[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonBitTracker.cpp
blob0f6dedeb28c3bdeb1ca8aa88eb6c7c4dfbd7f144
1 //===- HexagonBitTracker.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonBitTracker.h"
10 #include "Hexagon.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/IR/Argument.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstdlib>
33 #include <utility>
34 #include <vector>
36 using namespace llvm;
38 using BT = BitTracker;
40 HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41 MachineRegisterInfo &mri,
42 const HexagonInstrInfo &tii,
43 MachineFunction &mf)
44 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
45 // Populate the VRX map (VR to extension-type).
46 // Go over all the formal parameters of the function. If a given parameter
47 // P is sign- or zero-extended, locate the virtual register holding that
48 // parameter and create an entry in the VRX map indicating the type of ex-
49 // tension (and the source type).
50 // This is a bit complicated to do accurately, since the memory layout in-
51 // formation is necessary to precisely determine whether an aggregate para-
52 // meter will be passed in a register or in memory. What is given in MRI
53 // is the association between the physical register that is live-in (i.e.
54 // holds an argument), and the virtual register that this value will be
55 // copied into. This, by itself, is not sufficient to map back the virtual
56 // register to a formal parameter from Function (since consecutive live-ins
57 // from MRI may not correspond to consecutive formal parameters from Func-
58 // tion). To avoid the complications with in-memory arguments, only consi-
59 // der the initial sequence of formal parameters that are known to be
60 // passed via registers.
61 unsigned InVirtReg, InPhysReg = 0;
63 for (const Argument &Arg : MF.getFunction().args()) {
64 Type *ATy = Arg.getType();
65 unsigned Width = 0;
66 if (ATy->isIntegerTy())
67 Width = ATy->getIntegerBitWidth();
68 else if (ATy->isPointerTy())
69 Width = 32;
70 // If pointer size is not set through target data, it will default to
71 // Module::AnyPointerSize.
72 if (Width == 0 || Width > 64)
73 break;
74 if (Arg.hasAttribute(Attribute::ByVal))
75 continue;
76 InPhysReg = getNextPhysReg(InPhysReg, Width);
77 if (!InPhysReg)
78 break;
79 InVirtReg = getVirtRegFor(InPhysReg);
80 if (!InVirtReg)
81 continue;
82 if (Arg.hasAttribute(Attribute::SExt))
83 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
84 else if (Arg.hasAttribute(Attribute::ZExt))
85 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
89 BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const {
90 if (Sub == 0)
91 return MachineEvaluator::mask(Reg, 0);
92 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
93 unsigned ID = RC.getID();
94 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
95 const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
96 bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
97 switch (ID) {
98 case Hexagon::DoubleRegsRegClassID:
99 case Hexagon::HvxWRRegClassID:
100 case Hexagon::HvxVQRRegClassID:
101 return IsSubLo ? BT::BitMask(0, RW-1)
102 : BT::BitMask(RW, 2*RW-1);
103 default:
104 break;
106 #ifndef NDEBUG
107 dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
108 << TRI.getRegClassName(&RC) << '\n';
109 #endif
110 llvm_unreachable("Unexpected register/subregister");
113 uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const {
114 using namespace Hexagon;
115 const auto &HST = MF.getSubtarget<HexagonSubtarget>();
116 if (HST.useHVXOps()) {
117 for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
118 HvxVQRRegClass})
119 if (RC.contains(Reg))
120 return TRI.getRegSizeInBits(RC);
122 // Default treatment for other physical registers.
123 if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
124 return TRI.getRegSizeInBits(*RC);
126 llvm_unreachable(
127 (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
130 const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
131 const TargetRegisterClass &RC, unsigned Idx) const {
132 if (Idx == 0)
133 return RC;
135 #ifndef NDEBUG
136 const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
137 bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
138 bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
139 assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
140 #endif
142 switch (RC.getID()) {
143 case Hexagon::DoubleRegsRegClassID:
144 return Hexagon::IntRegsRegClass;
145 case Hexagon::HvxWRRegClassID:
146 return Hexagon::HvxVRRegClass;
147 case Hexagon::HvxVQRRegClassID:
148 return Hexagon::HvxWRRegClass;
149 default:
150 break;
152 #ifndef NDEBUG
153 dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
154 #endif
155 llvm_unreachable("Unimplemented combination of reg class/subreg idx");
158 namespace {
160 class RegisterRefs {
161 std::vector<BT::RegisterRef> Vector;
163 public:
164 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
165 for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
166 const MachineOperand &MO = MI.getOperand(i);
167 if (MO.isReg())
168 Vector[i] = BT::RegisterRef(MO);
169 // For indices that don't correspond to registers, the entry will
170 // remain constructed via the default constructor.
174 size_t size() const { return Vector.size(); }
176 const BT::RegisterRef &operator[](unsigned n) const {
177 // The main purpose of this operator is to assert with bad argument.
178 assert(n < Vector.size());
179 return Vector[n];
183 } // end anonymous namespace
185 bool HexagonEvaluator::evaluate(const MachineInstr &MI,
186 const CellMapType &Inputs,
187 CellMapType &Outputs) const {
188 using namespace Hexagon;
190 unsigned NumDefs = 0;
192 // Sanity verification: there should not be any defs with subregisters.
193 for (const MachineOperand &MO : MI.operands()) {
194 if (!MO.isReg() || !MO.isDef())
195 continue;
196 NumDefs++;
197 assert(MO.getSubReg() == 0);
200 if (NumDefs == 0)
201 return false;
203 unsigned Opc = MI.getOpcode();
205 if (MI.mayLoad()) {
206 switch (Opc) {
207 // These instructions may be marked as mayLoad, but they are generating
208 // immediate values, so skip them.
209 case CONST32:
210 case CONST64:
211 break;
212 default:
213 return evaluateLoad(MI, Inputs, Outputs);
217 // Check COPY instructions that copy formal parameters into virtual
218 // registers. Such parameters can be sign- or zero-extended at the
219 // call site, and we should take advantage of this knowledge. The MRI
220 // keeps a list of pairs of live-in physical and virtual registers,
221 // which provides information about which virtual registers will hold
222 // the argument values. The function will still contain instructions
223 // defining those virtual registers, and in practice those are COPY
224 // instructions from a physical to a virtual register. In such cases,
225 // applying the argument extension to the virtual register can be seen
226 // as simply mirroring the extension that had already been applied to
227 // the physical register at the call site. If the defining instruction
228 // was not a COPY, it would not be clear how to mirror that extension
229 // on the callee's side. For that reason, only check COPY instructions
230 // for potential extensions.
231 if (MI.isCopy()) {
232 if (evaluateFormalCopy(MI, Inputs, Outputs))
233 return true;
236 // Beyond this point, if any operand is a global, skip that instruction.
237 // The reason is that certain instructions that can take an immediate
238 // operand can also have a global symbol in that operand. To avoid
239 // checking what kind of operand a given instruction has individually
240 // for each instruction, do it here. Global symbols as operands gene-
241 // rally do not provide any useful information.
242 for (const MachineOperand &MO : MI.operands()) {
243 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
244 MO.isCPI())
245 return false;
248 RegisterRefs Reg(MI);
249 #define op(i) MI.getOperand(i)
250 #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
251 #define im(i) MI.getOperand(i).getImm()
253 // If the instruction has no register operands, skip it.
254 if (Reg.size() == 0)
255 return false;
257 // Record result for register in operand 0.
258 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
259 -> bool {
260 putCell(Reg[0], Val, Outputs);
261 return true;
263 // Get the cell corresponding to the N-th operand.
264 auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
265 uint16_t W) -> BT::RegisterCell {
266 const MachineOperand &Op = MI.getOperand(N);
267 if (Op.isImm())
268 return eIMM(Op.getImm(), W);
269 if (!Op.isReg())
270 return RegisterCell::self(0, W);
271 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
272 return rc(N);
274 // Extract RW low bits of the cell.
275 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
276 -> BT::RegisterCell {
277 assert(RW <= RC.width());
278 return eXTR(RC, 0, RW);
280 // Extract RW high bits of the cell.
281 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
282 -> BT::RegisterCell {
283 uint16_t W = RC.width();
284 assert(RW <= W);
285 return eXTR(RC, W-RW, W);
287 // Extract N-th halfword (counting from the least significant position).
288 auto half = [this] (const BT::RegisterCell &RC, unsigned N)
289 -> BT::RegisterCell {
290 assert(N*16+16 <= RC.width());
291 return eXTR(RC, N*16, N*16+16);
293 // Shuffle bits (pick even/odd from cells and merge into result).
294 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
295 uint16_t BW, bool Odd) -> BT::RegisterCell {
296 uint16_t I = Odd, Ws = Rs.width();
297 assert(Ws == Rt.width());
298 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
299 I += 2;
300 while (I*BW < Ws) {
301 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
302 I += 2;
304 return RC;
307 // The bitwidth of the 0th operand. In most (if not all) of the
308 // instructions below, the 0th operand is the defined register.
309 // Pre-compute the bitwidth here, because it is needed in many cases
310 // cases below.
311 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
313 // Register id of the 0th operand. It can be 0.
314 unsigned Reg0 = Reg[0].Reg;
316 switch (Opc) {
317 // Transfer immediate:
319 case A2_tfrsi:
320 case A2_tfrpi:
321 case CONST32:
322 case CONST64:
323 return rr0(eIMM(im(1), W0), Outputs);
324 case PS_false:
325 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
326 case PS_true:
327 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
328 case PS_fi: {
329 int FI = op(1).getIndex();
330 int Off = op(2).getImm();
331 unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);
332 unsigned L = countTrailingZeros(A);
333 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
334 RC.fill(0, L, BT::BitValue::Zero);
335 return rr0(RC, Outputs);
338 // Transfer register:
340 case A2_tfr:
341 case A2_tfrp:
342 case C2_pxfer_map:
343 return rr0(rc(1), Outputs);
344 case C2_tfrpr: {
345 uint16_t RW = W0;
346 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
347 assert(PW <= RW);
348 RegisterCell PC = eXTR(rc(1), 0, PW);
349 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
350 RC.fill(PW, RW, BT::BitValue::Zero);
351 return rr0(RC, Outputs);
353 case C2_tfrrp: {
354 uint16_t RW = W0;
355 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
356 RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
357 RC.fill(PW, RW, BT::BitValue::Zero);
358 return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
361 // Arithmetic:
363 case A2_abs:
364 case A2_absp:
365 // TODO
366 break;
368 case A2_addsp: {
369 uint16_t W1 = getRegBitWidth(Reg[1]);
370 assert(W0 == 64 && W1 == 32);
371 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
372 RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
373 return rr0(RC, Outputs);
375 case A2_add:
376 case A2_addp:
377 return rr0(eADD(rc(1), rc(2)), Outputs);
378 case A2_addi:
379 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
380 case S4_addi_asl_ri: {
381 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
382 return rr0(RC, Outputs);
384 case S4_addi_lsr_ri: {
385 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
386 return rr0(RC, Outputs);
388 case S4_addaddi: {
389 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
390 return rr0(RC, Outputs);
392 case M4_mpyri_addi: {
393 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
394 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
395 return rr0(RC, Outputs);
397 case M4_mpyrr_addi: {
398 RegisterCell M = eMLS(rc(2), rc(3));
399 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
400 return rr0(RC, Outputs);
402 case M4_mpyri_addr_u2: {
403 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
404 RegisterCell RC = eADD(rc(1), lo(M, W0));
405 return rr0(RC, Outputs);
407 case M4_mpyri_addr: {
408 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
409 RegisterCell RC = eADD(rc(1), lo(M, W0));
410 return rr0(RC, Outputs);
412 case M4_mpyrr_addr: {
413 RegisterCell M = eMLS(rc(2), rc(3));
414 RegisterCell RC = eADD(rc(1), lo(M, W0));
415 return rr0(RC, Outputs);
417 case S4_subaddi: {
418 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
419 return rr0(RC, Outputs);
421 case M2_accii: {
422 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
423 return rr0(RC, Outputs);
425 case M2_acci: {
426 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
427 return rr0(RC, Outputs);
429 case M2_subacc: {
430 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
431 return rr0(RC, Outputs);
433 case S2_addasl_rrri: {
434 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
435 return rr0(RC, Outputs);
437 case C4_addipc: {
438 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
439 RPC.fill(0, 2, BT::BitValue::Zero);
440 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
442 case A2_sub:
443 case A2_subp:
444 return rr0(eSUB(rc(1), rc(2)), Outputs);
445 case A2_subri:
446 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
447 case S4_subi_asl_ri: {
448 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
449 return rr0(RC, Outputs);
451 case S4_subi_lsr_ri: {
452 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
453 return rr0(RC, Outputs);
455 case M2_naccii: {
456 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
457 return rr0(RC, Outputs);
459 case M2_nacci: {
460 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
461 return rr0(RC, Outputs);
463 // 32-bit negation is done by "Rd = A2_subri 0, Rs"
464 case A2_negp:
465 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
467 case M2_mpy_up: {
468 RegisterCell M = eMLS(rc(1), rc(2));
469 return rr0(hi(M, W0), Outputs);
471 case M2_dpmpyss_s0:
472 return rr0(eMLS(rc(1), rc(2)), Outputs);
473 case M2_dpmpyss_acc_s0:
474 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
475 case M2_dpmpyss_nac_s0:
476 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
477 case M2_mpyi: {
478 RegisterCell M = eMLS(rc(1), rc(2));
479 return rr0(lo(M, W0), Outputs);
481 case M2_macsip: {
482 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
483 RegisterCell RC = eADD(rc(1), lo(M, W0));
484 return rr0(RC, Outputs);
486 case M2_macsin: {
487 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
488 RegisterCell RC = eSUB(rc(1), lo(M, W0));
489 return rr0(RC, Outputs);
491 case M2_maci: {
492 RegisterCell M = eMLS(rc(2), rc(3));
493 RegisterCell RC = eADD(rc(1), lo(M, W0));
494 return rr0(RC, Outputs);
496 case M2_mpysmi: {
497 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
498 return rr0(lo(M, 32), Outputs);
500 case M2_mpysin: {
501 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
502 return rr0(lo(M, 32), Outputs);
504 case M2_mpysip: {
505 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
506 return rr0(lo(M, 32), Outputs);
508 case M2_mpyu_up: {
509 RegisterCell M = eMLU(rc(1), rc(2));
510 return rr0(hi(M, W0), Outputs);
512 case M2_dpmpyuu_s0:
513 return rr0(eMLU(rc(1), rc(2)), Outputs);
514 case M2_dpmpyuu_acc_s0:
515 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
516 case M2_dpmpyuu_nac_s0:
517 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
518 //case M2_mpysu_up:
520 // Logical/bitwise:
522 case A2_andir:
523 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
524 case A2_and:
525 case A2_andp:
526 return rr0(eAND(rc(1), rc(2)), Outputs);
527 case A4_andn:
528 case A4_andnp:
529 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
530 case S4_andi_asl_ri: {
531 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
532 return rr0(RC, Outputs);
534 case S4_andi_lsr_ri: {
535 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
536 return rr0(RC, Outputs);
538 case M4_and_and:
539 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
540 case M4_and_andn:
541 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
542 case M4_and_or:
543 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
544 case M4_and_xor:
545 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
546 case A2_orir:
547 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
548 case A2_or:
549 case A2_orp:
550 return rr0(eORL(rc(1), rc(2)), Outputs);
551 case A4_orn:
552 case A4_ornp:
553 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
554 case S4_ori_asl_ri: {
555 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
556 return rr0(RC, Outputs);
558 case S4_ori_lsr_ri: {
559 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
560 return rr0(RC, Outputs);
562 case M4_or_and:
563 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
564 case M4_or_andn:
565 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
566 case S4_or_andi:
567 case S4_or_andix: {
568 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
569 return rr0(RC, Outputs);
571 case S4_or_ori: {
572 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
573 return rr0(RC, Outputs);
575 case M4_or_or:
576 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
577 case M4_or_xor:
578 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
579 case A2_xor:
580 case A2_xorp:
581 return rr0(eXOR(rc(1), rc(2)), Outputs);
582 case M4_xor_and:
583 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
584 case M4_xor_andn:
585 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
586 case M4_xor_or:
587 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
588 case M4_xor_xacc:
589 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
590 case A2_not:
591 case A2_notp:
592 return rr0(eNOT(rc(1)), Outputs);
594 case S2_asl_i_r:
595 case S2_asl_i_p:
596 return rr0(eASL(rc(1), im(2)), Outputs);
597 case A2_aslh:
598 return rr0(eASL(rc(1), 16), Outputs);
599 case S2_asl_i_r_acc:
600 case S2_asl_i_p_acc:
601 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
602 case S2_asl_i_r_nac:
603 case S2_asl_i_p_nac:
604 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
605 case S2_asl_i_r_and:
606 case S2_asl_i_p_and:
607 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
608 case S2_asl_i_r_or:
609 case S2_asl_i_p_or:
610 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
611 case S2_asl_i_r_xacc:
612 case S2_asl_i_p_xacc:
613 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
614 case S2_asl_i_vh:
615 case S2_asl_i_vw:
616 // TODO
617 break;
619 case S2_asr_i_r:
620 case S2_asr_i_p:
621 return rr0(eASR(rc(1), im(2)), Outputs);
622 case A2_asrh:
623 return rr0(eASR(rc(1), 16), Outputs);
624 case S2_asr_i_r_acc:
625 case S2_asr_i_p_acc:
626 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
627 case S2_asr_i_r_nac:
628 case S2_asr_i_p_nac:
629 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
630 case S2_asr_i_r_and:
631 case S2_asr_i_p_and:
632 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
633 case S2_asr_i_r_or:
634 case S2_asr_i_p_or:
635 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
636 case S2_asr_i_r_rnd: {
637 // The input is first sign-extended to 64 bits, then the output
638 // is truncated back to 32 bits.
639 assert(W0 == 32);
640 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
641 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
642 return rr0(eXTR(RC, 0, W0), Outputs);
644 case S2_asr_i_r_rnd_goodsyntax: {
645 int64_t S = im(2);
646 if (S == 0)
647 return rr0(rc(1), Outputs);
648 // Result: S2_asr_i_r_rnd Rs, u5-1
649 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
650 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
651 return rr0(eXTR(RC, 0, W0), Outputs);
653 case S2_asr_r_vh:
654 case S2_asr_i_vw:
655 case S2_asr_i_svw_trun:
656 // TODO
657 break;
659 case S2_lsr_i_r:
660 case S2_lsr_i_p:
661 return rr0(eLSR(rc(1), im(2)), Outputs);
662 case S2_lsr_i_r_acc:
663 case S2_lsr_i_p_acc:
664 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
665 case S2_lsr_i_r_nac:
666 case S2_lsr_i_p_nac:
667 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
668 case S2_lsr_i_r_and:
669 case S2_lsr_i_p_and:
670 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
671 case S2_lsr_i_r_or:
672 case S2_lsr_i_p_or:
673 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
674 case S2_lsr_i_r_xacc:
675 case S2_lsr_i_p_xacc:
676 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
678 case S2_clrbit_i: {
679 RegisterCell RC = rc(1);
680 RC[im(2)] = BT::BitValue::Zero;
681 return rr0(RC, Outputs);
683 case S2_setbit_i: {
684 RegisterCell RC = rc(1);
685 RC[im(2)] = BT::BitValue::One;
686 return rr0(RC, Outputs);
688 case S2_togglebit_i: {
689 RegisterCell RC = rc(1);
690 uint16_t BX = im(2);
691 RC[BX] = RC[BX].is(0) ? BT::BitValue::One
692 : RC[BX].is(1) ? BT::BitValue::Zero
693 : BT::BitValue::self();
694 return rr0(RC, Outputs);
697 case A4_bitspliti: {
698 uint16_t W1 = getRegBitWidth(Reg[1]);
699 uint16_t BX = im(2);
700 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
701 const BT::BitValue Zero = BT::BitValue::Zero;
702 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
703 .fill(W1+(W1-BX), W0, Zero);
704 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
705 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
706 return rr0(RC, Outputs);
708 case S4_extract:
709 case S4_extractp:
710 case S2_extractu:
711 case S2_extractup: {
712 uint16_t Wd = im(2), Of = im(3);
713 assert(Wd <= W0);
714 if (Wd == 0)
715 return rr0(eIMM(0, W0), Outputs);
716 // If the width extends beyond the register size, pad the register
717 // with 0 bits.
718 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
719 RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
720 // Ext is short, need to extend it with 0s or sign bit.
721 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
722 if (Opc == S2_extractu || Opc == S2_extractup)
723 return rr0(eZXT(RC, Wd), Outputs);
724 return rr0(eSXT(RC, Wd), Outputs);
726 case S2_insert:
727 case S2_insertp: {
728 uint16_t Wd = im(3), Of = im(4);
729 assert(Wd < W0 && Of < W0);
730 // If Wd+Of exceeds W0, the inserted bits are truncated.
731 if (Wd+Of > W0)
732 Wd = W0-Of;
733 if (Wd == 0)
734 return rr0(rc(1), Outputs);
735 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
738 // Bit permutations:
740 case A2_combineii:
741 case A4_combineii:
742 case A4_combineir:
743 case A4_combineri:
744 case A2_combinew:
745 case V6_vcombine:
746 assert(W0 % 2 == 0);
747 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
748 case A2_combine_ll:
749 case A2_combine_lh:
750 case A2_combine_hl:
751 case A2_combine_hh: {
752 assert(W0 == 32);
753 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
754 // Low half in the output is 0 for _ll and _hl, 1 otherwise:
755 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
756 // High half in the output is 0 for _ll and _lh, 1 otherwise:
757 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
758 RegisterCell R1 = rc(1);
759 RegisterCell R2 = rc(2);
760 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
761 return rr0(RC, Outputs);
763 case S2_packhl: {
764 assert(W0 == 64);
765 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
766 RegisterCell R1 = rc(1);
767 RegisterCell R2 = rc(2);
768 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
769 .cat(half(R1, 1));
770 return rr0(RC, Outputs);
772 case S2_shuffeb: {
773 RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
774 return rr0(RC, Outputs);
776 case S2_shuffeh: {
777 RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
778 return rr0(RC, Outputs);
780 case S2_shuffob: {
781 RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
782 return rr0(RC, Outputs);
784 case S2_shuffoh: {
785 RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
786 return rr0(RC, Outputs);
788 case C2_mask: {
789 uint16_t WR = W0;
790 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
791 assert(WR == 64 && WP == 8);
792 RegisterCell R1 = rc(1);
793 RegisterCell RC(WR);
794 for (uint16_t i = 0; i < WP; ++i) {
795 const BT::BitValue &V = R1[i];
796 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
797 RC.fill(i*8, i*8+8, F);
799 return rr0(RC, Outputs);
802 // Mux:
804 case C2_muxii:
805 case C2_muxir:
806 case C2_muxri:
807 case C2_mux: {
808 BT::BitValue PC0 = rc(1)[0];
809 RegisterCell R2 = cop(2, W0);
810 RegisterCell R3 = cop(3, W0);
811 if (PC0.is(0) || PC0.is(1))
812 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
813 R2.meet(R3, Reg[0].Reg);
814 return rr0(R2, Outputs);
816 case C2_vmux:
817 // TODO
818 break;
820 // Sign- and zero-extension:
822 case A2_sxtb:
823 return rr0(eSXT(rc(1), 8), Outputs);
824 case A2_sxth:
825 return rr0(eSXT(rc(1), 16), Outputs);
826 case A2_sxtw: {
827 uint16_t W1 = getRegBitWidth(Reg[1]);
828 assert(W0 == 64 && W1 == 32);
829 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
830 return rr0(RC, Outputs);
832 case A2_zxtb:
833 return rr0(eZXT(rc(1), 8), Outputs);
834 case A2_zxth:
835 return rr0(eZXT(rc(1), 16), Outputs);
837 // Saturations
839 case A2_satb:
840 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
841 case A2_sath:
842 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
843 case A2_satub:
844 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
845 case A2_satuh:
846 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
848 // Bit count:
850 case S2_cl0:
851 case S2_cl0p:
852 // Always produce a 32-bit result.
853 return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
854 case S2_cl1:
855 case S2_cl1p:
856 return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
857 case S2_clb:
858 case S2_clbp: {
859 uint16_t W1 = getRegBitWidth(Reg[1]);
860 RegisterCell R1 = rc(1);
861 BT::BitValue TV = R1[W1-1];
862 if (TV.is(0) || TV.is(1))
863 return rr0(eCLB(R1, TV, 32), Outputs);
864 break;
866 case S2_ct0:
867 case S2_ct0p:
868 return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
869 case S2_ct1:
870 case S2_ct1p:
871 return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
872 case S5_popcountp:
873 // TODO
874 break;
876 case C2_all8: {
877 RegisterCell P1 = rc(1);
878 bool Has0 = false, All1 = true;
879 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
880 if (!P1[i].is(1))
881 All1 = false;
882 if (!P1[i].is(0))
883 continue;
884 Has0 = true;
885 break;
887 if (!Has0 && !All1)
888 break;
889 RegisterCell RC(W0);
890 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
891 return rr0(RC, Outputs);
893 case C2_any8: {
894 RegisterCell P1 = rc(1);
895 bool Has1 = false, All0 = true;
896 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
897 if (!P1[i].is(0))
898 All0 = false;
899 if (!P1[i].is(1))
900 continue;
901 Has1 = true;
902 break;
904 if (!Has1 && !All0)
905 break;
906 RegisterCell RC(W0);
907 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
908 return rr0(RC, Outputs);
910 case C2_and:
911 return rr0(eAND(rc(1), rc(2)), Outputs);
912 case C2_andn:
913 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
914 case C2_not:
915 return rr0(eNOT(rc(1)), Outputs);
916 case C2_or:
917 return rr0(eORL(rc(1), rc(2)), Outputs);
918 case C2_orn:
919 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
920 case C2_xor:
921 return rr0(eXOR(rc(1), rc(2)), Outputs);
922 case C4_and_and:
923 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
924 case C4_and_andn:
925 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
926 case C4_and_or:
927 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
928 case C4_and_orn:
929 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
930 case C4_or_and:
931 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
932 case C4_or_andn:
933 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
934 case C4_or_or:
935 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
936 case C4_or_orn:
937 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
938 case C2_bitsclr:
939 case C2_bitsclri:
940 case C2_bitsset:
941 case C4_nbitsclr:
942 case C4_nbitsclri:
943 case C4_nbitsset:
944 // TODO
945 break;
946 case S2_tstbit_i:
947 case S4_ntstbit_i: {
948 BT::BitValue V = rc(1)[im(2)];
949 if (V.is(0) || V.is(1)) {
950 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
951 bool TV = (Opc == S2_tstbit_i);
952 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
953 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
955 break;
958 default:
959 // For instructions that define a single predicate registers, store
960 // the low 8 bits of the register only.
961 if (unsigned DefR = getUniqueDefVReg(MI)) {
962 if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
963 BT::RegisterRef PD(DefR, 0);
964 uint16_t RW = getRegBitWidth(PD);
965 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
966 RegisterCell RC = RegisterCell::self(DefR, RW);
967 RC.fill(PW, RW, BT::BitValue::Zero);
968 putCell(PD, RC, Outputs);
969 return true;
972 return MachineEvaluator::evaluate(MI, Inputs, Outputs);
974 #undef im
975 #undef rc
976 #undef op
977 return false;
980 bool HexagonEvaluator::evaluate(const MachineInstr &BI,
981 const CellMapType &Inputs,
982 BranchTargetList &Targets,
983 bool &FallsThru) const {
984 // We need to evaluate one branch at a time. TII::analyzeBranch checks
985 // all the branches in a basic block at once, so we cannot use it.
986 unsigned Opc = BI.getOpcode();
987 bool SimpleBranch = false;
988 bool Negated = false;
989 switch (Opc) {
990 case Hexagon::J2_jumpf:
991 case Hexagon::J2_jumpfpt:
992 case Hexagon::J2_jumpfnew:
993 case Hexagon::J2_jumpfnewpt:
994 Negated = true;
995 LLVM_FALLTHROUGH;
996 case Hexagon::J2_jumpt:
997 case Hexagon::J2_jumptpt:
998 case Hexagon::J2_jumptnew:
999 case Hexagon::J2_jumptnewpt:
1000 // Simple branch: if([!]Pn) jump ...
1001 // i.e. Op0 = predicate, Op1 = branch target.
1002 SimpleBranch = true;
1003 break;
1004 case Hexagon::J2_jump:
1005 Targets.insert(BI.getOperand(0).getMBB());
1006 FallsThru = false;
1007 return true;
1008 default:
1009 // If the branch is of unknown type, assume that all successors are
1010 // executable.
1011 return false;
1014 if (!SimpleBranch)
1015 return false;
1017 // BI is a conditional branch if we got here.
1018 RegisterRef PR = BI.getOperand(0);
1019 RegisterCell PC = getCell(PR, Inputs);
1020 const BT::BitValue &Test = PC[0];
1022 // If the condition is neither true nor false, then it's unknown.
1023 if (!Test.is(0) && !Test.is(1))
1024 return false;
1026 // "Test.is(!Negated)" means "branch condition is true".
1027 if (!Test.is(!Negated)) {
1028 // Condition known to be false.
1029 FallsThru = true;
1030 return true;
1033 Targets.insert(BI.getOperand(1).getMBB());
1034 FallsThru = false;
1035 return true;
1038 unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
1039 unsigned DefReg = 0;
1040 for (const MachineOperand &Op : MI.operands()) {
1041 if (!Op.isReg() || !Op.isDef())
1042 continue;
1043 Register R = Op.getReg();
1044 if (!R.isVirtual())
1045 continue;
1046 if (DefReg != 0)
1047 return 0;
1048 DefReg = R;
1050 return DefReg;
1053 bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1054 const CellMapType &Inputs,
1055 CellMapType &Outputs) const {
1056 using namespace Hexagon;
1058 if (TII.isPredicated(MI))
1059 return false;
1060 assert(MI.mayLoad() && "A load that mayn't?");
1061 unsigned Opc = MI.getOpcode();
1063 uint16_t BitNum;
1064 bool SignEx;
1066 switch (Opc) {
1067 default:
1068 return false;
1070 #if 0
1071 // memb_fifo
1072 case L2_loadalignb_pbr:
1073 case L2_loadalignb_pcr:
1074 case L2_loadalignb_pi:
1075 // memh_fifo
1076 case L2_loadalignh_pbr:
1077 case L2_loadalignh_pcr:
1078 case L2_loadalignh_pi:
1079 // membh
1080 case L2_loadbsw2_pbr:
1081 case L2_loadbsw2_pci:
1082 case L2_loadbsw2_pcr:
1083 case L2_loadbsw2_pi:
1084 case L2_loadbsw4_pbr:
1085 case L2_loadbsw4_pci:
1086 case L2_loadbsw4_pcr:
1087 case L2_loadbsw4_pi:
1088 // memubh
1089 case L2_loadbzw2_pbr:
1090 case L2_loadbzw2_pci:
1091 case L2_loadbzw2_pcr:
1092 case L2_loadbzw2_pi:
1093 case L2_loadbzw4_pbr:
1094 case L2_loadbzw4_pci:
1095 case L2_loadbzw4_pcr:
1096 case L2_loadbzw4_pi:
1097 #endif
1099 case L2_loadrbgp:
1100 case L2_loadrb_io:
1101 case L2_loadrb_pbr:
1102 case L2_loadrb_pci:
1103 case L2_loadrb_pcr:
1104 case L2_loadrb_pi:
1105 case PS_loadrbabs:
1106 case L4_loadrb_ap:
1107 case L4_loadrb_rr:
1108 case L4_loadrb_ur:
1109 BitNum = 8;
1110 SignEx = true;
1111 break;
1113 case L2_loadrubgp:
1114 case L2_loadrub_io:
1115 case L2_loadrub_pbr:
1116 case L2_loadrub_pci:
1117 case L2_loadrub_pcr:
1118 case L2_loadrub_pi:
1119 case PS_loadrubabs:
1120 case L4_loadrub_ap:
1121 case L4_loadrub_rr:
1122 case L4_loadrub_ur:
1123 BitNum = 8;
1124 SignEx = false;
1125 break;
1127 case L2_loadrhgp:
1128 case L2_loadrh_io:
1129 case L2_loadrh_pbr:
1130 case L2_loadrh_pci:
1131 case L2_loadrh_pcr:
1132 case L2_loadrh_pi:
1133 case PS_loadrhabs:
1134 case L4_loadrh_ap:
1135 case L4_loadrh_rr:
1136 case L4_loadrh_ur:
1137 BitNum = 16;
1138 SignEx = true;
1139 break;
1141 case L2_loadruhgp:
1142 case L2_loadruh_io:
1143 case L2_loadruh_pbr:
1144 case L2_loadruh_pci:
1145 case L2_loadruh_pcr:
1146 case L2_loadruh_pi:
1147 case L4_loadruh_rr:
1148 case PS_loadruhabs:
1149 case L4_loadruh_ap:
1150 case L4_loadruh_ur:
1151 BitNum = 16;
1152 SignEx = false;
1153 break;
1155 case L2_loadrigp:
1156 case L2_loadri_io:
1157 case L2_loadri_pbr:
1158 case L2_loadri_pci:
1159 case L2_loadri_pcr:
1160 case L2_loadri_pi:
1161 case L2_loadw_locked:
1162 case PS_loadriabs:
1163 case L4_loadri_ap:
1164 case L4_loadri_rr:
1165 case L4_loadri_ur:
1166 case LDriw_pred:
1167 BitNum = 32;
1168 SignEx = true;
1169 break;
1171 case L2_loadrdgp:
1172 case L2_loadrd_io:
1173 case L2_loadrd_pbr:
1174 case L2_loadrd_pci:
1175 case L2_loadrd_pcr:
1176 case L2_loadrd_pi:
1177 case L4_loadd_locked:
1178 case PS_loadrdabs:
1179 case L4_loadrd_ap:
1180 case L4_loadrd_rr:
1181 case L4_loadrd_ur:
1182 BitNum = 64;
1183 SignEx = true;
1184 break;
1187 const MachineOperand &MD = MI.getOperand(0);
1188 assert(MD.isReg() && MD.isDef());
1189 RegisterRef RD = MD;
1191 uint16_t W = getRegBitWidth(RD);
1192 assert(W >= BitNum && BitNum > 0);
1193 RegisterCell Res(W);
1195 for (uint16_t i = 0; i < BitNum; ++i)
1196 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1198 if (SignEx) {
1199 const BT::BitValue &Sign = Res[BitNum-1];
1200 for (uint16_t i = BitNum; i < W; ++i)
1201 Res[i] = BT::BitValue::ref(Sign);
1202 } else {
1203 for (uint16_t i = BitNum; i < W; ++i)
1204 Res[i] = BT::BitValue::Zero;
1207 putCell(RD, Res, Outputs);
1208 return true;
1211 bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1212 const CellMapType &Inputs,
1213 CellMapType &Outputs) const {
1214 // If MI defines a formal parameter, but is not a copy (loads are handled
1215 // in evaluateLoad), then it's not clear what to do.
1216 assert(MI.isCopy());
1218 RegisterRef RD = MI.getOperand(0);
1219 RegisterRef RS = MI.getOperand(1);
1220 assert(RD.Sub == 0);
1221 if (!Register::isPhysicalRegister(RS.Reg))
1222 return false;
1223 RegExtMap::const_iterator F = VRX.find(RD.Reg);
1224 if (F == VRX.end())
1225 return false;
1227 uint16_t EW = F->second.Width;
1228 // Store RD's cell into the map. This will associate the cell with a virtual
1229 // register, and make zero-/sign-extends possible (otherwise we would be ex-
1230 // tending "self" bit values, which will have no effect, since "self" values
1231 // cannot be references to anything).
1232 putCell(RD, getCell(RS, Inputs), Outputs);
1234 RegisterCell Res;
1235 // Read RD's cell from the outputs instead of RS's cell from the inputs:
1236 if (F->second.Type == ExtType::SExt)
1237 Res = eSXT(getCell(RD, Outputs), EW);
1238 else if (F->second.Type == ExtType::ZExt)
1239 Res = eZXT(getCell(RD, Outputs), EW);
1241 putCell(RD, Res, Outputs);
1242 return true;
1245 unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1246 using namespace Hexagon;
1248 bool Is64 = DoubleRegsRegClass.contains(PReg);
1249 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1251 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1252 static const unsigned Phys64[] = { D0, D1, D2 };
1253 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1254 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1256 // Return the first parameter register of the required width.
1257 if (PReg == 0)
1258 return (Width <= 32) ? Phys32[0] : Phys64[0];
1260 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1261 // next register.
1262 unsigned Idx32 = 0, Idx64 = 0;
1263 if (!Is64) {
1264 while (Idx32 < Num32) {
1265 if (Phys32[Idx32] == PReg)
1266 break;
1267 Idx32++;
1269 Idx64 = Idx32/2;
1270 } else {
1271 while (Idx64 < Num64) {
1272 if (Phys64[Idx64] == PReg)
1273 break;
1274 Idx64++;
1276 Idx32 = Idx64*2+1;
1279 if (Width <= 32)
1280 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1281 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1284 unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1285 for (std::pair<unsigned,unsigned> P : MRI.liveins())
1286 if (P.first == PReg)
1287 return P.second;
1288 return 0;