[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonFrameLowering.cpp
blob5b782543b3b4f0e90d3c17b6b37253e51a1295bb
1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <map>
63 #include <utility>
64 #include <vector>
66 #define DEBUG_TYPE "hexagon-pei"
68 // Hexagon stack frame layout as defined by the ABI:
70 // Incoming arguments
71 // passed via stack
72 // |
73 // |
74 // SP during function's FP during function's |
75 // +-- runtime (top of stack) runtime (bottom) --+ |
76 // | | |
77 // --++---------------------+------------------+-----------------++-+-------
78 // | parameter area for | variable-size | fixed-size |LR| arg
79 // | called functions | local objects | local objects |FP|
80 // --+----------------------+------------------+-----------------+--+-------
81 // <- size known -> <- size unknown -> <- size known ->
83 // Low address High address
85 // <--- stack growth
88 // - In any circumstances, the outgoing function arguments are always accessi-
89 // ble using the SP, and the incoming arguments are accessible using the FP.
90 // - If the local objects are not aligned, they can always be accessed using
91 // the FP.
92 // - If there are no variable-sized objects, the local objects can always be
93 // accessed using the SP, regardless whether they are aligned or not. (The
94 // alignment padding will be at the bottom of the stack (highest address),
95 // and so the offset with respect to the SP will be known at the compile-
96 // -time.)
98 // The only complication occurs if there are both, local aligned objects, and
99 // dynamically allocated (variable-sized) objects. The alignment pad will be
100 // placed between the FP and the local objects, thus preventing the use of the
101 // FP to access the local objects. At the same time, the variable-sized objects
102 // will be between the SP and the local objects, thus introducing an unknown
103 // distance from the SP to the locals.
105 // To avoid this problem, a new register is created that holds the aligned
106 // address of the bottom of the stack, referred in the sources as AP (aligned
107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
108 // that aligns AP to the required boundary (a maximum of the alignments of
109 // all stack objects, fixed- and variable-sized). All local objects[1] will
110 // then use AP as the base pointer.
111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
112 // their name from being allocated at fixed locations on the stack, relative
113 // to the FP. In the presence of dynamic allocation and local alignment, such
114 // objects can only be accessed through the FP.
116 // Illustration of the AP:
117 // FP --+
118 // |
119 // ---------------+---------------------+-----+-----------------------++-+--
120 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
121 // stack frame | (aligned) | | (CSR, spills, etc.) |FP|
122 // ---------------+---------------------+-----+-----------------+-----+--+--
123 // |<-- Multiple of the -->|
124 // stack alignment +-- AP
126 // The AP is set up at the beginning of the function. Since it is not a dedi-
127 // cated (reserved) register, it needs to be kept live throughout the function
128 // to be available as the base register for local object accesses.
129 // Normally, an address of a stack objects is obtained by a pseudo-instruction
130 // PS_fi. To access local objects with the AP register present, a different
131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
132 // argument compared to PS_fi: the first input register is the AP register.
133 // This keeps the register live between its definition and its uses.
135 // The AP register is originally set up using pseudo-instruction PS_aligna:
136 // AP = PS_aligna A
137 // where
138 // A - required stack alignment
139 // The alignment value must be the maximum of all alignments required by
140 // any stack object.
142 // The dynamic allocation uses a pseudo-instruction PS_alloca:
143 // Rd = PS_alloca Rs, A
144 // where
145 // Rd - address of the allocated space
146 // Rs - minimum size (the actual allocated can be larger to accommodate
147 // alignment)
148 // A - required alignment
150 using namespace llvm;
152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
153 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
155 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
156 cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
157 cl::ZeroOrMore);
159 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
160 cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
161 cl::init(6), cl::ZeroOrMore);
163 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
164 cl::Hidden, cl::desc("Specify Os spill func threshold"),
165 cl::init(1), cl::ZeroOrMore);
167 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
168 cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
169 cl::init(false), cl::ZeroOrMore);
171 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
172 cl::init(true), cl::Hidden, cl::ZeroOrMore,
173 cl::desc("Enable stack frame shrink wrapping"));
175 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit",
176 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore,
177 cl::desc("Max count of stack frame shrink-wraps"));
179 static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long",
180 cl::Hidden, cl::desc("Enable long calls for save-restore stubs."),
181 cl::init(false), cl::ZeroOrMore);
183 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
184 cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
186 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
187 cl::init(true), cl::desc("Optimize spill slots"));
189 #ifndef NDEBUG
190 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
191 cl::init(std::numeric_limits<unsigned>::max()));
192 static unsigned SpillOptCount = 0;
193 #endif
195 namespace llvm {
197 void initializeHexagonCallFrameInformationPass(PassRegistry&);
198 FunctionPass *createHexagonCallFrameInformation();
200 } // end namespace llvm
202 namespace {
204 class HexagonCallFrameInformation : public MachineFunctionPass {
205 public:
206 static char ID;
208 HexagonCallFrameInformation() : MachineFunctionPass(ID) {
209 PassRegistry &PR = *PassRegistry::getPassRegistry();
210 initializeHexagonCallFrameInformationPass(PR);
213 bool runOnMachineFunction(MachineFunction &MF) override;
215 MachineFunctionProperties getRequiredProperties() const override {
216 return MachineFunctionProperties().set(
217 MachineFunctionProperties::Property::NoVRegs);
221 char HexagonCallFrameInformation::ID = 0;
223 } // end anonymous namespace
225 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
226 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
227 bool NeedCFI = MF.needsFrameMoves();
229 if (!NeedCFI)
230 return false;
231 HFI.insertCFIInstructions(MF);
232 return true;
235 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
236 "Hexagon call frame information", false, false)
238 FunctionPass *llvm::createHexagonCallFrameInformation() {
239 return new HexagonCallFrameInformation();
242 /// Map a register pair Reg to the subregister that has the greater "number",
243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
244 static unsigned getMax32BitSubRegister(unsigned Reg,
245 const TargetRegisterInfo &TRI,
246 bool hireg = true) {
247 if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
248 return Reg;
250 unsigned RegNo = 0;
251 for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
252 if (hireg) {
253 if (*SubRegs > RegNo)
254 RegNo = *SubRegs;
255 } else {
256 if (!RegNo || *SubRegs < RegNo)
257 RegNo = *SubRegs;
260 return RegNo;
263 /// Returns the callee saved register with the largest id in the vector.
264 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
265 const TargetRegisterInfo &TRI) {
266 static_assert(Hexagon::R1 > 0,
267 "Assume physical registers are encoded as positive integers");
268 if (CSI.empty())
269 return 0;
271 unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
272 for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
273 unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
274 if (Reg > Max)
275 Max = Reg;
277 return Max;
280 /// Checks if the basic block contains any instruction that needs a stack
281 /// frame to be already in place.
282 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
283 const HexagonRegisterInfo &HRI) {
284 for (auto &I : MBB) {
285 const MachineInstr *MI = &I;
286 if (MI->isCall())
287 return true;
288 unsigned Opc = MI->getOpcode();
289 switch (Opc) {
290 case Hexagon::PS_alloca:
291 case Hexagon::PS_aligna:
292 return true;
293 default:
294 break;
296 // Check individual operands.
297 for (const MachineOperand &MO : MI->operands()) {
298 // While the presence of a frame index does not prove that a stack
299 // frame will be required, all frame indexes should be within alloc-
300 // frame/deallocframe. Otherwise, the code that translates a frame
301 // index into an offset would have to be aware of the placement of
302 // the frame creation/destruction instructions.
303 if (MO.isFI())
304 return true;
305 if (MO.isReg()) {
306 Register R = MO.getReg();
307 // Virtual registers will need scavenging, which then may require
308 // a stack slot.
309 if (R.isVirtual())
310 return true;
311 for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
312 if (CSR[*S])
313 return true;
314 continue;
316 if (MO.isRegMask()) {
317 // A regmask would normally have all callee-saved registers marked
318 // as preserved, so this check would not be needed, but in case of
319 // ever having other regmasks (for other calling conventions),
320 // make sure they would be processed correctly.
321 const uint32_t *BM = MO.getRegMask();
322 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
323 unsigned R = x;
324 // If this regmask does not preserve a CSR, a frame will be needed.
325 if (!(BM[R/32] & (1u << (R%32))))
326 return true;
331 return false;
334 /// Returns true if MBB has a machine instructions that indicates a tail call
335 /// in the block.
336 static bool hasTailCall(const MachineBasicBlock &MBB) {
337 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
338 if (I == MBB.end())
339 return false;
340 unsigned RetOpc = I->getOpcode();
341 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
344 /// Returns true if MBB contains an instruction that returns.
345 static bool hasReturn(const MachineBasicBlock &MBB) {
346 for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
347 if (I->isReturn())
348 return true;
349 return false;
352 /// Returns the "return" instruction from this block, or nullptr if there
353 /// isn't any.
354 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
355 for (auto &I : MBB)
356 if (I.isReturn())
357 return &I;
358 return nullptr;
361 static bool isRestoreCall(unsigned Opc) {
362 switch (Opc) {
363 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
364 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
365 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
366 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
367 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
368 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
369 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
370 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
371 return true;
373 return false;
376 static inline bool isOptNone(const MachineFunction &MF) {
377 return MF.getFunction().hasOptNone() ||
378 MF.getTarget().getOptLevel() == CodeGenOpt::None;
381 static inline bool isOptSize(const MachineFunction &MF) {
382 const Function &F = MF.getFunction();
383 return F.hasOptSize() && !F.hasMinSize();
386 static inline bool isMinSize(const MachineFunction &MF) {
387 return MF.getFunction().hasMinSize();
390 /// Implements shrink-wrapping of the stack frame. By default, stack frame
391 /// is created in the function entry block, and is cleaned up in every block
392 /// that returns. This function finds alternate blocks: one for the frame
393 /// setup (prolog) and one for the cleanup (epilog).
394 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
395 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
396 static unsigned ShrinkCounter = 0;
398 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
399 MF.getFunction().isVarArg())
400 return;
401 if (ShrinkLimit.getPosition()) {
402 if (ShrinkCounter >= ShrinkLimit)
403 return;
404 ShrinkCounter++;
407 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
409 MachineDominatorTree MDT;
410 MDT.runOnMachineFunction(MF);
411 MachinePostDominatorTree MPT;
412 MPT.runOnMachineFunction(MF);
414 using UnsignedMap = DenseMap<unsigned, unsigned>;
415 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
417 UnsignedMap RPO;
418 RPOTType RPOT(&MF);
419 unsigned RPON = 0;
420 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
421 RPO[(*I)->getNumber()] = RPON++;
423 // Don't process functions that have loops, at least for now. Placement
424 // of prolog and epilog must take loop structure into account. For simpli-
425 // city don't do it right now.
426 for (auto &I : MF) {
427 unsigned BN = RPO[I.getNumber()];
428 for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
429 // If found a back-edge, return.
430 if (RPO[(*SI)->getNumber()] <= BN)
431 return;
435 // Collect the set of blocks that need a stack frame to execute. Scan
436 // each block for uses/defs of callee-saved registers, calls, etc.
437 SmallVector<MachineBasicBlock*,16> SFBlocks;
438 BitVector CSR(Hexagon::NUM_TARGET_REGS);
439 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
440 for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
441 CSR[*S] = true;
443 for (auto &I : MF)
444 if (needsStackFrame(I, CSR, HRI))
445 SFBlocks.push_back(&I);
447 LLVM_DEBUG({
448 dbgs() << "Blocks needing SF: {";
449 for (auto &B : SFBlocks)
450 dbgs() << " " << printMBBReference(*B);
451 dbgs() << " }\n";
453 // No frame needed?
454 if (SFBlocks.empty())
455 return;
457 // Pick a common dominator and a common post-dominator.
458 MachineBasicBlock *DomB = SFBlocks[0];
459 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
460 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
461 if (!DomB)
462 break;
464 MachineBasicBlock *PDomB = SFBlocks[0];
465 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
466 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
467 if (!PDomB)
468 break;
470 LLVM_DEBUG({
471 dbgs() << "Computed dom block: ";
472 if (DomB)
473 dbgs() << printMBBReference(*DomB);
474 else
475 dbgs() << "<null>";
476 dbgs() << ", computed pdom block: ";
477 if (PDomB)
478 dbgs() << printMBBReference(*PDomB);
479 else
480 dbgs() << "<null>";
481 dbgs() << "\n";
483 if (!DomB || !PDomB)
484 return;
486 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
487 if (!MDT.dominates(DomB, PDomB)) {
488 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
489 return;
491 if (!MPT.dominates(PDomB, DomB)) {
492 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
493 return;
496 // Finally, everything seems right.
497 PrologB = DomB;
498 EpilogB = PDomB;
501 /// Perform most of the PEI work here:
502 /// - saving/restoring of the callee-saved registers,
503 /// - stack frame creation and destruction.
504 /// Normally, this work is distributed among various functions, but doing it
505 /// in one place allows shrink-wrapping of the stack frame.
506 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
507 MachineBasicBlock &MBB) const {
508 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
510 MachineFrameInfo &MFI = MF.getFrameInfo();
511 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
513 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
514 if (EnableShrinkWrapping)
515 findShrunkPrologEpilog(MF, PrologB, EpilogB);
517 bool PrologueStubs = false;
518 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
519 insertPrologueInBlock(*PrologB, PrologueStubs);
520 updateEntryPaths(MF, *PrologB);
522 if (EpilogB) {
523 insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
524 insertEpilogueInBlock(*EpilogB);
525 } else {
526 for (auto &B : MF)
527 if (B.isReturnBlock())
528 insertCSRRestoresInBlock(B, CSI, HRI);
530 for (auto &B : MF)
531 if (B.isReturnBlock())
532 insertEpilogueInBlock(B);
534 for (auto &B : MF) {
535 if (B.empty())
536 continue;
537 MachineInstr *RetI = getReturn(B);
538 if (!RetI || isRestoreCall(RetI->getOpcode()))
539 continue;
540 for (auto &R : CSI)
541 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
545 if (EpilogB) {
546 // If there is an epilog block, it may not have a return instruction.
547 // In such case, we need to add the callee-saved registers as live-ins
548 // in all blocks on all paths from the epilog to any return block.
549 unsigned MaxBN = MF.getNumBlockIDs();
550 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
551 updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
555 /// Returns true if the target can safely skip saving callee-saved registers
556 /// for noreturn nounwind functions.
557 bool HexagonFrameLowering::enableCalleeSaveSkip(
558 const MachineFunction &MF) const {
559 const auto &F = MF.getFunction();
560 assert(F.hasFnAttribute(Attribute::NoReturn) &&
561 F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
562 !F.getFunction().hasFnAttribute(Attribute::UWTable));
563 (void)F;
565 // No need to save callee saved registers if the function does not return.
566 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
569 // Helper function used to determine when to eliminate the stack frame for
570 // functions marked as noreturn and when the noreturn-stack-elim options are
571 // specified. When both these conditions are true, then a FP may not be needed
572 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
573 // but it used to check if the allocframe can be eliminated as well.
574 static bool enableAllocFrameElim(const MachineFunction &MF) {
575 const auto &F = MF.getFunction();
576 const auto &MFI = MF.getFrameInfo();
577 const auto &HST = MF.getSubtarget<HexagonSubtarget>();
578 assert(!MFI.hasVarSizedObjects() &&
579 !HST.getRegisterInfo()->hasStackRealignment(MF));
580 return F.hasFnAttribute(Attribute::NoReturn) &&
581 F.hasFnAttribute(Attribute::NoUnwind) &&
582 !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
583 MFI.getStackSize() == 0;
586 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
587 bool PrologueStubs) const {
588 MachineFunction &MF = *MBB.getParent();
589 MachineFrameInfo &MFI = MF.getFrameInfo();
590 auto &HST = MF.getSubtarget<HexagonSubtarget>();
591 auto &HII = *HST.getInstrInfo();
592 auto &HRI = *HST.getRegisterInfo();
594 Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
596 // Calculate the total stack frame size.
597 // Get the number of bytes to allocate from the FrameInfo.
598 unsigned FrameSize = MFI.getStackSize();
599 // Round up the max call frame size to the max alignment on the stack.
600 unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
601 MFI.setMaxCallFrameSize(MaxCFA);
603 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
604 MFI.setStackSize(FrameSize);
606 bool AlignStack = (MaxAlign > getStackAlign());
608 // Get the number of bytes to allocate from the FrameInfo.
609 unsigned NumBytes = MFI.getStackSize();
610 unsigned SP = HRI.getStackRegister();
611 unsigned MaxCF = MFI.getMaxCallFrameSize();
612 MachineBasicBlock::iterator InsertPt = MBB.begin();
614 SmallVector<MachineInstr *, 4> AdjustRegs;
615 for (auto &MBB : MF)
616 for (auto &MI : MBB)
617 if (MI.getOpcode() == Hexagon::PS_alloca)
618 AdjustRegs.push_back(&MI);
620 for (auto MI : AdjustRegs) {
621 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
622 expandAlloca(MI, HII, SP, MaxCF);
623 MI->eraseFromParent();
626 DebugLoc dl = MBB.findDebugLoc(InsertPt);
628 if (MF.getFunction().isVarArg() &&
629 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
630 // Calculate the size of register saved area.
631 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
632 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
633 ? NumVarArgRegs * 4
634 : NumVarArgRegs * 4 + 4;
635 if (RegisterSavedAreaSizePlusPadding > 0) {
636 // Decrement the stack pointer by size of register saved area plus
637 // padding if any.
638 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
639 .addReg(SP)
640 .addImm(-RegisterSavedAreaSizePlusPadding)
641 .setMIFlag(MachineInstr::FrameSetup);
643 int NumBytes = 0;
644 // Copy all the named arguments below register saved area.
645 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
646 for (int i = HMFI.getFirstNamedArgFrameIndex(),
647 e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
648 uint64_t ObjSize = MFI.getObjectSize(i);
649 Align ObjAlign = MFI.getObjectAlign(i);
651 // Determine the kind of load/store that should be used.
652 unsigned LDOpc, STOpc;
653 uint64_t OpcodeChecker = ObjAlign.value();
655 // Handle cases where alignment of an object is > its size.
656 if (ObjAlign > ObjSize) {
657 if (ObjSize <= 1)
658 OpcodeChecker = 1;
659 else if (ObjSize <= 2)
660 OpcodeChecker = 2;
661 else if (ObjSize <= 4)
662 OpcodeChecker = 4;
663 else if (ObjSize > 4)
664 OpcodeChecker = 8;
667 switch (OpcodeChecker) {
668 case 1:
669 LDOpc = Hexagon::L2_loadrb_io;
670 STOpc = Hexagon::S2_storerb_io;
671 break;
672 case 2:
673 LDOpc = Hexagon::L2_loadrh_io;
674 STOpc = Hexagon::S2_storerh_io;
675 break;
676 case 4:
677 LDOpc = Hexagon::L2_loadri_io;
678 STOpc = Hexagon::S2_storeri_io;
679 break;
680 case 8:
681 default:
682 LDOpc = Hexagon::L2_loadrd_io;
683 STOpc = Hexagon::S2_storerd_io;
684 break;
687 unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
688 : Hexagon::R6;
689 int LoadStoreCount = ObjSize / OpcodeChecker;
691 if (ObjSize % OpcodeChecker)
692 ++LoadStoreCount;
694 // Get the start location of the load. NumBytes is basically the
695 // offset from the stack pointer of previous function, which would be
696 // the caller in this case, as this function has variable argument
697 // list.
698 if (NumBytes != 0)
699 NumBytes = alignTo(NumBytes, ObjAlign);
701 int Count = 0;
702 while (Count < LoadStoreCount) {
703 // Load the value of the named argument on stack.
704 BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
705 .addReg(SP)
706 .addImm(RegisterSavedAreaSizePlusPadding +
707 ObjAlign.value() * Count + NumBytes)
708 .setMIFlag(MachineInstr::FrameSetup);
710 // Store it below the register saved area plus padding.
711 BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
712 .addReg(SP)
713 .addImm(ObjAlign.value() * Count + NumBytes)
714 .addReg(RegUsed)
715 .setMIFlag(MachineInstr::FrameSetup);
717 Count++;
719 NumBytes += MFI.getObjectSize(i);
722 // Make NumBytes 8 byte aligned
723 NumBytes = alignTo(NumBytes, 8);
725 // If the number of registers having variable arguments is odd,
726 // leave 4 bytes of padding to get to the location where first
727 // variable argument which was passed through register was copied.
728 NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
730 for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
731 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
732 .addReg(SP)
733 .addImm(NumBytes + 4 * i)
734 .addReg(Hexagon::R0 + j)
735 .setMIFlag(MachineInstr::FrameSetup);
740 if (hasFP(MF)) {
741 insertAllocframe(MBB, InsertPt, NumBytes);
742 if (AlignStack) {
743 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
744 .addReg(SP)
745 .addImm(-int64_t(MaxAlign.value()));
747 // If the stack-checking is enabled, and we spilled the callee-saved
748 // registers inline (i.e. did not use a spill function), then call
749 // the stack checker directly.
750 if (EnableStackOVFSanitizer && !PrologueStubs)
751 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
752 .addExternalSymbol("__runtime_stack_check");
753 } else if (NumBytes > 0) {
754 assert(alignTo(NumBytes, 8) == NumBytes);
755 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
756 .addReg(SP)
757 .addImm(-int(NumBytes));
761 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
762 MachineFunction &MF = *MBB.getParent();
763 auto &HST = MF.getSubtarget<HexagonSubtarget>();
764 auto &HII = *HST.getInstrInfo();
765 auto &HRI = *HST.getRegisterInfo();
766 unsigned SP = HRI.getStackRegister();
768 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
769 DebugLoc dl = MBB.findDebugLoc(InsertPt);
771 if (!hasFP(MF)) {
772 MachineFrameInfo &MFI = MF.getFrameInfo();
773 unsigned NumBytes = MFI.getStackSize();
774 if (MF.getFunction().isVarArg() &&
775 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
776 // On Hexagon Linux, deallocate the stack for the register saved area.
777 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
778 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
779 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
780 NumBytes += RegisterSavedAreaSizePlusPadding;
782 if (NumBytes) {
783 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
784 .addReg(SP)
785 .addImm(NumBytes);
787 return;
790 MachineInstr *RetI = getReturn(MBB);
791 unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
793 // Handle EH_RETURN.
794 if (RetOpc == Hexagon::EH_RETURN_JMPR) {
795 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
796 .addDef(Hexagon::D15)
797 .addReg(Hexagon::R30);
798 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
799 .addReg(SP)
800 .addReg(Hexagon::R28);
801 return;
804 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
805 // frame instruction if we encounter it.
806 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
807 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
808 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
809 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
810 MachineBasicBlock::iterator It = RetI;
811 ++It;
812 // Delete all instructions after the RESTORE (except labels).
813 while (It != MBB.end()) {
814 if (!It->isLabel())
815 It = MBB.erase(It);
816 else
817 ++It;
819 return;
822 // It is possible that the restoring code is a call to a library function.
823 // All of the restore* functions include "deallocframe", so we need to make
824 // sure that we don't add an extra one.
825 bool NeedsDeallocframe = true;
826 if (!MBB.empty() && InsertPt != MBB.begin()) {
827 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
828 unsigned COpc = PrevIt->getOpcode();
829 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
830 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
831 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
832 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
833 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
834 NeedsDeallocframe = false;
837 if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
838 !MF.getFunction().isVarArg()) {
839 if (!NeedsDeallocframe)
840 return;
841 // If the returning instruction is PS_jmpret, replace it with
842 // dealloc_return, otherwise just add deallocframe. The function
843 // could be returning via a tail call.
844 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
845 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
846 .addDef(Hexagon::D15)
847 .addReg(Hexagon::R30);
848 return;
850 unsigned NewOpc = Hexagon::L4_return;
851 MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
852 .addDef(Hexagon::D15)
853 .addReg(Hexagon::R30);
854 // Transfer the function live-out registers.
855 NewI->copyImplicitOps(MF, *RetI);
856 MBB.erase(RetI);
857 } else {
858 // L2_deallocframe instruction after it.
859 // Calculate the size of register saved area.
860 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
861 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
862 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
864 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
865 MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
866 : std::prev(Term);
867 if (I == MBB.end() ||
868 (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
869 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
870 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
871 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
872 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
873 .addDef(Hexagon::D15)
874 .addReg(Hexagon::R30);
875 if (RegisterSavedAreaSizePlusPadding != 0)
876 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
877 .addReg(SP)
878 .addImm(RegisterSavedAreaSizePlusPadding);
882 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
883 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
884 MachineFunction &MF = *MBB.getParent();
885 auto &HST = MF.getSubtarget<HexagonSubtarget>();
886 auto &HII = *HST.getInstrInfo();
887 auto &HRI = *HST.getRegisterInfo();
889 // Check for overflow.
890 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
891 const unsigned int ALLOCFRAME_MAX = 16384;
893 // Create a dummy memory operand to avoid allocframe from being treated as
894 // a volatile memory reference.
895 auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
896 MachineMemOperand::MOStore, 4, Align(4));
898 DebugLoc dl = MBB.findDebugLoc(InsertPt);
899 unsigned SP = HRI.getStackRegister();
901 if (NumBytes >= ALLOCFRAME_MAX) {
902 // Emit allocframe(#0).
903 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
904 .addDef(SP)
905 .addReg(SP)
906 .addImm(0)
907 .addMemOperand(MMO);
909 // Subtract the size from the stack pointer.
910 unsigned SP = HRI.getStackRegister();
911 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
912 .addReg(SP)
913 .addImm(-int(NumBytes));
914 } else {
915 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
916 .addDef(SP)
917 .addReg(SP)
918 .addImm(NumBytes)
919 .addMemOperand(MMO);
923 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
924 MachineBasicBlock &SaveB) const {
925 SetVector<unsigned> Worklist;
927 MachineBasicBlock &EntryB = MF.front();
928 Worklist.insert(EntryB.getNumber());
930 unsigned SaveN = SaveB.getNumber();
931 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
933 for (unsigned i = 0; i < Worklist.size(); ++i) {
934 unsigned BN = Worklist[i];
935 MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
936 for (auto &R : CSI)
937 if (!MBB.isLiveIn(R.getReg()))
938 MBB.addLiveIn(R.getReg());
939 if (BN != SaveN)
940 for (auto &SB : MBB.successors())
941 Worklist.insert(SB->getNumber());
945 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
946 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
947 BitVector &Path) const {
948 assert(MBB.getNumber() >= 0);
949 unsigned BN = MBB.getNumber();
950 if (Path[BN] || DoneF[BN])
951 return false;
952 if (DoneT[BN])
953 return true;
955 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
957 Path[BN] = true;
958 bool ReachedExit = false;
959 for (auto &SB : MBB.successors())
960 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
962 if (!MBB.empty() && MBB.back().isReturn()) {
963 // Add implicit uses of all callee-saved registers to the reached
964 // return instructions. This is to prevent the anti-dependency breaker
965 // from renaming these registers.
966 MachineInstr &RetI = MBB.back();
967 if (!isRestoreCall(RetI.getOpcode()))
968 for (auto &R : CSI)
969 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
970 ReachedExit = true;
973 // We don't want to add unnecessary live-ins to the restore block: since
974 // the callee-saved registers are being defined in it, the entry of the
975 // restore block cannot be on the path from the definitions to any exit.
976 if (ReachedExit && &MBB != &RestoreB) {
977 for (auto &R : CSI)
978 if (!MBB.isLiveIn(R.getReg()))
979 MBB.addLiveIn(R.getReg());
980 DoneT[BN] = true;
982 if (!ReachedExit)
983 DoneF[BN] = true;
985 Path[BN] = false;
986 return ReachedExit;
989 static Optional<MachineBasicBlock::iterator>
990 findCFILocation(MachineBasicBlock &B) {
991 // The CFI instructions need to be inserted right after allocframe.
992 // An exception to this is a situation where allocframe is bundled
993 // with a call: then the CFI instructions need to be inserted before
994 // the packet with the allocframe+call (in case the call throws an
995 // exception).
996 auto End = B.instr_end();
998 for (MachineInstr &I : B) {
999 MachineBasicBlock::iterator It = I.getIterator();
1000 if (!I.isBundle()) {
1001 if (I.getOpcode() == Hexagon::S2_allocframe)
1002 return std::next(It);
1003 continue;
1005 // I is a bundle.
1006 bool HasCall = false, HasAllocFrame = false;
1007 auto T = It.getInstrIterator();
1008 while (++T != End && T->isBundled()) {
1009 if (T->getOpcode() == Hexagon::S2_allocframe)
1010 HasAllocFrame = true;
1011 else if (T->isCall())
1012 HasCall = true;
1014 if (HasAllocFrame)
1015 return HasCall ? It : std::next(It);
1017 return None;
1020 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1021 for (auto &B : MF) {
1022 auto At = findCFILocation(B);
1023 if (At.hasValue())
1024 insertCFIInstructionsAt(B, At.getValue());
1028 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1029 MachineBasicBlock::iterator At) const {
1030 MachineFunction &MF = *MBB.getParent();
1031 MachineFrameInfo &MFI = MF.getFrameInfo();
1032 MachineModuleInfo &MMI = MF.getMMI();
1033 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1034 auto &HII = *HST.getInstrInfo();
1035 auto &HRI = *HST.getRegisterInfo();
1037 // If CFI instructions have debug information attached, something goes
1038 // wrong with the final assembly generation: the prolog_end is placed
1039 // in a wrong location.
1040 DebugLoc DL;
1041 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1043 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1044 bool HasFP = hasFP(MF);
1046 if (HasFP) {
1047 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1048 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1050 // Define CFA via an offset from the value of FP.
1052 // -8 -4 0 (SP)
1053 // --+----+----+---------------------
1054 // | FP | LR | increasing addresses -->
1055 // --+----+----+---------------------
1056 // | +-- Old SP (before allocframe)
1057 // +-- New FP (after allocframe)
1059 // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1060 // MCCFIInstruction::createOffset takes the offset without sign change.
1061 auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1062 BuildMI(MBB, At, DL, CFID)
1063 .addCFIIndex(MF.addFrameInst(DefCfa));
1064 // R31 (return addr) = CFA - 4
1065 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1066 BuildMI(MBB, At, DL, CFID)
1067 .addCFIIndex(MF.addFrameInst(OffR31));
1068 // R30 (frame ptr) = CFA - 8
1069 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1070 BuildMI(MBB, At, DL, CFID)
1071 .addCFIIndex(MF.addFrameInst(OffR30));
1074 static unsigned int RegsToMove[] = {
1075 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
1076 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1077 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1078 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1079 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9,
1080 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1081 Hexagon::NoRegister
1084 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1086 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1087 unsigned Reg = RegsToMove[i];
1088 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1089 return C.getReg() == Reg;
1091 auto F = find_if(CSI, IfR);
1092 if (F == CSI.end())
1093 continue;
1095 int64_t Offset;
1096 if (HasFP) {
1097 // If the function has a frame pointer (i.e. has an allocframe),
1098 // then the CFA has been defined in terms of FP. Any offsets in
1099 // the following CFI instructions have to be defined relative
1100 // to FP, which points to the bottom of the stack frame.
1101 // The function getFrameIndexReference can still choose to use SP
1102 // for the offset calculation, so we cannot simply call it here.
1103 // Instead, get the offset (relative to the FP) directly.
1104 Offset = MFI.getObjectOffset(F->getFrameIdx());
1105 } else {
1106 Register FrameReg;
1107 Offset =
1108 getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed();
1110 // Subtract 8 to make room for R30 and R31, which are added above.
1111 Offset -= 8;
1113 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1114 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1115 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1116 Offset);
1117 BuildMI(MBB, At, DL, CFID)
1118 .addCFIIndex(MF.addFrameInst(OffReg));
1119 } else {
1120 // Split the double regs into subregs, and generate appropriate
1121 // cfi_offsets.
1122 // The only reason, we are split double regs is, llvm-mc does not
1123 // understand paired registers for cfi_offset.
1124 // Eg .cfi_offset r1:0, -64
1126 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1127 Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1128 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1129 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1130 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1131 Offset+4);
1132 BuildMI(MBB, At, DL, CFID)
1133 .addCFIIndex(MF.addFrameInst(OffHi));
1134 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1135 Offset);
1136 BuildMI(MBB, At, DL, CFID)
1137 .addCFIIndex(MF.addFrameInst(OffLo));
1142 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1143 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1144 return false;
1146 auto &MFI = MF.getFrameInfo();
1147 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1148 bool HasExtraAlign = HRI.hasStackRealignment(MF);
1149 bool HasAlloca = MFI.hasVarSizedObjects();
1151 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
1152 // that this shouldn't be required, but doing so now because gcc does and
1153 // gdb can't break at the start of the function without it. Will remove if
1154 // this turns out to be a gdb bug.
1156 if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
1157 return true;
1159 // By default we want to use SP (since it's always there). FP requires
1160 // some setup (i.e. ALLOCFRAME).
1161 // Both, alloca and stack alignment modify the stack pointer by an
1162 // undetermined value, so we need to save it at the entry to the function
1163 // (i.e. use allocframe).
1164 if (HasAlloca || HasExtraAlign)
1165 return true;
1167 if (MFI.getStackSize() > 0) {
1168 // If FP-elimination is disabled, we have to use FP at this point.
1169 const TargetMachine &TM = MF.getTarget();
1170 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1171 return true;
1172 if (EnableStackOVFSanitizer)
1173 return true;
1176 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1177 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1178 return true;
1180 return false;
1183 enum SpillKind {
1184 SK_ToMem,
1185 SK_FromMem,
1186 SK_FromMemTailcall
1189 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
1190 bool Stkchk = false) {
1191 const char * V4SpillToMemoryFunctions[] = {
1192 "__save_r16_through_r17",
1193 "__save_r16_through_r19",
1194 "__save_r16_through_r21",
1195 "__save_r16_through_r23",
1196 "__save_r16_through_r25",
1197 "__save_r16_through_r27" };
1199 const char * V4SpillToMemoryStkchkFunctions[] = {
1200 "__save_r16_through_r17_stkchk",
1201 "__save_r16_through_r19_stkchk",
1202 "__save_r16_through_r21_stkchk",
1203 "__save_r16_through_r23_stkchk",
1204 "__save_r16_through_r25_stkchk",
1205 "__save_r16_through_r27_stkchk" };
1207 const char * V4SpillFromMemoryFunctions[] = {
1208 "__restore_r16_through_r17_and_deallocframe",
1209 "__restore_r16_through_r19_and_deallocframe",
1210 "__restore_r16_through_r21_and_deallocframe",
1211 "__restore_r16_through_r23_and_deallocframe",
1212 "__restore_r16_through_r25_and_deallocframe",
1213 "__restore_r16_through_r27_and_deallocframe" };
1215 const char * V4SpillFromMemoryTailcallFunctions[] = {
1216 "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1217 "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1218 "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1219 "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1220 "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1221 "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1224 const char **SpillFunc = nullptr;
1226 switch(SpillType) {
1227 case SK_ToMem:
1228 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1229 : V4SpillToMemoryFunctions;
1230 break;
1231 case SK_FromMem:
1232 SpillFunc = V4SpillFromMemoryFunctions;
1233 break;
1234 case SK_FromMemTailcall:
1235 SpillFunc = V4SpillFromMemoryTailcallFunctions;
1236 break;
1238 assert(SpillFunc && "Unknown spill kind");
1240 // Spill all callee-saved registers up to the highest register used.
1241 switch (MaxReg) {
1242 case Hexagon::R17:
1243 return SpillFunc[0];
1244 case Hexagon::R19:
1245 return SpillFunc[1];
1246 case Hexagon::R21:
1247 return SpillFunc[2];
1248 case Hexagon::R23:
1249 return SpillFunc[3];
1250 case Hexagon::R25:
1251 return SpillFunc[4];
1252 case Hexagon::R27:
1253 return SpillFunc[5];
1254 default:
1255 llvm_unreachable("Unhandled maximum callee save register");
1257 return nullptr;
1260 StackOffset
1261 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1262 Register &FrameReg) const {
1263 auto &MFI = MF.getFrameInfo();
1264 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1266 int Offset = MFI.getObjectOffset(FI);
1267 bool HasAlloca = MFI.hasVarSizedObjects();
1268 bool HasExtraAlign = HRI.hasStackRealignment(MF);
1269 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
1271 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1272 unsigned FrameSize = MFI.getStackSize();
1273 Register SP = HRI.getStackRegister();
1274 Register FP = HRI.getFrameRegister();
1275 Register AP = HMFI.getStackAlignBasePhysReg();
1276 // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1277 // is true. HasExtraAlign may be set because of vector spills, without
1278 // aligned locals or aligned outgoing function arguments. Since vector
1279 // spills will ultimately be "unaligned", it is safe to use FP as the
1280 // base register.
1281 // In fact, in such a scenario the stack is actually not required to be
1282 // aligned, although it may end up being aligned anyway, since this
1283 // particular case is not easily detectable. The alignment will be
1284 // unnecessary, but not incorrect.
1285 // Unfortunately there is no quick way to verify that the above is
1286 // indeed the case (and that it's not a result of an error), so just
1287 // assume that missing AP will be replaced by FP.
1288 // (A better fix would be to rematerialize AP from FP and always align
1289 // vector spills.)
1290 if (AP == 0)
1291 AP = FP;
1293 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0).
1294 // Use FP at -O0, except when there are objects with extra alignment.
1295 // That additional alignment requirement may cause a pad to be inserted,
1296 // which will make it impossible to use FP to access objects located
1297 // past the pad.
1298 if (NoOpt && !HasExtraAlign)
1299 UseFP = true;
1300 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1301 // Fixed and preallocated objects will be located before any padding
1302 // so FP must be used to access them.
1303 UseFP |= (HasAlloca || HasExtraAlign);
1304 } else {
1305 if (HasAlloca) {
1306 if (HasExtraAlign)
1307 UseAP = true;
1308 else
1309 UseFP = true;
1313 // If FP was picked, then there had better be FP.
1314 bool HasFP = hasFP(MF);
1315 assert((HasFP || !UseFP) && "This function must have frame pointer");
1317 // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1318 // FP/LR. If the base register is used to access an object across these
1319 // 8 bytes, then the offset will need to be adjusted by 8.
1321 // After allocframe:
1322 // HexagonISelLowering adds 8 to ---+
1323 // the offsets of all stack-based |
1324 // arguments (*) |
1325 // |
1326 // getObjectOffset < 0 0 8 getObjectOffset >= 8
1327 // ------------------------+-----+------------------------> increasing
1328 // <local objects> |FP/LR| <input arguments> addresses
1329 // -----------------+------+-----+------------------------>
1330 // | |
1331 // SP/AP point --+ +-- FP points here (**)
1332 // somewhere on
1333 // this side of FP/LR
1335 // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1336 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1338 // The lowering assumes that FP/LR is present, and so the offsets of
1339 // the formal arguments start at 8. If FP/LR is not there we need to
1340 // reduce the offset by 8.
1341 if (Offset > 0 && !HasFP)
1342 Offset -= 8;
1344 if (UseFP)
1345 FrameReg = FP;
1346 else if (UseAP)
1347 FrameReg = AP;
1348 else
1349 FrameReg = SP;
1351 // Calculate the actual offset in the instruction. If there is no FP
1352 // (in other words, no allocframe), then SP will not be adjusted (i.e.
1353 // there will be no SP -= FrameSize), so the frame size should not be
1354 // added to the calculated offset.
1355 int RealOffset = Offset;
1356 if (!UseFP && !UseAP)
1357 RealOffset = FrameSize+Offset;
1358 return StackOffset::getFixed(RealOffset);
1361 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1362 const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1363 bool &PrologueStubs) const {
1364 if (CSI.empty())
1365 return true;
1367 MachineBasicBlock::iterator MI = MBB.begin();
1368 PrologueStubs = false;
1369 MachineFunction &MF = *MBB.getParent();
1370 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1371 auto &HII = *HST.getInstrInfo();
1373 if (useSpillFunction(MF, CSI)) {
1374 PrologueStubs = true;
1375 unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1376 bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1377 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1378 StkOvrFlowEnabled);
1379 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1380 bool IsPIC = HTM.isPositionIndependent();
1381 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1383 // Call spill function.
1384 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1385 unsigned SpillOpc;
1386 if (StkOvrFlowEnabled) {
1387 if (LongCalls)
1388 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1389 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1390 else
1391 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1392 : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1393 } else {
1394 if (LongCalls)
1395 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1396 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1397 else
1398 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1399 : Hexagon::SAVE_REGISTERS_CALL_V4;
1402 MachineInstr *SaveRegsCall =
1403 BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1404 .addExternalSymbol(SpillFun);
1406 // Add callee-saved registers as use.
1407 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1408 // Add live in registers.
1409 for (unsigned I = 0; I < CSI.size(); ++I)
1410 MBB.addLiveIn(CSI[I].getReg());
1411 return true;
1414 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1415 unsigned Reg = CSI[i].getReg();
1416 // Add live in registers. We treat eh_return callee saved register r0 - r3
1417 // specially. They are not really callee saved registers as they are not
1418 // supposed to be killed.
1419 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1420 int FI = CSI[i].getFrameIdx();
1421 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1422 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1423 if (IsKill)
1424 MBB.addLiveIn(Reg);
1426 return true;
1429 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1430 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1431 if (CSI.empty())
1432 return false;
1434 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1435 MachineFunction &MF = *MBB.getParent();
1436 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1437 auto &HII = *HST.getInstrInfo();
1439 if (useRestoreFunction(MF, CSI)) {
1440 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1441 unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1442 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1443 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1444 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1445 bool IsPIC = HTM.isPositionIndependent();
1446 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1448 // Call spill function.
1449 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1450 : MBB.findDebugLoc(MBB.end());
1451 MachineInstr *DeallocCall = nullptr;
1453 if (HasTC) {
1454 unsigned RetOpc;
1455 if (LongCalls)
1456 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1457 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1458 else
1459 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1460 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1461 DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1462 .addExternalSymbol(RestoreFn);
1463 } else {
1464 // The block has a return.
1465 MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1466 assert(It->isReturn() && std::next(It) == MBB.end());
1467 unsigned RetOpc;
1468 if (LongCalls)
1469 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1470 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1471 else
1472 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1473 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1474 DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1475 .addExternalSymbol(RestoreFn);
1476 // Transfer the function live-out registers.
1477 DeallocCall->copyImplicitOps(MF, *It);
1479 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1480 return true;
1483 for (unsigned i = 0; i < CSI.size(); ++i) {
1484 unsigned Reg = CSI[i].getReg();
1485 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1486 int FI = CSI[i].getFrameIdx();
1487 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1490 return true;
1493 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1494 MachineFunction &MF, MachineBasicBlock &MBB,
1495 MachineBasicBlock::iterator I) const {
1496 MachineInstr &MI = *I;
1497 unsigned Opc = MI.getOpcode();
1498 (void)Opc; // Silence compiler warning.
1499 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1500 "Cannot handle this call frame pseudo instruction");
1501 return MBB.erase(I);
1504 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1505 MachineFunction &MF, RegScavenger *RS) const {
1506 // If this function has uses aligned stack and also has variable sized stack
1507 // objects, then we need to map all spill slots to fixed positions, so that
1508 // they can be accessed through FP. Otherwise they would have to be accessed
1509 // via AP, which may not be available at the particular place in the program.
1510 MachineFrameInfo &MFI = MF.getFrameInfo();
1511 bool HasAlloca = MFI.hasVarSizedObjects();
1512 bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1514 if (!HasAlloca || !NeedsAlign)
1515 return;
1517 SmallSet<int, 4> DealignSlots;
1518 unsigned LFS = MFI.getLocalFrameSize();
1519 for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
1520 if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
1521 continue;
1522 unsigned S = MFI.getObjectSize(i);
1523 // Reduce the alignment to at most 8. This will require unaligned vector
1524 // stores if they happen here.
1525 Align A = std::max(MFI.getObjectAlign(i), Align(8));
1526 MFI.setObjectAlignment(i, Align(8));
1527 LFS = alignTo(LFS+S, A);
1528 MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS));
1529 DealignSlots.insert(i);
1532 MFI.setLocalFrameSize(LFS);
1533 Align A = MFI.getLocalFrameMaxAlign();
1534 assert(A <= 8 && "Unexpected local frame alignment");
1535 if (A == 1)
1536 MFI.setLocalFrameMaxAlign(Align(8));
1537 MFI.setUseLocalStackAllocationBlock(true);
1539 // Go over all MachineMemOperands in the code, and change the ones that
1540 // refer to the dealigned stack slots to reflect the new alignment.
1541 if (!DealignSlots.empty()) {
1542 for (MachineBasicBlock &BB : MF) {
1543 for (MachineInstr &MI : BB) {
1544 bool KeepOld = true;
1545 ArrayRef<MachineMemOperand*> memops = MI.memoperands();
1546 SmallVector<MachineMemOperand*,1> new_memops;
1547 for (MachineMemOperand *MMO : memops) {
1548 auto *PV = MMO->getPseudoValue();
1549 if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) {
1550 int FI = FS->getFrameIndex();
1551 if (DealignSlots.count(FI)) {
1552 auto *NewMMO = MF.getMachineMemOperand(
1553 MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(),
1554 MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(),
1555 MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
1556 MMO->getFailureOrdering());
1557 new_memops.push_back(NewMMO);
1558 KeepOld = false;
1559 continue;
1562 new_memops.push_back(MMO);
1564 if (!KeepOld)
1565 MI.setMemRefs(MF, new_memops);
1570 // Set the physical aligned-stack base address register.
1571 unsigned AP = 0;
1572 if (const MachineInstr *AI = getAlignaInstr(MF))
1573 AP = AI->getOperand(0).getReg();
1574 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1575 HMFI.setStackAlignBasePhysReg(AP);
1578 /// Returns true if there are no caller-saved registers available in class RC.
1579 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1580 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1581 MachineRegisterInfo &MRI = MF.getRegInfo();
1583 auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1584 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1585 if (MRI.isPhysRegUsed(*AI))
1586 return true;
1587 return false;
1590 // Check for an unused caller-saved register. Callee-saved registers
1591 // have become pristine by now.
1592 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1593 if (!IsUsed(*P))
1594 return false;
1596 // All caller-saved registers are used.
1597 return true;
1600 #ifndef NDEBUG
1601 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1602 dbgs() << '{';
1603 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1604 unsigned R = x;
1605 dbgs() << ' ' << printReg(R, &TRI);
1607 dbgs() << " }";
1609 #endif
1611 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1612 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1613 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1614 MachineFrameInfo &MFI = MF.getFrameInfo();
1615 BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1617 // Generate a set of unique, callee-saved registers (SRegs), where each
1618 // register in the set is maximal in terms of sub-/super-register relation,
1619 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1621 // (1) For each callee-saved register, add that register and all of its
1622 // sub-registers to SRegs.
1623 LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1624 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1625 unsigned R = CSI[i].getReg();
1626 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1627 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1628 SRegs[*SR] = true;
1630 LLVM_DEBUG(dbgs() << " }\n");
1631 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1632 dbgs() << "\n");
1634 // (2) For each reserved register, remove that register and all of its
1635 // sub- and super-registers from SRegs.
1636 BitVector Reserved = TRI->getReservedRegs(MF);
1637 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1638 unsigned R = x;
1639 for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1640 SRegs[*SR] = false;
1642 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI);
1643 dbgs() << "\n");
1644 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1645 dbgs() << "\n");
1647 // (3) Collect all registers that have at least one sub-register in SRegs,
1648 // and also have no sub-registers that are reserved. These will be the can-
1649 // didates for saving as a whole instead of their individual sub-registers.
1650 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1651 BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1652 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1653 unsigned R = x;
1654 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1655 TmpSup[*SR] = true;
1657 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1658 unsigned R = x;
1659 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1660 if (!Reserved[*SR])
1661 continue;
1662 TmpSup[R] = false;
1663 break;
1666 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI);
1667 dbgs() << "\n");
1669 // (4) Include all super-registers found in (3) into SRegs.
1670 SRegs |= TmpSup;
1671 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1672 dbgs() << "\n");
1674 // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1675 // remove R from SRegs.
1676 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1677 unsigned R = x;
1678 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1679 if (!SRegs[*SR])
1680 continue;
1681 SRegs[R] = false;
1682 break;
1685 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1686 dbgs() << "\n");
1688 // Now, for each register that has a fixed stack slot, create the stack
1689 // object for it.
1690 CSI.clear();
1692 using SpillSlot = TargetFrameLowering::SpillSlot;
1694 unsigned NumFixed;
1695 int MinOffset = 0; // CS offsets are negative.
1696 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1697 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1698 if (!SRegs[S->Reg])
1699 continue;
1700 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1701 int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1702 MinOffset = std::min(MinOffset, S->Offset);
1703 CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1704 SRegs[S->Reg] = false;
1707 // There can be some registers that don't have fixed slots. For example,
1708 // we need to store R0-R3 in functions with exception handling. For each
1709 // such register, create a non-fixed stack object.
1710 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1711 unsigned R = x;
1712 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1713 unsigned Size = TRI->getSpillSize(*RC);
1714 int Off = MinOffset - Size;
1715 Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1716 Off &= -Alignment.value();
1717 int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1718 MinOffset = std::min(MinOffset, Off);
1719 CSI.push_back(CalleeSavedInfo(R, FI));
1720 SRegs[R] = false;
1723 LLVM_DEBUG({
1724 dbgs() << "CS information: {";
1725 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1726 int FI = CSI[i].getFrameIdx();
1727 int Off = MFI.getObjectOffset(FI);
1728 dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
1729 if (Off >= 0)
1730 dbgs() << '+';
1731 dbgs() << Off;
1733 dbgs() << " }\n";
1736 #ifndef NDEBUG
1737 // Verify that all registers were handled.
1738 bool MissedReg = false;
1739 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1740 unsigned R = x;
1741 dbgs() << printReg(R, TRI) << ' ';
1742 MissedReg = true;
1744 if (MissedReg)
1745 llvm_unreachable("...there are unhandled callee-saved registers!");
1746 #endif
1748 return true;
1751 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1752 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1753 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1754 MachineInstr *MI = &*It;
1755 DebugLoc DL = MI->getDebugLoc();
1756 Register DstR = MI->getOperand(0).getReg();
1757 Register SrcR = MI->getOperand(1).getReg();
1758 if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1759 !Hexagon::ModRegsRegClass.contains(SrcR))
1760 return false;
1762 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1763 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1764 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1765 .addReg(TmpR, RegState::Kill);
1767 NewRegs.push_back(TmpR);
1768 B.erase(It);
1769 return true;
1772 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1773 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1774 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1775 MachineInstr *MI = &*It;
1776 if (!MI->getOperand(0).isFI())
1777 return false;
1779 DebugLoc DL = MI->getDebugLoc();
1780 unsigned Opc = MI->getOpcode();
1781 Register SrcR = MI->getOperand(2).getReg();
1782 bool IsKill = MI->getOperand(2).isKill();
1783 int FI = MI->getOperand(0).getIndex();
1785 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register
1786 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
1787 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1788 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1789 : Hexagon::A2_tfrcrr;
1790 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1791 .addReg(SrcR, getKillRegState(IsKill));
1793 // S2_storeri_io FI, 0, TmpR
1794 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1795 .addFrameIndex(FI)
1796 .addImm(0)
1797 .addReg(TmpR, RegState::Kill)
1798 .cloneMemRefs(*MI);
1800 NewRegs.push_back(TmpR);
1801 B.erase(It);
1802 return true;
1805 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1806 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1807 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1808 MachineInstr *MI = &*It;
1809 if (!MI->getOperand(1).isFI())
1810 return false;
1812 DebugLoc DL = MI->getDebugLoc();
1813 unsigned Opc = MI->getOpcode();
1814 Register DstR = MI->getOperand(0).getReg();
1815 int FI = MI->getOperand(1).getIndex();
1817 // TmpR = L2_loadri_io FI, 0
1818 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1819 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1820 .addFrameIndex(FI)
1821 .addImm(0)
1822 .cloneMemRefs(*MI);
1824 // DstR = C2_tfrrp TmpR if DstR is a predicate register
1825 // DstR = A2_tfrrcr TmpR if DstR is a modifier register
1826 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1827 : Hexagon::A2_tfrrcr;
1828 BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1829 .addReg(TmpR, RegState::Kill);
1831 NewRegs.push_back(TmpR);
1832 B.erase(It);
1833 return true;
1836 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1837 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1838 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1839 MachineInstr *MI = &*It;
1840 if (!MI->getOperand(0).isFI())
1841 return false;
1843 DebugLoc DL = MI->getDebugLoc();
1844 Register SrcR = MI->getOperand(2).getReg();
1845 bool IsKill = MI->getOperand(2).isKill();
1846 int FI = MI->getOperand(0).getIndex();
1847 auto *RC = &Hexagon::HvxVRRegClass;
1849 // Insert transfer to general vector register.
1850 // TmpR0 = A2_tfrsi 0x01010101
1851 // TmpR1 = V6_vandqrt Qx, TmpR0
1852 // store FI, 0, TmpR1
1853 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1854 Register TmpR1 = MRI.createVirtualRegister(RC);
1856 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1857 .addImm(0x01010101);
1859 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1860 .addReg(SrcR, getKillRegState(IsKill))
1861 .addReg(TmpR0, RegState::Kill);
1863 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1864 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1865 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1867 NewRegs.push_back(TmpR0);
1868 NewRegs.push_back(TmpR1);
1869 B.erase(It);
1870 return true;
1873 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1874 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1875 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1876 MachineInstr *MI = &*It;
1877 if (!MI->getOperand(1).isFI())
1878 return false;
1880 DebugLoc DL = MI->getDebugLoc();
1881 Register DstR = MI->getOperand(0).getReg();
1882 int FI = MI->getOperand(1).getIndex();
1883 auto *RC = &Hexagon::HvxVRRegClass;
1885 // TmpR0 = A2_tfrsi 0x01010101
1886 // TmpR1 = load FI, 0
1887 // DstR = V6_vandvrt TmpR1, TmpR0
1888 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1889 Register TmpR1 = MRI.createVirtualRegister(RC);
1891 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1892 .addImm(0x01010101);
1893 MachineFunction &MF = *B.getParent();
1894 auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1895 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1896 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1898 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1899 .addReg(TmpR1, RegState::Kill)
1900 .addReg(TmpR0, RegState::Kill);
1902 NewRegs.push_back(TmpR0);
1903 NewRegs.push_back(TmpR1);
1904 B.erase(It);
1905 return true;
1908 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1909 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1910 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1911 MachineFunction &MF = *B.getParent();
1912 auto &MFI = MF.getFrameInfo();
1913 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1914 MachineInstr *MI = &*It;
1915 if (!MI->getOperand(0).isFI())
1916 return false;
1918 // It is possible that the double vector being stored is only partially
1919 // defined. From the point of view of the liveness tracking, it is ok to
1920 // store it as a whole, but if we break it up we may end up storing a
1921 // register that is entirely undefined.
1922 LivePhysRegs LPR(HRI);
1923 LPR.addLiveIns(B);
1924 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1925 for (auto R = B.begin(); R != It; ++R) {
1926 Clobbers.clear();
1927 LPR.stepForward(*R, Clobbers);
1930 DebugLoc DL = MI->getDebugLoc();
1931 Register SrcR = MI->getOperand(2).getReg();
1932 Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1933 Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1934 bool IsKill = MI->getOperand(2).isKill();
1935 int FI = MI->getOperand(0).getIndex();
1936 bool NeedsAligna = needsAligna(MF);
1938 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1939 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1940 Align HasAlign = MFI.getObjectAlign(FI);
1941 unsigned StoreOpc;
1943 auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1944 return !NeedsAligna && (NeedAlign <= HasAlign);
1947 // Store low part.
1948 if (LPR.contains(SrcLo)) {
1949 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1950 : Hexagon::V6_vS32Ub_ai;
1951 BuildMI(B, It, DL, HII.get(StoreOpc))
1952 .addFrameIndex(FI)
1953 .addImm(0)
1954 .addReg(SrcLo, getKillRegState(IsKill))
1955 .cloneMemRefs(*MI);
1958 // Store high part.
1959 if (LPR.contains(SrcHi)) {
1960 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1961 : Hexagon::V6_vS32Ub_ai;
1962 BuildMI(B, It, DL, HII.get(StoreOpc))
1963 .addFrameIndex(FI)
1964 .addImm(Size)
1965 .addReg(SrcHi, getKillRegState(IsKill))
1966 .cloneMemRefs(*MI);
1969 B.erase(It);
1970 return true;
1973 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1974 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1975 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1976 MachineFunction &MF = *B.getParent();
1977 auto &MFI = MF.getFrameInfo();
1978 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1979 MachineInstr *MI = &*It;
1980 if (!MI->getOperand(1).isFI())
1981 return false;
1983 DebugLoc DL = MI->getDebugLoc();
1984 Register DstR = MI->getOperand(0).getReg();
1985 Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1986 Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1987 int FI = MI->getOperand(1).getIndex();
1988 bool NeedsAligna = needsAligna(MF);
1990 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1991 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1992 Align HasAlign = MFI.getObjectAlign(FI);
1993 unsigned LoadOpc;
1995 auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1996 return !NeedsAligna && (NeedAlign <= HasAlign);
1999 // Load low part.
2000 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2001 : Hexagon::V6_vL32Ub_ai;
2002 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
2003 .addFrameIndex(FI)
2004 .addImm(0)
2005 .cloneMemRefs(*MI);
2007 // Load high part.
2008 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2009 : Hexagon::V6_vL32Ub_ai;
2010 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
2011 .addFrameIndex(FI)
2012 .addImm(Size)
2013 .cloneMemRefs(*MI);
2015 B.erase(It);
2016 return true;
2019 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
2020 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2021 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2022 MachineFunction &MF = *B.getParent();
2023 auto &MFI = MF.getFrameInfo();
2024 MachineInstr *MI = &*It;
2025 if (!MI->getOperand(0).isFI())
2026 return false;
2028 bool NeedsAligna = needsAligna(MF);
2029 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2030 DebugLoc DL = MI->getDebugLoc();
2031 Register SrcR = MI->getOperand(2).getReg();
2032 bool IsKill = MI->getOperand(2).isKill();
2033 int FI = MI->getOperand(0).getIndex();
2035 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2036 Align HasAlign = MFI.getObjectAlign(FI);
2037 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2038 unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai
2039 : Hexagon::V6_vS32Ub_ai;
2040 BuildMI(B, It, DL, HII.get(StoreOpc))
2041 .addFrameIndex(FI)
2042 .addImm(0)
2043 .addReg(SrcR, getKillRegState(IsKill))
2044 .cloneMemRefs(*MI);
2046 B.erase(It);
2047 return true;
2050 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2051 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2052 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2053 MachineFunction &MF = *B.getParent();
2054 auto &MFI = MF.getFrameInfo();
2055 MachineInstr *MI = &*It;
2056 if (!MI->getOperand(1).isFI())
2057 return false;
2059 bool NeedsAligna = needsAligna(MF);
2060 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2061 DebugLoc DL = MI->getDebugLoc();
2062 Register DstR = MI->getOperand(0).getReg();
2063 int FI = MI->getOperand(1).getIndex();
2065 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2066 Align HasAlign = MFI.getObjectAlign(FI);
2067 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2068 unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai
2069 : Hexagon::V6_vL32Ub_ai;
2070 BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2071 .addFrameIndex(FI)
2072 .addImm(0)
2073 .cloneMemRefs(*MI);
2075 B.erase(It);
2076 return true;
2079 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2080 SmallVectorImpl<unsigned> &NewRegs) const {
2081 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2082 MachineRegisterInfo &MRI = MF.getRegInfo();
2083 bool Changed = false;
2085 for (auto &B : MF) {
2086 // Traverse the basic block.
2087 MachineBasicBlock::iterator NextI;
2088 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2089 MachineInstr *MI = &*I;
2090 NextI = std::next(I);
2091 unsigned Opc = MI->getOpcode();
2093 switch (Opc) {
2094 case TargetOpcode::COPY:
2095 Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2096 break;
2097 case Hexagon::STriw_pred:
2098 case Hexagon::STriw_ctr:
2099 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2100 break;
2101 case Hexagon::LDriw_pred:
2102 case Hexagon::LDriw_ctr:
2103 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2104 break;
2105 case Hexagon::PS_vstorerq_ai:
2106 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2107 break;
2108 case Hexagon::PS_vloadrq_ai:
2109 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2110 break;
2111 case Hexagon::PS_vloadrw_ai:
2112 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2113 break;
2114 case Hexagon::PS_vstorerw_ai:
2115 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2116 break;
2121 return Changed;
2124 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2125 BitVector &SavedRegs,
2126 RegScavenger *RS) const {
2127 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2129 SavedRegs.resize(HRI.getNumRegs());
2131 // If we have a function containing __builtin_eh_return we want to spill and
2132 // restore all callee saved registers. Pretend that they are used.
2133 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2134 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2135 SavedRegs.set(*R);
2137 // Replace predicate register pseudo spill code.
2138 SmallVector<unsigned,8> NewRegs;
2139 expandSpillMacros(MF, NewRegs);
2140 if (OptimizeSpillSlots && !isOptNone(MF))
2141 optimizeSpillSlots(MF, NewRegs);
2143 // We need to reserve a spill slot if scavenging could potentially require
2144 // spilling a scavenged register.
2145 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2146 MachineFrameInfo &MFI = MF.getFrameInfo();
2147 MachineRegisterInfo &MRI = MF.getRegInfo();
2148 SetVector<const TargetRegisterClass*> SpillRCs;
2149 // Reserve an int register in any case, because it could be used to hold
2150 // the stack offset in case it does not fit into a spill instruction.
2151 SpillRCs.insert(&Hexagon::IntRegsRegClass);
2153 for (unsigned VR : NewRegs)
2154 SpillRCs.insert(MRI.getRegClass(VR));
2156 for (auto *RC : SpillRCs) {
2157 if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2158 continue;
2159 unsigned Num = 1;
2160 switch (RC->getID()) {
2161 case Hexagon::IntRegsRegClassID:
2162 Num = NumberScavengerSlots;
2163 break;
2164 case Hexagon::HvxQRRegClassID:
2165 Num = 2; // Vector predicate spills also need a vector register.
2166 break;
2168 unsigned S = HRI.getSpillSize(*RC);
2169 Align A = HRI.getSpillAlign(*RC);
2170 for (unsigned i = 0; i < Num; i++) {
2171 int NewFI = MFI.CreateSpillStackObject(S, A);
2172 RS->addScavengingFrameIndex(NewFI);
2177 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2180 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2181 HexagonBlockRanges::IndexRange &FIR,
2182 HexagonBlockRanges::InstrIndexMap &IndexMap,
2183 HexagonBlockRanges::RegToRangeMap &DeadMap,
2184 const TargetRegisterClass *RC) const {
2185 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2186 auto &MRI = MF.getRegInfo();
2188 auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
2189 auto F = DeadMap.find({Reg,0});
2190 if (F == DeadMap.end())
2191 return false;
2192 for (auto &DR : F->second)
2193 if (DR.contains(FIR))
2194 return true;
2195 return false;
2198 for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
2199 bool Dead = true;
2200 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2201 if (isDead(R.Reg))
2202 continue;
2203 Dead = false;
2204 break;
2206 if (Dead)
2207 return Reg;
2209 return 0;
2212 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2213 SmallVectorImpl<unsigned> &VRegs) const {
2214 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2215 auto &HII = *HST.getInstrInfo();
2216 auto &HRI = *HST.getRegisterInfo();
2217 auto &MRI = MF.getRegInfo();
2218 HexagonBlockRanges HBR(MF);
2220 using BlockIndexMap =
2221 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2222 using BlockRangeMap =
2223 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2224 using IndexType = HexagonBlockRanges::IndexType;
2226 struct SlotInfo {
2227 BlockRangeMap Map;
2228 unsigned Size = 0;
2229 const TargetRegisterClass *RC = nullptr;
2231 SlotInfo() = default;
2234 BlockIndexMap BlockIndexes;
2235 SmallSet<int,4> BadFIs;
2236 std::map<int,SlotInfo> FIRangeMap;
2238 // Accumulate register classes: get a common class for a pre-existing
2239 // class HaveRC and a new class NewRC. Return nullptr if a common class
2240 // cannot be found, otherwise return the resulting class. If HaveRC is
2241 // nullptr, assume that it is still unset.
2242 auto getCommonRC =
2243 [](const TargetRegisterClass *HaveRC,
2244 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2245 if (HaveRC == nullptr || HaveRC == NewRC)
2246 return NewRC;
2247 // Different classes, both non-null. Pick the more general one.
2248 if (HaveRC->hasSubClassEq(NewRC))
2249 return HaveRC;
2250 if (NewRC->hasSubClassEq(HaveRC))
2251 return NewRC;
2252 return nullptr;
2255 // Scan all blocks in the function. Check all occurrences of frame indexes,
2256 // and collect relevant information.
2257 for (auto &B : MF) {
2258 std::map<int,IndexType> LastStore, LastLoad;
2259 // Emplace appears not to be supported in gcc 4.7.2-4.
2260 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2261 auto P = BlockIndexes.insert(
2262 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2263 auto &IndexMap = P.first->second;
2264 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2265 << IndexMap << '\n');
2267 for (auto &In : B) {
2268 int LFI, SFI;
2269 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2270 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2271 if (Load && Store) {
2272 // If it's both a load and a store, then we won't handle it.
2273 BadFIs.insert(LFI);
2274 BadFIs.insert(SFI);
2275 continue;
2277 // Check for register classes of the register used as the source for
2278 // the store, and the register used as the destination for the load.
2279 // Also, only accept base+imm_offset addressing modes. Other addressing
2280 // modes can have side-effects (post-increments, etc.). For stack
2281 // slots they are very unlikely, so there is not much loss due to
2282 // this restriction.
2283 if (Load || Store) {
2284 int TFI = Load ? LFI : SFI;
2285 unsigned AM = HII.getAddrMode(In);
2286 SlotInfo &SI = FIRangeMap[TFI];
2287 bool Bad = (AM != HexagonII::BaseImmOffset);
2288 if (!Bad) {
2289 // If the addressing mode is ok, check the register class.
2290 unsigned OpNum = Load ? 0 : 2;
2291 auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2292 RC = getCommonRC(SI.RC, RC);
2293 if (RC == nullptr)
2294 Bad = true;
2295 else
2296 SI.RC = RC;
2298 if (!Bad) {
2299 // Check sizes.
2300 unsigned S = HII.getMemAccessSize(In);
2301 if (SI.Size != 0 && SI.Size != S)
2302 Bad = true;
2303 else
2304 SI.Size = S;
2306 if (!Bad) {
2307 for (auto *Mo : In.memoperands()) {
2308 if (!Mo->isVolatile() && !Mo->isAtomic())
2309 continue;
2310 Bad = true;
2311 break;
2314 if (Bad)
2315 BadFIs.insert(TFI);
2318 // Locate uses of frame indices.
2319 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2320 const MachineOperand &Op = In.getOperand(i);
2321 if (!Op.isFI())
2322 continue;
2323 int FI = Op.getIndex();
2324 // Make sure that the following operand is an immediate and that
2325 // it is 0. This is the offset in the stack object.
2326 if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2327 In.getOperand(i+1).getImm() != 0)
2328 BadFIs.insert(FI);
2329 if (BadFIs.count(FI))
2330 continue;
2332 IndexType Index = IndexMap.getIndex(&In);
2333 if (Load) {
2334 if (LastStore[FI] == IndexType::None)
2335 LastStore[FI] = IndexType::Entry;
2336 LastLoad[FI] = Index;
2337 } else if (Store) {
2338 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2339 if (LastStore[FI] != IndexType::None)
2340 RL.add(LastStore[FI], LastLoad[FI], false, false);
2341 else if (LastLoad[FI] != IndexType::None)
2342 RL.add(IndexType::Entry, LastLoad[FI], false, false);
2343 LastLoad[FI] = IndexType::None;
2344 LastStore[FI] = Index;
2345 } else {
2346 BadFIs.insert(FI);
2351 for (auto &I : LastLoad) {
2352 IndexType LL = I.second;
2353 if (LL == IndexType::None)
2354 continue;
2355 auto &RL = FIRangeMap[I.first].Map[&B];
2356 IndexType &LS = LastStore[I.first];
2357 if (LS != IndexType::None)
2358 RL.add(LS, LL, false, false);
2359 else
2360 RL.add(IndexType::Entry, LL, false, false);
2361 LS = IndexType::None;
2363 for (auto &I : LastStore) {
2364 IndexType LS = I.second;
2365 if (LS == IndexType::None)
2366 continue;
2367 auto &RL = FIRangeMap[I.first].Map[&B];
2368 RL.add(LS, IndexType::None, false, false);
2372 LLVM_DEBUG({
2373 for (auto &P : FIRangeMap) {
2374 dbgs() << "fi#" << P.first;
2375 if (BadFIs.count(P.first))
2376 dbgs() << " (bad)";
2377 dbgs() << " RC: ";
2378 if (P.second.RC != nullptr)
2379 dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2380 else
2381 dbgs() << "<null>\n";
2382 for (auto &R : P.second.Map)
2383 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second
2384 << "}\n";
2388 // When a slot is loaded from in a block without being stored to in the
2389 // same block, it is live-on-entry to this block. To avoid CFG analysis,
2390 // consider this slot to be live-on-exit from all blocks.
2391 SmallSet<int,4> LoxFIs;
2393 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2395 for (auto &P : FIRangeMap) {
2396 // P = pair(FI, map: BB->RangeList)
2397 if (BadFIs.count(P.first))
2398 continue;
2399 for (auto &B : MF) {
2400 auto F = P.second.Map.find(&B);
2401 // F = pair(BB, RangeList)
2402 if (F == P.second.Map.end() || F->second.empty())
2403 continue;
2404 HexagonBlockRanges::IndexRange &IR = F->second.front();
2405 if (IR.start() == IndexType::Entry)
2406 LoxFIs.insert(P.first);
2407 BlockFIMap[&B].push_back(P.first);
2411 LLVM_DEBUG({
2412 dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2413 for (auto &P : BlockFIMap) {
2414 auto &FIs = P.second;
2415 if (FIs.empty())
2416 continue;
2417 dbgs() << " " << printMBBReference(*P.first) << ": {";
2418 for (auto I : FIs) {
2419 dbgs() << " fi#" << I;
2420 if (LoxFIs.count(I))
2421 dbgs() << '*';
2423 dbgs() << " }\n";
2427 #ifndef NDEBUG
2428 bool HasOptLimit = SpillOptMax.getPosition();
2429 #endif
2431 // eliminate loads, when all loads eliminated, eliminate all stores.
2432 for (auto &B : MF) {
2433 auto F = BlockIndexes.find(&B);
2434 assert(F != BlockIndexes.end());
2435 HexagonBlockRanges::InstrIndexMap &IM = F->second;
2436 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2437 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2438 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2439 << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2441 for (auto FI : BlockFIMap[&B]) {
2442 if (BadFIs.count(FI))
2443 continue;
2444 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2445 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2446 for (auto &Range : RL) {
2447 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2448 if (!IndexType::isInstr(Range.start()) ||
2449 !IndexType::isInstr(Range.end()))
2450 continue;
2451 MachineInstr &SI = *IM.getInstr(Range.start());
2452 MachineInstr &EI = *IM.getInstr(Range.end());
2453 assert(SI.mayStore() && "Unexpected start instruction");
2454 assert(EI.mayLoad() && "Unexpected end instruction");
2455 MachineOperand &SrcOp = SI.getOperand(2);
2457 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2458 SrcOp.getSubReg() };
2459 auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2460 // The this-> is needed to unconfuse MSVC.
2461 unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2462 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2463 << '\n');
2464 if (FoundR == 0)
2465 continue;
2466 #ifndef NDEBUG
2467 if (HasOptLimit) {
2468 if (SpillOptCount >= SpillOptMax)
2469 return;
2470 SpillOptCount++;
2472 #endif
2474 // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2475 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2476 MachineInstr *CopyIn = nullptr;
2477 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2478 const DebugLoc &DL = SI.getDebugLoc();
2479 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2480 .add(SrcOp);
2483 ++StartIt;
2484 // Check if this is a last store and the FI is live-on-exit.
2485 if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2486 // Update store's source register.
2487 if (unsigned SR = SrcOp.getSubReg())
2488 SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2489 else
2490 SrcOp.setReg(FoundR);
2491 SrcOp.setSubReg(0);
2492 // We are keeping this register live.
2493 SrcOp.setIsKill(false);
2494 } else {
2495 B.erase(&SI);
2496 IM.replaceInstr(&SI, CopyIn);
2499 auto EndIt = std::next(EI.getIterator());
2500 for (auto It = StartIt; It != EndIt; It = NextIt) {
2501 MachineInstr &MI = *It;
2502 NextIt = std::next(It);
2503 int TFI;
2504 if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2505 continue;
2506 Register DstR = MI.getOperand(0).getReg();
2507 assert(MI.getOperand(0).getSubReg() == 0);
2508 MachineInstr *CopyOut = nullptr;
2509 if (DstR != FoundR) {
2510 DebugLoc DL = MI.getDebugLoc();
2511 unsigned MemSize = HII.getMemAccessSize(MI);
2512 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2513 unsigned CopyOpc = TargetOpcode::COPY;
2514 if (HII.isSignExtendingLoad(MI))
2515 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2516 else if (HII.isZeroExtendingLoad(MI))
2517 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2518 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2519 .addReg(FoundR, getKillRegState(&MI == &EI));
2521 IM.replaceInstr(&MI, CopyOut);
2522 B.erase(It);
2525 // Update the dead map.
2526 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2527 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2528 DM[RR].subtract(Range);
2529 } // for Range in range list
2534 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2535 const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2536 MachineBasicBlock &MB = *AI->getParent();
2537 DebugLoc DL = AI->getDebugLoc();
2538 unsigned A = AI->getOperand(2).getImm();
2540 // Have
2541 // Rd = alloca Rs, #A
2543 // If Rs and Rd are different registers, use this sequence:
2544 // Rd = sub(r29, Rs)
2545 // r29 = sub(r29, Rs)
2546 // Rd = and(Rd, #-A) ; if necessary
2547 // r29 = and(r29, #-A) ; if necessary
2548 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2549 // otherwise, do
2550 // Rd = sub(r29, Rs)
2551 // Rd = and(Rd, #-A) ; if necessary
2552 // r29 = Rd
2553 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2555 MachineOperand &RdOp = AI->getOperand(0);
2556 MachineOperand &RsOp = AI->getOperand(1);
2557 unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2559 // Rd = sub(r29, Rs)
2560 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2561 .addReg(SP)
2562 .addReg(Rs);
2563 if (Rs != Rd) {
2564 // r29 = sub(r29, Rs)
2565 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2566 .addReg(SP)
2567 .addReg(Rs);
2569 if (A > 8) {
2570 // Rd = and(Rd, #-A)
2571 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2572 .addReg(Rd)
2573 .addImm(-int64_t(A));
2574 if (Rs != Rd)
2575 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2576 .addReg(SP)
2577 .addImm(-int64_t(A));
2579 if (Rs == Rd) {
2580 // r29 = Rd
2581 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2582 .addReg(Rd);
2584 if (CF > 0) {
2585 // Rd = add(Rd, #CF)
2586 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2587 .addReg(Rd)
2588 .addImm(CF);
2592 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2593 const MachineFrameInfo &MFI = MF.getFrameInfo();
2594 if (!MFI.hasVarSizedObjects())
2595 return false;
2596 // Do not check for max stack object alignment here, because the stack
2597 // may not be complete yet. Assume that we will need PS_aligna if there
2598 // are variable-sized objects.
2599 return true;
2602 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2603 const MachineFunction &MF) const {
2604 for (auto &B : MF)
2605 for (auto &I : B)
2606 if (I.getOpcode() == Hexagon::PS_aligna)
2607 return &I;
2608 return nullptr;
2611 /// Adds all callee-saved registers as implicit uses or defs to the
2612 /// instruction.
2613 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2614 const CSIVect &CSI, bool IsDef, bool IsKill) const {
2615 // Add the callee-saved registers as implicit uses.
2616 for (auto &R : CSI)
2617 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2620 /// Determine whether the callee-saved register saves and restores should
2621 /// be generated via inline code. If this function returns "true", inline
2622 /// code will be generated. If this function returns "false", additional
2623 /// checks are performed, which may still lead to the inline code.
2624 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2625 const CSIVect &CSI) const {
2626 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2627 return true;
2628 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2629 return true;
2630 if (!hasFP(MF))
2631 return true;
2632 if (!isOptSize(MF) && !isMinSize(MF))
2633 if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2634 return true;
2636 // Check if CSI only has double registers, and if the registers form
2637 // a contiguous block starting from D8.
2638 BitVector Regs(Hexagon::NUM_TARGET_REGS);
2639 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
2640 unsigned R = CSI[i].getReg();
2641 if (!Hexagon::DoubleRegsRegClass.contains(R))
2642 return true;
2643 Regs[R] = true;
2645 int F = Regs.find_first();
2646 if (F != Hexagon::D8)
2647 return true;
2648 while (F >= 0) {
2649 int N = Regs.find_next(F);
2650 if (N >= 0 && N != F+1)
2651 return true;
2652 F = N;
2655 return false;
2658 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2659 const CSIVect &CSI) const {
2660 if (shouldInlineCSR(MF, CSI))
2661 return false;
2662 unsigned NumCSI = CSI.size();
2663 if (NumCSI <= 1)
2664 return false;
2666 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2667 : SpillFuncThreshold;
2668 return Threshold < NumCSI;
2671 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2672 const CSIVect &CSI) const {
2673 if (shouldInlineCSR(MF, CSI))
2674 return false;
2675 // The restore functions do a bit more than just restoring registers.
2676 // The non-returning versions will go back directly to the caller's
2677 // caller, others will clean up the stack frame in preparation for
2678 // a tail call. Using them can still save code size even if only one
2679 // register is getting restores. Make the decision based on -Oz:
2680 // using -Os will use inline restore for a single register.
2681 if (isMinSize(MF))
2682 return true;
2683 unsigned NumCSI = CSI.size();
2684 if (NumCSI <= 1)
2685 return false;
2687 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2688 : SpillFuncThreshold;
2689 return Threshold < NumCSI;
2692 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2693 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2694 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2695 // A fairly simplistic guess as to whether a potential load/store to a
2696 // stack location could require an extra register.
2697 if (HST.useHVXOps() && StackSize > 256)
2698 return true;
2700 // Check if the function has store-immediate instructions that access
2701 // the stack. Since the offset field is not extendable, if the stack
2702 // size exceeds the offset limit (6 bits, shifted), the stores will
2703 // require a new base register.
2704 bool HasImmStack = false;
2705 unsigned MinLS = ~0u; // Log_2 of the memory access size.
2707 for (const MachineBasicBlock &B : MF) {
2708 for (const MachineInstr &MI : B) {
2709 unsigned LS = 0;
2710 switch (MI.getOpcode()) {
2711 case Hexagon::S4_storeirit_io:
2712 case Hexagon::S4_storeirif_io:
2713 case Hexagon::S4_storeiri_io:
2714 ++LS;
2715 LLVM_FALLTHROUGH;
2716 case Hexagon::S4_storeirht_io:
2717 case Hexagon::S4_storeirhf_io:
2718 case Hexagon::S4_storeirh_io:
2719 ++LS;
2720 LLVM_FALLTHROUGH;
2721 case Hexagon::S4_storeirbt_io:
2722 case Hexagon::S4_storeirbf_io:
2723 case Hexagon::S4_storeirb_io:
2724 if (MI.getOperand(0).isFI())
2725 HasImmStack = true;
2726 MinLS = std::min(MinLS, LS);
2727 break;
2732 if (HasImmStack)
2733 return !isUInt<6>(StackSize >> MinLS);
2735 return false;