[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonISelDAGToDAGHVX.cpp
blobb50a0e29ecae7c7c79cbb83cf20c5b30a75995e9
1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Hexagon.h"
10 #include "HexagonISelDAGToDAG.h"
11 #include "HexagonISelLowering.h"
12 #include "HexagonTargetMachine.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineInstrBuilder.h"
15 #include "llvm/CodeGen/SelectionDAGISel.h"
16 #include "llvm/IR/Intrinsics.h"
17 #include "llvm/IR/IntrinsicsHexagon.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
21 #include <deque>
22 #include <map>
23 #include <set>
24 #include <utility>
25 #include <vector>
27 #define DEBUG_TYPE "hexagon-isel"
29 using namespace llvm;
31 namespace {
33 // --------------------------------------------------------------------
34 // Implementation of permutation networks.
36 // Implementation of the node routing through butterfly networks:
37 // - Forward delta.
38 // - Reverse delta.
39 // - Benes.
42 // Forward delta network consists of log(N) steps, where N is the number
43 // of inputs. In each step, an input can stay in place, or it can get
44 // routed to another position[1]. The step after that consists of two
45 // networks, each half in size in terms of the number of nodes. In those
46 // terms, in the given step, an input can go to either the upper or the
47 // lower network in the next step.
49 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
50 // positions as long as there is no conflict.
52 // Here's a delta network for 8 inputs, only the switching routes are
53 // shown:
55 // Steps:
56 // |- 1 ---------------|- 2 -----|- 3 -|
58 // Inp[0] *** *** *** *** Out[0]
59 // \ / \ / \ /
60 // \ / \ / X
61 // \ / \ / / \
62 // Inp[1] *** \ / *** X *** *** Out[1]
63 // \ \ / / \ / \ /
64 // \ \ / / X X
65 // \ \ / / / \ / \
66 // Inp[2] *** \ \ / / *** X *** *** Out[2]
67 // \ \ X / / / \ \ /
68 // \ \ / \ / / / \ X
69 // \ X X / / \ / \
70 // Inp[3] *** \ / \ / \ / *** *** *** Out[3]
71 // \ X X X /
72 // \ / \ / \ / \ /
73 // X X X X
74 // / \ / \ / \ / \
75 // / X X X \
76 // Inp[4] *** / \ / \ / \ *** *** *** Out[4]
77 // / X X \ \ / \ /
78 // / / \ / \ \ \ / X
79 // / / X \ \ \ / / \
80 // Inp[5] *** / / \ \ *** X *** *** Out[5]
81 // / / \ \ \ / \ /
82 // / / \ \ X X
83 // / / \ \ / \ / \
84 // Inp[6] *** / \ *** X *** *** Out[6]
85 // / \ / \ \ /
86 // / \ / \ X
87 // / \ / \ / \
88 // Inp[7] *** *** *** *** Out[7]
91 // Reverse delta network is same as delta network, with the steps in
92 // the opposite order.
95 // Benes network is a forward delta network immediately followed by
96 // a reverse delta network.
98 enum class ColorKind { None, Red, Black };
100 // Graph coloring utility used to partition nodes into two groups:
101 // they will correspond to nodes routed to the upper and lower networks.
102 struct Coloring {
103 using Node = int;
104 using MapType = std::map<Node, ColorKind>;
105 static constexpr Node Ignore = Node(-1);
107 Coloring(ArrayRef<Node> Ord) : Order(Ord) {
108 build();
109 if (!color())
110 Colors.clear();
113 const MapType &colors() const {
114 return Colors;
117 ColorKind other(ColorKind Color) {
118 if (Color == ColorKind::None)
119 return ColorKind::Red;
120 return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
123 LLVM_DUMP_METHOD void dump() const;
125 private:
126 ArrayRef<Node> Order;
127 MapType Colors;
128 std::set<Node> Needed;
130 using NodeSet = std::set<Node>;
131 std::map<Node,NodeSet> Edges;
133 Node conj(Node Pos) {
134 Node Num = Order.size();
135 return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
138 ColorKind getColor(Node N) {
139 auto F = Colors.find(N);
140 return F != Colors.end() ? F->second : ColorKind::None;
143 std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
145 void build();
146 bool color();
148 } // namespace
150 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
151 auto Color = ColorKind::None;
152 for (Node N : Nodes) {
153 ColorKind ColorN = getColor(N);
154 if (ColorN == ColorKind::None)
155 continue;
156 if (Color == ColorKind::None)
157 Color = ColorN;
158 else if (Color != ColorKind::None && Color != ColorN)
159 return { false, ColorKind::None };
161 return { true, Color };
164 void Coloring::build() {
165 // Add Order[P] and Order[conj(P)] to Edges.
166 for (unsigned P = 0; P != Order.size(); ++P) {
167 Node I = Order[P];
168 if (I != Ignore) {
169 Needed.insert(I);
170 Node PC = Order[conj(P)];
171 if (PC != Ignore && PC != I)
172 Edges[I].insert(PC);
175 // Add I and conj(I) to Edges.
176 for (unsigned I = 0; I != Order.size(); ++I) {
177 if (!Needed.count(I))
178 continue;
179 Node C = conj(I);
180 // This will create an entry in the edge table, even if I is not
181 // connected to any other node. This is necessary, because it still
182 // needs to be colored.
183 NodeSet &Is = Edges[I];
184 if (Needed.count(C))
185 Is.insert(C);
189 bool Coloring::color() {
190 SetVector<Node> FirstQ;
191 auto Enqueue = [this,&FirstQ] (Node N) {
192 SetVector<Node> Q;
193 Q.insert(N);
194 for (unsigned I = 0; I != Q.size(); ++I) {
195 NodeSet &Ns = Edges[Q[I]];
196 Q.insert(Ns.begin(), Ns.end());
198 FirstQ.insert(Q.begin(), Q.end());
200 for (Node N : Needed)
201 Enqueue(N);
203 for (Node N : FirstQ) {
204 if (Colors.count(N))
205 continue;
206 NodeSet &Ns = Edges[N];
207 auto P = getUniqueColor(Ns);
208 if (!P.first)
209 return false;
210 Colors[N] = other(P.second);
213 // First, color nodes that don't have any dups.
214 for (auto E : Edges) {
215 Node N = E.first;
216 if (!Needed.count(conj(N)) || Colors.count(N))
217 continue;
218 auto P = getUniqueColor(E.second);
219 if (!P.first)
220 return false;
221 Colors[N] = other(P.second);
224 // Now, nodes that are still uncolored. Since the graph can be modified
225 // in this step, create a work queue.
226 std::vector<Node> WorkQ;
227 for (auto E : Edges) {
228 Node N = E.first;
229 if (!Colors.count(N))
230 WorkQ.push_back(N);
233 for (unsigned I = 0; I < WorkQ.size(); ++I) {
234 Node N = WorkQ[I];
235 NodeSet &Ns = Edges[N];
236 auto P = getUniqueColor(Ns);
237 if (P.first) {
238 Colors[N] = other(P.second);
239 continue;
242 // Coloring failed. Split this node.
243 Node C = conj(N);
244 ColorKind ColorN = other(ColorKind::None);
245 ColorKind ColorC = other(ColorN);
246 NodeSet &Cs = Edges[C];
247 NodeSet CopyNs = Ns;
248 for (Node M : CopyNs) {
249 ColorKind ColorM = getColor(M);
250 if (ColorM == ColorC) {
251 // Connect M with C, disconnect M from N.
252 Cs.insert(M);
253 Edges[M].insert(C);
254 Ns.erase(M);
255 Edges[M].erase(N);
258 Colors[N] = ColorN;
259 Colors[C] = ColorC;
262 // Explicitly assign "None" to all uncolored nodes.
263 for (unsigned I = 0; I != Order.size(); ++I)
264 if (Colors.count(I) == 0)
265 Colors[I] = ColorKind::None;
267 return true;
270 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
271 void Coloring::dump() const {
272 dbgs() << "{ Order: {";
273 for (unsigned I = 0; I != Order.size(); ++I) {
274 Node P = Order[I];
275 if (P != Ignore)
276 dbgs() << ' ' << P;
277 else
278 dbgs() << " -";
280 dbgs() << " }\n";
281 dbgs() << " Needed: {";
282 for (Node N : Needed)
283 dbgs() << ' ' << N;
284 dbgs() << " }\n";
286 dbgs() << " Edges: {\n";
287 for (auto E : Edges) {
288 dbgs() << " " << E.first << " -> {";
289 for (auto N : E.second)
290 dbgs() << ' ' << N;
291 dbgs() << " }\n";
293 dbgs() << " }\n";
295 auto ColorKindToName = [](ColorKind C) {
296 switch (C) {
297 case ColorKind::None:
298 return "None";
299 case ColorKind::Red:
300 return "Red";
301 case ColorKind::Black:
302 return "Black";
304 llvm_unreachable("all ColorKinds should be handled by the switch above");
307 dbgs() << " Colors: {\n";
308 for (auto C : Colors)
309 dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n";
310 dbgs() << " }\n}\n";
312 #endif
314 namespace {
315 // Base class of for reordering networks. They don't strictly need to be
316 // permutations, as outputs with repeated occurrences of an input element
317 // are allowed.
318 struct PermNetwork {
319 using Controls = std::vector<uint8_t>;
320 using ElemType = int;
321 static constexpr ElemType Ignore = ElemType(-1);
323 enum : uint8_t {
324 None,
325 Pass,
326 Switch
328 enum : uint8_t {
329 Forward,
330 Reverse
333 PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
334 Order.assign(Ord.data(), Ord.data()+Ord.size());
335 Log = 0;
337 unsigned S = Order.size();
338 while (S >>= 1)
339 ++Log;
341 Table.resize(Order.size());
342 for (RowType &Row : Table)
343 Row.resize(Mult*Log, None);
346 void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
347 unsigned Size = Order.size();
348 V.resize(Size);
349 for (unsigned I = 0; I != Size; ++I) {
350 unsigned W = 0;
351 for (unsigned L = 0; L != Log; ++L) {
352 unsigned C = ctl(I, StartAt+L) == Switch;
353 if (Dir == Forward)
354 W |= C << (Log-1-L);
355 else
356 W |= C << L;
358 assert(isUInt<8>(W));
359 V[I] = uint8_t(W);
363 uint8_t ctl(ElemType Pos, unsigned Step) const {
364 return Table[Pos][Step];
366 unsigned size() const {
367 return Order.size();
369 unsigned steps() const {
370 return Log;
373 protected:
374 unsigned Log;
375 std::vector<ElemType> Order;
376 using RowType = std::vector<uint8_t>;
377 std::vector<RowType> Table;
380 struct ForwardDeltaNetwork : public PermNetwork {
381 ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
383 bool run(Controls &V) {
384 if (!route(Order.data(), Table.data(), size(), 0))
385 return false;
386 getControls(V, 0, Forward);
387 return true;
390 private:
391 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
394 struct ReverseDeltaNetwork : public PermNetwork {
395 ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
397 bool run(Controls &V) {
398 if (!route(Order.data(), Table.data(), size(), 0))
399 return false;
400 getControls(V, 0, Reverse);
401 return true;
404 private:
405 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
408 struct BenesNetwork : public PermNetwork {
409 BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
411 bool run(Controls &F, Controls &R) {
412 if (!route(Order.data(), Table.data(), size(), 0))
413 return false;
415 getControls(F, 0, Forward);
416 getControls(R, Log, Reverse);
417 return true;
420 private:
421 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
423 } // namespace
425 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
426 unsigned Step) {
427 bool UseUp = false, UseDown = false;
428 ElemType Num = Size;
430 // Cannot use coloring here, because coloring is used to determine
431 // the "big" switch, i.e. the one that changes halves, and in a forward
432 // network, a color can be simultaneously routed to both halves in the
433 // step we're working on.
434 for (ElemType J = 0; J != Num; ++J) {
435 ElemType I = P[J];
436 // I is the position in the input,
437 // J is the position in the output.
438 if (I == Ignore)
439 continue;
440 uint8_t S;
441 if (I < Num/2)
442 S = (J < Num/2) ? Pass : Switch;
443 else
444 S = (J < Num/2) ? Switch : Pass;
446 // U is the element in the table that needs to be updated.
447 ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
448 if (U < Num/2)
449 UseUp = true;
450 else
451 UseDown = true;
452 if (T[U][Step] != S && T[U][Step] != None)
453 return false;
454 T[U][Step] = S;
457 for (ElemType J = 0; J != Num; ++J)
458 if (P[J] != Ignore && P[J] >= Num/2)
459 P[J] -= Num/2;
461 if (Step+1 < Log) {
462 if (UseUp && !route(P, T, Size/2, Step+1))
463 return false;
464 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
465 return false;
467 return true;
470 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
471 unsigned Step) {
472 unsigned Pets = Log-1 - Step;
473 bool UseUp = false, UseDown = false;
474 ElemType Num = Size;
476 // In this step half-switching occurs, so coloring can be used.
477 Coloring G({P,Size});
478 const Coloring::MapType &M = G.colors();
479 if (M.empty())
480 return false;
482 ColorKind ColorUp = ColorKind::None;
483 for (ElemType J = 0; J != Num; ++J) {
484 ElemType I = P[J];
485 // I is the position in the input,
486 // J is the position in the output.
487 if (I == Ignore)
488 continue;
489 ColorKind C = M.at(I);
490 if (C == ColorKind::None)
491 continue;
492 // During "Step", inputs cannot switch halves, so if the "up" color
493 // is still unknown, make sure that it is selected in such a way that
494 // "I" will stay in the same half.
495 bool InpUp = I < Num/2;
496 if (ColorUp == ColorKind::None)
497 ColorUp = InpUp ? C : G.other(C);
498 if ((C == ColorUp) != InpUp) {
499 // If I should go to a different half than where is it now, give up.
500 return false;
503 uint8_t S;
504 if (InpUp) {
505 S = (J < Num/2) ? Pass : Switch;
506 UseUp = true;
507 } else {
508 S = (J < Num/2) ? Switch : Pass;
509 UseDown = true;
511 T[J][Pets] = S;
514 // Reorder the working permutation according to the computed switch table
515 // for the last step (i.e. Pets).
516 for (ElemType J = 0, E = Size / 2; J != E; ++J) {
517 ElemType PJ = P[J]; // Current values of P[J]
518 ElemType PC = P[J+Size/2]; // and P[conj(J)]
519 ElemType QJ = PJ; // New values of P[J]
520 ElemType QC = PC; // and P[conj(J)]
521 if (T[J][Pets] == Switch)
522 QC = PJ;
523 if (T[J+Size/2][Pets] == Switch)
524 QJ = PC;
525 P[J] = QJ;
526 P[J+Size/2] = QC;
529 for (ElemType J = 0; J != Num; ++J)
530 if (P[J] != Ignore && P[J] >= Num/2)
531 P[J] -= Num/2;
533 if (Step+1 < Log) {
534 if (UseUp && !route(P, T, Size/2, Step+1))
535 return false;
536 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
537 return false;
539 return true;
542 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
543 unsigned Step) {
544 Coloring G({P,Size});
545 const Coloring::MapType &M = G.colors();
546 if (M.empty())
547 return false;
548 ElemType Num = Size;
550 unsigned Pets = 2*Log-1 - Step;
551 bool UseUp = false, UseDown = false;
553 // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
554 // result in different controls. Let's pick the one where the first
555 // control will be "Pass".
556 ColorKind ColorUp = ColorKind::None;
557 for (ElemType J = 0; J != Num; ++J) {
558 ElemType I = P[J];
559 if (I == Ignore)
560 continue;
561 ColorKind C = M.at(I);
562 if (C == ColorKind::None)
563 continue;
564 if (ColorUp == ColorKind::None) {
565 ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
567 unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
568 if (C == ColorUp) {
569 if (I < Num/2)
570 T[I][Step] = Pass;
571 else
572 T[CI][Step] = Switch;
573 T[J][Pets] = (J < Num/2) ? Pass : Switch;
574 UseUp = true;
575 } else { // Down
576 if (I < Num/2)
577 T[CI][Step] = Switch;
578 else
579 T[I][Step] = Pass;
580 T[J][Pets] = (J < Num/2) ? Switch : Pass;
581 UseDown = true;
585 // Reorder the working permutation according to the computed switch table
586 // for the last step (i.e. Pets).
587 for (ElemType J = 0; J != Num/2; ++J) {
588 ElemType PJ = P[J]; // Current values of P[J]
589 ElemType PC = P[J+Num/2]; // and P[conj(J)]
590 ElemType QJ = PJ; // New values of P[J]
591 ElemType QC = PC; // and P[conj(J)]
592 if (T[J][Pets] == Switch)
593 QC = PJ;
594 if (T[J+Num/2][Pets] == Switch)
595 QJ = PC;
596 P[J] = QJ;
597 P[J+Num/2] = QC;
600 for (ElemType J = 0; J != Num; ++J)
601 if (P[J] != Ignore && P[J] >= Num/2)
602 P[J] -= Num/2;
604 if (Step+1 < Log) {
605 if (UseUp && !route(P, T, Size/2, Step+1))
606 return false;
607 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
608 return false;
610 return true;
613 // --------------------------------------------------------------------
614 // Support for building selection results (output instructions that are
615 // parts of the final selection).
617 namespace {
618 struct OpRef {
619 OpRef(SDValue V) : OpV(V) {}
620 bool isValue() const { return OpV.getNode() != nullptr; }
621 bool isValid() const { return isValue() || !(OpN & Invalid); }
622 static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
623 static OpRef fail() { return OpRef(Invalid); }
625 static OpRef lo(const OpRef &R) {
626 assert(!R.isValue());
627 return OpRef(R.OpN & (Undef | Index | LoHalf));
629 static OpRef hi(const OpRef &R) {
630 assert(!R.isValue());
631 return OpRef(R.OpN & (Undef | Index | HiHalf));
633 static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
635 // Direct value.
636 SDValue OpV = SDValue();
638 // Reference to the operand of the input node:
639 // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
640 // operand index:
641 // If bit 30 is set, it's the high half of the operand.
642 // If bit 29 is set, it's the low half of the operand.
643 unsigned OpN = 0;
645 enum : unsigned {
646 Invalid = 0x10000000,
647 LoHalf = 0x20000000,
648 HiHalf = 0x40000000,
649 Whole = LoHalf | HiHalf,
650 Undef = 0x80000000,
651 Index = 0x0FFFFFFF, // Mask of the index value.
652 IndexBits = 28,
655 LLVM_DUMP_METHOD
656 void print(raw_ostream &OS, const SelectionDAG &G) const;
658 private:
659 OpRef(unsigned N) : OpN(N) {}
662 struct NodeTemplate {
663 NodeTemplate() = default;
664 unsigned Opc = 0;
665 MVT Ty = MVT::Other;
666 std::vector<OpRef> Ops;
668 LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const;
671 struct ResultStack {
672 ResultStack(SDNode *Inp)
673 : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
674 SDNode *InpNode;
675 MVT InpTy;
676 unsigned push(const NodeTemplate &Res) {
677 List.push_back(Res);
678 return List.size()-1;
680 unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
681 NodeTemplate Res;
682 Res.Opc = Opc;
683 Res.Ty = Ty;
684 Res.Ops = Ops;
685 return push(Res);
687 bool empty() const { return List.empty(); }
688 unsigned size() const { return List.size(); }
689 unsigned top() const { return size()-1; }
690 const NodeTemplate &operator[](unsigned I) const { return List[I]; }
691 unsigned reset(unsigned NewTop) {
692 List.resize(NewTop+1);
693 return NewTop;
696 using BaseType = std::vector<NodeTemplate>;
697 BaseType::iterator begin() { return List.begin(); }
698 BaseType::iterator end() { return List.end(); }
699 BaseType::const_iterator begin() const { return List.begin(); }
700 BaseType::const_iterator end() const { return List.end(); }
702 BaseType List;
704 LLVM_DUMP_METHOD
705 void print(raw_ostream &OS, const SelectionDAG &G) const;
707 } // namespace
709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
710 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
711 if (isValue()) {
712 OpV.getNode()->print(OS, &G);
713 return;
715 if (OpN & Invalid) {
716 OS << "invalid";
717 return;
719 if (OpN & Undef) {
720 OS << "undef";
721 return;
723 if ((OpN & Whole) != Whole) {
724 assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
725 if (OpN & LoHalf)
726 OS << "lo ";
727 else
728 OS << "hi ";
730 OS << '#' << SignExtend32(OpN & Index, IndexBits);
733 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
734 const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
735 OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " "
736 << TII.getName(Opc);
737 bool Comma = false;
738 for (const auto &R : Ops) {
739 if (Comma)
740 OS << ',';
741 Comma = true;
742 OS << ' ';
743 R.print(OS, G);
747 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
748 OS << "Input node:\n";
749 #ifndef NDEBUG
750 InpNode->dumpr(&G);
751 #endif
752 OS << "Result templates:\n";
753 for (unsigned I = 0, E = List.size(); I != E; ++I) {
754 OS << '[' << I << "] ";
755 List[I].print(OS, G);
756 OS << '\n';
759 #endif
761 namespace {
762 struct ShuffleMask {
763 ShuffleMask(ArrayRef<int> M) : Mask(M) {
764 for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
765 int M = Mask[I];
766 if (M == -1)
767 continue;
768 MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
769 MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
773 ArrayRef<int> Mask;
774 int MinSrc = -1, MaxSrc = -1;
776 ShuffleMask lo() const {
777 size_t H = Mask.size()/2;
778 return ShuffleMask(Mask.take_front(H));
780 ShuffleMask hi() const {
781 size_t H = Mask.size()/2;
782 return ShuffleMask(Mask.take_back(H));
785 void print(raw_ostream &OS) const {
786 OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
787 for (int M : Mask)
788 OS << ' ' << M;
789 OS << " }";
793 LLVM_ATTRIBUTE_UNUSED
794 raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) {
795 SM.print(OS);
796 return OS;
798 } // namespace
800 // --------------------------------------------------------------------
801 // The HvxSelector class.
803 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
804 return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
806 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
807 return static_cast<const HexagonSubtarget&>(G.getSubtarget());
810 namespace llvm {
811 struct HvxSelector {
812 const HexagonTargetLowering &Lower;
813 HexagonDAGToDAGISel &ISel;
814 SelectionDAG &DAG;
815 const HexagonSubtarget &HST;
816 const unsigned HwLen;
818 HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
819 : Lower(getHexagonLowering(G)), ISel(HS), DAG(G),
820 HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
822 MVT getSingleVT(MVT ElemTy) const {
823 assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates");
824 unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
825 return MVT::getVectorVT(ElemTy, NumElems);
828 MVT getPairVT(MVT ElemTy) const {
829 assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs.
830 unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
831 return MVT::getVectorVT(ElemTy, NumElems);
834 MVT getBoolVT() const {
835 // Return HwLen x i1.
836 return MVT::getVectorVT(MVT::i1, HwLen);
839 void selectShuffle(SDNode *N);
840 void selectRor(SDNode *N);
841 void selectVAlign(SDNode *N);
843 private:
844 void select(SDNode *ISelN);
845 void materialize(const ResultStack &Results);
847 SDValue getConst32(int Val, const SDLoc &dl);
848 SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
850 enum : unsigned {
851 None,
852 PackMux,
854 OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results);
855 OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
856 MutableArrayRef<int> NewMask, unsigned Options = None);
857 OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
858 MutableArrayRef<int> NewMask);
859 OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
860 ResultStack &Results);
861 OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
862 ResultStack &Results);
864 OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
865 OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
866 OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
867 OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
869 OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
870 OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
871 OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
872 OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
874 bool selectVectorConstants(SDNode *N);
875 bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
876 SDValue Va, SDValue Vb, SDNode *N);
881 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
882 MutableArrayRef<int> MaskR) {
883 unsigned VecLen = Mask.size();
884 assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
885 for (unsigned I = 0; I != VecLen; ++I) {
886 int M = Mask[I];
887 if (M < 0) {
888 MaskL[I] = MaskR[I] = -1;
889 } else if (unsigned(M) < VecLen) {
890 MaskL[I] = M;
891 MaskR[I] = -1;
892 } else {
893 MaskL[I] = -1;
894 MaskR[I] = M-VecLen;
899 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
900 unsigned MaxLen) {
901 assert(A.size() > 0 && A.size() >= MaxLen);
902 int F = A[0];
903 int E = F;
904 for (unsigned I = 1; I != MaxLen; ++I) {
905 if (A[I] - E != Inc)
906 return { F, I };
907 E = A[I];
909 return { F, MaxLen };
912 static bool isUndef(ArrayRef<int> Mask) {
913 for (int Idx : Mask)
914 if (Idx != -1)
915 return false;
916 return true;
919 static bool isIdentity(ArrayRef<int> Mask) {
920 for (int I = 0, E = Mask.size(); I != E; ++I) {
921 int M = Mask[I];
922 if (M >= 0 && M != I)
923 return false;
925 return true;
928 static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM,
929 unsigned SegLen) {
930 assert(isPowerOf2_32(SegLen));
931 SmallVector<unsigned, 4> SegList;
932 if (SM.MaxSrc == -1)
933 return SegList;
935 unsigned Shift = Log2_32(SegLen);
936 BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift);
938 for (int I = 0, E = SM.Mask.size(); I != E; ++I) {
939 int M = SM.Mask[I];
940 if (M >= 0)
941 Segs.set(M >> Shift);
944 for (unsigned B : Segs.set_bits())
945 SegList.push_back(B);
946 return SegList;
949 static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM,
950 unsigned SegLen) {
951 // Calculate the layout of the output segments in terms of the input
952 // segments.
953 // For example [1,3,1,0] means that the output consists of 4 output
954 // segments, where the first output segment has only elements of the
955 // input segment at index 1. The next output segment only has elements
956 // of the input segment 3, etc.
957 // If an output segment only has undef elements, the value will be ~0u.
958 // If an output segment has elements from more than one input segment,
959 // the corresponding value will be ~1u.
960 unsigned MaskLen = SM.Mask.size();
961 assert(MaskLen % SegLen == 0);
962 SmallVector<unsigned, 4> Map(MaskLen / SegLen);
964 for (int S = 0, E = Map.size(); S != E; ++S) {
965 unsigned Idx = ~0u;
966 for (int I = 0; I != static_cast<int>(SegLen); ++I) {
967 int M = SM.Mask[S*SegLen + I];
968 if (M < 0)
969 continue;
970 unsigned G = M / SegLen; // Input segment of this element.
971 if (Idx == ~0u) {
972 Idx = G;
973 } else if (Idx != G) {
974 Idx = ~1u;
975 break;
978 Map[S] = Idx;
981 return Map;
984 static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap,
985 unsigned SegLen, MutableArrayRef<int> PackedMask) {
986 SmallVector<unsigned, 4> InvMap;
987 for (int I = OutSegMap.size() - 1; I >= 0; --I) {
988 unsigned S = OutSegMap[I];
989 assert(S != ~0u && "Unexpected undef");
990 assert(S != ~1u && "Unexpected multi");
991 if (InvMap.size() <= S)
992 InvMap.resize(S+1);
993 InvMap[S] = I;
996 unsigned Shift = Log2_32(SegLen);
997 for (int I = 0, E = Mask.size(); I != E; ++I) {
998 int M = Mask[I];
999 if (M >= 0) {
1000 int OutIdx = InvMap[M >> Shift];
1001 M = (M & (SegLen-1)) + SegLen*OutIdx;
1003 PackedMask[I] = M;
1007 static bool isPermutation(ArrayRef<int> Mask) {
1008 // Check by adding all numbers only works if there is no overflow.
1009 assert(Mask.size() < 0x00007FFF && "Sanity failure");
1010 int Sum = 0;
1011 for (int Idx : Mask) {
1012 if (Idx == -1)
1013 return false;
1014 Sum += Idx;
1016 int N = Mask.size();
1017 return 2*Sum == N*(N-1);
1020 bool HvxSelector::selectVectorConstants(SDNode *N) {
1021 // Constant vectors are generated as loads from constant pools or as
1022 // splats of a constant value. Since they are generated during the
1023 // selection process, the main selection algorithm is not aware of them.
1024 // Select them directly here.
1025 SmallVector<SDNode*,4> Nodes;
1026 SetVector<SDNode*> WorkQ;
1028 // The DAG can change (due to CSE) during selection, so cache all the
1029 // unselected nodes first to avoid traversing a mutating DAG.
1030 WorkQ.insert(N);
1031 for (unsigned i = 0; i != WorkQ.size(); ++i) {
1032 SDNode *W = WorkQ[i];
1033 if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL)
1034 Nodes.push_back(W);
1035 for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
1036 WorkQ.insert(W->getOperand(j).getNode());
1039 for (SDNode *L : Nodes)
1040 select(L);
1042 return !Nodes.empty();
1045 void HvxSelector::materialize(const ResultStack &Results) {
1046 DEBUG_WITH_TYPE("isel", {
1047 dbgs() << "Materializing\n";
1048 Results.print(dbgs(), DAG);
1050 if (Results.empty())
1051 return;
1052 const SDLoc &dl(Results.InpNode);
1053 std::vector<SDValue> Output;
1055 for (unsigned I = 0, E = Results.size(); I != E; ++I) {
1056 const NodeTemplate &Node = Results[I];
1057 std::vector<SDValue> Ops;
1058 for (const OpRef &R : Node.Ops) {
1059 assert(R.isValid());
1060 if (R.isValue()) {
1061 Ops.push_back(R.OpV);
1062 continue;
1064 if (R.OpN & OpRef::Undef) {
1065 MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
1066 Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
1067 continue;
1069 // R is an index of a result.
1070 unsigned Part = R.OpN & OpRef::Whole;
1071 int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
1072 if (Idx < 0)
1073 Idx += I;
1074 assert(Idx >= 0 && unsigned(Idx) < Output.size());
1075 SDValue Op = Output[Idx];
1076 MVT OpTy = Op.getValueType().getSimpleVT();
1077 if (Part != OpRef::Whole) {
1078 assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
1079 MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
1080 OpTy.getVectorNumElements()/2);
1081 unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
1082 : Hexagon::vsub_hi;
1083 Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
1085 Ops.push_back(Op);
1086 } // for (Node : Results)
1088 assert(Node.Ty != MVT::Other);
1089 SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
1090 ? Ops.front().getNode()
1091 : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
1092 Output.push_back(SDValue(ResN, 0));
1095 SDNode *OutN = Output.back().getNode();
1096 SDNode *InpN = Results.InpNode;
1097 DEBUG_WITH_TYPE("isel", {
1098 dbgs() << "Generated node:\n";
1099 OutN->dumpr(&DAG);
1102 ISel.ReplaceNode(InpN, OutN);
1103 selectVectorConstants(OutN);
1104 DAG.RemoveDeadNodes();
1107 OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) {
1108 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1109 const SDLoc &dl(Results.InpNode);
1110 Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
1111 getConst32(Hexagon::HvxWRRegClassID, dl),
1112 Lo, getConst32(Hexagon::vsub_lo, dl),
1113 Hi, getConst32(Hexagon::vsub_hi, dl),
1115 return OpRef::res(Results.top());
1118 // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb,
1119 // pack these halves into a single vector, and remap SM into NewMask to use
1120 // the new vector instead.
1121 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
1122 ResultStack &Results, MutableArrayRef<int> NewMask,
1123 unsigned Options) {
1124 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1125 if (!Va.isValid() || !Vb.isValid())
1126 return OpRef::fail();
1128 MVT Ty = getSingleVT(MVT::i8);
1129 MVT PairTy = getPairVT(MVT::i8);
1130 OpRef Inp[2] = {Va, Vb};
1131 unsigned VecLen = SM.Mask.size();
1133 auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty,
1134 ResultStack &Results) {
1135 if (Amt == 0)
1136 return Lo;
1137 const SDLoc &dl(Results.InpNode);
1138 if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) {
1139 bool IsRight = isUInt<3>(Amt); // Right align.
1140 SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl);
1141 unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi;
1142 Results.push(Opc, Ty, {Hi, Lo, S});
1143 return OpRef::res(Results.top());
1145 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)});
1146 OpRef A = OpRef::res(Results.top());
1147 Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A});
1148 return OpRef::res(Results.top());
1151 // Segment is a vector half.
1152 unsigned SegLen = HwLen / 2;
1154 // Check if we can shuffle vector halves around to get the used elements
1155 // into a single vector.
1156 SmallVector<int,128> MaskH(SM.Mask.begin(), SM.Mask.end());
1157 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen);
1158 unsigned SegCount = SegList.size();
1159 SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen);
1161 if (SegList.empty())
1162 return OpRef::undef(Ty);
1164 // NOTE:
1165 // In the following part of the function, where the segments are rearranged,
1166 // the shuffle mask SM can be of any length that is a multiple of a vector
1167 // (i.e. a multiple of 2*SegLen), and non-zero.
1168 // The output segment map is computed, and it may have any even number of
1169 // entries, but the rearrangement of input segments will be done based only
1170 // on the first two (non-undef) entries in the segment map.
1171 // For example, if the output map is 3, 1, 1, 3 (it can have at most two
1172 // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into
1173 // a single vector V = 3:1. The output mask will then be updated to use
1174 // seg(0,V), seg(1,V), seg(1,V), seg(0,V).
1176 // Picking the segments based on the output map is an optimization. For
1177 // correctness it is only necessary that Seg0 and Seg1 are the two input
1178 // segments that are used in the output.
1180 unsigned Seg0 = ~0u, Seg1 = ~0u;
1181 for (int I = 0, E = SegMap.size(); I != E; ++I) {
1182 unsigned X = SegMap[I];
1183 if (X == ~0u)
1184 continue;
1185 if (Seg0 == ~0u)
1186 Seg0 = X;
1187 else if (Seg1 != ~0u)
1188 break;
1189 if (X == ~1u || X != Seg0)
1190 Seg1 = X;
1193 if (SegCount == 1) {
1194 unsigned SrcOp = SegList[0] / 2;
1195 for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1196 int M = SM.Mask[I];
1197 if (M >= 0) {
1198 M -= SrcOp * HwLen;
1199 assert(M >= 0);
1201 NewMask[I] = M;
1203 return Inp[SrcOp];
1206 if (SegCount == 2) {
1207 // Seg0 should not be undef here: this would imply a SegList
1208 // with <= 1 elements, which was checked earlier.
1209 assert(Seg0 != ~0u);
1211 // If Seg0 or Seg1 are "multi-defined", pick them from the input
1212 // segment list instead.
1213 if (Seg0 == ~1u || Seg1 == ~1u) {
1214 if (Seg0 == Seg1) {
1215 Seg0 = SegList[0];
1216 Seg1 = SegList[1];
1217 } else if (Seg0 == ~1u) {
1218 Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1];
1219 } else {
1220 assert(Seg1 == ~1u); // Sanity
1221 Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1];
1224 assert(Seg0 != ~1u && Seg1 != ~1u);
1226 assert(Seg0 != Seg1 && "Expecting different segments");
1227 const SDLoc &dl(Results.InpNode);
1228 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)});
1229 OpRef HL = OpRef::res(Results.top());
1231 // Va = AB, Vb = CD
1233 if (Seg0 / 2 == Seg1 / 2) {
1234 // Same input vector.
1235 Va = Inp[Seg0 / 2];
1236 if (Seg0 > Seg1) {
1237 // Swap halves.
1238 Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL});
1239 Va = OpRef::res(Results.top());
1241 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1242 } else if (Seg0 % 2 == Seg1 % 2) {
1243 // Picking AC, BD, CA, or DB.
1244 // vshuff(CD,AB,HL) -> BD:AC
1245 // vshuff(AB,CD,HL) -> DB:CA
1246 auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va) // AC or BD
1247 : std::make_pair(Va, Vb); // CA or DB
1248 Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL});
1249 OpRef P = OpRef::res(Results.top());
1250 Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P);
1251 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1252 } else {
1253 // Picking AD, BC, CB, or DA.
1254 if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) {
1255 // AD or BC: this can be done using vmux.
1256 // Q = V6_pred_scalar2 SegLen
1257 // V = V6_vmux Q, (Va, Vb) or (Vb, Va)
1258 Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL});
1259 OpRef Qt = OpRef::res(Results.top());
1260 auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb) // AD
1261 : std::make_pair(Vb, Va); // CB
1262 Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second});
1263 Va = OpRef::res(Results.top());
1264 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1265 } else {
1266 // BC or DA: this could be done via valign by SegLen.
1267 // Do nothing here, because valign (if possible) will be generated
1268 // later on (make sure the Seg0 values are as expected, for sanity).
1269 assert(Seg0 == 1 || Seg0 == 3);
1274 // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va).
1276 ShuffleMask SMH(MaskH);
1277 assert(SMH.Mask.size() == VecLen);
1278 SmallVector<int,128> MaskA(SMH.Mask.begin(), SMH.Mask.end());
1280 if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) {
1281 // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb.
1282 SmallVector<int,128> Swapped(SMH.Mask.begin(), SMH.Mask.end());
1283 ShuffleVectorSDNode::commuteMask(Swapped);
1284 ShuffleMask SW(Swapped);
1285 if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) {
1286 MaskA.assign(SW.Mask.begin(), SW.Mask.end());
1287 std::swap(Va, Vb);
1290 ShuffleMask SMA(MaskA);
1291 assert(SMA.Mask.size() == VecLen);
1293 if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) {
1294 int ShiftR = SMA.MinSrc;
1295 if (ShiftR >= static_cast<int>(HwLen)) {
1296 Va = Vb;
1297 Vb = OpRef::undef(Ty);
1298 ShiftR -= HwLen;
1300 OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results);
1302 for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1303 int M = SMA.Mask[I];
1304 if (M != -1)
1305 M -= SMA.MinSrc;
1306 NewMask[I] = M;
1308 return RetVal;
1311 // By here, packing by segment (half-vector) shuffling, and vector alignment
1312 // failed. Try vmux.
1313 // Note: since this is using the original mask, Va and Vb must not have been
1314 // modified.
1316 if (Options & PackMux) {
1317 // If elements picked from Va and Vb have all different (source) indexes
1318 // (relative to the start of the argument), do a mux, and update the mask.
1319 BitVector Picked(HwLen);
1320 SmallVector<uint8_t,128> MuxBytes(HwLen);
1321 bool CanMux = true;
1322 for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1323 int M = SM.Mask[I];
1324 if (M == -1)
1325 continue;
1326 if (M >= static_cast<int>(HwLen))
1327 M -= HwLen;
1328 else
1329 MuxBytes[M] = 0xFF;
1330 if (Picked[M]) {
1331 CanMux = false;
1332 break;
1334 NewMask[I] = M;
1336 if (CanMux)
1337 return vmuxs(MuxBytes, Va, Vb, Results);
1339 return OpRef::fail();
1342 // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb,
1343 // pack these vectors into a pair, and remap SM into NewMask to use the
1344 // new pair instead.
1345 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
1346 ResultStack &Results, MutableArrayRef<int> NewMask) {
1347 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1348 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen);
1349 if (SegList.empty())
1350 return OpRef::undef(getPairVT(MVT::i8));
1352 // If more than two halves are used, bail.
1353 // TODO: be more aggressive here?
1354 unsigned SegCount = SegList.size();
1355 if (SegCount > 2)
1356 return OpRef::fail();
1358 MVT HalfTy = getSingleVT(MVT::i8);
1360 OpRef Inp[2] = { Va, Vb };
1361 OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
1363 // Really make sure we have at most 2 vectors used in the mask.
1364 assert(SegCount <= 2);
1366 for (int I = 0, E = SegList.size(); I != E; ++I) {
1367 unsigned S = SegList[I];
1368 OpRef Op = Inp[S / 2];
1369 Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
1372 // NOTE: Using SegList as the packing map here (not SegMap). This works,
1373 // because we're not concerned here about the order of the segments (i.e.
1374 // single vectors) in the output pair. Changing the order of vectors is
1375 // free (as opposed to changing the order of vector halves as in packs),
1376 // and so there is no extra cost added in case the order needs to be
1377 // changed later.
1378 packSegmentMask(SM.Mask, SegList, HwLen, NewMask);
1379 return concats(Out[0], Out[1], Results);
1382 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1383 ResultStack &Results) {
1384 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1385 MVT ByteTy = getSingleVT(MVT::i8);
1386 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1387 const SDLoc &dl(Results.InpNode);
1388 SDValue B = getVectorConstant(Bytes, dl);
1389 Results.push(Hexagon::V6_vd0, ByteTy, {});
1390 Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
1391 Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
1392 return OpRef::res(Results.top());
1395 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1396 ResultStack &Results) {
1397 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1398 size_t S = Bytes.size() / 2;
1399 OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
1400 OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
1401 return concats(L, H, Results);
1404 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1405 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1406 unsigned VecLen = SM.Mask.size();
1407 assert(HwLen == VecLen);
1408 (void)VecLen;
1409 assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
1411 if (isIdentity(SM.Mask))
1412 return Va;
1413 if (isUndef(SM.Mask))
1414 return OpRef::undef(getSingleVT(MVT::i8));
1416 unsigned HalfLen = HwLen / 2;
1417 assert(isPowerOf2_32(HalfLen)); // Sanity.
1419 // Handle special case where the output is the same half of the input
1420 // repeated twice, i.e. if Va = AB, then handle the output of AA or BB.
1421 std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen);
1422 if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) {
1423 std::pair<int, unsigned> Strip2 =
1424 findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen);
1425 if (Strip1 == Strip2) {
1426 const SDLoc &dl(Results.InpNode);
1427 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)});
1428 Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8),
1429 {Va, Va, OpRef::res(Results.top())});
1430 OpRef S = OpRef::res(Results.top());
1431 return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S);
1435 OpRef P = perfect(SM, Va, Results);
1436 if (P.isValid())
1437 return P;
1438 return butterfly(SM, Va, Results);
1441 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
1442 ResultStack &Results) {
1443 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1444 if (isUndef(SM.Mask))
1445 return OpRef::undef(getSingleVT(MVT::i8));
1447 OpRef C = contracting(SM, Va, Vb, Results);
1448 if (C.isValid())
1449 return C;
1451 int VecLen = SM.Mask.size();
1452 SmallVector<int,128> PackedMask(VecLen);
1453 OpRef P = packs(SM, Va, Vb, Results, PackedMask);
1454 if (P.isValid())
1455 return shuffs1(ShuffleMask(PackedMask), P, Results);
1457 // TODO: Before we split the mask, try perfect shuffle on concatenated
1458 // operands. This won't work now, because the perfect code does not
1459 // tolerate undefs in the mask.
1461 SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
1462 splitMask(SM.Mask, MaskL, MaskR);
1464 OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
1465 OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
1466 if (!L.isValid() || !R.isValid())
1467 return OpRef::fail();
1469 SmallVector<uint8_t,128> Bytes(VecLen);
1470 for (int I = 0; I != VecLen; ++I) {
1471 if (MaskL[I] != -1)
1472 Bytes[I] = 0xFF;
1474 return vmuxs(Bytes, L, R, Results);
1477 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1478 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1479 int VecLen = SM.Mask.size();
1481 if (isIdentity(SM.Mask))
1482 return Va;
1483 if (isUndef(SM.Mask))
1484 return OpRef::undef(getPairVT(MVT::i8));
1486 SmallVector<int,128> PackedMask(VecLen);
1487 OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
1488 if (P.isValid()) {
1489 ShuffleMask PM(PackedMask);
1490 OpRef E = expanding(PM, P, Results);
1491 if (E.isValid())
1492 return E;
1494 OpRef L = shuffs1(PM.lo(), P, Results);
1495 OpRef H = shuffs1(PM.hi(), P, Results);
1496 if (L.isValid() && H.isValid())
1497 return concats(L, H, Results);
1500 OpRef R = perfect(SM, Va, Results);
1501 if (R.isValid())
1502 return R;
1503 // TODO commute the mask and try the opposite order of the halves.
1505 OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
1506 OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
1507 if (L.isValid() && H.isValid())
1508 return concats(L, H, Results);
1510 return OpRef::fail();
1513 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
1514 ResultStack &Results) {
1515 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1516 if (isUndef(SM.Mask))
1517 return OpRef::undef(getPairVT(MVT::i8));
1519 int VecLen = SM.Mask.size();
1520 SmallVector<int,256> PackedMask(VecLen);
1521 OpRef P = packp(SM, Va, Vb, Results, PackedMask);
1522 if (P.isValid())
1523 return shuffp1(ShuffleMask(PackedMask), P, Results);
1525 SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
1526 splitMask(SM.Mask, MaskL, MaskR);
1528 OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
1529 OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
1530 if (!L.isValid() || !R.isValid())
1531 return OpRef::fail();
1533 // Mux the results.
1534 SmallVector<uint8_t,256> Bytes(VecLen);
1535 for (int I = 0; I != VecLen; ++I) {
1536 if (MaskL[I] != -1)
1537 Bytes[I] = 0xFF;
1539 return vmuxp(Bytes, L, R, Results);
1542 namespace {
1543 struct Deleter : public SelectionDAG::DAGNodeDeletedListener {
1544 template <typename T>
1545 Deleter(SelectionDAG &D, T &C)
1546 : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) {
1547 C.erase(N);
1548 }) {}
1551 template <typename T>
1552 struct NullifyingVector : public T {
1553 DenseMap<SDNode*, SDNode**> Refs;
1554 NullifyingVector(T &&V) : T(V) {
1555 for (unsigned i = 0, e = T::size(); i != e; ++i) {
1556 SDNode *&N = T::operator[](i);
1557 Refs[N] = &N;
1560 void erase(SDNode *N) {
1561 auto F = Refs.find(N);
1562 if (F != Refs.end())
1563 *F->second = nullptr;
1568 void HvxSelector::select(SDNode *ISelN) {
1569 // What's important here is to select the right set of nodes. The main
1570 // selection algorithm loops over nodes in a topological order, i.e. users
1571 // are visited before their operands.
1573 // It is an error to have an unselected node with a selected operand, and
1574 // there is an assertion in the main selector code to enforce that.
1576 // Such a situation could occur if we selected a node, which is both a
1577 // subnode of ISelN, and a subnode of an unrelated (and yet unselected)
1578 // node in the DAG.
1579 assert(ISelN->getOpcode() == HexagonISD::ISEL);
1580 SDNode *N0 = ISelN->getOperand(0).getNode();
1581 if (N0->isMachineOpcode()) {
1582 ISel.ReplaceNode(ISelN, N0);
1583 return;
1586 // There could have been nodes created (i.e. inserted into the DAG)
1587 // that are now dead. Remove them, in case they use any of the nodes
1588 // to select (and make them look shared).
1589 DAG.RemoveDeadNodes();
1591 SetVector<SDNode*> SubNodes, TmpQ;
1592 std::map<SDNode*,unsigned> NumOps;
1594 // Don't want to select N0 if it's shared with another node, except if
1595 // it's shared with other ISELs.
1596 auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; };
1597 if (llvm::all_of(N0->uses(), IsISelN))
1598 SubNodes.insert(N0);
1600 auto InSubNodes = [&SubNodes](SDNode *T) { return SubNodes.count(T); };
1601 for (unsigned I = 0; I != SubNodes.size(); ++I) {
1602 SDNode *S = SubNodes[I];
1603 unsigned OpN = 0;
1604 // Only add subnodes that are only reachable from N0.
1605 for (SDValue Op : S->ops()) {
1606 SDNode *O = Op.getNode();
1607 if (llvm::all_of(O->uses(), InSubNodes)) {
1608 SubNodes.insert(O);
1609 ++OpN;
1612 NumOps.insert({S, OpN});
1613 if (OpN == 0)
1614 TmpQ.insert(S);
1617 for (unsigned I = 0; I != TmpQ.size(); ++I) {
1618 SDNode *S = TmpQ[I];
1619 for (SDNode *U : S->uses()) {
1620 if (U == ISelN)
1621 continue;
1622 auto F = NumOps.find(U);
1623 assert(F != NumOps.end());
1624 if (F->second > 0 && !--F->second)
1625 TmpQ.insert(F->first);
1629 // Remove the marker.
1630 ISel.ReplaceNode(ISelN, N0);
1632 assert(SubNodes.size() == TmpQ.size());
1633 NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector());
1635 Deleter DUQ(DAG, Queue);
1636 for (SDNode *S : reverse(Queue)) {
1637 if (S == nullptr)
1638 continue;
1639 DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);});
1640 ISel.Select(S);
1644 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
1645 MVT ResTy, SDValue Va, SDValue Vb,
1646 SDNode *N) {
1647 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1648 MVT ElemTy = ResTy.getVectorElementType();
1649 assert(ElemTy == MVT::i8);
1650 unsigned VecLen = Mask.size();
1651 bool HavePairs = (2*HwLen == VecLen);
1652 MVT SingleTy = getSingleVT(MVT::i8);
1654 // The prior attempts to handle this shuffle may have left a bunch of
1655 // dead nodes in the DAG (such as constants). These nodes will be added
1656 // at the end of DAG's node list, which at that point had already been
1657 // sorted topologically. In the main selection loop, the node list is
1658 // traversed backwards from the root node, which means that any new
1659 // nodes (from the end of the list) will not be visited.
1660 // Scalarization will replace the shuffle node with the scalarized
1661 // expression, and if that expression reused any if the leftoever (dead)
1662 // nodes, these nodes would not be selected (since the "local" selection
1663 // only visits nodes that are not in AllNodes).
1664 // To avoid this issue, remove all dead nodes from the DAG now.
1665 // DAG.RemoveDeadNodes();
1667 SmallVector<SDValue,128> Ops;
1668 LLVMContext &Ctx = *DAG.getContext();
1669 MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT();
1670 for (int I : Mask) {
1671 if (I < 0) {
1672 Ops.push_back(ISel.selectUndef(dl, LegalTy));
1673 continue;
1675 SDValue Vec;
1676 unsigned M = I;
1677 if (M < VecLen) {
1678 Vec = Va;
1679 } else {
1680 Vec = Vb;
1681 M -= VecLen;
1683 if (HavePairs) {
1684 if (M < HwLen) {
1685 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
1686 } else {
1687 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
1688 M -= HwLen;
1691 SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
1692 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx});
1693 SDValue L = Lower.LowerOperation(Ex, DAG);
1694 assert(L.getNode());
1695 Ops.push_back(L);
1698 SDValue LV;
1699 if (2*HwLen == VecLen) {
1700 SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
1701 SDValue L0 = Lower.LowerOperation(B0, DAG);
1702 SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
1703 SDValue L1 = Lower.LowerOperation(B1, DAG);
1704 // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
1705 // functions may expect to be called only for illegal operations, so
1706 // make sure that they are not called for legal ones. Develop a better
1707 // mechanism for dealing with this.
1708 LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
1709 } else {
1710 SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
1711 LV = Lower.LowerOperation(BV, DAG);
1714 assert(!N->use_empty());
1715 SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV);
1716 ISel.ReplaceNode(N, IS.getNode());
1717 select(IS.getNode());
1718 DAG.RemoveDeadNodes();
1719 return true;
1722 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
1723 ResultStack &Results) {
1724 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1725 if (!Va.isValid() || !Vb.isValid())
1726 return OpRef::fail();
1728 // Contracting shuffles, i.e. instructions that always discard some bytes
1729 // from the operand vectors.
1731 // V6_vshuff{e,o}b
1732 // V6_vdealb4w
1733 // V6_vpack{e,o}{b,h}
1735 int VecLen = SM.Mask.size();
1736 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1737 MVT ResTy = getSingleVT(MVT::i8);
1739 // The following shuffles only work for bytes and halfwords. This requires
1740 // the strip length to be 1 or 2.
1741 if (Strip.second != 1 && Strip.second != 2)
1742 return OpRef::fail();
1744 // The patterns for the shuffles, in terms of the starting offsets of the
1745 // consecutive strips (L = length of the strip, N = VecLen):
1747 // vpacke: 0, 2L, 4L ... N+0, N+2L, N+4L ... L = 1 or 2
1748 // vpacko: L, 3L, 5L ... N+L, N+3L, N+5L ... L = 1 or 2
1750 // vshuffe: 0, N+0, 2L, N+2L, 4L ... L = 1 or 2
1751 // vshuffo: L, N+L, 3L, N+3L, 5L ... L = 1 or 2
1753 // vdealb4w: 0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
1755 // The value of the element in the mask following the strip will decide
1756 // what kind of a shuffle this can be.
1757 int NextInMask = SM.Mask[Strip.second];
1759 // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
1760 // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
1761 // satisfy this.
1762 if (NextInMask < VecLen) {
1763 // vpack{e,o} or vdealb4w
1764 if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
1765 int N = VecLen;
1766 // Check if this is vdealb4w (L=1).
1767 for (int I = 0; I != N/4; ++I)
1768 if (SM.Mask[I] != 4*I)
1769 return OpRef::fail();
1770 for (int I = 0; I != N/4; ++I)
1771 if (SM.Mask[I+N/4] != 2 + 4*I)
1772 return OpRef::fail();
1773 for (int I = 0; I != N/4; ++I)
1774 if (SM.Mask[I+N/2] != N + 4*I)
1775 return OpRef::fail();
1776 for (int I = 0; I != N/4; ++I)
1777 if (SM.Mask[I+3*N/4] != N+2 + 4*I)
1778 return OpRef::fail();
1779 // Matched mask for vdealb4w.
1780 Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
1781 return OpRef::res(Results.top());
1784 // Check if this is vpack{e,o}.
1785 int N = VecLen;
1786 int L = Strip.second;
1787 // Check if the first strip starts at 0 or at L.
1788 if (Strip.first != 0 && Strip.first != L)
1789 return OpRef::fail();
1790 // Examine the rest of the mask.
1791 for (int I = L; I < N; I += L) {
1792 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1793 // Check whether the mask element at the beginning of each strip
1794 // increases by 2L each time.
1795 if (S.first - Strip.first != 2*I)
1796 return OpRef::fail();
1797 // Check whether each strip is of the same length.
1798 if (S.second != unsigned(L))
1799 return OpRef::fail();
1802 // Strip.first == 0 => vpacke
1803 // Strip.first == L => vpacko
1804 assert(Strip.first == 0 || Strip.first == L);
1805 using namespace Hexagon;
1806 NodeTemplate Res;
1807 Res.Opc = Strip.second == 1 // Number of bytes.
1808 ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
1809 : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
1810 Res.Ty = ResTy;
1811 Res.Ops = { Vb, Va };
1812 Results.push(Res);
1813 return OpRef::res(Results.top());
1816 // Check if this is vshuff{e,o}.
1817 int N = VecLen;
1818 int L = Strip.second;
1819 std::pair<int,unsigned> PrevS = Strip;
1820 bool Flip = false;
1821 for (int I = L; I < N; I += L) {
1822 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1823 if (S.second != PrevS.second)
1824 return OpRef::fail();
1825 int Diff = Flip ? PrevS.first - S.first + 2*L
1826 : S.first - PrevS.first;
1827 if (Diff != N)
1828 return OpRef::fail();
1829 Flip ^= true;
1830 PrevS = S;
1832 // Strip.first == 0 => vshuffe
1833 // Strip.first == L => vshuffo
1834 assert(Strip.first == 0 || Strip.first == L);
1835 using namespace Hexagon;
1836 NodeTemplate Res;
1837 Res.Opc = Strip.second == 1 // Number of bytes.
1838 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
1839 : (Strip.first == 0 ? V6_vshufeh : V6_vshufoh);
1840 Res.Ty = ResTy;
1841 Res.Ops = { Vb, Va };
1842 Results.push(Res);
1843 return OpRef::res(Results.top());
1846 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1847 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1848 // Expanding shuffles (using all elements and inserting into larger vector):
1850 // V6_vunpacku{b,h} [*]
1852 // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
1854 // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
1855 // they are not shuffles.
1857 // The argument is a single vector.
1859 int VecLen = SM.Mask.size();
1860 assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
1862 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1864 // The patterns for the unpacks, in terms of the starting offsets of the
1865 // consecutive strips (L = length of the strip, N = VecLen):
1867 // vunpacku: 0, -1, L, -1, 2L, -1 ...
1869 if (Strip.first != 0)
1870 return OpRef::fail();
1872 // The vunpackus only handle byte and half-word.
1873 if (Strip.second != 1 && Strip.second != 2)
1874 return OpRef::fail();
1876 int N = VecLen;
1877 int L = Strip.second;
1879 // First, check the non-ignored strips.
1880 for (int I = 2*L; I < N; I += 2*L) {
1881 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1882 if (S.second != unsigned(L))
1883 return OpRef::fail();
1884 if (2*S.first != I)
1885 return OpRef::fail();
1887 // Check the -1s.
1888 for (int I = L; I < N; I += 2*L) {
1889 auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
1890 if (S.first != -1 || S.second != unsigned(L))
1891 return OpRef::fail();
1894 unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
1895 : Hexagon::V6_vunpackuh;
1896 Results.push(Opc, getPairVT(MVT::i8), {Va});
1897 return OpRef::res(Results.top());
1900 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1901 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1902 // V6_vdeal{b,h}
1903 // V6_vshuff{b,h}
1905 // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2})
1906 // V6_vshuffvdd (V6_vshuff)
1907 // V6_dealvdd (V6_vdeal)
1909 int VecLen = SM.Mask.size();
1910 assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
1911 unsigned LogLen = Log2_32(VecLen);
1912 unsigned HwLog = Log2_32(HwLen);
1913 // The result length must be the same as the length of a single vector,
1914 // or a vector pair.
1915 assert(LogLen == HwLog || LogLen == HwLog+1);
1916 bool HavePairs = LogLen == HwLog+1;
1918 if (!isPermutation(SM.Mask))
1919 return OpRef::fail();
1921 SmallVector<unsigned,8> Perm(LogLen);
1923 // Check if this could be a perfect shuffle, or a combination of perfect
1924 // shuffles.
1926 // Consider this permutation (using hex digits to make the ASCII diagrams
1927 // easier to read):
1928 // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
1929 // This is a "deal" operation: divide the input into two halves, and
1930 // create the output by picking elements by alternating between these two
1931 // halves:
1932 // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*]
1933 // 8 9 A B C D E F
1935 // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
1936 // a somwehat different mechanism that could be used to perform shuffle/
1937 // deal operations: a 2x2 transpose.
1938 // Consider the halves of inputs again, they can be interpreted as a 2x8
1939 // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
1940 // together. Now, when considering 2 elements at a time, it will be a 2x4
1941 // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
1942 // 01 23 45 67
1943 // 89 AB CD EF
1944 // With groups of 4, this will become a single 2x2 matrix, and so on.
1946 // The 2x2 transpose instruction works by transposing each of the 2x2
1947 // matrices (or "sub-matrices"), given a specific group size. For example,
1948 // if the group size is 1 (i.e. each element is its own group), there
1949 // will be four transposes of the four 2x2 matrices that form the 2x8.
1950 // For example, with the inputs as above, the result will be:
1951 // 0 8 2 A 4 C 6 E
1952 // 1 9 3 B 5 D 7 F
1953 // Now, this result can be tranposed again, but with the group size of 2:
1954 // 08 19 4C 5D
1955 // 2A 3B 6E 7F
1956 // If we then transpose that result, but with the group size of 4, we get:
1957 // 0819 2A3B
1958 // 4C5D 6E7F
1959 // If we concatenate these two rows, it will be
1960 // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
1961 // which is the same as the "deal" [*] above.
1963 // In general, a "deal" of individual elements is a series of 2x2 transposes,
1964 // with changing group size. HVX has two instructions:
1965 // Vdd = V6_vdealvdd Vu, Vv, Rt
1966 // Vdd = V6_shufvdd Vu, Vv, Rt
1967 // that perform exactly that. The register Rt controls which transposes are
1968 // going to happen: a bit at position n (counting from 0) indicates that a
1969 // transpose with a group size of 2^n will take place. If multiple bits are
1970 // set, multiple transposes will happen: vdealvdd will perform them starting
1971 // with the largest group size, vshuffvdd will do them in the reverse order.
1973 // The main observation is that each 2x2 transpose corresponds to swapping
1974 // columns of bits in the binary representation of the values.
1976 // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
1977 // in a given column. The * denote the columns that will be swapped.
1978 // The transpose with the group size 2^n corresponds to swapping columns
1979 // 3 (the highest log) and log2(n):
1981 // 3 2 1 0 0 2 1 3 0 2 3 1
1982 // * * * * * *
1983 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1984 // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0
1985 // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1
1986 // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1
1987 // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0
1988 // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0
1989 // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1
1990 // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1
1991 // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0
1992 // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0
1993 // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1
1994 // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1
1995 // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0
1996 // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0
1997 // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1
1998 // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1
2000 // There is one special case that is not a perfect shuffle, but
2001 // can be turned into one easily: when the shuffle operates on
2002 // a vector pair, but the two vectors in the pair are swapped.
2003 // The code below that identifies perfect shuffles will reject
2004 // it, unless the order is reversed.
2005 SmallVector<int,128> MaskStorage(SM.Mask.begin(), SM.Mask.end());
2006 bool InvertedPair = false;
2007 if (HavePairs && SM.Mask[0] >= int(HwLen)) {
2008 for (int i = 0, e = SM.Mask.size(); i != e; ++i) {
2009 int M = SM.Mask[i];
2010 MaskStorage[i] = M >= int(HwLen) ? M-HwLen : M+HwLen;
2012 InvertedPair = true;
2014 ArrayRef<int> LocalMask(MaskStorage);
2016 auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
2017 unsigned X = Mask[0] ^ Mask[Num/2];
2018 // Check that the first half has the X's bits clear.
2019 if ((Mask[0] & X) != 0)
2020 return 0u;
2021 for (unsigned I = 1; I != Num/2; ++I) {
2022 if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
2023 return 0u;
2024 if ((Mask[I] & X) != 0)
2025 return 0u;
2027 return X;
2030 // Create a vector of log2's for each column: Perm[i] corresponds to
2031 // the i-th bit (lsb is 0).
2032 assert(VecLen > 2);
2033 for (unsigned I = VecLen; I >= 2; I >>= 1) {
2034 // Examine the initial segment of Mask of size I.
2035 unsigned X = XorPow2(LocalMask, I);
2036 if (!isPowerOf2_32(X))
2037 return OpRef::fail();
2038 // Check the other segments of Mask.
2039 for (int J = I; J < VecLen; J += I) {
2040 if (XorPow2(LocalMask.slice(J, I), I) != X)
2041 return OpRef::fail();
2043 Perm[Log2_32(X)] = Log2_32(I)-1;
2046 // Once we have Perm, represent it as cycles. Denote the maximum log2
2047 // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
2048 // written as (M a1 a2 a3 ... an). That cycle can be broken up into
2049 // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
2050 // order being from left to right. Any (contiguous) segment where the
2051 // values ai, ai+1...aj are either all increasing or all decreasing,
2052 // can be implemented via a single vshuffvdd/vdealvdd respectively.
2054 // If there is a cycle (a1 a2 ... an) that does not involve M, it can
2055 // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
2056 // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
2057 // can be used to generate a sequence of vshuffvdd/vdealvdd.
2059 // Example:
2060 // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
2061 // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
2062 // (4 0 1)(4 0)(4 2 3)(4 2).
2063 // It can then be expanded into swaps as
2064 // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
2065 // and broken up into "increasing" segments as
2066 // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
2067 // This is equivalent to
2068 // (4 0 1)(4 0 2 3)(4 2),
2069 // which can be implemented as 3 vshufvdd instructions.
2071 using CycleType = SmallVector<unsigned,8>;
2072 std::set<CycleType> Cycles;
2073 std::set<unsigned> All;
2075 for (unsigned I : Perm)
2076 All.insert(I);
2078 // If the cycle contains LogLen-1, move it to the front of the cycle.
2079 // Otherwise, return the cycle unchanged.
2080 auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
2081 unsigned LogPos, N = C.size();
2082 for (LogPos = 0; LogPos != N; ++LogPos)
2083 if (C[LogPos] == LogLen-1)
2084 break;
2085 if (LogPos == N)
2086 return C;
2088 CycleType NewC(C.begin()+LogPos, C.end());
2089 NewC.append(C.begin(), C.begin()+LogPos);
2090 return NewC;
2093 auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
2094 // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
2095 // for bytes zero is included, for halfwords is not.
2096 if (Cs.size() != 1)
2097 return 0u;
2098 const CycleType &C = *Cs.begin();
2099 if (C[0] != Len-1)
2100 return 0u;
2101 int D = Len - C.size();
2102 if (D != 0 && D != 1)
2103 return 0u;
2105 bool IsDeal = true, IsShuff = true;
2106 for (unsigned I = 1; I != Len-D; ++I) {
2107 if (C[I] != Len-1-I)
2108 IsDeal = false;
2109 if (C[I] != I-(1-D)) // I-1, I
2110 IsShuff = false;
2112 // At most one, IsDeal or IsShuff, can be non-zero.
2113 assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
2114 static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
2115 static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
2116 return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
2119 while (!All.empty()) {
2120 unsigned A = *All.begin();
2121 All.erase(A);
2122 CycleType C;
2123 C.push_back(A);
2124 for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
2125 C.push_back(B);
2126 All.erase(B);
2128 if (C.size() <= 1)
2129 continue;
2130 Cycles.insert(canonicalize(C));
2133 MVT SingleTy = getSingleVT(MVT::i8);
2134 MVT PairTy = getPairVT(MVT::i8);
2136 // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
2137 if (unsigned(VecLen) == HwLen) {
2138 if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
2139 Results.push(SingleOpc, SingleTy, {Va});
2140 return OpRef::res(Results.top());
2144 // From the cycles, construct the sequence of values that will
2145 // then form the control values for vdealvdd/vshuffvdd, i.e.
2146 // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5
2147 // This essentially strips the M value from the cycles where
2148 // it's present, and performs the insertion of M (then stripping)
2149 // for cycles without M (as described in an earlier comment).
2150 SmallVector<unsigned,8> SwapElems;
2151 // When the input is extended (i.e. single vector becomes a pair),
2152 // this is done by using an "undef" vector as the second input.
2153 // However, then we get
2154 // input 1: GOODBITS
2155 // input 2: ........
2156 // but we need
2157 // input 1: ....BITS
2158 // input 2: ....GOOD
2159 // Then at the end, this needs to be undone. To accomplish this,
2160 // artificially add "LogLen-1" at both ends of the sequence.
2161 if (!HavePairs)
2162 SwapElems.push_back(LogLen-1);
2163 for (const CycleType &C : Cycles) {
2164 // Do the transformation: (a1..an) -> (M a1..an)(M a1).
2165 unsigned First = (C[0] == LogLen-1) ? 1 : 0;
2166 SwapElems.append(C.begin()+First, C.end());
2167 if (First == 0)
2168 SwapElems.push_back(C[0]);
2170 if (!HavePairs)
2171 SwapElems.push_back(LogLen-1);
2173 const SDLoc &dl(Results.InpNode);
2174 OpRef Arg = HavePairs ? Va
2175 : concats(Va, OpRef::undef(SingleTy), Results);
2176 if (InvertedPair)
2177 Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results);
2179 for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
2180 bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
2181 unsigned S = (1u << SwapElems[I]);
2182 if (I < E-1) {
2183 while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
2184 S |= 1u << SwapElems[I];
2185 // The above loop will not add a bit for the final SwapElems[I+1],
2186 // so add it here.
2187 S |= 1u << SwapElems[I];
2189 ++I;
2191 NodeTemplate Res;
2192 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)});
2193 Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
2194 Res.Ty = PairTy;
2195 Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
2196 Results.push(Res);
2197 Arg = OpRef::res(Results.top());
2200 return HavePairs ? Arg : OpRef::lo(Arg);
2203 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
2204 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
2205 // Butterfly shuffles.
2207 // V6_vdelta
2208 // V6_vrdelta
2209 // V6_vror
2211 // The assumption here is that all elements picked by Mask are in the
2212 // first operand to the vector_shuffle. This assumption is enforced
2213 // by the caller.
2215 MVT ResTy = getSingleVT(MVT::i8);
2216 PermNetwork::Controls FC, RC;
2217 const SDLoc &dl(Results.InpNode);
2218 int VecLen = SM.Mask.size();
2220 for (int M : SM.Mask) {
2221 if (M != -1 && M >= VecLen)
2222 return OpRef::fail();
2225 // Try the deltas/benes for both single vectors and vector pairs.
2226 ForwardDeltaNetwork FN(SM.Mask);
2227 if (FN.run(FC)) {
2228 SDValue Ctl = getVectorConstant(FC, dl);
2229 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
2230 return OpRef::res(Results.top());
2233 // Try reverse delta.
2234 ReverseDeltaNetwork RN(SM.Mask);
2235 if (RN.run(RC)) {
2236 SDValue Ctl = getVectorConstant(RC, dl);
2237 Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
2238 return OpRef::res(Results.top());
2241 // Do Benes.
2242 BenesNetwork BN(SM.Mask);
2243 if (BN.run(FC, RC)) {
2244 SDValue CtlF = getVectorConstant(FC, dl);
2245 SDValue CtlR = getVectorConstant(RC, dl);
2246 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
2247 Results.push(Hexagon::V6_vrdelta, ResTy,
2248 {OpRef::res(-1), OpRef(CtlR)});
2249 return OpRef::res(Results.top());
2252 return OpRef::fail();
2255 SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) {
2256 return DAG.getTargetConstant(Val, dl, MVT::i32);
2259 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
2260 const SDLoc &dl) {
2261 SmallVector<SDValue, 128> Elems;
2262 for (uint8_t C : Data)
2263 Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
2264 MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
2265 SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
2266 SDValue LV = Lower.LowerOperation(BV, DAG);
2267 DAG.RemoveDeadNode(BV.getNode());
2268 return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV);
2271 void HvxSelector::selectShuffle(SDNode *N) {
2272 DEBUG_WITH_TYPE("isel", {
2273 dbgs() << "Starting " << __func__ << " on node:\n";
2274 N->dump(&DAG);
2276 MVT ResTy = N->getValueType(0).getSimpleVT();
2277 // Assume that vector shuffles operate on vectors of bytes.
2278 assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
2280 auto *SN = cast<ShuffleVectorSDNode>(N);
2281 std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
2282 // This shouldn't really be necessary. Is it?
2283 for (int &Idx : Mask)
2284 if (Idx != -1 && Idx < 0)
2285 Idx = -1;
2287 unsigned VecLen = Mask.size();
2288 bool HavePairs = (2*HwLen == VecLen);
2289 assert(ResTy.getSizeInBits() / 8 == VecLen);
2291 // Vd = vector_shuffle Va, Vb, Mask
2294 bool UseLeft = false, UseRight = false;
2295 for (unsigned I = 0; I != VecLen; ++I) {
2296 if (Mask[I] == -1)
2297 continue;
2298 unsigned Idx = Mask[I];
2299 assert(Idx < 2*VecLen);
2300 if (Idx < VecLen)
2301 UseLeft = true;
2302 else
2303 UseRight = true;
2306 DEBUG_WITH_TYPE("isel", {
2307 dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
2308 << UseLeft << " UseRight=" << UseRight << " HavePairs="
2309 << HavePairs << '\n';
2311 // If the mask is all -1's, generate "undef".
2312 if (!UseLeft && !UseRight) {
2313 ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
2314 return;
2317 SDValue Vec0 = N->getOperand(0);
2318 SDValue Vec1 = N->getOperand(1);
2319 ResultStack Results(SN);
2320 Results.push(TargetOpcode::COPY, ResTy, {Vec0});
2321 Results.push(TargetOpcode::COPY, ResTy, {Vec1});
2322 OpRef Va = OpRef::res(Results.top()-1);
2323 OpRef Vb = OpRef::res(Results.top());
2325 OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
2326 : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
2328 bool Done = Res.isValid();
2329 if (Done) {
2330 // Make sure that Res is on the stack before materializing.
2331 Results.push(TargetOpcode::COPY, ResTy, {Res});
2332 materialize(Results);
2333 } else {
2334 Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
2337 if (!Done) {
2338 #ifndef NDEBUG
2339 dbgs() << "Unhandled shuffle:\n";
2340 SN->dumpr(&DAG);
2341 #endif
2342 llvm_unreachable("Failed to select vector shuffle");
2346 void HvxSelector::selectRor(SDNode *N) {
2347 // If this is a rotation by less than 8, use V6_valignbi.
2348 MVT Ty = N->getValueType(0).getSimpleVT();
2349 const SDLoc &dl(N);
2350 SDValue VecV = N->getOperand(0);
2351 SDValue RotV = N->getOperand(1);
2352 SDNode *NewN = nullptr;
2354 if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
2355 unsigned S = CN->getZExtValue() % HST.getVectorLength();
2356 if (S == 0) {
2357 NewN = VecV.getNode();
2358 } else if (isUInt<3>(S)) {
2359 NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
2360 {VecV, VecV, getConst32(S, dl)});
2364 if (!NewN)
2365 NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
2367 ISel.ReplaceNode(N, NewN);
2370 void HvxSelector::selectVAlign(SDNode *N) {
2371 SDValue Vv = N->getOperand(0);
2372 SDValue Vu = N->getOperand(1);
2373 SDValue Rt = N->getOperand(2);
2374 SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
2375 N->getValueType(0), {Vv, Vu, Rt});
2376 ISel.ReplaceNode(N, NewN);
2377 DAG.RemoveDeadNode(N);
2380 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
2381 HvxSelector(*this, *CurDAG).selectShuffle(N);
2384 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
2385 HvxSelector(*this, *CurDAG).selectRor(N);
2388 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
2389 HvxSelector(*this, *CurDAG).selectVAlign(N);
2392 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
2393 const SDLoc &dl(N);
2394 SDValue Chain = N->getOperand(0);
2395 SDValue Address = N->getOperand(2);
2396 SDValue Predicate = N->getOperand(3);
2397 SDValue Base = N->getOperand(4);
2398 SDValue Modifier = N->getOperand(5);
2399 SDValue Offset = N->getOperand(6);
2401 unsigned Opcode;
2402 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2403 switch (IntNo) {
2404 default:
2405 llvm_unreachable("Unexpected HVX gather intrinsic.");
2406 case Intrinsic::hexagon_V6_vgathermhq:
2407 case Intrinsic::hexagon_V6_vgathermhq_128B:
2408 Opcode = Hexagon::V6_vgathermhq_pseudo;
2409 break;
2410 case Intrinsic::hexagon_V6_vgathermwq:
2411 case Intrinsic::hexagon_V6_vgathermwq_128B:
2412 Opcode = Hexagon::V6_vgathermwq_pseudo;
2413 break;
2414 case Intrinsic::hexagon_V6_vgathermhwq:
2415 case Intrinsic::hexagon_V6_vgathermhwq_128B:
2416 Opcode = Hexagon::V6_vgathermhwq_pseudo;
2417 break;
2420 SDVTList VTs = CurDAG->getVTList(MVT::Other);
2421 SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain };
2422 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2424 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2425 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2427 ReplaceNode(N, Result);
2430 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
2431 const SDLoc &dl(N);
2432 SDValue Chain = N->getOperand(0);
2433 SDValue Address = N->getOperand(2);
2434 SDValue Base = N->getOperand(3);
2435 SDValue Modifier = N->getOperand(4);
2436 SDValue Offset = N->getOperand(5);
2438 unsigned Opcode;
2439 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2440 switch (IntNo) {
2441 default:
2442 llvm_unreachable("Unexpected HVX gather intrinsic.");
2443 case Intrinsic::hexagon_V6_vgathermh:
2444 case Intrinsic::hexagon_V6_vgathermh_128B:
2445 Opcode = Hexagon::V6_vgathermh_pseudo;
2446 break;
2447 case Intrinsic::hexagon_V6_vgathermw:
2448 case Intrinsic::hexagon_V6_vgathermw_128B:
2449 Opcode = Hexagon::V6_vgathermw_pseudo;
2450 break;
2451 case Intrinsic::hexagon_V6_vgathermhw:
2452 case Intrinsic::hexagon_V6_vgathermhw_128B:
2453 Opcode = Hexagon::V6_vgathermhw_pseudo;
2454 break;
2457 SDVTList VTs = CurDAG->getVTList(MVT::Other);
2458 SDValue Ops[] = { Address, Base, Modifier, Offset, Chain };
2459 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2461 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2462 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2464 ReplaceNode(N, Result);
2467 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
2468 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2469 SDNode *Result;
2470 switch (IID) {
2471 case Intrinsic::hexagon_V6_vaddcarry: {
2472 std::array<SDValue, 3> Ops = {
2473 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2474 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
2475 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2476 break;
2478 case Intrinsic::hexagon_V6_vaddcarry_128B: {
2479 std::array<SDValue, 3> Ops = {
2480 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2481 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
2482 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2483 break;
2485 case Intrinsic::hexagon_V6_vsubcarry: {
2486 std::array<SDValue, 3> Ops = {
2487 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2488 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
2489 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2490 break;
2492 case Intrinsic::hexagon_V6_vsubcarry_128B: {
2493 std::array<SDValue, 3> Ops = {
2494 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2495 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
2496 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2497 break;
2499 default:
2500 llvm_unreachable("Unexpected HVX dual output intrinsic.");
2502 ReplaceUses(N, Result);
2503 ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
2504 ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
2505 CurDAG->RemoveDeadNode(N);