[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / BPF / BPFISelLowering.cpp
blobc543dfcfca9532143e4aff0b4b0e0c2b2ffc6ed1
1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that BPF uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "BPFISelLowering.h"
15 #include "BPF.h"
16 #include "BPFSubtarget.h"
17 #include "BPFTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/DiagnosticPrinter.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "bpf-lower"
34 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
35 cl::Hidden, cl::init(false),
36 cl::desc("Expand memcpy into load/store pairs in order"));
38 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
39 MachineFunction &MF = DAG.getMachineFunction();
40 DAG.getContext()->diagnose(
41 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
44 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
45 SDValue Val) {
46 MachineFunction &MF = DAG.getMachineFunction();
47 std::string Str;
48 raw_string_ostream OS(Str);
49 OS << Msg;
50 Val->print(OS);
51 OS.flush();
52 DAG.getContext()->diagnose(
53 DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
56 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
57 const BPFSubtarget &STI)
58 : TargetLowering(TM) {
60 // Set up the register classes.
61 addRegisterClass(MVT::i64, &BPF::GPRRegClass);
62 if (STI.getHasAlu32())
63 addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
65 // Compute derived properties from the register classes
66 computeRegisterProperties(STI.getRegisterInfo());
68 setStackPointerRegisterToSaveRestore(BPF::R11);
70 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
71 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
72 setOperationAction(ISD::BRIND, MVT::Other, Expand);
73 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
75 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
78 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
79 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
81 // Set unsupported atomic operations as Custom so
82 // we can emit better error messages than fatal error
83 // from selectiondag.
84 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
85 if (VT == MVT::i32) {
86 if (STI.getHasAlu32())
87 continue;
88 } else {
89 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
92 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
93 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
94 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
95 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
96 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
99 for (auto VT : { MVT::i32, MVT::i64 }) {
100 if (VT == MVT::i32 && !STI.getHasAlu32())
101 continue;
103 setOperationAction(ISD::SDIVREM, VT, Expand);
104 setOperationAction(ISD::UDIVREM, VT, Expand);
105 setOperationAction(ISD::SREM, VT, Expand);
106 setOperationAction(ISD::UREM, VT, Expand);
107 setOperationAction(ISD::MULHU, VT, Expand);
108 setOperationAction(ISD::MULHS, VT, Expand);
109 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
110 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
111 setOperationAction(ISD::ROTR, VT, Expand);
112 setOperationAction(ISD::ROTL, VT, Expand);
113 setOperationAction(ISD::SHL_PARTS, VT, Expand);
114 setOperationAction(ISD::SRL_PARTS, VT, Expand);
115 setOperationAction(ISD::SRA_PARTS, VT, Expand);
116 setOperationAction(ISD::CTPOP, VT, Expand);
118 setOperationAction(ISD::SETCC, VT, Expand);
119 setOperationAction(ISD::SELECT, VT, Expand);
120 setOperationAction(ISD::SELECT_CC, VT, Custom);
123 if (STI.getHasAlu32()) {
124 setOperationAction(ISD::BSWAP, MVT::i32, Promote);
125 setOperationAction(ISD::BR_CC, MVT::i32,
126 STI.getHasJmp32() ? Custom : Promote);
129 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
130 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
131 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
132 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
134 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
135 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
136 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
137 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
139 // Extended load operations for i1 types must be promoted
140 for (MVT VT : MVT::integer_valuetypes()) {
141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
142 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
146 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
147 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
150 setBooleanContents(ZeroOrOneBooleanContent);
152 // Function alignments
153 setMinFunctionAlignment(Align(8));
154 setPrefFunctionAlignment(Align(8));
156 if (BPFExpandMemcpyInOrder) {
157 // LLVM generic code will try to expand memcpy into load/store pairs at this
158 // stage which is before quite a few IR optimization passes, therefore the
159 // loads and stores could potentially be moved apart from each other which
160 // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
161 // compilers.
163 // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
164 // of memcpy to later stage in IR optimization pipeline so those load/store
165 // pairs won't be touched and could be kept in order. Hence, we set
166 // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
167 // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
168 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
169 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
170 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
171 } else {
172 // inline memcpy() for kernel to see explicit copy
173 unsigned CommonMaxStores =
174 STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
176 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
177 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
178 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
181 // CPU/Feature control
182 HasAlu32 = STI.getHasAlu32();
183 HasJmp32 = STI.getHasJmp32();
184 HasJmpExt = STI.getHasJmpExt();
187 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
188 return false;
191 bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
192 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
193 return false;
194 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
195 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
196 return NumBits1 > NumBits2;
199 bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
200 if (!VT1.isInteger() || !VT2.isInteger())
201 return false;
202 unsigned NumBits1 = VT1.getSizeInBits();
203 unsigned NumBits2 = VT2.getSizeInBits();
204 return NumBits1 > NumBits2;
207 bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
208 if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy())
209 return false;
210 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
211 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
212 return NumBits1 == 32 && NumBits2 == 64;
215 bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
216 if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger())
217 return false;
218 unsigned NumBits1 = VT1.getSizeInBits();
219 unsigned NumBits2 = VT2.getSizeInBits();
220 return NumBits1 == 32 && NumBits2 == 64;
223 BPFTargetLowering::ConstraintType
224 BPFTargetLowering::getConstraintType(StringRef Constraint) const {
225 if (Constraint.size() == 1) {
226 switch (Constraint[0]) {
227 default:
228 break;
229 case 'w':
230 return C_RegisterClass;
234 return TargetLowering::getConstraintType(Constraint);
237 std::pair<unsigned, const TargetRegisterClass *>
238 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
239 StringRef Constraint,
240 MVT VT) const {
241 if (Constraint.size() == 1)
242 // GCC Constraint Letters
243 switch (Constraint[0]) {
244 case 'r': // GENERAL_REGS
245 return std::make_pair(0U, &BPF::GPRRegClass);
246 case 'w':
247 if (HasAlu32)
248 return std::make_pair(0U, &BPF::GPR32RegClass);
249 break;
250 default:
251 break;
254 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
257 void BPFTargetLowering::ReplaceNodeResults(
258 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
259 const char *err_msg;
260 uint32_t Opcode = N->getOpcode();
261 switch (Opcode) {
262 default:
263 report_fatal_error("Unhandled custom legalization");
264 case ISD::ATOMIC_LOAD_ADD:
265 case ISD::ATOMIC_LOAD_AND:
266 case ISD::ATOMIC_LOAD_OR:
267 case ISD::ATOMIC_LOAD_XOR:
268 case ISD::ATOMIC_SWAP:
269 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
270 if (HasAlu32 || Opcode == ISD::ATOMIC_LOAD_ADD)
271 err_msg = "Unsupported atomic operations, please use 32/64 bit version";
272 else
273 err_msg = "Unsupported atomic operations, please use 64 bit version";
274 break;
277 SDLoc DL(N);
278 fail(DL, DAG, err_msg);
281 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
282 switch (Op.getOpcode()) {
283 case ISD::BR_CC:
284 return LowerBR_CC(Op, DAG);
285 case ISD::GlobalAddress:
286 return LowerGlobalAddress(Op, DAG);
287 case ISD::SELECT_CC:
288 return LowerSELECT_CC(Op, DAG);
289 case ISD::DYNAMIC_STACKALLOC:
290 report_fatal_error("Unsupported dynamic stack allocation");
291 default:
292 llvm_unreachable("unimplemented operand");
296 // Calling Convention Implementation
297 #include "BPFGenCallingConv.inc"
299 SDValue BPFTargetLowering::LowerFormalArguments(
300 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
301 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
302 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
303 switch (CallConv) {
304 default:
305 report_fatal_error("Unsupported calling convention");
306 case CallingConv::C:
307 case CallingConv::Fast:
308 break;
311 MachineFunction &MF = DAG.getMachineFunction();
312 MachineRegisterInfo &RegInfo = MF.getRegInfo();
314 // Assign locations to all of the incoming arguments.
315 SmallVector<CCValAssign, 16> ArgLocs;
316 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
317 CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
319 for (auto &VA : ArgLocs) {
320 if (VA.isRegLoc()) {
321 // Arguments passed in registers
322 EVT RegVT = VA.getLocVT();
323 MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
324 switch (SimpleTy) {
325 default: {
326 errs() << "LowerFormalArguments Unhandled argument type: "
327 << RegVT.getEVTString() << '\n';
328 llvm_unreachable(0);
330 case MVT::i32:
331 case MVT::i64:
332 Register VReg = RegInfo.createVirtualRegister(
333 SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
334 RegInfo.addLiveIn(VA.getLocReg(), VReg);
335 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
337 // If this is an value that has been promoted to wider types, insert an
338 // assert[sz]ext to capture this, then truncate to the right size.
339 if (VA.getLocInfo() == CCValAssign::SExt)
340 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
341 DAG.getValueType(VA.getValVT()));
342 else if (VA.getLocInfo() == CCValAssign::ZExt)
343 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
344 DAG.getValueType(VA.getValVT()));
346 if (VA.getLocInfo() != CCValAssign::Full)
347 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
349 InVals.push_back(ArgValue);
351 break;
353 } else {
354 fail(DL, DAG, "defined with too many args");
355 InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
359 if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
360 fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
363 return Chain;
366 const unsigned BPFTargetLowering::MaxArgs = 5;
368 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
369 SmallVectorImpl<SDValue> &InVals) const {
370 SelectionDAG &DAG = CLI.DAG;
371 auto &Outs = CLI.Outs;
372 auto &OutVals = CLI.OutVals;
373 auto &Ins = CLI.Ins;
374 SDValue Chain = CLI.Chain;
375 SDValue Callee = CLI.Callee;
376 bool &IsTailCall = CLI.IsTailCall;
377 CallingConv::ID CallConv = CLI.CallConv;
378 bool IsVarArg = CLI.IsVarArg;
379 MachineFunction &MF = DAG.getMachineFunction();
381 // BPF target does not support tail call optimization.
382 IsTailCall = false;
384 switch (CallConv) {
385 default:
386 report_fatal_error("Unsupported calling convention");
387 case CallingConv::Fast:
388 case CallingConv::C:
389 break;
392 // Analyze operands of the call, assigning locations to each operand.
393 SmallVector<CCValAssign, 16> ArgLocs;
394 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
396 CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
398 unsigned NumBytes = CCInfo.getNextStackOffset();
400 if (Outs.size() > MaxArgs)
401 fail(CLI.DL, DAG, "too many args to ", Callee);
403 for (auto &Arg : Outs) {
404 ISD::ArgFlagsTy Flags = Arg.Flags;
405 if (!Flags.isByVal())
406 continue;
408 fail(CLI.DL, DAG, "pass by value not supported ", Callee);
411 auto PtrVT = getPointerTy(MF.getDataLayout());
412 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
414 SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
416 // Walk arg assignments
417 for (unsigned i = 0,
418 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
419 i != e; ++i) {
420 CCValAssign &VA = ArgLocs[i];
421 SDValue Arg = OutVals[i];
423 // Promote the value if needed.
424 switch (VA.getLocInfo()) {
425 default:
426 llvm_unreachable("Unknown loc info");
427 case CCValAssign::Full:
428 break;
429 case CCValAssign::SExt:
430 Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
431 break;
432 case CCValAssign::ZExt:
433 Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
434 break;
435 case CCValAssign::AExt:
436 Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
437 break;
440 // Push arguments into RegsToPass vector
441 if (VA.isRegLoc())
442 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
443 else
444 llvm_unreachable("call arg pass bug");
447 SDValue InFlag;
449 // Build a sequence of copy-to-reg nodes chained together with token chain and
450 // flag operands which copy the outgoing args into registers. The InFlag in
451 // necessary since all emitted instructions must be stuck together.
452 for (auto &Reg : RegsToPass) {
453 Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
454 InFlag = Chain.getValue(1);
457 // If the callee is a GlobalAddress node (quite common, every direct call is)
458 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
459 // Likewise ExternalSymbol -> TargetExternalSymbol.
460 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
461 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
462 G->getOffset(), 0);
463 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
464 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
465 fail(CLI.DL, DAG, Twine("A call to built-in function '"
466 + StringRef(E->getSymbol())
467 + "' is not supported."));
470 // Returns a chain & a flag for retval copy to use.
471 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
472 SmallVector<SDValue, 8> Ops;
473 Ops.push_back(Chain);
474 Ops.push_back(Callee);
476 // Add argument registers to the end of the list so that they are
477 // known live into the call.
478 for (auto &Reg : RegsToPass)
479 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
481 if (InFlag.getNode())
482 Ops.push_back(InFlag);
484 Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
485 InFlag = Chain.getValue(1);
487 // Create the CALLSEQ_END node.
488 Chain = DAG.getCALLSEQ_END(
489 Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
490 DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
491 InFlag = Chain.getValue(1);
493 // Handle result values, copying them out of physregs into vregs that we
494 // return.
495 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
496 InVals);
499 SDValue
500 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
501 bool IsVarArg,
502 const SmallVectorImpl<ISD::OutputArg> &Outs,
503 const SmallVectorImpl<SDValue> &OutVals,
504 const SDLoc &DL, SelectionDAG &DAG) const {
505 unsigned Opc = BPFISD::RET_FLAG;
507 // CCValAssign - represent the assignment of the return value to a location
508 SmallVector<CCValAssign, 16> RVLocs;
509 MachineFunction &MF = DAG.getMachineFunction();
511 // CCState - Info about the registers and stack slot.
512 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
514 if (MF.getFunction().getReturnType()->isAggregateType()) {
515 fail(DL, DAG, "only integer returns supported");
516 return DAG.getNode(Opc, DL, MVT::Other, Chain);
519 // Analize return values.
520 CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
522 SDValue Flag;
523 SmallVector<SDValue, 4> RetOps(1, Chain);
525 // Copy the result values into the output registers.
526 for (unsigned i = 0; i != RVLocs.size(); ++i) {
527 CCValAssign &VA = RVLocs[i];
528 assert(VA.isRegLoc() && "Can only return in registers!");
530 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
532 // Guarantee that all emitted copies are stuck together,
533 // avoiding something bad.
534 Flag = Chain.getValue(1);
535 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
538 RetOps[0] = Chain; // Update chain.
540 // Add the flag if we have it.
541 if (Flag.getNode())
542 RetOps.push_back(Flag);
544 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
547 SDValue BPFTargetLowering::LowerCallResult(
548 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
549 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
550 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
552 MachineFunction &MF = DAG.getMachineFunction();
553 // Assign locations to each value returned by this call.
554 SmallVector<CCValAssign, 16> RVLocs;
555 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
557 if (Ins.size() >= 2) {
558 fail(DL, DAG, "only small returns supported");
559 for (unsigned i = 0, e = Ins.size(); i != e; ++i)
560 InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
561 return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
564 CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
566 // Copy all of the result registers out of their specified physreg.
567 for (auto &Val : RVLocs) {
568 Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
569 Val.getValVT(), InFlag).getValue(1);
570 InFlag = Chain.getValue(2);
571 InVals.push_back(Chain.getValue(0));
574 return Chain;
577 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
578 switch (CC) {
579 default:
580 break;
581 case ISD::SETULT:
582 case ISD::SETULE:
583 case ISD::SETLT:
584 case ISD::SETLE:
585 CC = ISD::getSetCCSwappedOperands(CC);
586 std::swap(LHS, RHS);
587 break;
591 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
592 SDValue Chain = Op.getOperand(0);
593 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
594 SDValue LHS = Op.getOperand(2);
595 SDValue RHS = Op.getOperand(3);
596 SDValue Dest = Op.getOperand(4);
597 SDLoc DL(Op);
599 if (!getHasJmpExt())
600 NegateCC(LHS, RHS, CC);
602 return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
603 DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
606 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
607 SDValue LHS = Op.getOperand(0);
608 SDValue RHS = Op.getOperand(1);
609 SDValue TrueV = Op.getOperand(2);
610 SDValue FalseV = Op.getOperand(3);
611 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
612 SDLoc DL(Op);
614 if (!getHasJmpExt())
615 NegateCC(LHS, RHS, CC);
617 SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
618 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
619 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
621 return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
624 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
625 switch ((BPFISD::NodeType)Opcode) {
626 case BPFISD::FIRST_NUMBER:
627 break;
628 case BPFISD::RET_FLAG:
629 return "BPFISD::RET_FLAG";
630 case BPFISD::CALL:
631 return "BPFISD::CALL";
632 case BPFISD::SELECT_CC:
633 return "BPFISD::SELECT_CC";
634 case BPFISD::BR_CC:
635 return "BPFISD::BR_CC";
636 case BPFISD::Wrapper:
637 return "BPFISD::Wrapper";
638 case BPFISD::MEMCPY:
639 return "BPFISD::MEMCPY";
641 return nullptr;
644 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
645 SelectionDAG &DAG) const {
646 auto N = cast<GlobalAddressSDNode>(Op);
647 assert(N->getOffset() == 0 && "Invalid offset for global address");
649 SDLoc DL(Op);
650 const GlobalValue *GV = N->getGlobal();
651 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
653 return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
656 unsigned
657 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
658 unsigned Reg, bool isSigned) const {
659 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
660 const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
661 int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
662 MachineFunction *F = BB->getParent();
663 DebugLoc DL = MI.getDebugLoc();
665 MachineRegisterInfo &RegInfo = F->getRegInfo();
667 if (!isSigned) {
668 Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
669 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
670 return PromotedReg0;
672 Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
673 Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
674 Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
675 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
676 BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
677 .addReg(PromotedReg0).addImm(32);
678 BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
679 .addReg(PromotedReg1).addImm(32);
681 return PromotedReg2;
684 MachineBasicBlock *
685 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
686 MachineBasicBlock *BB)
687 const {
688 MachineFunction *MF = MI.getParent()->getParent();
689 MachineRegisterInfo &MRI = MF->getRegInfo();
690 MachineInstrBuilder MIB(*MF, MI);
691 unsigned ScratchReg;
693 // This function does custom insertion during lowering BPFISD::MEMCPY which
694 // only has two register operands from memcpy semantics, the copy source
695 // address and the copy destination address.
697 // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
698 // a third scratch register to serve as the destination register of load and
699 // source register of store.
701 // The scratch register here is with the Define | Dead | EarlyClobber flags.
702 // The EarlyClobber flag has the semantic property that the operand it is
703 // attached to is clobbered before the rest of the inputs are read. Hence it
704 // must be unique among the operands to the instruction. The Define flag is
705 // needed to coerce the machine verifier that an Undef value isn't a problem
706 // as we anyway is loading memory into it. The Dead flag is needed as the
707 // value in scratch isn't supposed to be used by any other instruction.
708 ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
709 MIB.addReg(ScratchReg,
710 RegState::Define | RegState::Dead | RegState::EarlyClobber);
712 return BB;
715 MachineBasicBlock *
716 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
717 MachineBasicBlock *BB) const {
718 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
719 DebugLoc DL = MI.getDebugLoc();
720 unsigned Opc = MI.getOpcode();
721 bool isSelectRROp = (Opc == BPF::Select ||
722 Opc == BPF::Select_64_32 ||
723 Opc == BPF::Select_32 ||
724 Opc == BPF::Select_32_64);
726 bool isMemcpyOp = Opc == BPF::MEMCPY;
728 #ifndef NDEBUG
729 bool isSelectRIOp = (Opc == BPF::Select_Ri ||
730 Opc == BPF::Select_Ri_64_32 ||
731 Opc == BPF::Select_Ri_32 ||
732 Opc == BPF::Select_Ri_32_64);
735 assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
736 "Unexpected instr type to insert");
737 #endif
739 if (isMemcpyOp)
740 return EmitInstrWithCustomInserterMemcpy(MI, BB);
742 bool is32BitCmp = (Opc == BPF::Select_32 ||
743 Opc == BPF::Select_32_64 ||
744 Opc == BPF::Select_Ri_32 ||
745 Opc == BPF::Select_Ri_32_64);
747 // To "insert" a SELECT instruction, we actually have to insert the diamond
748 // control-flow pattern. The incoming instruction knows the destination vreg
749 // to set, the condition code register to branch on, the true/false values to
750 // select between, and a branch opcode to use.
751 const BasicBlock *LLVM_BB = BB->getBasicBlock();
752 MachineFunction::iterator I = ++BB->getIterator();
754 // ThisMBB:
755 // ...
756 // TrueVal = ...
757 // jmp_XX r1, r2 goto Copy1MBB
758 // fallthrough --> Copy0MBB
759 MachineBasicBlock *ThisMBB = BB;
760 MachineFunction *F = BB->getParent();
761 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
762 MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
764 F->insert(I, Copy0MBB);
765 F->insert(I, Copy1MBB);
766 // Update machine-CFG edges by transferring all successors of the current
767 // block to the new block which will contain the Phi node for the select.
768 Copy1MBB->splice(Copy1MBB->begin(), BB,
769 std::next(MachineBasicBlock::iterator(MI)), BB->end());
770 Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
771 // Next, add the true and fallthrough blocks as its successors.
772 BB->addSuccessor(Copy0MBB);
773 BB->addSuccessor(Copy1MBB);
775 // Insert Branch if Flag
776 int CC = MI.getOperand(3).getImm();
777 int NewCC;
778 switch (CC) {
779 #define SET_NEWCC(X, Y) \
780 case ISD::X: \
781 if (is32BitCmp && HasJmp32) \
782 NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
783 else \
784 NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
785 break
786 SET_NEWCC(SETGT, JSGT);
787 SET_NEWCC(SETUGT, JUGT);
788 SET_NEWCC(SETGE, JSGE);
789 SET_NEWCC(SETUGE, JUGE);
790 SET_NEWCC(SETEQ, JEQ);
791 SET_NEWCC(SETNE, JNE);
792 SET_NEWCC(SETLT, JSLT);
793 SET_NEWCC(SETULT, JULT);
794 SET_NEWCC(SETLE, JSLE);
795 SET_NEWCC(SETULE, JULE);
796 default:
797 report_fatal_error("unimplemented select CondCode " + Twine(CC));
800 Register LHS = MI.getOperand(1).getReg();
801 bool isSignedCmp = (CC == ISD::SETGT ||
802 CC == ISD::SETGE ||
803 CC == ISD::SETLT ||
804 CC == ISD::SETLE);
806 // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
807 // to be promoted, however if the 32-bit comparison operands are destination
808 // registers then they are implicitly zero-extended already, there is no
809 // need of explicit zero-extend sequence for them.
811 // We simply do extension for all situations in this method, but we will
812 // try to remove those unnecessary in BPFMIPeephole pass.
813 if (is32BitCmp && !HasJmp32)
814 LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
816 if (isSelectRROp) {
817 Register RHS = MI.getOperand(2).getReg();
819 if (is32BitCmp && !HasJmp32)
820 RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
822 BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
823 } else {
824 int64_t imm32 = MI.getOperand(2).getImm();
825 // sanity check before we build J*_ri instruction.
826 assert (isInt<32>(imm32));
827 BuildMI(BB, DL, TII.get(NewCC))
828 .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
831 // Copy0MBB:
832 // %FalseValue = ...
833 // # fallthrough to Copy1MBB
834 BB = Copy0MBB;
836 // Update machine-CFG edges
837 BB->addSuccessor(Copy1MBB);
839 // Copy1MBB:
840 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
841 // ...
842 BB = Copy1MBB;
843 BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
844 .addReg(MI.getOperand(5).getReg())
845 .addMBB(Copy0MBB)
846 .addReg(MI.getOperand(4).getReg())
847 .addMBB(ThisMBB);
849 MI.eraseFromParent(); // The pseudo instruction is gone now.
850 return BB;
853 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
854 EVT VT) const {
855 return getHasAlu32() ? MVT::i32 : MVT::i64;
858 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
859 EVT VT) const {
860 return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;