[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / MVELaneInterleavingPass.cpp
blob538bd10685b0cb2f15b536a8faf9c636b0a5b95e
1 //===- MVELaneInterleaving.cpp - Inverleave for MVE instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass interleaves around sext/zext/trunc instructions. MVE does not have
10 // a single sext/zext or trunc instruction that takes the bottom half of a
11 // vector and extends to a full width, like NEON has with MOVL. Instead it is
12 // expected that this happens through top/bottom instructions. So the MVE
13 // equivalent VMOVLT/B instructions take either the even or odd elements of the
14 // input and extend them to the larger type, producing a vector with half the
15 // number of elements each of double the bitwidth. As there is no simple
16 // instruction, we often have to turn sext/zext/trunc into a series of lane
17 // moves (or stack loads/stores, which we do not do yet).
19 // This pass takes vector code that starts at truncs, looks for interconnected
20 // blobs of operations that end with sext/zext (or constants/splats) of the
21 // form:
22 // %sa = sext v8i16 %a to v8i32
23 // %sb = sext v8i16 %b to v8i32
24 // %add = add v8i32 %sa, %sb
25 // %r = trunc %add to v8i16
26 // And adds shuffles to allow the use of VMOVL/VMOVN instrctions:
27 // %sha = shuffle v8i16 %a, undef, <0, 2, 4, 6, 1, 3, 5, 7>
28 // %sa = sext v8i16 %sha to v8i32
29 // %shb = shuffle v8i16 %b, undef, <0, 2, 4, 6, 1, 3, 5, 7>
30 // %sb = sext v8i16 %shb to v8i32
31 // %add = add v8i32 %sa, %sb
32 // %r = trunc %add to v8i16
33 // %shr = shuffle v8i16 %r, undef, <0, 4, 1, 5, 2, 6, 3, 7>
34 // Which can then be split and lowered to MVE instructions efficiently:
35 // %sa_b = VMOVLB.s16 %a
36 // %sa_t = VMOVLT.s16 %a
37 // %sb_b = VMOVLB.s16 %b
38 // %sb_t = VMOVLT.s16 %b
39 // %add_b = VADD.i32 %sa_b, %sb_b
40 // %add_t = VADD.i32 %sa_t, %sb_t
41 // %r = VMOVNT.i16 %add_b, %add_t
43 //===----------------------------------------------------------------------===//
45 #include "ARM.h"
46 #include "ARMBaseInstrInfo.h"
47 #include "ARMSubtarget.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/CodeGen/TargetLowering.h"
50 #include "llvm/CodeGen/TargetPassConfig.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/IntrinsicsARM.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include <algorithm>
72 #include <cassert>
74 using namespace llvm;
76 #define DEBUG_TYPE "mve-laneinterleave"
78 cl::opt<bool> EnableInterleave(
79 "enable-mve-interleave", cl::Hidden, cl::init(true),
80 cl::desc("Enable interleave MVE vector operation lowering"));
82 namespace {
84 class MVELaneInterleaving : public FunctionPass {
85 public:
86 static char ID; // Pass identification, replacement for typeid
88 explicit MVELaneInterleaving() : FunctionPass(ID) {
89 initializeMVELaneInterleavingPass(*PassRegistry::getPassRegistry());
92 bool runOnFunction(Function &F) override;
94 StringRef getPassName() const override { return "MVE lane interleaving"; }
96 void getAnalysisUsage(AnalysisUsage &AU) const override {
97 AU.setPreservesCFG();
98 AU.addRequired<TargetPassConfig>();
99 FunctionPass::getAnalysisUsage(AU);
103 } // end anonymous namespace
105 char MVELaneInterleaving::ID = 0;
107 INITIALIZE_PASS(MVELaneInterleaving, DEBUG_TYPE, "MVE lane interleaving", false,
108 false)
110 Pass *llvm::createMVELaneInterleavingPass() {
111 return new MVELaneInterleaving();
114 static bool isProfitableToInterleave(SmallSetVector<Instruction *, 4> &Exts,
115 SmallSetVector<Instruction *, 4> &Truncs) {
116 // This is not always beneficial to transform. Exts can be incorporated into
117 // loads, Truncs can be folded into stores.
118 // Truncs are usually the same number of instructions,
119 // VSTRH.32(A);VSTRH.32(B) vs VSTRH.16(VMOVNT A, B) with interleaving
120 // Exts are unfortunately more instructions in the general case:
121 // A=VLDRH.32; B=VLDRH.32;
122 // vs with interleaving:
123 // T=VLDRH.16; A=VMOVNB T; B=VMOVNT T
124 // But those VMOVL may be folded into a VMULL.
126 // But expensive extends/truncs are always good to remove. FPExts always
127 // involve extra VCVT's so are always considered to be beneficial to convert.
128 for (auto *E : Exts) {
129 if (isa<FPExtInst>(E) || !isa<LoadInst>(E->getOperand(0))) {
130 LLVM_DEBUG(dbgs() << "Beneficial due to " << *E << "\n");
131 return true;
134 for (auto *T : Truncs) {
135 if (T->hasOneUse() && !isa<StoreInst>(*T->user_begin())) {
136 LLVM_DEBUG(dbgs() << "Beneficial due to " << *T << "\n");
137 return true;
141 // Otherwise, we know we have a load(ext), see if any of the Extends are a
142 // vmull. This is a simple heuristic and certainly not perfect.
143 for (auto *E : Exts) {
144 if (!E->hasOneUse() ||
145 cast<Instruction>(*E->user_begin())->getOpcode() != Instruction::Mul) {
146 LLVM_DEBUG(dbgs() << "Not beneficial due to " << *E << "\n");
147 return false;
150 return true;
153 static bool tryInterleave(Instruction *Start,
154 SmallPtrSetImpl<Instruction *> &Visited) {
155 LLVM_DEBUG(dbgs() << "tryInterleave from " << *Start << "\n");
156 auto *VT = cast<FixedVectorType>(Start->getType());
158 if (!isa<Instruction>(Start->getOperand(0)))
159 return false;
161 // Look for connected operations starting from Ext's, terminating at Truncs.
162 std::vector<Instruction *> Worklist;
163 Worklist.push_back(Start);
164 Worklist.push_back(cast<Instruction>(Start->getOperand(0)));
166 SmallSetVector<Instruction *, 4> Truncs;
167 SmallSetVector<Instruction *, 4> Exts;
168 SmallSetVector<Use *, 4> OtherLeafs;
169 SmallSetVector<Instruction *, 4> Ops;
171 while (!Worklist.empty()) {
172 Instruction *I = Worklist.back();
173 Worklist.pop_back();
175 switch (I->getOpcode()) {
176 // Truncs
177 case Instruction::Trunc:
178 case Instruction::FPTrunc:
179 if (Truncs.count(I))
180 continue;
181 Truncs.insert(I);
182 Visited.insert(I);
183 break;
185 // Extend leafs
186 case Instruction::SExt:
187 case Instruction::ZExt:
188 case Instruction::FPExt:
189 if (Exts.count(I))
190 continue;
191 for (auto *Use : I->users())
192 Worklist.push_back(cast<Instruction>(Use));
193 Exts.insert(I);
194 break;
196 case Instruction::Call: {
197 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
198 if (!II)
199 return false;
201 switch (II->getIntrinsicID()) {
202 case Intrinsic::abs:
203 case Intrinsic::smin:
204 case Intrinsic::smax:
205 case Intrinsic::umin:
206 case Intrinsic::umax:
207 case Intrinsic::sadd_sat:
208 case Intrinsic::ssub_sat:
209 case Intrinsic::uadd_sat:
210 case Intrinsic::usub_sat:
211 case Intrinsic::minnum:
212 case Intrinsic::maxnum:
213 case Intrinsic::fabs:
214 case Intrinsic::fma:
215 case Intrinsic::ceil:
216 case Intrinsic::floor:
217 case Intrinsic::rint:
218 case Intrinsic::round:
219 case Intrinsic::trunc:
220 break;
221 default:
222 return false;
224 LLVM_FALLTHROUGH; // Fall through to treating these like an operator below.
226 // Binary/tertiary ops
227 case Instruction::Add:
228 case Instruction::Sub:
229 case Instruction::Mul:
230 case Instruction::AShr:
231 case Instruction::LShr:
232 case Instruction::Shl:
233 case Instruction::ICmp:
234 case Instruction::FCmp:
235 case Instruction::FAdd:
236 case Instruction::FMul:
237 case Instruction::Select:
238 if (Ops.count(I))
239 continue;
240 Ops.insert(I);
242 for (Use &Op : I->operands()) {
243 if (!isa<FixedVectorType>(Op->getType()))
244 continue;
245 if (isa<Instruction>(Op))
246 Worklist.push_back(cast<Instruction>(&Op));
247 else
248 OtherLeafs.insert(&Op);
251 for (auto *Use : I->users())
252 Worklist.push_back(cast<Instruction>(Use));
253 break;
255 case Instruction::ShuffleVector:
256 // A shuffle of a splat is a splat.
257 if (cast<ShuffleVectorInst>(I)->isZeroEltSplat())
258 continue;
259 LLVM_FALLTHROUGH;
261 default:
262 LLVM_DEBUG(dbgs() << " Unhandled instruction: " << *I << "\n");
263 return false;
267 if (Exts.empty() && OtherLeafs.empty())
268 return false;
270 LLVM_DEBUG({
271 dbgs() << "Found group:\n Exts:";
272 for (auto *I : Exts)
273 dbgs() << " " << *I << "\n";
274 dbgs() << " Ops:";
275 for (auto *I : Ops)
276 dbgs() << " " << *I << "\n";
277 dbgs() << " OtherLeafs:";
278 for (auto *I : OtherLeafs)
279 dbgs() << " " << *I->get() << " of " << *I->getUser() << "\n";
280 dbgs() << "Truncs:";
281 for (auto *I : Truncs)
282 dbgs() << " " << *I << "\n";
285 assert(!Truncs.empty() && "Expected some truncs");
287 // Check types
288 unsigned NumElts = VT->getNumElements();
289 unsigned BaseElts = VT->getScalarSizeInBits() == 16
291 : (VT->getScalarSizeInBits() == 8 ? 16 : 0);
292 if (BaseElts == 0 || NumElts % BaseElts != 0) {
293 LLVM_DEBUG(dbgs() << " Type is unsupported\n");
294 return false;
296 if (Start->getOperand(0)->getType()->getScalarSizeInBits() !=
297 VT->getScalarSizeInBits() * 2) {
298 LLVM_DEBUG(dbgs() << " Type not double sized\n");
299 return false;
301 for (Instruction *I : Exts)
302 if (I->getOperand(0)->getType() != VT) {
303 LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n");
304 return false;
306 for (Instruction *I : Truncs)
307 if (I->getType() != VT) {
308 LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n");
309 return false;
312 // Check that it looks beneficial
313 if (!isProfitableToInterleave(Exts, Truncs))
314 return false;
316 // Create new shuffles around the extends / truncs / other leaves.
317 IRBuilder<> Builder(Start);
319 SmallVector<int, 16> LeafMask;
320 SmallVector<int, 16> TruncMask;
321 // LeafMask : 0, 2, 4, 6, 1, 3, 5, 7 8, 10, 12, 14, 9, 11, 13, 15
322 // TruncMask: 0, 4, 1, 5, 2, 6, 3, 7 8, 12, 9, 13, 10, 14, 11, 15
323 for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
324 for (unsigned i = 0; i < BaseElts / 2; i++)
325 LeafMask.push_back(Base + i * 2);
326 for (unsigned i = 0; i < BaseElts / 2; i++)
327 LeafMask.push_back(Base + i * 2 + 1);
329 for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
330 for (unsigned i = 0; i < BaseElts / 2; i++) {
331 TruncMask.push_back(Base + i);
332 TruncMask.push_back(Base + i + BaseElts / 2);
336 for (Instruction *I : Exts) {
337 LLVM_DEBUG(dbgs() << "Replacing ext " << *I << "\n");
338 Builder.SetInsertPoint(I);
339 Value *Shuffle = Builder.CreateShuffleVector(I->getOperand(0), LeafMask);
340 bool FPext = isa<FPExtInst>(I);
341 bool Sext = isa<SExtInst>(I);
342 Value *Ext = FPext ? Builder.CreateFPExt(Shuffle, I->getType())
343 : Sext ? Builder.CreateSExt(Shuffle, I->getType())
344 : Builder.CreateZExt(Shuffle, I->getType());
345 I->replaceAllUsesWith(Ext);
346 LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n");
349 for (Use *I : OtherLeafs) {
350 LLVM_DEBUG(dbgs() << "Replacing leaf " << *I << "\n");
351 Builder.SetInsertPoint(cast<Instruction>(I->getUser()));
352 Value *Shuffle = Builder.CreateShuffleVector(I->get(), LeafMask);
353 I->getUser()->setOperand(I->getOperandNo(), Shuffle);
354 LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n");
357 for (Instruction *I : Truncs) {
358 LLVM_DEBUG(dbgs() << "Replacing trunc " << *I << "\n");
360 Builder.SetInsertPoint(I->getParent(), ++I->getIterator());
361 Value *Shuf = Builder.CreateShuffleVector(I, TruncMask);
362 I->replaceAllUsesWith(Shuf);
363 cast<Instruction>(Shuf)->setOperand(0, I);
365 LLVM_DEBUG(dbgs() << " with " << *Shuf << "\n");
368 return true;
371 bool MVELaneInterleaving::runOnFunction(Function &F) {
372 if (!EnableInterleave)
373 return false;
374 auto &TPC = getAnalysis<TargetPassConfig>();
375 auto &TM = TPC.getTM<TargetMachine>();
376 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
377 if (!ST->hasMVEIntegerOps())
378 return false;
380 bool Changed = false;
382 SmallPtrSet<Instruction *, 16> Visited;
383 for (Instruction &I : reverse(instructions(F))) {
384 if (I.getType()->isVectorTy() &&
385 (isa<TruncInst>(I) || isa<FPTruncInst>(I)) && !Visited.count(&I))
386 Changed |= tryInterleave(&I, Visited);
389 return Changed;