[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / MCTargetDesc / ARMMCTargetDesc.cpp
blobcafa4de9633498abfb24025331a466a354cfe07c
1 //===-- ARMMCTargetDesc.cpp - ARM Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides ARM specific target descriptions.
11 //===----------------------------------------------------------------------===//
13 #include "ARMMCTargetDesc.h"
14 #include "ARMAddressingModes.h"
15 #include "ARMBaseInfo.h"
16 #include "ARMInstPrinter.h"
17 #include "ARMMCAsmInfo.h"
18 #include "TargetInfo/ARMTargetInfo.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/DebugInfo/CodeView/CodeView.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCCodeEmitter.h"
23 #include "llvm/MC/MCELFStreamer.h"
24 #include "llvm/MC/MCInstrAnalysis.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/MC/MCSubtargetInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/TargetParser.h"
32 #include "llvm/Support/TargetRegistry.h"
34 using namespace llvm;
36 #define GET_REGINFO_MC_DESC
37 #include "ARMGenRegisterInfo.inc"
39 static bool getMCRDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
40 std::string &Info) {
41 if (STI.getFeatureBits()[llvm::ARM::HasV7Ops] &&
42 (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 15) &&
43 (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) &&
44 // Checks for the deprecated CP15ISB encoding:
45 // mcr p15, #0, rX, c7, c5, #4
46 (MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 7)) {
47 if ((MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 4)) {
48 if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 5) {
49 Info = "deprecated since v7, use 'isb'";
50 return true;
53 // Checks for the deprecated CP15DSB encoding:
54 // mcr p15, #0, rX, c7, c10, #4
55 if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10) {
56 Info = "deprecated since v7, use 'dsb'";
57 return true;
60 // Checks for the deprecated CP15DMB encoding:
61 // mcr p15, #0, rX, c7, c10, #5
62 if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10 &&
63 (MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 5)) {
64 Info = "deprecated since v7, use 'dmb'";
65 return true;
68 if (STI.getFeatureBits()[llvm::ARM::HasV7Ops] &&
69 ((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
70 (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
71 Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
72 "point instructions";
73 return true;
75 return false;
78 static bool getMRCDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
79 std::string &Info) {
80 if (STI.getFeatureBits()[llvm::ARM::HasV7Ops] &&
81 ((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
82 (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
83 Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
84 "point instructions";
85 return true;
87 return false;
90 static bool getITDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
91 std::string &Info) {
92 if (STI.getFeatureBits()[llvm::ARM::HasV8Ops] && MI.getOperand(1).isImm() &&
93 MI.getOperand(1).getImm() != 8) {
94 Info = "applying IT instruction to more than one subsequent instruction is "
95 "deprecated";
96 return true;
99 return false;
102 static bool getARMStoreDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
103 std::string &Info) {
104 assert(!STI.getFeatureBits()[llvm::ARM::ModeThumb] &&
105 "cannot predicate thumb instructions");
107 assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
108 for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
109 assert(MI.getOperand(OI).isReg() && "expected register");
110 if (MI.getOperand(OI).getReg() == ARM::PC) {
111 Info = "use of PC in the list is deprecated";
112 return true;
115 return false;
118 static bool getARMLoadDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
119 std::string &Info) {
120 assert(!STI.getFeatureBits()[llvm::ARM::ModeThumb] &&
121 "cannot predicate thumb instructions");
123 assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
124 bool ListContainsPC = false, ListContainsLR = false;
125 for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
126 assert(MI.getOperand(OI).isReg() && "expected register");
127 switch (MI.getOperand(OI).getReg()) {
128 default:
129 break;
130 case ARM::LR:
131 ListContainsLR = true;
132 break;
133 case ARM::PC:
134 ListContainsPC = true;
135 break;
139 if (ListContainsPC && ListContainsLR) {
140 Info = "use of LR and PC simultaneously in the list is deprecated";
141 return true;
144 return false;
147 #define GET_INSTRINFO_MC_DESC
148 #include "ARMGenInstrInfo.inc"
150 #define GET_SUBTARGETINFO_MC_DESC
151 #include "ARMGenSubtargetInfo.inc"
153 std::string ARM_MC::ParseARMTriple(const Triple &TT, StringRef CPU) {
154 std::string ARMArchFeature;
156 ARM::ArchKind ArchID = ARM::parseArch(TT.getArchName());
157 if (ArchID != ARM::ArchKind::INVALID && (CPU.empty() || CPU == "generic"))
158 ARMArchFeature = (ARMArchFeature + "+" + ARM::getArchName(ArchID)).str();
160 if (TT.isThumb()) {
161 if (!ARMArchFeature.empty())
162 ARMArchFeature += ",";
163 ARMArchFeature += "+thumb-mode,+v4t";
166 if (TT.isOSNaCl()) {
167 if (!ARMArchFeature.empty())
168 ARMArchFeature += ",";
169 ARMArchFeature += "+nacl-trap";
172 if (TT.isOSWindows()) {
173 if (!ARMArchFeature.empty())
174 ARMArchFeature += ",";
175 ARMArchFeature += "+noarm";
178 return ARMArchFeature;
181 bool ARM_MC::isPredicated(const MCInst &MI, const MCInstrInfo *MCII) {
182 const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
183 int PredOpIdx = Desc.findFirstPredOperandIdx();
184 return PredOpIdx != -1 && MI.getOperand(PredOpIdx).getImm() != ARMCC::AL;
187 bool ARM_MC::isCPSRDefined(const MCInst &MI, const MCInstrInfo *MCII) {
188 const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
189 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
190 const MCOperand &MO = MI.getOperand(I);
191 if (MO.isReg() && MO.getReg() == ARM::CPSR &&
192 Desc.OpInfo[I].isOptionalDef())
193 return true;
195 return false;
198 uint64_t ARM_MC::evaluateBranchTarget(const MCInstrDesc &InstDesc,
199 uint64_t Addr, int64_t Imm) {
200 // For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
201 // is 4 bytes.
202 uint64_t Offset =
203 ((InstDesc.TSFlags & ARMII::FormMask) == ARMII::ThumbFrm) ? 4 : 8;
205 // A Thumb instruction BLX(i) can be 16-bit aligned while targets Arm code
206 // which is 32-bit aligned. The target address for the case is calculated as
207 // targetAddress = Align(PC,4) + imm32;
208 // where
209 // Align(x, y) = y * (x DIV y);
210 if (InstDesc.getOpcode() == ARM::tBLXi)
211 Addr &= ~0x3;
213 return Addr + Imm + Offset;
216 MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(const Triple &TT,
217 StringRef CPU, StringRef FS) {
218 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
219 if (!FS.empty()) {
220 if (!ArchFS.empty())
221 ArchFS = (Twine(ArchFS) + "," + FS).str();
222 else
223 ArchFS = std::string(FS);
226 return createARMMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
229 static MCInstrInfo *createARMMCInstrInfo() {
230 MCInstrInfo *X = new MCInstrInfo();
231 InitARMMCInstrInfo(X);
232 return X;
235 void ARM_MC::initLLVMToCVRegMapping(MCRegisterInfo *MRI) {
236 // Mapping from CodeView to MC register id.
237 static const struct {
238 codeview::RegisterId CVReg;
239 MCPhysReg Reg;
240 } RegMap[] = {
241 {codeview::RegisterId::ARM_R0, ARM::R0},
242 {codeview::RegisterId::ARM_R1, ARM::R1},
243 {codeview::RegisterId::ARM_R2, ARM::R2},
244 {codeview::RegisterId::ARM_R3, ARM::R3},
245 {codeview::RegisterId::ARM_R4, ARM::R4},
246 {codeview::RegisterId::ARM_R5, ARM::R5},
247 {codeview::RegisterId::ARM_R6, ARM::R6},
248 {codeview::RegisterId::ARM_R7, ARM::R7},
249 {codeview::RegisterId::ARM_R8, ARM::R8},
250 {codeview::RegisterId::ARM_R9, ARM::R9},
251 {codeview::RegisterId::ARM_R10, ARM::R10},
252 {codeview::RegisterId::ARM_R11, ARM::R11},
253 {codeview::RegisterId::ARM_R12, ARM::R12},
254 {codeview::RegisterId::ARM_SP, ARM::SP},
255 {codeview::RegisterId::ARM_LR, ARM::LR},
256 {codeview::RegisterId::ARM_PC, ARM::PC},
257 {codeview::RegisterId::ARM_CPSR, ARM::CPSR},
258 {codeview::RegisterId::ARM_FPSCR, ARM::FPSCR},
259 {codeview::RegisterId::ARM_FPEXC, ARM::FPEXC},
260 {codeview::RegisterId::ARM_FS0, ARM::S0},
261 {codeview::RegisterId::ARM_FS1, ARM::S1},
262 {codeview::RegisterId::ARM_FS2, ARM::S2},
263 {codeview::RegisterId::ARM_FS3, ARM::S3},
264 {codeview::RegisterId::ARM_FS4, ARM::S4},
265 {codeview::RegisterId::ARM_FS5, ARM::S5},
266 {codeview::RegisterId::ARM_FS6, ARM::S6},
267 {codeview::RegisterId::ARM_FS7, ARM::S7},
268 {codeview::RegisterId::ARM_FS8, ARM::S8},
269 {codeview::RegisterId::ARM_FS9, ARM::S9},
270 {codeview::RegisterId::ARM_FS10, ARM::S10},
271 {codeview::RegisterId::ARM_FS11, ARM::S11},
272 {codeview::RegisterId::ARM_FS12, ARM::S12},
273 {codeview::RegisterId::ARM_FS13, ARM::S13},
274 {codeview::RegisterId::ARM_FS14, ARM::S14},
275 {codeview::RegisterId::ARM_FS15, ARM::S15},
276 {codeview::RegisterId::ARM_FS16, ARM::S16},
277 {codeview::RegisterId::ARM_FS17, ARM::S17},
278 {codeview::RegisterId::ARM_FS18, ARM::S18},
279 {codeview::RegisterId::ARM_FS19, ARM::S19},
280 {codeview::RegisterId::ARM_FS20, ARM::S20},
281 {codeview::RegisterId::ARM_FS21, ARM::S21},
282 {codeview::RegisterId::ARM_FS22, ARM::S22},
283 {codeview::RegisterId::ARM_FS23, ARM::S23},
284 {codeview::RegisterId::ARM_FS24, ARM::S24},
285 {codeview::RegisterId::ARM_FS25, ARM::S25},
286 {codeview::RegisterId::ARM_FS26, ARM::S26},
287 {codeview::RegisterId::ARM_FS27, ARM::S27},
288 {codeview::RegisterId::ARM_FS28, ARM::S28},
289 {codeview::RegisterId::ARM_FS29, ARM::S29},
290 {codeview::RegisterId::ARM_FS30, ARM::S30},
291 {codeview::RegisterId::ARM_FS31, ARM::S31},
292 {codeview::RegisterId::ARM_ND0, ARM::D0},
293 {codeview::RegisterId::ARM_ND1, ARM::D1},
294 {codeview::RegisterId::ARM_ND2, ARM::D2},
295 {codeview::RegisterId::ARM_ND3, ARM::D3},
296 {codeview::RegisterId::ARM_ND4, ARM::D4},
297 {codeview::RegisterId::ARM_ND5, ARM::D5},
298 {codeview::RegisterId::ARM_ND6, ARM::D6},
299 {codeview::RegisterId::ARM_ND7, ARM::D7},
300 {codeview::RegisterId::ARM_ND8, ARM::D8},
301 {codeview::RegisterId::ARM_ND9, ARM::D9},
302 {codeview::RegisterId::ARM_ND10, ARM::D10},
303 {codeview::RegisterId::ARM_ND11, ARM::D11},
304 {codeview::RegisterId::ARM_ND12, ARM::D12},
305 {codeview::RegisterId::ARM_ND13, ARM::D13},
306 {codeview::RegisterId::ARM_ND14, ARM::D14},
307 {codeview::RegisterId::ARM_ND15, ARM::D15},
308 {codeview::RegisterId::ARM_ND16, ARM::D16},
309 {codeview::RegisterId::ARM_ND17, ARM::D17},
310 {codeview::RegisterId::ARM_ND18, ARM::D18},
311 {codeview::RegisterId::ARM_ND19, ARM::D19},
312 {codeview::RegisterId::ARM_ND20, ARM::D20},
313 {codeview::RegisterId::ARM_ND21, ARM::D21},
314 {codeview::RegisterId::ARM_ND22, ARM::D22},
315 {codeview::RegisterId::ARM_ND23, ARM::D23},
316 {codeview::RegisterId::ARM_ND24, ARM::D24},
317 {codeview::RegisterId::ARM_ND25, ARM::D25},
318 {codeview::RegisterId::ARM_ND26, ARM::D26},
319 {codeview::RegisterId::ARM_ND27, ARM::D27},
320 {codeview::RegisterId::ARM_ND28, ARM::D28},
321 {codeview::RegisterId::ARM_ND29, ARM::D29},
322 {codeview::RegisterId::ARM_ND30, ARM::D30},
323 {codeview::RegisterId::ARM_ND31, ARM::D31},
324 {codeview::RegisterId::ARM_NQ0, ARM::Q0},
325 {codeview::RegisterId::ARM_NQ1, ARM::Q1},
326 {codeview::RegisterId::ARM_NQ2, ARM::Q2},
327 {codeview::RegisterId::ARM_NQ3, ARM::Q3},
328 {codeview::RegisterId::ARM_NQ4, ARM::Q4},
329 {codeview::RegisterId::ARM_NQ5, ARM::Q5},
330 {codeview::RegisterId::ARM_NQ6, ARM::Q6},
331 {codeview::RegisterId::ARM_NQ7, ARM::Q7},
332 {codeview::RegisterId::ARM_NQ8, ARM::Q8},
333 {codeview::RegisterId::ARM_NQ9, ARM::Q9},
334 {codeview::RegisterId::ARM_NQ10, ARM::Q10},
335 {codeview::RegisterId::ARM_NQ11, ARM::Q11},
336 {codeview::RegisterId::ARM_NQ12, ARM::Q12},
337 {codeview::RegisterId::ARM_NQ13, ARM::Q13},
338 {codeview::RegisterId::ARM_NQ14, ARM::Q14},
339 {codeview::RegisterId::ARM_NQ15, ARM::Q15},
341 for (unsigned I = 0; I < array_lengthof(RegMap); ++I)
342 MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg));
345 static MCRegisterInfo *createARMMCRegisterInfo(const Triple &Triple) {
346 MCRegisterInfo *X = new MCRegisterInfo();
347 InitARMMCRegisterInfo(X, ARM::LR, 0, 0, ARM::PC);
348 ARM_MC::initLLVMToCVRegMapping(X);
349 return X;
352 static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI,
353 const Triple &TheTriple,
354 const MCTargetOptions &Options) {
355 MCAsmInfo *MAI;
356 if (TheTriple.isOSDarwin() || TheTriple.isOSBinFormatMachO())
357 MAI = new ARMMCAsmInfoDarwin(TheTriple);
358 else if (TheTriple.isWindowsMSVCEnvironment())
359 MAI = new ARMCOFFMCAsmInfoMicrosoft();
360 else if (TheTriple.isOSWindows())
361 MAI = new ARMCOFFMCAsmInfoGNU();
362 else
363 MAI = new ARMELFMCAsmInfo(TheTriple);
365 unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
366 MAI->addInitialFrameState(MCCFIInstruction::cfiDefCfa(nullptr, Reg, 0));
368 return MAI;
371 static MCStreamer *createELFStreamer(const Triple &T, MCContext &Ctx,
372 std::unique_ptr<MCAsmBackend> &&MAB,
373 std::unique_ptr<MCObjectWriter> &&OW,
374 std::unique_ptr<MCCodeEmitter> &&Emitter,
375 bool RelaxAll) {
376 return createARMELFStreamer(
377 Ctx, std::move(MAB), std::move(OW), std::move(Emitter), false,
378 (T.getArch() == Triple::thumb || T.getArch() == Triple::thumbeb),
379 T.isAndroid());
382 static MCStreamer *
383 createARMMachOStreamer(MCContext &Ctx, std::unique_ptr<MCAsmBackend> &&MAB,
384 std::unique_ptr<MCObjectWriter> &&OW,
385 std::unique_ptr<MCCodeEmitter> &&Emitter, bool RelaxAll,
386 bool DWARFMustBeAtTheEnd) {
387 return createMachOStreamer(Ctx, std::move(MAB), std::move(OW),
388 std::move(Emitter), false, DWARFMustBeAtTheEnd);
391 static MCInstPrinter *createARMMCInstPrinter(const Triple &T,
392 unsigned SyntaxVariant,
393 const MCAsmInfo &MAI,
394 const MCInstrInfo &MII,
395 const MCRegisterInfo &MRI) {
396 if (SyntaxVariant == 0)
397 return new ARMInstPrinter(MAI, MII, MRI);
398 return nullptr;
401 static MCRelocationInfo *createARMMCRelocationInfo(const Triple &TT,
402 MCContext &Ctx) {
403 if (TT.isOSBinFormatMachO())
404 return createARMMachORelocationInfo(Ctx);
405 // Default to the stock relocation info.
406 return llvm::createMCRelocationInfo(TT, Ctx);
409 namespace {
411 class ARMMCInstrAnalysis : public MCInstrAnalysis {
412 public:
413 ARMMCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {}
415 bool isUnconditionalBranch(const MCInst &Inst) const override {
416 // BCCs with the "always" predicate are unconditional branches.
417 if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
418 return true;
419 return MCInstrAnalysis::isUnconditionalBranch(Inst);
422 bool isConditionalBranch(const MCInst &Inst) const override {
423 // BCCs with the "always" predicate are unconditional branches.
424 if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
425 return false;
426 return MCInstrAnalysis::isConditionalBranch(Inst);
429 bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
430 uint64_t &Target) const override {
431 const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
433 // Find the PC-relative immediate operand in the instruction.
434 for (unsigned OpNum = 0; OpNum < Desc.getNumOperands(); ++OpNum) {
435 if (Inst.getOperand(OpNum).isImm() &&
436 Desc.OpInfo[OpNum].OperandType == MCOI::OPERAND_PCREL) {
437 int64_t Imm = Inst.getOperand(OpNum).getImm();
438 Target = ARM_MC::evaluateBranchTarget(Desc, Addr, Imm);
439 return true;
442 return false;
445 Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
446 const MCSubtargetInfo *STI,
447 uint64_t Addr,
448 uint64_t Size) const override;
451 } // namespace
453 static Optional<uint64_t>
454 // NOLINTNEXTLINE(readability-identifier-naming)
455 evaluateMemOpAddrForAddrMode_i12(const MCInst &Inst, const MCInstrDesc &Desc,
456 unsigned MemOpIndex, uint64_t Addr) {
457 if (MemOpIndex + 1 >= Desc.getNumOperands())
458 return None;
460 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
461 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
462 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
463 return None;
465 int32_t OffImm = (int32_t)MO2.getImm();
466 // Special value for #-0. All others are normal.
467 if (OffImm == INT32_MIN)
468 OffImm = 0;
469 return Addr + OffImm;
472 static Optional<uint64_t> evaluateMemOpAddrForAddrMode3(const MCInst &Inst,
473 const MCInstrDesc &Desc,
474 unsigned MemOpIndex,
475 uint64_t Addr) {
476 if (MemOpIndex + 2 >= Desc.getNumOperands())
477 return None;
479 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
480 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
481 const MCOperand &MO3 = Inst.getOperand(MemOpIndex + 2);
482 if (!MO1.isReg() || MO1.getReg() != ARM::PC || MO2.getReg() || !MO3.isImm())
483 return None;
485 unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
486 ARM_AM::AddrOpc Op = ARM_AM::getAM3Op(MO3.getImm());
488 if (Op == ARM_AM::sub)
489 return Addr - ImmOffs;
490 return Addr + ImmOffs;
493 static Optional<uint64_t> evaluateMemOpAddrForAddrMode5(const MCInst &Inst,
494 const MCInstrDesc &Desc,
495 unsigned MemOpIndex,
496 uint64_t Addr) {
497 if (MemOpIndex + 1 >= Desc.getNumOperands())
498 return None;
500 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
501 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
502 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
503 return None;
505 unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm());
506 ARM_AM::AddrOpc Op = ARM_AM::getAM5Op(MO2.getImm());
508 if (Op == ARM_AM::sub)
509 return Addr - ImmOffs * 4;
510 return Addr + ImmOffs * 4;
513 static Optional<uint64_t>
514 evaluateMemOpAddrForAddrMode5FP16(const MCInst &Inst, const MCInstrDesc &Desc,
515 unsigned MemOpIndex, uint64_t Addr) {
516 if (MemOpIndex + 1 >= Desc.getNumOperands())
517 return None;
519 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
520 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
521 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
522 return None;
524 unsigned ImmOffs = ARM_AM::getAM5FP16Offset(MO2.getImm());
525 ARM_AM::AddrOpc Op = ARM_AM::getAM5FP16Op(MO2.getImm());
527 if (Op == ARM_AM::sub)
528 return Addr - ImmOffs * 2;
529 return Addr + ImmOffs * 2;
532 static Optional<uint64_t>
533 // NOLINTNEXTLINE(readability-identifier-naming)
534 evaluateMemOpAddrForAddrModeT2_i8s4(const MCInst &Inst, const MCInstrDesc &Desc,
535 unsigned MemOpIndex, uint64_t Addr) {
536 if (MemOpIndex + 1 >= Desc.getNumOperands())
537 return None;
539 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
540 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
541 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
542 return None;
544 int32_t OffImm = (int32_t)MO2.getImm();
545 assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
547 // Special value for #-0. All others are normal.
548 if (OffImm == INT32_MIN)
549 OffImm = 0;
550 return Addr + OffImm;
553 static Optional<uint64_t>
554 // NOLINTNEXTLINE(readability-identifier-naming)
555 evaluateMemOpAddrForAddrModeT2_pc(const MCInst &Inst, const MCInstrDesc &Desc,
556 unsigned MemOpIndex, uint64_t Addr) {
557 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
558 if (!MO1.isImm())
559 return None;
561 int32_t OffImm = (int32_t)MO1.getImm();
563 // Special value for #-0. All others are normal.
564 if (OffImm == INT32_MIN)
565 OffImm = 0;
566 return Addr + OffImm;
569 static Optional<uint64_t>
570 // NOLINTNEXTLINE(readability-identifier-naming)
571 evaluateMemOpAddrForAddrModeT1_s(const MCInst &Inst, const MCInstrDesc &Desc,
572 unsigned MemOpIndex, uint64_t Addr) {
573 return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, MemOpIndex, Addr);
576 Optional<uint64_t> ARMMCInstrAnalysis::evaluateMemoryOperandAddress(
577 const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
578 uint64_t Size) const {
579 const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
581 // Only load instructions can have PC-relative memory addressing.
582 if (!Desc.mayLoad())
583 return None;
585 // PC-relative addressing does not update the base register.
586 uint64_t TSFlags = Desc.TSFlags;
587 unsigned IndexMode =
588 (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
589 if (IndexMode != ARMII::IndexModeNone)
590 return None;
592 // Find the memory addressing operand in the instruction.
593 unsigned OpIndex = Desc.NumDefs;
594 while (OpIndex < Desc.getNumOperands() &&
595 Desc.OpInfo[OpIndex].OperandType != MCOI::OPERAND_MEMORY)
596 ++OpIndex;
597 if (OpIndex == Desc.getNumOperands())
598 return None;
600 // Base address for PC-relative addressing is always 32-bit aligned.
601 Addr &= ~0x3;
603 // For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
604 // is 4 bytes.
605 switch (Desc.TSFlags & ARMII::FormMask) {
606 default:
607 Addr += 8;
608 break;
609 case ARMII::ThumbFrm:
610 Addr += 4;
611 break;
612 // VLDR* instructions share the same opcode (and thus the same form) for Arm
613 // and Thumb. Use a bit longer route through STI in that case.
614 case ARMII::VFPLdStFrm:
615 Addr += STI->getFeatureBits()[ARM::ModeThumb] ? 4 : 8;
616 break;
619 // Eveluate the address depending on the addressing mode
620 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
621 switch (AddrMode) {
622 default:
623 return None;
624 case ARMII::AddrMode_i12:
625 return evaluateMemOpAddrForAddrMode_i12(Inst, Desc, OpIndex, Addr);
626 case ARMII::AddrMode3:
627 return evaluateMemOpAddrForAddrMode3(Inst, Desc, OpIndex, Addr);
628 case ARMII::AddrMode5:
629 return evaluateMemOpAddrForAddrMode5(Inst, Desc, OpIndex, Addr);
630 case ARMII::AddrMode5FP16:
631 return evaluateMemOpAddrForAddrMode5FP16(Inst, Desc, OpIndex, Addr);
632 case ARMII::AddrModeT2_i8s4:
633 return evaluateMemOpAddrForAddrModeT2_i8s4(Inst, Desc, OpIndex, Addr);
634 case ARMII::AddrModeT2_pc:
635 return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, OpIndex, Addr);
636 case ARMII::AddrModeT1_s:
637 return evaluateMemOpAddrForAddrModeT1_s(Inst, Desc, OpIndex, Addr);
641 static MCInstrAnalysis *createARMMCInstrAnalysis(const MCInstrInfo *Info) {
642 return new ARMMCInstrAnalysis(Info);
645 bool ARM::isCDECoproc(size_t Coproc, const MCSubtargetInfo &STI) {
646 // Unfortunately we don't have ARMTargetInfo in the disassembler, so we have
647 // to rely on feature bits.
648 if (Coproc >= 8)
649 return false;
650 return STI.getFeatureBits()[ARM::FeatureCoprocCDE0 + Coproc];
653 // Force static initialization.
654 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTargetMC() {
655 for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
656 &getTheThumbLETarget(), &getTheThumbBETarget()}) {
657 // Register the MC asm info.
658 RegisterMCAsmInfoFn X(*T, createARMMCAsmInfo);
660 // Register the MC instruction info.
661 TargetRegistry::RegisterMCInstrInfo(*T, createARMMCInstrInfo);
663 // Register the MC register info.
664 TargetRegistry::RegisterMCRegInfo(*T, createARMMCRegisterInfo);
666 // Register the MC subtarget info.
667 TargetRegistry::RegisterMCSubtargetInfo(*T,
668 ARM_MC::createARMMCSubtargetInfo);
670 TargetRegistry::RegisterELFStreamer(*T, createELFStreamer);
671 TargetRegistry::RegisterCOFFStreamer(*T, createARMWinCOFFStreamer);
672 TargetRegistry::RegisterMachOStreamer(*T, createARMMachOStreamer);
674 // Register the obj target streamer.
675 TargetRegistry::RegisterObjectTargetStreamer(*T,
676 createARMObjectTargetStreamer);
678 // Register the asm streamer.
679 TargetRegistry::RegisterAsmTargetStreamer(*T, createARMTargetAsmStreamer);
681 // Register the null TargetStreamer.
682 TargetRegistry::RegisterNullTargetStreamer(*T, createARMNullTargetStreamer);
684 // Register the MCInstPrinter.
685 TargetRegistry::RegisterMCInstPrinter(*T, createARMMCInstPrinter);
687 // Register the MC relocation info.
688 TargetRegistry::RegisterMCRelocationInfo(*T, createARMMCRelocationInfo);
691 // Register the MC instruction analyzer.
692 for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
693 &getTheThumbLETarget(), &getTheThumbBETarget()})
694 TargetRegistry::RegisterMCInstrAnalysis(*T, createARMMCInstrAnalysis);
696 for (Target *T : {&getTheARMLETarget(), &getTheThumbLETarget()}) {
697 TargetRegistry::RegisterMCCodeEmitter(*T, createARMLEMCCodeEmitter);
698 TargetRegistry::RegisterMCAsmBackend(*T, createARMLEAsmBackend);
700 for (Target *T : {&getTheARMBETarget(), &getTheThumbBETarget()}) {
701 TargetRegistry::RegisterMCCodeEmitter(*T, createARMBEMCCodeEmitter);
702 TargetRegistry::RegisterMCAsmBackend(*T, createARMBEAsmBackend);