1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //===----------------------------------------------------------------------===//
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
66 #define DEBUG_TYPE "hexagon-pei"
68 // Hexagon stack frame layout as defined by the ABI:
74 // SP during function's FP during function's |
75 // +-- runtime (top of stack) runtime (bottom) --+ |
77 // --++---------------------+------------------+-----------------++-+-------
78 // | parameter area for | variable-size | fixed-size |LR| arg
79 // | called functions | local objects | local objects |FP|
80 // --+----------------------+------------------+-----------------+--+-------
81 // <- size known -> <- size unknown -> <- size known ->
83 // Low address High address
88 // - In any circumstances, the outgoing function arguments are always accessi-
89 // ble using the SP, and the incoming arguments are accessible using the FP.
90 // - If the local objects are not aligned, they can always be accessed using
92 // - If there are no variable-sized objects, the local objects can always be
93 // accessed using the SP, regardless whether they are aligned or not. (The
94 // alignment padding will be at the bottom of the stack (highest address),
95 // and so the offset with respect to the SP will be known at the compile-
98 // The only complication occurs if there are both, local aligned objects, and
99 // dynamically allocated (variable-sized) objects. The alignment pad will be
100 // placed between the FP and the local objects, thus preventing the use of the
101 // FP to access the local objects. At the same time, the variable-sized objects
102 // will be between the SP and the local objects, thus introducing an unknown
103 // distance from the SP to the locals.
105 // To avoid this problem, a new register is created that holds the aligned
106 // address of the bottom of the stack, referred in the sources as AP (aligned
107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
108 // that aligns AP to the required boundary (a maximum of the alignments of
109 // all stack objects, fixed- and variable-sized). All local objects[1] will
110 // then use AP as the base pointer.
111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
112 // their name from being allocated at fixed locations on the stack, relative
113 // to the FP. In the presence of dynamic allocation and local alignment, such
114 // objects can only be accessed through the FP.
116 // Illustration of the AP:
119 // ---------------+---------------------+-----+-----------------------++-+--
120 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
121 // stack frame | (aligned) | | (CSR, spills, etc.) |FP|
122 // ---------------+---------------------+-----+-----------------+-----+--+--
123 // |<-- Multiple of the -->|
124 // stack alignment +-- AP
126 // The AP is set up at the beginning of the function. Since it is not a dedi-
127 // cated (reserved) register, it needs to be kept live throughout the function
128 // to be available as the base register for local object accesses.
129 // Normally, an address of a stack objects is obtained by a pseudo-instruction
130 // PS_fi. To access local objects with the AP register present, a different
131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
132 // argument compared to PS_fi: the first input register is the AP register.
133 // This keeps the register live between its definition and its uses.
135 // The AP register is originally set up using pseudo-instruction PS_aligna:
138 // A - required stack alignment
139 // The alignment value must be the maximum of all alignments required by
142 // The dynamic allocation uses a pseudo-instruction PS_alloca:
143 // Rd = PS_alloca Rs, A
145 // Rd - address of the allocated space
146 // Rs - minimum size (the actual allocated can be larger to accommodate
148 // A - required alignment
150 using namespace llvm
;
152 static cl::opt
<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
153 cl::Hidden
, cl::desc("Disable Dealloc Return for Hexagon target"));
155 static cl::opt
<unsigned> NumberScavengerSlots("number-scavenger-slots",
156 cl::Hidden
, cl::desc("Set the number of scavenger slots"), cl::init(2),
159 static cl::opt
<int> SpillFuncThreshold("spill-func-threshold",
160 cl::Hidden
, cl::desc("Specify O2(not Os) spill func threshold"),
161 cl::init(6), cl::ZeroOrMore
);
163 static cl::opt
<int> SpillFuncThresholdOs("spill-func-threshold-Os",
164 cl::Hidden
, cl::desc("Specify Os spill func threshold"),
165 cl::init(1), cl::ZeroOrMore
);
167 static cl::opt
<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
168 cl::Hidden
, cl::desc("Enable runtime checks for stack overflow."),
169 cl::init(false), cl::ZeroOrMore
);
171 static cl::opt
<bool> EnableShrinkWrapping("hexagon-shrink-frame",
172 cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
173 cl::desc("Enable stack frame shrink wrapping"));
175 static cl::opt
<unsigned> ShrinkLimit("shrink-frame-limit",
176 cl::init(std::numeric_limits
<unsigned>::max()), cl::Hidden
, cl::ZeroOrMore
,
177 cl::desc("Max count of stack frame shrink-wraps"));
179 static cl::opt
<bool> EnableSaveRestoreLong("enable-save-restore-long",
180 cl::Hidden
, cl::desc("Enable long calls for save-restore stubs."),
181 cl::init(false), cl::ZeroOrMore
);
183 static cl::opt
<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
184 cl::Hidden
, cl::desc("Refrain from using FP whenever possible"));
186 static cl::opt
<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden
,
187 cl::init(true), cl::desc("Optimize spill slots"));
190 static cl::opt
<unsigned> SpillOptMax("spill-opt-max", cl::Hidden
,
191 cl::init(std::numeric_limits
<unsigned>::max()));
192 static unsigned SpillOptCount
= 0;
197 void initializeHexagonCallFrameInformationPass(PassRegistry
&);
198 FunctionPass
*createHexagonCallFrameInformation();
200 } // end namespace llvm
204 class HexagonCallFrameInformation
: public MachineFunctionPass
{
208 HexagonCallFrameInformation() : MachineFunctionPass(ID
) {
209 PassRegistry
&PR
= *PassRegistry::getPassRegistry();
210 initializeHexagonCallFrameInformationPass(PR
);
213 bool runOnMachineFunction(MachineFunction
&MF
) override
;
215 MachineFunctionProperties
getRequiredProperties() const override
{
216 return MachineFunctionProperties().set(
217 MachineFunctionProperties::Property::NoVRegs
);
221 char HexagonCallFrameInformation::ID
= 0;
223 } // end anonymous namespace
225 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction
&MF
) {
226 auto &HFI
= *MF
.getSubtarget
<HexagonSubtarget
>().getFrameLowering();
227 bool NeedCFI
= MF
.needsFrameMoves();
231 HFI
.insertCFIInstructions(MF
);
235 INITIALIZE_PASS(HexagonCallFrameInformation
, "hexagon-cfi",
236 "Hexagon call frame information", false, false)
238 FunctionPass
*llvm::createHexagonCallFrameInformation() {
239 return new HexagonCallFrameInformation();
242 /// Map a register pair Reg to the subregister that has the greater "number",
243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
244 static unsigned getMax32BitSubRegister(unsigned Reg
,
245 const TargetRegisterInfo
&TRI
,
247 if (Reg
< Hexagon::D0
|| Reg
> Hexagon::D15
)
251 for (MCSubRegIterator
SubRegs(Reg
, &TRI
); SubRegs
.isValid(); ++SubRegs
) {
253 if (*SubRegs
> RegNo
)
256 if (!RegNo
|| *SubRegs
< RegNo
)
263 /// Returns the callee saved register with the largest id in the vector.
264 static unsigned getMaxCalleeSavedReg(ArrayRef
<CalleeSavedInfo
> CSI
,
265 const TargetRegisterInfo
&TRI
) {
266 static_assert(Hexagon::R1
> 0,
267 "Assume physical registers are encoded as positive integers");
271 unsigned Max
= getMax32BitSubRegister(CSI
[0].getReg(), TRI
);
272 for (unsigned I
= 1, E
= CSI
.size(); I
< E
; ++I
) {
273 unsigned Reg
= getMax32BitSubRegister(CSI
[I
].getReg(), TRI
);
280 /// Checks if the basic block contains any instruction that needs a stack
281 /// frame to be already in place.
282 static bool needsStackFrame(const MachineBasicBlock
&MBB
, const BitVector
&CSR
,
283 const HexagonRegisterInfo
&HRI
) {
284 for (auto &I
: MBB
) {
285 const MachineInstr
*MI
= &I
;
288 unsigned Opc
= MI
->getOpcode();
290 case Hexagon::PS_alloca
:
291 case Hexagon::PS_aligna
:
296 // Check individual operands.
297 for (const MachineOperand
&MO
: MI
->operands()) {
298 // While the presence of a frame index does not prove that a stack
299 // frame will be required, all frame indexes should be within alloc-
300 // frame/deallocframe. Otherwise, the code that translates a frame
301 // index into an offset would have to be aware of the placement of
302 // the frame creation/destruction instructions.
306 Register R
= MO
.getReg();
307 // Virtual registers will need scavenging, which then may require
311 for (MCSubRegIterator
S(R
, &HRI
, true); S
.isValid(); ++S
)
316 if (MO
.isRegMask()) {
317 // A regmask would normally have all callee-saved registers marked
318 // as preserved, so this check would not be needed, but in case of
319 // ever having other regmasks (for other calling conventions),
320 // make sure they would be processed correctly.
321 const uint32_t *BM
= MO
.getRegMask();
322 for (int x
= CSR
.find_first(); x
>= 0; x
= CSR
.find_next(x
)) {
324 // If this regmask does not preserve a CSR, a frame will be needed.
325 if (!(BM
[R
/32] & (1u << (R
%32))))
334 /// Returns true if MBB has a machine instructions that indicates a tail call
336 static bool hasTailCall(const MachineBasicBlock
&MBB
) {
337 MachineBasicBlock::const_iterator I
= MBB
.getLastNonDebugInstr();
340 unsigned RetOpc
= I
->getOpcode();
341 return RetOpc
== Hexagon::PS_tailcall_i
|| RetOpc
== Hexagon::PS_tailcall_r
;
344 /// Returns true if MBB contains an instruction that returns.
345 static bool hasReturn(const MachineBasicBlock
&MBB
) {
346 for (auto I
= MBB
.getFirstTerminator(), E
= MBB
.end(); I
!= E
; ++I
)
352 /// Returns the "return" instruction from this block, or nullptr if there
354 static MachineInstr
*getReturn(MachineBasicBlock
&MBB
) {
361 static bool isRestoreCall(unsigned Opc
) {
363 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
364 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
365 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT
:
366 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
:
367 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT
:
368 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
:
369 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4
:
370 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
:
376 static inline bool isOptNone(const MachineFunction
&MF
) {
377 return MF
.getFunction().hasOptNone() ||
378 MF
.getTarget().getOptLevel() == CodeGenOpt::None
;
381 static inline bool isOptSize(const MachineFunction
&MF
) {
382 const Function
&F
= MF
.getFunction();
383 return F
.hasOptSize() && !F
.hasMinSize();
386 static inline bool isMinSize(const MachineFunction
&MF
) {
387 return MF
.getFunction().hasMinSize();
390 /// Implements shrink-wrapping of the stack frame. By default, stack frame
391 /// is created in the function entry block, and is cleaned up in every block
392 /// that returns. This function finds alternate blocks: one for the frame
393 /// setup (prolog) and one for the cleanup (epilog).
394 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction
&MF
,
395 MachineBasicBlock
*&PrologB
, MachineBasicBlock
*&EpilogB
) const {
396 static unsigned ShrinkCounter
= 0;
398 if (MF
.getSubtarget
<HexagonSubtarget
>().isEnvironmentMusl() &&
399 MF
.getFunction().isVarArg())
401 if (ShrinkLimit
.getPosition()) {
402 if (ShrinkCounter
>= ShrinkLimit
)
407 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
409 MachineDominatorTree MDT
;
410 MDT
.runOnMachineFunction(MF
);
411 MachinePostDominatorTree MPT
;
412 MPT
.runOnMachineFunction(MF
);
414 using UnsignedMap
= DenseMap
<unsigned, unsigned>;
415 using RPOTType
= ReversePostOrderTraversal
<const MachineFunction
*>;
420 for (RPOTType::rpo_iterator I
= RPOT
.begin(), E
= RPOT
.end(); I
!= E
; ++I
)
421 RPO
[(*I
)->getNumber()] = RPON
++;
423 // Don't process functions that have loops, at least for now. Placement
424 // of prolog and epilog must take loop structure into account. For simpli-
425 // city don't do it right now.
427 unsigned BN
= RPO
[I
.getNumber()];
428 for (auto SI
= I
.succ_begin(), SE
= I
.succ_end(); SI
!= SE
; ++SI
) {
429 // If found a back-edge, return.
430 if (RPO
[(*SI
)->getNumber()] <= BN
)
435 // Collect the set of blocks that need a stack frame to execute. Scan
436 // each block for uses/defs of callee-saved registers, calls, etc.
437 SmallVector
<MachineBasicBlock
*,16> SFBlocks
;
438 BitVector
CSR(Hexagon::NUM_TARGET_REGS
);
439 for (const MCPhysReg
*P
= HRI
.getCalleeSavedRegs(&MF
); *P
; ++P
)
440 for (MCSubRegIterator
S(*P
, &HRI
, true); S
.isValid(); ++S
)
444 if (needsStackFrame(I
, CSR
, HRI
))
445 SFBlocks
.push_back(&I
);
448 dbgs() << "Blocks needing SF: {";
449 for (auto &B
: SFBlocks
)
450 dbgs() << " " << printMBBReference(*B
);
454 if (SFBlocks
.empty())
457 // Pick a common dominator and a common post-dominator.
458 MachineBasicBlock
*DomB
= SFBlocks
[0];
459 for (unsigned i
= 1, n
= SFBlocks
.size(); i
< n
; ++i
) {
460 DomB
= MDT
.findNearestCommonDominator(DomB
, SFBlocks
[i
]);
464 MachineBasicBlock
*PDomB
= SFBlocks
[0];
465 for (unsigned i
= 1, n
= SFBlocks
.size(); i
< n
; ++i
) {
466 PDomB
= MPT
.findNearestCommonDominator(PDomB
, SFBlocks
[i
]);
471 dbgs() << "Computed dom block: ";
473 dbgs() << printMBBReference(*DomB
);
476 dbgs() << ", computed pdom block: ";
478 dbgs() << printMBBReference(*PDomB
);
486 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
487 if (!MDT
.dominates(DomB
, PDomB
)) {
488 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
491 if (!MPT
.dominates(PDomB
, DomB
)) {
492 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
496 // Finally, everything seems right.
501 /// Perform most of the PEI work here:
502 /// - saving/restoring of the callee-saved registers,
503 /// - stack frame creation and destruction.
504 /// Normally, this work is distributed among various functions, but doing it
505 /// in one place allows shrink-wrapping of the stack frame.
506 void HexagonFrameLowering::emitPrologue(MachineFunction
&MF
,
507 MachineBasicBlock
&MBB
) const {
508 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
510 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
511 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
513 MachineBasicBlock
*PrologB
= &MF
.front(), *EpilogB
= nullptr;
514 if (EnableShrinkWrapping
)
515 findShrunkPrologEpilog(MF
, PrologB
, EpilogB
);
517 bool PrologueStubs
= false;
518 insertCSRSpillsInBlock(*PrologB
, CSI
, HRI
, PrologueStubs
);
519 insertPrologueInBlock(*PrologB
, PrologueStubs
);
520 updateEntryPaths(MF
, *PrologB
);
523 insertCSRRestoresInBlock(*EpilogB
, CSI
, HRI
);
524 insertEpilogueInBlock(*EpilogB
);
527 if (B
.isReturnBlock())
528 insertCSRRestoresInBlock(B
, CSI
, HRI
);
531 if (B
.isReturnBlock())
532 insertEpilogueInBlock(B
);
537 MachineInstr
*RetI
= getReturn(B
);
538 if (!RetI
|| isRestoreCall(RetI
->getOpcode()))
541 RetI
->addOperand(MachineOperand::CreateReg(R
.getReg(), false, true));
546 // If there is an epilog block, it may not have a return instruction.
547 // In such case, we need to add the callee-saved registers as live-ins
548 // in all blocks on all paths from the epilog to any return block.
549 unsigned MaxBN
= MF
.getNumBlockIDs();
550 BitVector
DoneT(MaxBN
+1), DoneF(MaxBN
+1), Path(MaxBN
+1);
551 updateExitPaths(*EpilogB
, *EpilogB
, DoneT
, DoneF
, Path
);
555 /// Returns true if the target can safely skip saving callee-saved registers
556 /// for noreturn nounwind functions.
557 bool HexagonFrameLowering::enableCalleeSaveSkip(
558 const MachineFunction
&MF
) const {
559 const auto &F
= MF
.getFunction();
560 assert(F
.hasFnAttribute(Attribute::NoReturn
) &&
561 F
.getFunction().hasFnAttribute(Attribute::NoUnwind
) &&
562 !F
.getFunction().hasFnAttribute(Attribute::UWTable
));
565 // No need to save callee saved registers if the function does not return.
566 return MF
.getSubtarget
<HexagonSubtarget
>().noreturnStackElim();
569 // Helper function used to determine when to eliminate the stack frame for
570 // functions marked as noreturn and when the noreturn-stack-elim options are
571 // specified. When both these conditions are true, then a FP may not be needed
572 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
573 // but it used to check if the allocframe can be eliminated as well.
574 static bool enableAllocFrameElim(const MachineFunction
&MF
) {
575 const auto &F
= MF
.getFunction();
576 const auto &MFI
= MF
.getFrameInfo();
577 const auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
578 assert(!MFI
.hasVarSizedObjects() &&
579 !HST
.getRegisterInfo()->hasStackRealignment(MF
));
580 return F
.hasFnAttribute(Attribute::NoReturn
) &&
581 F
.hasFnAttribute(Attribute::NoUnwind
) &&
582 !F
.hasFnAttribute(Attribute::UWTable
) && HST
.noreturnStackElim() &&
583 MFI
.getStackSize() == 0;
586 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock
&MBB
,
587 bool PrologueStubs
) const {
588 MachineFunction
&MF
= *MBB
.getParent();
589 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
590 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
591 auto &HII
= *HST
.getInstrInfo();
592 auto &HRI
= *HST
.getRegisterInfo();
594 Align MaxAlign
= std::max(MFI
.getMaxAlign(), getStackAlign());
596 // Calculate the total stack frame size.
597 // Get the number of bytes to allocate from the FrameInfo.
598 unsigned FrameSize
= MFI
.getStackSize();
599 // Round up the max call frame size to the max alignment on the stack.
600 unsigned MaxCFA
= alignTo(MFI
.getMaxCallFrameSize(), MaxAlign
);
601 MFI
.setMaxCallFrameSize(MaxCFA
);
603 FrameSize
= MaxCFA
+ alignTo(FrameSize
, MaxAlign
);
604 MFI
.setStackSize(FrameSize
);
606 bool AlignStack
= (MaxAlign
> getStackAlign());
608 // Get the number of bytes to allocate from the FrameInfo.
609 unsigned NumBytes
= MFI
.getStackSize();
610 unsigned SP
= HRI
.getStackRegister();
611 unsigned MaxCF
= MFI
.getMaxCallFrameSize();
612 MachineBasicBlock::iterator InsertPt
= MBB
.begin();
614 SmallVector
<MachineInstr
*, 4> AdjustRegs
;
617 if (MI
.getOpcode() == Hexagon::PS_alloca
)
618 AdjustRegs
.push_back(&MI
);
620 for (auto MI
: AdjustRegs
) {
621 assert((MI
->getOpcode() == Hexagon::PS_alloca
) && "Expected alloca");
622 expandAlloca(MI
, HII
, SP
, MaxCF
);
623 MI
->eraseFromParent();
626 DebugLoc dl
= MBB
.findDebugLoc(InsertPt
);
628 if (MF
.getFunction().isVarArg() &&
629 MF
.getSubtarget
<HexagonSubtarget
>().isEnvironmentMusl()) {
630 // Calculate the size of register saved area.
631 int NumVarArgRegs
= 6 - FirstVarArgSavedReg
;
632 int RegisterSavedAreaSizePlusPadding
= (NumVarArgRegs
% 2 == 0)
634 : NumVarArgRegs
* 4 + 4;
635 if (RegisterSavedAreaSizePlusPadding
> 0) {
636 // Decrement the stack pointer by size of register saved area plus
638 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
640 .addImm(-RegisterSavedAreaSizePlusPadding
)
641 .setMIFlag(MachineInstr::FrameSetup
);
644 // Copy all the named arguments below register saved area.
645 auto &HMFI
= *MF
.getInfo
<HexagonMachineFunctionInfo
>();
646 for (int i
= HMFI
.getFirstNamedArgFrameIndex(),
647 e
= HMFI
.getLastNamedArgFrameIndex(); i
>= e
; --i
) {
648 uint64_t ObjSize
= MFI
.getObjectSize(i
);
649 Align ObjAlign
= MFI
.getObjectAlign(i
);
651 // Determine the kind of load/store that should be used.
652 unsigned LDOpc
, STOpc
;
653 uint64_t OpcodeChecker
= ObjAlign
.value();
655 // Handle cases where alignment of an object is > its size.
656 if (ObjAlign
> ObjSize
) {
659 else if (ObjSize
<= 2)
661 else if (ObjSize
<= 4)
663 else if (ObjSize
> 4)
667 switch (OpcodeChecker
) {
669 LDOpc
= Hexagon::L2_loadrb_io
;
670 STOpc
= Hexagon::S2_storerb_io
;
673 LDOpc
= Hexagon::L2_loadrh_io
;
674 STOpc
= Hexagon::S2_storerh_io
;
677 LDOpc
= Hexagon::L2_loadri_io
;
678 STOpc
= Hexagon::S2_storeri_io
;
682 LDOpc
= Hexagon::L2_loadrd_io
;
683 STOpc
= Hexagon::S2_storerd_io
;
687 unsigned RegUsed
= LDOpc
== Hexagon::L2_loadrd_io
? Hexagon::D3
689 int LoadStoreCount
= ObjSize
/ OpcodeChecker
;
691 if (ObjSize
% OpcodeChecker
)
694 // Get the start location of the load. NumBytes is basically the
695 // offset from the stack pointer of previous function, which would be
696 // the caller in this case, as this function has variable argument
699 NumBytes
= alignTo(NumBytes
, ObjAlign
);
702 while (Count
< LoadStoreCount
) {
703 // Load the value of the named argument on stack.
704 BuildMI(MBB
, InsertPt
, dl
, HII
.get(LDOpc
), RegUsed
)
706 .addImm(RegisterSavedAreaSizePlusPadding
+
707 ObjAlign
.value() * Count
+ NumBytes
)
708 .setMIFlag(MachineInstr::FrameSetup
);
710 // Store it below the register saved area plus padding.
711 BuildMI(MBB
, InsertPt
, dl
, HII
.get(STOpc
))
713 .addImm(ObjAlign
.value() * Count
+ NumBytes
)
715 .setMIFlag(MachineInstr::FrameSetup
);
719 NumBytes
+= MFI
.getObjectSize(i
);
722 // Make NumBytes 8 byte aligned
723 NumBytes
= alignTo(NumBytes
, 8);
725 // If the number of registers having variable arguments is odd,
726 // leave 4 bytes of padding to get to the location where first
727 // variable argument which was passed through register was copied.
728 NumBytes
= (NumVarArgRegs
% 2 == 0) ? NumBytes
: NumBytes
+ 4;
730 for (int j
= FirstVarArgSavedReg
, i
= 0; j
< 6; ++j
, ++i
) {
731 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::S2_storeri_io
))
733 .addImm(NumBytes
+ 4 * i
)
734 .addReg(Hexagon::R0
+ j
)
735 .setMIFlag(MachineInstr::FrameSetup
);
741 insertAllocframe(MBB
, InsertPt
, NumBytes
);
743 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_andir
), SP
)
745 .addImm(-int64_t(MaxAlign
.value()));
747 // If the stack-checking is enabled, and we spilled the callee-saved
748 // registers inline (i.e. did not use a spill function), then call
749 // the stack checker directly.
750 if (EnableStackOVFSanitizer
&& !PrologueStubs
)
751 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::PS_call_stk
))
752 .addExternalSymbol("__runtime_stack_check");
753 } else if (NumBytes
> 0) {
754 assert(alignTo(NumBytes
, 8) == NumBytes
);
755 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
757 .addImm(-int(NumBytes
));
761 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock
&MBB
) const {
762 MachineFunction
&MF
= *MBB
.getParent();
763 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
764 auto &HII
= *HST
.getInstrInfo();
765 auto &HRI
= *HST
.getRegisterInfo();
766 unsigned SP
= HRI
.getStackRegister();
768 MachineBasicBlock::iterator InsertPt
= MBB
.getFirstTerminator();
769 DebugLoc dl
= MBB
.findDebugLoc(InsertPt
);
772 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
773 unsigned NumBytes
= MFI
.getStackSize();
774 if (MF
.getFunction().isVarArg() &&
775 MF
.getSubtarget
<HexagonSubtarget
>().isEnvironmentMusl()) {
776 // On Hexagon Linux, deallocate the stack for the register saved area.
777 int NumVarArgRegs
= 6 - FirstVarArgSavedReg
;
778 int RegisterSavedAreaSizePlusPadding
= (NumVarArgRegs
% 2 == 0) ?
779 (NumVarArgRegs
* 4) : (NumVarArgRegs
* 4 + 4);
780 NumBytes
+= RegisterSavedAreaSizePlusPadding
;
783 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
790 MachineInstr
*RetI
= getReturn(MBB
);
791 unsigned RetOpc
= RetI
? RetI
->getOpcode() : 0;
794 if (RetOpc
== Hexagon::EH_RETURN_JMPR
) {
795 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::L2_deallocframe
))
796 .addDef(Hexagon::D15
)
797 .addReg(Hexagon::R30
);
798 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_add
), SP
)
800 .addReg(Hexagon::R28
);
804 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
805 // frame instruction if we encounter it.
806 if (RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4
||
807 RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
||
808 RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT
||
809 RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
) {
810 MachineBasicBlock::iterator It
= RetI
;
812 // Delete all instructions after the RESTORE (except labels).
813 while (It
!= MBB
.end()) {
822 // It is possible that the restoring code is a call to a library function.
823 // All of the restore* functions include "deallocframe", so we need to make
824 // sure that we don't add an extra one.
825 bool NeedsDeallocframe
= true;
826 if (!MBB
.empty() && InsertPt
!= MBB
.begin()) {
827 MachineBasicBlock::iterator PrevIt
= std::prev(InsertPt
);
828 unsigned COpc
= PrevIt
->getOpcode();
829 if (COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4
||
830 COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
||
831 COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT
||
832 COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
||
833 COpc
== Hexagon::PS_call_nr
|| COpc
== Hexagon::PS_callr_nr
)
834 NeedsDeallocframe
= false;
837 if (!MF
.getSubtarget
<HexagonSubtarget
>().isEnvironmentMusl() ||
838 !MF
.getFunction().isVarArg()) {
839 if (!NeedsDeallocframe
)
841 // If the returning instruction is PS_jmpret, replace it with
842 // dealloc_return, otherwise just add deallocframe. The function
843 // could be returning via a tail call.
844 if (RetOpc
!= Hexagon::PS_jmpret
|| DisableDeallocRet
) {
845 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::L2_deallocframe
))
846 .addDef(Hexagon::D15
)
847 .addReg(Hexagon::R30
);
850 unsigned NewOpc
= Hexagon::L4_return
;
851 MachineInstr
*NewI
= BuildMI(MBB
, RetI
, dl
, HII
.get(NewOpc
))
852 .addDef(Hexagon::D15
)
853 .addReg(Hexagon::R30
);
854 // Transfer the function live-out registers.
855 NewI
->copyImplicitOps(MF
, *RetI
);
858 // L2_deallocframe instruction after it.
859 // Calculate the size of register saved area.
860 int NumVarArgRegs
= 6 - FirstVarArgSavedReg
;
861 int RegisterSavedAreaSizePlusPadding
= (NumVarArgRegs
% 2 == 0) ?
862 (NumVarArgRegs
* 4) : (NumVarArgRegs
* 4 + 4);
864 MachineBasicBlock::iterator Term
= MBB
.getFirstTerminator();
865 MachineBasicBlock::iterator I
= (Term
== MBB
.begin()) ? MBB
.end()
867 if (I
== MBB
.end() ||
868 (I
->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT
&&
869 I
->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
&&
870 I
->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4
&&
871 I
->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
))
872 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::L2_deallocframe
))
873 .addDef(Hexagon::D15
)
874 .addReg(Hexagon::R30
);
875 if (RegisterSavedAreaSizePlusPadding
!= 0)
876 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
878 .addImm(RegisterSavedAreaSizePlusPadding
);
882 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock
&MBB
,
883 MachineBasicBlock::iterator InsertPt
, unsigned NumBytes
) const {
884 MachineFunction
&MF
= *MBB
.getParent();
885 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
886 auto &HII
= *HST
.getInstrInfo();
887 auto &HRI
= *HST
.getRegisterInfo();
889 // Check for overflow.
890 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
891 const unsigned int ALLOCFRAME_MAX
= 16384;
893 // Create a dummy memory operand to avoid allocframe from being treated as
894 // a volatile memory reference.
895 auto *MMO
= MF
.getMachineMemOperand(MachinePointerInfo::getStack(MF
, 0),
896 MachineMemOperand::MOStore
, 4, Align(4));
898 DebugLoc dl
= MBB
.findDebugLoc(InsertPt
);
899 unsigned SP
= HRI
.getStackRegister();
901 if (NumBytes
>= ALLOCFRAME_MAX
) {
902 // Emit allocframe(#0).
903 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::S2_allocframe
))
909 // Subtract the size from the stack pointer.
910 unsigned SP
= HRI
.getStackRegister();
911 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
913 .addImm(-int(NumBytes
));
915 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::S2_allocframe
))
923 void HexagonFrameLowering::updateEntryPaths(MachineFunction
&MF
,
924 MachineBasicBlock
&SaveB
) const {
925 SetVector
<unsigned> Worklist
;
927 MachineBasicBlock
&EntryB
= MF
.front();
928 Worklist
.insert(EntryB
.getNumber());
930 unsigned SaveN
= SaveB
.getNumber();
931 auto &CSI
= MF
.getFrameInfo().getCalleeSavedInfo();
933 for (unsigned i
= 0; i
< Worklist
.size(); ++i
) {
934 unsigned BN
= Worklist
[i
];
935 MachineBasicBlock
&MBB
= *MF
.getBlockNumbered(BN
);
937 if (!MBB
.isLiveIn(R
.getReg()))
938 MBB
.addLiveIn(R
.getReg());
940 for (auto &SB
: MBB
.successors())
941 Worklist
.insert(SB
->getNumber());
945 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock
&MBB
,
946 MachineBasicBlock
&RestoreB
, BitVector
&DoneT
, BitVector
&DoneF
,
947 BitVector
&Path
) const {
948 assert(MBB
.getNumber() >= 0);
949 unsigned BN
= MBB
.getNumber();
950 if (Path
[BN
] || DoneF
[BN
])
955 auto &CSI
= MBB
.getParent()->getFrameInfo().getCalleeSavedInfo();
958 bool ReachedExit
= false;
959 for (auto &SB
: MBB
.successors())
960 ReachedExit
|= updateExitPaths(*SB
, RestoreB
, DoneT
, DoneF
, Path
);
962 if (!MBB
.empty() && MBB
.back().isReturn()) {
963 // Add implicit uses of all callee-saved registers to the reached
964 // return instructions. This is to prevent the anti-dependency breaker
965 // from renaming these registers.
966 MachineInstr
&RetI
= MBB
.back();
967 if (!isRestoreCall(RetI
.getOpcode()))
969 RetI
.addOperand(MachineOperand::CreateReg(R
.getReg(), false, true));
973 // We don't want to add unnecessary live-ins to the restore block: since
974 // the callee-saved registers are being defined in it, the entry of the
975 // restore block cannot be on the path from the definitions to any exit.
976 if (ReachedExit
&& &MBB
!= &RestoreB
) {
978 if (!MBB
.isLiveIn(R
.getReg()))
979 MBB
.addLiveIn(R
.getReg());
989 static Optional
<MachineBasicBlock::iterator
>
990 findCFILocation(MachineBasicBlock
&B
) {
991 // The CFI instructions need to be inserted right after allocframe.
992 // An exception to this is a situation where allocframe is bundled
993 // with a call: then the CFI instructions need to be inserted before
994 // the packet with the allocframe+call (in case the call throws an
996 auto End
= B
.instr_end();
998 for (MachineInstr
&I
: B
) {
999 MachineBasicBlock::iterator It
= I
.getIterator();
1000 if (!I
.isBundle()) {
1001 if (I
.getOpcode() == Hexagon::S2_allocframe
)
1002 return std::next(It
);
1006 bool HasCall
= false, HasAllocFrame
= false;
1007 auto T
= It
.getInstrIterator();
1008 while (++T
!= End
&& T
->isBundled()) {
1009 if (T
->getOpcode() == Hexagon::S2_allocframe
)
1010 HasAllocFrame
= true;
1011 else if (T
->isCall())
1015 return HasCall
? It
: std::next(It
);
1020 void HexagonFrameLowering::insertCFIInstructions(MachineFunction
&MF
) const {
1021 for (auto &B
: MF
) {
1022 auto At
= findCFILocation(B
);
1024 insertCFIInstructionsAt(B
, At
.getValue());
1028 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock
&MBB
,
1029 MachineBasicBlock::iterator At
) const {
1030 MachineFunction
&MF
= *MBB
.getParent();
1031 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1032 MachineModuleInfo
&MMI
= MF
.getMMI();
1033 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
1034 auto &HII
= *HST
.getInstrInfo();
1035 auto &HRI
= *HST
.getRegisterInfo();
1037 // If CFI instructions have debug information attached, something goes
1038 // wrong with the final assembly generation: the prolog_end is placed
1039 // in a wrong location.
1041 const MCInstrDesc
&CFID
= HII
.get(TargetOpcode::CFI_INSTRUCTION
);
1043 MCSymbol
*FrameLabel
= MMI
.getContext().createTempSymbol();
1044 bool HasFP
= hasFP(MF
);
1047 unsigned DwFPReg
= HRI
.getDwarfRegNum(HRI
.getFrameRegister(), true);
1048 unsigned DwRAReg
= HRI
.getDwarfRegNum(HRI
.getRARegister(), true);
1050 // Define CFA via an offset from the value of FP.
1053 // --+----+----+---------------------
1054 // | FP | LR | increasing addresses -->
1055 // --+----+----+---------------------
1056 // | +-- Old SP (before allocframe)
1057 // +-- New FP (after allocframe)
1059 // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1060 // MCCFIInstruction::createOffset takes the offset without sign change.
1061 auto DefCfa
= MCCFIInstruction::cfiDefCfa(FrameLabel
, DwFPReg
, 8);
1062 BuildMI(MBB
, At
, DL
, CFID
)
1063 .addCFIIndex(MF
.addFrameInst(DefCfa
));
1064 // R31 (return addr) = CFA - 4
1065 auto OffR31
= MCCFIInstruction::createOffset(FrameLabel
, DwRAReg
, -4);
1066 BuildMI(MBB
, At
, DL
, CFID
)
1067 .addCFIIndex(MF
.addFrameInst(OffR31
));
1068 // R30 (frame ptr) = CFA - 8
1069 auto OffR30
= MCCFIInstruction::createOffset(FrameLabel
, DwFPReg
, -8);
1070 BuildMI(MBB
, At
, DL
, CFID
)
1071 .addCFIIndex(MF
.addFrameInst(OffR30
));
1074 static unsigned int RegsToMove
[] = {
1075 Hexagon::R1
, Hexagon::R0
, Hexagon::R3
, Hexagon::R2
,
1076 Hexagon::R17
, Hexagon::R16
, Hexagon::R19
, Hexagon::R18
,
1077 Hexagon::R21
, Hexagon::R20
, Hexagon::R23
, Hexagon::R22
,
1078 Hexagon::R25
, Hexagon::R24
, Hexagon::R27
, Hexagon::R26
,
1079 Hexagon::D0
, Hexagon::D1
, Hexagon::D8
, Hexagon::D9
,
1080 Hexagon::D10
, Hexagon::D11
, Hexagon::D12
, Hexagon::D13
,
1084 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
1086 for (unsigned i
= 0; RegsToMove
[i
] != Hexagon::NoRegister
; ++i
) {
1087 unsigned Reg
= RegsToMove
[i
];
1088 auto IfR
= [Reg
] (const CalleeSavedInfo
&C
) -> bool {
1089 return C
.getReg() == Reg
;
1091 auto F
= find_if(CSI
, IfR
);
1097 // If the function has a frame pointer (i.e. has an allocframe),
1098 // then the CFA has been defined in terms of FP. Any offsets in
1099 // the following CFI instructions have to be defined relative
1100 // to FP, which points to the bottom of the stack frame.
1101 // The function getFrameIndexReference can still choose to use SP
1102 // for the offset calculation, so we cannot simply call it here.
1103 // Instead, get the offset (relative to the FP) directly.
1104 Offset
= MFI
.getObjectOffset(F
->getFrameIdx());
1108 getFrameIndexReference(MF
, F
->getFrameIdx(), FrameReg
).getFixed();
1110 // Subtract 8 to make room for R30 and R31, which are added above.
1113 if (Reg
< Hexagon::D0
|| Reg
> Hexagon::D15
) {
1114 unsigned DwarfReg
= HRI
.getDwarfRegNum(Reg
, true);
1115 auto OffReg
= MCCFIInstruction::createOffset(FrameLabel
, DwarfReg
,
1117 BuildMI(MBB
, At
, DL
, CFID
)
1118 .addCFIIndex(MF
.addFrameInst(OffReg
));
1120 // Split the double regs into subregs, and generate appropriate
1122 // The only reason, we are split double regs is, llvm-mc does not
1123 // understand paired registers for cfi_offset.
1124 // Eg .cfi_offset r1:0, -64
1126 Register HiReg
= HRI
.getSubReg(Reg
, Hexagon::isub_hi
);
1127 Register LoReg
= HRI
.getSubReg(Reg
, Hexagon::isub_lo
);
1128 unsigned HiDwarfReg
= HRI
.getDwarfRegNum(HiReg
, true);
1129 unsigned LoDwarfReg
= HRI
.getDwarfRegNum(LoReg
, true);
1130 auto OffHi
= MCCFIInstruction::createOffset(FrameLabel
, HiDwarfReg
,
1132 BuildMI(MBB
, At
, DL
, CFID
)
1133 .addCFIIndex(MF
.addFrameInst(OffHi
));
1134 auto OffLo
= MCCFIInstruction::createOffset(FrameLabel
, LoDwarfReg
,
1136 BuildMI(MBB
, At
, DL
, CFID
)
1137 .addCFIIndex(MF
.addFrameInst(OffLo
));
1142 bool HexagonFrameLowering::hasFP(const MachineFunction
&MF
) const {
1143 if (MF
.getFunction().hasFnAttribute(Attribute::Naked
))
1146 auto &MFI
= MF
.getFrameInfo();
1147 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1148 bool HasExtraAlign
= HRI
.hasStackRealignment(MF
);
1149 bool HasAlloca
= MFI
.hasVarSizedObjects();
1151 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
1152 // that this shouldn't be required, but doing so now because gcc does and
1153 // gdb can't break at the start of the function without it. Will remove if
1154 // this turns out to be a gdb bug.
1156 if (MF
.getTarget().getOptLevel() == CodeGenOpt::None
)
1159 // By default we want to use SP (since it's always there). FP requires
1160 // some setup (i.e. ALLOCFRAME).
1161 // Both, alloca and stack alignment modify the stack pointer by an
1162 // undetermined value, so we need to save it at the entry to the function
1163 // (i.e. use allocframe).
1164 if (HasAlloca
|| HasExtraAlign
)
1167 if (MFI
.getStackSize() > 0) {
1168 // If FP-elimination is disabled, we have to use FP at this point.
1169 const TargetMachine
&TM
= MF
.getTarget();
1170 if (TM
.Options
.DisableFramePointerElim(MF
) || !EliminateFramePointer
)
1172 if (EnableStackOVFSanitizer
)
1176 const auto &HMFI
= *MF
.getInfo
<HexagonMachineFunctionInfo
>();
1177 if ((MFI
.hasCalls() && !enableAllocFrameElim(MF
)) || HMFI
.hasClobberLR())
1189 static const char *getSpillFunctionFor(unsigned MaxReg
, SpillKind SpillType
,
1190 bool Stkchk
= false) {
1191 const char * V4SpillToMemoryFunctions
[] = {
1192 "__save_r16_through_r17",
1193 "__save_r16_through_r19",
1194 "__save_r16_through_r21",
1195 "__save_r16_through_r23",
1196 "__save_r16_through_r25",
1197 "__save_r16_through_r27" };
1199 const char * V4SpillToMemoryStkchkFunctions
[] = {
1200 "__save_r16_through_r17_stkchk",
1201 "__save_r16_through_r19_stkchk",
1202 "__save_r16_through_r21_stkchk",
1203 "__save_r16_through_r23_stkchk",
1204 "__save_r16_through_r25_stkchk",
1205 "__save_r16_through_r27_stkchk" };
1207 const char * V4SpillFromMemoryFunctions
[] = {
1208 "__restore_r16_through_r17_and_deallocframe",
1209 "__restore_r16_through_r19_and_deallocframe",
1210 "__restore_r16_through_r21_and_deallocframe",
1211 "__restore_r16_through_r23_and_deallocframe",
1212 "__restore_r16_through_r25_and_deallocframe",
1213 "__restore_r16_through_r27_and_deallocframe" };
1215 const char * V4SpillFromMemoryTailcallFunctions
[] = {
1216 "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1217 "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1218 "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1219 "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1220 "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1221 "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1224 const char **SpillFunc
= nullptr;
1228 SpillFunc
= Stkchk
? V4SpillToMemoryStkchkFunctions
1229 : V4SpillToMemoryFunctions
;
1232 SpillFunc
= V4SpillFromMemoryFunctions
;
1234 case SK_FromMemTailcall
:
1235 SpillFunc
= V4SpillFromMemoryTailcallFunctions
;
1238 assert(SpillFunc
&& "Unknown spill kind");
1240 // Spill all callee-saved registers up to the highest register used.
1243 return SpillFunc
[0];
1245 return SpillFunc
[1];
1247 return SpillFunc
[2];
1249 return SpillFunc
[3];
1251 return SpillFunc
[4];
1253 return SpillFunc
[5];
1255 llvm_unreachable("Unhandled maximum callee save register");
1261 HexagonFrameLowering::getFrameIndexReference(const MachineFunction
&MF
, int FI
,
1262 Register
&FrameReg
) const {
1263 auto &MFI
= MF
.getFrameInfo();
1264 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1266 int Offset
= MFI
.getObjectOffset(FI
);
1267 bool HasAlloca
= MFI
.hasVarSizedObjects();
1268 bool HasExtraAlign
= HRI
.hasStackRealignment(MF
);
1269 bool NoOpt
= MF
.getTarget().getOptLevel() == CodeGenOpt::None
;
1271 auto &HMFI
= *MF
.getInfo
<HexagonMachineFunctionInfo
>();
1272 unsigned FrameSize
= MFI
.getStackSize();
1273 Register SP
= HRI
.getStackRegister();
1274 Register FP
= HRI
.getFrameRegister();
1275 Register AP
= HMFI
.getStackAlignBasePhysReg();
1276 // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1277 // is true. HasExtraAlign may be set because of vector spills, without
1278 // aligned locals or aligned outgoing function arguments. Since vector
1279 // spills will ultimately be "unaligned", it is safe to use FP as the
1281 // In fact, in such a scenario the stack is actually not required to be
1282 // aligned, although it may end up being aligned anyway, since this
1283 // particular case is not easily detectable. The alignment will be
1284 // unnecessary, but not incorrect.
1285 // Unfortunately there is no quick way to verify that the above is
1286 // indeed the case (and that it's not a result of an error), so just
1287 // assume that missing AP will be replaced by FP.
1288 // (A better fix would be to rematerialize AP from FP and always align
1293 bool UseFP
= false, UseAP
= false; // Default: use SP (except at -O0).
1294 // Use FP at -O0, except when there are objects with extra alignment.
1295 // That additional alignment requirement may cause a pad to be inserted,
1296 // which will make it impossible to use FP to access objects located
1298 if (NoOpt
&& !HasExtraAlign
)
1300 if (MFI
.isFixedObjectIndex(FI
) || MFI
.isObjectPreAllocated(FI
)) {
1301 // Fixed and preallocated objects will be located before any padding
1302 // so FP must be used to access them.
1303 UseFP
|= (HasAlloca
|| HasExtraAlign
);
1313 // If FP was picked, then there had better be FP.
1314 bool HasFP
= hasFP(MF
);
1315 assert((HasFP
|| !UseFP
) && "This function must have frame pointer");
1317 // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1318 // FP/LR. If the base register is used to access an object across these
1319 // 8 bytes, then the offset will need to be adjusted by 8.
1321 // After allocframe:
1322 // HexagonISelLowering adds 8 to ---+
1323 // the offsets of all stack-based |
1326 // getObjectOffset < 0 0 8 getObjectOffset >= 8
1327 // ------------------------+-----+------------------------> increasing
1328 // <local objects> |FP/LR| <input arguments> addresses
1329 // -----------------+------+-----+------------------------>
1331 // SP/AP point --+ +-- FP points here (**)
1333 // this side of FP/LR
1335 // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1336 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1338 // The lowering assumes that FP/LR is present, and so the offsets of
1339 // the formal arguments start at 8. If FP/LR is not there we need to
1340 // reduce the offset by 8.
1341 if (Offset
> 0 && !HasFP
)
1351 // Calculate the actual offset in the instruction. If there is no FP
1352 // (in other words, no allocframe), then SP will not be adjusted (i.e.
1353 // there will be no SP -= FrameSize), so the frame size should not be
1354 // added to the calculated offset.
1355 int RealOffset
= Offset
;
1356 if (!UseFP
&& !UseAP
)
1357 RealOffset
= FrameSize
+Offset
;
1358 return StackOffset::getFixed(RealOffset
);
1361 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock
&MBB
,
1362 const CSIVect
&CSI
, const HexagonRegisterInfo
&HRI
,
1363 bool &PrologueStubs
) const {
1367 MachineBasicBlock::iterator MI
= MBB
.begin();
1368 PrologueStubs
= false;
1369 MachineFunction
&MF
= *MBB
.getParent();
1370 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
1371 auto &HII
= *HST
.getInstrInfo();
1373 if (useSpillFunction(MF
, CSI
)) {
1374 PrologueStubs
= true;
1375 unsigned MaxReg
= getMaxCalleeSavedReg(CSI
, HRI
);
1376 bool StkOvrFlowEnabled
= EnableStackOVFSanitizer
;
1377 const char *SpillFun
= getSpillFunctionFor(MaxReg
, SK_ToMem
,
1379 auto &HTM
= static_cast<const HexagonTargetMachine
&>(MF
.getTarget());
1380 bool IsPIC
= HTM
.isPositionIndependent();
1381 bool LongCalls
= HST
.useLongCalls() || EnableSaveRestoreLong
;
1383 // Call spill function.
1384 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc() : DebugLoc();
1386 if (StkOvrFlowEnabled
) {
1388 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1389 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT
;
1391 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1392 : Hexagon::SAVE_REGISTERS_CALL_V4STK
;
1395 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1396 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT
;
1398 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1399 : Hexagon::SAVE_REGISTERS_CALL_V4
;
1402 MachineInstr
*SaveRegsCall
=
1403 BuildMI(MBB
, MI
, DL
, HII
.get(SpillOpc
))
1404 .addExternalSymbol(SpillFun
);
1406 // Add callee-saved registers as use.
1407 addCalleeSaveRegistersAsImpOperand(SaveRegsCall
, CSI
, false, true);
1408 // Add live in registers.
1409 for (unsigned I
= 0; I
< CSI
.size(); ++I
)
1410 MBB
.addLiveIn(CSI
[I
].getReg());
1414 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
1415 unsigned Reg
= CSI
[i
].getReg();
1416 // Add live in registers. We treat eh_return callee saved register r0 - r3
1417 // specially. They are not really callee saved registers as they are not
1418 // supposed to be killed.
1419 bool IsKill
= !HRI
.isEHReturnCalleeSaveReg(Reg
);
1420 int FI
= CSI
[i
].getFrameIdx();
1421 const TargetRegisterClass
*RC
= HRI
.getMinimalPhysRegClass(Reg
);
1422 HII
.storeRegToStackSlot(MBB
, MI
, Reg
, IsKill
, FI
, RC
, &HRI
);
1429 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock
&MBB
,
1430 const CSIVect
&CSI
, const HexagonRegisterInfo
&HRI
) const {
1434 MachineBasicBlock::iterator MI
= MBB
.getFirstTerminator();
1435 MachineFunction
&MF
= *MBB
.getParent();
1436 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
1437 auto &HII
= *HST
.getInstrInfo();
1439 if (useRestoreFunction(MF
, CSI
)) {
1440 bool HasTC
= hasTailCall(MBB
) || !hasReturn(MBB
);
1441 unsigned MaxR
= getMaxCalleeSavedReg(CSI
, HRI
);
1442 SpillKind Kind
= HasTC
? SK_FromMemTailcall
: SK_FromMem
;
1443 const char *RestoreFn
= getSpillFunctionFor(MaxR
, Kind
);
1444 auto &HTM
= static_cast<const HexagonTargetMachine
&>(MF
.getTarget());
1445 bool IsPIC
= HTM
.isPositionIndependent();
1446 bool LongCalls
= HST
.useLongCalls() || EnableSaveRestoreLong
;
1448 // Call spill function.
1449 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc()
1450 : MBB
.findDebugLoc(MBB
.end());
1451 MachineInstr
*DeallocCall
= nullptr;
1456 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1457 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT
;
1459 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1460 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4
;
1461 DeallocCall
= BuildMI(MBB
, MI
, DL
, HII
.get(RetOpc
))
1462 .addExternalSymbol(RestoreFn
);
1464 // The block has a return.
1465 MachineBasicBlock::iterator It
= MBB
.getFirstTerminator();
1466 assert(It
->isReturn() && std::next(It
) == MBB
.end());
1469 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1470 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT
;
1472 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1473 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4
;
1474 DeallocCall
= BuildMI(MBB
, It
, DL
, HII
.get(RetOpc
))
1475 .addExternalSymbol(RestoreFn
);
1476 // Transfer the function live-out registers.
1477 DeallocCall
->copyImplicitOps(MF
, *It
);
1479 addCalleeSaveRegistersAsImpOperand(DeallocCall
, CSI
, true, false);
1483 for (unsigned i
= 0; i
< CSI
.size(); ++i
) {
1484 unsigned Reg
= CSI
[i
].getReg();
1485 const TargetRegisterClass
*RC
= HRI
.getMinimalPhysRegClass(Reg
);
1486 int FI
= CSI
[i
].getFrameIdx();
1487 HII
.loadRegFromStackSlot(MBB
, MI
, Reg
, FI
, RC
, &HRI
);
1493 MachineBasicBlock::iterator
HexagonFrameLowering::eliminateCallFramePseudoInstr(
1494 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
1495 MachineBasicBlock::iterator I
) const {
1496 MachineInstr
&MI
= *I
;
1497 unsigned Opc
= MI
.getOpcode();
1498 (void)Opc
; // Silence compiler warning.
1499 assert((Opc
== Hexagon::ADJCALLSTACKDOWN
|| Opc
== Hexagon::ADJCALLSTACKUP
) &&
1500 "Cannot handle this call frame pseudo instruction");
1501 return MBB
.erase(I
);
1504 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1505 MachineFunction
&MF
, RegScavenger
*RS
) const {
1506 // If this function has uses aligned stack and also has variable sized stack
1507 // objects, then we need to map all spill slots to fixed positions, so that
1508 // they can be accessed through FP. Otherwise they would have to be accessed
1509 // via AP, which may not be available at the particular place in the program.
1510 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1511 bool HasAlloca
= MFI
.hasVarSizedObjects();
1512 bool NeedsAlign
= (MFI
.getMaxAlign() > getStackAlign());
1514 if (!HasAlloca
|| !NeedsAlign
)
1517 SmallSet
<int, 4> DealignSlots
;
1518 unsigned LFS
= MFI
.getLocalFrameSize();
1519 for (int i
= 0, e
= MFI
.getObjectIndexEnd(); i
!= e
; ++i
) {
1520 if (!MFI
.isSpillSlotObjectIndex(i
) || MFI
.isDeadObjectIndex(i
))
1522 unsigned S
= MFI
.getObjectSize(i
);
1523 // Reduce the alignment to at most 8. This will require unaligned vector
1524 // stores if they happen here.
1525 Align A
= std::max(MFI
.getObjectAlign(i
), Align(8));
1526 MFI
.setObjectAlignment(i
, Align(8));
1527 LFS
= alignTo(LFS
+S
, A
);
1528 MFI
.mapLocalFrameObject(i
, -static_cast<int64_t>(LFS
));
1529 DealignSlots
.insert(i
);
1532 MFI
.setLocalFrameSize(LFS
);
1533 Align A
= MFI
.getLocalFrameMaxAlign();
1534 assert(A
<= 8 && "Unexpected local frame alignment");
1536 MFI
.setLocalFrameMaxAlign(Align(8));
1537 MFI
.setUseLocalStackAllocationBlock(true);
1539 // Go over all MachineMemOperands in the code, and change the ones that
1540 // refer to the dealigned stack slots to reflect the new alignment.
1541 if (!DealignSlots
.empty()) {
1542 for (MachineBasicBlock
&BB
: MF
) {
1543 for (MachineInstr
&MI
: BB
) {
1544 bool KeepOld
= true;
1545 ArrayRef
<MachineMemOperand
*> memops
= MI
.memoperands();
1546 SmallVector
<MachineMemOperand
*,1> new_memops
;
1547 for (MachineMemOperand
*MMO
: memops
) {
1548 auto *PV
= MMO
->getPseudoValue();
1549 if (auto *FS
= dyn_cast_or_null
<FixedStackPseudoSourceValue
>(PV
)) {
1550 int FI
= FS
->getFrameIndex();
1551 if (DealignSlots
.count(FI
)) {
1552 auto *NewMMO
= MF
.getMachineMemOperand(
1553 MMO
->getPointerInfo(), MMO
->getFlags(), MMO
->getSize(),
1554 MFI
.getObjectAlign(FI
), MMO
->getAAInfo(), MMO
->getRanges(),
1555 MMO
->getSyncScopeID(), MMO
->getSuccessOrdering(),
1556 MMO
->getFailureOrdering());
1557 new_memops
.push_back(NewMMO
);
1562 new_memops
.push_back(MMO
);
1565 MI
.setMemRefs(MF
, new_memops
);
1570 // Set the physical aligned-stack base address register.
1572 if (const MachineInstr
*AI
= getAlignaInstr(MF
))
1573 AP
= AI
->getOperand(0).getReg();
1574 auto &HMFI
= *MF
.getInfo
<HexagonMachineFunctionInfo
>();
1575 HMFI
.setStackAlignBasePhysReg(AP
);
1578 /// Returns true if there are no caller-saved registers available in class RC.
1579 static bool needToReserveScavengingSpillSlots(MachineFunction
&MF
,
1580 const HexagonRegisterInfo
&HRI
, const TargetRegisterClass
*RC
) {
1581 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1583 auto IsUsed
= [&HRI
,&MRI
] (unsigned Reg
) -> bool {
1584 for (MCRegAliasIterator
AI(Reg
, &HRI
, true); AI
.isValid(); ++AI
)
1585 if (MRI
.isPhysRegUsed(*AI
))
1590 // Check for an unused caller-saved register. Callee-saved registers
1591 // have become pristine by now.
1592 for (const MCPhysReg
*P
= HRI
.getCallerSavedRegs(&MF
, RC
); *P
; ++P
)
1596 // All caller-saved registers are used.
1601 static void dump_registers(BitVector
&Regs
, const TargetRegisterInfo
&TRI
) {
1603 for (int x
= Regs
.find_first(); x
>= 0; x
= Regs
.find_next(x
)) {
1605 dbgs() << ' ' << printReg(R
, &TRI
);
1611 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction
&MF
,
1612 const TargetRegisterInfo
*TRI
, std::vector
<CalleeSavedInfo
> &CSI
) const {
1613 LLVM_DEBUG(dbgs() << __func__
<< " on " << MF
.getName() << '\n');
1614 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1615 BitVector
SRegs(Hexagon::NUM_TARGET_REGS
);
1617 // Generate a set of unique, callee-saved registers (SRegs), where each
1618 // register in the set is maximal in terms of sub-/super-register relation,
1619 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1621 // (1) For each callee-saved register, add that register and all of its
1622 // sub-registers to SRegs.
1623 LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1624 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
1625 unsigned R
= CSI
[i
].getReg();
1626 LLVM_DEBUG(dbgs() << ' ' << printReg(R
, TRI
));
1627 for (MCSubRegIterator
SR(R
, TRI
, true); SR
.isValid(); ++SR
)
1630 LLVM_DEBUG(dbgs() << " }\n");
1631 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs
, *TRI
);
1634 // (2) For each reserved register, remove that register and all of its
1635 // sub- and super-registers from SRegs.
1636 BitVector Reserved
= TRI
->getReservedRegs(MF
);
1637 for (int x
= Reserved
.find_first(); x
>= 0; x
= Reserved
.find_next(x
)) {
1639 for (MCSuperRegIterator
SR(R
, TRI
, true); SR
.isValid(); ++SR
)
1642 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved
, *TRI
);
1644 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs
, *TRI
);
1647 // (3) Collect all registers that have at least one sub-register in SRegs,
1648 // and also have no sub-registers that are reserved. These will be the can-
1649 // didates for saving as a whole instead of their individual sub-registers.
1650 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1651 BitVector
TmpSup(Hexagon::NUM_TARGET_REGS
);
1652 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1654 for (MCSuperRegIterator
SR(R
, TRI
); SR
.isValid(); ++SR
)
1657 for (int x
= TmpSup
.find_first(); x
>= 0; x
= TmpSup
.find_next(x
)) {
1659 for (MCSubRegIterator
SR(R
, TRI
, true); SR
.isValid(); ++SR
) {
1666 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup
, *TRI
);
1669 // (4) Include all super-registers found in (3) into SRegs.
1671 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs
, *TRI
);
1674 // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1675 // remove R from SRegs.
1676 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1678 for (MCSuperRegIterator
SR(R
, TRI
); SR
.isValid(); ++SR
) {
1685 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs
, *TRI
);
1688 // Now, for each register that has a fixed stack slot, create the stack
1692 using SpillSlot
= TargetFrameLowering::SpillSlot
;
1695 int MinOffset
= 0; // CS offsets are negative.
1696 const SpillSlot
*FixedSlots
= getCalleeSavedSpillSlots(NumFixed
);
1697 for (const SpillSlot
*S
= FixedSlots
; S
!= FixedSlots
+NumFixed
; ++S
) {
1700 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(S
->Reg
);
1701 int FI
= MFI
.CreateFixedSpillStackObject(TRI
->getSpillSize(*RC
), S
->Offset
);
1702 MinOffset
= std::min(MinOffset
, S
->Offset
);
1703 CSI
.push_back(CalleeSavedInfo(S
->Reg
, FI
));
1704 SRegs
[S
->Reg
] = false;
1707 // There can be some registers that don't have fixed slots. For example,
1708 // we need to store R0-R3 in functions with exception handling. For each
1709 // such register, create a non-fixed stack object.
1710 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1712 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(R
);
1713 unsigned Size
= TRI
->getSpillSize(*RC
);
1714 int Off
= MinOffset
- Size
;
1715 Align Alignment
= std::min(TRI
->getSpillAlign(*RC
), getStackAlign());
1716 Off
&= -Alignment
.value();
1717 int FI
= MFI
.CreateFixedSpillStackObject(Size
, Off
);
1718 MinOffset
= std::min(MinOffset
, Off
);
1719 CSI
.push_back(CalleeSavedInfo(R
, FI
));
1724 dbgs() << "CS information: {";
1725 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
1726 int FI
= CSI
[i
].getFrameIdx();
1727 int Off
= MFI
.getObjectOffset(FI
);
1728 dbgs() << ' ' << printReg(CSI
[i
].getReg(), TRI
) << ":fi#" << FI
<< ":sp";
1737 // Verify that all registers were handled.
1738 bool MissedReg
= false;
1739 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1741 dbgs() << printReg(R
, TRI
) << ' ';
1745 llvm_unreachable("...there are unhandled callee-saved registers!");
1751 bool HexagonFrameLowering::expandCopy(MachineBasicBlock
&B
,
1752 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1753 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1754 MachineInstr
*MI
= &*It
;
1755 DebugLoc DL
= MI
->getDebugLoc();
1756 Register DstR
= MI
->getOperand(0).getReg();
1757 Register SrcR
= MI
->getOperand(1).getReg();
1758 if (!Hexagon::ModRegsRegClass
.contains(DstR
) ||
1759 !Hexagon::ModRegsRegClass
.contains(SrcR
))
1762 Register TmpR
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1763 BuildMI(B
, It
, DL
, HII
.get(TargetOpcode::COPY
), TmpR
).add(MI
->getOperand(1));
1764 BuildMI(B
, It
, DL
, HII
.get(TargetOpcode::COPY
), DstR
)
1765 .addReg(TmpR
, RegState::Kill
);
1767 NewRegs
.push_back(TmpR
);
1772 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock
&B
,
1773 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1774 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1775 MachineInstr
*MI
= &*It
;
1776 if (!MI
->getOperand(0).isFI())
1779 DebugLoc DL
= MI
->getDebugLoc();
1780 unsigned Opc
= MI
->getOpcode();
1781 Register SrcR
= MI
->getOperand(2).getReg();
1782 bool IsKill
= MI
->getOperand(2).isKill();
1783 int FI
= MI
->getOperand(0).getIndex();
1785 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register
1786 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
1787 Register TmpR
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1788 unsigned TfrOpc
= (Opc
== Hexagon::STriw_pred
) ? Hexagon::C2_tfrpr
1789 : Hexagon::A2_tfrcrr
;
1790 BuildMI(B
, It
, DL
, HII
.get(TfrOpc
), TmpR
)
1791 .addReg(SrcR
, getKillRegState(IsKill
));
1793 // S2_storeri_io FI, 0, TmpR
1794 BuildMI(B
, It
, DL
, HII
.get(Hexagon::S2_storeri_io
))
1797 .addReg(TmpR
, RegState::Kill
)
1800 NewRegs
.push_back(TmpR
);
1805 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock
&B
,
1806 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1807 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1808 MachineInstr
*MI
= &*It
;
1809 if (!MI
->getOperand(1).isFI())
1812 DebugLoc DL
= MI
->getDebugLoc();
1813 unsigned Opc
= MI
->getOpcode();
1814 Register DstR
= MI
->getOperand(0).getReg();
1815 int FI
= MI
->getOperand(1).getIndex();
1817 // TmpR = L2_loadri_io FI, 0
1818 Register TmpR
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1819 BuildMI(B
, It
, DL
, HII
.get(Hexagon::L2_loadri_io
), TmpR
)
1824 // DstR = C2_tfrrp TmpR if DstR is a predicate register
1825 // DstR = A2_tfrrcr TmpR if DstR is a modifier register
1826 unsigned TfrOpc
= (Opc
== Hexagon::LDriw_pred
) ? Hexagon::C2_tfrrp
1827 : Hexagon::A2_tfrrcr
;
1828 BuildMI(B
, It
, DL
, HII
.get(TfrOpc
), DstR
)
1829 .addReg(TmpR
, RegState::Kill
);
1831 NewRegs
.push_back(TmpR
);
1836 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock
&B
,
1837 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1838 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1839 MachineInstr
*MI
= &*It
;
1840 if (!MI
->getOperand(0).isFI())
1843 DebugLoc DL
= MI
->getDebugLoc();
1844 Register SrcR
= MI
->getOperand(2).getReg();
1845 bool IsKill
= MI
->getOperand(2).isKill();
1846 int FI
= MI
->getOperand(0).getIndex();
1847 auto *RC
= &Hexagon::HvxVRRegClass
;
1849 // Insert transfer to general vector register.
1850 // TmpR0 = A2_tfrsi 0x01010101
1851 // TmpR1 = V6_vandqrt Qx, TmpR0
1852 // store FI, 0, TmpR1
1853 Register TmpR0
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1854 Register TmpR1
= MRI
.createVirtualRegister(RC
);
1856 BuildMI(B
, It
, DL
, HII
.get(Hexagon::A2_tfrsi
), TmpR0
)
1857 .addImm(0x01010101);
1859 BuildMI(B
, It
, DL
, HII
.get(Hexagon::V6_vandqrt
), TmpR1
)
1860 .addReg(SrcR
, getKillRegState(IsKill
))
1861 .addReg(TmpR0
, RegState::Kill
);
1863 auto *HRI
= B
.getParent()->getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1864 HII
.storeRegToStackSlot(B
, It
, TmpR1
, true, FI
, RC
, HRI
);
1865 expandStoreVec(B
, std::prev(It
), MRI
, HII
, NewRegs
);
1867 NewRegs
.push_back(TmpR0
);
1868 NewRegs
.push_back(TmpR1
);
1873 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock
&B
,
1874 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1875 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1876 MachineInstr
*MI
= &*It
;
1877 if (!MI
->getOperand(1).isFI())
1880 DebugLoc DL
= MI
->getDebugLoc();
1881 Register DstR
= MI
->getOperand(0).getReg();
1882 int FI
= MI
->getOperand(1).getIndex();
1883 auto *RC
= &Hexagon::HvxVRRegClass
;
1885 // TmpR0 = A2_tfrsi 0x01010101
1886 // TmpR1 = load FI, 0
1887 // DstR = V6_vandvrt TmpR1, TmpR0
1888 Register TmpR0
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1889 Register TmpR1
= MRI
.createVirtualRegister(RC
);
1891 BuildMI(B
, It
, DL
, HII
.get(Hexagon::A2_tfrsi
), TmpR0
)
1892 .addImm(0x01010101);
1893 MachineFunction
&MF
= *B
.getParent();
1894 auto *HRI
= MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1895 HII
.loadRegFromStackSlot(B
, It
, TmpR1
, FI
, RC
, HRI
);
1896 expandLoadVec(B
, std::prev(It
), MRI
, HII
, NewRegs
);
1898 BuildMI(B
, It
, DL
, HII
.get(Hexagon::V6_vandvrt
), DstR
)
1899 .addReg(TmpR1
, RegState::Kill
)
1900 .addReg(TmpR0
, RegState::Kill
);
1902 NewRegs
.push_back(TmpR0
);
1903 NewRegs
.push_back(TmpR1
);
1908 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock
&B
,
1909 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1910 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1911 MachineFunction
&MF
= *B
.getParent();
1912 auto &MFI
= MF
.getFrameInfo();
1913 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1914 MachineInstr
*MI
= &*It
;
1915 if (!MI
->getOperand(0).isFI())
1918 // It is possible that the double vector being stored is only partially
1919 // defined. From the point of view of the liveness tracking, it is ok to
1920 // store it as a whole, but if we break it up we may end up storing a
1921 // register that is entirely undefined.
1922 LivePhysRegs
LPR(HRI
);
1924 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>,2> Clobbers
;
1925 for (auto R
= B
.begin(); R
!= It
; ++R
) {
1927 LPR
.stepForward(*R
, Clobbers
);
1930 DebugLoc DL
= MI
->getDebugLoc();
1931 Register SrcR
= MI
->getOperand(2).getReg();
1932 Register SrcLo
= HRI
.getSubReg(SrcR
, Hexagon::vsub_lo
);
1933 Register SrcHi
= HRI
.getSubReg(SrcR
, Hexagon::vsub_hi
);
1934 bool IsKill
= MI
->getOperand(2).isKill();
1935 int FI
= MI
->getOperand(0).getIndex();
1936 bool NeedsAligna
= needsAligna(MF
);
1938 unsigned Size
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1939 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
1940 Align HasAlign
= MFI
.getObjectAlign(FI
);
1943 auto UseAligned
= [&](Align NeedAlign
, Align HasAlign
) {
1944 return !NeedsAligna
&& (NeedAlign
<= HasAlign
);
1948 if (LPR
.contains(SrcLo
)) {
1949 StoreOpc
= UseAligned(NeedAlign
, HasAlign
) ? Hexagon::V6_vS32b_ai
1950 : Hexagon::V6_vS32Ub_ai
;
1951 BuildMI(B
, It
, DL
, HII
.get(StoreOpc
))
1954 .addReg(SrcLo
, getKillRegState(IsKill
))
1959 if (LPR
.contains(SrcHi
)) {
1960 StoreOpc
= UseAligned(NeedAlign
, HasAlign
) ? Hexagon::V6_vS32b_ai
1961 : Hexagon::V6_vS32Ub_ai
;
1962 BuildMI(B
, It
, DL
, HII
.get(StoreOpc
))
1965 .addReg(SrcHi
, getKillRegState(IsKill
))
1973 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock
&B
,
1974 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1975 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1976 MachineFunction
&MF
= *B
.getParent();
1977 auto &MFI
= MF
.getFrameInfo();
1978 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1979 MachineInstr
*MI
= &*It
;
1980 if (!MI
->getOperand(1).isFI())
1983 DebugLoc DL
= MI
->getDebugLoc();
1984 Register DstR
= MI
->getOperand(0).getReg();
1985 Register DstHi
= HRI
.getSubReg(DstR
, Hexagon::vsub_hi
);
1986 Register DstLo
= HRI
.getSubReg(DstR
, Hexagon::vsub_lo
);
1987 int FI
= MI
->getOperand(1).getIndex();
1988 bool NeedsAligna
= needsAligna(MF
);
1990 unsigned Size
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1991 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
1992 Align HasAlign
= MFI
.getObjectAlign(FI
);
1995 auto UseAligned
= [&](Align NeedAlign
, Align HasAlign
) {
1996 return !NeedsAligna
&& (NeedAlign
<= HasAlign
);
2000 LoadOpc
= UseAligned(NeedAlign
, HasAlign
) ? Hexagon::V6_vL32b_ai
2001 : Hexagon::V6_vL32Ub_ai
;
2002 BuildMI(B
, It
, DL
, HII
.get(LoadOpc
), DstLo
)
2008 LoadOpc
= UseAligned(NeedAlign
, HasAlign
) ? Hexagon::V6_vL32b_ai
2009 : Hexagon::V6_vL32Ub_ai
;
2010 BuildMI(B
, It
, DL
, HII
.get(LoadOpc
), DstHi
)
2019 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock
&B
,
2020 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
2021 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
2022 MachineFunction
&MF
= *B
.getParent();
2023 auto &MFI
= MF
.getFrameInfo();
2024 MachineInstr
*MI
= &*It
;
2025 if (!MI
->getOperand(0).isFI())
2028 bool NeedsAligna
= needsAligna(MF
);
2029 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
2030 DebugLoc DL
= MI
->getDebugLoc();
2031 Register SrcR
= MI
->getOperand(2).getReg();
2032 bool IsKill
= MI
->getOperand(2).isKill();
2033 int FI
= MI
->getOperand(0).getIndex();
2035 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
2036 Align HasAlign
= MFI
.getObjectAlign(FI
);
2037 bool UseAligned
= !NeedsAligna
&& (NeedAlign
<= HasAlign
);
2038 unsigned StoreOpc
= UseAligned
? Hexagon::V6_vS32b_ai
2039 : Hexagon::V6_vS32Ub_ai
;
2040 BuildMI(B
, It
, DL
, HII
.get(StoreOpc
))
2043 .addReg(SrcR
, getKillRegState(IsKill
))
2050 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock
&B
,
2051 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
2052 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
2053 MachineFunction
&MF
= *B
.getParent();
2054 auto &MFI
= MF
.getFrameInfo();
2055 MachineInstr
*MI
= &*It
;
2056 if (!MI
->getOperand(1).isFI())
2059 bool NeedsAligna
= needsAligna(MF
);
2060 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
2061 DebugLoc DL
= MI
->getDebugLoc();
2062 Register DstR
= MI
->getOperand(0).getReg();
2063 int FI
= MI
->getOperand(1).getIndex();
2065 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
2066 Align HasAlign
= MFI
.getObjectAlign(FI
);
2067 bool UseAligned
= !NeedsAligna
&& (NeedAlign
<= HasAlign
);
2068 unsigned LoadOpc
= UseAligned
? Hexagon::V6_vL32b_ai
2069 : Hexagon::V6_vL32Ub_ai
;
2070 BuildMI(B
, It
, DL
, HII
.get(LoadOpc
), DstR
)
2079 bool HexagonFrameLowering::expandSpillMacros(MachineFunction
&MF
,
2080 SmallVectorImpl
<unsigned> &NewRegs
) const {
2081 auto &HII
= *MF
.getSubtarget
<HexagonSubtarget
>().getInstrInfo();
2082 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2083 bool Changed
= false;
2085 for (auto &B
: MF
) {
2086 // Traverse the basic block.
2087 MachineBasicBlock::iterator NextI
;
2088 for (auto I
= B
.begin(), E
= B
.end(); I
!= E
; I
= NextI
) {
2089 MachineInstr
*MI
= &*I
;
2090 NextI
= std::next(I
);
2091 unsigned Opc
= MI
->getOpcode();
2094 case TargetOpcode::COPY
:
2095 Changed
|= expandCopy(B
, I
, MRI
, HII
, NewRegs
);
2097 case Hexagon::STriw_pred
:
2098 case Hexagon::STriw_ctr
:
2099 Changed
|= expandStoreInt(B
, I
, MRI
, HII
, NewRegs
);
2101 case Hexagon::LDriw_pred
:
2102 case Hexagon::LDriw_ctr
:
2103 Changed
|= expandLoadInt(B
, I
, MRI
, HII
, NewRegs
);
2105 case Hexagon::PS_vstorerq_ai
:
2106 Changed
|= expandStoreVecPred(B
, I
, MRI
, HII
, NewRegs
);
2108 case Hexagon::PS_vloadrq_ai
:
2109 Changed
|= expandLoadVecPred(B
, I
, MRI
, HII
, NewRegs
);
2111 case Hexagon::PS_vloadrw_ai
:
2112 Changed
|= expandLoadVec2(B
, I
, MRI
, HII
, NewRegs
);
2114 case Hexagon::PS_vstorerw_ai
:
2115 Changed
|= expandStoreVec2(B
, I
, MRI
, HII
, NewRegs
);
2124 void HexagonFrameLowering::determineCalleeSaves(MachineFunction
&MF
,
2125 BitVector
&SavedRegs
,
2126 RegScavenger
*RS
) const {
2127 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
2129 SavedRegs
.resize(HRI
.getNumRegs());
2131 // If we have a function containing __builtin_eh_return we want to spill and
2132 // restore all callee saved registers. Pretend that they are used.
2133 if (MF
.getInfo
<HexagonMachineFunctionInfo
>()->hasEHReturn())
2134 for (const MCPhysReg
*R
= HRI
.getCalleeSavedRegs(&MF
); *R
; ++R
)
2137 // Replace predicate register pseudo spill code.
2138 SmallVector
<unsigned,8> NewRegs
;
2139 expandSpillMacros(MF
, NewRegs
);
2140 if (OptimizeSpillSlots
&& !isOptNone(MF
))
2141 optimizeSpillSlots(MF
, NewRegs
);
2143 // We need to reserve a spill slot if scavenging could potentially require
2144 // spilling a scavenged register.
2145 if (!NewRegs
.empty() || mayOverflowFrameOffset(MF
)) {
2146 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2147 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2148 SetVector
<const TargetRegisterClass
*> SpillRCs
;
2149 // Reserve an int register in any case, because it could be used to hold
2150 // the stack offset in case it does not fit into a spill instruction.
2151 SpillRCs
.insert(&Hexagon::IntRegsRegClass
);
2153 for (unsigned VR
: NewRegs
)
2154 SpillRCs
.insert(MRI
.getRegClass(VR
));
2156 for (auto *RC
: SpillRCs
) {
2157 if (!needToReserveScavengingSpillSlots(MF
, HRI
, RC
))
2160 switch (RC
->getID()) {
2161 case Hexagon::IntRegsRegClassID
:
2162 Num
= NumberScavengerSlots
;
2164 case Hexagon::HvxQRRegClassID
:
2165 Num
= 2; // Vector predicate spills also need a vector register.
2168 unsigned S
= HRI
.getSpillSize(*RC
);
2169 Align A
= HRI
.getSpillAlign(*RC
);
2170 for (unsigned i
= 0; i
< Num
; i
++) {
2171 int NewFI
= MFI
.CreateSpillStackObject(S
, A
);
2172 RS
->addScavengingFrameIndex(NewFI
);
2177 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
2180 unsigned HexagonFrameLowering::findPhysReg(MachineFunction
&MF
,
2181 HexagonBlockRanges::IndexRange
&FIR
,
2182 HexagonBlockRanges::InstrIndexMap
&IndexMap
,
2183 HexagonBlockRanges::RegToRangeMap
&DeadMap
,
2184 const TargetRegisterClass
*RC
) const {
2185 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
2186 auto &MRI
= MF
.getRegInfo();
2188 auto isDead
= [&FIR
,&DeadMap
] (unsigned Reg
) -> bool {
2189 auto F
= DeadMap
.find({Reg
,0});
2190 if (F
== DeadMap
.end())
2192 for (auto &DR
: F
->second
)
2193 if (DR
.contains(FIR
))
2198 for (unsigned Reg
: RC
->getRawAllocationOrder(MF
)) {
2200 for (auto R
: HexagonBlockRanges::expandToSubRegs({Reg
,0}, MRI
, HRI
)) {
2212 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction
&MF
,
2213 SmallVectorImpl
<unsigned> &VRegs
) const {
2214 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
2215 auto &HII
= *HST
.getInstrInfo();
2216 auto &HRI
= *HST
.getRegisterInfo();
2217 auto &MRI
= MF
.getRegInfo();
2218 HexagonBlockRanges
HBR(MF
);
2220 using BlockIndexMap
=
2221 std::map
<MachineBasicBlock
*, HexagonBlockRanges::InstrIndexMap
>;
2222 using BlockRangeMap
=
2223 std::map
<MachineBasicBlock
*, HexagonBlockRanges::RangeList
>;
2224 using IndexType
= HexagonBlockRanges::IndexType
;
2229 const TargetRegisterClass
*RC
= nullptr;
2231 SlotInfo() = default;
2234 BlockIndexMap BlockIndexes
;
2235 SmallSet
<int,4> BadFIs
;
2236 std::map
<int,SlotInfo
> FIRangeMap
;
2238 // Accumulate register classes: get a common class for a pre-existing
2239 // class HaveRC and a new class NewRC. Return nullptr if a common class
2240 // cannot be found, otherwise return the resulting class. If HaveRC is
2241 // nullptr, assume that it is still unset.
2243 [](const TargetRegisterClass
*HaveRC
,
2244 const TargetRegisterClass
*NewRC
) -> const TargetRegisterClass
* {
2245 if (HaveRC
== nullptr || HaveRC
== NewRC
)
2247 // Different classes, both non-null. Pick the more general one.
2248 if (HaveRC
->hasSubClassEq(NewRC
))
2250 if (NewRC
->hasSubClassEq(HaveRC
))
2255 // Scan all blocks in the function. Check all occurrences of frame indexes,
2256 // and collect relevant information.
2257 for (auto &B
: MF
) {
2258 std::map
<int,IndexType
> LastStore
, LastLoad
;
2259 // Emplace appears not to be supported in gcc 4.7.2-4.
2260 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2261 auto P
= BlockIndexes
.insert(
2262 std::make_pair(&B
, HexagonBlockRanges::InstrIndexMap(B
)));
2263 auto &IndexMap
= P
.first
->second
;
2264 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B
) << "\n"
2265 << IndexMap
<< '\n');
2267 for (auto &In
: B
) {
2269 bool Load
= HII
.isLoadFromStackSlot(In
, LFI
) && !HII
.isPredicated(In
);
2270 bool Store
= HII
.isStoreToStackSlot(In
, SFI
) && !HII
.isPredicated(In
);
2271 if (Load
&& Store
) {
2272 // If it's both a load and a store, then we won't handle it.
2277 // Check for register classes of the register used as the source for
2278 // the store, and the register used as the destination for the load.
2279 // Also, only accept base+imm_offset addressing modes. Other addressing
2280 // modes can have side-effects (post-increments, etc.). For stack
2281 // slots they are very unlikely, so there is not much loss due to
2282 // this restriction.
2283 if (Load
|| Store
) {
2284 int TFI
= Load
? LFI
: SFI
;
2285 unsigned AM
= HII
.getAddrMode(In
);
2286 SlotInfo
&SI
= FIRangeMap
[TFI
];
2287 bool Bad
= (AM
!= HexagonII::BaseImmOffset
);
2289 // If the addressing mode is ok, check the register class.
2290 unsigned OpNum
= Load
? 0 : 2;
2291 auto *RC
= HII
.getRegClass(In
.getDesc(), OpNum
, &HRI
, MF
);
2292 RC
= getCommonRC(SI
.RC
, RC
);
2300 unsigned S
= HII
.getMemAccessSize(In
);
2301 if (SI
.Size
!= 0 && SI
.Size
!= S
)
2307 for (auto *Mo
: In
.memoperands()) {
2308 if (!Mo
->isVolatile() && !Mo
->isAtomic())
2318 // Locate uses of frame indices.
2319 for (unsigned i
= 0, n
= In
.getNumOperands(); i
< n
; ++i
) {
2320 const MachineOperand
&Op
= In
.getOperand(i
);
2323 int FI
= Op
.getIndex();
2324 // Make sure that the following operand is an immediate and that
2325 // it is 0. This is the offset in the stack object.
2326 if (i
+1 >= n
|| !In
.getOperand(i
+1).isImm() ||
2327 In
.getOperand(i
+1).getImm() != 0)
2329 if (BadFIs
.count(FI
))
2332 IndexType Index
= IndexMap
.getIndex(&In
);
2334 if (LastStore
[FI
] == IndexType::None
)
2335 LastStore
[FI
] = IndexType::Entry
;
2336 LastLoad
[FI
] = Index
;
2338 HexagonBlockRanges::RangeList
&RL
= FIRangeMap
[FI
].Map
[&B
];
2339 if (LastStore
[FI
] != IndexType::None
)
2340 RL
.add(LastStore
[FI
], LastLoad
[FI
], false, false);
2341 else if (LastLoad
[FI
] != IndexType::None
)
2342 RL
.add(IndexType::Entry
, LastLoad
[FI
], false, false);
2343 LastLoad
[FI
] = IndexType::None
;
2344 LastStore
[FI
] = Index
;
2351 for (auto &I
: LastLoad
) {
2352 IndexType LL
= I
.second
;
2353 if (LL
== IndexType::None
)
2355 auto &RL
= FIRangeMap
[I
.first
].Map
[&B
];
2356 IndexType
&LS
= LastStore
[I
.first
];
2357 if (LS
!= IndexType::None
)
2358 RL
.add(LS
, LL
, false, false);
2360 RL
.add(IndexType::Entry
, LL
, false, false);
2361 LS
= IndexType::None
;
2363 for (auto &I
: LastStore
) {
2364 IndexType LS
= I
.second
;
2365 if (LS
== IndexType::None
)
2367 auto &RL
= FIRangeMap
[I
.first
].Map
[&B
];
2368 RL
.add(LS
, IndexType::None
, false, false);
2373 for (auto &P
: FIRangeMap
) {
2374 dbgs() << "fi#" << P
.first
;
2375 if (BadFIs
.count(P
.first
))
2378 if (P
.second
.RC
!= nullptr)
2379 dbgs() << HRI
.getRegClassName(P
.second
.RC
) << '\n';
2381 dbgs() << "<null>\n";
2382 for (auto &R
: P
.second
.Map
)
2383 dbgs() << " " << printMBBReference(*R
.first
) << " { " << R
.second
2388 // When a slot is loaded from in a block without being stored to in the
2389 // same block, it is live-on-entry to this block. To avoid CFG analysis,
2390 // consider this slot to be live-on-exit from all blocks.
2391 SmallSet
<int,4> LoxFIs
;
2393 std::map
<MachineBasicBlock
*,std::vector
<int>> BlockFIMap
;
2395 for (auto &P
: FIRangeMap
) {
2396 // P = pair(FI, map: BB->RangeList)
2397 if (BadFIs
.count(P
.first
))
2399 for (auto &B
: MF
) {
2400 auto F
= P
.second
.Map
.find(&B
);
2401 // F = pair(BB, RangeList)
2402 if (F
== P
.second
.Map
.end() || F
->second
.empty())
2404 HexagonBlockRanges::IndexRange
&IR
= F
->second
.front();
2405 if (IR
.start() == IndexType::Entry
)
2406 LoxFIs
.insert(P
.first
);
2407 BlockFIMap
[&B
].push_back(P
.first
);
2412 dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2413 for (auto &P
: BlockFIMap
) {
2414 auto &FIs
= P
.second
;
2417 dbgs() << " " << printMBBReference(*P
.first
) << ": {";
2418 for (auto I
: FIs
) {
2419 dbgs() << " fi#" << I
;
2420 if (LoxFIs
.count(I
))
2428 bool HasOptLimit
= SpillOptMax
.getPosition();
2431 // eliminate loads, when all loads eliminated, eliminate all stores.
2432 for (auto &B
: MF
) {
2433 auto F
= BlockIndexes
.find(&B
);
2434 assert(F
!= BlockIndexes
.end());
2435 HexagonBlockRanges::InstrIndexMap
&IM
= F
->second
;
2436 HexagonBlockRanges::RegToRangeMap LM
= HBR
.computeLiveMap(IM
);
2437 HexagonBlockRanges::RegToRangeMap DM
= HBR
.computeDeadMap(IM
, LM
);
2438 LLVM_DEBUG(dbgs() << printMBBReference(B
) << " dead map\n"
2439 << HexagonBlockRanges::PrintRangeMap(DM
, HRI
));
2441 for (auto FI
: BlockFIMap
[&B
]) {
2442 if (BadFIs
.count(FI
))
2444 LLVM_DEBUG(dbgs() << "Working on fi#" << FI
<< '\n');
2445 HexagonBlockRanges::RangeList
&RL
= FIRangeMap
[FI
].Map
[&B
];
2446 for (auto &Range
: RL
) {
2447 LLVM_DEBUG(dbgs() << "--Examining range:" << RL
<< '\n');
2448 if (!IndexType::isInstr(Range
.start()) ||
2449 !IndexType::isInstr(Range
.end()))
2451 MachineInstr
&SI
= *IM
.getInstr(Range
.start());
2452 MachineInstr
&EI
= *IM
.getInstr(Range
.end());
2453 assert(SI
.mayStore() && "Unexpected start instruction");
2454 assert(EI
.mayLoad() && "Unexpected end instruction");
2455 MachineOperand
&SrcOp
= SI
.getOperand(2);
2457 HexagonBlockRanges::RegisterRef SrcRR
= { SrcOp
.getReg(),
2458 SrcOp
.getSubReg() };
2459 auto *RC
= HII
.getRegClass(SI
.getDesc(), 2, &HRI
, MF
);
2460 // The this-> is needed to unconfuse MSVC.
2461 unsigned FoundR
= this->findPhysReg(MF
, Range
, IM
, DM
, RC
);
2462 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR
, &HRI
)
2468 if (SpillOptCount
>= SpillOptMax
)
2474 // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2475 MachineBasicBlock::iterator StartIt
= SI
.getIterator(), NextIt
;
2476 MachineInstr
*CopyIn
= nullptr;
2477 if (SrcRR
.Reg
!= FoundR
|| SrcRR
.Sub
!= 0) {
2478 const DebugLoc
&DL
= SI
.getDebugLoc();
2479 CopyIn
= BuildMI(B
, StartIt
, DL
, HII
.get(TargetOpcode::COPY
), FoundR
)
2484 // Check if this is a last store and the FI is live-on-exit.
2485 if (LoxFIs
.count(FI
) && (&Range
== &RL
.back())) {
2486 // Update store's source register.
2487 if (unsigned SR
= SrcOp
.getSubReg())
2488 SrcOp
.setReg(HRI
.getSubReg(FoundR
, SR
));
2490 SrcOp
.setReg(FoundR
);
2492 // We are keeping this register live.
2493 SrcOp
.setIsKill(false);
2496 IM
.replaceInstr(&SI
, CopyIn
);
2499 auto EndIt
= std::next(EI
.getIterator());
2500 for (auto It
= StartIt
; It
!= EndIt
; It
= NextIt
) {
2501 MachineInstr
&MI
= *It
;
2502 NextIt
= std::next(It
);
2504 if (!HII
.isLoadFromStackSlot(MI
, TFI
) || TFI
!= FI
)
2506 Register DstR
= MI
.getOperand(0).getReg();
2507 assert(MI
.getOperand(0).getSubReg() == 0);
2508 MachineInstr
*CopyOut
= nullptr;
2509 if (DstR
!= FoundR
) {
2510 DebugLoc DL
= MI
.getDebugLoc();
2511 unsigned MemSize
= HII
.getMemAccessSize(MI
);
2512 assert(HII
.getAddrMode(MI
) == HexagonII::BaseImmOffset
);
2513 unsigned CopyOpc
= TargetOpcode::COPY
;
2514 if (HII
.isSignExtendingLoad(MI
))
2515 CopyOpc
= (MemSize
== 1) ? Hexagon::A2_sxtb
: Hexagon::A2_sxth
;
2516 else if (HII
.isZeroExtendingLoad(MI
))
2517 CopyOpc
= (MemSize
== 1) ? Hexagon::A2_zxtb
: Hexagon::A2_zxth
;
2518 CopyOut
= BuildMI(B
, It
, DL
, HII
.get(CopyOpc
), DstR
)
2519 .addReg(FoundR
, getKillRegState(&MI
== &EI
));
2521 IM
.replaceInstr(&MI
, CopyOut
);
2525 // Update the dead map.
2526 HexagonBlockRanges::RegisterRef FoundRR
= { FoundR
, 0 };
2527 for (auto RR
: HexagonBlockRanges::expandToSubRegs(FoundRR
, MRI
, HRI
))
2528 DM
[RR
].subtract(Range
);
2529 } // for Range in range list
2534 void HexagonFrameLowering::expandAlloca(MachineInstr
*AI
,
2535 const HexagonInstrInfo
&HII
, unsigned SP
, unsigned CF
) const {
2536 MachineBasicBlock
&MB
= *AI
->getParent();
2537 DebugLoc DL
= AI
->getDebugLoc();
2538 unsigned A
= AI
->getOperand(2).getImm();
2541 // Rd = alloca Rs, #A
2543 // If Rs and Rd are different registers, use this sequence:
2544 // Rd = sub(r29, Rs)
2545 // r29 = sub(r29, Rs)
2546 // Rd = and(Rd, #-A) ; if necessary
2547 // r29 = and(r29, #-A) ; if necessary
2548 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2550 // Rd = sub(r29, Rs)
2551 // Rd = and(Rd, #-A) ; if necessary
2553 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2555 MachineOperand
&RdOp
= AI
->getOperand(0);
2556 MachineOperand
&RsOp
= AI
->getOperand(1);
2557 unsigned Rd
= RdOp
.getReg(), Rs
= RsOp
.getReg();
2559 // Rd = sub(r29, Rs)
2560 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_sub
), Rd
)
2564 // r29 = sub(r29, Rs)
2565 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_sub
), SP
)
2570 // Rd = and(Rd, #-A)
2571 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_andir
), Rd
)
2573 .addImm(-int64_t(A
));
2575 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_andir
), SP
)
2577 .addImm(-int64_t(A
));
2581 BuildMI(MB
, AI
, DL
, HII
.get(TargetOpcode::COPY
), SP
)
2585 // Rd = add(Rd, #CF)
2586 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_addi
), Rd
)
2592 bool HexagonFrameLowering::needsAligna(const MachineFunction
&MF
) const {
2593 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2594 if (!MFI
.hasVarSizedObjects())
2596 // Do not check for max stack object alignment here, because the stack
2597 // may not be complete yet. Assume that we will need PS_aligna if there
2598 // are variable-sized objects.
2602 const MachineInstr
*HexagonFrameLowering::getAlignaInstr(
2603 const MachineFunction
&MF
) const {
2606 if (I
.getOpcode() == Hexagon::PS_aligna
)
2611 /// Adds all callee-saved registers as implicit uses or defs to the
2613 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr
*MI
,
2614 const CSIVect
&CSI
, bool IsDef
, bool IsKill
) const {
2615 // Add the callee-saved registers as implicit uses.
2617 MI
->addOperand(MachineOperand::CreateReg(R
.getReg(), IsDef
, true, IsKill
));
2620 /// Determine whether the callee-saved register saves and restores should
2621 /// be generated via inline code. If this function returns "true", inline
2622 /// code will be generated. If this function returns "false", additional
2623 /// checks are performed, which may still lead to the inline code.
2624 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction
&MF
,
2625 const CSIVect
&CSI
) const {
2626 if (MF
.getSubtarget
<HexagonSubtarget
>().isEnvironmentMusl())
2628 if (MF
.getInfo
<HexagonMachineFunctionInfo
>()->hasEHReturn())
2632 if (!isOptSize(MF
) && !isMinSize(MF
))
2633 if (MF
.getTarget().getOptLevel() > CodeGenOpt::Default
)
2636 // Check if CSI only has double registers, and if the registers form
2637 // a contiguous block starting from D8.
2638 BitVector
Regs(Hexagon::NUM_TARGET_REGS
);
2639 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
2640 unsigned R
= CSI
[i
].getReg();
2641 if (!Hexagon::DoubleRegsRegClass
.contains(R
))
2645 int F
= Regs
.find_first();
2646 if (F
!= Hexagon::D8
)
2649 int N
= Regs
.find_next(F
);
2650 if (N
>= 0 && N
!= F
+1)
2658 bool HexagonFrameLowering::useSpillFunction(const MachineFunction
&MF
,
2659 const CSIVect
&CSI
) const {
2660 if (shouldInlineCSR(MF
, CSI
))
2662 unsigned NumCSI
= CSI
.size();
2666 unsigned Threshold
= isOptSize(MF
) ? SpillFuncThresholdOs
2667 : SpillFuncThreshold
;
2668 return Threshold
< NumCSI
;
2671 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction
&MF
,
2672 const CSIVect
&CSI
) const {
2673 if (shouldInlineCSR(MF
, CSI
))
2675 // The restore functions do a bit more than just restoring registers.
2676 // The non-returning versions will go back directly to the caller's
2677 // caller, others will clean up the stack frame in preparation for
2678 // a tail call. Using them can still save code size even if only one
2679 // register is getting restores. Make the decision based on -Oz:
2680 // using -Os will use inline restore for a single register.
2683 unsigned NumCSI
= CSI
.size();
2687 unsigned Threshold
= isOptSize(MF
) ? SpillFuncThresholdOs
-1
2688 : SpillFuncThreshold
;
2689 return Threshold
< NumCSI
;
2692 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction
&MF
) const {
2693 unsigned StackSize
= MF
.getFrameInfo().estimateStackSize(MF
);
2694 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
2695 // A fairly simplistic guess as to whether a potential load/store to a
2696 // stack location could require an extra register.
2697 if (HST
.useHVXOps() && StackSize
> 256)
2700 // Check if the function has store-immediate instructions that access
2701 // the stack. Since the offset field is not extendable, if the stack
2702 // size exceeds the offset limit (6 bits, shifted), the stores will
2703 // require a new base register.
2704 bool HasImmStack
= false;
2705 unsigned MinLS
= ~0u; // Log_2 of the memory access size.
2707 for (const MachineBasicBlock
&B
: MF
) {
2708 for (const MachineInstr
&MI
: B
) {
2710 switch (MI
.getOpcode()) {
2711 case Hexagon::S4_storeirit_io
:
2712 case Hexagon::S4_storeirif_io
:
2713 case Hexagon::S4_storeiri_io
:
2716 case Hexagon::S4_storeirht_io
:
2717 case Hexagon::S4_storeirhf_io
:
2718 case Hexagon::S4_storeirh_io
:
2721 case Hexagon::S4_storeirbt_io
:
2722 case Hexagon::S4_storeirbf_io
:
2723 case Hexagon::S4_storeirb_io
:
2724 if (MI
.getOperand(0).isFI())
2726 MinLS
= std::min(MinLS
, LS
);
2733 return !isUInt
<6>(StackSize
>> MinLS
);