1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass identifies loops where we can generate the Hexagon hardware
10 // loop instruction. The hardware loop can perform loop branches with a
11 // zero-cycle overhead.
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 // The pattern detected by this phase is due to running Strength Reduction.
19 // Criteria for hardware loops:
20 // - Countable loops (w/ ind. var for a trip count)
21 // - Assumes loops are normalized by IndVarSimplify
22 // - Try inner-most loops first
23 // - No function calls in loops.
25 //===----------------------------------------------------------------------===//
27 #include "HexagonInstrInfo.h"
28 #include "HexagonSubtarget.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
66 #define DEBUG_TYPE "hwloops"
69 static cl::opt
<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden
, cl::init(-1));
71 // Option to create preheader only for a specific function.
72 static cl::opt
<std::string
> PHFn("hexagon-hwloop-phfn", cl::Hidden
,
76 // Option to create a preheader if one doesn't exist.
77 static cl::opt
<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78 cl::Hidden
, cl::init(true),
79 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
81 // Turn it off by default. If a preheader block is not created here, the
82 // software pipeliner may be unable to find a block suitable to serve as
83 // a preheader. In that case SWP will not run.
84 static cl::opt
<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
85 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Allow speculation of preheader "
88 STATISTIC(NumHWLoops
, "Number of loops converted to hardware loops");
92 FunctionPass
*createHexagonHardwareLoops();
93 void initializeHexagonHardwareLoopsPass(PassRegistry
&);
95 } // end namespace llvm
101 struct HexagonHardwareLoops
: public MachineFunctionPass
{
102 MachineLoopInfo
*MLI
;
103 MachineRegisterInfo
*MRI
;
104 MachineDominatorTree
*MDT
;
105 const HexagonInstrInfo
*TII
;
106 const HexagonRegisterInfo
*TRI
;
114 HexagonHardwareLoops() : MachineFunctionPass(ID
) {}
116 bool runOnMachineFunction(MachineFunction
&MF
) override
;
118 StringRef
getPassName() const override
{ return "Hexagon Hardware Loops"; }
120 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
121 AU
.addRequired
<MachineDominatorTree
>();
122 AU
.addRequired
<MachineLoopInfo
>();
123 MachineFunctionPass::getAnalysisUsage(AU
);
127 using LoopFeederMap
= std::map
<unsigned, MachineInstr
*>;
129 /// Kinds of comparisons in the compare instructions.
147 static Kind
getSwappedComparison(Kind Cmp
) {
148 assert ((!((Cmp
& L
) && (Cmp
& G
))) && "Malformed comparison operator");
149 if ((Cmp
& L
) || (Cmp
& G
))
150 return (Kind
)(Cmp
^ (L
|G
));
154 static Kind
getNegatedComparison(Kind Cmp
) {
155 if ((Cmp
& L
) || (Cmp
& G
))
156 return (Kind
)((Cmp
^ (L
| G
)) ^ EQ
);
157 if ((Cmp
& NE
) || (Cmp
& EQ
))
158 return (Kind
)(Cmp
^ (EQ
| NE
));
162 static bool isSigned(Kind Cmp
) {
163 return (Cmp
& (L
| G
) && !(Cmp
& U
));
166 static bool isUnsigned(Kind Cmp
) {
171 /// Find the register that contains the loop controlling
172 /// induction variable.
173 /// If successful, it will return true and set the \p Reg, \p IVBump
174 /// and \p IVOp arguments. Otherwise it will return false.
175 /// The returned induction register is the register R that follows the
176 /// following induction pattern:
178 /// R = phi ..., [ R.next, LatchBlock ]
179 /// R.next = R + #bump
180 /// if (R.next < #N) goto loop
181 /// IVBump is the immediate value added to R, and IVOp is the instruction
182 /// "R.next = R + #bump".
183 bool findInductionRegister(MachineLoop
*L
, unsigned &Reg
,
184 int64_t &IVBump
, MachineInstr
*&IVOp
) const;
186 /// Return the comparison kind for the specified opcode.
187 Comparison::Kind
getComparisonKind(unsigned CondOpc
,
188 MachineOperand
*InitialValue
,
189 const MachineOperand
*Endvalue
,
190 int64_t IVBump
) const;
192 /// Analyze the statements in a loop to determine if the loop
193 /// has a computable trip count and, if so, return a value that represents
194 /// the trip count expression.
195 CountValue
*getLoopTripCount(MachineLoop
*L
,
196 SmallVectorImpl
<MachineInstr
*> &OldInsts
);
198 /// Return the expression that represents the number of times
199 /// a loop iterates. The function takes the operands that represent the
200 /// loop start value, loop end value, and induction value. Based upon
201 /// these operands, the function attempts to compute the trip count.
202 /// If the trip count is not directly available (as an immediate value,
203 /// or a register), the function will attempt to insert computation of it
204 /// to the loop's preheader.
205 CountValue
*computeCount(MachineLoop
*Loop
, const MachineOperand
*Start
,
206 const MachineOperand
*End
, unsigned IVReg
,
207 int64_t IVBump
, Comparison::Kind Cmp
) const;
209 /// Return true if the instruction is not valid within a hardware
211 bool isInvalidLoopOperation(const MachineInstr
*MI
,
212 bool IsInnerHWLoop
) const;
214 /// Return true if the loop contains an instruction that inhibits
215 /// using the hardware loop.
216 bool containsInvalidInstruction(MachineLoop
*L
, bool IsInnerHWLoop
) const;
218 /// Given a loop, check if we can convert it to a hardware loop.
219 /// If so, then perform the conversion and return true.
220 bool convertToHardwareLoop(MachineLoop
*L
, bool &L0used
, bool &L1used
);
222 /// Return true if the instruction is now dead.
223 bool isDead(const MachineInstr
*MI
,
224 SmallVectorImpl
<MachineInstr
*> &DeadPhis
) const;
226 /// Remove the instruction if it is now dead.
227 void removeIfDead(MachineInstr
*MI
);
229 /// Make sure that the "bump" instruction executes before the
230 /// compare. We need that for the IV fixup, so that the compare
231 /// instruction would not use a bumped value that has not yet been
232 /// defined. If the instructions are out of order, try to reorder them.
233 bool orderBumpCompare(MachineInstr
*BumpI
, MachineInstr
*CmpI
);
235 /// Return true if MO and MI pair is visited only once. If visited
236 /// more than once, this indicates there is recursion. In such a case,
238 bool isLoopFeeder(MachineLoop
*L
, MachineBasicBlock
*A
, MachineInstr
*MI
,
239 const MachineOperand
*MO
,
240 LoopFeederMap
&LoopFeederPhi
) const;
242 /// Return true if the Phi may generate a value that may underflow,
244 bool phiMayWrapOrUnderflow(MachineInstr
*Phi
, const MachineOperand
*EndVal
,
245 MachineBasicBlock
*MBB
, MachineLoop
*L
,
246 LoopFeederMap
&LoopFeederPhi
) const;
248 /// Return true if the induction variable may underflow an unsigned
249 /// value in the first iteration.
250 bool loopCountMayWrapOrUnderFlow(const MachineOperand
*InitVal
,
251 const MachineOperand
*EndVal
,
252 MachineBasicBlock
*MBB
, MachineLoop
*L
,
253 LoopFeederMap
&LoopFeederPhi
) const;
255 /// Check if the given operand has a compile-time known constant
256 /// value. Return true if yes, and false otherwise. When returning true, set
257 /// Val to the corresponding constant value.
258 bool checkForImmediate(const MachineOperand
&MO
, int64_t &Val
) const;
260 /// Check if the operand has a compile-time known constant value.
261 bool isImmediate(const MachineOperand
&MO
) const {
263 return checkForImmediate(MO
, V
);
266 /// Return the immediate for the specified operand.
267 int64_t getImmediate(const MachineOperand
&MO
) const {
269 if (!checkForImmediate(MO
, V
))
270 llvm_unreachable("Invalid operand");
274 /// Reset the given machine operand to now refer to a new immediate
275 /// value. Assumes that the operand was already referencing an immediate
276 /// value, either directly, or via a register.
277 void setImmediate(MachineOperand
&MO
, int64_t Val
);
279 /// Fix the data flow of the induction variable.
280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
283 /// where "bump" is the increment of the induction variable:
284 /// iv = iv + #const.
285 /// Due to some prior code transformations, the actual flow may look
287 /// phi -+-> bump ---> back to phi
289 /// +-> comparison-in-latch (against upper_bound-bump),
290 /// i.e. the comparison that controls the loop execution may be using
291 /// the value of the induction variable from before the increment.
293 /// Return true if the loop's flow is the desired one (i.e. it's
294 /// either been fixed, or no fixing was necessary).
295 /// Otherwise, return false. This can happen if the induction variable
296 /// couldn't be identified, or if the value in the latch's comparison
297 /// cannot be adjusted to reflect the post-bump value.
298 bool fixupInductionVariable(MachineLoop
*L
);
300 /// Given a loop, if it does not have a preheader, create one.
301 /// Return the block that is the preheader.
302 MachineBasicBlock
*createPreheaderForLoop(MachineLoop
*L
);
305 char HexagonHardwareLoops::ID
= 0;
307 int HexagonHardwareLoops::Counter
= 0;
310 /// Abstraction for a trip count of a loop. A smaller version
311 /// of the MachineOperand class without the concerns of changing the
312 /// operand representation.
315 enum CountValueType
{
331 explicit CountValue(CountValueType t
, unsigned v
, unsigned u
= 0) {
333 if (Kind
== CV_Register
) {
341 bool isReg() const { return Kind
== CV_Register
; }
342 bool isImm() const { return Kind
== CV_Immediate
; }
344 unsigned getReg() const {
345 assert(isReg() && "Wrong CountValue accessor");
346 return Contents
.R
.Reg
;
349 unsigned getSubReg() const {
350 assert(isReg() && "Wrong CountValue accessor");
351 return Contents
.R
.Sub
;
354 unsigned getImm() const {
355 assert(isImm() && "Wrong CountValue accessor");
356 return Contents
.ImmVal
;
359 void print(raw_ostream
&OS
, const TargetRegisterInfo
*TRI
= nullptr) const {
360 if (isReg()) { OS
<< printReg(Contents
.R
.Reg
, TRI
, Contents
.R
.Sub
); }
361 if (isImm()) { OS
<< Contents
.ImmVal
; }
365 } // end anonymous namespace
367 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops
, "hwloops",
368 "Hexagon Hardware Loops", false, false)
369 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
370 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
371 INITIALIZE_PASS_END(HexagonHardwareLoops
, "hwloops",
372 "Hexagon Hardware Loops", false, false)
374 FunctionPass
*llvm::createHexagonHardwareLoops() {
375 return new HexagonHardwareLoops();
378 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction
&MF
) {
379 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
380 if (skipFunction(MF
.getFunction()))
383 bool Changed
= false;
385 MLI
= &getAnalysis
<MachineLoopInfo
>();
386 MRI
= &MF
.getRegInfo();
387 MDT
= &getAnalysis
<MachineDominatorTree
>();
388 const HexagonSubtarget
&HST
= MF
.getSubtarget
<HexagonSubtarget
>();
389 TII
= HST
.getInstrInfo();
390 TRI
= HST
.getRegisterInfo();
393 if (L
->isOutermost()) {
396 Changed
|= convertToHardwareLoop(L
, L0Used
, L1Used
);
402 bool HexagonHardwareLoops::findInductionRegister(MachineLoop
*L
,
407 MachineBasicBlock
*Header
= L
->getHeader();
408 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
409 MachineBasicBlock
*Latch
= L
->getLoopLatch();
410 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
411 if (!Header
|| !Preheader
|| !Latch
|| !ExitingBlock
)
414 // This pair represents an induction register together with an immediate
415 // value that will be added to it in each loop iteration.
416 using RegisterBump
= std::pair
<unsigned, int64_t>;
418 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
419 // from an induction operation
421 // where bump is an immediate value.
422 using InductionMap
= std::map
<unsigned, RegisterBump
>;
426 using instr_iterator
= MachineBasicBlock::instr_iterator
;
428 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
429 I
!= E
&& I
->isPHI(); ++I
) {
430 MachineInstr
*Phi
= &*I
;
432 // Have a PHI instruction. Get the operand that corresponds to the
433 // latch block, and see if is a result of an addition of form "reg+imm",
434 // where the "reg" is defined by the PHI node we are looking at.
435 for (unsigned i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2) {
436 if (Phi
->getOperand(i
+1).getMBB() != Latch
)
439 Register PhiOpReg
= Phi
->getOperand(i
).getReg();
440 MachineInstr
*DI
= MRI
->getVRegDef(PhiOpReg
);
442 if (DI
->getDesc().isAdd()) {
443 // If the register operand to the add is the PHI we're looking at, this
444 // meets the induction pattern.
445 Register IndReg
= DI
->getOperand(1).getReg();
446 MachineOperand
&Opnd2
= DI
->getOperand(2);
448 if (MRI
->getVRegDef(IndReg
) == Phi
&& checkForImmediate(Opnd2
, V
)) {
449 Register UpdReg
= DI
->getOperand(0).getReg();
450 IndMap
.insert(std::make_pair(UpdReg
, std::make_pair(IndReg
, V
)));
456 SmallVector
<MachineOperand
,2> Cond
;
457 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
458 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
462 unsigned PredR
, PredPos
, PredRegFlags
;
463 if (!TII
->getPredReg(Cond
, PredR
, PredPos
, PredRegFlags
))
466 MachineInstr
*PredI
= MRI
->getVRegDef(PredR
);
467 if (!PredI
->isCompare())
470 Register CmpReg1
, CmpReg2
;
471 int CmpImm
= 0, CmpMask
= 0;
473 TII
->analyzeCompare(*PredI
, CmpReg1
, CmpReg2
, CmpMask
, CmpImm
);
474 // Fail if the compare was not analyzed, or it's not comparing a register
475 // with an immediate value. Not checking the mask here, since we handle
476 // the individual compare opcodes (including A4_cmpb*) later on.
480 // Exactly one of the input registers to the comparison should be among
481 // the induction registers.
482 InductionMap::iterator IndMapEnd
= IndMap
.end();
483 InductionMap::iterator F
= IndMapEnd
;
485 InductionMap::iterator F1
= IndMap
.find(CmpReg1
);
490 InductionMap::iterator F2
= IndMap
.find(CmpReg2
);
491 if (F2
!= IndMapEnd
) {
500 Reg
= F
->second
.first
;
501 IVBump
= F
->second
.second
;
502 IVOp
= MRI
->getVRegDef(F
->first
);
506 // Return the comparison kind for the specified opcode.
507 HexagonHardwareLoops::Comparison::Kind
508 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc
,
509 MachineOperand
*InitialValue
,
510 const MachineOperand
*EndValue
,
511 int64_t IVBump
) const {
512 Comparison::Kind Cmp
= (Comparison::Kind
)0;
514 case Hexagon::C2_cmpeq
:
515 case Hexagon::C2_cmpeqi
:
516 case Hexagon::C2_cmpeqp
:
517 Cmp
= Comparison::EQ
;
519 case Hexagon::C4_cmpneq
:
520 case Hexagon::C4_cmpneqi
:
521 Cmp
= Comparison::NE
;
523 case Hexagon::C2_cmplt
:
524 Cmp
= Comparison::LTs
;
526 case Hexagon::C2_cmpltu
:
527 Cmp
= Comparison::LTu
;
529 case Hexagon::C4_cmplte
:
530 case Hexagon::C4_cmpltei
:
531 Cmp
= Comparison::LEs
;
533 case Hexagon::C4_cmplteu
:
534 case Hexagon::C4_cmplteui
:
535 Cmp
= Comparison::LEu
;
537 case Hexagon::C2_cmpgt
:
538 case Hexagon::C2_cmpgti
:
539 case Hexagon::C2_cmpgtp
:
540 Cmp
= Comparison::GTs
;
542 case Hexagon::C2_cmpgtu
:
543 case Hexagon::C2_cmpgtui
:
544 case Hexagon::C2_cmpgtup
:
545 Cmp
= Comparison::GTu
;
547 case Hexagon::C2_cmpgei
:
548 Cmp
= Comparison::GEs
;
550 case Hexagon::C2_cmpgeui
:
551 Cmp
= Comparison::GEs
;
554 return (Comparison::Kind
)0;
559 /// Analyze the statements in a loop to determine if the loop has
560 /// a computable trip count and, if so, return a value that represents
561 /// the trip count expression.
563 /// This function iterates over the phi nodes in the loop to check for
564 /// induction variable patterns that are used in the calculation for
565 /// the number of time the loop is executed.
566 CountValue
*HexagonHardwareLoops::getLoopTripCount(MachineLoop
*L
,
567 SmallVectorImpl
<MachineInstr
*> &OldInsts
) {
568 MachineBasicBlock
*TopMBB
= L
->getTopBlock();
569 MachineBasicBlock::pred_iterator PI
= TopMBB
->pred_begin();
570 assert(PI
!= TopMBB
->pred_end() &&
571 "Loop must have more than one incoming edge!");
572 MachineBasicBlock
*Backedge
= *PI
++;
573 if (PI
== TopMBB
->pred_end()) // dead loop?
575 MachineBasicBlock
*Incoming
= *PI
++;
576 if (PI
!= TopMBB
->pred_end()) // multiple backedges?
579 // Make sure there is one incoming and one backedge and determine which
581 if (L
->contains(Incoming
)) {
582 if (L
->contains(Backedge
))
584 std::swap(Incoming
, Backedge
);
585 } else if (!L
->contains(Backedge
))
588 // Look for the cmp instruction to determine if we can get a useful trip
589 // count. The trip count can be either a register or an immediate. The
590 // location of the value depends upon the type (reg or imm).
591 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
598 bool FoundIV
= findInductionRegister(L
, IVReg
, IVBump
, IVOp
);
602 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
604 MachineOperand
*InitialValue
= nullptr;
605 MachineInstr
*IV_Phi
= MRI
->getVRegDef(IVReg
);
606 MachineBasicBlock
*Latch
= L
->getLoopLatch();
607 for (unsigned i
= 1, n
= IV_Phi
->getNumOperands(); i
< n
; i
+= 2) {
608 MachineBasicBlock
*MBB
= IV_Phi
->getOperand(i
+1).getMBB();
609 if (MBB
== Preheader
)
610 InitialValue
= &IV_Phi
->getOperand(i
);
611 else if (MBB
== Latch
)
612 IVReg
= IV_Phi
->getOperand(i
).getReg(); // Want IV reg after bump.
617 SmallVector
<MachineOperand
,2> Cond
;
618 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
619 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
623 MachineBasicBlock
*Header
= L
->getHeader();
624 // TB must be non-null. If FB is also non-null, one of them must be
625 // the header. Otherwise, branch to TB could be exiting the loop, and
626 // the fall through can go to the header.
627 assert (TB
&& "Exit block without a branch?");
628 if (ExitingBlock
!= Latch
&& (TB
== Latch
|| FB
== Latch
)) {
629 MachineBasicBlock
*LTB
= nullptr, *LFB
= nullptr;
630 SmallVector
<MachineOperand
,2> LCond
;
631 bool NotAnalyzed
= TII
->analyzeBranch(*Latch
, LTB
, LFB
, LCond
, false);
635 TB
= (LTB
== Header
) ? LTB
: LFB
;
637 FB
= (LTB
== Header
) ? LTB
: LFB
;
639 assert ((!FB
|| TB
== Header
|| FB
== Header
) && "Branches not to header?");
640 if (!TB
|| (FB
&& TB
!= Header
&& FB
!= Header
))
643 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
644 // to put imm(0), followed by P in the vector Cond.
645 // If TB is not the header, it means that the "not-taken" path must lead
647 bool Negated
= TII
->predOpcodeHasNot(Cond
) ^ (TB
!= Header
);
648 unsigned PredReg
, PredPos
, PredRegFlags
;
649 if (!TII
->getPredReg(Cond
, PredReg
, PredPos
, PredRegFlags
))
651 MachineInstr
*CondI
= MRI
->getVRegDef(PredReg
);
652 unsigned CondOpc
= CondI
->getOpcode();
654 Register CmpReg1
, CmpReg2
;
655 int Mask
= 0, ImmValue
= 0;
657 TII
->analyzeCompare(*CondI
, CmpReg1
, CmpReg2
, Mask
, ImmValue
);
661 // The comparison operator type determines how we compute the loop
663 OldInsts
.push_back(CondI
);
664 OldInsts
.push_back(IVOp
);
666 // Sadly, the following code gets information based on the position
667 // of the operands in the compare instruction. This has to be done
668 // this way, because the comparisons check for a specific relationship
669 // between the operands (e.g. is-less-than), rather than to find out
670 // what relationship the operands are in (as on PPC).
671 Comparison::Kind Cmp
;
672 bool isSwapped
= false;
673 const MachineOperand
&Op1
= CondI
->getOperand(1);
674 const MachineOperand
&Op2
= CondI
->getOperand(2);
675 const MachineOperand
*EndValue
= nullptr;
678 if (Op2
.isImm() || Op1
.getReg() == IVReg
)
689 Cmp
= getComparisonKind(CondOpc
, InitialValue
, EndValue
, IVBump
);
693 Cmp
= Comparison::getNegatedComparison(Cmp
);
695 Cmp
= Comparison::getSwappedComparison(Cmp
);
697 if (InitialValue
->isReg()) {
698 Register R
= InitialValue
->getReg();
699 MachineBasicBlock
*DefBB
= MRI
->getVRegDef(R
)->getParent();
700 if (!MDT
->properlyDominates(DefBB
, Header
)) {
702 if (!checkForImmediate(*InitialValue
, V
))
705 OldInsts
.push_back(MRI
->getVRegDef(R
));
707 if (EndValue
->isReg()) {
708 Register R
= EndValue
->getReg();
709 MachineBasicBlock
*DefBB
= MRI
->getVRegDef(R
)->getParent();
710 if (!MDT
->properlyDominates(DefBB
, Header
)) {
712 if (!checkForImmediate(*EndValue
, V
))
715 OldInsts
.push_back(MRI
->getVRegDef(R
));
718 return computeCount(L
, InitialValue
, EndValue
, IVReg
, IVBump
, Cmp
);
721 /// Helper function that returns the expression that represents the
722 /// number of times a loop iterates. The function takes the operands that
723 /// represent the loop start value, loop end value, and induction value.
724 /// Based upon these operands, the function attempts to compute the trip count.
725 CountValue
*HexagonHardwareLoops::computeCount(MachineLoop
*Loop
,
726 const MachineOperand
*Start
,
727 const MachineOperand
*End
,
730 Comparison::Kind Cmp
) const {
731 // Cannot handle comparison EQ, i.e. while (A == B).
732 if (Cmp
== Comparison::EQ
)
735 // Check if either the start or end values are an assignment of an immediate.
736 // If so, use the immediate value rather than the register.
737 if (Start
->isReg()) {
738 const MachineInstr
*StartValInstr
= MRI
->getVRegDef(Start
->getReg());
739 if (StartValInstr
&& (StartValInstr
->getOpcode() == Hexagon::A2_tfrsi
||
740 StartValInstr
->getOpcode() == Hexagon::A2_tfrpi
))
741 Start
= &StartValInstr
->getOperand(1);
744 const MachineInstr
*EndValInstr
= MRI
->getVRegDef(End
->getReg());
745 if (EndValInstr
&& (EndValInstr
->getOpcode() == Hexagon::A2_tfrsi
||
746 EndValInstr
->getOpcode() == Hexagon::A2_tfrpi
))
747 End
= &EndValInstr
->getOperand(1);
750 if (!Start
->isReg() && !Start
->isImm())
752 if (!End
->isReg() && !End
->isImm())
755 bool CmpLess
= Cmp
& Comparison::L
;
756 bool CmpGreater
= Cmp
& Comparison::G
;
757 bool CmpHasEqual
= Cmp
& Comparison::EQ
;
759 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
760 if (CmpLess
&& IVBump
< 0)
761 // Loop going while iv is "less" with the iv value going down. Must wrap.
764 if (CmpGreater
&& IVBump
> 0)
765 // Loop going while iv is "greater" with the iv value going up. Must wrap.
768 // Phis that may feed into the loop.
769 LoopFeederMap LoopFeederPhi
;
771 // Check if the initial value may be zero and can be decremented in the first
772 // iteration. If the value is zero, the endloop instruction will not decrement
773 // the loop counter, so we shouldn't generate a hardware loop in this case.
774 if (loopCountMayWrapOrUnderFlow(Start
, End
, Loop
->getLoopPreheader(), Loop
,
778 if (Start
->isImm() && End
->isImm()) {
779 // Both, start and end are immediates.
780 int64_t StartV
= Start
->getImm();
781 int64_t EndV
= End
->getImm();
782 int64_t Dist
= EndV
- StartV
;
786 bool Exact
= (Dist
% IVBump
) == 0;
788 if (Cmp
== Comparison::NE
) {
791 if ((Dist
< 0) ^ (IVBump
< 0))
795 // For comparisons that include the final value (i.e. include equality
796 // with the final value), we need to increase the distance by 1.
798 Dist
= Dist
> 0 ? Dist
+1 : Dist
-1;
800 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
801 // CmpGreater should imply Dist < 0. These conditions could actually
802 // fail, for example, in unreachable code (which may still appear to be
803 // reachable in the CFG).
804 if ((CmpLess
&& Dist
< 0) || (CmpGreater
&& Dist
> 0))
807 // "Normalized" distance, i.e. with the bump set to +-1.
808 int64_t Dist1
= (IVBump
> 0) ? (Dist
+ (IVBump
- 1)) / IVBump
809 : (-Dist
+ (-IVBump
- 1)) / (-IVBump
);
810 assert (Dist1
> 0 && "Fishy thing. Both operands have the same sign.");
812 uint64_t Count
= Dist1
;
814 if (Count
> 0xFFFFFFFFULL
)
817 return new CountValue(CountValue::CV_Immediate
, Count
);
820 // A general case: Start and End are some values, but the actual
821 // iteration count may not be available. If it is not, insert
822 // a computation of it into the preheader.
824 // If the induction variable bump is not a power of 2, quit.
825 // Othwerise we'd need a general integer division.
826 if (!isPowerOf2_64(std::abs(IVBump
)))
829 MachineBasicBlock
*PH
= MLI
->findLoopPreheader(Loop
, SpecPreheader
);
830 assert (PH
&& "Should have a preheader by now");
831 MachineBasicBlock::iterator InsertPos
= PH
->getFirstTerminator();
833 if (InsertPos
!= PH
->end())
834 DL
= InsertPos
->getDebugLoc();
836 // If Start is an immediate and End is a register, the trip count
837 // will be "reg - imm". Hexagon's "subtract immediate" instruction
838 // is actually "reg + -imm".
840 // If the loop IV is going downwards, i.e. if the bump is negative,
841 // then the iteration count (computed as End-Start) will need to be
842 // negated. To avoid the negation, just swap Start and End.
844 std::swap(Start
, End
);
847 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
848 // Signedness, and "including equality" are preserved.
850 bool RegToImm
= Start
->isReg() && End
->isImm(); // for (reg..imm)
851 bool RegToReg
= Start
->isReg() && End
->isReg(); // for (reg..reg)
853 int64_t StartV
= 0, EndV
= 0;
855 StartV
= Start
->getImm();
857 EndV
= End
->getImm();
860 // To compute the iteration count, we would need this computation:
861 // Count = (End - Start + (IVBump-1)) / IVBump
862 // or, when CmpHasEqual:
863 // Count = (End - Start + (IVBump-1)+1) / IVBump
864 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
865 // generating an instruction specifically to add it if we can adjust
866 // the immediate values for Start or End.
869 // Need to add 1 to the total iteration count.
872 else if (End
->isImm())
878 if (Cmp
!= Comparison::NE
) {
880 StartV
-= (IVBump
-1);
881 else if (End
->isImm())
887 unsigned R
= 0, SR
= 0;
888 if (Start
->isReg()) {
890 SR
= Start
->getSubReg();
893 SR
= End
->getSubReg();
895 const TargetRegisterClass
*RC
= MRI
->getRegClass(R
);
896 // Hardware loops cannot handle 64-bit registers. If it's a double
897 // register, it has to have a subregister.
898 if (!SR
&& RC
== &Hexagon::DoubleRegsRegClass
)
900 const TargetRegisterClass
*IntRC
= &Hexagon::IntRegsRegClass
;
902 // Compute DistR (register with the distance between Start and End).
903 unsigned DistR
, DistSR
;
905 // Avoid special case, where the start value is an imm(0).
906 if (Start
->isImm() && StartV
== 0) {
907 DistR
= End
->getReg();
908 DistSR
= End
->getSubReg();
910 const MCInstrDesc
&SubD
= RegToReg
? TII
->get(Hexagon::A2_sub
) :
911 (RegToImm
? TII
->get(Hexagon::A2_subri
) :
912 TII
->get(Hexagon::A2_addi
));
913 if (RegToReg
|| RegToImm
) {
914 Register SubR
= MRI
->createVirtualRegister(IntRC
);
915 MachineInstrBuilder SubIB
=
916 BuildMI(*PH
, InsertPos
, DL
, SubD
, SubR
);
919 SubIB
.addReg(End
->getReg(), 0, End
->getSubReg())
920 .addReg(Start
->getReg(), 0, Start
->getSubReg());
923 .addReg(Start
->getReg(), 0, Start
->getSubReg());
926 // If the loop has been unrolled, we should use the original loop count
927 // instead of recalculating the value. This will avoid additional
928 // 'Add' instruction.
929 const MachineInstr
*EndValInstr
= MRI
->getVRegDef(End
->getReg());
930 if (EndValInstr
->getOpcode() == Hexagon::A2_addi
&&
931 EndValInstr
->getOperand(1).getSubReg() == 0 &&
932 EndValInstr
->getOperand(2).getImm() == StartV
) {
933 DistR
= EndValInstr
->getOperand(1).getReg();
935 Register SubR
= MRI
->createVirtualRegister(IntRC
);
936 MachineInstrBuilder SubIB
=
937 BuildMI(*PH
, InsertPos
, DL
, SubD
, SubR
);
938 SubIB
.addReg(End
->getReg(), 0, End
->getSubReg())
946 // From DistR, compute AdjR (register with the adjusted distance).
947 unsigned AdjR
, AdjSR
;
953 // Generate CountR = ADD DistR, AdjVal
954 Register AddR
= MRI
->createVirtualRegister(IntRC
);
955 MCInstrDesc
const &AddD
= TII
->get(Hexagon::A2_addi
);
956 BuildMI(*PH
, InsertPos
, DL
, AddD
, AddR
)
957 .addReg(DistR
, 0, DistSR
)
964 // From AdjR, compute CountR (register with the final count).
965 unsigned CountR
, CountSR
;
971 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
972 unsigned Shift
= Log2_32(IVBump
);
974 // Generate NormR = LSR DistR, Shift.
975 Register LsrR
= MRI
->createVirtualRegister(IntRC
);
976 const MCInstrDesc
&LsrD
= TII
->get(Hexagon::S2_lsr_i_r
);
977 BuildMI(*PH
, InsertPos
, DL
, LsrD
, LsrR
)
978 .addReg(AdjR
, 0, AdjSR
)
985 return new CountValue(CountValue::CV_Register
, CountR
, CountSR
);
988 /// Return true if the operation is invalid within hardware loop.
989 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr
*MI
,
990 bool IsInnerHWLoop
) const {
991 // Call is not allowed because the callee may use a hardware loop except for
992 // the case when the call never returns.
993 if (MI
->getDesc().isCall())
994 return !TII
->doesNotReturn(*MI
);
996 // Check if the instruction defines a hardware loop register.
997 using namespace Hexagon
;
999 static const unsigned Regs01
[] = { LC0
, SA0
, LC1
, SA1
};
1000 static const unsigned Regs1
[] = { LC1
, SA1
};
1001 auto CheckRegs
= IsInnerHWLoop
? makeArrayRef(Regs01
, array_lengthof(Regs01
))
1002 : makeArrayRef(Regs1
, array_lengthof(Regs1
));
1003 for (unsigned R
: CheckRegs
)
1004 if (MI
->modifiesRegister(R
, TRI
))
1010 /// Return true if the loop contains an instruction that inhibits
1011 /// the use of the hardware loop instruction.
1012 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop
*L
,
1013 bool IsInnerHWLoop
) const {
1014 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1015 << printMBBReference(**L
->block_begin()));
1016 for (MachineBasicBlock
*MBB
: L
->getBlocks()) {
1017 for (MachineBasicBlock::iterator
1018 MII
= MBB
->begin(), E
= MBB
->end(); MII
!= E
; ++MII
) {
1019 const MachineInstr
*MI
= &*MII
;
1020 if (isInvalidLoopOperation(MI
, IsInnerHWLoop
)) {
1021 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
1030 /// Returns true if the instruction is dead. This was essentially
1031 /// copied from DeadMachineInstructionElim::isDead, but with special cases
1032 /// for inline asm, physical registers and instructions with side effects
1034 bool HexagonHardwareLoops::isDead(const MachineInstr
*MI
,
1035 SmallVectorImpl
<MachineInstr
*> &DeadPhis
) const {
1036 // Examine each operand.
1037 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1038 const MachineOperand
&MO
= MI
->getOperand(i
);
1039 if (!MO
.isReg() || !MO
.isDef())
1042 Register Reg
= MO
.getReg();
1043 if (MRI
->use_nodbg_empty(Reg
))
1046 using use_nodbg_iterator
= MachineRegisterInfo::use_nodbg_iterator
;
1048 // This instruction has users, but if the only user is the phi node for the
1049 // parent block, and the only use of that phi node is this instruction, then
1050 // this instruction is dead: both it (and the phi node) can be removed.
1051 use_nodbg_iterator I
= MRI
->use_nodbg_begin(Reg
);
1052 use_nodbg_iterator End
= MRI
->use_nodbg_end();
1053 if (std::next(I
) != End
|| !I
->getParent()->isPHI())
1056 MachineInstr
*OnePhi
= I
->getParent();
1057 for (unsigned j
= 0, f
= OnePhi
->getNumOperands(); j
!= f
; ++j
) {
1058 const MachineOperand
&OPO
= OnePhi
->getOperand(j
);
1059 if (!OPO
.isReg() || !OPO
.isDef())
1062 Register OPReg
= OPO
.getReg();
1063 use_nodbg_iterator nextJ
;
1064 for (use_nodbg_iterator J
= MRI
->use_nodbg_begin(OPReg
);
1065 J
!= End
; J
= nextJ
) {
1066 nextJ
= std::next(J
);
1067 MachineOperand
&Use
= *J
;
1068 MachineInstr
*UseMI
= Use
.getParent();
1070 // If the phi node has a user that is not MI, bail.
1075 DeadPhis
.push_back(OnePhi
);
1078 // If there are no defs with uses, the instruction is dead.
1082 void HexagonHardwareLoops::removeIfDead(MachineInstr
*MI
) {
1083 // This procedure was essentially copied from DeadMachineInstructionElim.
1085 SmallVector
<MachineInstr
*, 1> DeadPhis
;
1086 if (isDead(MI
, DeadPhis
)) {
1087 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI
);
1089 // It is possible that some DBG_VALUE instructions refer to this
1090 // instruction. Examine each def operand for such references;
1091 // if found, mark the DBG_VALUE as undef (but don't delete it).
1092 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1093 const MachineOperand
&MO
= MI
->getOperand(i
);
1094 if (!MO
.isReg() || !MO
.isDef())
1096 Register Reg
= MO
.getReg();
1097 MachineRegisterInfo::use_iterator nextI
;
1098 for (MachineRegisterInfo::use_iterator I
= MRI
->use_begin(Reg
),
1099 E
= MRI
->use_end(); I
!= E
; I
= nextI
) {
1100 nextI
= std::next(I
); // I is invalidated by the setReg
1101 MachineInstr
*UseMI
= I
->getParent();
1109 MI
->eraseFromParent();
1110 for (unsigned i
= 0; i
< DeadPhis
.size(); ++i
)
1111 DeadPhis
[i
]->eraseFromParent();
1115 /// Check if the loop is a candidate for converting to a hardware
1116 /// loop. If so, then perform the transformation.
1118 /// This function works on innermost loops first. A loop can be converted
1119 /// if it is a counting loop; either a register value or an immediate.
1121 /// The code makes several assumptions about the representation of the loop
1123 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop
*L
,
1126 // This is just for sanity.
1127 assert(L
->getHeader() && "Loop without a header?");
1129 bool Changed
= false;
1130 bool L0Used
= false;
1131 bool L1Used
= false;
1133 // Process nested loops first.
1134 for (MachineLoop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
) {
1135 Changed
|= convertToHardwareLoop(*I
, RecL0used
, RecL1used
);
1136 L0Used
|= RecL0used
;
1137 L1Used
|= RecL1used
;
1140 // If a nested loop has been converted, then we can't convert this loop.
1141 if (Changed
&& L0Used
&& L1Used
)
1148 // Flag used to track loopN instruction:
1149 // 1 - Hardware loop is being generated for the inner most loop.
1150 // 0 - Hardware loop is being generated for the outer loop.
1151 unsigned IsInnerHWLoop
= 1;
1154 LOOP_i
= Hexagon::J2_loop1i
;
1155 LOOP_r
= Hexagon::J2_loop1r
;
1156 ENDLOOP
= Hexagon::ENDLOOP1
;
1159 LOOP_i
= Hexagon::J2_loop0i
;
1160 LOOP_r
= Hexagon::J2_loop0r
;
1161 ENDLOOP
= Hexagon::ENDLOOP0
;
1165 // Stop trying after reaching the limit (if any).
1166 int Limit
= HWLoopLimit
;
1168 if (Counter
>= HWLoopLimit
)
1174 // Does the loop contain any invalid instructions?
1175 if (containsInvalidInstruction(L
, IsInnerHWLoop
))
1178 MachineBasicBlock
*LastMBB
= L
->findLoopControlBlock();
1179 // Don't generate hw loop if the loop has more than one exit.
1183 MachineBasicBlock::iterator LastI
= LastMBB
->getFirstTerminator();
1184 if (LastI
== LastMBB
->end())
1187 // Is the induction variable bump feeding the latch condition?
1188 if (!fixupInductionVariable(L
))
1191 // Ensure the loop has a preheader: the loop instruction will be
1193 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
1195 Preheader
= createPreheaderForLoop(L
);
1200 MachineBasicBlock::iterator InsertPos
= Preheader
->getFirstTerminator();
1202 SmallVector
<MachineInstr
*, 2> OldInsts
;
1203 // Are we able to determine the trip count for the loop?
1204 CountValue
*TripCount
= getLoopTripCount(L
, OldInsts
);
1208 // Is the trip count available in the preheader?
1209 if (TripCount
->isReg()) {
1210 // There will be a use of the register inserted into the preheader,
1211 // so make sure that the register is actually defined at that point.
1212 MachineInstr
*TCDef
= MRI
->getVRegDef(TripCount
->getReg());
1213 MachineBasicBlock
*BBDef
= TCDef
->getParent();
1214 if (!MDT
->dominates(BBDef
, Preheader
))
1218 // Determine the loop start.
1219 MachineBasicBlock
*TopBlock
= L
->getTopBlock();
1220 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1221 MachineBasicBlock
*LoopStart
= nullptr;
1222 if (ExitingBlock
!= L
->getLoopLatch()) {
1223 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1224 SmallVector
<MachineOperand
, 2> Cond
;
1226 if (TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false))
1229 if (L
->contains(TB
))
1231 else if (L
->contains(FB
))
1237 LoopStart
= TopBlock
;
1239 // Convert the loop to a hardware loop.
1240 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L
->dump());
1242 if (InsertPos
!= Preheader
->end())
1243 DL
= InsertPos
->getDebugLoc();
1245 if (TripCount
->isReg()) {
1246 // Create a copy of the loop count register.
1247 Register CountReg
= MRI
->createVirtualRegister(&Hexagon::IntRegsRegClass
);
1248 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(TargetOpcode::COPY
), CountReg
)
1249 .addReg(TripCount
->getReg(), 0, TripCount
->getSubReg());
1250 // Add the Loop instruction to the beginning of the loop.
1251 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_r
)).addMBB(LoopStart
)
1254 assert(TripCount
->isImm() && "Expecting immediate value for trip count");
1255 // Add the Loop immediate instruction to the beginning of the loop,
1256 // if the immediate fits in the instructions. Otherwise, we need to
1257 // create a new virtual register.
1258 int64_t CountImm
= TripCount
->getImm();
1259 if (!TII
->isValidOffset(LOOP_i
, CountImm
, TRI
)) {
1260 Register CountReg
= MRI
->createVirtualRegister(&Hexagon::IntRegsRegClass
);
1261 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(Hexagon::A2_tfrsi
), CountReg
)
1263 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_r
))
1264 .addMBB(LoopStart
).addReg(CountReg
);
1266 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_i
))
1267 .addMBB(LoopStart
).addImm(CountImm
);
1270 // Make sure the loop start always has a reference in the CFG. We need
1271 // to create a BlockAddress operand to get this mechanism to work both the
1272 // MachineBasicBlock and BasicBlock objects need the flag set.
1273 LoopStart
->setHasAddressTaken();
1274 // This line is needed to set the hasAddressTaken flag on the BasicBlock
1276 BlockAddress::get(const_cast<BasicBlock
*>(LoopStart
->getBasicBlock()));
1278 // Replace the loop branch with an endloop instruction.
1279 DebugLoc LastIDL
= LastI
->getDebugLoc();
1280 BuildMI(*LastMBB
, LastI
, LastIDL
, TII
->get(ENDLOOP
)).addMBB(LoopStart
);
1282 // The loop ends with either:
1283 // - a conditional branch followed by an unconditional branch, or
1284 // - a conditional branch to the loop start.
1285 if (LastI
->getOpcode() == Hexagon::J2_jumpt
||
1286 LastI
->getOpcode() == Hexagon::J2_jumpf
) {
1287 // Delete one and change/add an uncond. branch to out of the loop.
1288 MachineBasicBlock
*BranchTarget
= LastI
->getOperand(1).getMBB();
1289 LastI
= LastMBB
->erase(LastI
);
1290 if (!L
->contains(BranchTarget
)) {
1291 if (LastI
!= LastMBB
->end())
1292 LastI
= LastMBB
->erase(LastI
);
1293 SmallVector
<MachineOperand
, 0> Cond
;
1294 TII
->insertBranch(*LastMBB
, BranchTarget
, nullptr, Cond
, LastIDL
);
1297 // Conditional branch to loop start; just delete it.
1298 LastMBB
->erase(LastI
);
1302 // The induction operation and the comparison may now be
1303 // unneeded. If these are unneeded, then remove them.
1304 for (unsigned i
= 0; i
< OldInsts
.size(); ++i
)
1305 removeIfDead(OldInsts
[i
]);
1309 // Set RecL1used and RecL0used only after hardware loop has been
1310 // successfully generated. Doing it earlier can cause wrong loop instruction
1312 if (L0Used
) // Loop0 was already used. So, the correct loop must be loop1.
1320 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr
*BumpI
,
1321 MachineInstr
*CmpI
) {
1322 assert (BumpI
!= CmpI
&& "Bump and compare in the same instruction?");
1324 MachineBasicBlock
*BB
= BumpI
->getParent();
1325 if (CmpI
->getParent() != BB
)
1328 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1330 // Check if things are in order to begin with.
1331 for (instr_iterator
I(BumpI
), E
= BB
->instr_end(); I
!= E
; ++I
)
1336 Register PredR
= CmpI
->getOperand(0).getReg();
1337 bool FoundBump
= false;
1338 instr_iterator CmpIt
= CmpI
->getIterator(), NextIt
= std::next(CmpIt
);
1339 for (instr_iterator I
= NextIt
, E
= BB
->instr_end(); I
!= E
; ++I
) {
1340 MachineInstr
*In
= &*I
;
1341 for (unsigned i
= 0, n
= In
->getNumOperands(); i
< n
; ++i
) {
1342 MachineOperand
&MO
= In
->getOperand(i
);
1343 if (MO
.isReg() && MO
.isUse()) {
1344 if (MO
.getReg() == PredR
) // Found an intervening use of PredR.
1350 BB
->splice(++BumpI
->getIterator(), BB
, CmpI
->getIterator());
1355 assert (FoundBump
&& "Cannot determine instruction order");
1359 /// This function is required to break recursion. Visiting phis in a loop may
1360 /// result in recursion during compilation. We break the recursion by making
1361 /// sure that we visit a MachineOperand and its definition in a
1362 /// MachineInstruction only once. If we attempt to visit more than once, then
1363 /// there is recursion, and will return false.
1364 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop
*L
, MachineBasicBlock
*A
,
1366 const MachineOperand
*MO
,
1367 LoopFeederMap
&LoopFeederPhi
) const {
1368 if (LoopFeederPhi
.find(MO
->getReg()) == LoopFeederPhi
.end()) {
1369 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1370 << printMBBReference(**L
->block_begin()));
1371 // Ignore all BBs that form Loop.
1372 if (llvm::is_contained(L
->getBlocks(), A
))
1374 MachineInstr
*Def
= MRI
->getVRegDef(MO
->getReg());
1375 LoopFeederPhi
.insert(std::make_pair(MO
->getReg(), Def
));
1378 // Already visited node.
1382 /// Return true if a Phi may generate a value that can underflow.
1383 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1384 bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1385 MachineInstr
*Phi
, const MachineOperand
*EndVal
, MachineBasicBlock
*MBB
,
1386 MachineLoop
*L
, LoopFeederMap
&LoopFeederPhi
) const {
1387 assert(Phi
->isPHI() && "Expecting a Phi.");
1388 // Walk through each Phi, and its used operands. Make sure that
1389 // if there is recursion in Phi, we won't generate hardware loops.
1390 for (int i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2)
1391 if (isLoopFeeder(L
, MBB
, Phi
, &(Phi
->getOperand(i
)), LoopFeederPhi
))
1392 if (loopCountMayWrapOrUnderFlow(&(Phi
->getOperand(i
)), EndVal
,
1393 Phi
->getParent(), L
, LoopFeederPhi
))
1398 /// Return true if the induction variable can underflow in the first iteration.
1399 /// An example, is an initial unsigned value that is 0 and is decrement in the
1400 /// first itertion of a do-while loop. In this case, we cannot generate a
1401 /// hardware loop because the endloop instruction does not decrement the loop
1402 /// counter if it is <= 1. We only need to perform this analysis if the
1403 /// initial value is a register.
1405 /// This function assumes the initial value may underfow unless proven
1406 /// otherwise. If the type is signed, then we don't care because signed
1407 /// underflow is undefined. We attempt to prove the initial value is not
1408 /// zero by perfoming a crude analysis of the loop counter. This function
1409 /// checks if the initial value is used in any comparison prior to the loop
1410 /// and, if so, assumes the comparison is a range check. This is inexact,
1411 /// but will catch the simple cases.
1412 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1413 const MachineOperand
*InitVal
, const MachineOperand
*EndVal
,
1414 MachineBasicBlock
*MBB
, MachineLoop
*L
,
1415 LoopFeederMap
&LoopFeederPhi
) const {
1416 // Only check register values since they are unknown.
1417 if (!InitVal
->isReg())
1420 if (!EndVal
->isImm())
1423 // A register value that is assigned an immediate is a known value, and it
1424 // won't underflow in the first iteration.
1426 if (checkForImmediate(*InitVal
, Imm
))
1427 return (EndVal
->getImm() == Imm
);
1429 Register Reg
= InitVal
->getReg();
1431 // We don't know the value of a physical register.
1432 if (!Reg
.isVirtual())
1435 MachineInstr
*Def
= MRI
->getVRegDef(Reg
);
1439 // If the initial value is a Phi or copy and the operands may not underflow,
1440 // then the definition cannot be underflow either.
1441 if (Def
->isPHI() && !phiMayWrapOrUnderflow(Def
, EndVal
, Def
->getParent(),
1444 if (Def
->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def
->getOperand(1)),
1445 EndVal
, Def
->getParent(),
1449 // Iterate over the uses of the initial value. If the initial value is used
1450 // in a compare, then we assume this is a range check that ensures the loop
1451 // doesn't underflow. This is not an exact test and should be improved.
1452 for (MachineRegisterInfo::use_instr_nodbg_iterator I
= MRI
->use_instr_nodbg_begin(Reg
),
1453 E
= MRI
->use_instr_nodbg_end(); I
!= E
; ++I
) {
1454 MachineInstr
*MI
= &*I
;
1455 Register CmpReg1
, CmpReg2
;
1456 int CmpMask
= 0, CmpValue
= 0;
1458 if (!TII
->analyzeCompare(*MI
, CmpReg1
, CmpReg2
, CmpMask
, CmpValue
))
1461 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1462 SmallVector
<MachineOperand
, 2> Cond
;
1463 if (TII
->analyzeBranch(*MI
->getParent(), TBB
, FBB
, Cond
, false))
1466 Comparison::Kind Cmp
=
1467 getComparisonKind(MI
->getOpcode(), nullptr, nullptr, 0);
1470 if (TII
->predOpcodeHasNot(Cond
) ^ (TBB
!= MBB
))
1471 Cmp
= Comparison::getNegatedComparison(Cmp
);
1472 if (CmpReg2
!= 0 && CmpReg2
== Reg
)
1473 Cmp
= Comparison::getSwappedComparison(Cmp
);
1475 // Signed underflow is undefined.
1476 if (Comparison::isSigned(Cmp
))
1479 // Check if there is a comparison of the initial value. If the initial value
1480 // is greater than or not equal to another value, then assume this is a
1482 if ((Cmp
& Comparison::G
) || Cmp
== Comparison::NE
)
1486 // OK - this is a hack that needs to be improved. We really need to analyze
1487 // the instructions performed on the initial value. This works on the simplest
1489 if (!Def
->isCopy() && !Def
->isPHI())
1495 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand
&MO
,
1496 int64_t &Val
) const {
1504 // MO is a register. Check whether it is defined as an immediate value,
1505 // and if so, get the value of it in TV. That value will then need to be
1506 // processed to handle potential subregisters in MO.
1509 Register R
= MO
.getReg();
1512 MachineInstr
*DI
= MRI
->getVRegDef(R
);
1513 unsigned DOpc
= DI
->getOpcode();
1515 case TargetOpcode::COPY
:
1516 case Hexagon::A2_tfrsi
:
1517 case Hexagon::A2_tfrpi
:
1518 case Hexagon::CONST32
:
1519 case Hexagon::CONST64
:
1520 // Call recursively to avoid an extra check whether operand(1) is
1521 // indeed an immediate (it could be a global address, for example),
1522 // plus we can handle COPY at the same time.
1523 if (!checkForImmediate(DI
->getOperand(1), TV
))
1526 case Hexagon::A2_combineii
:
1527 case Hexagon::A4_combineir
:
1528 case Hexagon::A4_combineii
:
1529 case Hexagon::A4_combineri
:
1530 case Hexagon::A2_combinew
: {
1531 const MachineOperand
&S1
= DI
->getOperand(1);
1532 const MachineOperand
&S2
= DI
->getOperand(2);
1534 if (!checkForImmediate(S1
, V1
) || !checkForImmediate(S2
, V2
))
1536 TV
= V2
| (static_cast<uint64_t>(V1
) << 32);
1539 case TargetOpcode::REG_SEQUENCE
: {
1540 const MachineOperand
&S1
= DI
->getOperand(1);
1541 const MachineOperand
&S3
= DI
->getOperand(3);
1543 if (!checkForImmediate(S1
, V1
) || !checkForImmediate(S3
, V3
))
1545 unsigned Sub2
= DI
->getOperand(2).getImm();
1546 unsigned Sub4
= DI
->getOperand(4).getImm();
1547 if (Sub2
== Hexagon::isub_lo
&& Sub4
== Hexagon::isub_hi
)
1548 TV
= V1
| (V3
<< 32);
1549 else if (Sub2
== Hexagon::isub_hi
&& Sub4
== Hexagon::isub_lo
)
1550 TV
= V3
| (V1
<< 32);
1552 llvm_unreachable("Unexpected form of REG_SEQUENCE");
1560 // By now, we should have successfully obtained the immediate value defining
1561 // the register referenced in MO. Handle a potential use of a subregister.
1562 switch (MO
.getSubReg()) {
1563 case Hexagon::isub_lo
:
1564 Val
= TV
& 0xFFFFFFFFULL
;
1566 case Hexagon::isub_hi
:
1567 Val
= (TV
>> 32) & 0xFFFFFFFFULL
;
1576 void HexagonHardwareLoops::setImmediate(MachineOperand
&MO
, int64_t Val
) {
1583 Register R
= MO
.getReg();
1584 MachineInstr
*DI
= MRI
->getVRegDef(R
);
1586 const TargetRegisterClass
*RC
= MRI
->getRegClass(R
);
1587 Register NewR
= MRI
->createVirtualRegister(RC
);
1588 MachineBasicBlock
&B
= *DI
->getParent();
1589 DebugLoc DL
= DI
->getDebugLoc();
1590 BuildMI(B
, DI
, DL
, TII
->get(DI
->getOpcode()), NewR
).addImm(Val
);
1594 static bool isImmValidForOpcode(unsigned CmpOpc
, int64_t Imm
) {
1595 // These two instructions are not extendable.
1596 if (CmpOpc
== Hexagon::A4_cmpbeqi
)
1597 return isUInt
<8>(Imm
);
1598 if (CmpOpc
== Hexagon::A4_cmpbgti
)
1599 return isInt
<8>(Imm
);
1600 // The rest of the comparison-with-immediate instructions are extendable.
1604 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop
*L
) {
1605 MachineBasicBlock
*Header
= L
->getHeader();
1606 MachineBasicBlock
*Latch
= L
->getLoopLatch();
1607 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1609 if (!(Header
&& Latch
&& ExitingBlock
))
1612 // These data structures follow the same concept as the corresponding
1613 // ones in findInductionRegister (where some comments are).
1614 using RegisterBump
= std::pair
<unsigned, int64_t>;
1615 using RegisterInduction
= std::pair
<unsigned, RegisterBump
>;
1616 using RegisterInductionSet
= std::set
<RegisterInduction
>;
1618 // Register candidates for induction variables, with their associated bumps.
1619 RegisterInductionSet IndRegs
;
1621 // Look for induction patterns:
1622 // %1 = PHI ..., [ latch, %2 ]
1624 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1626 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1627 I
!= E
&& I
->isPHI(); ++I
) {
1628 MachineInstr
*Phi
= &*I
;
1630 // Have a PHI instruction.
1631 for (unsigned i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2) {
1632 if (Phi
->getOperand(i
+1).getMBB() != Latch
)
1635 Register PhiReg
= Phi
->getOperand(i
).getReg();
1636 MachineInstr
*DI
= MRI
->getVRegDef(PhiReg
);
1638 if (DI
->getDesc().isAdd()) {
1639 // If the register operand to the add/sub is the PHI we are looking
1640 // at, this meets the induction pattern.
1641 Register IndReg
= DI
->getOperand(1).getReg();
1642 MachineOperand
&Opnd2
= DI
->getOperand(2);
1644 if (MRI
->getVRegDef(IndReg
) == Phi
&& checkForImmediate(Opnd2
, V
)) {
1645 Register UpdReg
= DI
->getOperand(0).getReg();
1646 IndRegs
.insert(std::make_pair(UpdReg
, std::make_pair(IndReg
, V
)));
1652 if (IndRegs
.empty())
1655 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1656 SmallVector
<MachineOperand
,2> Cond
;
1657 // analyzeBranch returns true if it fails to analyze branch.
1658 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
1659 if (NotAnalyzed
|| Cond
.empty())
1662 if (ExitingBlock
!= Latch
&& (TB
== Latch
|| FB
== Latch
)) {
1663 MachineBasicBlock
*LTB
= nullptr, *LFB
= nullptr;
1664 SmallVector
<MachineOperand
,2> LCond
;
1665 bool NotAnalyzed
= TII
->analyzeBranch(*Latch
, LTB
, LFB
, LCond
, false);
1669 // Since latch is not the exiting block, the latch branch should be an
1670 // unconditional branch to the loop header.
1672 TB
= (LTB
== Header
) ? LTB
: LFB
;
1674 FB
= (LTB
== Header
) ? LTB
: LFB
;
1678 // The latch/exit block does not go back to the header.
1681 // FB is the header (i.e., uncond. jump to branch header)
1682 // In this case, the LoopBody -> TB should not be a back edge otherwise
1683 // it could result in an infinite loop after conversion to hw_loop.
1684 // This case can happen when the Latch has two jumps like this:
1685 // Jmp_c OuterLoopHeader <-- TB
1686 // Jmp InnerLoopHeader <-- FB
1687 if (MDT
->dominates(TB
, FB
))
1691 // Expecting a predicate register as a condition. It won't be a hardware
1692 // predicate register at this point yet, just a vreg.
1693 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
1694 // into Cond, followed by the predicate register. For non-negated branches
1695 // it's just the register.
1696 unsigned CSz
= Cond
.size();
1697 if (CSz
!= 1 && CSz
!= 2)
1700 if (!Cond
[CSz
-1].isReg())
1703 Register P
= Cond
[CSz
- 1].getReg();
1704 MachineInstr
*PredDef
= MRI
->getVRegDef(P
);
1706 if (!PredDef
->isCompare())
1709 SmallSet
<unsigned,2> CmpRegs
;
1710 MachineOperand
*CmpImmOp
= nullptr;
1712 // Go over all operands to the compare and look for immediate and register
1713 // operands. Assume that if the compare has a single register use and a
1714 // single immediate operand, then the register is being compared with the
1716 for (unsigned i
= 0, n
= PredDef
->getNumOperands(); i
< n
; ++i
) {
1717 MachineOperand
&MO
= PredDef
->getOperand(i
);
1719 // Skip all implicit references. In one case there was:
1720 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1721 if (MO
.isImplicit())
1724 if (!isImmediate(MO
)) {
1725 CmpRegs
.insert(MO
.getReg());
1728 // Consider the register to be the "immediate" operand.
1733 } else if (MO
.isImm()) {
1734 if (CmpImmOp
) // A second immediate argument? Confusing. Bail out.
1740 if (CmpRegs
.empty())
1743 // Check if the compared register follows the order we want. Fix if needed.
1744 for (RegisterInductionSet::iterator I
= IndRegs
.begin(), E
= IndRegs
.end();
1746 // This is a success. If the register used in the comparison is one that
1747 // we have identified as a bumped (updated) induction register, there is
1749 if (CmpRegs
.count(I
->first
))
1752 // Otherwise, if the register being compared comes out of a PHI node,
1753 // and has been recognized as following the induction pattern, and is
1754 // compared against an immediate, we can fix it.
1755 const RegisterBump
&RB
= I
->second
;
1756 if (CmpRegs
.count(RB
.first
)) {
1758 // If both operands to the compare instruction are registers, see if
1759 // it can be changed to use induction register as one of the operands.
1760 MachineInstr
*IndI
= nullptr;
1761 MachineInstr
*nonIndI
= nullptr;
1762 MachineOperand
*IndMO
= nullptr;
1763 MachineOperand
*nonIndMO
= nullptr;
1765 for (unsigned i
= 1, n
= PredDef
->getNumOperands(); i
< n
; ++i
) {
1766 MachineOperand
&MO
= PredDef
->getOperand(i
);
1767 if (MO
.isReg() && MO
.getReg() == RB
.first
) {
1768 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1769 << ") = " << *(MRI
->getVRegDef(I
->first
)));
1773 IndI
= MRI
->getVRegDef(I
->first
);
1775 } else if (MO
.isReg()) {
1776 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1777 << ") = " << *(MRI
->getVRegDef(MO
.getReg())));
1781 nonIndI
= MRI
->getVRegDef(MO
.getReg());
1785 if (IndI
&& nonIndI
&&
1786 nonIndI
->getOpcode() == Hexagon::A2_addi
&&
1787 nonIndI
->getOperand(2).isImm() &&
1788 nonIndI
->getOperand(2).getImm() == - RB
.second
) {
1789 bool Order
= orderBumpCompare(IndI
, PredDef
);
1791 IndMO
->setReg(I
->first
);
1792 nonIndMO
->setReg(nonIndI
->getOperand(1).getReg());
1799 // It is not valid to do this transformation on an unsigned comparison
1800 // because it may underflow.
1801 Comparison::Kind Cmp
=
1802 getComparisonKind(PredDef
->getOpcode(), nullptr, nullptr, 0);
1803 if (!Cmp
|| Comparison::isUnsigned(Cmp
))
1806 // If the register is being compared against an immediate, try changing
1807 // the compare instruction to use induction register and adjust the
1808 // immediate operand.
1809 int64_t CmpImm
= getImmediate(*CmpImmOp
);
1810 int64_t V
= RB
.second
;
1811 // Handle Overflow (64-bit).
1812 if (((V
> 0) && (CmpImm
> INT64_MAX
- V
)) ||
1813 ((V
< 0) && (CmpImm
< INT64_MIN
- V
)))
1816 // Most comparisons of register against an immediate value allow
1817 // the immediate to be constant-extended. There are some exceptions
1818 // though. Make sure the new combination will work.
1819 if (CmpImmOp
->isImm())
1820 if (!isImmValidForOpcode(PredDef
->getOpcode(), CmpImm
))
1823 // Make sure that the compare happens after the bump. Otherwise,
1824 // after the fixup, the compare would use a yet-undefined register.
1825 MachineInstr
*BumpI
= MRI
->getVRegDef(I
->first
);
1826 bool Order
= orderBumpCompare(BumpI
, PredDef
);
1830 // Finally, fix the compare instruction.
1831 setImmediate(*CmpImmOp
, CmpImm
);
1832 for (unsigned i
= 0, n
= PredDef
->getNumOperands(); i
< n
; ++i
) {
1833 MachineOperand
&MO
= PredDef
->getOperand(i
);
1834 if (MO
.isReg() && MO
.getReg() == RB
.first
) {
1835 MO
.setReg(I
->first
);
1845 /// createPreheaderForLoop - Create a preheader for a given loop.
1846 MachineBasicBlock
*HexagonHardwareLoops::createPreheaderForLoop(
1848 if (MachineBasicBlock
*TmpPH
= MLI
->findLoopPreheader(L
, SpecPreheader
))
1850 if (!HWCreatePreheader
)
1853 MachineBasicBlock
*Header
= L
->getHeader();
1854 MachineBasicBlock
*Latch
= L
->getLoopLatch();
1855 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1856 MachineFunction
*MF
= Header
->getParent();
1860 if ((!PHFn
.empty()) && (PHFn
!= MF
->getName()))
1864 if (!Latch
|| !ExitingBlock
|| Header
->hasAddressTaken())
1867 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1869 // Verify that all existing predecessors have analyzable branches
1870 // (or no branches at all).
1871 using MBBVector
= std::vector
<MachineBasicBlock
*>;
1873 MBBVector
Preds(Header
->pred_begin(), Header
->pred_end());
1874 SmallVector
<MachineOperand
,2> Tmp1
;
1875 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1877 if (TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Tmp1
, false))
1880 for (MBBVector::iterator I
= Preds
.begin(), E
= Preds
.end(); I
!= E
; ++I
) {
1881 MachineBasicBlock
*PB
= *I
;
1882 bool NotAnalyzed
= TII
->analyzeBranch(*PB
, TB
, FB
, Tmp1
, false);
1887 MachineBasicBlock
*NewPH
= MF
->CreateMachineBasicBlock();
1888 MF
->insert(Header
->getIterator(), NewPH
);
1890 if (Header
->pred_size() > 2) {
1891 // Ensure that the header has only two predecessors: the preheader and
1892 // the loop latch. Any additional predecessors of the header should
1893 // join at the newly created preheader. Inspect all PHI nodes from the
1894 // header and create appropriate corresponding PHI nodes in the preheader.
1896 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1897 I
!= E
&& I
->isPHI(); ++I
) {
1898 MachineInstr
*PN
= &*I
;
1900 const MCInstrDesc
&PD
= TII
->get(TargetOpcode::PHI
);
1901 MachineInstr
*NewPN
= MF
->CreateMachineInstr(PD
, DL
);
1902 NewPH
->insert(NewPH
->end(), NewPN
);
1904 Register PR
= PN
->getOperand(0).getReg();
1905 const TargetRegisterClass
*RC
= MRI
->getRegClass(PR
);
1906 Register NewPR
= MRI
->createVirtualRegister(RC
);
1907 NewPN
->addOperand(MachineOperand::CreateReg(NewPR
, true));
1909 // Copy all non-latch operands of a header's PHI node to the newly
1910 // created PHI node in the preheader.
1911 for (unsigned i
= 1, n
= PN
->getNumOperands(); i
< n
; i
+= 2) {
1912 Register PredR
= PN
->getOperand(i
).getReg();
1913 unsigned PredRSub
= PN
->getOperand(i
).getSubReg();
1914 MachineBasicBlock
*PredB
= PN
->getOperand(i
+1).getMBB();
1918 MachineOperand MO
= MachineOperand::CreateReg(PredR
, false);
1919 MO
.setSubReg(PredRSub
);
1920 NewPN
->addOperand(MO
);
1921 NewPN
->addOperand(MachineOperand::CreateMBB(PredB
));
1924 // Remove copied operands from the old PHI node and add the value
1925 // coming from the preheader's PHI.
1926 for (int i
= PN
->getNumOperands()-2; i
> 0; i
-= 2) {
1927 MachineBasicBlock
*PredB
= PN
->getOperand(i
+1).getMBB();
1928 if (PredB
!= Latch
) {
1929 PN
->RemoveOperand(i
+1);
1930 PN
->RemoveOperand(i
);
1933 PN
->addOperand(MachineOperand::CreateReg(NewPR
, false));
1934 PN
->addOperand(MachineOperand::CreateMBB(NewPH
));
1937 assert(Header
->pred_size() == 2);
1939 // The header has only two predecessors, but the non-latch predecessor
1940 // is not a preheader (e.g. it has other successors, etc.)
1941 // In such a case we don't need any extra PHI nodes in the new preheader,
1942 // all we need is to adjust existing PHIs in the header to now refer to
1943 // the new preheader.
1944 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1945 I
!= E
&& I
->isPHI(); ++I
) {
1946 MachineInstr
*PN
= &*I
;
1947 for (unsigned i
= 1, n
= PN
->getNumOperands(); i
< n
; i
+= 2) {
1948 MachineOperand
&MO
= PN
->getOperand(i
+1);
1949 if (MO
.getMBB() != Latch
)
1955 // "Reroute" the CFG edges to link in the new preheader.
1956 // If any of the predecessors falls through to the header, insert a branch
1957 // to the new preheader in that place.
1958 SmallVector
<MachineOperand
,1> Tmp2
;
1959 SmallVector
<MachineOperand
,1> EmptyCond
;
1963 for (MBBVector::iterator I
= Preds
.begin(), E
= Preds
.end(); I
!= E
; ++I
) {
1964 MachineBasicBlock
*PB
= *I
;
1967 bool NotAnalyzed
= TII
->analyzeBranch(*PB
, TB
, FB
, Tmp2
, false);
1968 (void)NotAnalyzed
; // suppress compiler warning
1969 assert (!NotAnalyzed
&& "Should be analyzable!");
1970 if (TB
!= Header
&& (Tmp2
.empty() || FB
!= Header
))
1971 TII
->insertBranch(*PB
, NewPH
, nullptr, EmptyCond
, DL
);
1972 PB
->ReplaceUsesOfBlockWith(Header
, NewPH
);
1976 // It can happen that the latch block will fall through into the header.
1977 // Insert an unconditional branch to the header.
1979 bool LatchNotAnalyzed
= TII
->analyzeBranch(*Latch
, TB
, FB
, Tmp2
, false);
1980 (void)LatchNotAnalyzed
; // suppress compiler warning
1981 assert (!LatchNotAnalyzed
&& "Should be analyzable!");
1983 TII
->insertBranch(*Latch
, Header
, nullptr, EmptyCond
, DL
);
1985 // Finally, the branch from the preheader to the header.
1986 TII
->insertBranch(*NewPH
, Header
, nullptr, EmptyCond
, DL
);
1987 NewPH
->addSuccessor(Header
);
1989 MachineLoop
*ParentLoop
= L
->getParentLoop();
1991 ParentLoop
->addBasicBlockToLoop(NewPH
, MLI
->getBase());
1993 // Update the dominator information with the new preheader.
1995 if (MachineDomTreeNode
*HN
= MDT
->getNode(Header
)) {
1996 if (MachineDomTreeNode
*DHN
= HN
->getIDom()) {
1997 MDT
->addNewBlock(NewPH
, DHN
->getBlock());
1998 MDT
->changeImmediateDominator(Header
, NewPH
);