
10075 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
10076 if (isNarrow
&& !isMov
)
10077 TmpInst
.addOperand(MCOperand::createReg(
10078 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
10079 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10080 if (newOpc
!= ARM::t2RRX
&& !isMov
)
10081 TmpInst
.addOperand(MCOperand::createImm(Amount
));
10082 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
10083 TmpInst
.addOperand(Inst
.getOperand(4));
10085 TmpInst
.addOperand(MCOperand::createReg(
10086 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
10090 // Handle the ARM mode MOV complex aliases.
10095 ARM_AM::ShiftOpc ShiftTy
;
10096 switch(Inst
.getOpcode()) {
10097 default: llvm_unreachable("unexpected opcode!");
10098 case ARM::ASRr
: ShiftTy
= ARM_AM::asr
; break;
10099 case ARM::LSRr
: ShiftTy
= ARM_AM::lsr
; break;
10100 case ARM::LSLr
: ShiftTy
= ARM_AM::lsl
; break;
10101 case ARM::RORr
: ShiftTy
= ARM_AM::ror
; break;
10103 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, 0);
10105 TmpInst
.setOpcode(ARM::MOVsr
);
10106 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
10107 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10108 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
10109 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
10110 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
10111 TmpInst
.addOperand(Inst
.getOperand(4));
10112 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
10120 ARM_AM::ShiftOpc ShiftTy
;
10121 switch(Inst
.getOpcode()) {
10122 default: llvm_unreachable("unexpected opcode!");
10123 case ARM::ASRi
: ShiftTy
= ARM_AM::asr
; break;
10124 case ARM::LSRi
: ShiftTy
= ARM_AM::lsr
; break;
10125 case ARM::LSLi
: ShiftTy
= ARM_AM::lsl
; break;
10126 case ARM::RORi
: ShiftTy
= ARM_AM::ror
; break;
10128 // A shift by zero is a plain MOVr, not a MOVsi.
10129 unsigned Amt
= Inst
.getOperand(2).getImm();
10130 unsigned Opc
= Amt
== 0 ? ARM::MOVr
: ARM::MOVsi
;
10131 // A shift by 32 should be encoded as 0 when permitted
10132 if (Amt
== 32 && (ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
))
10134 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, Amt
);
10136 TmpInst
.setOpcode(Opc
);
10137 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
10138 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10139 if (Opc
== ARM::MOVsi
)
10140 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
10141 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
10142 TmpInst
.addOperand(Inst
.getOperand(4));
10143 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
10148 unsigned Shifter
= ARM_AM::getSORegOpc(ARM_AM::rrx
, 0);
10150 TmpInst
.setOpcode(ARM::MOVsi
);
10151 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
10152 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10153 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
10154 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
10155 TmpInst
.addOperand(Inst
.getOperand(3));
10156 TmpInst
.addOperand(Inst
.getOperand(4)); // cc_out
10160 case ARM::t2LDMIA_UPD
: {
10161 // If this is a load of a single register, then we should use
10162 // a post-indexed LDR instruction instead, per the ARM ARM.
10163 if (Inst
.getNumOperands() != 5)
10166 TmpInst
.setOpcode(ARM::t2LDR_POST
);
10167 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
10168 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
10169 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10170 TmpInst
.addOperand(MCOperand::createImm(4));
10171 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
10172 TmpInst
.addOperand(Inst
.getOperand(3));
10176 case ARM::t2STMDB_UPD
: {
10177 // If this is a store of a single register, then we should use
10178 // a pre-indexed STR instruction instead, per the ARM ARM.
10179 if (Inst
.getNumOperands() != 5)
10182 TmpInst
.setOpcode(ARM::t2STR_PRE
);
10183 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
10184 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
10185 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10186 TmpInst
.addOperand(MCOperand::createImm(-4));
10187 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
10188 TmpInst
.addOperand(Inst
.getOperand(3));
10192 case ARM::LDMIA_UPD
:
10193 // If this is a load of a single register via a 'pop', then we should use
10194 // a post-indexed LDR instruction instead, per the ARM ARM.
10195 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "pop" &&
10196 Inst
.getNumOperands() == 5) {
10198 TmpInst
.setOpcode(ARM::LDR_POST_IMM
);
10199 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
10200 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
10201 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
10202 TmpInst
.addOperand(MCOperand::createReg(0)); // am2offset
10203 TmpInst
.addOperand(MCOperand::createImm(4));
10204 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
10205 TmpInst
.addOperand(Inst
.getOperand(3));
10210 case ARM::STMDB_UPD
:
10211 // If this is a store of a single register via a 'push', then we should use
10212 // a pre-indexed STR instruction instead, per the ARM ARM.
10213 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "push" &&
10214 Inst
.getNumOperands() == 5) {
10216 TmpInst
.setOpcode(ARM::STR_PRE_IMM
);
10217 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
10218 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
10219 TmpInst
.addOperand(Inst
.getOperand(1)); // addrmode_imm12
10220 TmpInst
.addOperand(MCOperand::createImm(-4));
10221 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
10222 TmpInst
.addOperand(Inst
.getOperand(3));
10226 case ARM::t2ADDri12
:
10227 case ARM::t2SUBri12
:
10228 case ARM::t2ADDspImm12
:
10229 case ARM::t2SUBspImm12
: {
10230 // If the immediate fits for encoding T3 and the generic
10231 // mnemonic was used, encoding T3 is preferred.
10232 const StringRef Token
= static_cast<ARMOperand
&>(*Operands
[0]).getToken();
10233 if ((Token
!= "add" && Token
!= "sub") ||
10234 ARM_AM::getT2SOImmVal(Inst
.getOperand(2).getImm()) == -1)
10236 switch (Inst
.getOpcode()) {
10237 case ARM::t2ADDri12
:
10238 Inst
.setOpcode(ARM::t2ADDri
);
10240 case ARM::t2SUBri12
:
10241 Inst
.setOpcode(ARM::t2SUBri
);
10243 case ARM::t2ADDspImm12
:
10244 Inst
.setOpcode(ARM::t2ADDspImm
);
10246 case ARM::t2SUBspImm12
:
10247 Inst
.setOpcode(ARM::t2SUBspImm
);
10251 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
10255 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10256 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10257 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10258 // to encoding T1 if <Rd> is omitted."
10259 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
10260 Inst
.setOpcode(ARM::tADDi3
);
10265 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10266 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10267 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10268 // to encoding T1 if <Rd> is omitted."
10269 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
10270 Inst
.setOpcode(ARM::tSUBi3
);
10275 case ARM::t2SUBri
: {
10276 // If the destination and first source operand are the same, and
10277 // the flags are compatible with the current IT status, use encoding T2
10278 // instead of T3. For compatibility with the system 'as'. Make sure the
10279 // wide encoding wasn't explicit.
10280 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(1).getReg() ||
10281 !isARMLowRegister(Inst
.getOperand(0).getReg()) ||
10282 (Inst
.getOperand(2).isImm() &&
10283 (unsigned)Inst
.getOperand(2).getImm() > 255) ||
10284 Inst
.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR
) ||
10288 TmpInst
.setOpcode(Inst
.getOpcode() == ARM::t2ADDri
?
10289 ARM::tADDi8
: ARM::tSUBi8
);
10290 TmpInst
.addOperand(Inst
.getOperand(0));
10291 TmpInst
.addOperand(Inst
.getOperand(5));
10292 TmpInst
.addOperand(Inst
.getOperand(0));
10293 TmpInst
.addOperand(Inst
.getOperand(2));
10294 TmpInst
.addOperand(Inst
.getOperand(3));
10295 TmpInst
.addOperand(Inst
.getOperand(4));
10299 case ARM::t2ADDspImm
:
10300 case ARM::t2SUBspImm
: {
10301 // Prefer T1 encoding if possible
10302 if (Inst
.getOperand(5).getReg() != 0 || HasWideQualifier
)
10304 unsigned V
= Inst
.getOperand(2).getImm();
10305 if (V
& 3 || V
> ((1 << 7) - 1) << 2)
10308 TmpInst
.setOpcode(Inst
.getOpcode() == ARM::t2ADDspImm
? ARM::tADDspi
10310 TmpInst
.addOperand(MCOperand::createReg(ARM::SP
)); // destination reg
10311 TmpInst
.addOperand(MCOperand::createReg(ARM::SP
)); // source reg
10312 TmpInst
.addOperand(MCOperand::createImm(V
/ 4)); // immediate
10313 TmpInst
.addOperand(Inst
.getOperand(3)); // pred
10314 TmpInst
.addOperand(Inst
.getOperand(4));
10318 case ARM::t2ADDrr
: {
10319 // If the destination and first source operand are the same, and
10320 // there's no setting of the flags, use encoding T2 instead of T3.
10321 // Note that this is only for ADD, not SUB. This mirrors the system
10322 // 'as' behaviour. Also take advantage of ADD being commutative.
10323 // Make sure the wide encoding wasn't explicit.
10325 auto DestReg
= Inst
.getOperand(0).getReg();
10326 bool Transform
= DestReg
== Inst
.getOperand(1).getReg();
10327 if (!Transform
&& DestReg
== Inst
.getOperand(2).getReg()) {
10332 Inst
.getOperand(5).getReg() != 0 ||
10336 TmpInst
.setOpcode(ARM::tADDhirr
);
10337 TmpInst
.addOperand(Inst
.getOperand(0));
10338 TmpInst
.addOperand(Inst
.getOperand(0));
10339 TmpInst
.addOperand(Inst
.getOperand(Swap
? 1 : 2));
10340 TmpInst
.addOperand(Inst
.getOperand(3));
10341 TmpInst
.addOperand(Inst
.getOperand(4));
10346 // If the non-SP source operand and the destination operand are not the
10347 // same, we need to use the 32-bit encoding if it's available.
10348 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
10349 Inst
.setOpcode(ARM::t2ADDrr
);
10350 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
10355 // A Thumb conditional branch outside of an IT block is a tBcc.
10356 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()) {
10357 Inst
.setOpcode(ARM::tBcc
);
10362 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
10363 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()){
10364 Inst
.setOpcode(ARM::t2Bcc
);
10369 // If the conditional is AL or we're in an IT block, we really want t2B.
10370 if (Inst
.getOperand(1).getImm() == ARMCC::AL
|| inITBlock()) {
10371 Inst
.setOpcode(ARM::t2B
);
10376 // If the conditional is AL, we really want tB.
10377 if (Inst
.getOperand(1).getImm() == ARMCC::AL
) {
10378 Inst
.setOpcode(ARM::tB
);
10382 case ARM::tLDMIA
: {
10383 // If the register list contains any high registers, or if the writeback
10384 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
10385 // instead if we're in Thumb2. Otherwise, this should have generated
10386 // an error in validateInstruction().
10387 unsigned Rn
= Inst
.getOperand(0).getReg();
10388 bool hasWritebackToken
=
10389 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
10390 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
10391 bool listContainsBase
;
10392 if (checkLowRegisterList(Inst
, 3, Rn
, 0, listContainsBase
) ||
10393 (!listContainsBase
&& !hasWritebackToken
) ||
10394 (listContainsBase
&& hasWritebackToken
)) {
10395 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10396 assert(isThumbTwo());
10397 Inst
.setOpcode(hasWritebackToken
? ARM::t2LDMIA_UPD
: ARM::t2LDMIA
);
10398 // If we're switching to the updating version, we need to insert
10399 // the writeback tied operand.
10400 if (hasWritebackToken
)
10401 Inst
.insert(Inst
.begin(),
10402 MCOperand::createReg(Inst
.getOperand(0).getReg()));
10407 case ARM::tSTMIA_UPD
: {
10408 // If the register list contains any high registers, we need to use
10409 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10410 // should have generated an error in validateInstruction().
10411 unsigned Rn
= Inst
.getOperand(0).getReg();
10412 bool listContainsBase
;
10413 if (checkLowRegisterList(Inst
, 4, Rn
, 0, listContainsBase
)) {
10414 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10415 assert(isThumbTwo());
10416 Inst
.setOpcode(ARM::t2STMIA_UPD
);
10422 bool listContainsBase
;
10423 // If the register list contains any high registers, we need to use
10424 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10425 // should have generated an error in validateInstruction().
10426 if (!checkLowRegisterList(Inst
, 2, 0, ARM::PC
, listContainsBase
))
10428 assert(isThumbTwo());
10429 Inst
.setOpcode(ARM::t2LDMIA_UPD
);
10430 // Add the base register and writeback operands.
10431 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
10432 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
10436 bool listContainsBase
;
10437 if (!checkLowRegisterList(Inst
, 2, 0, ARM::LR
, listContainsBase
))
10439 assert(isThumbTwo());
10440 Inst
.setOpcode(ARM::t2STMDB_UPD
);
10441 // Add the base register and writeback operands.
10442 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
10443 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
10447 // If we can use the 16-bit encoding and the user didn't explicitly
10448 // request the 32-bit variant, transform it here.
10449 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
10450 (Inst
.getOperand(1).isImm() &&
10451 (unsigned)Inst
.getOperand(1).getImm() <= 255) &&
10452 Inst
.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
10453 !HasWideQualifier
) {
10454 // The operands aren't in the same order for tMOVi8...
10456 TmpInst
.setOpcode(ARM::tMOVi8
);
10457 TmpInst
.addOperand(Inst
.getOperand(0));
10458 TmpInst
.addOperand(Inst
.getOperand(4));
10459 TmpInst
.addOperand(Inst
.getOperand(1));
10460 TmpInst
.addOperand(Inst
.getOperand(2));
10461 TmpInst
.addOperand(Inst
.getOperand(3));
10468 // If we can use the 16-bit encoding and the user didn't explicitly
10469 // request the 32-bit variant, transform it here.
10470 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
10471 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10472 Inst
.getOperand(2).getImm() == ARMCC::AL
&&
10473 Inst
.getOperand(4).getReg() == ARM::CPSR
&&
10474 !HasWideQualifier
) {
10475 // The operands aren't the same for tMOV[S]r... (no cc_out)
10477 unsigned Op
= Inst
.getOperand(4).getReg() ? ARM::tMOVSr
: ARM::tMOVr
;
10478 TmpInst
.setOpcode(Op
);
10479 TmpInst
.addOperand(Inst
.getOperand(0));
10480 TmpInst
.addOperand(Inst
.getOperand(1));
10481 if (Op
== ARM::tMOVr
) {
10482 TmpInst
.addOperand(Inst
.getOperand(2));
10483 TmpInst
.addOperand(Inst
.getOperand(3));
10494 // If we can use the 16-bit encoding and the user didn't explicitly
10495 // request the 32-bit variant, transform it here.
10496 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
10497 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10498 Inst
.getOperand(2).getImm() == 0 &&
10499 !HasWideQualifier
) {
10501 switch (Inst
.getOpcode()) {
10502 default: llvm_unreachable("Illegal opcode!");
10503 case ARM::t2SXTH
: NewOpc
= ARM::tSXTH
; break;
10504 case ARM::t2SXTB
: NewOpc
= ARM::tSXTB
; break;
10505 case ARM::t2UXTH
: NewOpc
= ARM::tUXTH
; break;
10506 case ARM::t2UXTB
: NewOpc
= ARM::tUXTB
; break;
10508 // The operands aren't the same for thumb1 (no rotate operand).
10510 TmpInst
.setOpcode(NewOpc
);
10511 TmpInst
.addOperand(Inst
.getOperand(0));
10512 TmpInst
.addOperand(Inst
.getOperand(1));
10513 TmpInst
.addOperand(Inst
.getOperand(3));
10514 TmpInst
.addOperand(Inst
.getOperand(4));
10521 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
10522 // rrx shifts and asr/lsr of #32 is encoded as 0
10523 if (SOpc
== ARM_AM::rrx
|| SOpc
== ARM_AM::asr
|| SOpc
== ARM_AM::lsr
)
10525 if (ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm()) == 0) {
10526 // Shifting by zero is accepted as a vanilla 'MOVr'
10528 TmpInst
.setOpcode(ARM::MOVr
);
10529 TmpInst
.addOperand(Inst
.getOperand(0));
10530 TmpInst
.addOperand(Inst
.getOperand(1));
10531 TmpInst
.addOperand(Inst
.getOperand(3));
10532 TmpInst
.addOperand(Inst
.getOperand(4));
10533 TmpInst
.addOperand(Inst
.getOperand(5));
10544 case ARM::ADDrsi
: {
10546 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm());
10547 if (SOpc
== ARM_AM::rrx
) return false;
10548 switch (Inst
.getOpcode()) {
10549 default: llvm_unreachable("unexpected opcode!");
10550 case ARM::ANDrsi
: newOpc
= ARM::ANDrr
; break;
10551 case ARM::ORRrsi
: newOpc
= ARM::ORRrr
; break;
10552 case ARM::EORrsi
: newOpc
= ARM::EORrr
; break;
10553 case ARM::BICrsi
: newOpc
= ARM::BICrr
; break;
10554 case ARM::SUBrsi
: newOpc
= ARM::SUBrr
; break;
10555 case ARM::ADDrsi
: newOpc
= ARM::ADDrr
; break;
10557 // If the shift is by zero, use the non-shifted instruction definition.
10558 // The exception is for right shifts, where 0 == 32
10559 if (ARM_AM::getSORegOffset(Inst
.getOperand(3).getImm()) == 0 &&
10560 !(SOpc
== ARM_AM::lsr
|| SOpc
== ARM_AM::asr
)) {
10562 TmpInst
.setOpcode(newOpc
);
10563 TmpInst
.addOperand(Inst
.getOperand(0));
10564 TmpInst
.addOperand(Inst
.getOperand(1));
10565 TmpInst
.addOperand(Inst
.getOperand(2));
10566 TmpInst
.addOperand(Inst
.getOperand(4));
10567 TmpInst
.addOperand(Inst
.getOperand(5));
10568 TmpInst
.addOperand(Inst
.getOperand(6));
10576 // Set up the IT block state according to the IT instruction we just
10578 assert(!inITBlock() && "nested IT blocks?!");
10579 startExplicitITBlock(ARMCC::CondCodes(Inst
.getOperand(0).getImm()),
10580 Inst
.getOperand(1).getImm());
10589 // Assemblers should use the narrow encodings of these instructions when permissible.
10590 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10591 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
10592 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
10593 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
10594 !HasWideQualifier
) {
10596 switch (Inst
.getOpcode()) {
10597 default: llvm_unreachable("unexpected opcode");
10598 case ARM::t2LSLrr
: NewOpc
= ARM::tLSLrr
; break;
10599 case ARM::t2LSRrr
: NewOpc
= ARM::tLSRrr
; break;
10600 case ARM::t2ASRrr
: NewOpc
= ARM::tASRrr
; break;
10601 case ARM::t2SBCrr
: NewOpc
= ARM::tSBC
; break;
10602 case ARM::t2RORrr
: NewOpc
= ARM::tROR
; break;
10603 case ARM::t2BICrr
: NewOpc
= ARM::tBIC
; break;
10606 TmpInst
.setOpcode(NewOpc
);
10607 TmpInst
.addOperand(Inst
.getOperand(0));
10608 TmpInst
.addOperand(Inst
.getOperand(5));
10609 TmpInst
.addOperand(Inst
.getOperand(1));
10610 TmpInst
.addOperand(Inst
.getOperand(2));
10611 TmpInst
.addOperand(Inst
.getOperand(3));
10612 TmpInst
.addOperand(Inst
.getOperand(4));
10622 // Assemblers should use the narrow encodings of these instructions when permissible.
10623 // These instructions are special in that they are commutable, so shorter encodings
10624 // are available more often.
10625 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10626 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
10627 (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() ||
10628 Inst
.getOperand(0).getReg() == Inst
.getOperand(2).getReg()) &&
10629 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
10630 !HasWideQualifier
) {
10632 switch (Inst
.getOpcode()) {
10633 default: llvm_unreachable("unexpected opcode");
10634 case ARM::t2ADCrr
: NewOpc
= ARM::tADC
; break;
10635 case ARM::t2ANDrr
: NewOpc
= ARM::tAND
; break;
10636 case ARM::t2EORrr
: NewOpc
= ARM::tEOR
; break;
10637 case ARM::t2ORRrr
: NewOpc
= ARM::tORR
; break;
10640 TmpInst
.setOpcode(NewOpc
);
10641 TmpInst
.addOperand(Inst
.getOperand(0));
10642 TmpInst
.addOperand(Inst
.getOperand(5));
10643 if (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg()) {
10644 TmpInst
.addOperand(Inst
.getOperand(1));
10645 TmpInst
.addOperand(Inst
.getOperand(2));
10647 TmpInst
.addOperand(Inst
.getOperand(2));
10648 TmpInst
.addOperand(Inst
.getOperand(1));
10650 TmpInst
.addOperand(Inst
.getOperand(3));
10651 TmpInst
.addOperand(Inst
.getOperand(4));
10656 case ARM::MVE_VPST
:
10657 case ARM::MVE_VPTv16i8
:
10658 case ARM::MVE_VPTv8i16
:
10659 case ARM::MVE_VPTv4i32
:
10660 case ARM::MVE_VPTv16u8
:
10661 case ARM::MVE_VPTv8u16
:
10662 case ARM::MVE_VPTv4u32
:
10663 case ARM::MVE_VPTv16s8
:
10664 case ARM::MVE_VPTv8s16
:
10665 case ARM::MVE_VPTv4s32
:
10666 case ARM::MVE_VPTv4f32
:
10667 case ARM::MVE_VPTv8f16
:
10668 case ARM::MVE_VPTv16i8r
:
10669 case ARM::MVE_VPTv8i16r
:
10670 case ARM::MVE_VPTv4i32r
:
10671 case ARM::MVE_VPTv16u8r
:
10672 case ARM::MVE_VPTv8u16r
:
10673 case ARM::MVE_VPTv4u32r
:
10674 case ARM::MVE_VPTv16s8r
:
10675 case ARM::MVE_VPTv8s16r
:
10676 case ARM::MVE_VPTv4s32r
:
10677 case ARM::MVE_VPTv4f32r
:
10678 case ARM::MVE_VPTv8f16r
: {
10679 assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10680 MCOperand
&MO
= Inst
.getOperand(0);
10681 VPTState
.Mask
= MO
.getImm();
10682 VPTState
.CurPosition
= 0;
10689 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst
&Inst
) {
10690 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10691 // suffix depending on whether they're in an IT block or not.
10692 unsigned Opc
= Inst
.getOpcode();
10693 const MCInstrDesc
&MCID
= MII
.get(Opc
);
10694 if (MCID
.TSFlags
& ARMII::ThumbArithFlagSetting
) {
10695 assert(MCID
.hasOptionalDef() &&
10696 "optionally flag setting instruction missing optional def operand");
10697 assert(MCID
.NumOperands
== Inst
.getNumOperands() &&
10698 "operand count mismatch!");
10699 // Find the optional-def operand (cc_out).
10702 !MCID
.OpInfo
[OpNo
].isOptionalDef() && OpNo
< MCID
.NumOperands
;
10705 // If we're parsing Thumb1, reject it completely.
10706 if (isThumbOne() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
)
10707 return Match_RequiresFlagSetting
;
10708 // If we're parsing Thumb2, which form is legal depends on whether we're
10710 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
&&
10712 return Match_RequiresITBlock
;
10713 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() == ARM::CPSR
&&
10715 return Match_RequiresNotITBlock
;
10716 // LSL with zero immediate is not allowed in an IT block
10717 if (Opc
== ARM::tLSLri
&& Inst
.getOperand(3).getImm() == 0 && inITBlock())
10718 return Match_RequiresNotITBlock
;
10719 } else if (isThumbOne()) {
10720 // Some high-register supporting Thumb1 encodings only allow both registers
10721 // to be from r0-r7 when in Thumb2.
10722 if (Opc
== ARM::tADDhirr
&& !hasV6MOps() &&
10723 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10724 isARMLowRegister(Inst
.getOperand(2).getReg()))
10725 return Match_RequiresThumb2
;
10726 // Others only require ARMv6 or later.
10727 else if (Opc
== ARM::tMOVr
&& !hasV6Ops() &&
10728 isARMLowRegister(Inst
.getOperand(0).getReg()) &&
10729 isARMLowRegister(Inst
.getOperand(1).getReg()))
10730 return Match_RequiresV6
;
10733 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10734 // than the loop below can handle, so it uses the GPRnopc register class and
10735 // we do SP handling here.
10736 if (Opc
== ARM::t2MOVr
&& !hasV8Ops())
10738 // SP as both source and destination is not allowed
10739 if (Inst
.getOperand(0).getReg() == ARM::SP
&&
10740 Inst
.getOperand(1).getReg() == ARM::SP
)
10741 return Match_RequiresV8
;
10742 // When flags-setting SP as either source or destination is not allowed
10743 if (Inst
.getOperand(4).getReg() == ARM::CPSR
&&
10744 (Inst
.getOperand(0).getReg() == ARM::SP
||
10745 Inst
.getOperand(1).getReg() == ARM::SP
))
10746 return Match_RequiresV8
;
10749 switch (Inst
.getOpcode()) {
10752 case ARM::VMRS_FPCXTS
:
10753 case ARM::VMRS_FPCXTNS
:
10754 case ARM::VMSR_FPCXTS
:
10755 case ARM::VMSR_FPCXTNS
:
10756 case ARM::VMRS_FPSCR_NZCVQC
:
10757 case ARM::VMSR_FPSCR_NZCVQC
:
10759 case ARM::VMRS_VPR
:
10761 case ARM::VMSR_VPR
:
10763 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10765 if (Inst
.getOperand(0).isReg() && Inst
.getOperand(0).getReg() == ARM::SP
&&
10766 (isThumb() && !hasV8Ops()))
10767 return Match_InvalidOperand
;
10771 // Rn = sp is only allowed with ARMv8-A
10772 if (!hasV8Ops() && (Inst
.getOperand(0).getReg() == ARM::SP
))
10773 return Match_RequiresV8
;
10779 for (unsigned I
= 0; I
< MCID
.NumOperands
; ++I
)
10780 if (MCID
.OpInfo
[I
].RegClass
== ARM::rGPRRegClassID
) {
10781 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10782 const auto &Op
= Inst
.getOperand(I
);
10784 // This can happen in awkward cases with tied operands, e.g. a
10785 // writeback load/store with a complex addressing mode in
10786 // which there's an output operand corresponding to the
10787 // updated written-back base register: the Tablegen-generated
10788 // AsmMatcher will have written a placeholder operand to that
10789 // slot in the form of an immediate 0, because it can't
10790 // generate the register part of the complex addressing-mode
10791 // operand ahead of time.
10795 unsigned Reg
= Op
.getReg();
10796 if ((Reg
== ARM::SP
) && !hasV8Ops())
10797 return Match_RequiresV8
;
10798 else if (Reg
== ARM::PC
)
10799 return Match_InvalidOperand
;
10802 return Match_Success
;
10807 template <> inline bool IsCPSRDead
<MCInst
>(const MCInst
*Instr
) {
10808 return true; // In an assembly source, no need to second-guess
10811 } // end namespace llvm
10813 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10814 // the last instruction in the block.
10815 bool ARMAsmParser::isITBlockTerminator(MCInst
&Inst
) const {
10816 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10818 // All branch & call instructions terminate IT blocks with the exception of
10820 if (MCID
.isTerminator() || (MCID
.isCall() && Inst
.getOpcode() != ARM::tSVC
) ||
10821 MCID
.isReturn() || MCID
.isBranch() || MCID
.isIndirectBranch())
10824 // Any arithmetic instruction which writes to the PC also terminates the IT
10826 if (MCID
.hasDefOfPhysReg(Inst
, ARM::PC
, *MRI
))
10832 unsigned ARMAsmParser::MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
10833 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
10834 bool MatchingInlineAsm
,
10835 bool &EmitInITBlock
,
10837 // If we can't use an implicit IT block here, just match as normal.
10838 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10839 return MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
10841 // Try to match the instruction in an extension of the current IT block (if
10843 if (inImplicitITBlock()) {
10844 extendImplicitITBlock(ITState
.Cond
);
10845 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
10847 // The match succeded, but we still have to check that the instruction is
10848 // valid in this implicit IT block.
10849 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10850 if (MCID
.isPredicable()) {
10851 ARMCC::CondCodes InstCond
=
10852 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
10854 ARMCC::CondCodes ITCond
= currentITCond();
10855 if (InstCond
== ITCond
) {
10856 EmitInITBlock
= true;
10857 return Match_Success
;
10858 } else if (InstCond
== ARMCC::getOppositeCondition(ITCond
)) {
10859 invertCurrentITCondition();
10860 EmitInITBlock
= true;
10861 return Match_Success
;
10865 rewindImplicitITPosition();
10868 // Finish the current IT block, and try to match outside any IT block.
10869 flushPendingInstructions(Out
);
10870 unsigned PlainMatchResult
=
10871 MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
10872 if (PlainMatchResult
== Match_Success
) {
10873 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10874 if (MCID
.isPredicable()) {
10875 ARMCC::CondCodes InstCond
=
10876 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
10878 // Some forms of the branch instruction have their own condition code
10879 // fields, so can be conditionally executed without an IT block.
10880 if (Inst
.getOpcode() == ARM::tBcc
|| Inst
.getOpcode() == ARM::t2Bcc
) {
10881 EmitInITBlock
= false;
10882 return Match_Success
;
10884 if (InstCond
== ARMCC::AL
) {
10885 EmitInITBlock
= false;
10886 return Match_Success
;
10889 EmitInITBlock
= false;
10890 return Match_Success
;
10894 // Try to match in a new IT block. The matcher doesn't check the actual
10895 // condition, so we create an IT block with a dummy condition, and fix it up
10896 // once we know the actual condition.
10897 startImplicitITBlock();
10898 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
10900 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10901 if (MCID
.isPredicable()) {
10903 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
10905 EmitInITBlock
= true;
10906 return Match_Success
;
10909 discardImplicitITBlock();
10911 // If none of these succeed, return the error we got when trying to match
10912 // outside any IT blocks.
10913 EmitInITBlock
= false;
10914 return PlainMatchResult
;
10917 static std::string
ARMMnemonicSpellCheck(StringRef S
, const FeatureBitset
&FBS
,
10918 unsigned VariantID
= 0);
10920 static const char *getSubtargetFeatureName(uint64_t Val
);
10921 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
10922 OperandVector
&Operands
,
10923 MCStreamer
&Out
, uint64_t &ErrorInfo
,
10924 bool MatchingInlineAsm
) {
10926 unsigned MatchResult
;
10927 bool PendConditionalInstruction
= false;
10929 SmallVector
<NearMissInfo
, 4> NearMisses
;
10930 MatchResult
= MatchInstruction(Operands
, Inst
, NearMisses
, MatchingInlineAsm
,
10931 PendConditionalInstruction
, Out
);
10933 switch (MatchResult
) {
10934 case Match_Success
:
10935 LLVM_DEBUG(dbgs() << "Parsed as: ";
10936 Inst
.dump_pretty(dbgs(), MII
.getName(Inst
.getOpcode()));
10939 // Context sensitive operand constraints aren't handled by the matcher,
10940 // so check them here.
10941 if (validateInstruction(Inst
, Operands
)) {
10942 // Still progress the IT block, otherwise one wrong condition causes
10943 // nasty cascading errors.
10944 forwardITPosition();
10945 forwardVPTPosition();
10949 { // processInstruction() updates inITBlock state, we need to save it away
10950 bool wasInITBlock
= inITBlock();
10952 // Some instructions need post-processing to, for example, tweak which
10953 // encoding is selected. Loop on it while changes happen so the
10954 // individual transformations can chain off each other. E.g.,
10955 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10956 while (processInstruction(Inst
, Operands
, Out
))
10957 LLVM_DEBUG(dbgs() << "Changed to: ";
10958 Inst
.dump_pretty(dbgs(), MII
.getName(Inst
.getOpcode()));
10961 // Only after the instruction is fully processed, we can validate it
10962 if (wasInITBlock
&& hasV8Ops() && isThumb() &&
10963 !isV8EligibleForIT(&Inst
)) {
10964 Warning(IDLoc
, "deprecated instruction in IT block");
10968 // Only move forward at the very end so that everything in validate
10969 // and process gets a consistent answer about whether we're in an IT
10971 forwardITPosition();
10972 forwardVPTPosition();
10974 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10975 // doesn't actually encode.
10976 if (Inst
.getOpcode() == ARM::ITasm
)
10979 Inst
.setLoc(IDLoc
);
10980 if (PendConditionalInstruction
) {
10981 PendingConditionalInsts
.push_back(Inst
);
10982 if (isITBlockFull() || isITBlockTerminator(Inst
))
10983 flushPendingInstructions(Out
);
10985 Out
.emitInstruction(Inst
, getSTI());
10988 case Match_NearMisses
:
10989 ReportNearMisses(NearMisses
, IDLoc
, Operands
);
10991 case Match_MnemonicFail
: {
10992 FeatureBitset FBS
= ComputeAvailableFeatures(getSTI().getFeatureBits());
10993 std::string Suggestion
= ARMMnemonicSpellCheck(
10994 ((ARMOperand
&)*Operands
[0]).getToken(), FBS
);
10995 return Error(IDLoc
, "invalid instruction" + Suggestion
,
10996 ((ARMOperand
&)*Operands
[0]).getLocRange());
11000 llvm_unreachable("Implement any new match types added!");
11003 /// parseDirective parses the arm specific directives
11004 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID
) {
11005 const MCContext::Environment Format
= getContext().getObjectFileType();
11006 bool IsMachO
= Format
== MCContext::IsMachO
;
11007 bool IsCOFF
= Format
== MCContext::IsCOFF
;
11009 std::string IDVal
= DirectiveID
.getIdentifier().lower();
11010 if (IDVal
== ".word")
11011 parseLiteralValues(4, DirectiveID
.getLoc());
11012 else if (IDVal
== ".short" || IDVal
== ".hword")
11013 parseLiteralValues(2, DirectiveID
.getLoc());
11014 else if (IDVal
== ".thumb")
11015 parseDirectiveThumb(DirectiveID
.getLoc());
11016 else if (IDVal
== ".arm")
11017 parseDirectiveARM(DirectiveID
.getLoc());
11018 else if (IDVal
== ".thumb_func")
11019 parseDirectiveThumbFunc(DirectiveID
.getLoc());
11020 else if (IDVal
== ".code")
11021 parseDirectiveCode(DirectiveID
.getLoc());
11022 else if (IDVal
== ".syntax")
11023 parseDirectiveSyntax(DirectiveID
.getLoc());
11024 else if (IDVal
== ".unreq")
11025 parseDirectiveUnreq(DirectiveID
.getLoc());
11026 else if (IDVal
== ".fnend")
11027 parseDirectiveFnEnd(DirectiveID
.getLoc());
11028 else if (IDVal
== ".cantunwind")
11029 parseDirectiveCantUnwind(DirectiveID
.getLoc());
11030 else if (IDVal
== ".personality")
11031 parseDirectivePersonality(DirectiveID
.getLoc());
11032 else if (IDVal
== ".handlerdata")
11033 parseDirectiveHandlerData(DirectiveID
.getLoc());
11034 else if (IDVal
== ".setfp")
11035 parseDirectiveSetFP(DirectiveID
.getLoc());
11036 else if (IDVal
== ".pad")
11037 parseDirectivePad(DirectiveID
.getLoc());
11038 else if (IDVal
== ".save")
11039 parseDirectiveRegSave(DirectiveID
.getLoc(), false);
11040 else if (IDVal
== ".vsave")
11041 parseDirectiveRegSave(DirectiveID
.getLoc(), true);
11042 else if (IDVal
== ".ltorg" || IDVal
== ".pool")
11043 parseDirectiveLtorg(DirectiveID
.getLoc());
11044 else if (IDVal
== ".even")
11045 parseDirectiveEven(DirectiveID
.getLoc());
11046 else if (IDVal
== ".personalityindex")
11047 parseDirectivePersonalityIndex(DirectiveID
.getLoc());
11048 else if (IDVal
== ".unwind_raw")
11049 parseDirectiveUnwindRaw(DirectiveID
.getLoc());
11050 else if (IDVal
== ".movsp")
11051 parseDirectiveMovSP(DirectiveID
.getLoc());
11052 else if (IDVal
== ".arch_extension")
11053 parseDirectiveArchExtension(DirectiveID
.getLoc());
11054 else if (IDVal
== ".align")
11055 return parseDirectiveAlign(DirectiveID
.getLoc()); // Use Generic on failure.
11056 else if (IDVal
== ".thumb_set")
11057 parseDirectiveThumbSet(DirectiveID
.getLoc());
11058 else if (IDVal
== ".inst")
11059 parseDirectiveInst(DirectiveID
.getLoc());
11060 else if (IDVal
== ".inst.n")
11061 parseDirectiveInst(DirectiveID
.getLoc(), 'n');
11062 else if (IDVal
== ".inst.w")
11063 parseDirectiveInst(DirectiveID
.getLoc(), 'w');
11064 else if (!IsMachO
&& !IsCOFF
) {
11065 if (IDVal
== ".arch")
11066 parseDirectiveArch(DirectiveID
.getLoc());
11067 else if (IDVal
== ".cpu")
11068 parseDirectiveCPU(DirectiveID
.getLoc());
11069 else if (IDVal
== ".eabi_attribute")
11070 parseDirectiveEabiAttr(DirectiveID
.getLoc());
11071 else if (IDVal
== ".fpu")
11072 parseDirectiveFPU(DirectiveID
.getLoc());
11073 else if (IDVal
== ".fnstart")
11074 parseDirectiveFnStart(DirectiveID
.getLoc());
11075 else if (IDVal
== ".object_arch")
11076 parseDirectiveObjectArch(DirectiveID
.getLoc());
11077 else if (IDVal
== ".tlsdescseq")
11078 parseDirectiveTLSDescSeq(DirectiveID
.getLoc());
11086 /// parseLiteralValues
11087 /// ::= .hword expression [, expression]*
11088 /// ::= .short expression [, expression]*
11089 /// ::= .word expression [, expression]*
11090 bool ARMAsmParser::parseLiteralValues(unsigned Size
, SMLoc L
) {
11091 auto parseOne
= [&]() -> bool {
11092 const MCExpr
*Value
;
11093 if (getParser().parseExpression(Value
))
11095 getParser().getStreamer().emitValue(Value
, Size
, L
);
11098 return (parseMany(parseOne
));
11101 /// parseDirectiveThumb
11103 bool ARMAsmParser::parseDirectiveThumb(SMLoc L
) {
11104 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
11105 check(!hasThumb(), L
, "target does not support Thumb mode"))
11111 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16
);
11115 /// parseDirectiveARM
11117 bool ARMAsmParser::parseDirectiveARM(SMLoc L
) {
11118 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
11119 check(!hasARM(), L
, "target does not support ARM mode"))
11124 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32
);
11128 void ARMAsmParser::doBeforeLabelEmit(MCSymbol
*Symbol
) {
11129 // We need to flush the current implicit IT block on a label, because it is
11130 // not legal to branch into an IT block.
11131 flushPendingInstructions(getStreamer());
11134 void ARMAsmParser::onLabelParsed(MCSymbol
*Symbol
) {
11135 if (NextSymbolIsThumb
) {
11136 getParser().getStreamer().emitThumbFunc(Symbol
);
11137 NextSymbolIsThumb
= false;
11141 /// parseDirectiveThumbFunc
11142 /// ::= .thumbfunc symbol_name
11143 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L
) {
11144 MCAsmParser
&Parser
= getParser();
11145 const auto Format
= getContext().getObjectFileType();
11146 bool IsMachO
= Format
== MCContext::IsMachO
;
11148 // Darwin asm has (optionally) function name after .thumb_func direction
11152 if (Parser
.getTok().is(AsmToken::Identifier
) ||
11153 Parser
.getTok().is(AsmToken::String
)) {
11154 MCSymbol
*Func
= getParser().getContext().getOrCreateSymbol(
11155 Parser
.getTok().getIdentifier());
11156 getParser().getStreamer().emitThumbFunc(Func
);
11158 if (parseToken(AsmToken::EndOfStatement
,
11159 "unexpected token in '.thumb_func' directive"))
11165 if (parseToken(AsmToken::EndOfStatement
,
11166 "unexpected token in '.thumb_func' directive"))
11169 // .thumb_func implies .thumb
11173 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16
);
11175 NextSymbolIsThumb
= true;
11179 /// parseDirectiveSyntax
11180 /// ::= .syntax unified | divided
11181 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L
) {
11182 MCAsmParser
&Parser
= getParser();
11183 const AsmToken
&Tok
= Parser
.getTok();
11184 if (Tok
.isNot(AsmToken::Identifier
)) {
11185 Error(L
, "unexpected token in .syntax directive");
11189 StringRef Mode
= Tok
.getString();
11191 if (check(Mode
== "divided" || Mode
== "DIVIDED", L
,
11192 "'.syntax divided' arm assembly not supported") ||
11193 check(Mode
!= "unified" && Mode
!= "UNIFIED", L
,
11194 "unrecognized syntax mode in .syntax directive") ||
11195 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11198 // TODO tell the MC streamer the mode
11199 // getParser().getStreamer().Emit???();
11203 /// parseDirectiveCode
11204 /// ::= .code 16 | 32
11205 bool ARMAsmParser::parseDirectiveCode(SMLoc L
) {
11206 MCAsmParser
&Parser
= getParser();
11207 const AsmToken
&Tok
= Parser
.getTok();
11208 if (Tok
.isNot(AsmToken::Integer
))
11209 return Error(L
, "unexpected token in .code directive");
11210 int64_t Val
= Parser
.getTok().getIntVal();
11211 if (Val
!= 16 && Val
!= 32) {
11212 Error(L
, "invalid operand to .code directive");
11217 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11222 return Error(L
, "target does not support Thumb mode");
11226 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16
);
11229 return Error(L
, "target does not support ARM mode");
11233 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32
);
11239 /// parseDirectiveReq
11240 /// ::= name .req registername
11241 bool ARMAsmParser::parseDirectiveReq(StringRef Name
, SMLoc L
) {
11242 MCAsmParser
&Parser
= getParser();
11243 Parser
.Lex(); // Eat the '.req' token.
11245 SMLoc SRegLoc
, ERegLoc
;
11246 if (check(ParseRegister(Reg
, SRegLoc
, ERegLoc
), SRegLoc
,
11247 "register name expected") ||
11248 parseToken(AsmToken::EndOfStatement
,
11249 "unexpected input in .req directive."))
11252 if (RegisterReqs
.insert(std::make_pair(Name
, Reg
)).first
->second
!= Reg
)
11253 return Error(SRegLoc
,
11254 "redefinition of '" + Name
+ "' does not match original.");
11259 /// parseDirectiveUneq
11260 /// ::= .unreq registername
11261 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L
) {
11262 MCAsmParser
&Parser
= getParser();
11263 if (Parser
.getTok().isNot(AsmToken::Identifier
))
11264 return Error(L
, "unexpected input in .unreq directive.");
11265 RegisterReqs
.erase(Parser
.getTok().getIdentifier().lower());
11266 Parser
.Lex(); // Eat the identifier.
11267 if (parseToken(AsmToken::EndOfStatement
,
11268 "unexpected input in '.unreq' directive"))
11273 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
11274 // before, if supported by the new target, or emit mapping symbols for the mode
11276 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
) {
11277 if (WasThumb
!= isThumb()) {
11278 if (WasThumb
&& hasThumb()) {
11279 // Stay in Thumb mode
11281 } else if (!WasThumb
&& hasARM()) {
11282 // Stay in ARM mode
11285 // Mode switch forced, because the new arch doesn't support the old mode.
11286 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
11288 // Warn about the implcit mode switch. GAS does not switch modes here,
11289 // but instead stays in the old mode, reporting an error on any following
11290 // instructions as the mode does not exist on the target.
11291 Warning(Loc
, Twine("new target does not support ") +
11292 (WasThumb
? "thumb" : "arm") + " mode, switching to " +
11293 (!WasThumb
? "thumb" : "arm") + " mode");
11298 /// parseDirectiveArch
11299 /// ::= .arch token
11300 bool ARMAsmParser::parseDirectiveArch(SMLoc L
) {
11301 StringRef Arch
= getParser().parseStringToEndOfStatement().trim();
11302 ARM::ArchKind ID
= ARM::parseArch(Arch
);
11304 if (ID
== ARM::ArchKind::INVALID
)
11305 return Error(L
, "Unknown arch name");
11307 bool WasThumb
= isThumb();
11309 MCSubtargetInfo
&STI
= copySTI();
11310 STI
.setDefaultFeatures("", /*TuneCPU*/ "",
11311 ("+" + ARM::getArchName(ID
)).str());
11312 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
11313 FixModeAfterArchChange(WasThumb
, L
);
11315 getTargetStreamer().emitArch(ID
);
11319 /// parseDirectiveEabiAttr
11320 /// ::= .eabi_attribute int, int [, "str"]
11321 /// ::= .eabi_attribute Tag_name, int [, "str"]
11322 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L
) {
11323 MCAsmParser
&Parser
= getParser();
11326 TagLoc
= Parser
.getTok().getLoc();
11327 if (Parser
.getTok().is(AsmToken::Identifier
)) {
11328 StringRef Name
= Parser
.getTok().getIdentifier();
11329 Optional
<unsigned> Ret
= ELFAttrs::attrTypeFromString(
11330 Name
, ARMBuildAttrs::getARMAttributeTags());
11331 if (!Ret
.hasValue()) {
11332 Error(TagLoc
, "attribute name not recognised: " + Name
);
11335 Tag
= Ret
.getValue();
11338 const MCExpr
*AttrExpr
;
11340 TagLoc
= Parser
.getTok().getLoc();
11341 if (Parser
.parseExpression(AttrExpr
))
11344 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(AttrExpr
);
11345 if (check(!CE
, TagLoc
, "expected numeric constant"))
11348 Tag
= CE
->getValue();
11351 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
11354 StringRef StringValue
= "";
11355 bool IsStringValue
= false;
11357 int64_t IntegerValue
= 0;
11358 bool IsIntegerValue
= false;
11360 if (Tag
== ARMBuildAttrs::CPU_raw_name
|| Tag
== ARMBuildAttrs::CPU_name
)
11361 IsStringValue
= true;
11362 else if (Tag
== ARMBuildAttrs::compatibility
) {
11363 IsStringValue
= true;
11364 IsIntegerValue
= true;
11365 } else if (Tag
< 32 || Tag
% 2 == 0)
11366 IsIntegerValue
= true;
11367 else if (Tag
% 2 == 1)
11368 IsStringValue
= true;
11370 llvm_unreachable("invalid tag type");
11372 if (IsIntegerValue
) {
11373 const MCExpr
*ValueExpr
;
11374 SMLoc ValueExprLoc
= Parser
.getTok().getLoc();
11375 if (Parser
.parseExpression(ValueExpr
))
11378 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ValueExpr
);
11380 return Error(ValueExprLoc
, "expected numeric constant");
11381 IntegerValue
= CE
->getValue();
11384 if (Tag
== ARMBuildAttrs::compatibility
) {
11385 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
11389 if (IsStringValue
) {
11390 if (Parser
.getTok().isNot(AsmToken::String
))
11391 return Error(Parser
.getTok().getLoc(), "bad string constant");
11393 StringValue
= Parser
.getTok().getStringContents();
11397 if (Parser
.parseToken(AsmToken::EndOfStatement
,
11398 "unexpected token in '.eabi_attribute' directive"))
11401 if (IsIntegerValue
&& IsStringValue
) {
11402 assert(Tag
== ARMBuildAttrs::compatibility
);
11403 getTargetStreamer().emitIntTextAttribute(Tag
, IntegerValue
, StringValue
);
11404 } else if (IsIntegerValue
)
11405 getTargetStreamer().emitAttribute(Tag
, IntegerValue
);
11406 else if (IsStringValue
)
11407 getTargetStreamer().emitTextAttribute(Tag
, StringValue
);
11411 /// parseDirectiveCPU
11413 bool ARMAsmParser::parseDirectiveCPU(SMLoc L
) {
11414 StringRef CPU
= getParser().parseStringToEndOfStatement().trim();
11415 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name
, CPU
);
11417 // FIXME: This is using table-gen data, but should be moved to
11418 // ARMTargetParser once that is table-gen'd.
11419 if (!getSTI().isCPUStringValid(CPU
))
11420 return Error(L
, "Unknown CPU name");
11422 bool WasThumb
= isThumb();
11423 MCSubtargetInfo
&STI
= copySTI();
11424 STI
.setDefaultFeatures(CPU
, /*TuneCPU*/ CPU
, "");
11425 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
11426 FixModeAfterArchChange(WasThumb
, L
);
11431 /// parseDirectiveFPU
11433 bool ARMAsmParser::parseDirectiveFPU(SMLoc L
) {
11434 SMLoc FPUNameLoc
= getTok().getLoc();
11435 StringRef FPU
= getParser().parseStringToEndOfStatement().trim();
11437 unsigned ID
= ARM::parseFPU(FPU
);
11438 std::vector
<StringRef
> Features
;
11439 if (!ARM::getFPUFeatures(ID
, Features
))
11440 return Error(FPUNameLoc
, "Unknown FPU name");
11442 MCSubtargetInfo
&STI
= copySTI();
11443 for (auto Feature
: Features
)
11444 STI
.ApplyFeatureFlag(Feature
);
11445 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
11447 getTargetStreamer().emitFPU(ID
);
11451 /// parseDirectiveFnStart
11453 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L
) {
11454 if (parseToken(AsmToken::EndOfStatement
,
11455 "unexpected token in '.fnstart' directive"))
11458 if (UC
.hasFnStart()) {
11459 Error(L
, ".fnstart starts before the end of previous one");
11460 UC
.emitFnStartLocNotes();
11464 // Reset the unwind directives parser state
11467 getTargetStreamer().emitFnStart();
11469 UC
.recordFnStart(L
);
11473 /// parseDirectiveFnEnd
11475 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L
) {
11476 if (parseToken(AsmToken::EndOfStatement
,
11477 "unexpected token in '.fnend' directive"))
11479 // Check the ordering of unwind directives
11480 if (!UC
.hasFnStart())
11481 return Error(L
, ".fnstart must precede .fnend directive");
11483 // Reset the unwind directives parser state
11484 getTargetStreamer().emitFnEnd();
11490 /// parseDirectiveCantUnwind
11491 /// ::= .cantunwind
11492 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L
) {
11493 if (parseToken(AsmToken::EndOfStatement
,
11494 "unexpected token in '.cantunwind' directive"))
11497 UC
.recordCantUnwind(L
);
11498 // Check the ordering of unwind directives
11499 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .cantunwind directive"))
11502 if (UC
.hasHandlerData()) {
11503 Error(L
, ".cantunwind can't be used with .handlerdata directive");
11504 UC
.emitHandlerDataLocNotes();
11507 if (UC
.hasPersonality()) {
11508 Error(L
, ".cantunwind can't be used with .personality directive");
11509 UC
.emitPersonalityLocNotes();
11513 getTargetStreamer().emitCantUnwind();
11517 /// parseDirectivePersonality
11518 /// ::= .personality name
11519 bool ARMAsmParser::parseDirectivePersonality(SMLoc L
) {
11520 MCAsmParser
&Parser
= getParser();
11521 bool HasExistingPersonality
= UC
.hasPersonality();
11523 // Parse the name of the personality routine
11524 if (Parser
.getTok().isNot(AsmToken::Identifier
))
11525 return Error(L
, "unexpected input in .personality directive.");
11526 StringRef
Name(Parser
.getTok().getIdentifier());
11529 if (parseToken(AsmToken::EndOfStatement
,
11530 "unexpected token in '.personality' directive"))
11533 UC
.recordPersonality(L
);
11535 // Check the ordering of unwind directives
11536 if (!UC
.hasFnStart())
11537 return Error(L
, ".fnstart must precede .personality directive");
11538 if (UC
.cantUnwind()) {
11539 Error(L
, ".personality can't be used with .cantunwind directive");
11540 UC
.emitCantUnwindLocNotes();
11543 if (UC
.hasHandlerData()) {
11544 Error(L
, ".personality must precede .handlerdata directive");
11545 UC
.emitHandlerDataLocNotes();
11548 if (HasExistingPersonality
) {
11549 Error(L
, "multiple personality directives");
11550 UC
.emitPersonalityLocNotes();
11554 MCSymbol
*PR
= getParser().getContext().getOrCreateSymbol(Name
);
11555 getTargetStreamer().emitPersonality(PR
);
11559 /// parseDirectiveHandlerData
11560 /// ::= .handlerdata
11561 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L
) {
11562 if (parseToken(AsmToken::EndOfStatement
,
11563 "unexpected token in '.handlerdata' directive"))
11566 UC
.recordHandlerData(L
);
11567 // Check the ordering of unwind directives
11568 if (!UC
.hasFnStart())
11569 return Error(L
, ".fnstart must precede .personality directive");
11570 if (UC
.cantUnwind()) {
11571 Error(L
, ".handlerdata can't be used with .cantunwind directive");
11572 UC
.emitCantUnwindLocNotes();
11576 getTargetStreamer().emitHandlerData();
11580 /// parseDirectiveSetFP
11581 /// ::= .setfp fpreg, spreg [, offset]
11582 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L
) {
11583 MCAsmParser
&Parser
= getParser();
11584 // Check the ordering of unwind directives
11585 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .setfp directive") ||
11586 check(UC
.hasHandlerData(), L
,
11587 ".setfp must precede .handlerdata directive"))
11591 SMLoc FPRegLoc
= Parser
.getTok().getLoc();
11592 int FPReg
= tryParseRegister();
11594 if (check(FPReg
== -1, FPRegLoc
, "frame pointer register expected") ||
11595 Parser
.parseToken(AsmToken::Comma
, "comma expected"))
11599 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
11600 int SPReg
= tryParseRegister();
11601 if (check(SPReg
== -1, SPRegLoc
, "stack pointer register expected") ||
11602 check(SPReg
!= ARM::SP
&& SPReg
!= UC
.getFPReg(), SPRegLoc
,
11603 "register should be either $sp or the latest fp register"))
11606 // Update the frame pointer register
11607 UC
.saveFPReg(FPReg
);
11610 int64_t Offset
= 0;
11611 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
11612 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
11613 Parser
.getTok().isNot(AsmToken::Dollar
))
11614 return Error(Parser
.getTok().getLoc(), "'#' expected");
11615 Parser
.Lex(); // skip hash token.
11617 const MCExpr
*OffsetExpr
;
11618 SMLoc ExLoc
= Parser
.getTok().getLoc();
11620 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
11621 return Error(ExLoc
, "malformed setfp offset");
11622 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11623 if (check(!CE
, ExLoc
, "setfp offset must be an immediate"))
11625 Offset
= CE
->getValue();
11628 if (Parser
.parseToken(AsmToken::EndOfStatement
))
11631 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg
),
11632 static_cast<unsigned>(SPReg
), Offset
);
11637 /// ::= .pad offset
11638 bool ARMAsmParser::parseDirectivePad(SMLoc L
) {
11639 MCAsmParser
&Parser
= getParser();
11640 // Check the ordering of unwind directives
11641 if (!UC
.hasFnStart())
11642 return Error(L
, ".fnstart must precede .pad directive");
11643 if (UC
.hasHandlerData())
11644 return Error(L
, ".pad must precede .handlerdata directive");
11646 // Parse the offset
11647 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
11648 Parser
.getTok().isNot(AsmToken::Dollar
))
11649 return Error(Parser
.getTok().getLoc(), "'#' expected");
11650 Parser
.Lex(); // skip hash token.
11652 const MCExpr
*OffsetExpr
;
11653 SMLoc ExLoc
= Parser
.getTok().getLoc();
11655 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
11656 return Error(ExLoc
, "malformed pad offset");
11657 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11659 return Error(ExLoc
, "pad offset must be an immediate");
11661 if (parseToken(AsmToken::EndOfStatement
,
11662 "unexpected token in '.pad' directive"))
11665 getTargetStreamer().emitPad(CE
->getValue());
11669 /// parseDirectiveRegSave
11670 /// ::= .save { registers }
11671 /// ::= .vsave { registers }
11672 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L
, bool IsVector
) {
11673 // Check the ordering of unwind directives
11674 if (!UC
.hasFnStart())
11675 return Error(L
, ".fnstart must precede .save or .vsave directives");
11676 if (UC
.hasHandlerData())
11677 return Error(L
, ".save or .vsave must precede .handlerdata directive");
11679 // RAII object to make sure parsed operands are deleted.
11680 SmallVector
<std::unique_ptr
<MCParsedAsmOperand
>, 1> Operands
;
11682 // Parse the register list
11683 if (parseRegisterList(Operands
) ||
11684 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11686 ARMOperand
&Op
= (ARMOperand
&)*Operands
[0];
11687 if (!IsVector
&& !Op
.isRegList())
11688 return Error(L
, ".save expects GPR registers");
11689 if (IsVector
&& !Op
.isDPRRegList())
11690 return Error(L
, ".vsave expects DPR registers");
11692 getTargetStreamer().emitRegSave(Op
.getRegList(), IsVector
);
11696 /// parseDirectiveInst
11697 /// ::= .inst opcode [, ...]
11698 /// ::= .inst.n opcode [, ...]
11699 /// ::= .inst.w opcode [, ...]
11700 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc
, char Suffix
) {
11716 return Error(Loc
, "width suffixes are invalid in ARM mode");
11719 auto parseOne
= [&]() -> bool {
11720 const MCExpr
*Expr
;
11721 if (getParser().parseExpression(Expr
))
11723 const MCConstantExpr
*Value
= dyn_cast_or_null
<MCConstantExpr
>(Expr
);
11725 return Error(Loc
, "expected constant expression");
11728 char CurSuffix
= Suffix
;
11731 if (Value
->getValue() > 0xffff)
11732 return Error(Loc
, "inst.n operand is too big, use inst.w instead");
11735 if (Value
->getValue() > 0xffffffff)
11736 return Error(Loc
, StringRef(Suffix
? "inst.w" : "inst") +
11737 " operand is too big");
11740 // Thumb mode, no width indicated. Guess from the opcode, if possible.
11741 if (Value
->getValue() < 0xe800)
11743 else if (Value
->getValue() >= 0xe8000000)
11746 return Error(Loc
, "cannot determine Thumb instruction size, "
11747 "use inst.n/inst.w instead");
11750 llvm_unreachable("only supported widths are 2 and 4");
11753 getTargetStreamer().emitInst(Value
->getValue(), CurSuffix
);
11757 if (parseOptionalToken(AsmToken::EndOfStatement
))
11758 return Error(Loc
, "expected expression following directive");
11759 if (parseMany(parseOne
))
11764 /// parseDirectiveLtorg
11765 /// ::= .ltorg | .pool
11766 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L
) {
11767 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11769 getTargetStreamer().emitCurrentConstantPool();
11773 bool ARMAsmParser::parseDirectiveEven(SMLoc L
) {
11774 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
11776 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11780 getStreamer().InitSections(false);
11781 Section
= getStreamer().getCurrentSectionOnly();
11784 assert(Section
&& "must have section to emit alignment");
11785 if (Section
->UseCodeAlign())
11786 getStreamer().emitCodeAlignment(2);
11788 getStreamer().emitValueToAlignment(2);
11793 /// parseDirectivePersonalityIndex
11794 /// ::= .personalityindex index
11795 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L
) {
11796 MCAsmParser
&Parser
= getParser();
11797 bool HasExistingPersonality
= UC
.hasPersonality();
11799 const MCExpr
*IndexExpression
;
11800 SMLoc IndexLoc
= Parser
.getTok().getLoc();
11801 if (Parser
.parseExpression(IndexExpression
) ||
11802 parseToken(AsmToken::EndOfStatement
,
11803 "unexpected token in '.personalityindex' directive")) {
11807 UC
.recordPersonalityIndex(L
);
11809 if (!UC
.hasFnStart()) {
11810 return Error(L
, ".fnstart must precede .personalityindex directive");
11812 if (UC
.cantUnwind()) {
11813 Error(L
, ".personalityindex cannot be used with .cantunwind");
11814 UC
.emitCantUnwindLocNotes();
11817 if (UC
.hasHandlerData()) {
11818 Error(L
, ".personalityindex must precede .handlerdata directive");
11819 UC
.emitHandlerDataLocNotes();
11822 if (HasExistingPersonality
) {
11823 Error(L
, "multiple personality directives");
11824 UC
.emitPersonalityLocNotes();
11828 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(IndexExpression
);
11830 return Error(IndexLoc
, "index must be a constant number");
11831 if (CE
->getValue() < 0 || CE
->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX
)
11832 return Error(IndexLoc
,
11833 "personality routine index should be in range [0-3]");
11835 getTargetStreamer().emitPersonalityIndex(CE
->getValue());
11839 /// parseDirectiveUnwindRaw
11840 /// ::= .unwind_raw offset, opcode [, opcode...]
11841 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L
) {
11842 MCAsmParser
&Parser
= getParser();
11843 int64_t StackOffset
;
11844 const MCExpr
*OffsetExpr
;
11845 SMLoc OffsetLoc
= getLexer().getLoc();
11847 if (!UC
.hasFnStart())
11848 return Error(L
, ".fnstart must precede .unwind_raw directives");
11849 if (getParser().parseExpression(OffsetExpr
))
11850 return Error(OffsetLoc
, "expected expression");
11852 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11854 return Error(OffsetLoc
, "offset must be a constant");
11856 StackOffset
= CE
->getValue();
11858 if (Parser
.parseToken(AsmToken::Comma
, "expected comma"))
11861 SmallVector
<uint8_t, 16> Opcodes
;
11863 auto parseOne
= [&]() -> bool {
11864 const MCExpr
*OE
= nullptr;
11865 SMLoc OpcodeLoc
= getLexer().getLoc();
11866 if (check(getLexer().is(AsmToken::EndOfStatement
) ||
11867 Parser
.parseExpression(OE
),
11868 OpcodeLoc
, "expected opcode expression"))
11870 const MCConstantExpr
*OC
= dyn_cast
<MCConstantExpr
>(OE
);
11872 return Error(OpcodeLoc
, "opcode value must be a constant");
11873 const int64_t Opcode
= OC
->getValue();
11874 if (Opcode
& ~0xff)
11875 return Error(OpcodeLoc
, "invalid opcode");
11876 Opcodes
.push_back(uint8_t(Opcode
));
11880 // Must have at least 1 element
11881 SMLoc OpcodeLoc
= getLexer().getLoc();
11882 if (parseOptionalToken(AsmToken::EndOfStatement
))
11883 return Error(OpcodeLoc
, "expected opcode expression");
11884 if (parseMany(parseOne
))
11887 getTargetStreamer().emitUnwindRaw(StackOffset
, Opcodes
);
11891 /// parseDirectiveTLSDescSeq
11892 /// ::= .tlsdescseq tls-variable
11893 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L
) {
11894 MCAsmParser
&Parser
= getParser();
11896 if (getLexer().isNot(AsmToken::Identifier
))
11897 return TokError("expected variable after '.tlsdescseq' directive");
11899 const MCSymbolRefExpr
*SRE
=
11900 MCSymbolRefExpr::create(Parser
.getTok().getIdentifier(),
11901 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ
, getContext());
11904 if (parseToken(AsmToken::EndOfStatement
,
11905 "unexpected token in '.tlsdescseq' directive"))
11908 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE
);
11912 /// parseDirectiveMovSP
11913 /// ::= .movsp reg [, #offset]
11914 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L
) {
11915 MCAsmParser
&Parser
= getParser();
11916 if (!UC
.hasFnStart())
11917 return Error(L
, ".fnstart must precede .movsp directives");
11918 if (UC
.getFPReg() != ARM::SP
)
11919 return Error(L
, "unexpected .movsp directive");
11921 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
11922 int SPReg
= tryParseRegister();
11924 return Error(SPRegLoc
, "register expected");
11925 if (SPReg
== ARM::SP
|| SPReg
== ARM::PC
)
11926 return Error(SPRegLoc
, "sp and pc are not permitted in .movsp directive");
11928 int64_t Offset
= 0;
11929 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
11930 if (Parser
.parseToken(AsmToken::Hash
, "expected #constant"))
11933 const MCExpr
*OffsetExpr
;
11934 SMLoc OffsetLoc
= Parser
.getTok().getLoc();
11936 if (Parser
.parseExpression(OffsetExpr
))
11937 return Error(OffsetLoc
, "malformed offset expression");
11939 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11941 return Error(OffsetLoc
, "offset must be an immediate constant");
11943 Offset
= CE
->getValue();
11946 if (parseToken(AsmToken::EndOfStatement
,
11947 "unexpected token in '.movsp' directive"))
11950 getTargetStreamer().emitMovSP(SPReg
, Offset
);
11951 UC
.saveFPReg(SPReg
);
11956 /// parseDirectiveObjectArch
11957 /// ::= .object_arch name
11958 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L
) {
11959 MCAsmParser
&Parser
= getParser();
11960 if (getLexer().isNot(AsmToken::Identifier
))
11961 return Error(getLexer().getLoc(), "unexpected token");
11963 StringRef Arch
= Parser
.getTok().getString();
11964 SMLoc ArchLoc
= Parser
.getTok().getLoc();
11967 ARM::ArchKind ID
= ARM::parseArch(Arch
);
11969 if (ID
== ARM::ArchKind::INVALID
)
11970 return Error(ArchLoc
, "unknown architecture '" + Arch
+ "'");
11971 if (parseToken(AsmToken::EndOfStatement
))
11974 getTargetStreamer().emitObjectArch(ID
);
11978 /// parseDirectiveAlign
11980 bool ARMAsmParser::parseDirectiveAlign(SMLoc L
) {
11981 // NOTE: if this is not the end of the statement, fall back to the target
11982 // agnostic handling for this directive which will correctly handle this.
11983 if (parseOptionalToken(AsmToken::EndOfStatement
)) {
11984 // '.align' is target specifically handled to mean 2**2 byte alignment.
11985 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
11986 assert(Section
&& "must have section to emit alignment");
11987 if (Section
->UseCodeAlign())
11988 getStreamer().emitCodeAlignment(4, 0);
11990 getStreamer().emitValueToAlignment(4, 0, 1, 0);
11996 /// parseDirectiveThumbSet
11997 /// ::= .thumb_set name, value
11998 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L
) {
11999 MCAsmParser
&Parser
= getParser();
12002 if (check(Parser
.parseIdentifier(Name
),
12003 "expected identifier after '.thumb_set'") ||
12004 parseToken(AsmToken::Comma
, "expected comma after name '" + Name
+ "'"))
12008 const MCExpr
*Value
;
12009 if (MCParserUtils::parseAssignmentExpression(Name
, /* allow_redef */ true,
12010 Parser
, Sym
, Value
))
12013 getTargetStreamer().emitThumbSet(Sym
, Value
);
12017 /// Force static initialization.
12018 extern "C" LLVM_EXTERNAL_VISIBILITY
void LLVMInitializeARMAsmParser() {
12019 RegisterMCAsmParser
<ARMAsmParser
> X(getTheARMLETarget());
12020 RegisterMCAsmParser
<ARMAsmParser
> Y(getTheARMBETarget());
12021 RegisterMCAsmParser
<ARMAsmParser
> A(getTheThumbLETarget());
12022 RegisterMCAsmParser
<ARMAsmParser
> B(getTheThumbBETarget());
12025 #define GET_REGISTER_MATCHER
12026 #define GET_SUBTARGET_FEATURE_NAME
12027 #define GET_MATCHER_IMPLEMENTATION
12028 #define GET_MNEMONIC_SPELL_CHECKER
12029 #include "ARMGenAsmMatcher.inc"
12031 // Some diagnostics need to vary with subtarget features, so they are handled
12032 // here. For example, the DPR class has either 16 or 32 registers, depending
12033 // on the FPU available.
12035 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError
) {
12036 switch (MatchError
) {
12037 // rGPR contains sp starting with ARMv8.
12039 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
12040 : "operand must be a register in range [r0, r12] or r14";
12041 // DPR contains 16 registers for some FPUs, and 32 for others.
12043 return hasD32() ? "operand must be a register in range [d0, d31]"
12044 : "operand must be a register in range [d0, d15]";
12045 case Match_DPR_RegList
:
12046 return hasD32() ? "operand must be a list of registers in range [d0, d31]"
12047 : "operand must be a list of registers in range [d0, d15]";
12049 // For all other diags, use the static string from tablegen.
12051 return getMatchKindDiag(MatchError
);
12055 // Process the list of near-misses, throwing away ones we don't want to report
12056 // to the user, and converting the rest to a source location and string that
12057 // should be reported.
12059 ARMAsmParser::FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
12060 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
12061 SMLoc IDLoc
, OperandVector
&Operands
) {
12062 // TODO: If operand didn't match, sub in a dummy one and run target
12063 // predicate, so that we can avoid reporting near-misses that are invalid?
12064 // TODO: Many operand types dont have SuperClasses set, so we report
12066 // TODO: Some operands are superclasses of registers (e.g.
12067 // MCK_RegShiftedImm), we don't have any way to represent that currently.
12068 // TODO: This is not all ARM-specific, can some of it be factored out?
12070 // Record some information about near-misses that we have already seen, so
12071 // that we can avoid reporting redundant ones. For example, if there are
12072 // variants of an instruction that take 8- and 16-bit immediates, we want
12073 // to only report the widest one.
12074 std::multimap
<unsigned, unsigned> OperandMissesSeen
;
12075 SmallSet
<FeatureBitset
, 4> FeatureMissesSeen
;
12076 bool ReportedTooFewOperands
= false;
12078 // Process the near-misses in reverse order, so that we see more general ones
12079 // first, and so can avoid emitting more specific ones.
12080 for (NearMissInfo
&I
: reverse(NearMissesIn
)) {
12081 switch (I
.getKind()) {
12082 case NearMissInfo::NearMissOperand
: {
12084 ((ARMOperand
&)*Operands
[I
.getOperandIndex()]).getStartLoc();
12085 const char *OperandDiag
=
12086 getCustomOperandDiag((ARMMatchResultTy
)I
.getOperandError());
12088 // If we have already emitted a message for a superclass, don't also report
12089 // the sub-class. We consider all operand classes that we don't have a
12090 // specialised diagnostic for to be equal for the propose of this check,
12091 // so that we don't report the generic error multiple times on the same
12093 unsigned DupCheckMatchClass
= OperandDiag
? I
.getOperandClass() : ~0U;
12094 auto PrevReports
= OperandMissesSeen
.equal_range(I
.getOperandIndex());
12095 if (std::any_of(PrevReports
.first
, PrevReports
.second
,
12096 [DupCheckMatchClass
](
12097 const std::pair
<unsigned, unsigned> Pair
) {
12098 if (DupCheckMatchClass
== ~0U || Pair
.second
== ~0U)
12099 return Pair
.second
== DupCheckMatchClass
;
12101 return isSubclass((MatchClassKind
)DupCheckMatchClass
,
12102 (MatchClassKind
)Pair
.second
);
12105 OperandMissesSeen
.insert(
12106 std::make_pair(I
.getOperandIndex(), DupCheckMatchClass
));
12108 NearMissMessage Message
;
12109 Message
.Loc
= OperandLoc
;
12111 Message
.Message
= OperandDiag
;
12112 } else if (I
.getOperandClass() == InvalidMatchClass
) {
12113 Message
.Message
= "too many operands for instruction";
12115 Message
.Message
= "invalid operand for instruction";
12117 dbgs() << "Missing diagnostic string for operand class "
12118 << getMatchClassName((MatchClassKind
)I
.getOperandClass())
12119 << I
.getOperandClass() << ", error " << I
.getOperandError()
12120 << ", opcode " << MII
.getName(I
.getOpcode()) << "\n");
12122 NearMissesOut
.emplace_back(Message
);
12125 case NearMissInfo::NearMissFeature
: {
12126 const FeatureBitset
&MissingFeatures
= I
.getFeatures();
12127 // Don't report the same set of features twice.
12128 if (FeatureMissesSeen
.count(MissingFeatures
))
12130 FeatureMissesSeen
.insert(MissingFeatures
);
12132 // Special case: don't report a feature set which includes arm-mode for
12133 // targets that don't have ARM mode.
12134 if (MissingFeatures
.test(Feature_IsARMBit
) && !hasARM())
12136 // Don't report any near-misses that both require switching instruction
12137 // set, and adding other subtarget features.
12138 if (isThumb() && MissingFeatures
.test(Feature_IsARMBit
) &&
12139 MissingFeatures
.count() > 1)
12141 if (!isThumb() && MissingFeatures
.test(Feature_IsThumbBit
) &&
12142 MissingFeatures
.count() > 1)
12144 if (!isThumb() && MissingFeatures
.test(Feature_IsThumb2Bit
) &&
12145 (MissingFeatures
& ~FeatureBitset({Feature_IsThumb2Bit
,
12146 Feature_IsThumbBit
})).any())
12148 if (isMClass() && MissingFeatures
.test(Feature_HasNEONBit
))
12151 NearMissMessage Message
;
12152 Message
.Loc
= IDLoc
;
12153 raw_svector_ostream
OS(Message
.Message
);
12155 OS
<< "instruction requires:";
12156 for (unsigned i
= 0, e
= MissingFeatures
.size(); i
!= e
; ++i
)
12157 if (MissingFeatures
.test(i
))
12158 OS
<< ' ' << getSubtargetFeatureName(i
);
12160 NearMissesOut
.emplace_back(Message
);
12164 case NearMissInfo::NearMissPredicate
: {
12165 NearMissMessage Message
;
12166 Message
.Loc
= IDLoc
;
12167 switch (I
.getPredicateError()) {
12168 case Match_RequiresNotITBlock
:
12169 Message
.Message
= "flag setting instruction only valid outside IT block";
12171 case Match_RequiresITBlock
:
12172 Message
.Message
= "instruction only valid inside IT block";
12174 case Match_RequiresV6
:
12175 Message
.Message
= "instruction variant requires ARMv6 or later";
12177 case Match_RequiresThumb2
:
12178 Message
.Message
= "instruction variant requires Thumb2";
12180 case Match_RequiresV8
:
12181 Message
.Message
= "instruction variant requires ARMv8 or later";
12183 case Match_RequiresFlagSetting
:
12184 Message
.Message
= "no flag-preserving variant of this instruction available";
12186 case Match_InvalidOperand
:
12187 Message
.Message
= "invalid operand for instruction";
12190 llvm_unreachable("Unhandled target predicate error");
12193 NearMissesOut
.emplace_back(Message
);
12196 case NearMissInfo::NearMissTooFewOperands
: {
12197 if (!ReportedTooFewOperands
) {
12198 SMLoc EndLoc
= ((ARMOperand
&)*Operands
.back()).getEndLoc();
12199 NearMissesOut
.emplace_back(NearMissMessage
{
12200 EndLoc
, StringRef("too few operands for instruction")});
12201 ReportedTooFewOperands
= true;
12205 case NearMissInfo::NoNearMiss
:
12206 // This should never leave the matcher.
12207 llvm_unreachable("not a near-miss");
12213 void ARMAsmParser::ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
,
12214 SMLoc IDLoc
, OperandVector
&Operands
) {
12215 SmallVector
<NearMissMessage
, 4> Messages
;
12216 FilterNearMisses(NearMisses
, Messages
, IDLoc
, Operands
);
12218 if (Messages
.size() == 0) {
12219 // No near-misses were found, so the best we can do is "invalid
12221 Error(IDLoc
, "invalid instruction");
12222 } else if (Messages
.size() == 1) {
12223 // One near miss was found, report it as the sole error.
12224 Error(Messages
[0].Loc
, Messages
[0].Message
);
12226 // More than one near miss, so report a generic "invalid instruction"
12227 // error, followed by notes for each of the near-misses.
12228 Error(IDLoc
, "invalid instruction, any one of the following would fix this:");
12229 for (auto &M
: Messages
) {
12230 Note(M
.Loc
, M
.Message
);
12235 bool ARMAsmParser::enableArchExtFeature(StringRef Name
, SMLoc
&ExtLoc
) {
12236 // FIXME: This structure should be moved inside ARMTargetParser
12237 // when we start to table-generate them, and we can use the ARM
12238 // flags below, that were generated by table-gen.
12239 static const struct {
12240 const uint64_t Kind
;
12241 const FeatureBitset ArchCheck
;
12242 const FeatureBitset Features
;
12244 {ARM::AEK_CRC
, {Feature_HasV8Bit
}, {ARM::FeatureCRC
}},
12246 {Feature_HasV8Bit
},
12247 {ARM::FeatureAES
, ARM::FeatureNEON
, ARM::FeatureFPARMv8
}},
12249 {Feature_HasV8Bit
},
12250 {ARM::FeatureSHA2
, ARM::FeatureNEON
, ARM::FeatureFPARMv8
}},
12252 {Feature_HasV8Bit
},
12253 {ARM::FeatureCrypto
, ARM::FeatureNEON
, ARM::FeatureFPARMv8
}},
12255 {Feature_HasV8Bit
},
12256 {ARM::FeatureVFP2_SP
, ARM::FeatureFPARMv8
}},
12257 {(ARM::AEK_HWDIVTHUMB
| ARM::AEK_HWDIVARM
),
12258 {Feature_HasV7Bit
, Feature_IsNotMClassBit
},
12259 {ARM::FeatureHWDivThumb
, ARM::FeatureHWDivARM
}},
12261 {Feature_HasV7Bit
, Feature_IsNotMClassBit
},
12264 {Feature_HasV8Bit
},
12265 {ARM::FeatureNEON
, ARM::FeatureVFP2_SP
, ARM::FeatureFPARMv8
}},
12266 {ARM::AEK_SEC
, {Feature_HasV6KBit
}, {ARM::FeatureTrustZone
}},
12267 // FIXME: Only available in A-class, isel not predicated
12268 {ARM::AEK_VIRT
, {Feature_HasV7Bit
}, {ARM::FeatureVirtualization
}},
12270 {Feature_HasV8_2aBit
},
12271 {ARM::FeatureFPARMv8
, ARM::FeatureFullFP16
}},
12272 {ARM::AEK_RAS
, {Feature_HasV8Bit
}, {ARM::FeatureRAS
}},
12273 {ARM::AEK_LOB
, {Feature_HasV8_1MMainlineBit
}, {ARM::FeatureLOB
}},
12274 // FIXME: Unsupported extensions.
12275 {ARM::AEK_OS
, {}, {}},
12276 {ARM::AEK_IWMMXT
, {}, {}},
12277 {ARM::AEK_IWMMXT2
, {}, {}},
12278 {ARM::AEK_MAVERICK
, {}, {}},
12279 {ARM::AEK_XSCALE
, {}, {}},
12281 bool EnableFeature
= true;
12282 if (Name
.startswith_insensitive("no")) {
12283 EnableFeature
= false;
12284 Name
= Name
.substr(2);
12286 uint64_t FeatureKind
= ARM::parseArchExt(Name
);
12287 if (FeatureKind
== ARM::AEK_INVALID
)
12288 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
12290 for (const auto &Extension
: Extensions
) {
12291 if (Extension
.Kind
!= FeatureKind
)
12294 if (Extension
.Features
.none())
12295 return Error(ExtLoc
, "unsupported architectural extension: " + Name
);
12297 if ((getAvailableFeatures() & Extension
.ArchCheck
) != Extension
.ArchCheck
)
12298 return Error(ExtLoc
, "architectural extension '" + Name
+
12300 "allowed for the current base architecture");
12302 MCSubtargetInfo
&STI
= copySTI();
12303 if (EnableFeature
) {
12304 STI
.SetFeatureBitsTransitively(Extension
.Features
);
12306 STI
.ClearFeatureBitsTransitively(Extension
.Features
);
12308 FeatureBitset Features
= ComputeAvailableFeatures(STI
.getFeatureBits());
12309 setAvailableFeatures(Features
);
12315 /// parseDirectiveArchExtension
12316 /// ::= .arch_extension [no]feature
12317 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L
) {
12319 MCAsmParser
&Parser
= getParser();
12321 if (getLexer().isNot(AsmToken::Identifier
))
12322 return Error(getLexer().getLoc(), "expected architecture extension name");
12324 StringRef Name
= Parser
.getTok().getString();
12325 SMLoc ExtLoc
= Parser
.getTok().getLoc();
12328 if (parseToken(AsmToken::EndOfStatement
,
12329 "unexpected token in '.arch_extension' directive"))
12332 if (Name
== "nocrypto") {
12333 enableArchExtFeature("nosha2", ExtLoc
);
12334 enableArchExtFeature("noaes", ExtLoc
);
12337 if (enableArchExtFeature(Name
, ExtLoc
))
12340 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
12343 // Define this matcher function after the auto-generated include so we
12344 // have the match class enum definitions.
12345 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand
&AsmOp
,
12347 ARMOperand
&Op
= static_cast<ARMOperand
&>(AsmOp
);
12348 // If the kind is a token for a literal immediate, check if our asm
12349 // operand matches. This is for InstAliases which have a fixed-value
12350 // immediate in the syntax.
12355 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
12356 if (CE
->getValue() == 0)
12357 return Match_Success
;
12361 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
12362 if (CE
->getValue() == 8)
12363 return Match_Success
;
12367 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
12368 if (CE
->getValue() == 16)
12369 return Match_Success
;
12373 const MCExpr
*SOExpr
= Op
.getImm();
12375 if (!SOExpr
->evaluateAsAbsolute(Value
))
12376 return Match_Success
;
12377 assert((Value
>= std::numeric_limits
<int32_t>::min() &&
12378 Value
<= std::numeric_limits
<uint32_t>::max()) &&
12379 "expression value must be representable in 32 bits");
12383 if (hasV8Ops() && Op
.isReg() && Op
.getReg() == ARM::SP
)
12384 return Match_Success
;
12388 MRI
->getRegClass(ARM::GPRRegClassID
).contains(Op
.getReg()))
12389 return Match_Success
;
12392 return Match_InvalidOperand
;
12395 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic
,
12396 StringRef ExtraToken
) {
12400 return Mnemonic
.startswith("vabav") || Mnemonic
.startswith("vaddv") ||
12401 Mnemonic
.startswith("vaddlv") || Mnemonic
.startswith("vminnmv") ||
12402 Mnemonic
.startswith("vminnmav") || Mnemonic
.startswith("vminv") ||
12403 Mnemonic
.startswith("vminav") || Mnemonic
.startswith("vmaxnmv") ||
12404 Mnemonic
.startswith("vmaxnmav") || Mnemonic
.startswith("vmaxv") ||
12405 Mnemonic
.startswith("vmaxav") || Mnemonic
.startswith("vmladav") ||
12406 Mnemonic
.startswith("vrmlaldavh") || Mnemonic
.startswith("vrmlalvh") ||
12407 Mnemonic
.startswith("vmlsdav") || Mnemonic
.startswith("vmlav") ||
12408 Mnemonic
.startswith("vmlaldav") || Mnemonic
.startswith("vmlalv") ||
12409 Mnemonic
.startswith("vmaxnm") || Mnemonic
.startswith("vminnm") ||
12410 Mnemonic
.startswith("vmax") || Mnemonic
.startswith("vmin") ||
12411 Mnemonic
.startswith("vshlc") || Mnemonic
.startswith("vmovlt") ||
12412 Mnemonic
.startswith("vmovlb") || Mnemonic
.startswith("vshll") ||
12413 Mnemonic
.startswith("vrshrn") || Mnemonic
.startswith("vshrn") ||
12414 Mnemonic
.startswith("vqrshrun") || Mnemonic
.startswith("vqshrun") ||
12415 Mnemonic
.startswith("vqrshrn") || Mnemonic
.startswith("vqshrn") ||
12416 Mnemonic
.startswith("vbic") || Mnemonic
.startswith("vrev64") ||
12417 Mnemonic
.startswith("vrev32") || Mnemonic
.startswith("vrev16") ||
12418 Mnemonic
.startswith("vmvn") || Mnemonic
.startswith("veor") ||
12419 Mnemonic
.startswith("vorn") || Mnemonic
.startswith("vorr") ||
12420 Mnemonic
.startswith("vand") || Mnemonic
.startswith("vmul") ||
12421 Mnemonic
.startswith("vqrdmulh") || Mnemonic
.startswith("vqdmulh") ||
12422 Mnemonic
.startswith("vsub") || Mnemonic
.startswith("vadd") ||
12423 Mnemonic
.startswith("vqsub") || Mnemonic
.startswith("vqadd") ||
12424 Mnemonic
.startswith("vabd") || Mnemonic
.startswith("vrhadd") ||
12425 Mnemonic
.startswith("vhsub") || Mnemonic
.startswith("vhadd") ||
12426 Mnemonic
.startswith("vdup") || Mnemonic
.startswith("vcls") ||
12427 Mnemonic
.startswith("vclz") || Mnemonic
.startswith("vneg") ||
12428 Mnemonic
.startswith("vabs") || Mnemonic
.startswith("vqneg") ||
12429 Mnemonic
.startswith("vqabs") ||
12430 (Mnemonic
.startswith("vrint") && Mnemonic
!= "vrintr") ||
12431 Mnemonic
.startswith("vcmla") || Mnemonic
.startswith("vfma") ||
12432 Mnemonic
.startswith("vfms") || Mnemonic
.startswith("vcadd") ||
12433 Mnemonic
.startswith("vadd") || Mnemonic
.startswith("vsub") ||
12434 Mnemonic
.startswith("vshl") || Mnemonic
.startswith("vqshl") ||
12435 Mnemonic
.startswith("vqrshl") || Mnemonic
.startswith("vrshl") ||
12436 Mnemonic
.startswith("vsri") || Mnemonic
.startswith("vsli") ||
12437 Mnemonic
.startswith("vrshr") || Mnemonic
.startswith("vshr") ||
12438 Mnemonic
.startswith("vpsel") || Mnemonic
.startswith("vcmp") ||
12439 Mnemonic
.startswith("vqdmladh") || Mnemonic
.startswith("vqrdmladh") ||
12440 Mnemonic
.startswith("vqdmlsdh") || Mnemonic
.startswith("vqrdmlsdh") ||
12441 Mnemonic
.startswith("vcmul") || Mnemonic
.startswith("vrmulh") ||
12442 Mnemonic
.startswith("vqmovn") || Mnemonic
.startswith("vqmovun") ||
12443 Mnemonic
.startswith("vmovnt") || Mnemonic
.startswith("vmovnb") ||
12444 Mnemonic
.startswith("vmaxa") || Mnemonic
.startswith("vmaxnma") ||
12445 Mnemonic
.startswith("vhcadd") || Mnemonic
.startswith("vadc") ||
12446 Mnemonic
.startswith("vsbc") || Mnemonic
.startswith("vrshr") ||
12447 Mnemonic
.startswith("vshr") || Mnemonic
.startswith("vstrb") ||
12448 Mnemonic
.startswith("vldrb") ||
12449 (Mnemonic
.startswith("vstrh") && Mnemonic
!= "vstrhi") ||
12450 (Mnemonic
.startswith("vldrh") && Mnemonic
!= "vldrhi") ||
12451 Mnemonic
.startswith("vstrw") || Mnemonic
.startswith("vldrw") ||
12452 Mnemonic
.startswith("vldrd") || Mnemonic
.startswith("vstrd") ||
12453 Mnemonic
.startswith("vqdmull") || Mnemonic
.startswith("vbrsr") ||
12454 Mnemonic
.startswith("vfmas") || Mnemonic
.startswith("vmlas") ||
12455 Mnemonic
.startswith("vmla") || Mnemonic
.startswith("vqdmlash") ||
12456 Mnemonic
.startswith("vqdmlah") || Mnemonic
.startswith("vqrdmlash") ||
12457 Mnemonic
.startswith("vqrdmlah") || Mnemonic
.startswith("viwdup") ||
12458 Mnemonic
.startswith("vdwdup") || Mnemonic
.startswith("vidup") ||
12459 Mnemonic
.startswith("vddup") || Mnemonic
.startswith("vctp") ||
12460 Mnemonic
.startswith("vpnot") || Mnemonic
.startswith("vbic") ||
12461 Mnemonic
.startswith("vrmlsldavh") || Mnemonic
.startswith("vmlsldav") ||
12462 Mnemonic
.startswith("vcvt") ||
12463 MS
.isVPTPredicableCDEInstr(Mnemonic
) ||
12464 (Mnemonic
.startswith("vmov") &&
12465 !(ExtraToken
== ".f16" || ExtraToken
== ".32" ||
12466 ExtraToken
== ".16" || ExtraToken
== ".8"));