[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonBitSimplify.cpp
blob54aa14849dd94c16e4e82db8b3969d38b387caf3
1 //===- HexagonBitSimplify.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <limits>
44 #include <utility>
45 #include <vector>
47 #define DEBUG_TYPE "hexbit"
49 using namespace llvm;
51 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
52 cl::init(true), cl::desc("Preserve subregisters in tied operands"));
53 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
54 cl::init(true), cl::desc("Generate extract instructions"));
55 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
56 cl::init(true), cl::desc("Generate bitsplit instructions"));
58 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
59 cl::init(std::numeric_limits<unsigned>::max()));
60 static unsigned CountExtract = 0;
61 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
62 cl::init(std::numeric_limits<unsigned>::max()));
63 static unsigned CountBitSplit = 0;
65 namespace llvm {
67 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
68 FunctionPass *createHexagonBitSimplify();
70 } // end namespace llvm
72 namespace {
74 // Set of virtual registers, based on BitVector.
75 struct RegisterSet : private BitVector {
76 RegisterSet() = default;
77 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
78 RegisterSet(const RegisterSet &RS) = default;
80 using BitVector::clear;
81 using BitVector::count;
83 unsigned find_first() const {
84 int First = BitVector::find_first();
85 if (First < 0)
86 return 0;
87 return x2v(First);
90 unsigned find_next(unsigned Prev) const {
91 int Next = BitVector::find_next(v2x(Prev));
92 if (Next < 0)
93 return 0;
94 return x2v(Next);
97 RegisterSet &insert(unsigned R) {
98 unsigned Idx = v2x(R);
99 ensure(Idx);
100 return static_cast<RegisterSet&>(BitVector::set(Idx));
102 RegisterSet &remove(unsigned R) {
103 unsigned Idx = v2x(R);
104 if (Idx >= size())
105 return *this;
106 return static_cast<RegisterSet&>(BitVector::reset(Idx));
109 RegisterSet &insert(const RegisterSet &Rs) {
110 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
112 RegisterSet &remove(const RegisterSet &Rs) {
113 return static_cast<RegisterSet&>(BitVector::reset(Rs));
116 reference operator[](unsigned R) {
117 unsigned Idx = v2x(R);
118 ensure(Idx);
119 return BitVector::operator[](Idx);
121 bool operator[](unsigned R) const {
122 unsigned Idx = v2x(R);
123 assert(Idx < size());
124 return BitVector::operator[](Idx);
126 bool has(unsigned R) const {
127 unsigned Idx = v2x(R);
128 if (Idx >= size())
129 return false;
130 return BitVector::test(Idx);
133 bool empty() const {
134 return !BitVector::any();
136 bool includes(const RegisterSet &Rs) const {
137 // A.BitVector::test(B) <=> A-B != {}
138 return !Rs.BitVector::test(*this);
140 bool intersects(const RegisterSet &Rs) const {
141 return BitVector::anyCommon(Rs);
144 private:
145 void ensure(unsigned Idx) {
146 if (size() <= Idx)
147 resize(std::max(Idx+1, 32U));
150 static inline unsigned v2x(unsigned v) {
151 return Register::virtReg2Index(v);
154 static inline unsigned x2v(unsigned x) {
155 return Register::index2VirtReg(x);
159 struct PrintRegSet {
160 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
161 : RS(S), TRI(RI) {}
163 friend raw_ostream &operator<< (raw_ostream &OS,
164 const PrintRegSet &P);
166 private:
167 const RegisterSet &RS;
168 const TargetRegisterInfo *TRI;
171 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
172 LLVM_ATTRIBUTE_UNUSED;
173 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
174 OS << '{';
175 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
176 OS << ' ' << printReg(R, P.TRI);
177 OS << " }";
178 return OS;
181 class Transformation;
183 class HexagonBitSimplify : public MachineFunctionPass {
184 public:
185 static char ID;
187 HexagonBitSimplify() : MachineFunctionPass(ID) {}
189 StringRef getPassName() const override {
190 return "Hexagon bit simplification";
193 void getAnalysisUsage(AnalysisUsage &AU) const override {
194 AU.addRequired<MachineDominatorTree>();
195 AU.addPreserved<MachineDominatorTree>();
196 MachineFunctionPass::getAnalysisUsage(AU);
199 bool runOnMachineFunction(MachineFunction &MF) override;
201 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
202 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
203 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
204 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
205 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
206 uint16_t W);
207 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
208 uint16_t W, uint64_t &U);
209 static bool replaceReg(Register OldR, Register NewR,
210 MachineRegisterInfo &MRI);
211 static bool getSubregMask(const BitTracker::RegisterRef &RR,
212 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
213 static bool replaceRegWithSub(Register OldR, Register NewR, unsigned NewSR,
214 MachineRegisterInfo &MRI);
215 static bool replaceSubWithSub(Register OldR, unsigned OldSR, Register NewR,
216 unsigned NewSR, MachineRegisterInfo &MRI);
217 static bool parseRegSequence(const MachineInstr &I,
218 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
219 const MachineRegisterInfo &MRI);
221 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
222 uint16_t Begin);
223 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
224 uint16_t Begin, const HexagonInstrInfo &HII);
226 static const TargetRegisterClass *getFinalVRegClass(
227 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
228 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
229 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
231 private:
232 MachineDominatorTree *MDT = nullptr;
234 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
235 static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
236 unsigned NewSub = Hexagon::NoSubRegister);
239 using HBS = HexagonBitSimplify;
241 // The purpose of this class is to provide a common facility to traverse
242 // the function top-down or bottom-up via the dominator tree, and keep
243 // track of the available registers.
244 class Transformation {
245 public:
246 bool TopDown;
248 Transformation(bool TD) : TopDown(TD) {}
249 virtual ~Transformation() = default;
251 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
254 } // end anonymous namespace
256 char HexagonBitSimplify::ID = 0;
258 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
259 "Hexagon bit simplification", false, false)
260 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
261 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
262 "Hexagon bit simplification", false, false)
264 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
265 RegisterSet &AVs) {
266 bool Changed = false;
268 if (T.TopDown)
269 Changed = T.processBlock(B, AVs);
271 RegisterSet Defs;
272 for (auto &I : B)
273 getInstrDefs(I, Defs);
274 RegisterSet NewAVs = AVs;
275 NewAVs.insert(Defs);
277 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
278 Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
280 if (!T.TopDown)
281 Changed |= T.processBlock(B, AVs);
283 return Changed;
287 // Utility functions:
289 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
290 RegisterSet &Defs) {
291 for (auto &Op : MI.operands()) {
292 if (!Op.isReg() || !Op.isDef())
293 continue;
294 Register R = Op.getReg();
295 if (!R.isVirtual())
296 continue;
297 Defs.insert(R);
301 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
302 RegisterSet &Uses) {
303 for (auto &Op : MI.operands()) {
304 if (!Op.isReg() || !Op.isUse())
305 continue;
306 Register R = Op.getReg();
307 if (!R.isVirtual())
308 continue;
309 Uses.insert(R);
313 // Check if all the bits in range [B, E) in both cells are equal.
314 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
315 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
316 uint16_t W) {
317 for (uint16_t i = 0; i < W; ++i) {
318 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
319 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
320 return false;
321 // Same for RC2[i].
322 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
323 return false;
324 if (RC1[B1+i] != RC2[B2+i])
325 return false;
327 return true;
330 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
331 uint16_t B, uint16_t W) {
332 assert(B < RC.width() && B+W <= RC.width());
333 for (uint16_t i = B; i < B+W; ++i)
334 if (!RC[i].is(0))
335 return false;
336 return true;
339 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
340 uint16_t B, uint16_t W, uint64_t &U) {
341 assert(B < RC.width() && B+W <= RC.width());
342 int64_t T = 0;
343 for (uint16_t i = B+W; i > B; --i) {
344 const BitTracker::BitValue &BV = RC[i-1];
345 T <<= 1;
346 if (BV.is(1))
347 T |= 1;
348 else if (!BV.is(0))
349 return false;
351 U = T;
352 return true;
355 bool HexagonBitSimplify::replaceReg(Register OldR, Register NewR,
356 MachineRegisterInfo &MRI) {
357 if (!OldR.isVirtual() || !NewR.isVirtual())
358 return false;
359 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
360 decltype(End) NextI;
361 for (auto I = Begin; I != End; I = NextI) {
362 NextI = std::next(I);
363 I->setReg(NewR);
365 return Begin != End;
368 bool HexagonBitSimplify::replaceRegWithSub(Register OldR, Register NewR,
369 unsigned NewSR,
370 MachineRegisterInfo &MRI) {
371 if (!OldR.isVirtual() || !NewR.isVirtual())
372 return false;
373 if (hasTiedUse(OldR, MRI, NewSR))
374 return false;
375 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
376 decltype(End) NextI;
377 for (auto I = Begin; I != End; I = NextI) {
378 NextI = std::next(I);
379 I->setReg(NewR);
380 I->setSubReg(NewSR);
382 return Begin != End;
385 bool HexagonBitSimplify::replaceSubWithSub(Register OldR, unsigned OldSR,
386 Register NewR, unsigned NewSR,
387 MachineRegisterInfo &MRI) {
388 if (!OldR.isVirtual() || !NewR.isVirtual())
389 return false;
390 if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
391 return false;
392 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
393 decltype(End) NextI;
394 for (auto I = Begin; I != End; I = NextI) {
395 NextI = std::next(I);
396 if (I->getSubReg() != OldSR)
397 continue;
398 I->setReg(NewR);
399 I->setSubReg(NewSR);
401 return Begin != End;
404 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
405 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
406 // if this succeeded, otherwise return false.
407 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
408 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
409 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
410 if (RR.Sub == 0) {
411 Begin = 0;
412 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
413 return true;
416 Begin = 0;
418 switch (RC->getID()) {
419 case Hexagon::DoubleRegsRegClassID:
420 case Hexagon::HvxWRRegClassID:
421 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
422 if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
423 Begin = Width;
424 break;
425 default:
426 return false;
428 return true;
432 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
433 // subregister.
434 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
435 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
436 const MachineRegisterInfo &MRI) {
437 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
438 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
439 auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
440 auto &HRI = static_cast<const HexagonRegisterInfo&>(
441 *MRI.getTargetRegisterInfo());
442 unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
443 unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
444 assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
445 if (Sub1 == SubLo && Sub2 == SubHi) {
446 SL = I.getOperand(1);
447 SH = I.getOperand(3);
448 return true;
450 if (Sub1 == SubHi && Sub2 == SubLo) {
451 SH = I.getOperand(1);
452 SL = I.getOperand(3);
453 return true;
455 return false;
458 // All stores (except 64-bit stores) take a 32-bit register as the source
459 // of the value to be stored. If the instruction stores into a location
460 // that is shorter than 32 bits, some bits of the source register are not
461 // used. For each store instruction, calculate the set of used bits in
462 // the source register, and set appropriate bits in Bits. Return true if
463 // the bits are calculated, false otherwise.
464 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
465 uint16_t Begin) {
466 using namespace Hexagon;
468 switch (Opc) {
469 // Store byte
470 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
471 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
472 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
473 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
474 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
475 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
476 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
477 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
478 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
479 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
480 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
481 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
482 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
483 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
484 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
485 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
486 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
487 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
488 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
489 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
490 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
491 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
492 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
493 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
494 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
495 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
496 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
497 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
498 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
499 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
500 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
501 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
502 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
503 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
504 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
505 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
506 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
507 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
508 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
509 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
510 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
511 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
512 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
513 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
514 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
515 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
516 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
517 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
518 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
519 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
520 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
521 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
522 Bits.set(Begin, Begin+8);
523 return true;
525 // Store low half
526 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
527 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
528 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
529 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
530 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
531 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
532 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
533 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
534 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
535 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
536 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
537 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
538 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
539 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
540 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
541 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
542 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
543 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
544 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
545 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
546 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
547 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
548 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
549 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
550 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
551 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
552 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
553 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
554 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
555 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
556 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
557 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
558 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
559 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
560 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
561 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
562 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
563 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
564 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
565 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
566 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
567 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
568 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
569 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
570 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
571 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
572 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
573 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
574 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
575 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
576 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
577 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
578 Bits.set(Begin, Begin+16);
579 return true;
581 // Store high half
582 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
583 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
584 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
585 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
586 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
587 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
588 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
589 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
590 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
591 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
592 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
593 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
594 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
595 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
596 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
597 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
598 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
599 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
600 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
601 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
602 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
603 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
604 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
605 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
606 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
607 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
608 Bits.set(Begin+16, Begin+32);
609 return true;
612 return false;
615 // For an instruction with opcode Opc, calculate the set of bits that it
616 // uses in a register in operand OpN. This only calculates the set of used
617 // bits for cases where it does not depend on any operands (as is the case
618 // in shifts, for example). For concrete instructions from a program, the
619 // operand may be a subregister of a larger register, while Bits would
620 // correspond to the larger register in its entirety. Because of that,
621 // the parameter Begin can be used to indicate which bit of Bits should be
622 // considered the LSB of the operand.
623 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
624 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
625 using namespace Hexagon;
627 const MCInstrDesc &D = HII.get(Opc);
628 if (D.mayStore()) {
629 if (OpN == D.getNumOperands()-1)
630 return getUsedBitsInStore(Opc, Bits, Begin);
631 return false;
634 switch (Opc) {
635 // One register source. Used bits: R1[0-7].
636 case A2_sxtb:
637 case A2_zxtb:
638 case A4_cmpbeqi:
639 case A4_cmpbgti:
640 case A4_cmpbgtui:
641 if (OpN == 1) {
642 Bits.set(Begin, Begin+8);
643 return true;
645 break;
647 // One register source. Used bits: R1[0-15].
648 case A2_aslh:
649 case A2_sxth:
650 case A2_zxth:
651 case A4_cmpheqi:
652 case A4_cmphgti:
653 case A4_cmphgtui:
654 if (OpN == 1) {
655 Bits.set(Begin, Begin+16);
656 return true;
658 break;
660 // One register source. Used bits: R1[16-31].
661 case A2_asrh:
662 if (OpN == 1) {
663 Bits.set(Begin+16, Begin+32);
664 return true;
666 break;
668 // Two register sources. Used bits: R1[0-7], R2[0-7].
669 case A4_cmpbeq:
670 case A4_cmpbgt:
671 case A4_cmpbgtu:
672 if (OpN == 1) {
673 Bits.set(Begin, Begin+8);
674 return true;
676 break;
678 // Two register sources. Used bits: R1[0-15], R2[0-15].
679 case A4_cmpheq:
680 case A4_cmphgt:
681 case A4_cmphgtu:
682 case A2_addh_h16_ll:
683 case A2_addh_h16_sat_ll:
684 case A2_addh_l16_ll:
685 case A2_addh_l16_sat_ll:
686 case A2_combine_ll:
687 case A2_subh_h16_ll:
688 case A2_subh_h16_sat_ll:
689 case A2_subh_l16_ll:
690 case A2_subh_l16_sat_ll:
691 case M2_mpy_acc_ll_s0:
692 case M2_mpy_acc_ll_s1:
693 case M2_mpy_acc_sat_ll_s0:
694 case M2_mpy_acc_sat_ll_s1:
695 case M2_mpy_ll_s0:
696 case M2_mpy_ll_s1:
697 case M2_mpy_nac_ll_s0:
698 case M2_mpy_nac_ll_s1:
699 case M2_mpy_nac_sat_ll_s0:
700 case M2_mpy_nac_sat_ll_s1:
701 case M2_mpy_rnd_ll_s0:
702 case M2_mpy_rnd_ll_s1:
703 case M2_mpy_sat_ll_s0:
704 case M2_mpy_sat_ll_s1:
705 case M2_mpy_sat_rnd_ll_s0:
706 case M2_mpy_sat_rnd_ll_s1:
707 case M2_mpyd_acc_ll_s0:
708 case M2_mpyd_acc_ll_s1:
709 case M2_mpyd_ll_s0:
710 case M2_mpyd_ll_s1:
711 case M2_mpyd_nac_ll_s0:
712 case M2_mpyd_nac_ll_s1:
713 case M2_mpyd_rnd_ll_s0:
714 case M2_mpyd_rnd_ll_s1:
715 case M2_mpyu_acc_ll_s0:
716 case M2_mpyu_acc_ll_s1:
717 case M2_mpyu_ll_s0:
718 case M2_mpyu_ll_s1:
719 case M2_mpyu_nac_ll_s0:
720 case M2_mpyu_nac_ll_s1:
721 case M2_mpyud_acc_ll_s0:
722 case M2_mpyud_acc_ll_s1:
723 case M2_mpyud_ll_s0:
724 case M2_mpyud_ll_s1:
725 case M2_mpyud_nac_ll_s0:
726 case M2_mpyud_nac_ll_s1:
727 if (OpN == 1 || OpN == 2) {
728 Bits.set(Begin, Begin+16);
729 return true;
731 break;
733 // Two register sources. Used bits: R1[0-15], R2[16-31].
734 case A2_addh_h16_lh:
735 case A2_addh_h16_sat_lh:
736 case A2_combine_lh:
737 case A2_subh_h16_lh:
738 case A2_subh_h16_sat_lh:
739 case M2_mpy_acc_lh_s0:
740 case M2_mpy_acc_lh_s1:
741 case M2_mpy_acc_sat_lh_s0:
742 case M2_mpy_acc_sat_lh_s1:
743 case M2_mpy_lh_s0:
744 case M2_mpy_lh_s1:
745 case M2_mpy_nac_lh_s0:
746 case M2_mpy_nac_lh_s1:
747 case M2_mpy_nac_sat_lh_s0:
748 case M2_mpy_nac_sat_lh_s1:
749 case M2_mpy_rnd_lh_s0:
750 case M2_mpy_rnd_lh_s1:
751 case M2_mpy_sat_lh_s0:
752 case M2_mpy_sat_lh_s1:
753 case M2_mpy_sat_rnd_lh_s0:
754 case M2_mpy_sat_rnd_lh_s1:
755 case M2_mpyd_acc_lh_s0:
756 case M2_mpyd_acc_lh_s1:
757 case M2_mpyd_lh_s0:
758 case M2_mpyd_lh_s1:
759 case M2_mpyd_nac_lh_s0:
760 case M2_mpyd_nac_lh_s1:
761 case M2_mpyd_rnd_lh_s0:
762 case M2_mpyd_rnd_lh_s1:
763 case M2_mpyu_acc_lh_s0:
764 case M2_mpyu_acc_lh_s1:
765 case M2_mpyu_lh_s0:
766 case M2_mpyu_lh_s1:
767 case M2_mpyu_nac_lh_s0:
768 case M2_mpyu_nac_lh_s1:
769 case M2_mpyud_acc_lh_s0:
770 case M2_mpyud_acc_lh_s1:
771 case M2_mpyud_lh_s0:
772 case M2_mpyud_lh_s1:
773 case M2_mpyud_nac_lh_s0:
774 case M2_mpyud_nac_lh_s1:
775 // These four are actually LH.
776 case A2_addh_l16_hl:
777 case A2_addh_l16_sat_hl:
778 case A2_subh_l16_hl:
779 case A2_subh_l16_sat_hl:
780 if (OpN == 1) {
781 Bits.set(Begin, Begin+16);
782 return true;
784 if (OpN == 2) {
785 Bits.set(Begin+16, Begin+32);
786 return true;
788 break;
790 // Two register sources, used bits: R1[16-31], R2[0-15].
791 case A2_addh_h16_hl:
792 case A2_addh_h16_sat_hl:
793 case A2_combine_hl:
794 case A2_subh_h16_hl:
795 case A2_subh_h16_sat_hl:
796 case M2_mpy_acc_hl_s0:
797 case M2_mpy_acc_hl_s1:
798 case M2_mpy_acc_sat_hl_s0:
799 case M2_mpy_acc_sat_hl_s1:
800 case M2_mpy_hl_s0:
801 case M2_mpy_hl_s1:
802 case M2_mpy_nac_hl_s0:
803 case M2_mpy_nac_hl_s1:
804 case M2_mpy_nac_sat_hl_s0:
805 case M2_mpy_nac_sat_hl_s1:
806 case M2_mpy_rnd_hl_s0:
807 case M2_mpy_rnd_hl_s1:
808 case M2_mpy_sat_hl_s0:
809 case M2_mpy_sat_hl_s1:
810 case M2_mpy_sat_rnd_hl_s0:
811 case M2_mpy_sat_rnd_hl_s1:
812 case M2_mpyd_acc_hl_s0:
813 case M2_mpyd_acc_hl_s1:
814 case M2_mpyd_hl_s0:
815 case M2_mpyd_hl_s1:
816 case M2_mpyd_nac_hl_s0:
817 case M2_mpyd_nac_hl_s1:
818 case M2_mpyd_rnd_hl_s0:
819 case M2_mpyd_rnd_hl_s1:
820 case M2_mpyu_acc_hl_s0:
821 case M2_mpyu_acc_hl_s1:
822 case M2_mpyu_hl_s0:
823 case M2_mpyu_hl_s1:
824 case M2_mpyu_nac_hl_s0:
825 case M2_mpyu_nac_hl_s1:
826 case M2_mpyud_acc_hl_s0:
827 case M2_mpyud_acc_hl_s1:
828 case M2_mpyud_hl_s0:
829 case M2_mpyud_hl_s1:
830 case M2_mpyud_nac_hl_s0:
831 case M2_mpyud_nac_hl_s1:
832 if (OpN == 1) {
833 Bits.set(Begin+16, Begin+32);
834 return true;
836 if (OpN == 2) {
837 Bits.set(Begin, Begin+16);
838 return true;
840 break;
842 // Two register sources, used bits: R1[16-31], R2[16-31].
843 case A2_addh_h16_hh:
844 case A2_addh_h16_sat_hh:
845 case A2_combine_hh:
846 case A2_subh_h16_hh:
847 case A2_subh_h16_sat_hh:
848 case M2_mpy_acc_hh_s0:
849 case M2_mpy_acc_hh_s1:
850 case M2_mpy_acc_sat_hh_s0:
851 case M2_mpy_acc_sat_hh_s1:
852 case M2_mpy_hh_s0:
853 case M2_mpy_hh_s1:
854 case M2_mpy_nac_hh_s0:
855 case M2_mpy_nac_hh_s1:
856 case M2_mpy_nac_sat_hh_s0:
857 case M2_mpy_nac_sat_hh_s1:
858 case M2_mpy_rnd_hh_s0:
859 case M2_mpy_rnd_hh_s1:
860 case M2_mpy_sat_hh_s0:
861 case M2_mpy_sat_hh_s1:
862 case M2_mpy_sat_rnd_hh_s0:
863 case M2_mpy_sat_rnd_hh_s1:
864 case M2_mpyd_acc_hh_s0:
865 case M2_mpyd_acc_hh_s1:
866 case M2_mpyd_hh_s0:
867 case M2_mpyd_hh_s1:
868 case M2_mpyd_nac_hh_s0:
869 case M2_mpyd_nac_hh_s1:
870 case M2_mpyd_rnd_hh_s0:
871 case M2_mpyd_rnd_hh_s1:
872 case M2_mpyu_acc_hh_s0:
873 case M2_mpyu_acc_hh_s1:
874 case M2_mpyu_hh_s0:
875 case M2_mpyu_hh_s1:
876 case M2_mpyu_nac_hh_s0:
877 case M2_mpyu_nac_hh_s1:
878 case M2_mpyud_acc_hh_s0:
879 case M2_mpyud_acc_hh_s1:
880 case M2_mpyud_hh_s0:
881 case M2_mpyud_hh_s1:
882 case M2_mpyud_nac_hh_s0:
883 case M2_mpyud_nac_hh_s1:
884 if (OpN == 1 || OpN == 2) {
885 Bits.set(Begin+16, Begin+32);
886 return true;
888 break;
891 return false;
894 // Calculate the register class that matches Reg:Sub. For example, if
895 // %1 is a double register, then %1:isub_hi would match the "int"
896 // register class.
897 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
898 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
899 if (!RR.Reg.isVirtual())
900 return nullptr;
901 auto *RC = MRI.getRegClass(RR.Reg);
902 if (RR.Sub == 0)
903 return RC;
904 auto &HRI = static_cast<const HexagonRegisterInfo&>(
905 *MRI.getTargetRegisterInfo());
907 auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
908 (void)HRI;
909 assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
910 Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
913 switch (RC->getID()) {
914 case Hexagon::DoubleRegsRegClassID:
915 VerifySR(RC, RR.Sub);
916 return &Hexagon::IntRegsRegClass;
917 case Hexagon::HvxWRRegClassID:
918 VerifySR(RC, RR.Sub);
919 return &Hexagon::HvxVRRegClass;
921 return nullptr;
924 // Check if RD could be replaced with RS at any possible use of RD.
925 // For example a predicate register cannot be replaced with a integer
926 // register, but a 64-bit register with a subregister can be replaced
927 // with a 32-bit register.
928 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
929 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
930 if (!RD.Reg.isVirtual() || !RS.Reg.isVirtual())
931 return false;
932 // Return false if one (or both) classes are nullptr.
933 auto *DRC = getFinalVRegClass(RD, MRI);
934 if (!DRC)
935 return false;
937 return DRC == getFinalVRegClass(RS, MRI);
940 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
941 unsigned NewSub) {
942 if (!PreserveTiedOps)
943 return false;
944 return llvm::any_of(MRI.use_operands(Reg),
945 [NewSub] (const MachineOperand &Op) -> bool {
946 return Op.getSubReg() != NewSub && Op.isTied();
950 namespace {
952 class DeadCodeElimination {
953 public:
954 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
955 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
956 MDT(mdt), MRI(mf.getRegInfo()) {}
958 bool run() {
959 return runOnNode(MDT.getRootNode());
962 private:
963 bool isDead(unsigned R) const;
964 bool runOnNode(MachineDomTreeNode *N);
966 MachineFunction &MF;
967 const HexagonInstrInfo &HII;
968 MachineDominatorTree &MDT;
969 MachineRegisterInfo &MRI;
972 } // end anonymous namespace
974 bool DeadCodeElimination::isDead(unsigned R) const {
975 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
976 MachineInstr *UseI = I->getParent();
977 if (UseI->isDebugValue())
978 continue;
979 if (UseI->isPHI()) {
980 assert(!UseI->getOperand(0).getSubReg());
981 Register DR = UseI->getOperand(0).getReg();
982 if (DR == R)
983 continue;
985 return false;
987 return true;
990 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
991 bool Changed = false;
993 for (auto *DTN : children<MachineDomTreeNode*>(N))
994 Changed |= runOnNode(DTN);
996 MachineBasicBlock *B = N->getBlock();
997 std::vector<MachineInstr*> Instrs;
998 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
999 Instrs.push_back(&*I);
1001 for (auto MI : Instrs) {
1002 unsigned Opc = MI->getOpcode();
1003 // Do not touch lifetime markers. This is why the target-independent DCE
1004 // cannot be used.
1005 if (Opc == TargetOpcode::LIFETIME_START ||
1006 Opc == TargetOpcode::LIFETIME_END)
1007 continue;
1008 bool Store = false;
1009 if (MI->isInlineAsm())
1010 continue;
1011 // Delete PHIs if possible.
1012 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1013 continue;
1015 bool AllDead = true;
1016 SmallVector<unsigned,2> Regs;
1017 for (auto &Op : MI->operands()) {
1018 if (!Op.isReg() || !Op.isDef())
1019 continue;
1020 Register R = Op.getReg();
1021 if (!R.isVirtual() || !isDead(R)) {
1022 AllDead = false;
1023 break;
1025 Regs.push_back(R);
1027 if (!AllDead)
1028 continue;
1030 B->erase(MI);
1031 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1032 MRI.markUsesInDebugValueAsUndef(Regs[i]);
1033 Changed = true;
1036 return Changed;
1039 namespace {
1041 // Eliminate redundant instructions
1043 // This transformation will identify instructions where the output register
1044 // is the same as one of its input registers. This only works on instructions
1045 // that define a single register (unlike post-increment loads, for example).
1046 // The equality check is actually more detailed: the code calculates which
1047 // bits of the output are used, and only compares these bits with the input
1048 // registers.
1049 // If the output matches an input, the instruction is replaced with COPY.
1050 // The copies will be removed by another transformation.
1051 class RedundantInstrElimination : public Transformation {
1052 public:
1053 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1054 const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1055 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1057 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1059 private:
1060 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1061 unsigned &LostB, unsigned &LostE);
1062 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1063 unsigned &LostB, unsigned &LostE);
1064 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1065 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1066 uint16_t Begin);
1067 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1069 const HexagonInstrInfo &HII;
1070 const HexagonRegisterInfo &HRI;
1071 MachineRegisterInfo &MRI;
1072 BitTracker &BT;
1075 } // end anonymous namespace
1077 // Check if the instruction is a lossy shift left, where the input being
1078 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1079 // of bit indices that are lost.
1080 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1081 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1082 using namespace Hexagon;
1084 unsigned Opc = MI.getOpcode();
1085 unsigned ImN, RegN, Width;
1086 switch (Opc) {
1087 case S2_asl_i_p:
1088 ImN = 2;
1089 RegN = 1;
1090 Width = 64;
1091 break;
1092 case S2_asl_i_p_acc:
1093 case S2_asl_i_p_and:
1094 case S2_asl_i_p_nac:
1095 case S2_asl_i_p_or:
1096 case S2_asl_i_p_xacc:
1097 ImN = 3;
1098 RegN = 2;
1099 Width = 64;
1100 break;
1101 case S2_asl_i_r:
1102 ImN = 2;
1103 RegN = 1;
1104 Width = 32;
1105 break;
1106 case S2_addasl_rrri:
1107 case S4_andi_asl_ri:
1108 case S4_ori_asl_ri:
1109 case S4_addi_asl_ri:
1110 case S4_subi_asl_ri:
1111 case S2_asl_i_r_acc:
1112 case S2_asl_i_r_and:
1113 case S2_asl_i_r_nac:
1114 case S2_asl_i_r_or:
1115 case S2_asl_i_r_sat:
1116 case S2_asl_i_r_xacc:
1117 ImN = 3;
1118 RegN = 2;
1119 Width = 32;
1120 break;
1121 default:
1122 return false;
1125 if (RegN != OpN)
1126 return false;
1128 assert(MI.getOperand(ImN).isImm());
1129 unsigned S = MI.getOperand(ImN).getImm();
1130 if (S == 0)
1131 return false;
1132 LostB = Width-S;
1133 LostE = Width;
1134 return true;
1137 // Check if the instruction is a lossy shift right, where the input being
1138 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1139 // of bit indices that are lost.
1140 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1141 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1142 using namespace Hexagon;
1144 unsigned Opc = MI.getOpcode();
1145 unsigned ImN, RegN;
1146 switch (Opc) {
1147 case S2_asr_i_p:
1148 case S2_lsr_i_p:
1149 ImN = 2;
1150 RegN = 1;
1151 break;
1152 case S2_asr_i_p_acc:
1153 case S2_asr_i_p_and:
1154 case S2_asr_i_p_nac:
1155 case S2_asr_i_p_or:
1156 case S2_lsr_i_p_acc:
1157 case S2_lsr_i_p_and:
1158 case S2_lsr_i_p_nac:
1159 case S2_lsr_i_p_or:
1160 case S2_lsr_i_p_xacc:
1161 ImN = 3;
1162 RegN = 2;
1163 break;
1164 case S2_asr_i_r:
1165 case S2_lsr_i_r:
1166 ImN = 2;
1167 RegN = 1;
1168 break;
1169 case S4_andi_lsr_ri:
1170 case S4_ori_lsr_ri:
1171 case S4_addi_lsr_ri:
1172 case S4_subi_lsr_ri:
1173 case S2_asr_i_r_acc:
1174 case S2_asr_i_r_and:
1175 case S2_asr_i_r_nac:
1176 case S2_asr_i_r_or:
1177 case S2_lsr_i_r_acc:
1178 case S2_lsr_i_r_and:
1179 case S2_lsr_i_r_nac:
1180 case S2_lsr_i_r_or:
1181 case S2_lsr_i_r_xacc:
1182 ImN = 3;
1183 RegN = 2;
1184 break;
1186 default:
1187 return false;
1190 if (RegN != OpN)
1191 return false;
1193 assert(MI.getOperand(ImN).isImm());
1194 unsigned S = MI.getOperand(ImN).getImm();
1195 LostB = 0;
1196 LostE = S;
1197 return true;
1200 // Calculate the bit vector that corresponds to the used bits of register Reg.
1201 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1202 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1203 // wise, it returns true and sets the corresponding bits in Bits.
1204 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1205 BitVector Used(Bits.size());
1206 RegisterSet Visited;
1207 std::vector<unsigned> Pending;
1208 Pending.push_back(Reg);
1210 for (unsigned i = 0; i < Pending.size(); ++i) {
1211 unsigned R = Pending[i];
1212 if (Visited.has(R))
1213 continue;
1214 Visited.insert(R);
1215 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1216 BitTracker::RegisterRef UR = *I;
1217 unsigned B, W;
1218 if (!HBS::getSubregMask(UR, B, W, MRI))
1219 return false;
1220 MachineInstr &UseI = *I->getParent();
1221 if (UseI.isPHI() || UseI.isCopy()) {
1222 Register DefR = UseI.getOperand(0).getReg();
1223 if (!DefR.isVirtual())
1224 return false;
1225 Pending.push_back(DefR);
1226 } else {
1227 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1228 return false;
1232 Bits |= Used;
1233 return true;
1236 // Calculate the bits used by instruction MI in a register in operand OpN.
1237 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1238 // used bits in Bits. This function does not reset any bits in Bits, so
1239 // subsequent calls over different instructions will result in the union
1240 // of the used bits in all these instructions.
1241 // The register in question may be used with a sub-register, whereas Bits
1242 // holds the bits for the entire register. To keep track of that, the
1243 // argument Begin indicates where in Bits is the lowest-significant bit
1244 // of the register used in operand OpN. For example, in instruction:
1245 // %1 = S2_lsr_i_r %2:isub_hi, 10
1246 // the operand 1 is a 32-bit register, which happens to be a subregister
1247 // of the 64-bit register %2, and that subregister starts at position 32.
1248 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1249 // of %2:isub_hi.
1250 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1251 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1252 unsigned Opc = MI.getOpcode();
1253 BitVector T(Bits.size());
1254 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1255 // Even if we don't have bits yet, we could still provide some information
1256 // if the instruction is a lossy shift: the lost bits will be marked as
1257 // not used.
1258 unsigned LB, LE;
1259 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1260 assert(MI.getOperand(OpN).isReg());
1261 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1262 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1263 uint16_t Width = HRI.getRegSizeInBits(*RC);
1265 if (!GotBits)
1266 T.set(Begin, Begin+Width);
1267 assert(LB <= LE && LB < Width && LE <= Width);
1268 T.reset(Begin+LB, Begin+LE);
1269 GotBits = true;
1271 if (GotBits)
1272 Bits |= T;
1273 return GotBits;
1276 // Calculates the used bits in RD ("defined register"), and checks if these
1277 // bits in RS ("used register") and RD are identical.
1278 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1279 BitTracker::RegisterRef RS) {
1280 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1281 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1283 unsigned DB, DW;
1284 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1285 return false;
1286 unsigned SB, SW;
1287 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1288 return false;
1289 if (SW != DW)
1290 return false;
1292 BitVector Used(DC.width());
1293 if (!computeUsedBits(RD.Reg, Used))
1294 return false;
1296 for (unsigned i = 0; i != DW; ++i)
1297 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1298 return false;
1299 return true;
1302 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1303 const RegisterSet&) {
1304 if (!BT.reached(&B))
1305 return false;
1306 bool Changed = false;
1308 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1309 NextI = std::next(I);
1310 MachineInstr *MI = &*I;
1312 if (MI->getOpcode() == TargetOpcode::COPY)
1313 continue;
1314 if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1315 continue;
1316 unsigned NumD = MI->getDesc().getNumDefs();
1317 if (NumD != 1)
1318 continue;
1320 BitTracker::RegisterRef RD = MI->getOperand(0);
1321 if (!BT.has(RD.Reg))
1322 continue;
1323 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1324 auto At = MachineBasicBlock::iterator(MI);
1326 // Find a source operand that is equal to the result.
1327 for (auto &Op : MI->uses()) {
1328 if (!Op.isReg())
1329 continue;
1330 BitTracker::RegisterRef RS = Op;
1331 if (!BT.has(RS.Reg))
1332 continue;
1333 if (!HBS::isTransparentCopy(RD, RS, MRI))
1334 continue;
1336 unsigned BN, BW;
1337 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1338 continue;
1340 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1341 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1342 continue;
1344 // If found, replace the instruction with a COPY.
1345 const DebugLoc &DL = MI->getDebugLoc();
1346 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1347 Register NewR = MRI.createVirtualRegister(FRC);
1348 MachineInstr *CopyI =
1349 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1350 .addReg(RS.Reg, 0, RS.Sub);
1351 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1352 // This pass can create copies between registers that don't have the
1353 // exact same values. Updating the tracker has to involve updating
1354 // all dependent cells. Example:
1355 // %1 = inst %2 ; %1 != %2, but used bits are equal
1357 // %3 = copy %2 ; <- inserted
1358 // ... = %3 ; <- replaced from %2
1359 // Indirectly, we can create a "copy" between %1 and %2 even
1360 // though their exact values do not match.
1361 BT.visit(*CopyI);
1362 Changed = true;
1363 break;
1367 return Changed;
1370 namespace {
1372 // Recognize instructions that produce constant values known at compile-time.
1373 // Replace them with register definitions that load these constants directly.
1374 class ConstGeneration : public Transformation {
1375 public:
1376 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1377 MachineRegisterInfo &mri)
1378 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1380 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1381 static bool isTfrConst(const MachineInstr &MI);
1383 private:
1384 Register genTfrConst(const TargetRegisterClass *RC, int64_t C,
1385 MachineBasicBlock &B, MachineBasicBlock::iterator At,
1386 DebugLoc &DL);
1388 const HexagonInstrInfo &HII;
1389 MachineRegisterInfo &MRI;
1390 BitTracker &BT;
1393 } // end anonymous namespace
1395 bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1396 unsigned Opc = MI.getOpcode();
1397 switch (Opc) {
1398 case Hexagon::A2_combineii:
1399 case Hexagon::A4_combineii:
1400 case Hexagon::A2_tfrsi:
1401 case Hexagon::A2_tfrpi:
1402 case Hexagon::PS_true:
1403 case Hexagon::PS_false:
1404 case Hexagon::CONST32:
1405 case Hexagon::CONST64:
1406 return true;
1408 return false;
1411 // Generate a transfer-immediate instruction that is appropriate for the
1412 // register class and the actual value being transferred.
1413 Register ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1414 MachineBasicBlock &B,
1415 MachineBasicBlock::iterator At,
1416 DebugLoc &DL) {
1417 Register Reg = MRI.createVirtualRegister(RC);
1418 if (RC == &Hexagon::IntRegsRegClass) {
1419 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1420 .addImm(int32_t(C));
1421 return Reg;
1424 if (RC == &Hexagon::DoubleRegsRegClass) {
1425 if (isInt<8>(C)) {
1426 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1427 .addImm(C);
1428 return Reg;
1431 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1432 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1433 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1434 : Hexagon::A4_combineii;
1435 BuildMI(B, At, DL, HII.get(Opc), Reg)
1436 .addImm(int32_t(Hi))
1437 .addImm(int32_t(Lo));
1438 return Reg;
1440 MachineFunction *MF = B.getParent();
1441 auto &HST = MF->getSubtarget<HexagonSubtarget>();
1443 // Disable CONST64 for tiny core since it takes a LD resource.
1444 if (!HST.isTinyCore() ||
1445 MF->getFunction().hasOptSize()) {
1446 BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1447 .addImm(C);
1448 return Reg;
1452 if (RC == &Hexagon::PredRegsRegClass) {
1453 unsigned Opc;
1454 if (C == 0)
1455 Opc = Hexagon::PS_false;
1456 else if ((C & 0xFF) == 0xFF)
1457 Opc = Hexagon::PS_true;
1458 else
1459 return 0;
1460 BuildMI(B, At, DL, HII.get(Opc), Reg);
1461 return Reg;
1464 return 0;
1467 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1468 if (!BT.reached(&B))
1469 return false;
1470 bool Changed = false;
1471 RegisterSet Defs;
1473 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1474 if (isTfrConst(*I))
1475 continue;
1476 Defs.clear();
1477 HBS::getInstrDefs(*I, Defs);
1478 if (Defs.count() != 1)
1479 continue;
1480 Register DR = Defs.find_first();
1481 if (!DR.isVirtual())
1482 continue;
1483 uint64_t U;
1484 const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1485 if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1486 int64_t C = U;
1487 DebugLoc DL = I->getDebugLoc();
1488 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1489 Register ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1490 if (ImmReg) {
1491 HBS::replaceReg(DR, ImmReg, MRI);
1492 BT.put(ImmReg, DRC);
1493 Changed = true;
1497 return Changed;
1500 namespace {
1502 // Identify pairs of available registers which hold identical values.
1503 // In such cases, only one of them needs to be calculated, the other one
1504 // will be defined as a copy of the first.
1505 class CopyGeneration : public Transformation {
1506 public:
1507 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1508 const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1509 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1511 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1513 private:
1514 bool findMatch(const BitTracker::RegisterRef &Inp,
1515 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1517 const HexagonInstrInfo &HII;
1518 const HexagonRegisterInfo &HRI;
1519 MachineRegisterInfo &MRI;
1520 BitTracker &BT;
1521 RegisterSet Forbidden;
1524 // Eliminate register copies RD = RS, by replacing the uses of RD with
1525 // with uses of RS.
1526 class CopyPropagation : public Transformation {
1527 public:
1528 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1529 : Transformation(false), HRI(hri), MRI(mri) {}
1531 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1533 static bool isCopyReg(unsigned Opc, bool NoConv);
1535 private:
1536 bool propagateRegCopy(MachineInstr &MI);
1538 const HexagonRegisterInfo &HRI;
1539 MachineRegisterInfo &MRI;
1542 } // end anonymous namespace
1544 /// Check if there is a register in AVs that is identical to Inp. If so,
1545 /// set Out to the found register. The output may be a pair Reg:Sub.
1546 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1547 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1548 if (!BT.has(Inp.Reg))
1549 return false;
1550 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1551 auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1552 unsigned B, W;
1553 if (!HBS::getSubregMask(Inp, B, W, MRI))
1554 return false;
1556 for (Register R = AVs.find_first(); R; R = AVs.find_next(R)) {
1557 if (!BT.has(R) || Forbidden[R])
1558 continue;
1559 const BitTracker::RegisterCell &RC = BT.lookup(R);
1560 unsigned RW = RC.width();
1561 if (W == RW) {
1562 if (FRC != MRI.getRegClass(R))
1563 continue;
1564 if (!HBS::isTransparentCopy(R, Inp, MRI))
1565 continue;
1566 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1567 continue;
1568 Out.Reg = R;
1569 Out.Sub = 0;
1570 return true;
1572 // Check if there is a super-register, whose part (with a subregister)
1573 // is equal to the input.
1574 // Only do double registers for now.
1575 if (W*2 != RW)
1576 continue;
1577 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1578 continue;
1580 if (HBS::isEqual(InpRC, B, RC, 0, W))
1581 Out.Sub = Hexagon::isub_lo;
1582 else if (HBS::isEqual(InpRC, B, RC, W, W))
1583 Out.Sub = Hexagon::isub_hi;
1584 else
1585 continue;
1586 Out.Reg = R;
1587 if (HBS::isTransparentCopy(Out, Inp, MRI))
1588 return true;
1590 return false;
1593 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1594 const RegisterSet &AVs) {
1595 if (!BT.reached(&B))
1596 return false;
1597 RegisterSet AVB(AVs);
1598 bool Changed = false;
1599 RegisterSet Defs;
1601 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1602 ++I, AVB.insert(Defs)) {
1603 NextI = std::next(I);
1604 Defs.clear();
1605 HBS::getInstrDefs(*I, Defs);
1607 unsigned Opc = I->getOpcode();
1608 if (CopyPropagation::isCopyReg(Opc, false) ||
1609 ConstGeneration::isTfrConst(*I))
1610 continue;
1612 DebugLoc DL = I->getDebugLoc();
1613 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1615 for (Register R = Defs.find_first(); R; R = Defs.find_next(R)) {
1616 BitTracker::RegisterRef MR;
1617 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1619 if (findMatch(R, MR, AVB)) {
1620 Register NewR = MRI.createVirtualRegister(FRC);
1621 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1622 .addReg(MR.Reg, 0, MR.Sub);
1623 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1624 HBS::replaceReg(R, NewR, MRI);
1625 Forbidden.insert(R);
1626 continue;
1629 if (FRC == &Hexagon::DoubleRegsRegClass ||
1630 FRC == &Hexagon::HvxWRRegClass) {
1631 // Try to generate REG_SEQUENCE.
1632 unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1633 unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1634 BitTracker::RegisterRef TL = { R, SubLo };
1635 BitTracker::RegisterRef TH = { R, SubHi };
1636 BitTracker::RegisterRef ML, MH;
1637 if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1638 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1639 Register NewR = MRI.createVirtualRegister(FRC);
1640 BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1641 .addReg(ML.Reg, 0, ML.Sub)
1642 .addImm(SubLo)
1643 .addReg(MH.Reg, 0, MH.Sub)
1644 .addImm(SubHi);
1645 BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1646 HBS::replaceReg(R, NewR, MRI);
1647 Forbidden.insert(R);
1653 return Changed;
1656 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1657 switch (Opc) {
1658 case TargetOpcode::COPY:
1659 case TargetOpcode::REG_SEQUENCE:
1660 case Hexagon::A4_combineir:
1661 case Hexagon::A4_combineri:
1662 return true;
1663 case Hexagon::A2_tfr:
1664 case Hexagon::A2_tfrp:
1665 case Hexagon::A2_combinew:
1666 case Hexagon::V6_vcombine:
1667 return NoConv;
1668 default:
1669 break;
1671 return false;
1674 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1675 bool Changed = false;
1676 unsigned Opc = MI.getOpcode();
1677 BitTracker::RegisterRef RD = MI.getOperand(0);
1678 assert(MI.getOperand(0).getSubReg() == 0);
1680 switch (Opc) {
1681 case TargetOpcode::COPY:
1682 case Hexagon::A2_tfr:
1683 case Hexagon::A2_tfrp: {
1684 BitTracker::RegisterRef RS = MI.getOperand(1);
1685 if (!HBS::isTransparentCopy(RD, RS, MRI))
1686 break;
1687 if (RS.Sub != 0)
1688 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1689 else
1690 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1691 break;
1693 case TargetOpcode::REG_SEQUENCE: {
1694 BitTracker::RegisterRef SL, SH;
1695 if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1696 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1697 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1698 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1699 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1700 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1702 break;
1704 case Hexagon::A2_combinew:
1705 case Hexagon::V6_vcombine: {
1706 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1707 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1708 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1709 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1710 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1711 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1712 break;
1714 case Hexagon::A4_combineir:
1715 case Hexagon::A4_combineri: {
1716 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1717 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1718 : Hexagon::isub_hi;
1719 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1720 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1721 break;
1724 return Changed;
1727 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1728 std::vector<MachineInstr*> Instrs;
1729 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1730 Instrs.push_back(&*I);
1732 bool Changed = false;
1733 for (auto I : Instrs) {
1734 unsigned Opc = I->getOpcode();
1735 if (!CopyPropagation::isCopyReg(Opc, true))
1736 continue;
1737 Changed |= propagateRegCopy(*I);
1740 return Changed;
1743 namespace {
1745 // Recognize patterns that can be simplified and replace them with the
1746 // simpler forms.
1747 // This is by no means complete
1748 class BitSimplification : public Transformation {
1749 public:
1750 BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1751 const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1752 MachineRegisterInfo &mri, MachineFunction &mf)
1753 : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1754 MF(mf), BT(bt) {}
1756 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1758 private:
1759 struct RegHalf : public BitTracker::RegisterRef {
1760 bool Low; // Low/High halfword.
1763 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1764 unsigned B, RegHalf &RH);
1765 bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1767 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1768 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1769 unsigned getCombineOpcode(bool HLow, bool LLow);
1771 bool genStoreUpperHalf(MachineInstr *MI);
1772 bool genStoreImmediate(MachineInstr *MI);
1773 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1774 const BitTracker::RegisterCell &RC);
1775 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1776 const BitTracker::RegisterCell &RC);
1777 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1778 const BitTracker::RegisterCell &RC);
1779 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1780 const BitTracker::RegisterCell &RC);
1781 bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1782 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1783 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1784 const BitTracker::RegisterCell &RC);
1785 bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1786 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1787 bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1789 // Cache of created instructions to avoid creating duplicates.
1790 // XXX Currently only used by genBitSplit.
1791 std::vector<MachineInstr*> NewMIs;
1793 const MachineDominatorTree &MDT;
1794 const HexagonInstrInfo &HII;
1795 const HexagonRegisterInfo &HRI;
1796 MachineRegisterInfo &MRI;
1797 MachineFunction &MF;
1798 BitTracker &BT;
1801 } // end anonymous namespace
1803 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1804 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1805 // set the information about the found register in RH.
1806 bool BitSimplification::matchHalf(unsigned SelfR,
1807 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1808 // XXX This could be searching in the set of available registers, in case
1809 // the match is not exact.
1811 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1812 // register and all the bits B..B+15 match between RC and the register.
1813 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1814 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1815 bool Low = false;
1816 unsigned I = B;
1817 while (I < B+16 && RC[I].num())
1818 I++;
1819 if (I == B+16)
1820 return false;
1822 Register Reg = RC[I].RefI.Reg;
1823 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1824 if (P < I-B)
1825 return false;
1826 unsigned Pos = P - (I-B);
1828 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1829 return false;
1830 if (!Reg.isVirtual())
1831 return false;
1832 if (!BT.has(Reg))
1833 return false;
1835 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1836 if (Pos+16 > SC.width())
1837 return false;
1839 for (unsigned i = 0; i < 16; ++i) {
1840 const BitTracker::BitValue &RV = RC[i+B];
1841 if (RV.Type == BitTracker::BitValue::Ref) {
1842 if (RV.RefI.Reg != Reg)
1843 return false;
1844 if (RV.RefI.Pos != i+Pos)
1845 return false;
1846 continue;
1848 if (RC[i+B] != SC[i+Pos])
1849 return false;
1852 unsigned Sub = 0;
1853 switch (Pos) {
1854 case 0:
1855 Sub = Hexagon::isub_lo;
1856 Low = true;
1857 break;
1858 case 16:
1859 Sub = Hexagon::isub_lo;
1860 Low = false;
1861 break;
1862 case 32:
1863 Sub = Hexagon::isub_hi;
1864 Low = true;
1865 break;
1866 case 48:
1867 Sub = Hexagon::isub_hi;
1868 Low = false;
1869 break;
1870 default:
1871 return false;
1874 RH.Reg = Reg;
1875 RH.Sub = Sub;
1876 RH.Low = Low;
1877 // If the subregister is not valid with the register, set it to 0.
1878 if (!HBS::getFinalVRegClass(RH, MRI))
1879 RH.Sub = 0;
1881 return true;
1884 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1885 unsigned OpNum) {
1886 auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1887 auto *RRC = HBS::getFinalVRegClass(R, MRI);
1888 return OpRC->hasSubClassEq(RRC);
1891 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1892 // set the inputs Rs and Rt.
1893 bool BitSimplification::matchPackhl(unsigned SelfR,
1894 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1895 BitTracker::RegisterRef &Rt) {
1896 RegHalf L1, H1, L2, H2;
1898 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1899 return false;
1900 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1901 return false;
1903 // Rs = H1.L1, Rt = H2.L2
1904 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1905 return false;
1906 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1907 return false;
1909 Rs = H1;
1910 Rt = H2;
1911 return true;
1914 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1915 return HLow ? LLow ? Hexagon::A2_combine_ll
1916 : Hexagon::A2_combine_lh
1917 : LLow ? Hexagon::A2_combine_hl
1918 : Hexagon::A2_combine_hh;
1921 // If MI stores the upper halfword of a register (potentially obtained via
1922 // shifts or extracts), replace it with a storerf instruction. This could
1923 // cause the "extraction" code to become dead.
1924 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1925 unsigned Opc = MI->getOpcode();
1926 if (Opc != Hexagon::S2_storerh_io)
1927 return false;
1929 MachineOperand &ValOp = MI->getOperand(2);
1930 BitTracker::RegisterRef RS = ValOp;
1931 if (!BT.has(RS.Reg))
1932 return false;
1933 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1934 RegHalf H;
1935 if (!matchHalf(0, RC, 0, H))
1936 return false;
1937 if (H.Low)
1938 return false;
1939 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1940 ValOp.setReg(H.Reg);
1941 ValOp.setSubReg(H.Sub);
1942 return true;
1945 // If MI stores a value known at compile-time, and the value is within a range
1946 // that avoids using constant-extenders, replace it with a store-immediate.
1947 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1948 unsigned Opc = MI->getOpcode();
1949 unsigned Align = 0;
1950 switch (Opc) {
1951 case Hexagon::S2_storeri_io:
1952 Align++;
1953 LLVM_FALLTHROUGH;
1954 case Hexagon::S2_storerh_io:
1955 Align++;
1956 LLVM_FALLTHROUGH;
1957 case Hexagon::S2_storerb_io:
1958 break;
1959 default:
1960 return false;
1963 // Avoid stores to frame-indices (due to an unknown offset).
1964 if (!MI->getOperand(0).isReg())
1965 return false;
1966 MachineOperand &OffOp = MI->getOperand(1);
1967 if (!OffOp.isImm())
1968 return false;
1970 int64_t Off = OffOp.getImm();
1971 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1972 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1973 return false;
1974 // Source register:
1975 BitTracker::RegisterRef RS = MI->getOperand(2);
1976 if (!BT.has(RS.Reg))
1977 return false;
1978 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1979 uint64_t U;
1980 if (!HBS::getConst(RC, 0, RC.width(), U))
1981 return false;
1983 // Only consider 8-bit values to avoid constant-extenders.
1984 int V;
1985 switch (Opc) {
1986 case Hexagon::S2_storerb_io:
1987 V = int8_t(U);
1988 break;
1989 case Hexagon::S2_storerh_io:
1990 V = int16_t(U);
1991 break;
1992 case Hexagon::S2_storeri_io:
1993 V = int32_t(U);
1994 break;
1995 default:
1996 // Opc is already checked above to be one of the three store instructions.
1997 // This silences a -Wuninitialized false positive on GCC 5.4.
1998 llvm_unreachable("Unexpected store opcode");
2000 if (!isInt<8>(V))
2001 return false;
2003 MI->RemoveOperand(2);
2004 switch (Opc) {
2005 case Hexagon::S2_storerb_io:
2006 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
2007 break;
2008 case Hexagon::S2_storerh_io:
2009 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2010 break;
2011 case Hexagon::S2_storeri_io:
2012 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2013 break;
2015 MI->addOperand(MachineOperand::CreateImm(V));
2016 return true;
2019 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2020 // last instruction in a sequence that results in something equivalent to
2021 // the pack-halfwords. The intent is to cause the entire sequence to become
2022 // dead.
2023 bool BitSimplification::genPackhl(MachineInstr *MI,
2024 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2025 unsigned Opc = MI->getOpcode();
2026 if (Opc == Hexagon::S2_packhl)
2027 return false;
2028 BitTracker::RegisterRef Rs, Rt;
2029 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2030 return false;
2031 if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2032 !validateReg(Rt, Hexagon::S2_packhl, 2))
2033 return false;
2035 MachineBasicBlock &B = *MI->getParent();
2036 Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2037 DebugLoc DL = MI->getDebugLoc();
2038 auto At = MI->isPHI() ? B.getFirstNonPHI()
2039 : MachineBasicBlock::iterator(MI);
2040 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2041 .addReg(Rs.Reg, 0, Rs.Sub)
2042 .addReg(Rt.Reg, 0, Rt.Sub);
2043 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2044 BT.put(BitTracker::RegisterRef(NewR), RC);
2045 return true;
2048 // If MI produces halfword of the input in the low half of the output,
2049 // replace it with zero-extend or extractu.
2050 bool BitSimplification::genExtractHalf(MachineInstr *MI,
2051 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2052 RegHalf L;
2053 // Check for halfword in low 16 bits, zeros elsewhere.
2054 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2055 return false;
2057 unsigned Opc = MI->getOpcode();
2058 MachineBasicBlock &B = *MI->getParent();
2059 DebugLoc DL = MI->getDebugLoc();
2061 // Prefer zxth, since zxth can go in any slot, while extractu only in
2062 // slots 2 and 3.
2063 unsigned NewR = 0;
2064 auto At = MI->isPHI() ? B.getFirstNonPHI()
2065 : MachineBasicBlock::iterator(MI);
2066 if (L.Low && Opc != Hexagon::A2_zxth) {
2067 if (validateReg(L, Hexagon::A2_zxth, 1)) {
2068 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2069 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2070 .addReg(L.Reg, 0, L.Sub);
2072 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2073 if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2074 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2075 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2076 .addReg(L.Reg, 0, L.Sub)
2077 .addImm(16);
2080 if (NewR == 0)
2081 return false;
2082 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2083 BT.put(BitTracker::RegisterRef(NewR), RC);
2084 return true;
2087 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2088 // combine.
2089 bool BitSimplification::genCombineHalf(MachineInstr *MI,
2090 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2091 RegHalf L, H;
2092 // Check for combine h/l
2093 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2094 return false;
2095 // Do nothing if this is just a reg copy.
2096 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2097 return false;
2099 unsigned Opc = MI->getOpcode();
2100 unsigned COpc = getCombineOpcode(H.Low, L.Low);
2101 if (COpc == Opc)
2102 return false;
2103 if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2104 return false;
2106 MachineBasicBlock &B = *MI->getParent();
2107 DebugLoc DL = MI->getDebugLoc();
2108 Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2109 auto At = MI->isPHI() ? B.getFirstNonPHI()
2110 : MachineBasicBlock::iterator(MI);
2111 BuildMI(B, At, DL, HII.get(COpc), NewR)
2112 .addReg(H.Reg, 0, H.Sub)
2113 .addReg(L.Reg, 0, L.Sub);
2114 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2115 BT.put(BitTracker::RegisterRef(NewR), RC);
2116 return true;
2119 // If MI resets high bits of a register and keeps the lower ones, replace it
2120 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2121 bool BitSimplification::genExtractLow(MachineInstr *MI,
2122 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2123 unsigned Opc = MI->getOpcode();
2124 switch (Opc) {
2125 case Hexagon::A2_zxtb:
2126 case Hexagon::A2_zxth:
2127 case Hexagon::S2_extractu:
2128 return false;
2130 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2131 int32_t Imm = MI->getOperand(2).getImm();
2132 if (isInt<10>(Imm))
2133 return false;
2136 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2137 return false;
2138 unsigned W = RC.width();
2139 while (W > 0 && RC[W-1].is(0))
2140 W--;
2141 if (W == 0 || W == RC.width())
2142 return false;
2143 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2144 : (W == 16) ? Hexagon::A2_zxth
2145 : (W < 10) ? Hexagon::A2_andir
2146 : Hexagon::S2_extractu;
2147 MachineBasicBlock &B = *MI->getParent();
2148 DebugLoc DL = MI->getDebugLoc();
2150 for (auto &Op : MI->uses()) {
2151 if (!Op.isReg())
2152 continue;
2153 BitTracker::RegisterRef RS = Op;
2154 if (!BT.has(RS.Reg))
2155 continue;
2156 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2157 unsigned BN, BW;
2158 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2159 continue;
2160 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2161 continue;
2162 if (!validateReg(RS, NewOpc, 1))
2163 continue;
2165 Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2166 auto At = MI->isPHI() ? B.getFirstNonPHI()
2167 : MachineBasicBlock::iterator(MI);
2168 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2169 .addReg(RS.Reg, 0, RS.Sub);
2170 if (NewOpc == Hexagon::A2_andir)
2171 MIB.addImm((1 << W) - 1);
2172 else if (NewOpc == Hexagon::S2_extractu)
2173 MIB.addImm(W).addImm(0);
2174 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2175 BT.put(BitTracker::RegisterRef(NewR), RC);
2176 return true;
2178 return false;
2181 bool BitSimplification::genBitSplit(MachineInstr *MI,
2182 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2183 const RegisterSet &AVs) {
2184 if (!GenBitSplit)
2185 return false;
2186 if (MaxBitSplit.getNumOccurrences()) {
2187 if (CountBitSplit >= MaxBitSplit)
2188 return false;
2191 unsigned Opc = MI->getOpcode();
2192 switch (Opc) {
2193 case Hexagon::A4_bitsplit:
2194 case Hexagon::A4_bitspliti:
2195 return false;
2198 unsigned W = RC.width();
2199 if (W != 32)
2200 return false;
2202 auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2203 unsigned Z = C.width();
2204 while (Z > 0 && C[Z-1].is(0))
2205 --Z;
2206 return C.width() - Z;
2209 // Count the number of leading zeros in the target RC.
2210 unsigned Z = ctlz(RC);
2211 if (Z == 0 || Z == W)
2212 return false;
2214 // A simplistic analysis: assume the source register (the one being split)
2215 // is fully unknown, and that all its bits are self-references.
2216 const BitTracker::BitValue &B0 = RC[0];
2217 if (B0.Type != BitTracker::BitValue::Ref)
2218 return false;
2220 unsigned SrcR = B0.RefI.Reg;
2221 unsigned SrcSR = 0;
2222 unsigned Pos = B0.RefI.Pos;
2224 // All the non-zero bits should be consecutive bits from the same register.
2225 for (unsigned i = 1; i < W-Z; ++i) {
2226 const BitTracker::BitValue &V = RC[i];
2227 if (V.Type != BitTracker::BitValue::Ref)
2228 return false;
2229 if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2230 return false;
2233 // Now, find the other bitfield among AVs.
2234 for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2235 // The number of leading zeros here should be the number of trailing
2236 // non-zeros in RC.
2237 unsigned SRC = MRI.getRegClass(S)->getID();
2238 if (SRC != Hexagon::IntRegsRegClassID &&
2239 SRC != Hexagon::DoubleRegsRegClassID)
2240 continue;
2241 if (!BT.has(S))
2242 continue;
2243 const BitTracker::RegisterCell &SC = BT.lookup(S);
2244 if (SC.width() != W || ctlz(SC) != W-Z)
2245 continue;
2246 // The Z lower bits should now match SrcR.
2247 const BitTracker::BitValue &S0 = SC[0];
2248 if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2249 continue;
2250 unsigned P = S0.RefI.Pos;
2252 if (Pos <= P && (Pos + W-Z) != P)
2253 continue;
2254 if (P < Pos && (P + Z) != Pos)
2255 continue;
2256 // The starting bitfield position must be at a subregister boundary.
2257 if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2258 continue;
2260 unsigned I;
2261 for (I = 1; I < Z; ++I) {
2262 const BitTracker::BitValue &V = SC[I];
2263 if (V.Type != BitTracker::BitValue::Ref)
2264 break;
2265 if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2266 break;
2268 if (I != Z)
2269 continue;
2271 // Generate bitsplit where S is defined.
2272 if (MaxBitSplit.getNumOccurrences())
2273 CountBitSplit++;
2274 MachineInstr *DefS = MRI.getVRegDef(S);
2275 assert(DefS != nullptr);
2276 DebugLoc DL = DefS->getDebugLoc();
2277 MachineBasicBlock &B = *DefS->getParent();
2278 auto At = DefS->isPHI() ? B.getFirstNonPHI()
2279 : MachineBasicBlock::iterator(DefS);
2280 if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2281 SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2282 if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2283 continue;
2284 unsigned ImmOp = Pos <= P ? W-Z : Z;
2286 // Find an existing bitsplit instruction if one already exists.
2287 unsigned NewR = 0;
2288 for (MachineInstr *In : NewMIs) {
2289 if (In->getOpcode() != Hexagon::A4_bitspliti)
2290 continue;
2291 MachineOperand &Op1 = In->getOperand(1);
2292 if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2293 continue;
2294 if (In->getOperand(2).getImm() != ImmOp)
2295 continue;
2296 // Check if the target register is available here.
2297 MachineOperand &Op0 = In->getOperand(0);
2298 MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2299 assert(DefI != nullptr);
2300 if (!MDT.dominates(DefI, &*At))
2301 continue;
2303 // Found one that can be reused.
2304 assert(Op0.getSubReg() == 0);
2305 NewR = Op0.getReg();
2306 break;
2308 if (!NewR) {
2309 NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2310 auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2311 .addReg(SrcR, 0, SrcSR)
2312 .addImm(ImmOp);
2313 NewMIs.push_back(NewBS);
2315 if (Pos <= P) {
2316 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2317 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI);
2318 } else {
2319 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI);
2320 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2322 return true;
2325 return false;
2328 // Check for tstbit simplification opportunity, where the bit being checked
2329 // can be tracked back to another register. For example:
2330 // %2 = S2_lsr_i_r %1, 5
2331 // %3 = S2_tstbit_i %2, 0
2332 // =>
2333 // %3 = S2_tstbit_i %1, 5
2334 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2335 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2336 unsigned Opc = MI->getOpcode();
2337 if (Opc != Hexagon::S2_tstbit_i)
2338 return false;
2340 unsigned BN = MI->getOperand(2).getImm();
2341 BitTracker::RegisterRef RS = MI->getOperand(1);
2342 unsigned F, W;
2343 DebugLoc DL = MI->getDebugLoc();
2344 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2345 return false;
2346 MachineBasicBlock &B = *MI->getParent();
2347 auto At = MI->isPHI() ? B.getFirstNonPHI()
2348 : MachineBasicBlock::iterator(MI);
2350 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2351 const BitTracker::BitValue &V = SC[F+BN];
2352 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2353 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2354 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2355 // a double register, need to use a subregister and adjust bit
2356 // number.
2357 unsigned P = std::numeric_limits<unsigned>::max();
2358 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2359 if (TC == &Hexagon::DoubleRegsRegClass) {
2360 P = V.RefI.Pos;
2361 RR.Sub = Hexagon::isub_lo;
2362 if (P >= 32) {
2363 P -= 32;
2364 RR.Sub = Hexagon::isub_hi;
2366 } else if (TC == &Hexagon::IntRegsRegClass) {
2367 P = V.RefI.Pos;
2369 if (P != std::numeric_limits<unsigned>::max()) {
2370 Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2371 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2372 .addReg(RR.Reg, 0, RR.Sub)
2373 .addImm(P);
2374 HBS::replaceReg(RD.Reg, NewR, MRI);
2375 BT.put(NewR, RC);
2376 return true;
2378 } else if (V.is(0) || V.is(1)) {
2379 Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2380 unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2381 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2382 HBS::replaceReg(RD.Reg, NewR, MRI);
2383 return true;
2386 return false;
2389 // Detect whether RD is a bitfield extract (sign- or zero-extended) of
2390 // some register from the AVs set. Create a new corresponding instruction
2391 // at the location of MI. The intent is to recognize situations where
2392 // a sequence of instructions performs an operation that is equivalent to
2393 // an extract operation, such as a shift left followed by a shift right.
2394 bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2395 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2396 const RegisterSet &AVs) {
2397 if (!GenExtract)
2398 return false;
2399 if (MaxExtract.getNumOccurrences()) {
2400 if (CountExtract >= MaxExtract)
2401 return false;
2402 CountExtract++;
2405 unsigned W = RC.width();
2406 unsigned RW = W;
2407 unsigned Len;
2408 bool Signed;
2410 // The code is mostly class-independent, except for the part that generates
2411 // the extract instruction, and establishes the source register (in case it
2412 // needs to use a subregister).
2413 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2414 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2415 return false;
2416 assert(RD.Sub == 0);
2418 // Observation:
2419 // If the cell has a form of 00..0xx..x with k zeros and n remaining
2420 // bits, this could be an extractu of the n bits, but it could also be
2421 // an extractu of a longer field which happens to have 0s in the top
2422 // bit positions.
2423 // The same logic applies to sign-extended fields.
2425 // Do not check for the extended extracts, since it would expand the
2426 // search space quite a bit. The search may be expensive as it is.
2428 const BitTracker::BitValue &TopV = RC[W-1];
2430 // Eliminate candidates that have self-referential bits, since they
2431 // cannot be extracts from other registers. Also, skip registers that
2432 // have compile-time constant values.
2433 bool IsConst = true;
2434 for (unsigned I = 0; I != W; ++I) {
2435 const BitTracker::BitValue &V = RC[I];
2436 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2437 return false;
2438 IsConst = IsConst && (V.is(0) || V.is(1));
2440 if (IsConst)
2441 return false;
2443 if (TopV.is(0) || TopV.is(1)) {
2444 bool S = TopV.is(1);
2445 for (--W; W > 0 && RC[W-1].is(S); --W)
2447 Len = W;
2448 Signed = S;
2449 // The sign bit must be a part of the field being extended.
2450 if (Signed)
2451 ++Len;
2452 } else {
2453 // This could still be a sign-extended extract.
2454 assert(TopV.Type == BitTracker::BitValue::Ref);
2455 if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2456 return false;
2457 for (--W; W > 0 && RC[W-1] == TopV; --W)
2459 // The top bits of RC are copies of TopV. One occurrence of TopV will
2460 // be a part of the field.
2461 Len = W + 1;
2462 Signed = true;
2465 // This would be just a copy. It should be handled elsewhere.
2466 if (Len == RW)
2467 return false;
2469 LLVM_DEBUG({
2470 dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2471 << ", MI: " << *MI;
2472 dbgs() << "Cell: " << RC << '\n';
2473 dbgs() << "Expected bitfield size: " << Len << " bits, "
2474 << (Signed ? "sign" : "zero") << "-extended\n";
2477 bool Changed = false;
2479 for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2480 if (!BT.has(R))
2481 continue;
2482 const BitTracker::RegisterCell &SC = BT.lookup(R);
2483 unsigned SW = SC.width();
2485 // The source can be longer than the destination, as long as its size is
2486 // a multiple of the size of the destination. Also, we would need to be
2487 // able to refer to the subregister in the source that would be of the
2488 // same size as the destination, but only check the sizes here.
2489 if (SW < RW || (SW % RW) != 0)
2490 continue;
2492 // The field can start at any offset in SC as long as it contains Len
2493 // bits and does not cross subregister boundary (if the source register
2494 // is longer than the destination).
2495 unsigned Off = 0;
2496 while (Off <= SW-Len) {
2497 unsigned OE = (Off+Len)/RW;
2498 if (OE != Off/RW) {
2499 // The assumption here is that if the source (R) is longer than the
2500 // destination, then the destination is a sequence of words of
2501 // size RW, and each such word in R can be accessed via a subregister.
2503 // If the beginning and the end of the field cross the subregister
2504 // boundary, advance to the next subregister.
2505 Off = OE*RW;
2506 continue;
2508 if (HBS::isEqual(RC, 0, SC, Off, Len))
2509 break;
2510 ++Off;
2513 if (Off > SW-Len)
2514 continue;
2516 // Found match.
2517 unsigned ExtOpc = 0;
2518 if (Off == 0) {
2519 if (Len == 8)
2520 ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2521 else if (Len == 16)
2522 ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2523 else if (Len < 10 && !Signed)
2524 ExtOpc = Hexagon::A2_andir;
2526 if (ExtOpc == 0) {
2527 ExtOpc =
2528 Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp)
2529 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2531 unsigned SR = 0;
2532 // This only recognizes isub_lo and isub_hi.
2533 if (RW != SW && RW*2 != SW)
2534 continue;
2535 if (RW != SW)
2536 SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2537 Off = Off % RW;
2539 if (!validateReg({R,SR}, ExtOpc, 1))
2540 continue;
2542 // Don't generate the same instruction as the one being optimized.
2543 if (MI->getOpcode() == ExtOpc) {
2544 // All possible ExtOpc's have the source in operand(1).
2545 const MachineOperand &SrcOp = MI->getOperand(1);
2546 if (SrcOp.getReg() == R)
2547 continue;
2550 DebugLoc DL = MI->getDebugLoc();
2551 MachineBasicBlock &B = *MI->getParent();
2552 Register NewR = MRI.createVirtualRegister(FRC);
2553 auto At = MI->isPHI() ? B.getFirstNonPHI()
2554 : MachineBasicBlock::iterator(MI);
2555 auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2556 .addReg(R, 0, SR);
2557 switch (ExtOpc) {
2558 case Hexagon::A2_sxtb:
2559 case Hexagon::A2_zxtb:
2560 case Hexagon::A2_sxth:
2561 case Hexagon::A2_zxth:
2562 break;
2563 case Hexagon::A2_andir:
2564 MIB.addImm((1u << Len) - 1);
2565 break;
2566 case Hexagon::S4_extract:
2567 case Hexagon::S2_extractu:
2568 case Hexagon::S4_extractp:
2569 case Hexagon::S2_extractup:
2570 MIB.addImm(Len)
2571 .addImm(Off);
2572 break;
2573 default:
2574 llvm_unreachable("Unexpected opcode");
2577 HBS::replaceReg(RD.Reg, NewR, MRI);
2578 BT.put(BitTracker::RegisterRef(NewR), RC);
2579 Changed = true;
2580 break;
2583 return Changed;
2586 bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2587 BitTracker::RegisterRef RD) {
2588 unsigned Opc = MI->getOpcode();
2589 if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2590 return false;
2591 MachineOperand &CmpOp = MI->getOperand(2);
2592 if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2593 return false;
2595 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2596 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2597 return false;
2598 assert(RD.Sub == 0);
2600 MachineBasicBlock &B = *MI->getParent();
2601 const DebugLoc &DL = MI->getDebugLoc();
2602 auto At = MI->isPHI() ? B.getFirstNonPHI()
2603 : MachineBasicBlock::iterator(MI);
2604 bool KnownZ = true;
2605 bool KnownNZ = false;
2607 BitTracker::RegisterRef SR = MI->getOperand(1);
2608 if (!BT.has(SR.Reg))
2609 return false;
2610 const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2611 unsigned F, W;
2612 if (!HBS::getSubregMask(SR, F, W, MRI))
2613 return false;
2615 for (uint16_t I = F; I != F+W; ++I) {
2616 const BitTracker::BitValue &V = SC[I];
2617 if (!V.is(0))
2618 KnownZ = false;
2619 if (V.is(1))
2620 KnownNZ = true;
2623 auto ReplaceWithConst = [&](int C) {
2624 Register NewR = MRI.createVirtualRegister(FRC);
2625 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2626 .addImm(C);
2627 HBS::replaceReg(RD.Reg, NewR, MRI);
2628 BitTracker::RegisterCell NewRC(W);
2629 for (uint16_t I = 0; I != W; ++I) {
2630 NewRC[I] = BitTracker::BitValue(C & 1);
2631 C = unsigned(C) >> 1;
2633 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2634 return true;
2637 auto IsNonZero = [] (const MachineOperand &Op) {
2638 if (Op.isGlobal() || Op.isBlockAddress())
2639 return true;
2640 if (Op.isImm())
2641 return Op.getImm() != 0;
2642 if (Op.isCImm())
2643 return !Op.getCImm()->isZero();
2644 if (Op.isFPImm())
2645 return !Op.getFPImm()->isZero();
2646 return false;
2649 auto IsZero = [] (const MachineOperand &Op) {
2650 if (Op.isGlobal() || Op.isBlockAddress())
2651 return false;
2652 if (Op.isImm())
2653 return Op.getImm() == 0;
2654 if (Op.isCImm())
2655 return Op.getCImm()->isZero();
2656 if (Op.isFPImm())
2657 return Op.getFPImm()->isZero();
2658 return false;
2661 // If the source register is known to be 0 or non-0, the comparison can
2662 // be folded to a load of a constant.
2663 if (KnownZ || KnownNZ) {
2664 assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2665 return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2668 // Special case: if the compare comes from a C2_muxii, then we know the
2669 // two possible constants that can be the source value.
2670 MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2671 if (!InpDef)
2672 return false;
2673 if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2674 MachineOperand &Src1 = InpDef->getOperand(2);
2675 MachineOperand &Src2 = InpDef->getOperand(3);
2676 // Check if both are non-zero.
2677 bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2678 if (KnownNZ1 && KnownNZ2)
2679 return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2680 // Check if both are zero.
2681 bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2682 if (KnownZ1 && KnownZ2)
2683 return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2685 // If for both operands we know that they are either 0 or non-0,
2686 // replace the comparison with a C2_muxii, using the same predicate
2687 // register, but with operands substituted with 0/1 accordingly.
2688 if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2689 Register NewR = MRI.createVirtualRegister(FRC);
2690 BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2691 .addReg(InpDef->getOperand(1).getReg())
2692 .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2693 .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2694 HBS::replaceReg(RD.Reg, NewR, MRI);
2695 // Create a new cell with only the least significant bit unknown.
2696 BitTracker::RegisterCell NewRC(W);
2697 NewRC[0] = BitTracker::BitValue::self();
2698 NewRC.fill(1, W, BitTracker::BitValue::Zero);
2699 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2700 return true;
2704 return false;
2707 bool BitSimplification::processBlock(MachineBasicBlock &B,
2708 const RegisterSet &AVs) {
2709 if (!BT.reached(&B))
2710 return false;
2711 bool Changed = false;
2712 RegisterSet AVB = AVs;
2713 RegisterSet Defs;
2715 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2716 MachineInstr *MI = &*I;
2717 Defs.clear();
2718 HBS::getInstrDefs(*MI, Defs);
2720 unsigned Opc = MI->getOpcode();
2721 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2722 continue;
2724 if (MI->mayStore()) {
2725 bool T = genStoreUpperHalf(MI);
2726 T = T || genStoreImmediate(MI);
2727 Changed |= T;
2728 continue;
2731 if (Defs.count() != 1)
2732 continue;
2733 const MachineOperand &Op0 = MI->getOperand(0);
2734 if (!Op0.isReg() || !Op0.isDef())
2735 continue;
2736 BitTracker::RegisterRef RD = Op0;
2737 if (!BT.has(RD.Reg))
2738 continue;
2739 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2740 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2742 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2743 bool T = genPackhl(MI, RD, RC);
2744 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2745 Changed |= T;
2746 continue;
2749 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2750 bool T = genBitSplit(MI, RD, RC, AVB);
2751 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2752 T = T || genExtractHalf(MI, RD, RC);
2753 T = T || genCombineHalf(MI, RD, RC);
2754 T = T || genExtractLow(MI, RD, RC);
2755 T = T || simplifyRCmp0(MI, RD);
2756 Changed |= T;
2757 continue;
2760 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2761 bool T = simplifyTstbit(MI, RD, RC);
2762 Changed |= T;
2763 continue;
2766 return Changed;
2769 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2770 if (skipFunction(MF.getFunction()))
2771 return false;
2773 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2774 auto &HRI = *HST.getRegisterInfo();
2775 auto &HII = *HST.getInstrInfo();
2777 MDT = &getAnalysis<MachineDominatorTree>();
2778 MachineRegisterInfo &MRI = MF.getRegInfo();
2779 bool Changed;
2781 Changed = DeadCodeElimination(MF, *MDT).run();
2783 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2784 BitTracker BT(HE, MF);
2785 LLVM_DEBUG(BT.trace(true));
2786 BT.run();
2788 MachineBasicBlock &Entry = MF.front();
2790 RegisterSet AIG; // Available registers for IG.
2791 ConstGeneration ImmG(BT, HII, MRI);
2792 Changed |= visitBlock(Entry, ImmG, AIG);
2794 RegisterSet ARE; // Available registers for RIE.
2795 RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2796 bool Ried = visitBlock(Entry, RIE, ARE);
2797 if (Ried) {
2798 Changed = true;
2799 BT.run();
2802 RegisterSet ACG; // Available registers for CG.
2803 CopyGeneration CopyG(BT, HII, HRI, MRI);
2804 Changed |= visitBlock(Entry, CopyG, ACG);
2806 RegisterSet ACP; // Available registers for CP.
2807 CopyPropagation CopyP(HRI, MRI);
2808 Changed |= visitBlock(Entry, CopyP, ACP);
2810 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2812 BT.run();
2813 RegisterSet ABS; // Available registers for BS.
2814 BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2815 Changed |= visitBlock(Entry, BitS, ABS);
2817 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2819 if (Changed) {
2820 for (auto &B : MF)
2821 for (auto &I : B)
2822 I.clearKillInfo();
2823 DeadCodeElimination(MF, *MDT).run();
2825 return Changed;
2828 // Recognize loops where the code at the end of the loop matches the code
2829 // before the entry of the loop, and the matching code is such that is can
2830 // be simplified. This pass relies on the bit simplification above and only
2831 // prepares code in a way that can be handled by the bit simplifcation.
2833 // This is the motivating testcase (and explanation):
2835 // {
2836 // loop0(.LBB0_2, r1) // %for.body.preheader
2837 // r5:4 = memd(r0++#8)
2838 // }
2839 // {
2840 // r3 = lsr(r4, #16)
2841 // r7:6 = combine(r5, r5)
2842 // }
2843 // {
2844 // r3 = insert(r5, #16, #16)
2845 // r7:6 = vlsrw(r7:6, #16)
2846 // }
2847 // .LBB0_2:
2848 // {
2849 // memh(r2+#4) = r5
2850 // memh(r2+#6) = r6 # R6 is really R5.H
2851 // }
2852 // {
2853 // r2 = add(r2, #8)
2854 // memh(r2+#0) = r4
2855 // memh(r2+#2) = r3 # R3 is really R4.H
2856 // }
2857 // {
2858 // r5:4 = memd(r0++#8)
2859 // }
2860 // { # "Shuffling" code that sets up R3 and R6
2861 // r3 = lsr(r4, #16) # so that their halves can be stored in the
2862 // r7:6 = combine(r5, r5) # next iteration. This could be folded into
2863 // } # the stores if the code was at the beginning
2864 // { # of the loop iteration. Since the same code
2865 // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2866 // r7:6 = vlsrw(r7:6, #16) # there.
2867 // }:endloop0
2870 // The outcome:
2872 // {
2873 // loop0(.LBB0_2, r1)
2874 // r5:4 = memd(r0++#8)
2875 // }
2876 // .LBB0_2:
2877 // {
2878 // memh(r2+#4) = r5
2879 // memh(r2+#6) = r5.h
2880 // }
2881 // {
2882 // r2 = add(r2, #8)
2883 // memh(r2+#0) = r4
2884 // memh(r2+#2) = r4.h
2885 // }
2886 // {
2887 // r5:4 = memd(r0++#8)
2888 // }:endloop0
2890 namespace llvm {
2892 FunctionPass *createHexagonLoopRescheduling();
2893 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2895 } // end namespace llvm
2897 namespace {
2899 class HexagonLoopRescheduling : public MachineFunctionPass {
2900 public:
2901 static char ID;
2903 HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2904 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2907 bool runOnMachineFunction(MachineFunction &MF) override;
2909 private:
2910 const HexagonInstrInfo *HII = nullptr;
2911 const HexagonRegisterInfo *HRI = nullptr;
2912 MachineRegisterInfo *MRI = nullptr;
2913 BitTracker *BTP = nullptr;
2915 struct LoopCand {
2916 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2917 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2919 MachineBasicBlock *LB, *PB, *EB;
2921 using InstrList = std::vector<MachineInstr *>;
2922 struct InstrGroup {
2923 BitTracker::RegisterRef Inp, Out;
2924 InstrList Ins;
2926 struct PhiInfo {
2927 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2929 unsigned DefR;
2930 BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2931 MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
2934 static unsigned getDefReg(const MachineInstr *MI);
2935 bool isConst(unsigned Reg) const;
2936 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2937 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2938 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2939 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2940 unsigned &InpR2) const;
2941 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2942 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2943 bool processLoop(LoopCand &C);
2946 } // end anonymous namespace
2948 char HexagonLoopRescheduling::ID = 0;
2950 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2951 "Hexagon Loop Rescheduling", false, false)
2953 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2954 MachineBasicBlock &B) {
2955 DefR = HexagonLoopRescheduling::getDefReg(&P);
2956 LB = &B;
2957 PB = nullptr;
2958 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2959 const MachineOperand &OpB = P.getOperand(i+1);
2960 if (OpB.getMBB() == &B) {
2961 LR = P.getOperand(i);
2962 continue;
2964 PB = OpB.getMBB();
2965 PR = P.getOperand(i);
2969 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2970 RegisterSet Defs;
2971 HBS::getInstrDefs(*MI, Defs);
2972 if (Defs.count() != 1)
2973 return 0;
2974 return Defs.find_first();
2977 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2978 if (!BTP->has(Reg))
2979 return false;
2980 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2981 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2982 const BitTracker::BitValue &V = RC[i];
2983 if (!V.is(0) && !V.is(1))
2984 return false;
2986 return true;
2989 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2990 unsigned DefR) const {
2991 unsigned Opc = MI->getOpcode();
2992 switch (Opc) {
2993 case TargetOpcode::COPY:
2994 case Hexagon::S2_lsr_i_r:
2995 case Hexagon::S2_asr_i_r:
2996 case Hexagon::S2_asl_i_r:
2997 case Hexagon::S2_lsr_i_p:
2998 case Hexagon::S2_asr_i_p:
2999 case Hexagon::S2_asl_i_p:
3000 case Hexagon::S2_insert:
3001 case Hexagon::A2_or:
3002 case Hexagon::A2_orp:
3003 case Hexagon::A2_and:
3004 case Hexagon::A2_andp:
3005 case Hexagon::A2_combinew:
3006 case Hexagon::A4_combineri:
3007 case Hexagon::A4_combineir:
3008 case Hexagon::A2_combineii:
3009 case Hexagon::A4_combineii:
3010 case Hexagon::A2_combine_ll:
3011 case Hexagon::A2_combine_lh:
3012 case Hexagon::A2_combine_hl:
3013 case Hexagon::A2_combine_hh:
3014 return true;
3016 return false;
3019 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3020 unsigned InpR) const {
3021 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3022 const MachineOperand &Op = MI->getOperand(i);
3023 if (!Op.isReg())
3024 continue;
3025 if (Op.getReg() == InpR)
3026 return i == n-1;
3028 return false;
3031 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3032 if (!BTP->has(OutR) || !BTP->has(InpR))
3033 return false;
3034 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3035 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3036 const BitTracker::BitValue &V = OutC[i];
3037 if (V.Type != BitTracker::BitValue::Ref)
3038 continue;
3039 if (V.RefI.Reg != InpR)
3040 return false;
3042 return true;
3045 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3046 unsigned OutR2, unsigned &InpR2) const {
3047 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3048 return false;
3049 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3050 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3051 unsigned W = OutC1.width();
3052 unsigned MatchR = 0;
3053 if (W != OutC2.width())
3054 return false;
3055 for (unsigned i = 0; i < W; ++i) {
3056 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3057 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3058 return false;
3059 if (V1.Type != BitTracker::BitValue::Ref)
3060 continue;
3061 if (V1.RefI.Pos != V2.RefI.Pos)
3062 return false;
3063 if (V1.RefI.Reg != InpR1)
3064 return false;
3065 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3066 return false;
3067 if (!MatchR)
3068 MatchR = V2.RefI.Reg;
3069 else if (V2.RefI.Reg != MatchR)
3070 return false;
3072 InpR2 = MatchR;
3073 return true;
3076 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3077 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3078 unsigned NewPredR) {
3079 DenseMap<unsigned,unsigned> RegMap;
3081 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3082 Register PhiR = MRI->createVirtualRegister(PhiRC);
3083 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3084 .addReg(NewPredR)
3085 .addMBB(&PB)
3086 .addReg(G.Inp.Reg)
3087 .addMBB(&LB);
3088 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3090 for (unsigned i = G.Ins.size(); i > 0; --i) {
3091 const MachineInstr *SI = G.Ins[i-1];
3092 unsigned DR = getDefReg(SI);
3093 const TargetRegisterClass *RC = MRI->getRegClass(DR);
3094 Register NewDR = MRI->createVirtualRegister(RC);
3095 DebugLoc DL = SI->getDebugLoc();
3097 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3098 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
3099 const MachineOperand &Op = SI->getOperand(j);
3100 if (!Op.isReg()) {
3101 MIB.add(Op);
3102 continue;
3104 if (!Op.isUse())
3105 continue;
3106 unsigned UseR = RegMap[Op.getReg()];
3107 MIB.addReg(UseR, 0, Op.getSubReg());
3109 RegMap.insert(std::make_pair(DR, NewDR));
3112 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3115 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3116 LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3117 << "\n");
3118 std::vector<PhiInfo> Phis;
3119 for (auto &I : *C.LB) {
3120 if (!I.isPHI())
3121 break;
3122 unsigned PR = getDefReg(&I);
3123 if (isConst(PR))
3124 continue;
3125 bool BadUse = false, GoodUse = false;
3126 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
3127 MachineInstr *UseI = UI->getParent();
3128 if (UseI->getParent() != C.LB) {
3129 BadUse = true;
3130 break;
3132 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3133 GoodUse = true;
3135 if (BadUse || !GoodUse)
3136 continue;
3138 Phis.push_back(PhiInfo(I, *C.LB));
3141 LLVM_DEBUG({
3142 dbgs() << "Phis: {";
3143 for (auto &I : Phis) {
3144 dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3145 << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3146 << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3147 << I.LB->getNumber() << ')';
3149 dbgs() << " }\n";
3152 if (Phis.empty())
3153 return false;
3155 bool Changed = false;
3156 InstrList ShufIns;
3158 // Go backwards in the block: for each bit shuffling instruction, check
3159 // if that instruction could potentially be moved to the front of the loop:
3160 // the output of the loop cannot be used in a non-shuffling instruction
3161 // in this loop.
3162 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
3163 if (I->isTerminator())
3164 continue;
3165 if (I->isPHI())
3166 break;
3168 RegisterSet Defs;
3169 HBS::getInstrDefs(*I, Defs);
3170 if (Defs.count() != 1)
3171 continue;
3172 Register DefR = Defs.find_first();
3173 if (!DefR.isVirtual())
3174 continue;
3175 if (!isBitShuffle(&*I, DefR))
3176 continue;
3178 bool BadUse = false;
3179 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3180 MachineInstr *UseI = UI->getParent();
3181 if (UseI->getParent() == C.LB) {
3182 if (UseI->isPHI()) {
3183 // If the use is in a phi node in this loop, then it should be
3184 // the value corresponding to the back edge.
3185 unsigned Idx = UI.getOperandNo();
3186 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3187 BadUse = true;
3188 } else {
3189 auto F = find(ShufIns, UseI);
3190 if (F == ShufIns.end())
3191 BadUse = true;
3193 } else {
3194 // There is a use outside of the loop, but there is no epilog block
3195 // suitable for a copy-out.
3196 if (C.EB == nullptr)
3197 BadUse = true;
3199 if (BadUse)
3200 break;
3203 if (BadUse)
3204 continue;
3205 ShufIns.push_back(&*I);
3208 // Partition the list of shuffling instructions into instruction groups,
3209 // where each group has to be moved as a whole (i.e. a group is a chain of
3210 // dependent instructions). A group produces a single live output register,
3211 // which is meant to be the input of the loop phi node (although this is
3212 // not checked here yet). It also uses a single register as its input,
3213 // which is some value produced in the loop body. After moving the group
3214 // to the beginning of the loop, that input register would need to be
3215 // the loop-carried register (through a phi node) instead of the (currently
3216 // loop-carried) output register.
3217 using InstrGroupList = std::vector<InstrGroup>;
3218 InstrGroupList Groups;
3220 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3221 MachineInstr *SI = ShufIns[i];
3222 if (SI == nullptr)
3223 continue;
3225 InstrGroup G;
3226 G.Ins.push_back(SI);
3227 G.Out.Reg = getDefReg(SI);
3228 RegisterSet Inputs;
3229 HBS::getInstrUses(*SI, Inputs);
3231 for (unsigned j = i+1; j < n; ++j) {
3232 MachineInstr *MI = ShufIns[j];
3233 if (MI == nullptr)
3234 continue;
3235 RegisterSet Defs;
3236 HBS::getInstrDefs(*MI, Defs);
3237 // If this instruction does not define any pending inputs, skip it.
3238 if (!Defs.intersects(Inputs))
3239 continue;
3240 // Otherwise, add it to the current group and remove the inputs that
3241 // are defined by MI.
3242 G.Ins.push_back(MI);
3243 Inputs.remove(Defs);
3244 // Then add all registers used by MI.
3245 HBS::getInstrUses(*MI, Inputs);
3246 ShufIns[j] = nullptr;
3249 // Only add a group if it requires at most one register.
3250 if (Inputs.count() > 1)
3251 continue;
3252 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3253 return G.Out.Reg == P.LR.Reg;
3255 if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
3256 continue;
3258 G.Inp.Reg = Inputs.find_first();
3259 Groups.push_back(G);
3262 LLVM_DEBUG({
3263 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3264 InstrGroup &G = Groups[i];
3265 dbgs() << "Group[" << i << "] inp: "
3266 << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3267 << " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3268 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
3269 dbgs() << " " << *G.Ins[j];
3273 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3274 InstrGroup &G = Groups[i];
3275 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3276 continue;
3277 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3278 return G.Out.Reg == P.LR.Reg;
3280 auto F = llvm::find_if(Phis, LoopInpEq);
3281 if (F == Phis.end())
3282 continue;
3283 unsigned PrehR = 0;
3284 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3285 const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3286 unsigned Opc = DefPrehR->getOpcode();
3287 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3288 continue;
3289 if (!DefPrehR->getOperand(1).isImm())
3290 continue;
3291 if (DefPrehR->getOperand(1).getImm() != 0)
3292 continue;
3293 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3294 if (RC != MRI->getRegClass(F->PR.Reg)) {
3295 PrehR = MRI->createVirtualRegister(RC);
3296 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3297 : Hexagon::A2_tfrpi;
3298 auto T = C.PB->getFirstTerminator();
3299 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3300 BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3301 .addImm(0);
3302 } else {
3303 PrehR = F->PR.Reg;
3306 // isSameShuffle could match with PrehR being of a wider class than
3307 // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3308 // it would match for the input being a 32-bit register, and PrehR
3309 // being a 64-bit register (where the low 32 bits match). This could
3310 // be handled, but for now skip these cases.
3311 if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3312 continue;
3313 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3314 Changed = true;
3317 return Changed;
3320 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3321 if (skipFunction(MF.getFunction()))
3322 return false;
3324 auto &HST = MF.getSubtarget<HexagonSubtarget>();
3325 HII = HST.getInstrInfo();
3326 HRI = HST.getRegisterInfo();
3327 MRI = &MF.getRegInfo();
3328 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3329 BitTracker BT(HE, MF);
3330 LLVM_DEBUG(BT.trace(true));
3331 BT.run();
3332 BTP = &BT;
3334 std::vector<LoopCand> Cand;
3336 for (auto &B : MF) {
3337 if (B.pred_size() != 2 || B.succ_size() != 2)
3338 continue;
3339 MachineBasicBlock *PB = nullptr;
3340 bool IsLoop = false;
3341 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
3342 if (*PI != &B)
3343 PB = *PI;
3344 else
3345 IsLoop = true;
3347 if (!IsLoop)
3348 continue;
3350 MachineBasicBlock *EB = nullptr;
3351 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
3352 if (*SI == &B)
3353 continue;
3354 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3355 // edge from B to EP is non-critical.
3356 if ((*SI)->pred_size() == 1)
3357 EB = *SI;
3358 break;
3361 Cand.push_back(LoopCand(&B, PB, EB));
3364 bool Changed = false;
3365 for (auto &C : Cand)
3366 Changed |= processLoop(C);
3368 return Changed;
3371 //===----------------------------------------------------------------------===//
3372 // Public Constructor Functions
3373 //===----------------------------------------------------------------------===//
3375 FunctionPass *llvm::createHexagonLoopRescheduling() {
3376 return new HexagonLoopRescheduling();
3379 FunctionPass *llvm::createHexagonBitSimplify() {
3380 return new HexagonBitSimplify();