[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / BPF / BTFDebug.cpp
blobc1f8ea99b959bd0bd30f3050bea56df22a4650bf
1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing BTF debug info.
11 //===----------------------------------------------------------------------===//
13 #include "BTFDebug.h"
14 #include "BPF.h"
15 #include "BPFCORE.h"
16 #include "MCTargetDesc/BPFMCTargetDesc.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCObjectFileInfo.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/LineIterator.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
27 using namespace llvm;
29 static const char *BTFKindStr[] = {
30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
31 #include "BTF.def"
34 /// Emit a BTF common type.
35 void BTFTypeBase::emitType(MCStreamer &OS) {
36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
37 ")");
38 OS.emitInt32(BTFType.NameOff);
39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
40 OS.emitInt32(BTFType.Info);
41 OS.emitInt32(BTFType.Size);
44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
45 bool NeedsFixup)
46 : DTy(DTy), NeedsFixup(NeedsFixup) {
47 switch (Tag) {
48 case dwarf::DW_TAG_pointer_type:
49 Kind = BTF::BTF_KIND_PTR;
50 break;
51 case dwarf::DW_TAG_const_type:
52 Kind = BTF::BTF_KIND_CONST;
53 break;
54 case dwarf::DW_TAG_volatile_type:
55 Kind = BTF::BTF_KIND_VOLATILE;
56 break;
57 case dwarf::DW_TAG_typedef:
58 Kind = BTF::BTF_KIND_TYPEDEF;
59 break;
60 case dwarf::DW_TAG_restrict_type:
61 Kind = BTF::BTF_KIND_RESTRICT;
62 break;
63 default:
64 llvm_unreachable("Unknown DIDerivedType Tag");
66 BTFType.Info = Kind << 24;
69 void BTFTypeDerived::completeType(BTFDebug &BDebug) {
70 if (IsCompleted)
71 return;
72 IsCompleted = true;
74 BTFType.NameOff = BDebug.addString(DTy->getName());
76 if (NeedsFixup)
77 return;
79 // The base type for PTR/CONST/VOLATILE could be void.
80 const DIType *ResolvedType = DTy->getBaseType();
81 if (!ResolvedType) {
82 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
83 Kind == BTF::BTF_KIND_VOLATILE) &&
84 "Invalid null basetype");
85 BTFType.Type = 0;
86 } else {
87 BTFType.Type = BDebug.getTypeId(ResolvedType);
91 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
93 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
94 BTFType.Type = PointeeType;
97 /// Represent a struct/union forward declaration.
98 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
99 Kind = BTF::BTF_KIND_FWD;
100 BTFType.Info = IsUnion << 31 | Kind << 24;
101 BTFType.Type = 0;
104 void BTFTypeFwd::completeType(BTFDebug &BDebug) {
105 if (IsCompleted)
106 return;
107 IsCompleted = true;
109 BTFType.NameOff = BDebug.addString(Name);
112 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
114 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
115 uint32_t OffsetInBits, StringRef TypeName)
116 : Name(TypeName) {
117 // Translate IR int encoding to BTF int encoding.
118 uint8_t BTFEncoding;
119 switch (Encoding) {
120 case dwarf::DW_ATE_boolean:
121 BTFEncoding = BTF::INT_BOOL;
122 break;
123 case dwarf::DW_ATE_signed:
124 case dwarf::DW_ATE_signed_char:
125 BTFEncoding = BTF::INT_SIGNED;
126 break;
127 case dwarf::DW_ATE_unsigned:
128 case dwarf::DW_ATE_unsigned_char:
129 BTFEncoding = 0;
130 break;
131 default:
132 llvm_unreachable("Unknown BTFTypeInt Encoding");
135 Kind = BTF::BTF_KIND_INT;
136 BTFType.Info = Kind << 24;
137 BTFType.Size = roundupToBytes(SizeInBits);
138 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
141 void BTFTypeInt::completeType(BTFDebug &BDebug) {
142 if (IsCompleted)
143 return;
144 IsCompleted = true;
146 BTFType.NameOff = BDebug.addString(Name);
149 void BTFTypeInt::emitType(MCStreamer &OS) {
150 BTFTypeBase::emitType(OS);
151 OS.AddComment("0x" + Twine::utohexstr(IntVal));
152 OS.emitInt32(IntVal);
155 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
156 Kind = BTF::BTF_KIND_ENUM;
157 BTFType.Info = Kind << 24 | VLen;
158 BTFType.Size = roundupToBytes(ETy->getSizeInBits());
161 void BTFTypeEnum::completeType(BTFDebug &BDebug) {
162 if (IsCompleted)
163 return;
164 IsCompleted = true;
166 BTFType.NameOff = BDebug.addString(ETy->getName());
168 DINodeArray Elements = ETy->getElements();
169 for (const auto Element : Elements) {
170 const auto *Enum = cast<DIEnumerator>(Element);
172 struct BTF::BTFEnum BTFEnum;
173 BTFEnum.NameOff = BDebug.addString(Enum->getName());
174 // BTF enum value is 32bit, enforce it.
175 uint32_t Value;
176 if (Enum->isUnsigned())
177 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue());
178 else
179 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue());
180 BTFEnum.Val = Value;
181 EnumValues.push_back(BTFEnum);
185 void BTFTypeEnum::emitType(MCStreamer &OS) {
186 BTFTypeBase::emitType(OS);
187 for (const auto &Enum : EnumValues) {
188 OS.emitInt32(Enum.NameOff);
189 OS.emitInt32(Enum.Val);
193 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
194 Kind = BTF::BTF_KIND_ARRAY;
195 BTFType.NameOff = 0;
196 BTFType.Info = Kind << 24;
197 BTFType.Size = 0;
199 ArrayInfo.ElemType = ElemTypeId;
200 ArrayInfo.Nelems = NumElems;
203 /// Represent a BTF array.
204 void BTFTypeArray::completeType(BTFDebug &BDebug) {
205 if (IsCompleted)
206 return;
207 IsCompleted = true;
209 // The IR does not really have a type for the index.
210 // A special type for array index should have been
211 // created during initial type traversal. Just
212 // retrieve that type id.
213 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
216 void BTFTypeArray::emitType(MCStreamer &OS) {
217 BTFTypeBase::emitType(OS);
218 OS.emitInt32(ArrayInfo.ElemType);
219 OS.emitInt32(ArrayInfo.IndexType);
220 OS.emitInt32(ArrayInfo.Nelems);
223 /// Represent either a struct or a union.
224 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
225 bool HasBitField, uint32_t Vlen)
226 : STy(STy), HasBitField(HasBitField) {
227 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
228 BTFType.Size = roundupToBytes(STy->getSizeInBits());
229 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
232 void BTFTypeStruct::completeType(BTFDebug &BDebug) {
233 if (IsCompleted)
234 return;
235 IsCompleted = true;
237 BTFType.NameOff = BDebug.addString(STy->getName());
239 // Add struct/union members.
240 const DINodeArray Elements = STy->getElements();
241 for (const auto *Element : Elements) {
242 struct BTF::BTFMember BTFMember;
243 const auto *DDTy = cast<DIDerivedType>(Element);
245 BTFMember.NameOff = BDebug.addString(DDTy->getName());
246 if (HasBitField) {
247 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
248 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
249 } else {
250 BTFMember.Offset = DDTy->getOffsetInBits();
252 const auto *BaseTy = DDTy->getBaseType();
253 BTFMember.Type = BDebug.getTypeId(BaseTy);
254 Members.push_back(BTFMember);
258 void BTFTypeStruct::emitType(MCStreamer &OS) {
259 BTFTypeBase::emitType(OS);
260 for (const auto &Member : Members) {
261 OS.emitInt32(Member.NameOff);
262 OS.emitInt32(Member.Type);
263 OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
264 OS.emitInt32(Member.Offset);
268 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); }
270 /// The Func kind represents both subprogram and pointee of function
271 /// pointers. If the FuncName is empty, it represents a pointee of function
272 /// pointer. Otherwise, it represents a subprogram. The func arg names
273 /// are empty for pointee of function pointer case, and are valid names
274 /// for subprogram.
275 BTFTypeFuncProto::BTFTypeFuncProto(
276 const DISubroutineType *STy, uint32_t VLen,
277 const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
278 : STy(STy), FuncArgNames(FuncArgNames) {
279 Kind = BTF::BTF_KIND_FUNC_PROTO;
280 BTFType.Info = (Kind << 24) | VLen;
283 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
284 if (IsCompleted)
285 return;
286 IsCompleted = true;
288 DITypeRefArray Elements = STy->getTypeArray();
289 auto RetType = Elements[0];
290 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
291 BTFType.NameOff = 0;
293 // For null parameter which is typically the last one
294 // to represent the vararg, encode the NameOff/Type to be 0.
295 for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
296 struct BTF::BTFParam Param;
297 auto Element = Elements[I];
298 if (Element) {
299 Param.NameOff = BDebug.addString(FuncArgNames[I]);
300 Param.Type = BDebug.getTypeId(Element);
301 } else {
302 Param.NameOff = 0;
303 Param.Type = 0;
305 Parameters.push_back(Param);
309 void BTFTypeFuncProto::emitType(MCStreamer &OS) {
310 BTFTypeBase::emitType(OS);
311 for (const auto &Param : Parameters) {
312 OS.emitInt32(Param.NameOff);
313 OS.emitInt32(Param.Type);
317 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId,
318 uint32_t Scope)
319 : Name(FuncName) {
320 Kind = BTF::BTF_KIND_FUNC;
321 BTFType.Info = (Kind << 24) | Scope;
322 BTFType.Type = ProtoTypeId;
325 void BTFTypeFunc::completeType(BTFDebug &BDebug) {
326 if (IsCompleted)
327 return;
328 IsCompleted = true;
330 BTFType.NameOff = BDebug.addString(Name);
333 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
335 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
336 : Name(VarName) {
337 Kind = BTF::BTF_KIND_VAR;
338 BTFType.Info = Kind << 24;
339 BTFType.Type = TypeId;
340 Info = VarInfo;
343 void BTFKindVar::completeType(BTFDebug &BDebug) {
344 BTFType.NameOff = BDebug.addString(Name);
347 void BTFKindVar::emitType(MCStreamer &OS) {
348 BTFTypeBase::emitType(OS);
349 OS.emitInt32(Info);
352 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
353 : Asm(AsmPrt), Name(SecName) {
354 Kind = BTF::BTF_KIND_DATASEC;
355 BTFType.Info = Kind << 24;
356 BTFType.Size = 0;
359 void BTFKindDataSec::completeType(BTFDebug &BDebug) {
360 BTFType.NameOff = BDebug.addString(Name);
361 BTFType.Info |= Vars.size();
364 void BTFKindDataSec::emitType(MCStreamer &OS) {
365 BTFTypeBase::emitType(OS);
367 for (const auto &V : Vars) {
368 OS.emitInt32(std::get<0>(V));
369 Asm->emitLabelReference(std::get<1>(V), 4);
370 OS.emitInt32(std::get<2>(V));
374 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName)
375 : Name(TypeName) {
376 Kind = BTF::BTF_KIND_FLOAT;
377 BTFType.Info = Kind << 24;
378 BTFType.Size = roundupToBytes(SizeInBits);
381 void BTFTypeFloat::completeType(BTFDebug &BDebug) {
382 if (IsCompleted)
383 return;
384 IsCompleted = true;
386 BTFType.NameOff = BDebug.addString(Name);
389 uint32_t BTFStringTable::addString(StringRef S) {
390 // Check whether the string already exists.
391 for (auto &OffsetM : OffsetToIdMap) {
392 if (Table[OffsetM.second] == S)
393 return OffsetM.first;
395 // Not find, add to the string table.
396 uint32_t Offset = Size;
397 OffsetToIdMap[Offset] = Table.size();
398 Table.push_back(std::string(S));
399 Size += S.size() + 1;
400 return Offset;
403 BTFDebug::BTFDebug(AsmPrinter *AP)
404 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
405 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
406 MapDefNotCollected(true) {
407 addString("\0");
410 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
411 const DIType *Ty) {
412 TypeEntry->setId(TypeEntries.size() + 1);
413 uint32_t Id = TypeEntry->getId();
414 DIToIdMap[Ty] = Id;
415 TypeEntries.push_back(std::move(TypeEntry));
416 return Id;
419 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
420 TypeEntry->setId(TypeEntries.size() + 1);
421 uint32_t Id = TypeEntry->getId();
422 TypeEntries.push_back(std::move(TypeEntry));
423 return Id;
426 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
427 // Only int and binary floating point types are supported in BTF.
428 uint32_t Encoding = BTy->getEncoding();
429 std::unique_ptr<BTFTypeBase> TypeEntry;
430 switch (Encoding) {
431 case dwarf::DW_ATE_boolean:
432 case dwarf::DW_ATE_signed:
433 case dwarf::DW_ATE_signed_char:
434 case dwarf::DW_ATE_unsigned:
435 case dwarf::DW_ATE_unsigned_char:
436 // Create a BTF type instance for this DIBasicType and put it into
437 // DIToIdMap for cross-type reference check.
438 TypeEntry = std::make_unique<BTFTypeInt>(
439 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
440 break;
441 case dwarf::DW_ATE_float:
442 TypeEntry =
443 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName());
444 break;
445 default:
446 return;
449 TypeId = addType(std::move(TypeEntry), BTy);
452 /// Handle subprogram or subroutine types.
453 void BTFDebug::visitSubroutineType(
454 const DISubroutineType *STy, bool ForSubprog,
455 const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
456 uint32_t &TypeId) {
457 DITypeRefArray Elements = STy->getTypeArray();
458 uint32_t VLen = Elements.size() - 1;
459 if (VLen > BTF::MAX_VLEN)
460 return;
462 // Subprogram has a valid non-zero-length name, and the pointee of
463 // a function pointer has an empty name. The subprogram type will
464 // not be added to DIToIdMap as it should not be referenced by
465 // any other types.
466 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
467 if (ForSubprog)
468 TypeId = addType(std::move(TypeEntry)); // For subprogram
469 else
470 TypeId = addType(std::move(TypeEntry), STy); // For func ptr
472 // Visit return type and func arg types.
473 for (const auto Element : Elements) {
474 visitTypeEntry(Element);
478 /// Handle structure/union types.
479 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
480 uint32_t &TypeId) {
481 const DINodeArray Elements = CTy->getElements();
482 uint32_t VLen = Elements.size();
483 if (VLen > BTF::MAX_VLEN)
484 return;
486 // Check whether we have any bitfield members or not
487 bool HasBitField = false;
488 for (const auto *Element : Elements) {
489 auto E = cast<DIDerivedType>(Element);
490 if (E->isBitField()) {
491 HasBitField = true;
492 break;
496 auto TypeEntry =
497 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
498 StructTypes.push_back(TypeEntry.get());
499 TypeId = addType(std::move(TypeEntry), CTy);
501 // Visit all struct members.
502 for (const auto *Element : Elements)
503 visitTypeEntry(cast<DIDerivedType>(Element));
506 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
507 // Visit array element type.
508 uint32_t ElemTypeId;
509 const DIType *ElemType = CTy->getBaseType();
510 visitTypeEntry(ElemType, ElemTypeId, false, false);
512 // Visit array dimensions.
513 DINodeArray Elements = CTy->getElements();
514 for (int I = Elements.size() - 1; I >= 0; --I) {
515 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
516 if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
517 const DISubrange *SR = cast<DISubrange>(Element);
518 auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
519 int64_t Count = CI->getSExtValue();
521 // For struct s { int b; char c[]; }, the c[] will be represented
522 // as an array with Count = -1.
523 auto TypeEntry =
524 std::make_unique<BTFTypeArray>(ElemTypeId,
525 Count >= 0 ? Count : 0);
526 if (I == 0)
527 ElemTypeId = addType(std::move(TypeEntry), CTy);
528 else
529 ElemTypeId = addType(std::move(TypeEntry));
533 // The array TypeId is the type id of the outermost dimension.
534 TypeId = ElemTypeId;
536 // The IR does not have a type for array index while BTF wants one.
537 // So create an array index type if there is none.
538 if (!ArrayIndexTypeId) {
539 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
540 0, "__ARRAY_SIZE_TYPE__");
541 ArrayIndexTypeId = addType(std::move(TypeEntry));
545 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
546 DINodeArray Elements = CTy->getElements();
547 uint32_t VLen = Elements.size();
548 if (VLen > BTF::MAX_VLEN)
549 return;
551 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen);
552 TypeId = addType(std::move(TypeEntry), CTy);
553 // No need to visit base type as BTF does not encode it.
556 /// Handle structure/union forward declarations.
557 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
558 uint32_t &TypeId) {
559 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
560 TypeId = addType(std::move(TypeEntry), CTy);
563 /// Handle structure, union, array and enumeration types.
564 void BTFDebug::visitCompositeType(const DICompositeType *CTy,
565 uint32_t &TypeId) {
566 auto Tag = CTy->getTag();
567 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
568 // Handle forward declaration differently as it does not have members.
569 if (CTy->isForwardDecl())
570 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
571 else
572 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
573 } else if (Tag == dwarf::DW_TAG_array_type)
574 visitArrayType(CTy, TypeId);
575 else if (Tag == dwarf::DW_TAG_enumeration_type)
576 visitEnumType(CTy, TypeId);
579 /// Handle pointer, typedef, const, volatile, restrict and member types.
580 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
581 bool CheckPointer, bool SeenPointer) {
582 unsigned Tag = DTy->getTag();
584 /// Try to avoid chasing pointees, esp. structure pointees which may
585 /// unnecessary bring in a lot of types.
586 if (CheckPointer && !SeenPointer) {
587 SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
590 if (CheckPointer && SeenPointer) {
591 const DIType *Base = DTy->getBaseType();
592 if (Base) {
593 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
594 auto CTag = CTy->getTag();
595 if ((CTag == dwarf::DW_TAG_structure_type ||
596 CTag == dwarf::DW_TAG_union_type) &&
597 !CTy->getName().empty() && !CTy->isForwardDecl()) {
598 /// Find a candidate, generate a fixup. Later on the struct/union
599 /// pointee type will be replaced with either a real type or
600 /// a forward declaration.
601 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true);
602 auto &Fixup = FixupDerivedTypes[CTy->getName()];
603 Fixup.first = CTag == dwarf::DW_TAG_union_type;
604 Fixup.second.push_back(TypeEntry.get());
605 TypeId = addType(std::move(TypeEntry), DTy);
606 return;
612 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
613 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
614 Tag == dwarf::DW_TAG_restrict_type) {
615 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
616 TypeId = addType(std::move(TypeEntry), DTy);
617 } else if (Tag != dwarf::DW_TAG_member) {
618 return;
621 // Visit base type of pointer, typedef, const, volatile, restrict or
622 // struct/union member.
623 uint32_t TempTypeId = 0;
624 if (Tag == dwarf::DW_TAG_member)
625 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
626 else
627 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
630 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
631 bool CheckPointer, bool SeenPointer) {
632 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
633 TypeId = DIToIdMap[Ty];
635 // To handle the case like the following:
636 // struct t;
637 // typedef struct t _t;
638 // struct s1 { _t *c; };
639 // int test1(struct s1 *arg) { ... }
641 // struct t { int a; int b; };
642 // struct s2 { _t c; }
643 // int test2(struct s2 *arg) { ... }
645 // During traversing test1() argument, "_t" is recorded
646 // in DIToIdMap and a forward declaration fixup is created
647 // for "struct t" to avoid pointee type traversal.
649 // During traversing test2() argument, even if we see "_t" is
650 // already defined, we should keep moving to eventually
651 // bring in types for "struct t". Otherwise, the "struct s2"
652 // definition won't be correct.
653 if (Ty && (!CheckPointer || !SeenPointer)) {
654 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
655 unsigned Tag = DTy->getTag();
656 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type ||
657 Tag == dwarf::DW_TAG_volatile_type ||
658 Tag == dwarf::DW_TAG_restrict_type) {
659 uint32_t TmpTypeId;
660 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer,
661 SeenPointer);
666 return;
669 if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
670 visitBasicType(BTy, TypeId);
671 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
672 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
673 TypeId);
674 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
675 visitCompositeType(CTy, TypeId);
676 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
677 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
678 else
679 llvm_unreachable("Unknown DIType");
682 void BTFDebug::visitTypeEntry(const DIType *Ty) {
683 uint32_t TypeId;
684 visitTypeEntry(Ty, TypeId, false, false);
687 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
688 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
689 TypeId = DIToIdMap[Ty];
690 return;
693 // MapDef type may be a struct type or a non-pointer derived type
694 const DIType *OrigTy = Ty;
695 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
696 auto Tag = DTy->getTag();
697 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
698 Tag != dwarf::DW_TAG_volatile_type &&
699 Tag != dwarf::DW_TAG_restrict_type)
700 break;
701 Ty = DTy->getBaseType();
704 const auto *CTy = dyn_cast<DICompositeType>(Ty);
705 if (!CTy)
706 return;
708 auto Tag = CTy->getTag();
709 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
710 return;
712 // Visit all struct members to ensure pointee type is visited
713 const DINodeArray Elements = CTy->getElements();
714 for (const auto *Element : Elements) {
715 const auto *MemberType = cast<DIDerivedType>(Element);
716 visitTypeEntry(MemberType->getBaseType());
719 // Visit this type, struct or a const/typedef/volatile/restrict type
720 visitTypeEntry(OrigTy, TypeId, false, false);
723 /// Read file contents from the actual file or from the source
724 std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
725 auto File = SP->getFile();
726 std::string FileName;
728 if (!File->getFilename().startswith("/") && File->getDirectory().size())
729 FileName = File->getDirectory().str() + "/" + File->getFilename().str();
730 else
731 FileName = std::string(File->getFilename());
733 // No need to populate the contends if it has been populated!
734 if (FileContent.find(FileName) != FileContent.end())
735 return FileName;
737 std::vector<std::string> Content;
738 std::string Line;
739 Content.push_back(Line); // Line 0 for empty string
741 std::unique_ptr<MemoryBuffer> Buf;
742 auto Source = File->getSource();
743 if (Source)
744 Buf = MemoryBuffer::getMemBufferCopy(*Source);
745 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
746 MemoryBuffer::getFile(FileName))
747 Buf = std::move(*BufOrErr);
748 if (Buf)
749 for (line_iterator I(*Buf, false), E; I != E; ++I)
750 Content.push_back(std::string(*I));
752 FileContent[FileName] = Content;
753 return FileName;
756 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
757 uint32_t Line, uint32_t Column) {
758 std::string FileName = populateFileContent(SP);
759 BTFLineInfo LineInfo;
761 LineInfo.Label = Label;
762 LineInfo.FileNameOff = addString(FileName);
763 // If file content is not available, let LineOff = 0.
764 if (Line < FileContent[FileName].size())
765 LineInfo.LineOff = addString(FileContent[FileName][Line]);
766 else
767 LineInfo.LineOff = 0;
768 LineInfo.LineNum = Line;
769 LineInfo.ColumnNum = Column;
770 LineInfoTable[SecNameOff].push_back(LineInfo);
773 void BTFDebug::emitCommonHeader() {
774 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
775 OS.emitIntValue(BTF::MAGIC, 2);
776 OS.emitInt8(BTF::VERSION);
777 OS.emitInt8(0);
780 void BTFDebug::emitBTFSection() {
781 // Do not emit section if no types and only "" string.
782 if (!TypeEntries.size() && StringTable.getSize() == 1)
783 return;
785 MCContext &Ctx = OS.getContext();
786 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
788 // Emit header.
789 emitCommonHeader();
790 OS.emitInt32(BTF::HeaderSize);
792 uint32_t TypeLen = 0, StrLen;
793 for (const auto &TypeEntry : TypeEntries)
794 TypeLen += TypeEntry->getSize();
795 StrLen = StringTable.getSize();
797 OS.emitInt32(0);
798 OS.emitInt32(TypeLen);
799 OS.emitInt32(TypeLen);
800 OS.emitInt32(StrLen);
802 // Emit type table.
803 for (const auto &TypeEntry : TypeEntries)
804 TypeEntry->emitType(OS);
806 // Emit string table.
807 uint32_t StringOffset = 0;
808 for (const auto &S : StringTable.getTable()) {
809 OS.AddComment("string offset=" + std::to_string(StringOffset));
810 OS.emitBytes(S);
811 OS.emitBytes(StringRef("\0", 1));
812 StringOffset += S.size() + 1;
816 void BTFDebug::emitBTFExtSection() {
817 // Do not emit section if empty FuncInfoTable and LineInfoTable
818 // and FieldRelocTable.
819 if (!FuncInfoTable.size() && !LineInfoTable.size() &&
820 !FieldRelocTable.size())
821 return;
823 MCContext &Ctx = OS.getContext();
824 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
826 // Emit header.
827 emitCommonHeader();
828 OS.emitInt32(BTF::ExtHeaderSize);
830 // Account for FuncInfo/LineInfo record size as well.
831 uint32_t FuncLen = 4, LineLen = 4;
832 // Do not account for optional FieldReloc.
833 uint32_t FieldRelocLen = 0;
834 for (const auto &FuncSec : FuncInfoTable) {
835 FuncLen += BTF::SecFuncInfoSize;
836 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
838 for (const auto &LineSec : LineInfoTable) {
839 LineLen += BTF::SecLineInfoSize;
840 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
842 for (const auto &FieldRelocSec : FieldRelocTable) {
843 FieldRelocLen += BTF::SecFieldRelocSize;
844 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize;
847 if (FieldRelocLen)
848 FieldRelocLen += 4;
850 OS.emitInt32(0);
851 OS.emitInt32(FuncLen);
852 OS.emitInt32(FuncLen);
853 OS.emitInt32(LineLen);
854 OS.emitInt32(FuncLen + LineLen);
855 OS.emitInt32(FieldRelocLen);
857 // Emit func_info table.
858 OS.AddComment("FuncInfo");
859 OS.emitInt32(BTF::BPFFuncInfoSize);
860 for (const auto &FuncSec : FuncInfoTable) {
861 OS.AddComment("FuncInfo section string offset=" +
862 std::to_string(FuncSec.first));
863 OS.emitInt32(FuncSec.first);
864 OS.emitInt32(FuncSec.second.size());
865 for (const auto &FuncInfo : FuncSec.second) {
866 Asm->emitLabelReference(FuncInfo.Label, 4);
867 OS.emitInt32(FuncInfo.TypeId);
871 // Emit line_info table.
872 OS.AddComment("LineInfo");
873 OS.emitInt32(BTF::BPFLineInfoSize);
874 for (const auto &LineSec : LineInfoTable) {
875 OS.AddComment("LineInfo section string offset=" +
876 std::to_string(LineSec.first));
877 OS.emitInt32(LineSec.first);
878 OS.emitInt32(LineSec.second.size());
879 for (const auto &LineInfo : LineSec.second) {
880 Asm->emitLabelReference(LineInfo.Label, 4);
881 OS.emitInt32(LineInfo.FileNameOff);
882 OS.emitInt32(LineInfo.LineOff);
883 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
884 std::to_string(LineInfo.ColumnNum));
885 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum);
889 // Emit field reloc table.
890 if (FieldRelocLen) {
891 OS.AddComment("FieldReloc");
892 OS.emitInt32(BTF::BPFFieldRelocSize);
893 for (const auto &FieldRelocSec : FieldRelocTable) {
894 OS.AddComment("Field reloc section string offset=" +
895 std::to_string(FieldRelocSec.first));
896 OS.emitInt32(FieldRelocSec.first);
897 OS.emitInt32(FieldRelocSec.second.size());
898 for (const auto &FieldRelocInfo : FieldRelocSec.second) {
899 Asm->emitLabelReference(FieldRelocInfo.Label, 4);
900 OS.emitInt32(FieldRelocInfo.TypeID);
901 OS.emitInt32(FieldRelocInfo.OffsetNameOff);
902 OS.emitInt32(FieldRelocInfo.RelocKind);
908 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
909 auto *SP = MF->getFunction().getSubprogram();
910 auto *Unit = SP->getUnit();
912 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
913 SkipInstruction = true;
914 return;
916 SkipInstruction = false;
918 // Collect MapDef types. Map definition needs to collect
919 // pointee types. Do it first. Otherwise, for the following
920 // case:
921 // struct m { ...};
922 // struct t {
923 // struct m *key;
924 // };
925 // foo(struct t *arg);
927 // struct mapdef {
928 // ...
929 // struct m *key;
930 // ...
931 // } __attribute__((section(".maps"))) hash_map;
933 // If subroutine foo is traversed first, a type chain
934 // "ptr->struct m(fwd)" will be created and later on
935 // when traversing mapdef, since "ptr->struct m" exists,
936 // the traversal of "struct m" will be omitted.
937 if (MapDefNotCollected) {
938 processGlobals(true);
939 MapDefNotCollected = false;
942 // Collect all types locally referenced in this function.
943 // Use RetainedNodes so we can collect all argument names
944 // even if the argument is not used.
945 std::unordered_map<uint32_t, StringRef> FuncArgNames;
946 for (const DINode *DN : SP->getRetainedNodes()) {
947 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
948 // Collect function arguments for subprogram func type.
949 uint32_t Arg = DV->getArg();
950 if (Arg) {
951 visitTypeEntry(DV->getType());
952 FuncArgNames[Arg] = DV->getName();
957 // Construct subprogram func proto type.
958 uint32_t ProtoTypeId;
959 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
961 // Construct subprogram func type
962 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL;
963 auto FuncTypeEntry =
964 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
965 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
967 for (const auto &TypeEntry : TypeEntries)
968 TypeEntry->completeType(*this);
970 // Construct funcinfo and the first lineinfo for the function.
971 MCSymbol *FuncLabel = Asm->getFunctionBegin();
972 BTFFuncInfo FuncInfo;
973 FuncInfo.Label = FuncLabel;
974 FuncInfo.TypeId = FuncTypeId;
975 if (FuncLabel->isInSection()) {
976 MCSection &Section = FuncLabel->getSection();
977 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
978 assert(SectionELF && "Null section for Function Label");
979 SecNameOff = addString(SectionELF->getName());
980 } else {
981 SecNameOff = addString(".text");
983 FuncInfoTable[SecNameOff].push_back(FuncInfo);
986 void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
987 SkipInstruction = false;
988 LineInfoGenerated = false;
989 SecNameOff = 0;
992 /// On-demand populate types as requested from abstract member
993 /// accessing or preserve debuginfo type.
994 unsigned BTFDebug::populateType(const DIType *Ty) {
995 unsigned Id;
996 visitTypeEntry(Ty, Id, false, false);
997 for (const auto &TypeEntry : TypeEntries)
998 TypeEntry->completeType(*this);
999 return Id;
1002 /// Generate a struct member field relocation.
1003 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId,
1004 const GlobalVariable *GVar, bool IsAma) {
1005 BTFFieldReloc FieldReloc;
1006 FieldReloc.Label = ORSym;
1007 FieldReloc.TypeID = RootId;
1009 StringRef AccessPattern = GVar->getName();
1010 size_t FirstDollar = AccessPattern.find_first_of('$');
1011 if (IsAma) {
1012 size_t FirstColon = AccessPattern.find_first_of(':');
1013 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1);
1014 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
1015 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1,
1016 SecondColon - FirstColon);
1017 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1,
1018 FirstDollar - SecondColon);
1020 FieldReloc.OffsetNameOff = addString(IndexPattern);
1021 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr));
1022 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)),
1023 FieldReloc.RelocKind);
1024 } else {
1025 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1);
1026 FieldReloc.OffsetNameOff = addString("0");
1027 FieldReloc.RelocKind = std::stoull(std::string(RelocStr));
1028 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind);
1030 FieldRelocTable[SecNameOff].push_back(FieldReloc);
1033 void BTFDebug::processGlobalValue(const MachineOperand &MO) {
1034 // check whether this is a candidate or not
1035 if (MO.isGlobal()) {
1036 const GlobalValue *GVal = MO.getGlobal();
1037 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1038 if (!GVar) {
1039 // Not a global variable. Maybe an extern function reference.
1040 processFuncPrototypes(dyn_cast<Function>(GVal));
1041 return;
1044 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) &&
1045 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
1046 return;
1048 MCSymbol *ORSym = OS.getContext().createTempSymbol();
1049 OS.emitLabel(ORSym);
1051 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1052 uint32_t RootId = populateType(dyn_cast<DIType>(MDN));
1053 generatePatchImmReloc(ORSym, RootId, GVar,
1054 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr));
1058 void BTFDebug::beginInstruction(const MachineInstr *MI) {
1059 DebugHandlerBase::beginInstruction(MI);
1061 if (SkipInstruction || MI->isMetaInstruction() ||
1062 MI->getFlag(MachineInstr::FrameSetup))
1063 return;
1065 if (MI->isInlineAsm()) {
1066 // Count the number of register definitions to find the asm string.
1067 unsigned NumDefs = 0;
1068 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1069 ++NumDefs)
1072 // Skip this inline asm instruction if the asmstr is empty.
1073 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1074 if (AsmStr[0] == 0)
1075 return;
1078 if (MI->getOpcode() == BPF::LD_imm64) {
1079 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>",
1080 // add this insn into the .BTF.ext FieldReloc subsection.
1081 // Relocation looks like:
1082 // . SecName:
1083 // . InstOffset
1084 // . TypeID
1085 // . OffSetNameOff
1086 // . RelocType
1087 // Later, the insn is replaced with "r2 = <offset>"
1088 // where "<offset>" equals to the offset based on current
1089 // type definitions.
1091 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>",
1092 // The LD_imm64 result will be replaced with a btf type id.
1093 processGlobalValue(MI->getOperand(1));
1094 } else if (MI->getOpcode() == BPF::CORE_MEM ||
1095 MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1096 MI->getOpcode() == BPF::CORE_SHIFT) {
1097 // relocation insn is a load, store or shift insn.
1098 processGlobalValue(MI->getOperand(3));
1099 } else if (MI->getOpcode() == BPF::JAL) {
1100 // check extern function references
1101 const MachineOperand &MO = MI->getOperand(0);
1102 if (MO.isGlobal()) {
1103 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal()));
1107 if (!CurMI) // no debug info
1108 return;
1110 // Skip this instruction if no DebugLoc or the DebugLoc
1111 // is the same as the previous instruction.
1112 const DebugLoc &DL = MI->getDebugLoc();
1113 if (!DL || PrevInstLoc == DL) {
1114 // This instruction will be skipped, no LineInfo has
1115 // been generated, construct one based on function signature.
1116 if (LineInfoGenerated == false) {
1117 auto *S = MI->getMF()->getFunction().getSubprogram();
1118 MCSymbol *FuncLabel = Asm->getFunctionBegin();
1119 constructLineInfo(S, FuncLabel, S->getLine(), 0);
1120 LineInfoGenerated = true;
1123 return;
1126 // Create a temporary label to remember the insn for lineinfo.
1127 MCSymbol *LineSym = OS.getContext().createTempSymbol();
1128 OS.emitLabel(LineSym);
1130 // Construct the lineinfo.
1131 auto SP = DL.get()->getScope()->getSubprogram();
1132 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
1134 LineInfoGenerated = true;
1135 PrevInstLoc = DL;
1138 void BTFDebug::processGlobals(bool ProcessingMapDef) {
1139 // Collect all types referenced by globals.
1140 const Module *M = MMI->getModule();
1141 for (const GlobalVariable &Global : M->globals()) {
1142 // Decide the section name.
1143 StringRef SecName;
1144 if (Global.hasSection()) {
1145 SecName = Global.getSection();
1146 } else if (Global.hasInitializer()) {
1147 // data, bss, or readonly sections
1148 if (Global.isConstant())
1149 SecName = ".rodata";
1150 else
1151 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
1154 if (ProcessingMapDef != SecName.startswith(".maps"))
1155 continue;
1157 // Create a .rodata datasec if the global variable is an initialized
1158 // constant with private linkage and if it won't be in .rodata.str<#>
1159 // and .rodata.cst<#> sections.
1160 if (SecName == ".rodata" && Global.hasPrivateLinkage() &&
1161 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1162 SectionKind GVKind =
1163 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM);
1164 // skip .rodata.str<#> and .rodata.cst<#> sections
1165 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) {
1166 DataSecEntries[std::string(SecName)] =
1167 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1171 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1172 Global.getDebugInfo(GVs);
1174 // No type information, mostly internal, skip it.
1175 if (GVs.size() == 0)
1176 continue;
1178 uint32_t GVTypeId = 0;
1179 for (auto *GVE : GVs) {
1180 if (SecName.startswith(".maps"))
1181 visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
1182 else
1183 visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
1184 break;
1187 // Only support the following globals:
1188 // . static variables
1189 // . non-static weak or non-weak global variables
1190 // . weak or non-weak extern global variables
1191 // Whether DataSec is readonly or not can be found from corresponding ELF
1192 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not
1193 // can be found from the corresponding ELF symbol table.
1194 auto Linkage = Global.getLinkage();
1195 if (Linkage != GlobalValue::InternalLinkage &&
1196 Linkage != GlobalValue::ExternalLinkage &&
1197 Linkage != GlobalValue::WeakAnyLinkage &&
1198 Linkage != GlobalValue::WeakODRLinkage &&
1199 Linkage != GlobalValue::ExternalWeakLinkage)
1200 continue;
1202 uint32_t GVarInfo;
1203 if (Linkage == GlobalValue::InternalLinkage) {
1204 GVarInfo = BTF::VAR_STATIC;
1205 } else if (Global.hasInitializer()) {
1206 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED;
1207 } else {
1208 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL;
1211 auto VarEntry =
1212 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
1213 uint32_t VarId = addType(std::move(VarEntry));
1215 // An empty SecName means an extern variable without section attribute.
1216 if (SecName.empty())
1217 continue;
1219 // Find or create a DataSec
1220 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1221 DataSecEntries[std::string(SecName)] =
1222 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1225 // Calculate symbol size
1226 const DataLayout &DL = Global.getParent()->getDataLayout();
1227 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());
1229 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId,
1230 Asm->getSymbol(&Global), Size);
1234 /// Emit proper patchable instructions.
1235 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
1236 if (MI->getOpcode() == BPF::LD_imm64) {
1237 const MachineOperand &MO = MI->getOperand(1);
1238 if (MO.isGlobal()) {
1239 const GlobalValue *GVal = MO.getGlobal();
1240 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1241 if (GVar) {
1242 // Emit "mov ri, <imm>"
1243 int64_t Imm;
1244 uint32_t Reloc;
1245 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
1246 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) {
1247 Imm = PatchImms[GVar].first;
1248 Reloc = PatchImms[GVar].second;
1249 } else {
1250 return false;
1253 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE ||
1254 Reloc == BPFCoreSharedInfo::ENUM_VALUE ||
1255 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL ||
1256 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE)
1257 OutMI.setOpcode(BPF::LD_imm64);
1258 else
1259 OutMI.setOpcode(BPF::MOV_ri);
1260 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1261 OutMI.addOperand(MCOperand::createImm(Imm));
1262 return true;
1265 } else if (MI->getOpcode() == BPF::CORE_MEM ||
1266 MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1267 MI->getOpcode() == BPF::CORE_SHIFT) {
1268 const MachineOperand &MO = MI->getOperand(3);
1269 if (MO.isGlobal()) {
1270 const GlobalValue *GVal = MO.getGlobal();
1271 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1272 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1273 uint32_t Imm = PatchImms[GVar].first;
1274 OutMI.setOpcode(MI->getOperand(1).getImm());
1275 if (MI->getOperand(0).isImm())
1276 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm()));
1277 else
1278 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1279 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg()));
1280 OutMI.addOperand(MCOperand::createImm(Imm));
1281 return true;
1285 return false;
1288 void BTFDebug::processFuncPrototypes(const Function *F) {
1289 if (!F)
1290 return;
1292 const DISubprogram *SP = F->getSubprogram();
1293 if (!SP || SP->isDefinition())
1294 return;
1296 // Do not emit again if already emitted.
1297 if (ProtoFunctions.find(F) != ProtoFunctions.end())
1298 return;
1299 ProtoFunctions.insert(F);
1301 uint32_t ProtoTypeId;
1302 const std::unordered_map<uint32_t, StringRef> FuncArgNames;
1303 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId);
1305 uint8_t Scope = BTF::FUNC_EXTERN;
1306 auto FuncTypeEntry =
1307 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
1308 uint32_t FuncId = addType(std::move(FuncTypeEntry));
1309 if (F->hasSection()) {
1310 StringRef SecName = F->getSection();
1312 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1313 DataSecEntries[std::string(SecName)] =
1314 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1317 // We really don't know func size, set it to 0.
1318 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId,
1319 Asm->getSymbol(F), 0);
1323 void BTFDebug::endModule() {
1324 // Collect MapDef globals if not collected yet.
1325 if (MapDefNotCollected) {
1326 processGlobals(true);
1327 MapDefNotCollected = false;
1330 // Collect global types/variables except MapDef globals.
1331 processGlobals(false);
1333 for (auto &DataSec : DataSecEntries)
1334 addType(std::move(DataSec.second));
1336 // Fixups
1337 for (auto &Fixup : FixupDerivedTypes) {
1338 StringRef TypeName = Fixup.first;
1339 bool IsUnion = Fixup.second.first;
1341 // Search through struct types
1342 uint32_t StructTypeId = 0;
1343 for (const auto &StructType : StructTypes) {
1344 if (StructType->getName() == TypeName) {
1345 StructTypeId = StructType->getId();
1346 break;
1350 if (StructTypeId == 0) {
1351 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion);
1352 StructTypeId = addType(std::move(FwdTypeEntry));
1355 for (auto &DType : Fixup.second.second) {
1356 DType->setPointeeType(StructTypeId);
1360 // Complete BTF type cross refereences.
1361 for (const auto &TypeEntry : TypeEntries)
1362 TypeEntry->completeType(*this);
1364 // Emit BTF sections.
1365 emitBTFSection();
1366 emitBTFExtSection();