[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonConstPropagation.cpp
blob954e61563697c41aabbf281ce7b94ee755ccbd19
1 //===- HexagonConstPropagation.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonInstrInfo.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <iterator>
40 #include <map>
41 #include <queue>
42 #include <set>
43 #include <utility>
44 #include <vector>
46 #define DEBUG_TYPE "hcp"
48 using namespace llvm;
50 namespace {
52 // Properties of a value that are tracked by the propagation.
53 // A property that is marked as present (i.e. bit is set) dentes that the
54 // value is known (proven) to have this property. Not all combinations
55 // of bits make sense, for example Zero and NonZero are mutually exclusive,
56 // but on the other hand, Zero implies Finite. In this case, whenever
57 // the Zero property is present, Finite should also be present.
58 class ConstantProperties {
59 public:
60 enum {
61 Unknown = 0x0000,
62 Zero = 0x0001,
63 NonZero = 0x0002,
64 Finite = 0x0004,
65 Infinity = 0x0008,
66 NaN = 0x0010,
67 SignedZero = 0x0020,
68 NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero),
69 PosOrZero = 0x0100,
70 NegOrZero = 0x0200,
71 SignProperties = (PosOrZero|NegOrZero),
72 Everything = (NumericProperties|SignProperties)
75 // For a given constant, deduce the set of trackable properties that this
76 // constant has.
77 static uint32_t deduce(const Constant *C);
80 // A representation of a register as it can appear in a MachineOperand,
81 // i.e. a pair register:subregister.
83 // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in
84 // HexagonGenPredicate
85 struct RegisterSubReg {
86 Register Reg;
87 unsigned SubReg;
89 explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {}
90 explicit RegisterSubReg(const MachineOperand &MO)
91 : Reg(MO.getReg()), SubReg(MO.getSubReg()) {}
93 void print(const TargetRegisterInfo *TRI = nullptr) const {
94 dbgs() << printReg(Reg, TRI, SubReg);
97 bool operator== (const RegisterSubReg &R) const {
98 return (Reg == R.Reg) && (SubReg == R.SubReg);
102 // Lattice cell, based on that was described in the W-Z paper on constant
103 // propagation.
104 // Latice cell will be allowed to hold multiple constant values. While
105 // multiple values would normally indicate "bottom", we can still derive
106 // some useful information from them. For example, comparison X > 0
107 // could be folded if all the values in the cell associated with X are
108 // positive.
109 class LatticeCell {
110 private:
111 enum { Normal, Top, Bottom };
113 static const unsigned MaxCellSize = 4;
115 unsigned Kind:2;
116 unsigned Size:3;
117 unsigned IsSpecial:1;
118 unsigned :0;
120 public:
121 union {
122 uint32_t Properties;
123 const Constant *Value;
124 const Constant *Values[MaxCellSize];
127 LatticeCell() : Kind(Top), Size(0), IsSpecial(false) {
128 for (unsigned i = 0; i < MaxCellSize; ++i)
129 Values[i] = nullptr;
132 bool meet(const LatticeCell &L);
133 bool add(const Constant *C);
134 bool add(uint32_t Property);
135 uint32_t properties() const;
136 unsigned size() const { return Size; }
138 LatticeCell(const LatticeCell &L) {
139 // This memcpy also copies Properties (when L.Size == 0).
140 uint32_t N =
141 L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *);
142 memcpy(Values, L.Values, N);
143 Kind = L.Kind;
144 Size = L.Size;
145 IsSpecial = L.IsSpecial;
148 LatticeCell &operator=(const LatticeCell &L) {
149 if (this != &L) {
150 // This memcpy also copies Properties (when L.Size == 0).
151 uint32_t N = L.IsSpecial ? sizeof L.Properties
152 : L.Size * sizeof(const Constant *);
153 memcpy(Values, L.Values, N);
154 Kind = L.Kind;
155 Size = L.Size;
156 IsSpecial = L.IsSpecial;
158 return *this;
161 bool isSingle() const { return size() == 1; }
162 bool isProperty() const { return IsSpecial; }
163 bool isTop() const { return Kind == Top; }
164 bool isBottom() const { return Kind == Bottom; }
166 bool setBottom() {
167 bool Changed = (Kind != Bottom);
168 Kind = Bottom;
169 Size = 0;
170 IsSpecial = false;
171 return Changed;
174 void print(raw_ostream &os) const;
176 private:
177 void setProperty() {
178 IsSpecial = true;
179 Size = 0;
180 Kind = Normal;
183 bool convertToProperty();
186 #ifndef NDEBUG
187 raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) {
188 L.print(os);
189 return os;
191 #endif
193 class MachineConstEvaluator;
195 class MachineConstPropagator {
196 public:
197 MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) {
198 Bottom.setBottom();
201 // Mapping: vreg -> cell
202 // The keys are registers _without_ subregisters. This won't allow
203 // definitions in the form of "vreg:subreg = ...". Such definitions
204 // would be questionable from the point of view of SSA, since the "vreg"
205 // could not be initialized in its entirety (specifically, an instruction
206 // defining the "other part" of "vreg" would also count as a definition
207 // of "vreg", which would violate the SSA).
208 // If a value of a pair vreg:subreg needs to be obtained, the cell for
209 // "vreg" needs to be looked up, and then the value of subregister "subreg"
210 // needs to be evaluated.
211 class CellMap {
212 public:
213 CellMap() {
214 assert(Top.isTop());
215 Bottom.setBottom();
218 void clear() { Map.clear(); }
220 bool has(Register R) const {
221 // All non-virtual registers are considered "bottom".
222 if (!R.isVirtual())
223 return true;
224 MapType::const_iterator F = Map.find(R);
225 return F != Map.end();
228 const LatticeCell &get(Register R) const {
229 if (!R.isVirtual())
230 return Bottom;
231 MapType::const_iterator F = Map.find(R);
232 if (F != Map.end())
233 return F->second;
234 return Top;
237 // Invalidates any const references.
238 void update(Register R, const LatticeCell &L) { Map[R] = L; }
240 void print(raw_ostream &os, const TargetRegisterInfo &TRI) const;
242 private:
243 using MapType = std::map<Register, LatticeCell>;
245 MapType Map;
246 // To avoid creating "top" entries, return a const reference to
247 // this cell in "get". Also, have a "Bottom" cell to return from
248 // get when a value of a physical register is requested.
249 LatticeCell Top, Bottom;
251 public:
252 using const_iterator = MapType::const_iterator;
254 const_iterator begin() const { return Map.begin(); }
255 const_iterator end() const { return Map.end(); }
258 bool run(MachineFunction &MF);
260 private:
261 void visitPHI(const MachineInstr &PN);
262 void visitNonBranch(const MachineInstr &MI);
263 void visitBranchesFrom(const MachineInstr &BrI);
264 void visitUsesOf(unsigned R);
265 bool computeBlockSuccessors(const MachineBasicBlock *MB,
266 SetVector<const MachineBasicBlock*> &Targets);
267 void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To);
269 void propagate(MachineFunction &MF);
270 bool rewrite(MachineFunction &MF);
272 MachineRegisterInfo *MRI = nullptr;
273 MachineConstEvaluator &MCE;
275 using CFGEdge = std::pair<unsigned, unsigned>;
276 using SetOfCFGEdge = std::set<CFGEdge>;
277 using SetOfInstr = std::set<const MachineInstr *>;
278 using QueueOfCFGEdge = std::queue<CFGEdge>;
280 LatticeCell Bottom;
281 CellMap Cells;
282 SetOfCFGEdge EdgeExec;
283 SetOfInstr InstrExec;
284 QueueOfCFGEdge FlowQ;
287 // The "evaluator/rewriter" of machine instructions. This is an abstract
288 // base class that provides the interface that the propagator will use,
289 // as well as some helper functions that are target-independent.
290 class MachineConstEvaluator {
291 public:
292 MachineConstEvaluator(MachineFunction &Fn)
293 : TRI(*Fn.getSubtarget().getRegisterInfo()),
294 MF(Fn), CX(Fn.getFunction().getContext()) {}
295 virtual ~MachineConstEvaluator() = default;
297 // The required interface:
298 // - A set of three "evaluate" functions. Each returns "true" if the
299 // computation succeeded, "false" otherwise.
300 // (1) Given an instruction MI, and the map with input values "Inputs",
301 // compute the set of output values "Outputs". An example of when
302 // the computation can "fail" is if MI is not an instruction that
303 // is recognized by the evaluator.
304 // (2) Given a register R (as reg:subreg), compute the cell that
305 // corresponds to the "subreg" part of the given register.
306 // (3) Given a branch instruction BrI, compute the set of target blocks.
307 // If the branch can fall-through, add null (0) to the list of
308 // possible targets.
309 // - A function "rewrite", that given the cell map after propagation,
310 // could rewrite instruction MI in a more beneficial form. Return
311 // "true" if a change has been made, "false" otherwise.
312 using CellMap = MachineConstPropagator::CellMap;
313 virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
314 CellMap &Outputs) = 0;
315 virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
316 LatticeCell &Result) = 0;
317 virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
318 SetVector<const MachineBasicBlock*> &Targets,
319 bool &CanFallThru) = 0;
320 virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0;
322 const TargetRegisterInfo &TRI;
324 protected:
325 MachineFunction &MF;
326 LLVMContext &CX;
328 struct Comparison {
329 enum {
330 Unk = 0x00,
331 EQ = 0x01,
332 NE = 0x02,
333 L = 0x04, // Less-than property.
334 G = 0x08, // Greater-than property.
335 U = 0x40, // Unsigned property.
336 LTs = L,
337 LEs = L | EQ,
338 GTs = G,
339 GEs = G | EQ,
340 LTu = L | U,
341 LEu = L | EQ | U,
342 GTu = G | U,
343 GEu = G | EQ | U
346 static uint32_t negate(uint32_t Cmp) {
347 if (Cmp == EQ)
348 return NE;
349 if (Cmp == NE)
350 return EQ;
351 assert((Cmp & (L|G)) != (L|G));
352 return Cmp ^ (L|G);
356 // Helper functions.
358 bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC);
359 bool constToInt(const Constant *C, APInt &Val) const;
360 bool constToFloat(const Constant *C, APFloat &Val) const;
361 const ConstantInt *intToConst(const APInt &Val) const;
363 // Compares.
364 bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2,
365 const CellMap &Inputs, bool &Result);
366 bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2,
367 const CellMap &Inputs, bool &Result);
368 bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2,
369 const CellMap &Inputs, bool &Result);
370 bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2,
371 bool &Result);
372 bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2,
373 bool &Result);
374 bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2,
375 bool &Result);
377 bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs,
378 LatticeCell &Result);
380 // Logical operations.
381 bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
382 const CellMap &Inputs, LatticeCell &Result);
383 bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2,
384 const CellMap &Inputs, LatticeCell &Result);
385 bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result);
386 bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
387 const CellMap &Inputs, LatticeCell &Result);
388 bool evaluateORri(const RegisterSubReg &R1, const APInt &A2,
389 const CellMap &Inputs, LatticeCell &Result);
390 bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result);
391 bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
392 const CellMap &Inputs, LatticeCell &Result);
393 bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2,
394 const CellMap &Inputs, LatticeCell &Result);
395 bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result);
397 // Extensions.
398 bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
399 const CellMap &Inputs, LatticeCell &Result);
400 bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits,
401 APInt &Result);
402 bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
403 const CellMap &Inputs, LatticeCell &Result);
404 bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits,
405 APInt &Result);
407 // Leading/trailing bits.
408 bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
409 const CellMap &Inputs, LatticeCell &Result);
410 bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
411 bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
412 const CellMap &Inputs, LatticeCell &Result);
413 bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
415 // Bitfield extract.
416 bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
417 unsigned Offset, bool Signed, const CellMap &Inputs,
418 LatticeCell &Result);
419 bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset,
420 bool Signed, APInt &Result);
421 // Vector operations.
422 bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count,
423 const CellMap &Inputs, LatticeCell &Result);
424 bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count,
425 APInt &Result);
428 } // end anonymous namespace
430 uint32_t ConstantProperties::deduce(const Constant *C) {
431 if (isa<ConstantInt>(C)) {
432 const ConstantInt *CI = cast<ConstantInt>(C);
433 if (CI->isZero())
434 return Zero | PosOrZero | NegOrZero | Finite;
435 uint32_t Props = (NonZero | Finite);
436 if (CI->isNegative())
437 return Props | NegOrZero;
438 return Props | PosOrZero;
441 if (isa<ConstantFP>(C)) {
442 const ConstantFP *CF = cast<ConstantFP>(C);
443 uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero)
444 : PosOrZero;
445 if (CF->isZero())
446 return (Props & ~NumericProperties) | (Zero|Finite);
447 Props = (Props & ~NumericProperties) | NonZero;
448 if (CF->isNaN())
449 return (Props & ~NumericProperties) | NaN;
450 const APFloat &Val = CF->getValueAPF();
451 if (Val.isInfinity())
452 return (Props & ~NumericProperties) | Infinity;
453 Props |= Finite;
454 return Props;
457 return Unknown;
460 // Convert a cell from a set of specific values to a cell that tracks
461 // properties.
462 bool LatticeCell::convertToProperty() {
463 if (isProperty())
464 return false;
465 // Corner case: converting a fresh (top) cell to "special".
466 // This can happen, when adding a property to a top cell.
467 uint32_t Everything = ConstantProperties::Everything;
468 uint32_t Ps = !isTop() ? properties()
469 : Everything;
470 if (Ps != ConstantProperties::Unknown) {
471 Properties = Ps;
472 setProperty();
473 } else {
474 setBottom();
476 return true;
479 #ifndef NDEBUG
480 void LatticeCell::print(raw_ostream &os) const {
481 if (isProperty()) {
482 os << "{ ";
483 uint32_t Ps = properties();
484 if (Ps & ConstantProperties::Zero)
485 os << "zero ";
486 if (Ps & ConstantProperties::NonZero)
487 os << "nonzero ";
488 if (Ps & ConstantProperties::Finite)
489 os << "finite ";
490 if (Ps & ConstantProperties::Infinity)
491 os << "infinity ";
492 if (Ps & ConstantProperties::NaN)
493 os << "nan ";
494 if (Ps & ConstantProperties::PosOrZero)
495 os << "poz ";
496 if (Ps & ConstantProperties::NegOrZero)
497 os << "nez ";
498 os << '}';
499 return;
502 os << "{ ";
503 if (isBottom()) {
504 os << "bottom";
505 } else if (isTop()) {
506 os << "top";
507 } else {
508 for (unsigned i = 0; i < size(); ++i) {
509 const Constant *C = Values[i];
510 if (i != 0)
511 os << ", ";
512 C->print(os);
515 os << " }";
517 #endif
519 // "Meet" operation on two cells. This is the key of the propagation
520 // algorithm.
521 bool LatticeCell::meet(const LatticeCell &L) {
522 bool Changed = false;
523 if (L.isBottom())
524 Changed = setBottom();
525 if (isBottom() || L.isTop())
526 return Changed;
527 if (isTop()) {
528 *this = L;
529 // L can be neither Top nor Bottom, so *this must have changed.
530 return true;
533 // Top/bottom cases covered. Need to integrate L's set into ours.
534 if (L.isProperty())
535 return add(L.properties());
536 for (unsigned i = 0; i < L.size(); ++i) {
537 const Constant *LC = L.Values[i];
538 Changed |= add(LC);
540 return Changed;
543 // Add a new constant to the cell. This is actually where the cell update
544 // happens. If a cell has room for more constants, the new constant is added.
545 // Otherwise, the cell is converted to a "property" cell (i.e. a cell that
546 // will track properties of the associated values, and not the values
547 // themselves. Care is taken to handle special cases, like "bottom", etc.
548 bool LatticeCell::add(const Constant *LC) {
549 assert(LC);
550 if (isBottom())
551 return false;
553 if (!isProperty()) {
554 // Cell is not special. Try to add the constant here first,
555 // if there is room.
556 unsigned Index = 0;
557 while (Index < Size) {
558 const Constant *C = Values[Index];
559 // If the constant is already here, no change is needed.
560 if (C == LC)
561 return false;
562 Index++;
564 if (Index < MaxCellSize) {
565 Values[Index] = LC;
566 Kind = Normal;
567 Size++;
568 return true;
572 bool Changed = false;
574 // This cell is special, or is not special, but is full. After this
575 // it will be special.
576 Changed = convertToProperty();
577 uint32_t Ps = properties();
578 uint32_t NewPs = Ps & ConstantProperties::deduce(LC);
579 if (NewPs == ConstantProperties::Unknown) {
580 setBottom();
581 return true;
583 if (Ps != NewPs) {
584 Properties = NewPs;
585 Changed = true;
587 return Changed;
590 // Add a property to the cell. This will force the cell to become a property-
591 // tracking cell.
592 bool LatticeCell::add(uint32_t Property) {
593 bool Changed = convertToProperty();
594 uint32_t Ps = properties();
595 if (Ps == (Ps & Property))
596 return Changed;
597 Properties = Property & Ps;
598 return true;
601 // Return the properties of the values in the cell. This is valid for any
602 // cell, and does not alter the cell itself.
603 uint32_t LatticeCell::properties() const {
604 if (isProperty())
605 return Properties;
606 assert(!isTop() && "Should not call this for a top cell");
607 if (isBottom())
608 return ConstantProperties::Unknown;
610 assert(size() > 0 && "Empty cell");
611 uint32_t Ps = ConstantProperties::deduce(Values[0]);
612 for (unsigned i = 1; i < size(); ++i) {
613 if (Ps == ConstantProperties::Unknown)
614 break;
615 Ps &= ConstantProperties::deduce(Values[i]);
617 return Ps;
620 #ifndef NDEBUG
621 void MachineConstPropagator::CellMap::print(raw_ostream &os,
622 const TargetRegisterInfo &TRI) const {
623 for (auto &I : Map)
624 dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n';
626 #endif
628 void MachineConstPropagator::visitPHI(const MachineInstr &PN) {
629 const MachineBasicBlock *MB = PN.getParent();
630 unsigned MBN = MB->getNumber();
631 LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN);
633 const MachineOperand &MD = PN.getOperand(0);
634 RegisterSubReg DefR(MD);
635 assert(DefR.Reg.isVirtual());
637 bool Changed = false;
639 // If the def has a sub-register, set the corresponding cell to "bottom".
640 if (DefR.SubReg) {
641 Bottomize:
642 const LatticeCell &T = Cells.get(DefR.Reg);
643 Changed = !T.isBottom();
644 Cells.update(DefR.Reg, Bottom);
645 if (Changed)
646 visitUsesOf(DefR.Reg);
647 return;
650 LatticeCell DefC = Cells.get(DefR.Reg);
652 for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) {
653 const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB();
654 unsigned PBN = PB->getNumber();
655 if (!EdgeExec.count(CFGEdge(PBN, MBN))) {
656 LLVM_DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->"
657 << printMBBReference(*MB) << " not executable\n");
658 continue;
660 const MachineOperand &SO = PN.getOperand(i);
661 RegisterSubReg UseR(SO);
662 // If the input is not a virtual register, we don't really know what
663 // value it holds.
664 if (!UseR.Reg.isVirtual())
665 goto Bottomize;
666 // If there is no cell for an input register, it means top.
667 if (!Cells.has(UseR.Reg))
668 continue;
670 LatticeCell SrcC;
671 bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC);
672 LLVM_DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": "
673 << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC
674 << '\n');
675 Changed |= Eval ? DefC.meet(SrcC)
676 : DefC.setBottom();
677 Cells.update(DefR.Reg, DefC);
678 if (DefC.isBottom())
679 break;
681 if (Changed)
682 visitUsesOf(DefR.Reg);
685 void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) {
686 LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent())
687 << "): " << MI);
688 CellMap Outputs;
689 bool Eval = MCE.evaluate(MI, Cells, Outputs);
690 LLVM_DEBUG({
691 if (Eval) {
692 dbgs() << " outputs:";
693 for (auto &I : Outputs)
694 dbgs() << ' ' << I.second;
695 dbgs() << '\n';
699 // Update outputs. If the value was not computed, set all the
700 // def cells to bottom.
701 for (const MachineOperand &MO : MI.operands()) {
702 if (!MO.isReg() || !MO.isDef())
703 continue;
704 RegisterSubReg DefR(MO);
705 // Only track virtual registers.
706 if (!DefR.Reg.isVirtual())
707 continue;
708 bool Changed = false;
709 // If the evaluation failed, set cells for all output registers to bottom.
710 if (!Eval) {
711 const LatticeCell &T = Cells.get(DefR.Reg);
712 Changed = !T.isBottom();
713 Cells.update(DefR.Reg, Bottom);
714 } else {
715 // Find the corresponding cell in the computed outputs.
716 // If it's not there, go on to the next def.
717 if (!Outputs.has(DefR.Reg))
718 continue;
719 LatticeCell RC = Cells.get(DefR.Reg);
720 Changed = RC.meet(Outputs.get(DefR.Reg));
721 Cells.update(DefR.Reg, RC);
723 if (Changed)
724 visitUsesOf(DefR.Reg);
728 // Starting at a given branch, visit remaining branches in the block.
729 // Traverse over the subsequent branches for as long as the preceding one
730 // can fall through. Add all the possible targets to the flow work queue,
731 // including the potential fall-through to the layout-successor block.
732 void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) {
733 const MachineBasicBlock &B = *BrI.getParent();
734 unsigned MBN = B.getNumber();
735 MachineBasicBlock::const_iterator It = BrI.getIterator();
736 MachineBasicBlock::const_iterator End = B.end();
738 SetVector<const MachineBasicBlock*> Targets;
739 bool EvalOk = true, FallsThru = true;
740 while (It != End) {
741 const MachineInstr &MI = *It;
742 InstrExec.insert(&MI);
743 LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "("
744 << printMBBReference(B) << "): " << MI);
745 // Do not evaluate subsequent branches if the evaluation of any of the
746 // previous branches failed. Keep iterating over the branches only
747 // to mark them as executable.
748 EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru);
749 if (!EvalOk)
750 FallsThru = true;
751 if (!FallsThru)
752 break;
753 ++It;
756 if (B.mayHaveInlineAsmBr())
757 EvalOk = false;
759 if (EvalOk) {
760 // Need to add all CFG successors that lead to EH landing pads.
761 // There won't be explicit branches to these blocks, but they must
762 // be processed.
763 for (const MachineBasicBlock *SB : B.successors()) {
764 if (SB->isEHPad())
765 Targets.insert(SB);
767 if (FallsThru) {
768 const MachineFunction &MF = *B.getParent();
769 MachineFunction::const_iterator BI = B.getIterator();
770 MachineFunction::const_iterator Next = std::next(BI);
771 if (Next != MF.end())
772 Targets.insert(&*Next);
774 } else {
775 // If the evaluation of the branches failed, make "Targets" to be the
776 // set of all successors of the block from the CFG.
777 // If the evaluation succeeded for all visited branches, then if the
778 // last one set "FallsThru", then add an edge to the layout successor
779 // to the targets.
780 Targets.clear();
781 LLVM_DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG "
782 "successors\n");
783 for (const MachineBasicBlock *SB : B.successors())
784 Targets.insert(SB);
787 for (const MachineBasicBlock *TB : Targets) {
788 unsigned TBN = TB->getNumber();
789 LLVM_DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> "
790 << printMBBReference(*TB) << "\n");
791 FlowQ.push(CFGEdge(MBN, TBN));
795 void MachineConstPropagator::visitUsesOf(unsigned Reg) {
796 LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI)
797 << Cells.get(Reg) << '\n');
798 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
799 // Do not process non-executable instructions. They can become exceutable
800 // later (via a flow-edge in the work queue). In such case, the instruc-
801 // tion will be visited at that time.
802 if (!InstrExec.count(&MI))
803 continue;
804 if (MI.isPHI())
805 visitPHI(MI);
806 else if (!MI.isBranch())
807 visitNonBranch(MI);
808 else
809 visitBranchesFrom(MI);
813 bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB,
814 SetVector<const MachineBasicBlock*> &Targets) {
815 Targets.clear();
817 MachineBasicBlock::const_iterator FirstBr = MB->end();
818 for (const MachineInstr &MI : *MB) {
819 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
820 return false;
821 if (MI.isDebugInstr())
822 continue;
823 if (MI.isBranch()) {
824 FirstBr = MI.getIterator();
825 break;
829 MachineBasicBlock::const_iterator End = MB->end();
831 bool DoNext = true;
832 for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) {
833 const MachineInstr &MI = *I;
834 // Can there be debug instructions between branches?
835 if (MI.isDebugInstr())
836 continue;
837 if (!InstrExec.count(&MI))
838 continue;
839 bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext);
840 if (!Eval)
841 return false;
842 if (!DoNext)
843 break;
845 // If the last branch could fall-through, add block's layout successor.
846 if (DoNext) {
847 MachineFunction::const_iterator BI = MB->getIterator();
848 MachineFunction::const_iterator NextI = std::next(BI);
849 if (NextI != MB->getParent()->end())
850 Targets.insert(&*NextI);
853 // Add all the EH landing pads.
854 for (const MachineBasicBlock *SB : MB->successors())
855 if (SB->isEHPad())
856 Targets.insert(SB);
858 return true;
861 void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From,
862 MachineBasicBlock *To) {
863 // First, remove the CFG successor/predecessor information.
864 From->removeSuccessor(To);
865 // Remove all corresponding PHI operands in the To block.
866 for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) {
867 MachineInstr *PN = &*I;
868 // reg0 = PHI reg1, bb2, reg3, bb4, ...
869 int N = PN->getNumOperands()-2;
870 while (N > 0) {
871 if (PN->getOperand(N+1).getMBB() == From) {
872 PN->RemoveOperand(N+1);
873 PN->RemoveOperand(N);
875 N -= 2;
880 void MachineConstPropagator::propagate(MachineFunction &MF) {
881 MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF);
882 unsigned EntryNum = Entry->getNumber();
884 // Start with a fake edge, just to process the entry node.
885 FlowQ.push(CFGEdge(EntryNum, EntryNum));
887 while (!FlowQ.empty()) {
888 CFGEdge Edge = FlowQ.front();
889 FlowQ.pop();
891 LLVM_DEBUG(
892 dbgs() << "Picked edge "
893 << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->"
894 << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n');
895 if (Edge.first != EntryNum)
896 if (EdgeExec.count(Edge))
897 continue;
898 EdgeExec.insert(Edge);
899 MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second);
901 // Process the block in three stages:
902 // - visit all PHI nodes,
903 // - visit all non-branch instructions,
904 // - visit block branches.
905 MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end();
907 // Visit PHI nodes in the successor block.
908 while (It != End && It->isPHI()) {
909 InstrExec.insert(&*It);
910 visitPHI(*It);
911 ++It;
914 // If the successor block just became executable, visit all instructions.
915 // To see if this is the first time we're visiting it, check the first
916 // non-debug instruction to see if it is executable.
917 while (It != End && It->isDebugInstr())
918 ++It;
919 assert(It == End || !It->isPHI());
920 // If this block has been visited, go on to the next one.
921 if (It != End && InstrExec.count(&*It))
922 continue;
923 // For now, scan all non-branch instructions. Branches require different
924 // processing.
925 while (It != End && !It->isBranch()) {
926 if (!It->isDebugInstr()) {
927 InstrExec.insert(&*It);
928 visitNonBranch(*It);
930 ++It;
933 // Time to process the end of the block. This is different from
934 // processing regular (non-branch) instructions, because there can
935 // be multiple branches in a block, and they can cause the block to
936 // terminate early.
937 if (It != End) {
938 visitBranchesFrom(*It);
939 } else {
940 // If the block didn't have a branch, add all successor edges to the
941 // work queue. (There should really be only one successor in such case.)
942 unsigned SBN = SB->getNumber();
943 for (const MachineBasicBlock *SSB : SB->successors())
944 FlowQ.push(CFGEdge(SBN, SSB->getNumber()));
946 } // while (FlowQ)
948 LLVM_DEBUG({
949 dbgs() << "Cells after propagation:\n";
950 Cells.print(dbgs(), MCE.TRI);
951 dbgs() << "Dead CFG edges:\n";
952 for (const MachineBasicBlock &B : MF) {
953 unsigned BN = B.getNumber();
954 for (const MachineBasicBlock *SB : B.successors()) {
955 unsigned SN = SB->getNumber();
956 if (!EdgeExec.count(CFGEdge(BN, SN)))
957 dbgs() << " " << printMBBReference(B) << " -> "
958 << printMBBReference(*SB) << '\n';
964 bool MachineConstPropagator::rewrite(MachineFunction &MF) {
965 bool Changed = false;
966 // Rewrite all instructions based on the collected cell information.
968 // Traverse the instructions in a post-order, so that rewriting an
969 // instruction can make changes "downstream" in terms of control-flow
970 // without affecting the rewriting process. (We should not change
971 // instructions that have not yet been visited by the rewriter.)
972 // The reason for this is that the rewriter can introduce new vregs,
973 // and replace uses of old vregs (which had corresponding cells
974 // computed during propagation) with these new vregs (which at this
975 // point would not have any cells, and would appear to be "top").
976 // If an attempt was made to evaluate an instruction with a fresh
977 // "top" vreg, it would cause an error (abend) in the evaluator.
979 // Collect the post-order-traversal block ordering. The subsequent
980 // traversal/rewrite will update block successors, so it's safer
981 // if the visiting order it computed ahead of time.
982 std::vector<MachineBasicBlock*> POT;
983 for (MachineBasicBlock *B : post_order(&MF))
984 if (!B->empty())
985 POT.push_back(B);
987 for (MachineBasicBlock *B : POT) {
988 // Walk the block backwards (which usually begin with the branches).
989 // If any branch is rewritten, we may need to update the successor
990 // information for this block. Unless the block's successors can be
991 // precisely determined (which may not be the case for indirect
992 // branches), we cannot modify any branch.
994 // Compute the successor information.
995 SetVector<const MachineBasicBlock*> Targets;
996 bool HaveTargets = computeBlockSuccessors(B, Targets);
997 // Rewrite the executable instructions. Skip branches if we don't
998 // have block successor information.
999 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
1000 MachineInstr &MI = *I;
1001 if (InstrExec.count(&MI)) {
1002 if (MI.isBranch() && !HaveTargets)
1003 continue;
1004 Changed |= MCE.rewrite(MI, Cells);
1007 // The rewriting could rewrite PHI nodes to non-PHI nodes, causing
1008 // regular instructions to appear in between PHI nodes. Bring all
1009 // the PHI nodes to the beginning of the block.
1010 for (auto I = B->begin(), E = B->end(); I != E; ++I) {
1011 if (I->isPHI())
1012 continue;
1013 // I is not PHI. Find the next PHI node P.
1014 auto P = I;
1015 while (++P != E)
1016 if (P->isPHI())
1017 break;
1018 // Not found.
1019 if (P == E)
1020 break;
1021 // Splice P right before I.
1022 B->splice(I, B, P);
1023 // Reset I to point at the just spliced PHI node.
1024 --I;
1026 // Update the block successor information: remove unnecessary successors.
1027 if (HaveTargets) {
1028 SmallVector<MachineBasicBlock*,2> ToRemove;
1029 for (MachineBasicBlock *SB : B->successors()) {
1030 if (!Targets.count(SB))
1031 ToRemove.push_back(const_cast<MachineBasicBlock*>(SB));
1032 Targets.remove(SB);
1034 for (unsigned i = 0, n = ToRemove.size(); i < n; ++i)
1035 removeCFGEdge(B, ToRemove[i]);
1036 // If there are any blocks left in the computed targets, it means that
1037 // we think that the block could go somewhere, but the CFG does not.
1038 // This could legitimately happen in blocks that have non-returning
1039 // calls---we would think that the execution can continue, but the
1040 // CFG will not have a successor edge.
1043 // Need to do some final post-processing.
1044 // If a branch was not executable, it will not get rewritten, but should
1045 // be removed (or replaced with something equivalent to a A2_nop). We can't
1046 // erase instructions during rewriting, so this needs to be delayed until
1047 // now.
1048 for (MachineBasicBlock &B : MF) {
1049 MachineBasicBlock::iterator I = B.begin(), E = B.end();
1050 while (I != E) {
1051 auto Next = std::next(I);
1052 if (I->isBranch() && !InstrExec.count(&*I))
1053 B.erase(I);
1054 I = Next;
1057 return Changed;
1060 // This is the constant propagation algorithm as described by Wegman-Zadeck.
1061 // Most of the terminology comes from there.
1062 bool MachineConstPropagator::run(MachineFunction &MF) {
1063 LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr));
1065 MRI = &MF.getRegInfo();
1067 Cells.clear();
1068 EdgeExec.clear();
1069 InstrExec.clear();
1070 assert(FlowQ.empty());
1072 propagate(MF);
1073 bool Changed = rewrite(MF);
1075 LLVM_DEBUG({
1076 dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n";
1077 if (Changed)
1078 MF.print(dbgs(), nullptr);
1080 return Changed;
1083 // --------------------------------------------------------------------
1084 // Machine const evaluator.
1086 bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs,
1087 LatticeCell &RC) {
1088 if (!R.Reg.isVirtual())
1089 return false;
1090 const LatticeCell &L = Inputs.get(R.Reg);
1091 if (!R.SubReg) {
1092 RC = L;
1093 return !RC.isBottom();
1095 bool Eval = evaluate(R, L, RC);
1096 return Eval && !RC.isBottom();
1099 bool MachineConstEvaluator::constToInt(const Constant *C,
1100 APInt &Val) const {
1101 const ConstantInt *CI = dyn_cast<ConstantInt>(C);
1102 if (!CI)
1103 return false;
1104 Val = CI->getValue();
1105 return true;
1108 const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const {
1109 return ConstantInt::get(CX, Val);
1112 bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1,
1113 const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) {
1114 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1115 LatticeCell LS1, LS2;
1116 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1117 return false;
1119 bool IsProp1 = LS1.isProperty();
1120 bool IsProp2 = LS2.isProperty();
1121 if (IsProp1) {
1122 uint32_t Prop1 = LS1.properties();
1123 if (IsProp2)
1124 return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result);
1125 uint32_t NegCmp = Comparison::negate(Cmp);
1126 return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result);
1128 if (IsProp2) {
1129 uint32_t Prop2 = LS2.properties();
1130 return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result);
1133 APInt A;
1134 bool IsTrue = true, IsFalse = true;
1135 for (unsigned i = 0; i < LS2.size(); ++i) {
1136 bool Res;
1137 bool Computed = constToInt(LS2.Values[i], A) &&
1138 evaluateCMPri(Cmp, R1, A, Inputs, Res);
1139 if (!Computed)
1140 return false;
1141 IsTrue &= Res;
1142 IsFalse &= !Res;
1144 assert(!IsTrue || !IsFalse);
1145 // The actual logical value of the comparison is same as IsTrue.
1146 Result = IsTrue;
1147 // Return true if the result was proven to be true or proven to be false.
1148 return IsTrue || IsFalse;
1151 bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1,
1152 const APInt &A2, const CellMap &Inputs, bool &Result) {
1153 assert(Inputs.has(R1.Reg));
1154 LatticeCell LS;
1155 if (!getCell(R1, Inputs, LS))
1156 return false;
1157 if (LS.isProperty())
1158 return evaluateCMPpi(Cmp, LS.properties(), A2, Result);
1160 APInt A;
1161 bool IsTrue = true, IsFalse = true;
1162 for (unsigned i = 0; i < LS.size(); ++i) {
1163 bool Res;
1164 bool Computed = constToInt(LS.Values[i], A) &&
1165 evaluateCMPii(Cmp, A, A2, Res);
1166 if (!Computed)
1167 return false;
1168 IsTrue &= Res;
1169 IsFalse &= !Res;
1171 assert(!IsTrue || !IsFalse);
1172 // The actual logical value of the comparison is same as IsTrue.
1173 Result = IsTrue;
1174 // Return true if the result was proven to be true or proven to be false.
1175 return IsTrue || IsFalse;
1178 bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1,
1179 uint64_t Props2, const CellMap &Inputs, bool &Result) {
1180 assert(Inputs.has(R1.Reg));
1181 LatticeCell LS;
1182 if (!getCell(R1, Inputs, LS))
1183 return false;
1184 if (LS.isProperty())
1185 return evaluateCMPpp(Cmp, LS.properties(), Props2, Result);
1187 APInt A;
1188 uint32_t NegCmp = Comparison::negate(Cmp);
1189 bool IsTrue = true, IsFalse = true;
1190 for (unsigned i = 0; i < LS.size(); ++i) {
1191 bool Res;
1192 bool Computed = constToInt(LS.Values[i], A) &&
1193 evaluateCMPpi(NegCmp, Props2, A, Res);
1194 if (!Computed)
1195 return false;
1196 IsTrue &= Res;
1197 IsFalse &= !Res;
1199 assert(!IsTrue || !IsFalse);
1200 Result = IsTrue;
1201 return IsTrue || IsFalse;
1204 bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1,
1205 const APInt &A2, bool &Result) {
1206 // NE is a special kind of comparison (not composed of smaller properties).
1207 if (Cmp == Comparison::NE) {
1208 Result = !APInt::isSameValue(A1, A2);
1209 return true;
1211 if (Cmp == Comparison::EQ) {
1212 Result = APInt::isSameValue(A1, A2);
1213 return true;
1215 if (Cmp & Comparison::EQ) {
1216 if (APInt::isSameValue(A1, A2))
1217 return (Result = true);
1219 assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison");
1220 Result = false;
1222 unsigned W1 = A1.getBitWidth();
1223 unsigned W2 = A2.getBitWidth();
1224 unsigned MaxW = (W1 >= W2) ? W1 : W2;
1225 if (Cmp & Comparison::U) {
1226 const APInt Zx1 = A1.zextOrSelf(MaxW);
1227 const APInt Zx2 = A2.zextOrSelf(MaxW);
1228 if (Cmp & Comparison::L)
1229 Result = Zx1.ult(Zx2);
1230 else if (Cmp & Comparison::G)
1231 Result = Zx2.ult(Zx1);
1232 return true;
1235 // Signed comparison.
1236 const APInt Sx1 = A1.sextOrSelf(MaxW);
1237 const APInt Sx2 = A2.sextOrSelf(MaxW);
1238 if (Cmp & Comparison::L)
1239 Result = Sx1.slt(Sx2);
1240 else if (Cmp & Comparison::G)
1241 Result = Sx2.slt(Sx1);
1242 return true;
1245 bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props,
1246 const APInt &A2, bool &Result) {
1247 if (Props == ConstantProperties::Unknown)
1248 return false;
1250 // Should never see NaN here, but check for it for completeness.
1251 if (Props & ConstantProperties::NaN)
1252 return false;
1253 // Infinity could theoretically be compared to a number, but the
1254 // presence of infinity here would be very suspicious. If we don't
1255 // know for sure that the number is finite, bail out.
1256 if (!(Props & ConstantProperties::Finite))
1257 return false;
1259 // Let X be a number that has properties Props.
1261 if (Cmp & Comparison::U) {
1262 // In case of unsigned comparisons, we can only compare against 0.
1263 if (A2 == 0) {
1264 // Any x!=0 will be considered >0 in an unsigned comparison.
1265 if (Props & ConstantProperties::Zero)
1266 Result = (Cmp & Comparison::EQ);
1267 else if (Props & ConstantProperties::NonZero)
1268 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1269 else
1270 return false;
1271 return true;
1273 // A2 is not zero. The only handled case is if X = 0.
1274 if (Props & ConstantProperties::Zero) {
1275 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1276 return true;
1278 return false;
1281 // Signed comparisons are different.
1282 if (Props & ConstantProperties::Zero) {
1283 if (A2 == 0)
1284 Result = (Cmp & Comparison::EQ);
1285 else
1286 Result = (Cmp == Comparison::NE) ||
1287 ((Cmp & Comparison::L) && !A2.isNegative()) ||
1288 ((Cmp & Comparison::G) && A2.isNegative());
1289 return true;
1291 if (Props & ConstantProperties::PosOrZero) {
1292 // X >= 0 and !(A2 < 0) => cannot compare
1293 if (!A2.isNegative())
1294 return false;
1295 // X >= 0 and A2 < 0
1296 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1297 return true;
1299 if (Props & ConstantProperties::NegOrZero) {
1300 // X <= 0 and Src1 < 0 => cannot compare
1301 if (A2 == 0 || A2.isNegative())
1302 return false;
1303 // X <= 0 and A2 > 0
1304 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1305 return true;
1308 return false;
1311 bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1,
1312 uint32_t Props2, bool &Result) {
1313 using P = ConstantProperties;
1315 if ((Props1 & P::NaN) && (Props2 & P::NaN))
1316 return false;
1317 if (!(Props1 & P::Finite) || !(Props2 & P::Finite))
1318 return false;
1320 bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero);
1321 bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero);
1322 if (Zero1 && Zero2) {
1323 Result = (Cmp & Comparison::EQ);
1324 return true;
1326 if (Cmp == Comparison::NE) {
1327 if ((Zero1 && NonZero2) || (NonZero1 && Zero2))
1328 return (Result = true);
1329 return false;
1332 if (Cmp & Comparison::U) {
1333 // In unsigned comparisons, we can only compare against a known zero,
1334 // or a known non-zero.
1335 if (Zero1 && NonZero2) {
1336 Result = (Cmp & Comparison::L);
1337 return true;
1339 if (NonZero1 && Zero2) {
1340 Result = (Cmp & Comparison::G);
1341 return true;
1343 return false;
1346 // Signed comparison. The comparison is not NE.
1347 bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero);
1348 bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero);
1349 if (Nez1 && Poz2) {
1350 if (NonZero1 || NonZero2) {
1351 Result = (Cmp & Comparison::L);
1352 return true;
1354 // Either (or both) could be zero. Can only say that X <= Y.
1355 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L))
1356 return (Result = true);
1358 if (Poz1 && Nez2) {
1359 if (NonZero1 || NonZero2) {
1360 Result = (Cmp & Comparison::G);
1361 return true;
1363 // Either (or both) could be zero. Can only say that X >= Y.
1364 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G))
1365 return (Result = true);
1368 return false;
1371 bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1,
1372 const CellMap &Inputs, LatticeCell &Result) {
1373 return getCell(R1, Inputs, Result);
1376 bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1,
1377 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1378 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1379 const LatticeCell &L1 = Inputs.get(R2.Reg);
1380 const LatticeCell &L2 = Inputs.get(R2.Reg);
1381 // If both sources are bottom, exit. Otherwise try to evaluate ANDri
1382 // with the non-bottom argument passed as the immediate. This is to
1383 // catch cases of ANDing with 0.
1384 if (L2.isBottom()) {
1385 if (L1.isBottom())
1386 return false;
1387 return evaluateANDrr(R2, R1, Inputs, Result);
1389 LatticeCell LS2;
1390 if (!evaluate(R2, L2, LS2))
1391 return false;
1392 if (LS2.isBottom() || LS2.isProperty())
1393 return false;
1395 APInt A;
1396 for (unsigned i = 0; i < LS2.size(); ++i) {
1397 LatticeCell RC;
1398 bool Eval = constToInt(LS2.Values[i], A) &&
1399 evaluateANDri(R1, A, Inputs, RC);
1400 if (!Eval)
1401 return false;
1402 Result.meet(RC);
1404 return !Result.isBottom();
1407 bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1,
1408 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1409 assert(Inputs.has(R1.Reg));
1410 if (A2 == -1)
1411 return getCell(R1, Inputs, Result);
1412 if (A2 == 0) {
1413 LatticeCell RC;
1414 RC.add(intToConst(A2));
1415 // Overwrite Result.
1416 Result = RC;
1417 return true;
1419 LatticeCell LS1;
1420 if (!getCell(R1, Inputs, LS1))
1421 return false;
1422 if (LS1.isBottom() || LS1.isProperty())
1423 return false;
1425 APInt A, ResA;
1426 for (unsigned i = 0; i < LS1.size(); ++i) {
1427 bool Eval = constToInt(LS1.Values[i], A) &&
1428 evaluateANDii(A, A2, ResA);
1429 if (!Eval)
1430 return false;
1431 const Constant *C = intToConst(ResA);
1432 Result.add(C);
1434 return !Result.isBottom();
1437 bool MachineConstEvaluator::evaluateANDii(const APInt &A1,
1438 const APInt &A2, APInt &Result) {
1439 Result = A1 & A2;
1440 return true;
1443 bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1,
1444 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1445 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1446 const LatticeCell &L1 = Inputs.get(R2.Reg);
1447 const LatticeCell &L2 = Inputs.get(R2.Reg);
1448 // If both sources are bottom, exit. Otherwise try to evaluate ORri
1449 // with the non-bottom argument passed as the immediate. This is to
1450 // catch cases of ORing with -1.
1451 if (L2.isBottom()) {
1452 if (L1.isBottom())
1453 return false;
1454 return evaluateORrr(R2, R1, Inputs, Result);
1456 LatticeCell LS2;
1457 if (!evaluate(R2, L2, LS2))
1458 return false;
1459 if (LS2.isBottom() || LS2.isProperty())
1460 return false;
1462 APInt A;
1463 for (unsigned i = 0; i < LS2.size(); ++i) {
1464 LatticeCell RC;
1465 bool Eval = constToInt(LS2.Values[i], A) &&
1466 evaluateORri(R1, A, Inputs, RC);
1467 if (!Eval)
1468 return false;
1469 Result.meet(RC);
1471 return !Result.isBottom();
1474 bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1,
1475 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1476 assert(Inputs.has(R1.Reg));
1477 if (A2 == 0)
1478 return getCell(R1, Inputs, Result);
1479 if (A2 == -1) {
1480 LatticeCell RC;
1481 RC.add(intToConst(A2));
1482 // Overwrite Result.
1483 Result = RC;
1484 return true;
1486 LatticeCell LS1;
1487 if (!getCell(R1, Inputs, LS1))
1488 return false;
1489 if (LS1.isBottom() || LS1.isProperty())
1490 return false;
1492 APInt A, ResA;
1493 for (unsigned i = 0; i < LS1.size(); ++i) {
1494 bool Eval = constToInt(LS1.Values[i], A) &&
1495 evaluateORii(A, A2, ResA);
1496 if (!Eval)
1497 return false;
1498 const Constant *C = intToConst(ResA);
1499 Result.add(C);
1501 return !Result.isBottom();
1504 bool MachineConstEvaluator::evaluateORii(const APInt &A1,
1505 const APInt &A2, APInt &Result) {
1506 Result = A1 | A2;
1507 return true;
1510 bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1,
1511 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1512 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1513 LatticeCell LS1, LS2;
1514 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1515 return false;
1516 if (LS1.isProperty()) {
1517 if (LS1.properties() & ConstantProperties::Zero)
1518 return !(Result = LS2).isBottom();
1519 return false;
1521 if (LS2.isProperty()) {
1522 if (LS2.properties() & ConstantProperties::Zero)
1523 return !(Result = LS1).isBottom();
1524 return false;
1527 APInt A;
1528 for (unsigned i = 0; i < LS2.size(); ++i) {
1529 LatticeCell RC;
1530 bool Eval = constToInt(LS2.Values[i], A) &&
1531 evaluateXORri(R1, A, Inputs, RC);
1532 if (!Eval)
1533 return false;
1534 Result.meet(RC);
1536 return !Result.isBottom();
1539 bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1,
1540 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1541 assert(Inputs.has(R1.Reg));
1542 LatticeCell LS1;
1543 if (!getCell(R1, Inputs, LS1))
1544 return false;
1545 if (LS1.isProperty()) {
1546 if (LS1.properties() & ConstantProperties::Zero) {
1547 const Constant *C = intToConst(A2);
1548 Result.add(C);
1549 return !Result.isBottom();
1551 return false;
1554 APInt A, XA;
1555 for (unsigned i = 0; i < LS1.size(); ++i) {
1556 bool Eval = constToInt(LS1.Values[i], A) &&
1557 evaluateXORii(A, A2, XA);
1558 if (!Eval)
1559 return false;
1560 const Constant *C = intToConst(XA);
1561 Result.add(C);
1563 return !Result.isBottom();
1566 bool MachineConstEvaluator::evaluateXORii(const APInt &A1,
1567 const APInt &A2, APInt &Result) {
1568 Result = A1 ^ A2;
1569 return true;
1572 bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width,
1573 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1574 assert(Inputs.has(R1.Reg));
1575 LatticeCell LS1;
1576 if (!getCell(R1, Inputs, LS1))
1577 return false;
1578 if (LS1.isProperty())
1579 return false;
1581 APInt A, XA;
1582 for (unsigned i = 0; i < LS1.size(); ++i) {
1583 bool Eval = constToInt(LS1.Values[i], A) &&
1584 evaluateZEXTi(A, Width, Bits, XA);
1585 if (!Eval)
1586 return false;
1587 const Constant *C = intToConst(XA);
1588 Result.add(C);
1590 return true;
1593 bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width,
1594 unsigned Bits, APInt &Result) {
1595 unsigned BW = A1.getBitWidth();
1596 (void)BW;
1597 assert(Width >= Bits && BW >= Bits);
1598 APInt Mask = APInt::getLowBitsSet(Width, Bits);
1599 Result = A1.zextOrTrunc(Width) & Mask;
1600 return true;
1603 bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width,
1604 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1605 assert(Inputs.has(R1.Reg));
1606 LatticeCell LS1;
1607 if (!getCell(R1, Inputs, LS1))
1608 return false;
1609 if (LS1.isBottom() || LS1.isProperty())
1610 return false;
1612 APInt A, XA;
1613 for (unsigned i = 0; i < LS1.size(); ++i) {
1614 bool Eval = constToInt(LS1.Values[i], A) &&
1615 evaluateSEXTi(A, Width, Bits, XA);
1616 if (!Eval)
1617 return false;
1618 const Constant *C = intToConst(XA);
1619 Result.add(C);
1621 return true;
1624 bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width,
1625 unsigned Bits, APInt &Result) {
1626 unsigned BW = A1.getBitWidth();
1627 assert(Width >= Bits && BW >= Bits);
1628 // Special case to make things faster for smaller source widths.
1629 // Sign extension of 0 bits generates 0 as a result. This is consistent
1630 // with what the HW does.
1631 if (Bits == 0) {
1632 Result = APInt(Width, 0);
1633 return true;
1635 // In C, shifts by 64 invoke undefined behavior: handle that case in APInt.
1636 if (BW <= 64 && Bits != 0) {
1637 int64_t V = A1.getSExtValue();
1638 switch (Bits) {
1639 case 8:
1640 V = static_cast<int8_t>(V);
1641 break;
1642 case 16:
1643 V = static_cast<int16_t>(V);
1644 break;
1645 case 32:
1646 V = static_cast<int32_t>(V);
1647 break;
1648 default:
1649 // Shift left to lose all bits except lower "Bits" bits, then shift
1650 // the value back, replicating what was a sign bit after the first
1651 // shift.
1652 V = (V << (64-Bits)) >> (64-Bits);
1653 break;
1655 // V is a 64-bit sign-extended value. Convert it to APInt of desired
1656 // width.
1657 Result = APInt(Width, V, true);
1658 return true;
1660 // Slow case: the value doesn't fit in int64_t.
1661 if (Bits < BW)
1662 Result = A1.trunc(Bits).sext(Width);
1663 else // Bits == BW
1664 Result = A1.sext(Width);
1665 return true;
1668 bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros,
1669 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1670 assert(Inputs.has(R1.Reg));
1671 LatticeCell LS1;
1672 if (!getCell(R1, Inputs, LS1))
1673 return false;
1674 if (LS1.isBottom() || LS1.isProperty())
1675 return false;
1677 APInt A, CA;
1678 for (unsigned i = 0; i < LS1.size(); ++i) {
1679 bool Eval = constToInt(LS1.Values[i], A) &&
1680 evaluateCLBi(A, Zeros, Ones, CA);
1681 if (!Eval)
1682 return false;
1683 const Constant *C = intToConst(CA);
1684 Result.add(C);
1686 return true;
1689 bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros,
1690 bool Ones, APInt &Result) {
1691 unsigned BW = A1.getBitWidth();
1692 if (!Zeros && !Ones)
1693 return false;
1694 unsigned Count = 0;
1695 if (Zeros && (Count == 0))
1696 Count = A1.countLeadingZeros();
1697 if (Ones && (Count == 0))
1698 Count = A1.countLeadingOnes();
1699 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1700 return true;
1703 bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros,
1704 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1705 assert(Inputs.has(R1.Reg));
1706 LatticeCell LS1;
1707 if (!getCell(R1, Inputs, LS1))
1708 return false;
1709 if (LS1.isBottom() || LS1.isProperty())
1710 return false;
1712 APInt A, CA;
1713 for (unsigned i = 0; i < LS1.size(); ++i) {
1714 bool Eval = constToInt(LS1.Values[i], A) &&
1715 evaluateCTBi(A, Zeros, Ones, CA);
1716 if (!Eval)
1717 return false;
1718 const Constant *C = intToConst(CA);
1719 Result.add(C);
1721 return true;
1724 bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros,
1725 bool Ones, APInt &Result) {
1726 unsigned BW = A1.getBitWidth();
1727 if (!Zeros && !Ones)
1728 return false;
1729 unsigned Count = 0;
1730 if (Zeros && (Count == 0))
1731 Count = A1.countTrailingZeros();
1732 if (Ones && (Count == 0))
1733 Count = A1.countTrailingOnes();
1734 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1735 return true;
1738 bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1,
1739 unsigned Width, unsigned Bits, unsigned Offset, bool Signed,
1740 const CellMap &Inputs, LatticeCell &Result) {
1741 assert(Inputs.has(R1.Reg));
1742 assert(Bits+Offset <= Width);
1743 LatticeCell LS1;
1744 if (!getCell(R1, Inputs, LS1))
1745 return false;
1746 if (LS1.isBottom())
1747 return false;
1748 if (LS1.isProperty()) {
1749 uint32_t Ps = LS1.properties();
1750 if (Ps & ConstantProperties::Zero) {
1751 const Constant *C = intToConst(APInt(Width, 0, false));
1752 Result.add(C);
1753 return true;
1755 return false;
1758 APInt A, CA;
1759 for (unsigned i = 0; i < LS1.size(); ++i) {
1760 bool Eval = constToInt(LS1.Values[i], A) &&
1761 evaluateEXTRACTi(A, Bits, Offset, Signed, CA);
1762 if (!Eval)
1763 return false;
1764 const Constant *C = intToConst(CA);
1765 Result.add(C);
1767 return true;
1770 bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits,
1771 unsigned Offset, bool Signed, APInt &Result) {
1772 unsigned BW = A1.getBitWidth();
1773 assert(Bits+Offset <= BW);
1774 // Extracting 0 bits generates 0 as a result (as indicated by the HW people).
1775 if (Bits == 0) {
1776 Result = APInt(BW, 0);
1777 return true;
1779 if (BW <= 64) {
1780 int64_t V = A1.getZExtValue();
1781 V <<= (64-Bits-Offset);
1782 if (Signed)
1783 V >>= (64-Bits);
1784 else
1785 V = static_cast<uint64_t>(V) >> (64-Bits);
1786 Result = APInt(BW, V, Signed);
1787 return true;
1789 if (Signed)
1790 Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits);
1791 else
1792 Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits);
1793 return true;
1796 bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1,
1797 unsigned Bits, unsigned Count, const CellMap &Inputs,
1798 LatticeCell &Result) {
1799 assert(Inputs.has(R1.Reg));
1800 LatticeCell LS1;
1801 if (!getCell(R1, Inputs, LS1))
1802 return false;
1803 if (LS1.isBottom() || LS1.isProperty())
1804 return false;
1806 APInt A, SA;
1807 for (unsigned i = 0; i < LS1.size(); ++i) {
1808 bool Eval = constToInt(LS1.Values[i], A) &&
1809 evaluateSplati(A, Bits, Count, SA);
1810 if (!Eval)
1811 return false;
1812 const Constant *C = intToConst(SA);
1813 Result.add(C);
1815 return true;
1818 bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits,
1819 unsigned Count, APInt &Result) {
1820 assert(Count > 0);
1821 unsigned BW = A1.getBitWidth(), SW = Count*Bits;
1822 APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits);
1823 if (Count > 1)
1824 LoBits = LoBits.zext(SW);
1826 APInt Res(SW, 0, false);
1827 for (unsigned i = 0; i < Count; ++i) {
1828 Res <<= Bits;
1829 Res |= LoBits;
1831 Result = Res;
1832 return true;
1835 // ----------------------------------------------------------------------
1836 // Hexagon-specific code.
1838 namespace llvm {
1840 FunctionPass *createHexagonConstPropagationPass();
1841 void initializeHexagonConstPropagationPass(PassRegistry &Registry);
1843 } // end namespace llvm
1845 namespace {
1847 class HexagonConstEvaluator : public MachineConstEvaluator {
1848 public:
1849 HexagonConstEvaluator(MachineFunction &Fn);
1851 bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
1852 CellMap &Outputs) override;
1853 bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
1854 LatticeCell &Result) override;
1855 bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
1856 SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru)
1857 override;
1858 bool rewrite(MachineInstr &MI, const CellMap &Inputs) override;
1860 private:
1861 unsigned getRegBitWidth(unsigned Reg) const;
1863 static uint32_t getCmp(unsigned Opc);
1864 static APInt getCmpImm(unsigned Opc, unsigned OpX,
1865 const MachineOperand &MO);
1866 void replaceWithNop(MachineInstr &MI);
1868 bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs,
1869 LatticeCell &Result);
1870 bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs,
1871 CellMap &Outputs);
1872 // This is suitable to be called for compare-and-jump instructions.
1873 bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1,
1874 const MachineOperand &Src2, const CellMap &Inputs, bool &Result);
1875 bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs,
1876 CellMap &Outputs);
1877 bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs,
1878 CellMap &Outputs);
1879 bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs,
1880 CellMap &Outputs);
1881 bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs,
1882 CellMap &Outputs);
1883 bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs,
1884 CellMap &Outputs);
1886 void replaceAllRegUsesWith(Register FromReg, Register ToReg);
1887 bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs);
1888 bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs,
1889 bool &AllDefs);
1890 bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs);
1892 MachineRegisterInfo *MRI;
1893 const HexagonInstrInfo &HII;
1894 const HexagonRegisterInfo &HRI;
1897 class HexagonConstPropagation : public MachineFunctionPass {
1898 public:
1899 static char ID;
1901 HexagonConstPropagation() : MachineFunctionPass(ID) {}
1903 StringRef getPassName() const override {
1904 return "Hexagon Constant Propagation";
1907 bool runOnMachineFunction(MachineFunction &MF) override {
1908 const Function &F = MF.getFunction();
1909 if (skipFunction(F))
1910 return false;
1912 HexagonConstEvaluator HCE(MF);
1913 return MachineConstPropagator(HCE).run(MF);
1917 } // end anonymous namespace
1919 char HexagonConstPropagation::ID = 0;
1921 INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp",
1922 "Hexagon Constant Propagation", false, false)
1924 HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn)
1925 : MachineConstEvaluator(Fn),
1926 HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()),
1927 HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) {
1928 MRI = &Fn.getRegInfo();
1931 bool HexagonConstEvaluator::evaluate(const MachineInstr &MI,
1932 const CellMap &Inputs, CellMap &Outputs) {
1933 if (MI.isCall())
1934 return false;
1935 if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg())
1936 return false;
1937 const MachineOperand &MD = MI.getOperand(0);
1938 if (!MD.isDef())
1939 return false;
1941 unsigned Opc = MI.getOpcode();
1942 RegisterSubReg DefR(MD);
1943 assert(!DefR.SubReg);
1944 if (!DefR.Reg.isVirtual())
1945 return false;
1947 if (MI.isCopy()) {
1948 LatticeCell RC;
1949 RegisterSubReg SrcR(MI.getOperand(1));
1950 bool Eval = evaluateCOPY(SrcR, Inputs, RC);
1951 if (!Eval)
1952 return false;
1953 Outputs.update(DefR.Reg, RC);
1954 return true;
1956 if (MI.isRegSequence()) {
1957 unsigned Sub1 = MI.getOperand(2).getImm();
1958 unsigned Sub2 = MI.getOperand(4).getImm();
1959 const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg);
1960 unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo);
1961 unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi);
1962 if (Sub1 != SubLo && Sub1 != SubHi)
1963 return false;
1964 if (Sub2 != SubLo && Sub2 != SubHi)
1965 return false;
1966 assert(Sub1 != Sub2);
1967 bool LoIs1 = (Sub1 == SubLo);
1968 const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3);
1969 const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1);
1970 LatticeCell RC;
1971 RegisterSubReg SrcRL(OpLo), SrcRH(OpHi);
1972 bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC);
1973 if (!Eval)
1974 return false;
1975 Outputs.update(DefR.Reg, RC);
1976 return true;
1978 if (MI.isCompare()) {
1979 bool Eval = evaluateHexCompare(MI, Inputs, Outputs);
1980 return Eval;
1983 switch (Opc) {
1984 default:
1985 return false;
1986 case Hexagon::A2_tfrsi:
1987 case Hexagon::A2_tfrpi:
1988 case Hexagon::CONST32:
1989 case Hexagon::CONST64:
1991 const MachineOperand &VO = MI.getOperand(1);
1992 // The operand of CONST32 can be a blockaddress, e.g.
1993 // %0 = CONST32 <blockaddress(@eat, %l)>
1994 // Do this check for all instructions for safety.
1995 if (!VO.isImm())
1996 return false;
1997 int64_t V = MI.getOperand(1).getImm();
1998 unsigned W = getRegBitWidth(DefR.Reg);
1999 if (W != 32 && W != 64)
2000 return false;
2001 IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX)
2002 : Type::getInt64Ty(CX);
2003 const ConstantInt *CI = ConstantInt::get(Ty, V, true);
2004 LatticeCell RC = Outputs.get(DefR.Reg);
2005 RC.add(CI);
2006 Outputs.update(DefR.Reg, RC);
2007 break;
2010 case Hexagon::PS_true:
2011 case Hexagon::PS_false:
2013 LatticeCell RC = Outputs.get(DefR.Reg);
2014 bool NonZero = (Opc == Hexagon::PS_true);
2015 uint32_t P = NonZero ? ConstantProperties::NonZero
2016 : ConstantProperties::Zero;
2017 RC.add(P);
2018 Outputs.update(DefR.Reg, RC);
2019 break;
2022 case Hexagon::A2_and:
2023 case Hexagon::A2_andir:
2024 case Hexagon::A2_andp:
2025 case Hexagon::A2_or:
2026 case Hexagon::A2_orir:
2027 case Hexagon::A2_orp:
2028 case Hexagon::A2_xor:
2029 case Hexagon::A2_xorp:
2031 bool Eval = evaluateHexLogical(MI, Inputs, Outputs);
2032 if (!Eval)
2033 return false;
2034 break;
2037 case Hexagon::A2_combineii: // combine(#s8Ext, #s8)
2038 case Hexagon::A4_combineii: // combine(#s8, #u6Ext)
2040 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm())
2041 return false;
2042 uint64_t Hi = MI.getOperand(1).getImm();
2043 uint64_t Lo = MI.getOperand(2).getImm();
2044 uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF);
2045 IntegerType *Ty = Type::getInt64Ty(CX);
2046 const ConstantInt *CI = ConstantInt::get(Ty, Res, false);
2047 LatticeCell RC = Outputs.get(DefR.Reg);
2048 RC.add(CI);
2049 Outputs.update(DefR.Reg, RC);
2050 break;
2053 case Hexagon::S2_setbit_i:
2055 int64_t B = MI.getOperand(2).getImm();
2056 assert(B >=0 && B < 32);
2057 APInt A(32, (1ull << B), false);
2058 RegisterSubReg R(MI.getOperand(1));
2059 LatticeCell RC = Outputs.get(DefR.Reg);
2060 bool Eval = evaluateORri(R, A, Inputs, RC);
2061 if (!Eval)
2062 return false;
2063 Outputs.update(DefR.Reg, RC);
2064 break;
2067 case Hexagon::C2_mux:
2068 case Hexagon::C2_muxir:
2069 case Hexagon::C2_muxri:
2070 case Hexagon::C2_muxii:
2072 bool Eval = evaluateHexCondMove(MI, Inputs, Outputs);
2073 if (!Eval)
2074 return false;
2075 break;
2078 case Hexagon::A2_sxtb:
2079 case Hexagon::A2_sxth:
2080 case Hexagon::A2_sxtw:
2081 case Hexagon::A2_zxtb:
2082 case Hexagon::A2_zxth:
2084 bool Eval = evaluateHexExt(MI, Inputs, Outputs);
2085 if (!Eval)
2086 return false;
2087 break;
2090 case Hexagon::S2_ct0:
2091 case Hexagon::S2_ct0p:
2092 case Hexagon::S2_ct1:
2093 case Hexagon::S2_ct1p:
2095 using namespace Hexagon;
2097 bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p);
2098 RegisterSubReg R1(MI.getOperand(1));
2099 assert(Inputs.has(R1.Reg));
2100 LatticeCell T;
2101 bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T);
2102 if (!Eval)
2103 return false;
2104 // All of these instructions return a 32-bit value. The evaluate
2105 // will generate the same type as the operand, so truncate the
2106 // result if necessary.
2107 APInt C;
2108 LatticeCell RC = Outputs.get(DefR.Reg);
2109 for (unsigned i = 0; i < T.size(); ++i) {
2110 const Constant *CI = T.Values[i];
2111 if (constToInt(CI, C) && C.getBitWidth() > 32)
2112 CI = intToConst(C.trunc(32));
2113 RC.add(CI);
2115 Outputs.update(DefR.Reg, RC);
2116 break;
2119 case Hexagon::S2_cl0:
2120 case Hexagon::S2_cl0p:
2121 case Hexagon::S2_cl1:
2122 case Hexagon::S2_cl1p:
2123 case Hexagon::S2_clb:
2124 case Hexagon::S2_clbp:
2126 using namespace Hexagon;
2128 bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p);
2129 bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p);
2130 RegisterSubReg R1(MI.getOperand(1));
2131 assert(Inputs.has(R1.Reg));
2132 LatticeCell T;
2133 bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T);
2134 if (!Eval)
2135 return false;
2136 // All of these instructions return a 32-bit value. The evaluate
2137 // will generate the same type as the operand, so truncate the
2138 // result if necessary.
2139 APInt C;
2140 LatticeCell RC = Outputs.get(DefR.Reg);
2141 for (unsigned i = 0; i < T.size(); ++i) {
2142 const Constant *CI = T.Values[i];
2143 if (constToInt(CI, C) && C.getBitWidth() > 32)
2144 CI = intToConst(C.trunc(32));
2145 RC.add(CI);
2147 Outputs.update(DefR.Reg, RC);
2148 break;
2151 case Hexagon::S4_extract:
2152 case Hexagon::S4_extractp:
2153 case Hexagon::S2_extractu:
2154 case Hexagon::S2_extractup:
2156 bool Signed = (Opc == Hexagon::S4_extract) ||
2157 (Opc == Hexagon::S4_extractp);
2158 RegisterSubReg R1(MI.getOperand(1));
2159 unsigned BW = getRegBitWidth(R1.Reg);
2160 unsigned Bits = MI.getOperand(2).getImm();
2161 unsigned Offset = MI.getOperand(3).getImm();
2162 LatticeCell RC = Outputs.get(DefR.Reg);
2163 if (Offset >= BW) {
2164 APInt Zero(BW, 0, false);
2165 RC.add(intToConst(Zero));
2166 break;
2168 if (Offset+Bits > BW) {
2169 // If the requested bitfield extends beyond the most significant bit,
2170 // the extra bits are treated as 0s. To emulate this behavior, reduce
2171 // the number of requested bits, and make the extract unsigned.
2172 Bits = BW-Offset;
2173 Signed = false;
2175 bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC);
2176 if (!Eval)
2177 return false;
2178 Outputs.update(DefR.Reg, RC);
2179 break;
2182 case Hexagon::S2_vsplatrb:
2183 case Hexagon::S2_vsplatrh:
2184 // vabsh, vabsh:sat
2185 // vabsw, vabsw:sat
2186 // vconj:sat
2187 // vrndwh, vrndwh:sat
2188 // vsathb, vsathub, vsatwuh
2189 // vsxtbh, vsxthw
2190 // vtrunehb, vtrunohb
2191 // vzxtbh, vzxthw
2193 bool Eval = evaluateHexVector1(MI, Inputs, Outputs);
2194 if (!Eval)
2195 return false;
2196 break;
2199 // TODO:
2200 // A2_vaddh
2201 // A2_vaddhs
2202 // A2_vaddw
2203 // A2_vaddws
2206 return true;
2209 bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R,
2210 const LatticeCell &Input, LatticeCell &Result) {
2211 if (!R.SubReg) {
2212 Result = Input;
2213 return true;
2215 const TargetRegisterClass *RC = MRI->getRegClass(R.Reg);
2216 if (RC != &Hexagon::DoubleRegsRegClass)
2217 return false;
2218 if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi)
2219 return false;
2221 assert(!Input.isTop());
2222 if (Input.isBottom())
2223 return false;
2225 using P = ConstantProperties;
2227 if (Input.isProperty()) {
2228 uint32_t Ps = Input.properties();
2229 if (Ps & (P::Zero|P::NaN)) {
2230 uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties));
2231 Result.add(Ns);
2232 return true;
2234 if (R.SubReg == Hexagon::isub_hi) {
2235 uint32_t Ns = (Ps & P::SignProperties);
2236 Result.add(Ns);
2237 return true;
2239 return false;
2242 // The Input cell contains some known values. Pick the word corresponding
2243 // to the subregister.
2244 APInt A;
2245 for (unsigned i = 0; i < Input.size(); ++i) {
2246 const Constant *C = Input.Values[i];
2247 if (!constToInt(C, A))
2248 return false;
2249 if (!A.isIntN(64))
2250 return false;
2251 uint64_t U = A.getZExtValue();
2252 if (R.SubReg == Hexagon::isub_hi)
2253 U >>= 32;
2254 U &= 0xFFFFFFFFULL;
2255 uint32_t U32 = Lo_32(U);
2256 int32_t V32;
2257 memcpy(&V32, &U32, sizeof V32);
2258 IntegerType *Ty = Type::getInt32Ty(CX);
2259 const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32));
2260 Result.add(C32);
2262 return true;
2265 bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI,
2266 const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets,
2267 bool &FallsThru) {
2268 // We need to evaluate one branch at a time. TII::analyzeBranch checks
2269 // all the branches in a basic block at once, so we cannot use it.
2270 unsigned Opc = BrI.getOpcode();
2271 bool SimpleBranch = false;
2272 bool Negated = false;
2273 switch (Opc) {
2274 case Hexagon::J2_jumpf:
2275 case Hexagon::J2_jumpfnew:
2276 case Hexagon::J2_jumpfnewpt:
2277 Negated = true;
2278 LLVM_FALLTHROUGH;
2279 case Hexagon::J2_jumpt:
2280 case Hexagon::J2_jumptnew:
2281 case Hexagon::J2_jumptnewpt:
2282 // Simple branch: if([!]Pn) jump ...
2283 // i.e. Op0 = predicate, Op1 = branch target.
2284 SimpleBranch = true;
2285 break;
2286 case Hexagon::J2_jump:
2287 Targets.insert(BrI.getOperand(0).getMBB());
2288 FallsThru = false;
2289 return true;
2290 default:
2291 Undetermined:
2292 // If the branch is of unknown type, assume that all successors are
2293 // executable.
2294 FallsThru = !BrI.isUnconditionalBranch();
2295 return false;
2298 if (SimpleBranch) {
2299 const MachineOperand &MD = BrI.getOperand(0);
2300 RegisterSubReg PR(MD);
2301 // If the condition operand has a subregister, this is not something
2302 // we currently recognize.
2303 if (PR.SubReg)
2304 goto Undetermined;
2305 assert(Inputs.has(PR.Reg));
2306 const LatticeCell &PredC = Inputs.get(PR.Reg);
2307 if (PredC.isBottom())
2308 goto Undetermined;
2310 uint32_t Props = PredC.properties();
2311 bool CTrue = false, CFalse = false;
2312 if (Props & ConstantProperties::Zero)
2313 CFalse = true;
2314 else if (Props & ConstantProperties::NonZero)
2315 CTrue = true;
2316 // If the condition is not known to be either, bail out.
2317 if (!CTrue && !CFalse)
2318 goto Undetermined;
2320 const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB();
2322 FallsThru = false;
2323 if ((!Negated && CTrue) || (Negated && CFalse))
2324 Targets.insert(BranchTarget);
2325 else if ((!Negated && CFalse) || (Negated && CTrue))
2326 FallsThru = true;
2327 else
2328 goto Undetermined;
2331 return true;
2334 bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) {
2335 if (MI.isBranch())
2336 return rewriteHexBranch(MI, Inputs);
2338 unsigned Opc = MI.getOpcode();
2339 switch (Opc) {
2340 default:
2341 break;
2342 case Hexagon::A2_tfrsi:
2343 case Hexagon::A2_tfrpi:
2344 case Hexagon::CONST32:
2345 case Hexagon::CONST64:
2346 case Hexagon::PS_true:
2347 case Hexagon::PS_false:
2348 return false;
2351 unsigned NumOp = MI.getNumOperands();
2352 if (NumOp == 0)
2353 return false;
2355 bool AllDefs, Changed;
2356 Changed = rewriteHexConstDefs(MI, Inputs, AllDefs);
2357 // If not all defs have been rewritten (i.e. the instruction defines
2358 // a register that is not compile-time constant), then try to rewrite
2359 // register operands that are known to be constant with immediates.
2360 if (!AllDefs)
2361 Changed |= rewriteHexConstUses(MI, Inputs);
2363 return Changed;
2366 unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const {
2367 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2368 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC))
2369 return 32;
2370 if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC))
2371 return 64;
2372 if (Hexagon::PredRegsRegClass.hasSubClassEq(RC))
2373 return 8;
2374 llvm_unreachable("Invalid register");
2375 return 0;
2378 uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) {
2379 switch (Opc) {
2380 case Hexagon::C2_cmpeq:
2381 case Hexagon::C2_cmpeqp:
2382 case Hexagon::A4_cmpbeq:
2383 case Hexagon::A4_cmpheq:
2384 case Hexagon::A4_cmpbeqi:
2385 case Hexagon::A4_cmpheqi:
2386 case Hexagon::C2_cmpeqi:
2387 case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
2388 case Hexagon::J4_cmpeqn1_t_jumpnv_t:
2389 case Hexagon::J4_cmpeqi_t_jumpnv_nt:
2390 case Hexagon::J4_cmpeqi_t_jumpnv_t:
2391 case Hexagon::J4_cmpeq_t_jumpnv_nt:
2392 case Hexagon::J4_cmpeq_t_jumpnv_t:
2393 return Comparison::EQ;
2395 case Hexagon::C4_cmpneq:
2396 case Hexagon::C4_cmpneqi:
2397 case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
2398 case Hexagon::J4_cmpeqn1_f_jumpnv_t:
2399 case Hexagon::J4_cmpeqi_f_jumpnv_nt:
2400 case Hexagon::J4_cmpeqi_f_jumpnv_t:
2401 case Hexagon::J4_cmpeq_f_jumpnv_nt:
2402 case Hexagon::J4_cmpeq_f_jumpnv_t:
2403 return Comparison::NE;
2405 case Hexagon::C2_cmpgt:
2406 case Hexagon::C2_cmpgtp:
2407 case Hexagon::A4_cmpbgt:
2408 case Hexagon::A4_cmphgt:
2409 case Hexagon::A4_cmpbgti:
2410 case Hexagon::A4_cmphgti:
2411 case Hexagon::C2_cmpgti:
2412 case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
2413 case Hexagon::J4_cmpgtn1_t_jumpnv_t:
2414 case Hexagon::J4_cmpgti_t_jumpnv_nt:
2415 case Hexagon::J4_cmpgti_t_jumpnv_t:
2416 case Hexagon::J4_cmpgt_t_jumpnv_nt:
2417 case Hexagon::J4_cmpgt_t_jumpnv_t:
2418 return Comparison::GTs;
2420 case Hexagon::C4_cmplte:
2421 case Hexagon::C4_cmpltei:
2422 case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
2423 case Hexagon::J4_cmpgtn1_f_jumpnv_t:
2424 case Hexagon::J4_cmpgti_f_jumpnv_nt:
2425 case Hexagon::J4_cmpgti_f_jumpnv_t:
2426 case Hexagon::J4_cmpgt_f_jumpnv_nt:
2427 case Hexagon::J4_cmpgt_f_jumpnv_t:
2428 return Comparison::LEs;
2430 case Hexagon::C2_cmpgtu:
2431 case Hexagon::C2_cmpgtup:
2432 case Hexagon::A4_cmpbgtu:
2433 case Hexagon::A4_cmpbgtui:
2434 case Hexagon::A4_cmphgtu:
2435 case Hexagon::A4_cmphgtui:
2436 case Hexagon::C2_cmpgtui:
2437 case Hexagon::J4_cmpgtui_t_jumpnv_nt:
2438 case Hexagon::J4_cmpgtui_t_jumpnv_t:
2439 case Hexagon::J4_cmpgtu_t_jumpnv_nt:
2440 case Hexagon::J4_cmpgtu_t_jumpnv_t:
2441 return Comparison::GTu;
2443 case Hexagon::J4_cmpltu_f_jumpnv_nt:
2444 case Hexagon::J4_cmpltu_f_jumpnv_t:
2445 return Comparison::GEu;
2447 case Hexagon::J4_cmpltu_t_jumpnv_nt:
2448 case Hexagon::J4_cmpltu_t_jumpnv_t:
2449 return Comparison::LTu;
2451 case Hexagon::J4_cmplt_f_jumpnv_nt:
2452 case Hexagon::J4_cmplt_f_jumpnv_t:
2453 return Comparison::GEs;
2455 case Hexagon::C4_cmplteu:
2456 case Hexagon::C4_cmplteui:
2457 case Hexagon::J4_cmpgtui_f_jumpnv_nt:
2458 case Hexagon::J4_cmpgtui_f_jumpnv_t:
2459 case Hexagon::J4_cmpgtu_f_jumpnv_nt:
2460 case Hexagon::J4_cmpgtu_f_jumpnv_t:
2461 return Comparison::LEu;
2463 case Hexagon::J4_cmplt_t_jumpnv_nt:
2464 case Hexagon::J4_cmplt_t_jumpnv_t:
2465 return Comparison::LTs;
2467 default:
2468 break;
2470 return Comparison::Unk;
2473 APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX,
2474 const MachineOperand &MO) {
2475 bool Signed = false;
2476 switch (Opc) {
2477 case Hexagon::A4_cmpbgtui: // u7
2478 case Hexagon::A4_cmphgtui: // u7
2479 break;
2480 case Hexagon::A4_cmpheqi: // s8
2481 case Hexagon::C4_cmpneqi: // s8
2482 Signed = true;
2483 break;
2484 case Hexagon::A4_cmpbeqi: // u8
2485 break;
2486 case Hexagon::C2_cmpgtui: // u9
2487 case Hexagon::C4_cmplteui: // u9
2488 break;
2489 case Hexagon::C2_cmpeqi: // s10
2490 case Hexagon::C2_cmpgti: // s10
2491 case Hexagon::C4_cmpltei: // s10
2492 Signed = true;
2493 break;
2494 case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5
2495 case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5
2496 case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5
2497 case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5
2498 case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5
2499 case Hexagon::J4_cmpgti_f_jumpnv_t: // u5
2500 case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5
2501 case Hexagon::J4_cmpgti_t_jumpnv_t: // u5
2502 case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5
2503 case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5
2504 case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5
2505 case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5
2506 break;
2507 default:
2508 llvm_unreachable("Unhandled instruction");
2509 break;
2512 uint64_t Val = MO.getImm();
2513 return APInt(32, Val, Signed);
2516 void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) {
2517 MI.setDesc(HII.get(Hexagon::A2_nop));
2518 while (MI.getNumOperands() > 0)
2519 MI.RemoveOperand(0);
2522 bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH,
2523 const CellMap &Inputs, LatticeCell &Result) {
2524 assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg));
2525 LatticeCell LSL, LSH;
2526 if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH))
2527 return false;
2528 if (LSL.isProperty() || LSH.isProperty())
2529 return false;
2531 unsigned LN = LSL.size(), HN = LSH.size();
2532 SmallVector<APInt,4> LoVs(LN), HiVs(HN);
2533 for (unsigned i = 0; i < LN; ++i) {
2534 bool Eval = constToInt(LSL.Values[i], LoVs[i]);
2535 if (!Eval)
2536 return false;
2537 assert(LoVs[i].getBitWidth() == 32);
2539 for (unsigned i = 0; i < HN; ++i) {
2540 bool Eval = constToInt(LSH.Values[i], HiVs[i]);
2541 if (!Eval)
2542 return false;
2543 assert(HiVs[i].getBitWidth() == 32);
2546 for (unsigned i = 0; i < HiVs.size(); ++i) {
2547 APInt HV = HiVs[i].zextOrSelf(64) << 32;
2548 for (unsigned j = 0; j < LoVs.size(); ++j) {
2549 APInt LV = LoVs[j].zextOrSelf(64);
2550 const Constant *C = intToConst(HV | LV);
2551 Result.add(C);
2552 if (Result.isBottom())
2553 return false;
2556 return !Result.isBottom();
2559 bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI,
2560 const CellMap &Inputs, CellMap &Outputs) {
2561 unsigned Opc = MI.getOpcode();
2562 bool Classic = false;
2563 switch (Opc) {
2564 case Hexagon::C2_cmpeq:
2565 case Hexagon::C2_cmpeqp:
2566 case Hexagon::C2_cmpgt:
2567 case Hexagon::C2_cmpgtp:
2568 case Hexagon::C2_cmpgtu:
2569 case Hexagon::C2_cmpgtup:
2570 case Hexagon::C2_cmpeqi:
2571 case Hexagon::C2_cmpgti:
2572 case Hexagon::C2_cmpgtui:
2573 // Classic compare: Dst0 = CMP Src1, Src2
2574 Classic = true;
2575 break;
2576 default:
2577 // Not handling other compare instructions now.
2578 return false;
2581 if (Classic) {
2582 const MachineOperand &Src1 = MI.getOperand(1);
2583 const MachineOperand &Src2 = MI.getOperand(2);
2585 bool Result;
2586 unsigned Opc = MI.getOpcode();
2587 bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result);
2588 if (Computed) {
2589 // Only create a zero/non-zero cell. At this time there isn't really
2590 // much need for specific values.
2591 RegisterSubReg DefR(MI.getOperand(0));
2592 LatticeCell L = Outputs.get(DefR.Reg);
2593 uint32_t P = Result ? ConstantProperties::NonZero
2594 : ConstantProperties::Zero;
2595 L.add(P);
2596 Outputs.update(DefR.Reg, L);
2597 return true;
2601 return false;
2604 bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc,
2605 const MachineOperand &Src1, const MachineOperand &Src2,
2606 const CellMap &Inputs, bool &Result) {
2607 uint32_t Cmp = getCmp(Opc);
2608 bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg();
2609 bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm();
2610 if (Reg1) {
2611 RegisterSubReg R1(Src1);
2612 if (Reg2) {
2613 RegisterSubReg R2(Src2);
2614 return evaluateCMPrr(Cmp, R1, R2, Inputs, Result);
2615 } else if (Imm2) {
2616 APInt A2 = getCmpImm(Opc, 2, Src2);
2617 return evaluateCMPri(Cmp, R1, A2, Inputs, Result);
2619 } else if (Imm1) {
2620 APInt A1 = getCmpImm(Opc, 1, Src1);
2621 if (Reg2) {
2622 RegisterSubReg R2(Src2);
2623 uint32_t NegCmp = Comparison::negate(Cmp);
2624 return evaluateCMPri(NegCmp, R2, A1, Inputs, Result);
2625 } else if (Imm2) {
2626 APInt A2 = getCmpImm(Opc, 2, Src2);
2627 return evaluateCMPii(Cmp, A1, A2, Result);
2630 // Unknown kind of comparison.
2631 return false;
2634 bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI,
2635 const CellMap &Inputs, CellMap &Outputs) {
2636 unsigned Opc = MI.getOpcode();
2637 if (MI.getNumOperands() != 3)
2638 return false;
2639 const MachineOperand &Src1 = MI.getOperand(1);
2640 const MachineOperand &Src2 = MI.getOperand(2);
2641 RegisterSubReg R1(Src1);
2642 bool Eval = false;
2643 LatticeCell RC;
2644 switch (Opc) {
2645 default:
2646 return false;
2647 case Hexagon::A2_and:
2648 case Hexagon::A2_andp:
2649 Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC);
2650 break;
2651 case Hexagon::A2_andir: {
2652 if (!Src2.isImm())
2653 return false;
2654 APInt A(32, Src2.getImm(), true);
2655 Eval = evaluateANDri(R1, A, Inputs, RC);
2656 break;
2658 case Hexagon::A2_or:
2659 case Hexagon::A2_orp:
2660 Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2661 break;
2662 case Hexagon::A2_orir: {
2663 if (!Src2.isImm())
2664 return false;
2665 APInt A(32, Src2.getImm(), true);
2666 Eval = evaluateORri(R1, A, Inputs, RC);
2667 break;
2669 case Hexagon::A2_xor:
2670 case Hexagon::A2_xorp:
2671 Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2672 break;
2674 if (Eval) {
2675 RegisterSubReg DefR(MI.getOperand(0));
2676 Outputs.update(DefR.Reg, RC);
2678 return Eval;
2681 bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI,
2682 const CellMap &Inputs, CellMap &Outputs) {
2683 // Dst0 = Cond1 ? Src2 : Src3
2684 RegisterSubReg CR(MI.getOperand(1));
2685 assert(Inputs.has(CR.Reg));
2686 LatticeCell LS;
2687 if (!getCell(CR, Inputs, LS))
2688 return false;
2689 uint32_t Ps = LS.properties();
2690 unsigned TakeOp;
2691 if (Ps & ConstantProperties::Zero)
2692 TakeOp = 3;
2693 else if (Ps & ConstantProperties::NonZero)
2694 TakeOp = 2;
2695 else
2696 return false;
2698 const MachineOperand &ValOp = MI.getOperand(TakeOp);
2699 RegisterSubReg DefR(MI.getOperand(0));
2700 LatticeCell RC = Outputs.get(DefR.Reg);
2702 if (ValOp.isImm()) {
2703 int64_t V = ValOp.getImm();
2704 unsigned W = getRegBitWidth(DefR.Reg);
2705 APInt A(W, V, true);
2706 const Constant *C = intToConst(A);
2707 RC.add(C);
2708 Outputs.update(DefR.Reg, RC);
2709 return true;
2711 if (ValOp.isReg()) {
2712 RegisterSubReg R(ValOp);
2713 const LatticeCell &LR = Inputs.get(R.Reg);
2714 LatticeCell LSR;
2715 if (!evaluate(R, LR, LSR))
2716 return false;
2717 RC.meet(LSR);
2718 Outputs.update(DefR.Reg, RC);
2719 return true;
2721 return false;
2724 bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI,
2725 const CellMap &Inputs, CellMap &Outputs) {
2726 // Dst0 = ext R1
2727 RegisterSubReg R1(MI.getOperand(1));
2728 assert(Inputs.has(R1.Reg));
2730 unsigned Opc = MI.getOpcode();
2731 unsigned Bits;
2732 switch (Opc) {
2733 case Hexagon::A2_sxtb:
2734 case Hexagon::A2_zxtb:
2735 Bits = 8;
2736 break;
2737 case Hexagon::A2_sxth:
2738 case Hexagon::A2_zxth:
2739 Bits = 16;
2740 break;
2741 case Hexagon::A2_sxtw:
2742 Bits = 32;
2743 break;
2744 default:
2745 llvm_unreachable("Unhandled extension opcode");
2748 bool Signed = false;
2749 switch (Opc) {
2750 case Hexagon::A2_sxtb:
2751 case Hexagon::A2_sxth:
2752 case Hexagon::A2_sxtw:
2753 Signed = true;
2754 break;
2757 RegisterSubReg DefR(MI.getOperand(0));
2758 unsigned BW = getRegBitWidth(DefR.Reg);
2759 LatticeCell RC = Outputs.get(DefR.Reg);
2760 bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC)
2761 : evaluateZEXTr(R1, BW, Bits, Inputs, RC);
2762 if (!Eval)
2763 return false;
2764 Outputs.update(DefR.Reg, RC);
2765 return true;
2768 bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI,
2769 const CellMap &Inputs, CellMap &Outputs) {
2770 // DefR = op R1
2771 RegisterSubReg DefR(MI.getOperand(0));
2772 RegisterSubReg R1(MI.getOperand(1));
2773 assert(Inputs.has(R1.Reg));
2774 LatticeCell RC = Outputs.get(DefR.Reg);
2775 bool Eval;
2777 unsigned Opc = MI.getOpcode();
2778 switch (Opc) {
2779 case Hexagon::S2_vsplatrb:
2780 // Rd = 4 times Rs:0..7
2781 Eval = evaluateSplatr(R1, 8, 4, Inputs, RC);
2782 break;
2783 case Hexagon::S2_vsplatrh:
2784 // Rdd = 4 times Rs:0..15
2785 Eval = evaluateSplatr(R1, 16, 4, Inputs, RC);
2786 break;
2787 default:
2788 return false;
2791 if (!Eval)
2792 return false;
2793 Outputs.update(DefR.Reg, RC);
2794 return true;
2797 bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI,
2798 const CellMap &Inputs, bool &AllDefs) {
2799 AllDefs = false;
2801 // Some diagnostics.
2802 // LLVM_DEBUG({...}) gets confused with all this code as an argument.
2803 #ifndef NDEBUG
2804 bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE);
2805 if (Debugging) {
2806 bool Const = true, HasUse = false;
2807 for (const MachineOperand &MO : MI.operands()) {
2808 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2809 continue;
2810 RegisterSubReg R(MO);
2811 if (!R.Reg.isVirtual())
2812 continue;
2813 HasUse = true;
2814 // PHIs can legitimately have "top" cells after propagation.
2815 if (!MI.isPHI() && !Inputs.has(R.Reg)) {
2816 dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg)
2817 << " in MI: " << MI;
2818 continue;
2820 const LatticeCell &L = Inputs.get(R.Reg);
2821 Const &= L.isSingle();
2822 if (!Const)
2823 break;
2825 if (HasUse && Const) {
2826 if (!MI.isCopy()) {
2827 dbgs() << "CONST: " << MI;
2828 for (const MachineOperand &MO : MI.operands()) {
2829 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2830 continue;
2831 Register R = MO.getReg();
2832 dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n";
2837 #endif
2839 // Avoid generating TFRIs for register transfers---this will keep the
2840 // coalescing opportunities.
2841 if (MI.isCopy())
2842 return false;
2844 MachineFunction *MF = MI.getParent()->getParent();
2845 auto &HST = MF->getSubtarget<HexagonSubtarget>();
2847 // Collect all virtual register-def operands.
2848 SmallVector<unsigned,2> DefRegs;
2849 for (const MachineOperand &MO : MI.operands()) {
2850 if (!MO.isReg() || !MO.isDef())
2851 continue;
2852 Register R = MO.getReg();
2853 if (!R.isVirtual())
2854 continue;
2855 assert(!MO.getSubReg());
2856 assert(Inputs.has(R));
2857 DefRegs.push_back(R);
2860 MachineBasicBlock &B = *MI.getParent();
2861 const DebugLoc &DL = MI.getDebugLoc();
2862 unsigned ChangedNum = 0;
2863 #ifndef NDEBUG
2864 SmallVector<const MachineInstr*,4> NewInstrs;
2865 #endif
2867 // For each defined register, if it is a constant, create an instruction
2868 // NewR = const
2869 // and replace all uses of the defined register with NewR.
2870 for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) {
2871 unsigned R = DefRegs[i];
2872 const LatticeCell &L = Inputs.get(R);
2873 if (L.isBottom())
2874 continue;
2875 const TargetRegisterClass *RC = MRI->getRegClass(R);
2876 MachineBasicBlock::iterator At = MI.getIterator();
2878 if (!L.isSingle()) {
2879 // If this a zero/non-zero cell, we can fold a definition
2880 // of a predicate register.
2881 using P = ConstantProperties;
2883 uint64_t Ps = L.properties();
2884 if (!(Ps & (P::Zero|P::NonZero)))
2885 continue;
2886 const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
2887 if (RC != PredRC)
2888 continue;
2889 const MCInstrDesc *NewD = (Ps & P::Zero) ?
2890 &HII.get(Hexagon::PS_false) :
2891 &HII.get(Hexagon::PS_true);
2892 Register NewR = MRI->createVirtualRegister(PredRC);
2893 const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR);
2894 (void)MIB;
2895 #ifndef NDEBUG
2896 NewInstrs.push_back(&*MIB);
2897 #endif
2898 replaceAllRegUsesWith(R, NewR);
2899 } else {
2900 // This cell has a single value.
2901 APInt A;
2902 if (!constToInt(L.Value, A) || !A.isSignedIntN(64))
2903 continue;
2904 const TargetRegisterClass *NewRC;
2905 const MCInstrDesc *NewD;
2907 unsigned W = getRegBitWidth(R);
2908 int64_t V = A.getSExtValue();
2909 assert(W == 32 || W == 64);
2910 if (W == 32)
2911 NewRC = &Hexagon::IntRegsRegClass;
2912 else
2913 NewRC = &Hexagon::DoubleRegsRegClass;
2914 Register NewR = MRI->createVirtualRegister(NewRC);
2915 const MachineInstr *NewMI;
2917 if (W == 32) {
2918 NewD = &HII.get(Hexagon::A2_tfrsi);
2919 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2920 .addImm(V);
2921 } else {
2922 if (A.isSignedIntN(8)) {
2923 NewD = &HII.get(Hexagon::A2_tfrpi);
2924 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2925 .addImm(V);
2926 } else {
2927 int32_t Hi = V >> 32;
2928 int32_t Lo = V & 0xFFFFFFFFLL;
2929 if (isInt<8>(Hi) && isInt<8>(Lo)) {
2930 NewD = &HII.get(Hexagon::A2_combineii);
2931 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2932 .addImm(Hi)
2933 .addImm(Lo);
2934 } else if (MF->getFunction().hasOptSize() || !HST.isTinyCore()) {
2935 // Disable CONST64 for tiny core since it takes a LD resource.
2936 NewD = &HII.get(Hexagon::CONST64);
2937 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2938 .addImm(V);
2939 } else
2940 return false;
2943 (void)NewMI;
2944 #ifndef NDEBUG
2945 NewInstrs.push_back(NewMI);
2946 #endif
2947 replaceAllRegUsesWith(R, NewR);
2949 ChangedNum++;
2952 LLVM_DEBUG({
2953 if (!NewInstrs.empty()) {
2954 MachineFunction &MF = *MI.getParent()->getParent();
2955 dbgs() << "In function: " << MF.getName() << "\n";
2956 dbgs() << "Rewrite: for " << MI << " created " << *NewInstrs[0];
2957 for (unsigned i = 1; i < NewInstrs.size(); ++i)
2958 dbgs() << " " << *NewInstrs[i];
2962 AllDefs = (ChangedNum == DefRegs.size());
2963 return ChangedNum > 0;
2966 bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI,
2967 const CellMap &Inputs) {
2968 bool Changed = false;
2969 unsigned Opc = MI.getOpcode();
2970 MachineBasicBlock &B = *MI.getParent();
2971 const DebugLoc &DL = MI.getDebugLoc();
2972 MachineBasicBlock::iterator At = MI.getIterator();
2973 MachineInstr *NewMI = nullptr;
2975 switch (Opc) {
2976 case Hexagon::M2_maci:
2977 // Convert DefR += mpyi(R2, R3)
2978 // to DefR += mpyi(R, #imm),
2979 // or DefR -= mpyi(R, #imm).
2981 RegisterSubReg DefR(MI.getOperand(0));
2982 assert(!DefR.SubReg);
2983 RegisterSubReg R2(MI.getOperand(2));
2984 RegisterSubReg R3(MI.getOperand(3));
2985 assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg));
2986 LatticeCell LS2, LS3;
2987 // It is enough to get one of the input cells, since we will only try
2988 // to replace one argument---whichever happens to be a single constant.
2989 bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3);
2990 if (!HasC2 && !HasC3)
2991 return false;
2992 bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) ||
2993 (HasC3 && (LS3.properties() & ConstantProperties::Zero)));
2994 // If one of the operands is zero, eliminate the multiplication.
2995 if (Zero) {
2996 // DefR == R1 (tied operands).
2997 MachineOperand &Acc = MI.getOperand(1);
2998 RegisterSubReg R1(Acc);
2999 unsigned NewR = R1.Reg;
3000 if (R1.SubReg) {
3001 // Generate COPY. FIXME: Replace with the register:subregister.
3002 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3003 NewR = MRI->createVirtualRegister(RC);
3004 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3005 .addReg(R1.Reg, getRegState(Acc), R1.SubReg);
3007 replaceAllRegUsesWith(DefR.Reg, NewR);
3008 MRI->clearKillFlags(NewR);
3009 Changed = true;
3010 break;
3013 bool Swap = false;
3014 if (!LS3.isSingle()) {
3015 if (!LS2.isSingle())
3016 return false;
3017 Swap = true;
3019 const LatticeCell &LI = Swap ? LS2 : LS3;
3020 const MachineOperand &OpR2 = Swap ? MI.getOperand(3)
3021 : MI.getOperand(2);
3022 // LI is single here.
3023 APInt A;
3024 if (!constToInt(LI.Value, A) || !A.isSignedIntN(8))
3025 return false;
3026 int64_t V = A.getSExtValue();
3027 const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip)
3028 : HII.get(Hexagon::M2_macsin);
3029 if (V < 0)
3030 V = -V;
3031 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3032 Register NewR = MRI->createVirtualRegister(RC);
3033 const MachineOperand &Src1 = MI.getOperand(1);
3034 NewMI = BuildMI(B, At, DL, D, NewR)
3035 .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg())
3036 .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg())
3037 .addImm(V);
3038 replaceAllRegUsesWith(DefR.Reg, NewR);
3039 Changed = true;
3040 break;
3043 case Hexagon::A2_and:
3045 RegisterSubReg R1(MI.getOperand(1));
3046 RegisterSubReg R2(MI.getOperand(2));
3047 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3048 LatticeCell LS1, LS2;
3049 unsigned CopyOf = 0;
3050 // Check if any of the operands is -1 (i.e. all bits set).
3051 if (getCell(R1, Inputs, LS1) && LS1.isSingle()) {
3052 APInt M1;
3053 if (constToInt(LS1.Value, M1) && !~M1)
3054 CopyOf = 2;
3056 else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) {
3057 APInt M1;
3058 if (constToInt(LS2.Value, M1) && !~M1)
3059 CopyOf = 1;
3061 if (!CopyOf)
3062 return false;
3063 MachineOperand &SO = MI.getOperand(CopyOf);
3064 RegisterSubReg SR(SO);
3065 RegisterSubReg DefR(MI.getOperand(0));
3066 unsigned NewR = SR.Reg;
3067 if (SR.SubReg) {
3068 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3069 NewR = MRI->createVirtualRegister(RC);
3070 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3071 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3073 replaceAllRegUsesWith(DefR.Reg, NewR);
3074 MRI->clearKillFlags(NewR);
3075 Changed = true;
3077 break;
3079 case Hexagon::A2_or:
3081 RegisterSubReg R1(MI.getOperand(1));
3082 RegisterSubReg R2(MI.getOperand(2));
3083 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3084 LatticeCell LS1, LS2;
3085 unsigned CopyOf = 0;
3087 using P = ConstantProperties;
3089 if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero))
3090 CopyOf = 2;
3091 else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero))
3092 CopyOf = 1;
3093 if (!CopyOf)
3094 return false;
3095 MachineOperand &SO = MI.getOperand(CopyOf);
3096 RegisterSubReg SR(SO);
3097 RegisterSubReg DefR(MI.getOperand(0));
3098 unsigned NewR = SR.Reg;
3099 if (SR.SubReg) {
3100 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3101 NewR = MRI->createVirtualRegister(RC);
3102 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3103 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3105 replaceAllRegUsesWith(DefR.Reg, NewR);
3106 MRI->clearKillFlags(NewR);
3107 Changed = true;
3109 break;
3112 if (NewMI) {
3113 // clear all the kill flags of this new instruction.
3114 for (MachineOperand &MO : NewMI->operands())
3115 if (MO.isReg() && MO.isUse())
3116 MO.setIsKill(false);
3119 LLVM_DEBUG({
3120 if (NewMI) {
3121 dbgs() << "Rewrite: for " << MI;
3122 if (NewMI != &MI)
3123 dbgs() << " created " << *NewMI;
3124 else
3125 dbgs() << " modified the instruction itself and created:" << *NewMI;
3129 return Changed;
3132 void HexagonConstEvaluator::replaceAllRegUsesWith(Register FromReg,
3133 Register ToReg) {
3134 assert(FromReg.isVirtual());
3135 assert(ToReg.isVirtual());
3136 for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) {
3137 MachineOperand &O = *I;
3138 ++I;
3139 O.setReg(ToReg);
3143 bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI,
3144 const CellMap &Inputs) {
3145 MachineBasicBlock &B = *BrI.getParent();
3146 unsigned NumOp = BrI.getNumOperands();
3147 if (!NumOp)
3148 return false;
3150 bool FallsThru;
3151 SetVector<const MachineBasicBlock*> Targets;
3152 bool Eval = evaluate(BrI, Inputs, Targets, FallsThru);
3153 unsigned NumTargets = Targets.size();
3154 if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru))
3155 return false;
3156 if (BrI.getOpcode() == Hexagon::J2_jump)
3157 return false;
3159 LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI);
3160 bool Rewritten = false;
3161 if (NumTargets > 0) {
3162 assert(!FallsThru && "This should have been checked before");
3163 // MIB.addMBB needs non-const pointer.
3164 MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]);
3165 bool Moot = B.isLayoutSuccessor(TargetB);
3166 if (!Moot) {
3167 // If we build a branch here, we must make sure that it won't be
3168 // erased as "non-executable". We can't mark any new instructions
3169 // as executable here, so we need to overwrite the BrI, which we
3170 // know is executable.
3171 const MCInstrDesc &JD = HII.get(Hexagon::J2_jump);
3172 auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD)
3173 .addMBB(TargetB);
3174 BrI.setDesc(JD);
3175 while (BrI.getNumOperands() > 0)
3176 BrI.RemoveOperand(0);
3177 // This ensures that all implicit operands (e.g. implicit-def %r31, etc)
3178 // are present in the rewritten branch.
3179 for (auto &Op : NI->operands())
3180 BrI.addOperand(Op);
3181 NI->eraseFromParent();
3182 Rewritten = true;
3186 // Do not erase instructions. A newly created instruction could get
3187 // the same address as an instruction marked as executable during the
3188 // propagation.
3189 if (!Rewritten)
3190 replaceWithNop(BrI);
3191 return true;
3194 FunctionPass *llvm::createHexagonConstPropagationPass() {
3195 return new HexagonConstPropagation();