[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AVR / AVRShiftExpand.cpp
blobb7dcd860467d38d7b8836d31dbf46d2dc87f58b6
1 //===- AVRShift.cpp - Shift Expansion Pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Expand 32-bit shift instructions (shl, lshr, ashr) to inline loops, just
11 /// like avr-gcc. This must be done in IR because otherwise the type legalizer
12 /// will turn 32-bit shifts into (non-existing) library calls such as __ashlsi3.
14 //===----------------------------------------------------------------------===//
16 #include "AVR.h"
17 #include "llvm/IR/IRBuilder.h"
18 #include "llvm/IR/InstIterator.h"
20 using namespace llvm;
22 namespace {
24 class AVRShiftExpand : public FunctionPass {
25 public:
26 static char ID;
28 AVRShiftExpand() : FunctionPass(ID) {}
30 bool runOnFunction(Function &F) override;
32 StringRef getPassName() const override { return "AVR Shift Expansion"; }
34 private:
35 void expand(BinaryOperator *BI);
38 } // end of anonymous namespace
40 char AVRShiftExpand::ID = 0;
42 INITIALIZE_PASS(AVRShiftExpand, "avr-shift-expand", "AVR Shift Expansion",
43 false, false)
45 Pass *llvm::createAVRShiftExpandPass() { return new AVRShiftExpand(); }
47 bool AVRShiftExpand::runOnFunction(Function &F) {
48 SmallVector<BinaryOperator *, 1> ShiftInsts;
49 auto &Ctx = F.getContext();
50 for (Instruction &I : instructions(F)) {
51 if (!I.isShift())
52 // Only expand shift instructions (shl, lshr, ashr).
53 continue;
54 if (I.getType() != Type::getInt32Ty(Ctx))
55 // Only expand plain i32 types.
56 continue;
57 if (isa<ConstantInt>(I.getOperand(1)))
58 // Only expand when the shift amount is not known.
59 // Known shift amounts are (currently) better expanded inline.
60 continue;
61 ShiftInsts.push_back(cast<BinaryOperator>(&I));
64 // The expanding itself needs to be done separately as expand() will remove
65 // these instructions. Removing instructions while iterating over a basic
66 // block is not a great idea.
67 for (auto *I : ShiftInsts) {
68 expand(I);
71 // Return whether this function expanded any shift instructions.
72 return ShiftInsts.size() > 0;
75 void AVRShiftExpand::expand(BinaryOperator *BI) {
76 auto &Ctx = BI->getContext();
77 IRBuilder<> Builder(BI);
78 Type *Int32Ty = Type::getInt32Ty(Ctx);
79 Type *Int8Ty = Type::getInt8Ty(Ctx);
80 Value *Int8Zero = ConstantInt::get(Int8Ty, 0);
82 // Split the current basic block at the point of the existing shift
83 // instruction and insert a new basic block for the loop.
84 BasicBlock *BB = BI->getParent();
85 Function *F = BB->getParent();
86 BasicBlock *EndBB = BB->splitBasicBlock(BI, "shift.done");
87 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "shift.loop", F, EndBB);
89 // Truncate the shift amount to i8, which is trivially lowered to a single
90 // AVR register.
91 Builder.SetInsertPoint(&BB->back());
92 Value *ShiftAmount = Builder.CreateTrunc(BI->getOperand(1), Int8Ty);
94 // Replace the unconditional branch that splitBasicBlock created with a
95 // conditional branch.
96 Value *Cmp1 = Builder.CreateICmpEQ(ShiftAmount, Int8Zero);
97 Builder.CreateCondBr(Cmp1, EndBB, LoopBB);
98 BB->back().eraseFromParent();
100 // Create the loop body starting with PHI nodes.
101 Builder.SetInsertPoint(LoopBB);
102 PHINode *ShiftAmountPHI = Builder.CreatePHI(Int8Ty, 2);
103 ShiftAmountPHI->addIncoming(ShiftAmount, BB);
104 PHINode *ValuePHI = Builder.CreatePHI(Int32Ty, 2);
105 ValuePHI->addIncoming(BI->getOperand(0), BB);
107 // Subtract the shift amount by one, as we're shifting one this loop
108 // iteration.
109 Value *ShiftAmountSub =
110 Builder.CreateSub(ShiftAmountPHI, ConstantInt::get(Int8Ty, 1));
111 ShiftAmountPHI->addIncoming(ShiftAmountSub, LoopBB);
113 // Emit the actual shift instruction. The difference is that this shift
114 // instruction has a constant shift amount, which can be emitted inline
115 // without a library call.
116 Value *ValueShifted;
117 switch (BI->getOpcode()) {
118 case Instruction::Shl:
119 ValueShifted = Builder.CreateShl(ValuePHI, ConstantInt::get(Int32Ty, 1));
120 break;
121 case Instruction::LShr:
122 ValueShifted = Builder.CreateLShr(ValuePHI, ConstantInt::get(Int32Ty, 1));
123 break;
124 case Instruction::AShr:
125 ValueShifted = Builder.CreateAShr(ValuePHI, ConstantInt::get(Int32Ty, 1));
126 break;
127 default:
128 llvm_unreachable("asked to expand an instruction that is not a shift");
130 ValuePHI->addIncoming(ValueShifted, LoopBB);
132 // Branch to either the loop again (if there is more to shift) or to the
133 // basic block after the loop (if all bits are shifted).
134 Value *Cmp2 = Builder.CreateICmpEQ(ShiftAmountSub, Int8Zero);
135 Builder.CreateCondBr(Cmp2, EndBB, LoopBB);
137 // Collect the resulting value. This is necessary in the IR but won't produce
138 // any actual instructions.
139 Builder.SetInsertPoint(BI);
140 PHINode *Result = Builder.CreatePHI(Int32Ty, 2);
141 Result->addIncoming(BI->getOperand(0), BB);
142 Result->addIncoming(ValueShifted, LoopBB);
144 // Replace the original shift instruction.
145 BI->replaceAllUsesWith(Result);
146 BI->eraseFromParent();