[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / BPF / BPFAdjustOpt.cpp
blob7088d55e1a71442031c2ecbf55161623c008f922
1 //===---------------- BPFAdjustOpt.cpp - Adjust Optimization --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Adjust optimization to make the code more kernel verifier friendly.
11 //===----------------------------------------------------------------------===//
13 #include "BPF.h"
14 #include "BPFCORE.h"
15 #include "BPFTargetMachine.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/IR/Type.h"
21 #include "llvm/IR/User.h"
22 #include "llvm/IR/Value.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #define DEBUG_TYPE "bpf-adjust-opt"
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
31 static cl::opt<bool>
32 DisableBPFserializeICMP("bpf-disable-serialize-icmp", cl::Hidden,
33 cl::desc("BPF: Disable Serializing ICMP insns."),
34 cl::init(false));
36 static cl::opt<bool> DisableBPFavoidSpeculation(
37 "bpf-disable-avoid-speculation", cl::Hidden,
38 cl::desc("BPF: Disable Avoiding Speculative Code Motion."),
39 cl::init(false));
41 namespace {
43 class BPFAdjustOpt final : public ModulePass {
44 public:
45 static char ID;
47 BPFAdjustOpt() : ModulePass(ID) {}
48 bool runOnModule(Module &M) override;
51 class BPFAdjustOptImpl {
52 struct PassThroughInfo {
53 Instruction *Input;
54 Instruction *UsedInst;
55 uint32_t OpIdx;
56 PassThroughInfo(Instruction *I, Instruction *U, uint32_t Idx)
57 : Input(I), UsedInst(U), OpIdx(Idx) {}
60 public:
61 BPFAdjustOptImpl(Module *M) : M(M) {}
63 bool run();
65 private:
66 Module *M;
67 SmallVector<PassThroughInfo, 16> PassThroughs;
69 void adjustBasicBlock(BasicBlock &BB);
70 bool serializeICMPCrossBB(BasicBlock &BB);
71 void adjustInst(Instruction &I);
72 bool serializeICMPInBB(Instruction &I);
73 bool avoidSpeculation(Instruction &I);
74 bool insertPassThrough();
77 } // End anonymous namespace
79 char BPFAdjustOpt::ID = 0;
80 INITIALIZE_PASS(BPFAdjustOpt, "bpf-adjust-opt", "BPF Adjust Optimization",
81 false, false)
83 ModulePass *llvm::createBPFAdjustOpt() { return new BPFAdjustOpt(); }
85 bool BPFAdjustOpt::runOnModule(Module &M) { return BPFAdjustOptImpl(&M).run(); }
87 bool BPFAdjustOptImpl::run() {
88 for (Function &F : *M)
89 for (auto &BB : F) {
90 adjustBasicBlock(BB);
91 for (auto &I : BB)
92 adjustInst(I);
95 return insertPassThrough();
98 bool BPFAdjustOptImpl::insertPassThrough() {
99 for (auto &Info : PassThroughs) {
100 auto *CI = BPFCoreSharedInfo::insertPassThrough(
101 M, Info.UsedInst->getParent(), Info.Input, Info.UsedInst);
102 Info.UsedInst->setOperand(Info.OpIdx, CI);
105 return !PassThroughs.empty();
108 // To avoid combining conditionals in the same basic block by
109 // instrcombine optimization.
110 bool BPFAdjustOptImpl::serializeICMPInBB(Instruction &I) {
111 // For:
112 // comp1 = icmp <opcode> ...;
113 // comp2 = icmp <opcode> ...;
114 // ... or comp1 comp2 ...
115 // changed to:
116 // comp1 = icmp <opcode> ...;
117 // comp2 = icmp <opcode> ...;
118 // new_comp1 = __builtin_bpf_passthrough(seq_num, comp1)
119 // ... or new_comp1 comp2 ...
120 Value *Op0, *Op1;
121 // Use LogicalOr (accept `or i1` as well as `select i1 Op0, true, Op1`)
122 if (!match(&I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
123 return false;
124 auto *Icmp1 = dyn_cast<ICmpInst>(Op0);
125 if (!Icmp1)
126 return false;
127 auto *Icmp2 = dyn_cast<ICmpInst>(Op1);
128 if (!Icmp2)
129 return false;
131 Value *Icmp1Op0 = Icmp1->getOperand(0);
132 Value *Icmp2Op0 = Icmp2->getOperand(0);
133 if (Icmp1Op0 != Icmp2Op0)
134 return false;
136 // Now we got two icmp instructions which feed into
137 // an "or" instruction.
138 PassThroughInfo Info(Icmp1, &I, 0);
139 PassThroughs.push_back(Info);
140 return true;
143 // To avoid combining conditionals in the same basic block by
144 // instrcombine optimization.
145 bool BPFAdjustOptImpl::serializeICMPCrossBB(BasicBlock &BB) {
146 // For:
147 // B1:
148 // comp1 = icmp <opcode> ...;
149 // if (comp1) goto B2 else B3;
150 // B2:
151 // comp2 = icmp <opcode> ...;
152 // if (comp2) goto B4 else B5;
153 // B4:
154 // ...
155 // changed to:
156 // B1:
157 // comp1 = icmp <opcode> ...;
158 // comp1 = __builtin_bpf_passthrough(seq_num, comp1);
159 // if (comp1) goto B2 else B3;
160 // B2:
161 // comp2 = icmp <opcode> ...;
162 // if (comp2) goto B4 else B5;
163 // B4:
164 // ...
166 // Check basic predecessors, if two of them (say B1, B2) are using
167 // icmp instructions to generate conditions and one is the predesessor
168 // of another (e.g., B1 is the predecessor of B2). Add a passthrough
169 // barrier after icmp inst of block B1.
170 BasicBlock *B2 = BB.getSinglePredecessor();
171 if (!B2)
172 return false;
174 BasicBlock *B1 = B2->getSinglePredecessor();
175 if (!B1)
176 return false;
178 Instruction *TI = B2->getTerminator();
179 auto *BI = dyn_cast<BranchInst>(TI);
180 if (!BI || !BI->isConditional())
181 return false;
182 auto *Cond = dyn_cast<ICmpInst>(BI->getCondition());
183 if (!Cond || B2->getFirstNonPHI() != Cond)
184 return false;
185 Value *B2Op0 = Cond->getOperand(0);
186 auto Cond2Op = Cond->getPredicate();
188 TI = B1->getTerminator();
189 BI = dyn_cast<BranchInst>(TI);
190 if (!BI || !BI->isConditional())
191 return false;
192 Cond = dyn_cast<ICmpInst>(BI->getCondition());
193 if (!Cond)
194 return false;
195 Value *B1Op0 = Cond->getOperand(0);
196 auto Cond1Op = Cond->getPredicate();
198 if (B1Op0 != B2Op0)
199 return false;
201 if (Cond1Op == ICmpInst::ICMP_SGT || Cond1Op == ICmpInst::ICMP_SGE) {
202 if (Cond2Op != ICmpInst::ICMP_SLT && Cond1Op != ICmpInst::ICMP_SLE)
203 return false;
204 } else if (Cond1Op == ICmpInst::ICMP_SLT || Cond1Op == ICmpInst::ICMP_SLE) {
205 if (Cond2Op != ICmpInst::ICMP_SGT && Cond1Op != ICmpInst::ICMP_SGE)
206 return false;
207 } else {
208 return false;
211 PassThroughInfo Info(Cond, BI, 0);
212 PassThroughs.push_back(Info);
214 return true;
217 // To avoid speculative hoisting certain computations out of
218 // a basic block.
219 bool BPFAdjustOptImpl::avoidSpeculation(Instruction &I) {
220 if (auto *LdInst = dyn_cast<LoadInst>(&I)) {
221 if (auto *GV = dyn_cast<GlobalVariable>(LdInst->getOperand(0))) {
222 if (GV->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
223 GV->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
224 return false;
228 if (!isa<LoadInst>(&I) && !isa<CallInst>(&I))
229 return false;
231 // For:
232 // B1:
233 // var = ...
234 // ...
235 // /* icmp may not be in the same block as var = ... */
236 // comp1 = icmp <opcode> var, <const>;
237 // if (comp1) goto B2 else B3;
238 // B2:
239 // ... var ...
240 // change to:
241 // B1:
242 // var = ...
243 // ...
244 // /* icmp may not be in the same block as var = ... */
245 // comp1 = icmp <opcode> var, <const>;
246 // if (comp1) goto B2 else B3;
247 // B2:
248 // var = __builtin_bpf_passthrough(seq_num, var);
249 // ... var ...
250 bool isCandidate = false;
251 SmallVector<PassThroughInfo, 4> Candidates;
252 for (User *U : I.users()) {
253 Instruction *Inst = dyn_cast<Instruction>(U);
254 if (!Inst)
255 continue;
257 // May cover a little bit more than the
258 // above pattern.
259 if (auto *Icmp1 = dyn_cast<ICmpInst>(Inst)) {
260 Value *Icmp1Op1 = Icmp1->getOperand(1);
261 if (!isa<Constant>(Icmp1Op1))
262 return false;
263 isCandidate = true;
264 continue;
267 // Ignore the use in the same basic block as the definition.
268 if (Inst->getParent() == I.getParent())
269 continue;
271 // use in a different basic block, If there is a call or
272 // load/store insn before this instruction in this basic
273 // block. Most likely it cannot be hoisted out. Skip it.
274 for (auto &I2 : *Inst->getParent()) {
275 if (isa<CallInst>(&I2))
276 return false;
277 if (isa<LoadInst>(&I2) || isa<StoreInst>(&I2))
278 return false;
279 if (&I2 == Inst)
280 break;
283 // It should be used in a GEP or a simple arithmetic like
284 // ZEXT/SEXT which is used for GEP.
285 if (Inst->getOpcode() == Instruction::ZExt ||
286 Inst->getOpcode() == Instruction::SExt) {
287 PassThroughInfo Info(&I, Inst, 0);
288 Candidates.push_back(Info);
289 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
290 // traverse GEP inst to find Use operand index
291 unsigned i, e;
292 for (i = 1, e = GI->getNumOperands(); i != e; ++i) {
293 Value *V = GI->getOperand(i);
294 if (V == &I)
295 break;
297 if (i == e)
298 continue;
300 PassThroughInfo Info(&I, GI, i);
301 Candidates.push_back(Info);
305 if (!isCandidate || Candidates.empty())
306 return false;
308 llvm::append_range(PassThroughs, Candidates);
309 return true;
312 void BPFAdjustOptImpl::adjustBasicBlock(BasicBlock &BB) {
313 if (!DisableBPFserializeICMP && serializeICMPCrossBB(BB))
314 return;
317 void BPFAdjustOptImpl::adjustInst(Instruction &I) {
318 if (!DisableBPFserializeICMP && serializeICMPInBB(I))
319 return;
320 if (!DisableBPFavoidSpeculation && avoidSpeculation(I))
321 return;
324 PreservedAnalyses BPFAdjustOptPass::run(Module &M, ModuleAnalysisManager &AM) {
325 return BPFAdjustOptImpl(&M).run() ? PreservedAnalyses::none()
326 : PreservedAnalyses::all();