[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonHardwareLoops.cpp
blob58f3cd55ee9f43830f5fcfd5baf27fbf5a799d85
1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies loops where we can generate the Hexagon hardware
10 // loop instruction. The hardware loop can perform loop branches with a
11 // zero-cycle overhead.
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 // The pattern detected by this phase is due to running Strength Reduction.
19 // Criteria for hardware loops:
20 // - Countable loops (w/ ind. var for a trip count)
21 // - Assumes loops are normalized by IndVarSimplify
22 // - Try inner-most loops first
23 // - No function calls in loops.
25 //===----------------------------------------------------------------------===//
27 #include "HexagonInstrInfo.h"
28 #include "HexagonSubtarget.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <cassert>
55 #include <cstdint>
56 #include <cstdlib>
57 #include <iterator>
58 #include <map>
59 #include <set>
60 #include <string>
61 #include <utility>
62 #include <vector>
64 using namespace llvm;
66 #define DEBUG_TYPE "hwloops"
68 #ifndef NDEBUG
69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
71 // Option to create preheader only for a specific function.
72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
73 cl::init(""));
74 #endif
76 // Option to create a preheader if one doesn't exist.
77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78 cl::Hidden, cl::init(true),
79 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
81 // Turn it off by default. If a preheader block is not created here, the
82 // software pipeliner may be unable to find a block suitable to serve as
83 // a preheader. In that case SWP will not run.
84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
85 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader "
86 "instructions"));
88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
90 namespace llvm {
92 FunctionPass *createHexagonHardwareLoops();
93 void initializeHexagonHardwareLoopsPass(PassRegistry&);
95 } // end namespace llvm
97 namespace {
99 class CountValue;
101 struct HexagonHardwareLoops : public MachineFunctionPass {
102 MachineLoopInfo *MLI;
103 MachineRegisterInfo *MRI;
104 MachineDominatorTree *MDT;
105 const HexagonInstrInfo *TII;
106 const HexagonRegisterInfo *TRI;
107 #ifndef NDEBUG
108 static int Counter;
109 #endif
111 public:
112 static char ID;
114 HexagonHardwareLoops() : MachineFunctionPass(ID) {}
116 bool runOnMachineFunction(MachineFunction &MF) override;
118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
120 void getAnalysisUsage(AnalysisUsage &AU) const override {
121 AU.addRequired<MachineDominatorTree>();
122 AU.addRequired<MachineLoopInfo>();
123 MachineFunctionPass::getAnalysisUsage(AU);
126 private:
127 using LoopFeederMap = std::map<unsigned, MachineInstr *>;
129 /// Kinds of comparisons in the compare instructions.
130 struct Comparison {
131 enum Kind {
132 EQ = 0x01,
133 NE = 0x02,
134 L = 0x04,
135 G = 0x08,
136 U = 0x40,
137 LTs = L,
138 LEs = L | EQ,
139 GTs = G,
140 GEs = G | EQ,
141 LTu = L | U,
142 LEu = L | EQ | U,
143 GTu = G | U,
144 GEu = G | EQ | U
147 static Kind getSwappedComparison(Kind Cmp) {
148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
149 if ((Cmp & L) || (Cmp & G))
150 return (Kind)(Cmp ^ (L|G));
151 return Cmp;
154 static Kind getNegatedComparison(Kind Cmp) {
155 if ((Cmp & L) || (Cmp & G))
156 return (Kind)((Cmp ^ (L | G)) ^ EQ);
157 if ((Cmp & NE) || (Cmp & EQ))
158 return (Kind)(Cmp ^ (EQ | NE));
159 return (Kind)0;
162 static bool isSigned(Kind Cmp) {
163 return (Cmp & (L | G) && !(Cmp & U));
166 static bool isUnsigned(Kind Cmp) {
167 return (Cmp & U);
171 /// Find the register that contains the loop controlling
172 /// induction variable.
173 /// If successful, it will return true and set the \p Reg, \p IVBump
174 /// and \p IVOp arguments. Otherwise it will return false.
175 /// The returned induction register is the register R that follows the
176 /// following induction pattern:
177 /// loop:
178 /// R = phi ..., [ R.next, LatchBlock ]
179 /// R.next = R + #bump
180 /// if (R.next < #N) goto loop
181 /// IVBump is the immediate value added to R, and IVOp is the instruction
182 /// "R.next = R + #bump".
183 bool findInductionRegister(MachineLoop *L, unsigned &Reg,
184 int64_t &IVBump, MachineInstr *&IVOp) const;
186 /// Return the comparison kind for the specified opcode.
187 Comparison::Kind getComparisonKind(unsigned CondOpc,
188 MachineOperand *InitialValue,
189 const MachineOperand *Endvalue,
190 int64_t IVBump) const;
192 /// Analyze the statements in a loop to determine if the loop
193 /// has a computable trip count and, if so, return a value that represents
194 /// the trip count expression.
195 CountValue *getLoopTripCount(MachineLoop *L,
196 SmallVectorImpl<MachineInstr *> &OldInsts);
198 /// Return the expression that represents the number of times
199 /// a loop iterates. The function takes the operands that represent the
200 /// loop start value, loop end value, and induction value. Based upon
201 /// these operands, the function attempts to compute the trip count.
202 /// If the trip count is not directly available (as an immediate value,
203 /// or a register), the function will attempt to insert computation of it
204 /// to the loop's preheader.
205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206 const MachineOperand *End, unsigned IVReg,
207 int64_t IVBump, Comparison::Kind Cmp) const;
209 /// Return true if the instruction is not valid within a hardware
210 /// loop.
211 bool isInvalidLoopOperation(const MachineInstr *MI,
212 bool IsInnerHWLoop) const;
214 /// Return true if the loop contains an instruction that inhibits
215 /// using the hardware loop.
216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
218 /// Given a loop, check if we can convert it to a hardware loop.
219 /// If so, then perform the conversion and return true.
220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
222 /// Return true if the instruction is now dead.
223 bool isDead(const MachineInstr *MI,
224 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
226 /// Remove the instruction if it is now dead.
227 void removeIfDead(MachineInstr *MI);
229 /// Make sure that the "bump" instruction executes before the
230 /// compare. We need that for the IV fixup, so that the compare
231 /// instruction would not use a bumped value that has not yet been
232 /// defined. If the instructions are out of order, try to reorder them.
233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
235 /// Return true if MO and MI pair is visited only once. If visited
236 /// more than once, this indicates there is recursion. In such a case,
237 /// return false.
238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
239 const MachineOperand *MO,
240 LoopFeederMap &LoopFeederPhi) const;
242 /// Return true if the Phi may generate a value that may underflow,
243 /// or may wrap.
244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
245 MachineBasicBlock *MBB, MachineLoop *L,
246 LoopFeederMap &LoopFeederPhi) const;
248 /// Return true if the induction variable may underflow an unsigned
249 /// value in the first iteration.
250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
251 const MachineOperand *EndVal,
252 MachineBasicBlock *MBB, MachineLoop *L,
253 LoopFeederMap &LoopFeederPhi) const;
255 /// Check if the given operand has a compile-time known constant
256 /// value. Return true if yes, and false otherwise. When returning true, set
257 /// Val to the corresponding constant value.
258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
260 /// Check if the operand has a compile-time known constant value.
261 bool isImmediate(const MachineOperand &MO) const {
262 int64_t V;
263 return checkForImmediate(MO, V);
266 /// Return the immediate for the specified operand.
267 int64_t getImmediate(const MachineOperand &MO) const {
268 int64_t V;
269 if (!checkForImmediate(MO, V))
270 llvm_unreachable("Invalid operand");
271 return V;
274 /// Reset the given machine operand to now refer to a new immediate
275 /// value. Assumes that the operand was already referencing an immediate
276 /// value, either directly, or via a register.
277 void setImmediate(MachineOperand &MO, int64_t Val);
279 /// Fix the data flow of the induction variable.
280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
281 /// |
282 /// +-> back to phi
283 /// where "bump" is the increment of the induction variable:
284 /// iv = iv + #const.
285 /// Due to some prior code transformations, the actual flow may look
286 /// like this:
287 /// phi -+-> bump ---> back to phi
288 /// |
289 /// +-> comparison-in-latch (against upper_bound-bump),
290 /// i.e. the comparison that controls the loop execution may be using
291 /// the value of the induction variable from before the increment.
293 /// Return true if the loop's flow is the desired one (i.e. it's
294 /// either been fixed, or no fixing was necessary).
295 /// Otherwise, return false. This can happen if the induction variable
296 /// couldn't be identified, or if the value in the latch's comparison
297 /// cannot be adjusted to reflect the post-bump value.
298 bool fixupInductionVariable(MachineLoop *L);
300 /// Given a loop, if it does not have a preheader, create one.
301 /// Return the block that is the preheader.
302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
305 char HexagonHardwareLoops::ID = 0;
306 #ifndef NDEBUG
307 int HexagonHardwareLoops::Counter = 0;
308 #endif
310 /// Abstraction for a trip count of a loop. A smaller version
311 /// of the MachineOperand class without the concerns of changing the
312 /// operand representation.
313 class CountValue {
314 public:
315 enum CountValueType {
316 CV_Register,
317 CV_Immediate
320 private:
321 CountValueType Kind;
322 union Values {
323 struct {
324 unsigned Reg;
325 unsigned Sub;
326 } R;
327 unsigned ImmVal;
328 } Contents;
330 public:
331 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
332 Kind = t;
333 if (Kind == CV_Register) {
334 Contents.R.Reg = v;
335 Contents.R.Sub = u;
336 } else {
337 Contents.ImmVal = v;
341 bool isReg() const { return Kind == CV_Register; }
342 bool isImm() const { return Kind == CV_Immediate; }
344 unsigned getReg() const {
345 assert(isReg() && "Wrong CountValue accessor");
346 return Contents.R.Reg;
349 unsigned getSubReg() const {
350 assert(isReg() && "Wrong CountValue accessor");
351 return Contents.R.Sub;
354 unsigned getImm() const {
355 assert(isImm() && "Wrong CountValue accessor");
356 return Contents.ImmVal;
359 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
360 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
361 if (isImm()) { OS << Contents.ImmVal; }
365 } // end anonymous namespace
367 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
368 "Hexagon Hardware Loops", false, false)
369 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
370 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
371 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
372 "Hexagon Hardware Loops", false, false)
374 FunctionPass *llvm::createHexagonHardwareLoops() {
375 return new HexagonHardwareLoops();
378 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
379 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
380 if (skipFunction(MF.getFunction()))
381 return false;
383 bool Changed = false;
385 MLI = &getAnalysis<MachineLoopInfo>();
386 MRI = &MF.getRegInfo();
387 MDT = &getAnalysis<MachineDominatorTree>();
388 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
389 TII = HST.getInstrInfo();
390 TRI = HST.getRegisterInfo();
392 for (auto &L : *MLI)
393 if (L->isOutermost()) {
394 bool L0Used = false;
395 bool L1Used = false;
396 Changed |= convertToHardwareLoop(L, L0Used, L1Used);
399 return Changed;
402 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
403 unsigned &Reg,
404 int64_t &IVBump,
405 MachineInstr *&IVOp
406 ) const {
407 MachineBasicBlock *Header = L->getHeader();
408 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
409 MachineBasicBlock *Latch = L->getLoopLatch();
410 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
411 if (!Header || !Preheader || !Latch || !ExitingBlock)
412 return false;
414 // This pair represents an induction register together with an immediate
415 // value that will be added to it in each loop iteration.
416 using RegisterBump = std::pair<unsigned, int64_t>;
418 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
419 // from an induction operation
420 // R.next = R + bump
421 // where bump is an immediate value.
422 using InductionMap = std::map<unsigned, RegisterBump>;
424 InductionMap IndMap;
426 using instr_iterator = MachineBasicBlock::instr_iterator;
428 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
429 I != E && I->isPHI(); ++I) {
430 MachineInstr *Phi = &*I;
432 // Have a PHI instruction. Get the operand that corresponds to the
433 // latch block, and see if is a result of an addition of form "reg+imm",
434 // where the "reg" is defined by the PHI node we are looking at.
435 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
436 if (Phi->getOperand(i+1).getMBB() != Latch)
437 continue;
439 Register PhiOpReg = Phi->getOperand(i).getReg();
440 MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
442 if (DI->getDesc().isAdd()) {
443 // If the register operand to the add is the PHI we're looking at, this
444 // meets the induction pattern.
445 Register IndReg = DI->getOperand(1).getReg();
446 MachineOperand &Opnd2 = DI->getOperand(2);
447 int64_t V;
448 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
449 Register UpdReg = DI->getOperand(0).getReg();
450 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
453 } // for (i)
454 } // for (instr)
456 SmallVector<MachineOperand,2> Cond;
457 MachineBasicBlock *TB = nullptr, *FB = nullptr;
458 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
459 if (NotAnalyzed)
460 return false;
462 unsigned PredR, PredPos, PredRegFlags;
463 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
464 return false;
466 MachineInstr *PredI = MRI->getVRegDef(PredR);
467 if (!PredI->isCompare())
468 return false;
470 Register CmpReg1, CmpReg2;
471 int CmpImm = 0, CmpMask = 0;
472 bool CmpAnalyzed =
473 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
474 // Fail if the compare was not analyzed, or it's not comparing a register
475 // with an immediate value. Not checking the mask here, since we handle
476 // the individual compare opcodes (including A4_cmpb*) later on.
477 if (!CmpAnalyzed)
478 return false;
480 // Exactly one of the input registers to the comparison should be among
481 // the induction registers.
482 InductionMap::iterator IndMapEnd = IndMap.end();
483 InductionMap::iterator F = IndMapEnd;
484 if (CmpReg1 != 0) {
485 InductionMap::iterator F1 = IndMap.find(CmpReg1);
486 if (F1 != IndMapEnd)
487 F = F1;
489 if (CmpReg2 != 0) {
490 InductionMap::iterator F2 = IndMap.find(CmpReg2);
491 if (F2 != IndMapEnd) {
492 if (F != IndMapEnd)
493 return false;
494 F = F2;
497 if (F == IndMapEnd)
498 return false;
500 Reg = F->second.first;
501 IVBump = F->second.second;
502 IVOp = MRI->getVRegDef(F->first);
503 return true;
506 // Return the comparison kind for the specified opcode.
507 HexagonHardwareLoops::Comparison::Kind
508 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
509 MachineOperand *InitialValue,
510 const MachineOperand *EndValue,
511 int64_t IVBump) const {
512 Comparison::Kind Cmp = (Comparison::Kind)0;
513 switch (CondOpc) {
514 case Hexagon::C2_cmpeq:
515 case Hexagon::C2_cmpeqi:
516 case Hexagon::C2_cmpeqp:
517 Cmp = Comparison::EQ;
518 break;
519 case Hexagon::C4_cmpneq:
520 case Hexagon::C4_cmpneqi:
521 Cmp = Comparison::NE;
522 break;
523 case Hexagon::C2_cmplt:
524 Cmp = Comparison::LTs;
525 break;
526 case Hexagon::C2_cmpltu:
527 Cmp = Comparison::LTu;
528 break;
529 case Hexagon::C4_cmplte:
530 case Hexagon::C4_cmpltei:
531 Cmp = Comparison::LEs;
532 break;
533 case Hexagon::C4_cmplteu:
534 case Hexagon::C4_cmplteui:
535 Cmp = Comparison::LEu;
536 break;
537 case Hexagon::C2_cmpgt:
538 case Hexagon::C2_cmpgti:
539 case Hexagon::C2_cmpgtp:
540 Cmp = Comparison::GTs;
541 break;
542 case Hexagon::C2_cmpgtu:
543 case Hexagon::C2_cmpgtui:
544 case Hexagon::C2_cmpgtup:
545 Cmp = Comparison::GTu;
546 break;
547 case Hexagon::C2_cmpgei:
548 Cmp = Comparison::GEs;
549 break;
550 case Hexagon::C2_cmpgeui:
551 Cmp = Comparison::GEs;
552 break;
553 default:
554 return (Comparison::Kind)0;
556 return Cmp;
559 /// Analyze the statements in a loop to determine if the loop has
560 /// a computable trip count and, if so, return a value that represents
561 /// the trip count expression.
563 /// This function iterates over the phi nodes in the loop to check for
564 /// induction variable patterns that are used in the calculation for
565 /// the number of time the loop is executed.
566 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
567 SmallVectorImpl<MachineInstr *> &OldInsts) {
568 MachineBasicBlock *TopMBB = L->getTopBlock();
569 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
570 assert(PI != TopMBB->pred_end() &&
571 "Loop must have more than one incoming edge!");
572 MachineBasicBlock *Backedge = *PI++;
573 if (PI == TopMBB->pred_end()) // dead loop?
574 return nullptr;
575 MachineBasicBlock *Incoming = *PI++;
576 if (PI != TopMBB->pred_end()) // multiple backedges?
577 return nullptr;
579 // Make sure there is one incoming and one backedge and determine which
580 // is which.
581 if (L->contains(Incoming)) {
582 if (L->contains(Backedge))
583 return nullptr;
584 std::swap(Incoming, Backedge);
585 } else if (!L->contains(Backedge))
586 return nullptr;
588 // Look for the cmp instruction to determine if we can get a useful trip
589 // count. The trip count can be either a register or an immediate. The
590 // location of the value depends upon the type (reg or imm).
591 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
592 if (!ExitingBlock)
593 return nullptr;
595 unsigned IVReg = 0;
596 int64_t IVBump = 0;
597 MachineInstr *IVOp;
598 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
599 if (!FoundIV)
600 return nullptr;
602 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
604 MachineOperand *InitialValue = nullptr;
605 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
606 MachineBasicBlock *Latch = L->getLoopLatch();
607 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
608 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
609 if (MBB == Preheader)
610 InitialValue = &IV_Phi->getOperand(i);
611 else if (MBB == Latch)
612 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
614 if (!InitialValue)
615 return nullptr;
617 SmallVector<MachineOperand,2> Cond;
618 MachineBasicBlock *TB = nullptr, *FB = nullptr;
619 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
620 if (NotAnalyzed)
621 return nullptr;
623 MachineBasicBlock *Header = L->getHeader();
624 // TB must be non-null. If FB is also non-null, one of them must be
625 // the header. Otherwise, branch to TB could be exiting the loop, and
626 // the fall through can go to the header.
627 assert (TB && "Exit block without a branch?");
628 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
629 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
630 SmallVector<MachineOperand,2> LCond;
631 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
632 if (NotAnalyzed)
633 return nullptr;
634 if (TB == Latch)
635 TB = (LTB == Header) ? LTB : LFB;
636 else
637 FB = (LTB == Header) ? LTB: LFB;
639 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
640 if (!TB || (FB && TB != Header && FB != Header))
641 return nullptr;
643 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
644 // to put imm(0), followed by P in the vector Cond.
645 // If TB is not the header, it means that the "not-taken" path must lead
646 // to the header.
647 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
648 unsigned PredReg, PredPos, PredRegFlags;
649 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
650 return nullptr;
651 MachineInstr *CondI = MRI->getVRegDef(PredReg);
652 unsigned CondOpc = CondI->getOpcode();
654 Register CmpReg1, CmpReg2;
655 int Mask = 0, ImmValue = 0;
656 bool AnalyzedCmp =
657 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
658 if (!AnalyzedCmp)
659 return nullptr;
661 // The comparison operator type determines how we compute the loop
662 // trip count.
663 OldInsts.push_back(CondI);
664 OldInsts.push_back(IVOp);
666 // Sadly, the following code gets information based on the position
667 // of the operands in the compare instruction. This has to be done
668 // this way, because the comparisons check for a specific relationship
669 // between the operands (e.g. is-less-than), rather than to find out
670 // what relationship the operands are in (as on PPC).
671 Comparison::Kind Cmp;
672 bool isSwapped = false;
673 const MachineOperand &Op1 = CondI->getOperand(1);
674 const MachineOperand &Op2 = CondI->getOperand(2);
675 const MachineOperand *EndValue = nullptr;
677 if (Op1.isReg()) {
678 if (Op2.isImm() || Op1.getReg() == IVReg)
679 EndValue = &Op2;
680 else {
681 EndValue = &Op1;
682 isSwapped = true;
686 if (!EndValue)
687 return nullptr;
689 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
690 if (!Cmp)
691 return nullptr;
692 if (Negated)
693 Cmp = Comparison::getNegatedComparison(Cmp);
694 if (isSwapped)
695 Cmp = Comparison::getSwappedComparison(Cmp);
697 if (InitialValue->isReg()) {
698 Register R = InitialValue->getReg();
699 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
700 if (!MDT->properlyDominates(DefBB, Header)) {
701 int64_t V;
702 if (!checkForImmediate(*InitialValue, V))
703 return nullptr;
705 OldInsts.push_back(MRI->getVRegDef(R));
707 if (EndValue->isReg()) {
708 Register R = EndValue->getReg();
709 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
710 if (!MDT->properlyDominates(DefBB, Header)) {
711 int64_t V;
712 if (!checkForImmediate(*EndValue, V))
713 return nullptr;
715 OldInsts.push_back(MRI->getVRegDef(R));
718 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
721 /// Helper function that returns the expression that represents the
722 /// number of times a loop iterates. The function takes the operands that
723 /// represent the loop start value, loop end value, and induction value.
724 /// Based upon these operands, the function attempts to compute the trip count.
725 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
726 const MachineOperand *Start,
727 const MachineOperand *End,
728 unsigned IVReg,
729 int64_t IVBump,
730 Comparison::Kind Cmp) const {
731 // Cannot handle comparison EQ, i.e. while (A == B).
732 if (Cmp == Comparison::EQ)
733 return nullptr;
735 // Check if either the start or end values are an assignment of an immediate.
736 // If so, use the immediate value rather than the register.
737 if (Start->isReg()) {
738 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
739 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
740 StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
741 Start = &StartValInstr->getOperand(1);
743 if (End->isReg()) {
744 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
745 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
746 EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
747 End = &EndValInstr->getOperand(1);
750 if (!Start->isReg() && !Start->isImm())
751 return nullptr;
752 if (!End->isReg() && !End->isImm())
753 return nullptr;
755 bool CmpLess = Cmp & Comparison::L;
756 bool CmpGreater = Cmp & Comparison::G;
757 bool CmpHasEqual = Cmp & Comparison::EQ;
759 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
760 if (CmpLess && IVBump < 0)
761 // Loop going while iv is "less" with the iv value going down. Must wrap.
762 return nullptr;
764 if (CmpGreater && IVBump > 0)
765 // Loop going while iv is "greater" with the iv value going up. Must wrap.
766 return nullptr;
768 // Phis that may feed into the loop.
769 LoopFeederMap LoopFeederPhi;
771 // Check if the initial value may be zero and can be decremented in the first
772 // iteration. If the value is zero, the endloop instruction will not decrement
773 // the loop counter, so we shouldn't generate a hardware loop in this case.
774 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
775 LoopFeederPhi))
776 return nullptr;
778 if (Start->isImm() && End->isImm()) {
779 // Both, start and end are immediates.
780 int64_t StartV = Start->getImm();
781 int64_t EndV = End->getImm();
782 int64_t Dist = EndV - StartV;
783 if (Dist == 0)
784 return nullptr;
786 bool Exact = (Dist % IVBump) == 0;
788 if (Cmp == Comparison::NE) {
789 if (!Exact)
790 return nullptr;
791 if ((Dist < 0) ^ (IVBump < 0))
792 return nullptr;
795 // For comparisons that include the final value (i.e. include equality
796 // with the final value), we need to increase the distance by 1.
797 if (CmpHasEqual)
798 Dist = Dist > 0 ? Dist+1 : Dist-1;
800 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
801 // CmpGreater should imply Dist < 0. These conditions could actually
802 // fail, for example, in unreachable code (which may still appear to be
803 // reachable in the CFG).
804 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
805 return nullptr;
807 // "Normalized" distance, i.e. with the bump set to +-1.
808 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
809 : (-Dist + (-IVBump - 1)) / (-IVBump);
810 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
812 uint64_t Count = Dist1;
814 if (Count > 0xFFFFFFFFULL)
815 return nullptr;
817 return new CountValue(CountValue::CV_Immediate, Count);
820 // A general case: Start and End are some values, but the actual
821 // iteration count may not be available. If it is not, insert
822 // a computation of it into the preheader.
824 // If the induction variable bump is not a power of 2, quit.
825 // Othwerise we'd need a general integer division.
826 if (!isPowerOf2_64(std::abs(IVBump)))
827 return nullptr;
829 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
830 assert (PH && "Should have a preheader by now");
831 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
832 DebugLoc DL;
833 if (InsertPos != PH->end())
834 DL = InsertPos->getDebugLoc();
836 // If Start is an immediate and End is a register, the trip count
837 // will be "reg - imm". Hexagon's "subtract immediate" instruction
838 // is actually "reg + -imm".
840 // If the loop IV is going downwards, i.e. if the bump is negative,
841 // then the iteration count (computed as End-Start) will need to be
842 // negated. To avoid the negation, just swap Start and End.
843 if (IVBump < 0) {
844 std::swap(Start, End);
845 IVBump = -IVBump;
847 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
848 // Signedness, and "including equality" are preserved.
850 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
851 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
853 int64_t StartV = 0, EndV = 0;
854 if (Start->isImm())
855 StartV = Start->getImm();
856 if (End->isImm())
857 EndV = End->getImm();
859 int64_t AdjV = 0;
860 // To compute the iteration count, we would need this computation:
861 // Count = (End - Start + (IVBump-1)) / IVBump
862 // or, when CmpHasEqual:
863 // Count = (End - Start + (IVBump-1)+1) / IVBump
864 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
865 // generating an instruction specifically to add it if we can adjust
866 // the immediate values for Start or End.
868 if (CmpHasEqual) {
869 // Need to add 1 to the total iteration count.
870 if (Start->isImm())
871 StartV--;
872 else if (End->isImm())
873 EndV++;
874 else
875 AdjV += 1;
878 if (Cmp != Comparison::NE) {
879 if (Start->isImm())
880 StartV -= (IVBump-1);
881 else if (End->isImm())
882 EndV += (IVBump-1);
883 else
884 AdjV += (IVBump-1);
887 unsigned R = 0, SR = 0;
888 if (Start->isReg()) {
889 R = Start->getReg();
890 SR = Start->getSubReg();
891 } else {
892 R = End->getReg();
893 SR = End->getSubReg();
895 const TargetRegisterClass *RC = MRI->getRegClass(R);
896 // Hardware loops cannot handle 64-bit registers. If it's a double
897 // register, it has to have a subregister.
898 if (!SR && RC == &Hexagon::DoubleRegsRegClass)
899 return nullptr;
900 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
902 // Compute DistR (register with the distance between Start and End).
903 unsigned DistR, DistSR;
905 // Avoid special case, where the start value is an imm(0).
906 if (Start->isImm() && StartV == 0) {
907 DistR = End->getReg();
908 DistSR = End->getSubReg();
909 } else {
910 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
911 (RegToImm ? TII->get(Hexagon::A2_subri) :
912 TII->get(Hexagon::A2_addi));
913 if (RegToReg || RegToImm) {
914 Register SubR = MRI->createVirtualRegister(IntRC);
915 MachineInstrBuilder SubIB =
916 BuildMI(*PH, InsertPos, DL, SubD, SubR);
918 if (RegToReg)
919 SubIB.addReg(End->getReg(), 0, End->getSubReg())
920 .addReg(Start->getReg(), 0, Start->getSubReg());
921 else
922 SubIB.addImm(EndV)
923 .addReg(Start->getReg(), 0, Start->getSubReg());
924 DistR = SubR;
925 } else {
926 // If the loop has been unrolled, we should use the original loop count
927 // instead of recalculating the value. This will avoid additional
928 // 'Add' instruction.
929 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
930 if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
931 EndValInstr->getOperand(1).getSubReg() == 0 &&
932 EndValInstr->getOperand(2).getImm() == StartV) {
933 DistR = EndValInstr->getOperand(1).getReg();
934 } else {
935 Register SubR = MRI->createVirtualRegister(IntRC);
936 MachineInstrBuilder SubIB =
937 BuildMI(*PH, InsertPos, DL, SubD, SubR);
938 SubIB.addReg(End->getReg(), 0, End->getSubReg())
939 .addImm(-StartV);
940 DistR = SubR;
943 DistSR = 0;
946 // From DistR, compute AdjR (register with the adjusted distance).
947 unsigned AdjR, AdjSR;
949 if (AdjV == 0) {
950 AdjR = DistR;
951 AdjSR = DistSR;
952 } else {
953 // Generate CountR = ADD DistR, AdjVal
954 Register AddR = MRI->createVirtualRegister(IntRC);
955 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
956 BuildMI(*PH, InsertPos, DL, AddD, AddR)
957 .addReg(DistR, 0, DistSR)
958 .addImm(AdjV);
960 AdjR = AddR;
961 AdjSR = 0;
964 // From AdjR, compute CountR (register with the final count).
965 unsigned CountR, CountSR;
967 if (IVBump == 1) {
968 CountR = AdjR;
969 CountSR = AdjSR;
970 } else {
971 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
972 unsigned Shift = Log2_32(IVBump);
974 // Generate NormR = LSR DistR, Shift.
975 Register LsrR = MRI->createVirtualRegister(IntRC);
976 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
977 BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
978 .addReg(AdjR, 0, AdjSR)
979 .addImm(Shift);
981 CountR = LsrR;
982 CountSR = 0;
985 return new CountValue(CountValue::CV_Register, CountR, CountSR);
988 /// Return true if the operation is invalid within hardware loop.
989 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
990 bool IsInnerHWLoop) const {
991 // Call is not allowed because the callee may use a hardware loop except for
992 // the case when the call never returns.
993 if (MI->getDesc().isCall())
994 return !TII->doesNotReturn(*MI);
996 // Check if the instruction defines a hardware loop register.
997 using namespace Hexagon;
999 static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 };
1000 static const unsigned Regs1[] = { LC1, SA1 };
1001 auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01))
1002 : makeArrayRef(Regs1, array_lengthof(Regs1));
1003 for (unsigned R : CheckRegs)
1004 if (MI->modifiesRegister(R, TRI))
1005 return true;
1007 return false;
1010 /// Return true if the loop contains an instruction that inhibits
1011 /// the use of the hardware loop instruction.
1012 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
1013 bool IsInnerHWLoop) const {
1014 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1015 << printMBBReference(**L->block_begin()));
1016 for (MachineBasicBlock *MBB : L->getBlocks()) {
1017 for (MachineBasicBlock::iterator
1018 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
1019 const MachineInstr *MI = &*MII;
1020 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
1021 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
1022 MI->dump(););
1023 return true;
1027 return false;
1030 /// Returns true if the instruction is dead. This was essentially
1031 /// copied from DeadMachineInstructionElim::isDead, but with special cases
1032 /// for inline asm, physical registers and instructions with side effects
1033 /// removed.
1034 bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
1035 SmallVectorImpl<MachineInstr *> &DeadPhis) const {
1036 // Examine each operand.
1037 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1038 const MachineOperand &MO = MI->getOperand(i);
1039 if (!MO.isReg() || !MO.isDef())
1040 continue;
1042 Register Reg = MO.getReg();
1043 if (MRI->use_nodbg_empty(Reg))
1044 continue;
1046 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
1048 // This instruction has users, but if the only user is the phi node for the
1049 // parent block, and the only use of that phi node is this instruction, then
1050 // this instruction is dead: both it (and the phi node) can be removed.
1051 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1052 use_nodbg_iterator End = MRI->use_nodbg_end();
1053 if (std::next(I) != End || !I->getParent()->isPHI())
1054 return false;
1056 MachineInstr *OnePhi = I->getParent();
1057 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
1058 const MachineOperand &OPO = OnePhi->getOperand(j);
1059 if (!OPO.isReg() || !OPO.isDef())
1060 continue;
1062 Register OPReg = OPO.getReg();
1063 use_nodbg_iterator nextJ;
1064 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1065 J != End; J = nextJ) {
1066 nextJ = std::next(J);
1067 MachineOperand &Use = *J;
1068 MachineInstr *UseMI = Use.getParent();
1070 // If the phi node has a user that is not MI, bail.
1071 if (MI != UseMI)
1072 return false;
1075 DeadPhis.push_back(OnePhi);
1078 // If there are no defs with uses, the instruction is dead.
1079 return true;
1082 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1083 // This procedure was essentially copied from DeadMachineInstructionElim.
1085 SmallVector<MachineInstr*, 1> DeadPhis;
1086 if (isDead(MI, DeadPhis)) {
1087 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI);
1089 // It is possible that some DBG_VALUE instructions refer to this
1090 // instruction. Examine each def operand for such references;
1091 // if found, mark the DBG_VALUE as undef (but don't delete it).
1092 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1093 const MachineOperand &MO = MI->getOperand(i);
1094 if (!MO.isReg() || !MO.isDef())
1095 continue;
1096 Register Reg = MO.getReg();
1097 MachineRegisterInfo::use_iterator nextI;
1098 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
1099 E = MRI->use_end(); I != E; I = nextI) {
1100 nextI = std::next(I); // I is invalidated by the setReg
1101 MachineInstr *UseMI = I->getParent();
1102 if (UseMI == MI)
1103 continue;
1104 if (I->isDebug())
1105 I->setReg(0U);
1109 MI->eraseFromParent();
1110 for (unsigned i = 0; i < DeadPhis.size(); ++i)
1111 DeadPhis[i]->eraseFromParent();
1115 /// Check if the loop is a candidate for converting to a hardware
1116 /// loop. If so, then perform the transformation.
1118 /// This function works on innermost loops first. A loop can be converted
1119 /// if it is a counting loop; either a register value or an immediate.
1121 /// The code makes several assumptions about the representation of the loop
1122 /// in llvm.
1123 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1124 bool &RecL0used,
1125 bool &RecL1used) {
1126 // This is just for sanity.
1127 assert(L->getHeader() && "Loop without a header?");
1129 bool Changed = false;
1130 bool L0Used = false;
1131 bool L1Used = false;
1133 // Process nested loops first.
1134 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
1135 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
1136 L0Used |= RecL0used;
1137 L1Used |= RecL1used;
1140 // If a nested loop has been converted, then we can't convert this loop.
1141 if (Changed && L0Used && L1Used)
1142 return Changed;
1144 unsigned LOOP_i;
1145 unsigned LOOP_r;
1146 unsigned ENDLOOP;
1148 // Flag used to track loopN instruction:
1149 // 1 - Hardware loop is being generated for the inner most loop.
1150 // 0 - Hardware loop is being generated for the outer loop.
1151 unsigned IsInnerHWLoop = 1;
1153 if (L0Used) {
1154 LOOP_i = Hexagon::J2_loop1i;
1155 LOOP_r = Hexagon::J2_loop1r;
1156 ENDLOOP = Hexagon::ENDLOOP1;
1157 IsInnerHWLoop = 0;
1158 } else {
1159 LOOP_i = Hexagon::J2_loop0i;
1160 LOOP_r = Hexagon::J2_loop0r;
1161 ENDLOOP = Hexagon::ENDLOOP0;
1164 #ifndef NDEBUG
1165 // Stop trying after reaching the limit (if any).
1166 int Limit = HWLoopLimit;
1167 if (Limit >= 0) {
1168 if (Counter >= HWLoopLimit)
1169 return false;
1170 Counter++;
1172 #endif
1174 // Does the loop contain any invalid instructions?
1175 if (containsInvalidInstruction(L, IsInnerHWLoop))
1176 return false;
1178 MachineBasicBlock *LastMBB = L->findLoopControlBlock();
1179 // Don't generate hw loop if the loop has more than one exit.
1180 if (!LastMBB)
1181 return false;
1183 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1184 if (LastI == LastMBB->end())
1185 return false;
1187 // Is the induction variable bump feeding the latch condition?
1188 if (!fixupInductionVariable(L))
1189 return false;
1191 // Ensure the loop has a preheader: the loop instruction will be
1192 // placed there.
1193 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
1194 if (!Preheader) {
1195 Preheader = createPreheaderForLoop(L);
1196 if (!Preheader)
1197 return false;
1200 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1202 SmallVector<MachineInstr*, 2> OldInsts;
1203 // Are we able to determine the trip count for the loop?
1204 CountValue *TripCount = getLoopTripCount(L, OldInsts);
1205 if (!TripCount)
1206 return false;
1208 // Is the trip count available in the preheader?
1209 if (TripCount->isReg()) {
1210 // There will be a use of the register inserted into the preheader,
1211 // so make sure that the register is actually defined at that point.
1212 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1213 MachineBasicBlock *BBDef = TCDef->getParent();
1214 if (!MDT->dominates(BBDef, Preheader))
1215 return false;
1218 // Determine the loop start.
1219 MachineBasicBlock *TopBlock = L->getTopBlock();
1220 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1221 MachineBasicBlock *LoopStart = nullptr;
1222 if (ExitingBlock != L->getLoopLatch()) {
1223 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1224 SmallVector<MachineOperand, 2> Cond;
1226 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1227 return false;
1229 if (L->contains(TB))
1230 LoopStart = TB;
1231 else if (L->contains(FB))
1232 LoopStart = FB;
1233 else
1234 return false;
1236 else
1237 LoopStart = TopBlock;
1239 // Convert the loop to a hardware loop.
1240 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1241 DebugLoc DL;
1242 if (InsertPos != Preheader->end())
1243 DL = InsertPos->getDebugLoc();
1245 if (TripCount->isReg()) {
1246 // Create a copy of the loop count register.
1247 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1248 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1249 .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1250 // Add the Loop instruction to the beginning of the loop.
1251 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1252 .addReg(CountReg);
1253 } else {
1254 assert(TripCount->isImm() && "Expecting immediate value for trip count");
1255 // Add the Loop immediate instruction to the beginning of the loop,
1256 // if the immediate fits in the instructions. Otherwise, we need to
1257 // create a new virtual register.
1258 int64_t CountImm = TripCount->getImm();
1259 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
1260 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1261 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1262 .addImm(CountImm);
1263 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1264 .addMBB(LoopStart).addReg(CountReg);
1265 } else
1266 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1267 .addMBB(LoopStart).addImm(CountImm);
1270 // Make sure the loop start always has a reference in the CFG. We need
1271 // to create a BlockAddress operand to get this mechanism to work both the
1272 // MachineBasicBlock and BasicBlock objects need the flag set.
1273 LoopStart->setHasAddressTaken();
1274 // This line is needed to set the hasAddressTaken flag on the BasicBlock
1275 // object.
1276 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
1278 // Replace the loop branch with an endloop instruction.
1279 DebugLoc LastIDL = LastI->getDebugLoc();
1280 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1282 // The loop ends with either:
1283 // - a conditional branch followed by an unconditional branch, or
1284 // - a conditional branch to the loop start.
1285 if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1286 LastI->getOpcode() == Hexagon::J2_jumpf) {
1287 // Delete one and change/add an uncond. branch to out of the loop.
1288 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1289 LastI = LastMBB->erase(LastI);
1290 if (!L->contains(BranchTarget)) {
1291 if (LastI != LastMBB->end())
1292 LastI = LastMBB->erase(LastI);
1293 SmallVector<MachineOperand, 0> Cond;
1294 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1296 } else {
1297 // Conditional branch to loop start; just delete it.
1298 LastMBB->erase(LastI);
1300 delete TripCount;
1302 // The induction operation and the comparison may now be
1303 // unneeded. If these are unneeded, then remove them.
1304 for (unsigned i = 0; i < OldInsts.size(); ++i)
1305 removeIfDead(OldInsts[i]);
1307 ++NumHWLoops;
1309 // Set RecL1used and RecL0used only after hardware loop has been
1310 // successfully generated. Doing it earlier can cause wrong loop instruction
1311 // to be used.
1312 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1313 RecL1used = true;
1314 else
1315 RecL0used = true;
1317 return true;
1320 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1321 MachineInstr *CmpI) {
1322 assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1324 MachineBasicBlock *BB = BumpI->getParent();
1325 if (CmpI->getParent() != BB)
1326 return false;
1328 using instr_iterator = MachineBasicBlock::instr_iterator;
1330 // Check if things are in order to begin with.
1331 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1332 if (&*I == CmpI)
1333 return true;
1335 // Out of order.
1336 Register PredR = CmpI->getOperand(0).getReg();
1337 bool FoundBump = false;
1338 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1339 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1340 MachineInstr *In = &*I;
1341 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1342 MachineOperand &MO = In->getOperand(i);
1343 if (MO.isReg() && MO.isUse()) {
1344 if (MO.getReg() == PredR) // Found an intervening use of PredR.
1345 return false;
1349 if (In == BumpI) {
1350 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1351 FoundBump = true;
1352 break;
1355 assert (FoundBump && "Cannot determine instruction order");
1356 return FoundBump;
1359 /// This function is required to break recursion. Visiting phis in a loop may
1360 /// result in recursion during compilation. We break the recursion by making
1361 /// sure that we visit a MachineOperand and its definition in a
1362 /// MachineInstruction only once. If we attempt to visit more than once, then
1363 /// there is recursion, and will return false.
1364 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1365 MachineInstr *MI,
1366 const MachineOperand *MO,
1367 LoopFeederMap &LoopFeederPhi) const {
1368 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1369 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1370 << printMBBReference(**L->block_begin()));
1371 // Ignore all BBs that form Loop.
1372 if (llvm::is_contained(L->getBlocks(), A))
1373 return false;
1374 MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1375 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1376 return true;
1377 } else
1378 // Already visited node.
1379 return false;
1382 /// Return true if a Phi may generate a value that can underflow.
1383 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1384 bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1385 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1386 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1387 assert(Phi->isPHI() && "Expecting a Phi.");
1388 // Walk through each Phi, and its used operands. Make sure that
1389 // if there is recursion in Phi, we won't generate hardware loops.
1390 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1391 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1392 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1393 Phi->getParent(), L, LoopFeederPhi))
1394 return true;
1395 return false;
1398 /// Return true if the induction variable can underflow in the first iteration.
1399 /// An example, is an initial unsigned value that is 0 and is decrement in the
1400 /// first itertion of a do-while loop. In this case, we cannot generate a
1401 /// hardware loop because the endloop instruction does not decrement the loop
1402 /// counter if it is <= 1. We only need to perform this analysis if the
1403 /// initial value is a register.
1405 /// This function assumes the initial value may underfow unless proven
1406 /// otherwise. If the type is signed, then we don't care because signed
1407 /// underflow is undefined. We attempt to prove the initial value is not
1408 /// zero by perfoming a crude analysis of the loop counter. This function
1409 /// checks if the initial value is used in any comparison prior to the loop
1410 /// and, if so, assumes the comparison is a range check. This is inexact,
1411 /// but will catch the simple cases.
1412 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1413 const MachineOperand *InitVal, const MachineOperand *EndVal,
1414 MachineBasicBlock *MBB, MachineLoop *L,
1415 LoopFeederMap &LoopFeederPhi) const {
1416 // Only check register values since they are unknown.
1417 if (!InitVal->isReg())
1418 return false;
1420 if (!EndVal->isImm())
1421 return false;
1423 // A register value that is assigned an immediate is a known value, and it
1424 // won't underflow in the first iteration.
1425 int64_t Imm;
1426 if (checkForImmediate(*InitVal, Imm))
1427 return (EndVal->getImm() == Imm);
1429 Register Reg = InitVal->getReg();
1431 // We don't know the value of a physical register.
1432 if (!Reg.isVirtual())
1433 return true;
1435 MachineInstr *Def = MRI->getVRegDef(Reg);
1436 if (!Def)
1437 return true;
1439 // If the initial value is a Phi or copy and the operands may not underflow,
1440 // then the definition cannot be underflow either.
1441 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1442 L, LoopFeederPhi))
1443 return false;
1444 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1445 EndVal, Def->getParent(),
1446 L, LoopFeederPhi))
1447 return false;
1449 // Iterate over the uses of the initial value. If the initial value is used
1450 // in a compare, then we assume this is a range check that ensures the loop
1451 // doesn't underflow. This is not an exact test and should be improved.
1452 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1453 E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1454 MachineInstr *MI = &*I;
1455 Register CmpReg1, CmpReg2;
1456 int CmpMask = 0, CmpValue = 0;
1458 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1459 continue;
1461 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1462 SmallVector<MachineOperand, 2> Cond;
1463 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1464 continue;
1466 Comparison::Kind Cmp =
1467 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
1468 if (Cmp == 0)
1469 continue;
1470 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1471 Cmp = Comparison::getNegatedComparison(Cmp);
1472 if (CmpReg2 != 0 && CmpReg2 == Reg)
1473 Cmp = Comparison::getSwappedComparison(Cmp);
1475 // Signed underflow is undefined.
1476 if (Comparison::isSigned(Cmp))
1477 return false;
1479 // Check if there is a comparison of the initial value. If the initial value
1480 // is greater than or not equal to another value, then assume this is a
1481 // range check.
1482 if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1483 return false;
1486 // OK - this is a hack that needs to be improved. We really need to analyze
1487 // the instructions performed on the initial value. This works on the simplest
1488 // cases only.
1489 if (!Def->isCopy() && !Def->isPHI())
1490 return false;
1492 return true;
1495 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1496 int64_t &Val) const {
1497 if (MO.isImm()) {
1498 Val = MO.getImm();
1499 return true;
1501 if (!MO.isReg())
1502 return false;
1504 // MO is a register. Check whether it is defined as an immediate value,
1505 // and if so, get the value of it in TV. That value will then need to be
1506 // processed to handle potential subregisters in MO.
1507 int64_t TV;
1509 Register R = MO.getReg();
1510 if (!R.isVirtual())
1511 return false;
1512 MachineInstr *DI = MRI->getVRegDef(R);
1513 unsigned DOpc = DI->getOpcode();
1514 switch (DOpc) {
1515 case TargetOpcode::COPY:
1516 case Hexagon::A2_tfrsi:
1517 case Hexagon::A2_tfrpi:
1518 case Hexagon::CONST32:
1519 case Hexagon::CONST64:
1520 // Call recursively to avoid an extra check whether operand(1) is
1521 // indeed an immediate (it could be a global address, for example),
1522 // plus we can handle COPY at the same time.
1523 if (!checkForImmediate(DI->getOperand(1), TV))
1524 return false;
1525 break;
1526 case Hexagon::A2_combineii:
1527 case Hexagon::A4_combineir:
1528 case Hexagon::A4_combineii:
1529 case Hexagon::A4_combineri:
1530 case Hexagon::A2_combinew: {
1531 const MachineOperand &S1 = DI->getOperand(1);
1532 const MachineOperand &S2 = DI->getOperand(2);
1533 int64_t V1, V2;
1534 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1535 return false;
1536 TV = V2 | (static_cast<uint64_t>(V1) << 32);
1537 break;
1539 case TargetOpcode::REG_SEQUENCE: {
1540 const MachineOperand &S1 = DI->getOperand(1);
1541 const MachineOperand &S3 = DI->getOperand(3);
1542 int64_t V1, V3;
1543 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1544 return false;
1545 unsigned Sub2 = DI->getOperand(2).getImm();
1546 unsigned Sub4 = DI->getOperand(4).getImm();
1547 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
1548 TV = V1 | (V3 << 32);
1549 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
1550 TV = V3 | (V1 << 32);
1551 else
1552 llvm_unreachable("Unexpected form of REG_SEQUENCE");
1553 break;
1556 default:
1557 return false;
1560 // By now, we should have successfully obtained the immediate value defining
1561 // the register referenced in MO. Handle a potential use of a subregister.
1562 switch (MO.getSubReg()) {
1563 case Hexagon::isub_lo:
1564 Val = TV & 0xFFFFFFFFULL;
1565 break;
1566 case Hexagon::isub_hi:
1567 Val = (TV >> 32) & 0xFFFFFFFFULL;
1568 break;
1569 default:
1570 Val = TV;
1571 break;
1573 return true;
1576 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1577 if (MO.isImm()) {
1578 MO.setImm(Val);
1579 return;
1582 assert(MO.isReg());
1583 Register R = MO.getReg();
1584 MachineInstr *DI = MRI->getVRegDef(R);
1586 const TargetRegisterClass *RC = MRI->getRegClass(R);
1587 Register NewR = MRI->createVirtualRegister(RC);
1588 MachineBasicBlock &B = *DI->getParent();
1589 DebugLoc DL = DI->getDebugLoc();
1590 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1591 MO.setReg(NewR);
1594 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
1595 // These two instructions are not extendable.
1596 if (CmpOpc == Hexagon::A4_cmpbeqi)
1597 return isUInt<8>(Imm);
1598 if (CmpOpc == Hexagon::A4_cmpbgti)
1599 return isInt<8>(Imm);
1600 // The rest of the comparison-with-immediate instructions are extendable.
1601 return true;
1604 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1605 MachineBasicBlock *Header = L->getHeader();
1606 MachineBasicBlock *Latch = L->getLoopLatch();
1607 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1609 if (!(Header && Latch && ExitingBlock))
1610 return false;
1612 // These data structures follow the same concept as the corresponding
1613 // ones in findInductionRegister (where some comments are).
1614 using RegisterBump = std::pair<unsigned, int64_t>;
1615 using RegisterInduction = std::pair<unsigned, RegisterBump>;
1616 using RegisterInductionSet = std::set<RegisterInduction>;
1618 // Register candidates for induction variables, with their associated bumps.
1619 RegisterInductionSet IndRegs;
1621 // Look for induction patterns:
1622 // %1 = PHI ..., [ latch, %2 ]
1623 // %2 = ADD %1, imm
1624 using instr_iterator = MachineBasicBlock::instr_iterator;
1626 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1627 I != E && I->isPHI(); ++I) {
1628 MachineInstr *Phi = &*I;
1630 // Have a PHI instruction.
1631 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1632 if (Phi->getOperand(i+1).getMBB() != Latch)
1633 continue;
1635 Register PhiReg = Phi->getOperand(i).getReg();
1636 MachineInstr *DI = MRI->getVRegDef(PhiReg);
1638 if (DI->getDesc().isAdd()) {
1639 // If the register operand to the add/sub is the PHI we are looking
1640 // at, this meets the induction pattern.
1641 Register IndReg = DI->getOperand(1).getReg();
1642 MachineOperand &Opnd2 = DI->getOperand(2);
1643 int64_t V;
1644 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1645 Register UpdReg = DI->getOperand(0).getReg();
1646 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1649 } // for (i)
1650 } // for (instr)
1652 if (IndRegs.empty())
1653 return false;
1655 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1656 SmallVector<MachineOperand,2> Cond;
1657 // analyzeBranch returns true if it fails to analyze branch.
1658 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1659 if (NotAnalyzed || Cond.empty())
1660 return false;
1662 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1663 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
1664 SmallVector<MachineOperand,2> LCond;
1665 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
1666 if (NotAnalyzed)
1667 return false;
1669 // Since latch is not the exiting block, the latch branch should be an
1670 // unconditional branch to the loop header.
1671 if (TB == Latch)
1672 TB = (LTB == Header) ? LTB : LFB;
1673 else
1674 FB = (LTB == Header) ? LTB : LFB;
1676 if (TB != Header) {
1677 if (FB != Header) {
1678 // The latch/exit block does not go back to the header.
1679 return false;
1681 // FB is the header (i.e., uncond. jump to branch header)
1682 // In this case, the LoopBody -> TB should not be a back edge otherwise
1683 // it could result in an infinite loop after conversion to hw_loop.
1684 // This case can happen when the Latch has two jumps like this:
1685 // Jmp_c OuterLoopHeader <-- TB
1686 // Jmp InnerLoopHeader <-- FB
1687 if (MDT->dominates(TB, FB))
1688 return false;
1691 // Expecting a predicate register as a condition. It won't be a hardware
1692 // predicate register at this point yet, just a vreg.
1693 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
1694 // into Cond, followed by the predicate register. For non-negated branches
1695 // it's just the register.
1696 unsigned CSz = Cond.size();
1697 if (CSz != 1 && CSz != 2)
1698 return false;
1700 if (!Cond[CSz-1].isReg())
1701 return false;
1703 Register P = Cond[CSz - 1].getReg();
1704 MachineInstr *PredDef = MRI->getVRegDef(P);
1706 if (!PredDef->isCompare())
1707 return false;
1709 SmallSet<unsigned,2> CmpRegs;
1710 MachineOperand *CmpImmOp = nullptr;
1712 // Go over all operands to the compare and look for immediate and register
1713 // operands. Assume that if the compare has a single register use and a
1714 // single immediate operand, then the register is being compared with the
1715 // immediate value.
1716 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1717 MachineOperand &MO = PredDef->getOperand(i);
1718 if (MO.isReg()) {
1719 // Skip all implicit references. In one case there was:
1720 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1721 if (MO.isImplicit())
1722 continue;
1723 if (MO.isUse()) {
1724 if (!isImmediate(MO)) {
1725 CmpRegs.insert(MO.getReg());
1726 continue;
1728 // Consider the register to be the "immediate" operand.
1729 if (CmpImmOp)
1730 return false;
1731 CmpImmOp = &MO;
1733 } else if (MO.isImm()) {
1734 if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
1735 return false;
1736 CmpImmOp = &MO;
1740 if (CmpRegs.empty())
1741 return false;
1743 // Check if the compared register follows the order we want. Fix if needed.
1744 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1745 I != E; ++I) {
1746 // This is a success. If the register used in the comparison is one that
1747 // we have identified as a bumped (updated) induction register, there is
1748 // nothing to do.
1749 if (CmpRegs.count(I->first))
1750 return true;
1752 // Otherwise, if the register being compared comes out of a PHI node,
1753 // and has been recognized as following the induction pattern, and is
1754 // compared against an immediate, we can fix it.
1755 const RegisterBump &RB = I->second;
1756 if (CmpRegs.count(RB.first)) {
1757 if (!CmpImmOp) {
1758 // If both operands to the compare instruction are registers, see if
1759 // it can be changed to use induction register as one of the operands.
1760 MachineInstr *IndI = nullptr;
1761 MachineInstr *nonIndI = nullptr;
1762 MachineOperand *IndMO = nullptr;
1763 MachineOperand *nonIndMO = nullptr;
1765 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1766 MachineOperand &MO = PredDef->getOperand(i);
1767 if (MO.isReg() && MO.getReg() == RB.first) {
1768 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1769 << ") = " << *(MRI->getVRegDef(I->first)));
1770 if (IndI)
1771 return false;
1773 IndI = MRI->getVRegDef(I->first);
1774 IndMO = &MO;
1775 } else if (MO.isReg()) {
1776 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1777 << ") = " << *(MRI->getVRegDef(MO.getReg())));
1778 if (nonIndI)
1779 return false;
1781 nonIndI = MRI->getVRegDef(MO.getReg());
1782 nonIndMO = &MO;
1785 if (IndI && nonIndI &&
1786 nonIndI->getOpcode() == Hexagon::A2_addi &&
1787 nonIndI->getOperand(2).isImm() &&
1788 nonIndI->getOperand(2).getImm() == - RB.second) {
1789 bool Order = orderBumpCompare(IndI, PredDef);
1790 if (Order) {
1791 IndMO->setReg(I->first);
1792 nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1793 return true;
1796 return false;
1799 // It is not valid to do this transformation on an unsigned comparison
1800 // because it may underflow.
1801 Comparison::Kind Cmp =
1802 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
1803 if (!Cmp || Comparison::isUnsigned(Cmp))
1804 return false;
1806 // If the register is being compared against an immediate, try changing
1807 // the compare instruction to use induction register and adjust the
1808 // immediate operand.
1809 int64_t CmpImm = getImmediate(*CmpImmOp);
1810 int64_t V = RB.second;
1811 // Handle Overflow (64-bit).
1812 if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
1813 ((V < 0) && (CmpImm < INT64_MIN - V)))
1814 return false;
1815 CmpImm += V;
1816 // Most comparisons of register against an immediate value allow
1817 // the immediate to be constant-extended. There are some exceptions
1818 // though. Make sure the new combination will work.
1819 if (CmpImmOp->isImm())
1820 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
1821 return false;
1823 // Make sure that the compare happens after the bump. Otherwise,
1824 // after the fixup, the compare would use a yet-undefined register.
1825 MachineInstr *BumpI = MRI->getVRegDef(I->first);
1826 bool Order = orderBumpCompare(BumpI, PredDef);
1827 if (!Order)
1828 return false;
1830 // Finally, fix the compare instruction.
1831 setImmediate(*CmpImmOp, CmpImm);
1832 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1833 MachineOperand &MO = PredDef->getOperand(i);
1834 if (MO.isReg() && MO.getReg() == RB.first) {
1835 MO.setReg(I->first);
1836 return true;
1842 return false;
1845 /// createPreheaderForLoop - Create a preheader for a given loop.
1846 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1847 MachineLoop *L) {
1848 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
1849 return TmpPH;
1850 if (!HWCreatePreheader)
1851 return nullptr;
1853 MachineBasicBlock *Header = L->getHeader();
1854 MachineBasicBlock *Latch = L->getLoopLatch();
1855 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1856 MachineFunction *MF = Header->getParent();
1857 DebugLoc DL;
1859 #ifndef NDEBUG
1860 if ((!PHFn.empty()) && (PHFn != MF->getName()))
1861 return nullptr;
1862 #endif
1864 if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1865 return nullptr;
1867 using instr_iterator = MachineBasicBlock::instr_iterator;
1869 // Verify that all existing predecessors have analyzable branches
1870 // (or no branches at all).
1871 using MBBVector = std::vector<MachineBasicBlock *>;
1873 MBBVector Preds(Header->pred_begin(), Header->pred_end());
1874 SmallVector<MachineOperand,2> Tmp1;
1875 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1877 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1878 return nullptr;
1880 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1881 MachineBasicBlock *PB = *I;
1882 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
1883 if (NotAnalyzed)
1884 return nullptr;
1887 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1888 MF->insert(Header->getIterator(), NewPH);
1890 if (Header->pred_size() > 2) {
1891 // Ensure that the header has only two predecessors: the preheader and
1892 // the loop latch. Any additional predecessors of the header should
1893 // join at the newly created preheader. Inspect all PHI nodes from the
1894 // header and create appropriate corresponding PHI nodes in the preheader.
1896 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1897 I != E && I->isPHI(); ++I) {
1898 MachineInstr *PN = &*I;
1900 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1901 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1902 NewPH->insert(NewPH->end(), NewPN);
1904 Register PR = PN->getOperand(0).getReg();
1905 const TargetRegisterClass *RC = MRI->getRegClass(PR);
1906 Register NewPR = MRI->createVirtualRegister(RC);
1907 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1909 // Copy all non-latch operands of a header's PHI node to the newly
1910 // created PHI node in the preheader.
1911 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1912 Register PredR = PN->getOperand(i).getReg();
1913 unsigned PredRSub = PN->getOperand(i).getSubReg();
1914 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1915 if (PredB == Latch)
1916 continue;
1918 MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1919 MO.setSubReg(PredRSub);
1920 NewPN->addOperand(MO);
1921 NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1924 // Remove copied operands from the old PHI node and add the value
1925 // coming from the preheader's PHI.
1926 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1927 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1928 if (PredB != Latch) {
1929 PN->RemoveOperand(i+1);
1930 PN->RemoveOperand(i);
1933 PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1934 PN->addOperand(MachineOperand::CreateMBB(NewPH));
1936 } else {
1937 assert(Header->pred_size() == 2);
1939 // The header has only two predecessors, but the non-latch predecessor
1940 // is not a preheader (e.g. it has other successors, etc.)
1941 // In such a case we don't need any extra PHI nodes in the new preheader,
1942 // all we need is to adjust existing PHIs in the header to now refer to
1943 // the new preheader.
1944 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1945 I != E && I->isPHI(); ++I) {
1946 MachineInstr *PN = &*I;
1947 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1948 MachineOperand &MO = PN->getOperand(i+1);
1949 if (MO.getMBB() != Latch)
1950 MO.setMBB(NewPH);
1955 // "Reroute" the CFG edges to link in the new preheader.
1956 // If any of the predecessors falls through to the header, insert a branch
1957 // to the new preheader in that place.
1958 SmallVector<MachineOperand,1> Tmp2;
1959 SmallVector<MachineOperand,1> EmptyCond;
1961 TB = FB = nullptr;
1963 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1964 MachineBasicBlock *PB = *I;
1965 if (PB != Latch) {
1966 Tmp2.clear();
1967 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
1968 (void)NotAnalyzed; // suppress compiler warning
1969 assert (!NotAnalyzed && "Should be analyzable!");
1970 if (TB != Header && (Tmp2.empty() || FB != Header))
1971 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1972 PB->ReplaceUsesOfBlockWith(Header, NewPH);
1976 // It can happen that the latch block will fall through into the header.
1977 // Insert an unconditional branch to the header.
1978 TB = FB = nullptr;
1979 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
1980 (void)LatchNotAnalyzed; // suppress compiler warning
1981 assert (!LatchNotAnalyzed && "Should be analyzable!");
1982 if (!TB && !FB)
1983 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1985 // Finally, the branch from the preheader to the header.
1986 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1987 NewPH->addSuccessor(Header);
1989 MachineLoop *ParentLoop = L->getParentLoop();
1990 if (ParentLoop)
1991 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
1993 // Update the dominator information with the new preheader.
1994 if (MDT) {
1995 if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
1996 if (MachineDomTreeNode *DHN = HN->getIDom()) {
1997 MDT->addNewBlock(NewPH, DHN->getBlock());
1998 MDT->changeImmediateDominator(Header, NewPH);
2003 return NewPH;