[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonISelLoweringHVX.cpp
blobe7d3c7c24f348af8376d24bf8b827c7dca2f86ea
1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/IR/IntrinsicsHexagon.h"
13 #include "llvm/Support/CommandLine.h"
15 using namespace llvm;
17 static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen",
18 cl::Hidden, cl::init(16),
19 cl::desc("Lower threshold (in bytes) for widening to HVX vectors"));
21 static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 };
22 static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
23 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
24 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
27 void
28 HexagonTargetLowering::initializeHVXLowering() {
29 if (Subtarget.useHVX64BOps()) {
30 addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass);
31 addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
32 addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
33 addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
34 addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
35 addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
36 // These "short" boolean vector types should be legal because
37 // they will appear as results of vector compares. If they were
38 // not legal, type legalization would try to make them legal
39 // and that would require using operations that do not use or
40 // produce such types. That, in turn, would imply using custom
41 // nodes, which would be unoptimizable by the DAG combiner.
42 // The idea is to rely on target-independent operations as much
43 // as possible.
44 addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
45 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
46 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
47 } else if (Subtarget.useHVX128BOps()) {
48 addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass);
49 addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass);
50 addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass);
51 addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass);
52 addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
53 addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass);
54 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
55 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
56 addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
59 // Set up operation actions.
61 bool Use64b = Subtarget.useHVX64BOps();
62 ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
63 ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
64 MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8;
65 MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
67 auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
68 setOperationAction(Opc, FromTy, Promote);
69 AddPromotedToType(Opc, FromTy, ToTy);
72 // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
73 // Note: v16i1 -> i16 is handled in type legalization instead of op
74 // legalization.
75 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
76 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
77 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
78 setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
79 setOperationAction(ISD::BITCAST, MVT::v128i1, Custom);
80 setOperationAction(ISD::BITCAST, MVT::i128, Custom);
81 setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
82 setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
83 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
85 for (MVT T : LegalV) {
86 setIndexedLoadAction(ISD::POST_INC, T, Legal);
87 setIndexedStoreAction(ISD::POST_INC, T, Legal);
89 setOperationAction(ISD::AND, T, Legal);
90 setOperationAction(ISD::OR, T, Legal);
91 setOperationAction(ISD::XOR, T, Legal);
92 setOperationAction(ISD::ADD, T, Legal);
93 setOperationAction(ISD::SUB, T, Legal);
94 setOperationAction(ISD::MUL, T, Legal);
95 setOperationAction(ISD::CTPOP, T, Legal);
96 setOperationAction(ISD::CTLZ, T, Legal);
97 setOperationAction(ISD::SELECT, T, Legal);
98 setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
99 if (T != ByteV) {
100 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
101 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
102 setOperationAction(ISD::BSWAP, T, Legal);
105 setOperationAction(ISD::SMIN, T, Legal);
106 setOperationAction(ISD::SMAX, T, Legal);
107 if (T.getScalarType() != MVT::i32) {
108 setOperationAction(ISD::UMIN, T, Legal);
109 setOperationAction(ISD::UMAX, T, Legal);
112 setOperationAction(ISD::CTTZ, T, Custom);
113 setOperationAction(ISD::LOAD, T, Custom);
114 setOperationAction(ISD::MLOAD, T, Custom);
115 setOperationAction(ISD::MSTORE, T, Custom);
116 setOperationAction(ISD::MULHS, T, Custom);
117 setOperationAction(ISD::MULHU, T, Custom);
118 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
119 // Make concat-vectors custom to handle concats of more than 2 vectors.
120 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
121 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom);
122 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom);
123 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
124 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
125 setOperationAction(ISD::ANY_EXTEND, T, Custom);
126 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
127 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
128 if (T != ByteV) {
129 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
130 // HVX only has shifts of words and halfwords.
131 setOperationAction(ISD::SRA, T, Custom);
132 setOperationAction(ISD::SHL, T, Custom);
133 setOperationAction(ISD::SRL, T, Custom);
135 // Promote all shuffles to operate on vectors of bytes.
136 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
139 setCondCodeAction(ISD::SETNE, T, Expand);
140 setCondCodeAction(ISD::SETLE, T, Expand);
141 setCondCodeAction(ISD::SETGE, T, Expand);
142 setCondCodeAction(ISD::SETLT, T, Expand);
143 setCondCodeAction(ISD::SETULE, T, Expand);
144 setCondCodeAction(ISD::SETUGE, T, Expand);
145 setCondCodeAction(ISD::SETULT, T, Expand);
148 for (MVT T : LegalW) {
149 // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
150 // independent) handling of it would convert it to a load, which is
151 // not always the optimal choice.
152 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
153 // Make concat-vectors custom to handle concats of more than 2 vectors.
154 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
156 // Custom-lower these operations for pairs. Expand them into a concat
157 // of the corresponding operations on individual vectors.
158 setOperationAction(ISD::ANY_EXTEND, T, Custom);
159 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
160 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
161 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom);
162 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
163 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
164 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
165 setOperationAction(ISD::SPLAT_VECTOR, T, Custom);
167 setOperationAction(ISD::LOAD, T, Custom);
168 setOperationAction(ISD::STORE, T, Custom);
169 setOperationAction(ISD::MLOAD, T, Custom);
170 setOperationAction(ISD::MSTORE, T, Custom);
171 setOperationAction(ISD::CTLZ, T, Custom);
172 setOperationAction(ISD::CTTZ, T, Custom);
173 setOperationAction(ISD::CTPOP, T, Custom);
175 setOperationAction(ISD::ADD, T, Legal);
176 setOperationAction(ISD::SUB, T, Legal);
177 setOperationAction(ISD::MUL, T, Custom);
178 setOperationAction(ISD::MULHS, T, Custom);
179 setOperationAction(ISD::MULHU, T, Custom);
180 setOperationAction(ISD::AND, T, Custom);
181 setOperationAction(ISD::OR, T, Custom);
182 setOperationAction(ISD::XOR, T, Custom);
183 setOperationAction(ISD::SETCC, T, Custom);
184 setOperationAction(ISD::VSELECT, T, Custom);
185 if (T != ByteW) {
186 setOperationAction(ISD::SRA, T, Custom);
187 setOperationAction(ISD::SHL, T, Custom);
188 setOperationAction(ISD::SRL, T, Custom);
190 // Promote all shuffles to operate on vectors of bytes.
191 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
194 setOperationAction(ISD::SMIN, T, Custom);
195 setOperationAction(ISD::SMAX, T, Custom);
196 if (T.getScalarType() != MVT::i32) {
197 setOperationAction(ISD::UMIN, T, Custom);
198 setOperationAction(ISD::UMAX, T, Custom);
202 // Boolean vectors.
204 for (MVT T : LegalW) {
205 // Boolean types for vector pairs will overlap with the boolean
206 // types for single vectors, e.g.
207 // v64i8 -> v64i1 (single)
208 // v64i16 -> v64i1 (pair)
209 // Set these actions first, and allow the single actions to overwrite
210 // any duplicates.
211 MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
212 setOperationAction(ISD::SETCC, BoolW, Custom);
213 setOperationAction(ISD::AND, BoolW, Custom);
214 setOperationAction(ISD::OR, BoolW, Custom);
215 setOperationAction(ISD::XOR, BoolW, Custom);
216 // Masked load/store takes a mask that may need splitting.
217 setOperationAction(ISD::MLOAD, BoolW, Custom);
218 setOperationAction(ISD::MSTORE, BoolW, Custom);
221 for (MVT T : LegalV) {
222 MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
223 setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom);
224 setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom);
225 setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom);
226 setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom);
227 setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom);
228 setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
229 setOperationAction(ISD::SELECT, BoolV, Custom);
230 setOperationAction(ISD::AND, BoolV, Legal);
231 setOperationAction(ISD::OR, BoolV, Legal);
232 setOperationAction(ISD::XOR, BoolV, Legal);
235 if (Use64b) {
236 for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
237 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
238 } else {
239 for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
240 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
243 // Handle store widening for short vectors.
244 unsigned HwLen = Subtarget.getVectorLength();
245 for (MVT ElemTy : Subtarget.getHVXElementTypes()) {
246 if (ElemTy == MVT::i1)
247 continue;
248 int ElemWidth = ElemTy.getFixedSizeInBits();
249 int MaxElems = (8*HwLen) / ElemWidth;
250 for (int N = 2; N < MaxElems; N *= 2) {
251 MVT VecTy = MVT::getVectorVT(ElemTy, N);
252 auto Action = getPreferredVectorAction(VecTy);
253 if (Action == TargetLoweringBase::TypeWidenVector) {
254 setOperationAction(ISD::LOAD, VecTy, Custom);
255 setOperationAction(ISD::STORE, VecTy, Custom);
256 setOperationAction(ISD::SETCC, VecTy, Custom);
257 setOperationAction(ISD::TRUNCATE, VecTy, Custom);
258 setOperationAction(ISD::ANY_EXTEND, VecTy, Custom);
259 setOperationAction(ISD::SIGN_EXTEND, VecTy, Custom);
260 setOperationAction(ISD::ZERO_EXTEND, VecTy, Custom);
262 MVT BoolTy = MVT::getVectorVT(MVT::i1, N);
263 if (!isTypeLegal(BoolTy))
264 setOperationAction(ISD::SETCC, BoolTy, Custom);
269 setTargetDAGCombine(ISD::SPLAT_VECTOR);
270 setTargetDAGCombine(ISD::VSELECT);
273 unsigned
274 HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const {
275 MVT ElemTy = VecTy.getVectorElementType();
276 unsigned VecLen = VecTy.getVectorNumElements();
277 unsigned HwLen = Subtarget.getVectorLength();
279 // Split vectors of i1 that exceed byte vector length.
280 if (ElemTy == MVT::i1 && VecLen > HwLen)
281 return TargetLoweringBase::TypeSplitVector;
283 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
284 // For shorter vectors of i1, widen them if any of the corresponding
285 // vectors of integers needs to be widened.
286 if (ElemTy == MVT::i1) {
287 for (MVT T : Tys) {
288 assert(T != MVT::i1);
289 auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen));
290 if (A != ~0u)
291 return A;
293 return ~0u;
296 // If the size of VecTy is at least half of the vector length,
297 // widen the vector. Note: the threshold was not selected in
298 // any scientific way.
299 if (llvm::is_contained(Tys, ElemTy)) {
300 unsigned VecWidth = VecTy.getSizeInBits();
301 bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0;
302 if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth)
303 return TargetLoweringBase::TypeWidenVector;
304 unsigned HwWidth = 8*HwLen;
305 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
306 return TargetLoweringBase::TypeWidenVector;
309 // Defer to default.
310 return ~0u;
313 SDValue
314 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
315 const SDLoc &dl, SelectionDAG &DAG) const {
316 SmallVector<SDValue,4> IntOps;
317 IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
318 append_range(IntOps, Ops);
319 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
323 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
324 assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
326 MVT ElemTy = Tys.first.getVectorElementType();
327 return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
328 Tys.second.getVectorNumElements());
331 HexagonTargetLowering::TypePair
332 HexagonTargetLowering::typeSplit(MVT VecTy) const {
333 assert(VecTy.isVector());
334 unsigned NumElem = VecTy.getVectorNumElements();
335 assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
336 MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
337 return { HalfTy, HalfTy };
341 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
342 MVT ElemTy = VecTy.getVectorElementType();
343 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
344 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
348 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
349 MVT ElemTy = VecTy.getVectorElementType();
350 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
351 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
354 SDValue
355 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
356 SelectionDAG &DAG) const {
357 if (ty(Vec).getVectorElementType() == ElemTy)
358 return Vec;
359 MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
360 return DAG.getBitcast(CastTy, Vec);
363 SDValue
364 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
365 SelectionDAG &DAG) const {
366 return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
367 Ops.second, Ops.first);
370 HexagonTargetLowering::VectorPair
371 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
372 SelectionDAG &DAG) const {
373 TypePair Tys = typeSplit(ty(Vec));
374 if (Vec.getOpcode() == HexagonISD::QCAT)
375 return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
376 return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
379 bool
380 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
381 return Subtarget.isHVXVectorType(Ty) &&
382 Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
385 bool
386 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
387 return Subtarget.isHVXVectorType(Ty) &&
388 Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
391 bool
392 HexagonTargetLowering::isHvxBoolTy(MVT Ty) const {
393 return Subtarget.isHVXVectorType(Ty, true) &&
394 Ty.getVectorElementType() == MVT::i1;
397 bool HexagonTargetLowering::allowsHvxMemoryAccess(
398 MVT VecTy, MachineMemOperand::Flags Flags, bool *Fast) const {
399 // Bool vectors are excluded by default, but make it explicit to
400 // emphasize that bool vectors cannot be loaded or stored.
401 // Also, disallow double vector stores (to prevent unnecessary
402 // store widening in DAG combiner).
403 if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength())
404 return false;
405 if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false))
406 return false;
407 if (Fast)
408 *Fast = true;
409 return true;
412 bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(
413 MVT VecTy, MachineMemOperand::Flags Flags, bool *Fast) const {
414 if (!Subtarget.isHVXVectorType(VecTy))
415 return false;
416 // XXX Should this be false? vmemu are a bit slower than vmem.
417 if (Fast)
418 *Fast = true;
419 return true;
422 SDValue
423 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
424 SelectionDAG &DAG) const {
425 if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
426 ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
428 unsigned ElemWidth = ElemTy.getSizeInBits();
429 if (ElemWidth == 8)
430 return ElemIdx;
432 unsigned L = Log2_32(ElemWidth/8);
433 const SDLoc &dl(ElemIdx);
434 return DAG.getNode(ISD::SHL, dl, MVT::i32,
435 {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
438 SDValue
439 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
440 SelectionDAG &DAG) const {
441 unsigned ElemWidth = ElemTy.getSizeInBits();
442 assert(ElemWidth >= 8 && ElemWidth <= 32);
443 if (ElemWidth == 32)
444 return Idx;
446 if (ty(Idx) != MVT::i32)
447 Idx = DAG.getBitcast(MVT::i32, Idx);
448 const SDLoc &dl(Idx);
449 SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
450 SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
451 return SubIdx;
454 SDValue
455 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
456 SDValue Op1, ArrayRef<int> Mask,
457 SelectionDAG &DAG) const {
458 MVT OpTy = ty(Op0);
459 assert(OpTy == ty(Op1));
461 MVT ElemTy = OpTy.getVectorElementType();
462 if (ElemTy == MVT::i8)
463 return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
464 assert(ElemTy.getSizeInBits() >= 8);
466 MVT ResTy = tyVector(OpTy, MVT::i8);
467 unsigned ElemSize = ElemTy.getSizeInBits() / 8;
469 SmallVector<int,128> ByteMask;
470 for (int M : Mask) {
471 if (M < 0) {
472 for (unsigned I = 0; I != ElemSize; ++I)
473 ByteMask.push_back(-1);
474 } else {
475 int NewM = M*ElemSize;
476 for (unsigned I = 0; I != ElemSize; ++I)
477 ByteMask.push_back(NewM+I);
480 assert(ResTy.getVectorNumElements() == ByteMask.size());
481 return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
482 opCastElem(Op1, MVT::i8, DAG), ByteMask);
485 SDValue
486 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
487 const SDLoc &dl, MVT VecTy,
488 SelectionDAG &DAG) const {
489 unsigned VecLen = Values.size();
490 MachineFunction &MF = DAG.getMachineFunction();
491 MVT ElemTy = VecTy.getVectorElementType();
492 unsigned ElemWidth = ElemTy.getSizeInBits();
493 unsigned HwLen = Subtarget.getVectorLength();
495 unsigned ElemSize = ElemWidth / 8;
496 assert(ElemSize*VecLen == HwLen);
497 SmallVector<SDValue,32> Words;
499 if (VecTy.getVectorElementType() != MVT::i32) {
500 assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
501 unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
502 MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
503 for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
504 SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
505 Words.push_back(DAG.getBitcast(MVT::i32, W));
507 } else {
508 Words.assign(Values.begin(), Values.end());
511 unsigned NumWords = Words.size();
512 bool IsSplat = true, IsUndef = true;
513 SDValue SplatV;
514 for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
515 if (isUndef(Words[i]))
516 continue;
517 IsUndef = false;
518 if (!SplatV.getNode())
519 SplatV = Words[i];
520 else if (SplatV != Words[i])
521 IsSplat = false;
523 if (IsUndef)
524 return DAG.getUNDEF(VecTy);
525 if (IsSplat) {
526 assert(SplatV.getNode());
527 auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
528 if (IdxN && IdxN->isNullValue())
529 return getZero(dl, VecTy, DAG);
530 MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
531 SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV);
532 return DAG.getBitcast(VecTy, S);
535 // Delay recognizing constant vectors until here, so that we can generate
536 // a vsplat.
537 SmallVector<ConstantInt*, 128> Consts(VecLen);
538 bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
539 if (AllConst) {
540 ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
541 (Constant**)Consts.end());
542 Constant *CV = ConstantVector::get(Tmp);
543 Align Alignment(HwLen);
544 SDValue CP =
545 LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG);
546 return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
547 MachinePointerInfo::getConstantPool(MF), Alignment);
550 // A special case is a situation where the vector is built entirely from
551 // elements extracted from another vector. This could be done via a shuffle
552 // more efficiently, but typically, the size of the source vector will not
553 // match the size of the vector being built (which precludes the use of a
554 // shuffle directly).
555 // This only handles a single source vector, and the vector being built
556 // should be of a sub-vector type of the source vector type.
557 auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
558 SmallVectorImpl<int> &SrcIdx) {
559 SDValue Vec;
560 for (SDValue V : Values) {
561 if (isUndef(V)) {
562 SrcIdx.push_back(-1);
563 continue;
565 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
566 return false;
567 // All extracts should come from the same vector.
568 SDValue T = V.getOperand(0);
569 if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
570 return false;
571 Vec = T;
572 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
573 if (C == nullptr)
574 return false;
575 int I = C->getSExtValue();
576 assert(I >= 0 && "Negative element index");
577 SrcIdx.push_back(I);
579 SrcVec = Vec;
580 return true;
583 SmallVector<int,128> ExtIdx;
584 SDValue ExtVec;
585 if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
586 MVT ExtTy = ty(ExtVec);
587 unsigned ExtLen = ExtTy.getVectorNumElements();
588 if (ExtLen == VecLen || ExtLen == 2*VecLen) {
589 // Construct a new shuffle mask that will produce a vector with the same
590 // number of elements as the input vector, and such that the vector we
591 // want will be the initial subvector of it.
592 SmallVector<int,128> Mask;
593 BitVector Used(ExtLen);
595 for (int M : ExtIdx) {
596 Mask.push_back(M);
597 if (M >= 0)
598 Used.set(M);
600 // Fill the rest of the mask with the unused elements of ExtVec in hopes
601 // that it will result in a permutation of ExtVec's elements. It's still
602 // fine if it doesn't (e.g. if undefs are present, or elements are
603 // repeated), but permutations can always be done efficiently via vdelta
604 // and vrdelta.
605 for (unsigned I = 0; I != ExtLen; ++I) {
606 if (Mask.size() == ExtLen)
607 break;
608 if (!Used.test(I))
609 Mask.push_back(I);
612 SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
613 DAG.getUNDEF(ExtTy), Mask);
614 if (ExtLen == VecLen)
615 return S;
616 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
620 // Construct two halves in parallel, then or them together.
621 assert(4*Words.size() == Subtarget.getVectorLength());
622 SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
623 SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
624 SDValue S = DAG.getConstant(4, dl, MVT::i32);
625 for (unsigned i = 0; i != NumWords/2; ++i) {
626 SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
627 {HalfV0, Words[i]});
628 SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
629 {HalfV1, Words[i+NumWords/2]});
630 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
631 HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
634 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
635 {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
636 SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
637 return DstV;
640 SDValue
641 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
642 unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
643 MVT PredTy = ty(PredV);
644 unsigned HwLen = Subtarget.getVectorLength();
645 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
647 if (Subtarget.isHVXVectorType(PredTy, true)) {
648 // Move the vector predicate SubV to a vector register, and scale it
649 // down to match the representation (bytes per type element) that VecV
650 // uses. The scaling down will pick every 2nd or 4th (every Scale-th
651 // in general) element and put them at the front of the resulting
652 // vector. This subvector will then be inserted into the Q2V of VecV.
653 // To avoid having an operation that generates an illegal type (short
654 // vector), generate a full size vector.
656 SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
657 SmallVector<int,128> Mask(HwLen);
658 // Scale = BitBytes(PredV) / Given BitBytes.
659 unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
660 unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
662 for (unsigned i = 0; i != HwLen; ++i) {
663 unsigned Num = i % Scale;
664 unsigned Off = i / Scale;
665 Mask[BlockLen*Num + Off] = i;
667 SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
668 if (!ZeroFill)
669 return S;
670 // Fill the bytes beyond BlockLen with 0s.
671 // V6_pred_scalar2 cannot fill the entire predicate, so it only works
672 // when BlockLen < HwLen.
673 assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
674 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
675 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
676 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
677 SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
678 return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
681 // Make sure that this is a valid scalar predicate.
682 assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
684 unsigned Bytes = 8 / PredTy.getVectorNumElements();
685 SmallVector<SDValue,4> Words[2];
686 unsigned IdxW = 0;
688 auto Lo32 = [&DAG, &dl] (SDValue P) {
689 return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
691 auto Hi32 = [&DAG, &dl] (SDValue P) {
692 return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
695 SDValue W0 = isUndef(PredV)
696 ? DAG.getUNDEF(MVT::i64)
697 : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
698 Words[IdxW].push_back(Hi32(W0));
699 Words[IdxW].push_back(Lo32(W0));
701 while (Bytes < BitBytes) {
702 IdxW ^= 1;
703 Words[IdxW].clear();
705 if (Bytes < 4) {
706 for (const SDValue &W : Words[IdxW ^ 1]) {
707 SDValue T = expandPredicate(W, dl, DAG);
708 Words[IdxW].push_back(Hi32(T));
709 Words[IdxW].push_back(Lo32(T));
711 } else {
712 for (const SDValue &W : Words[IdxW ^ 1]) {
713 Words[IdxW].push_back(W);
714 Words[IdxW].push_back(W);
717 Bytes *= 2;
720 assert(Bytes == BitBytes);
722 SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
723 SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
724 for (const SDValue &W : Words[IdxW]) {
725 Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
726 Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
729 return Vec;
732 SDValue
733 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
734 const SDLoc &dl, MVT VecTy,
735 SelectionDAG &DAG) const {
736 // Construct a vector V of bytes, such that a comparison V >u 0 would
737 // produce the required vector predicate.
738 unsigned VecLen = Values.size();
739 unsigned HwLen = Subtarget.getVectorLength();
740 assert(VecLen <= HwLen || VecLen == 8*HwLen);
741 SmallVector<SDValue,128> Bytes;
742 bool AllT = true, AllF = true;
744 auto IsTrue = [] (SDValue V) {
745 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
746 return !N->isNullValue();
747 return false;
749 auto IsFalse = [] (SDValue V) {
750 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
751 return N->isNullValue();
752 return false;
755 if (VecLen <= HwLen) {
756 // In the hardware, each bit of a vector predicate corresponds to a byte
757 // of a vector register. Calculate how many bytes does a bit of VecTy
758 // correspond to.
759 assert(HwLen % VecLen == 0);
760 unsigned BitBytes = HwLen / VecLen;
761 for (SDValue V : Values) {
762 AllT &= IsTrue(V);
763 AllF &= IsFalse(V);
765 SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
766 : DAG.getUNDEF(MVT::i8);
767 for (unsigned B = 0; B != BitBytes; ++B)
768 Bytes.push_back(Ext);
770 } else {
771 // There are as many i1 values, as there are bits in a vector register.
772 // Divide the values into groups of 8 and check that each group consists
773 // of the same value (ignoring undefs).
774 for (unsigned I = 0; I != VecLen; I += 8) {
775 unsigned B = 0;
776 // Find the first non-undef value in this group.
777 for (; B != 8; ++B) {
778 if (!Values[I+B].isUndef())
779 break;
781 SDValue F = Values[I+B];
782 AllT &= IsTrue(F);
783 AllF &= IsFalse(F);
785 SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
786 : DAG.getUNDEF(MVT::i8);
787 Bytes.push_back(Ext);
788 // Verify that the rest of values in the group are the same as the
789 // first.
790 for (; B != 8; ++B)
791 assert(Values[I+B].isUndef() || Values[I+B] == F);
795 if (AllT)
796 return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
797 if (AllF)
798 return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
800 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
801 SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
802 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
805 SDValue
806 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
807 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
808 MVT ElemTy = ty(VecV).getVectorElementType();
810 unsigned ElemWidth = ElemTy.getSizeInBits();
811 assert(ElemWidth >= 8 && ElemWidth <= 32);
812 (void)ElemWidth;
814 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
815 SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
816 {VecV, ByteIdx});
817 if (ElemTy == MVT::i32)
818 return ExWord;
820 // Have an extracted word, need to extract the smaller element out of it.
821 // 1. Extract the bits of (the original) IdxV that correspond to the index
822 // of the desired element in the 32-bit word.
823 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
824 // 2. Extract the element from the word.
825 SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
826 return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
829 SDValue
830 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
831 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
832 // Implement other return types if necessary.
833 assert(ResTy == MVT::i1);
835 unsigned HwLen = Subtarget.getVectorLength();
836 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
837 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
839 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
840 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
841 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
843 SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
844 SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
845 return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
848 SDValue
849 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
850 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
851 MVT ElemTy = ty(VecV).getVectorElementType();
853 unsigned ElemWidth = ElemTy.getSizeInBits();
854 assert(ElemWidth >= 8 && ElemWidth <= 32);
855 (void)ElemWidth;
857 auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
858 SDValue ByteIdxV) {
859 MVT VecTy = ty(VecV);
860 unsigned HwLen = Subtarget.getVectorLength();
861 SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
862 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
863 SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
864 SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
865 SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
866 {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
867 SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
868 return TorV;
871 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
872 if (ElemTy == MVT::i32)
873 return InsertWord(VecV, ValV, ByteIdx);
875 // If this is not inserting a 32-bit word, convert it into such a thing.
876 // 1. Extract the existing word from the target vector.
877 SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
878 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
879 SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
880 dl, MVT::i32, DAG);
882 // 2. Treating the extracted word as a 32-bit vector, insert the given
883 // value into it.
884 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
885 MVT SubVecTy = tyVector(ty(Ext), ElemTy);
886 SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
887 ValV, SubIdx, dl, ElemTy, DAG);
889 // 3. Insert the 32-bit word back into the original vector.
890 return InsertWord(VecV, Ins, ByteIdx);
893 SDValue
894 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
895 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
896 unsigned HwLen = Subtarget.getVectorLength();
897 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
898 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
900 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
901 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
902 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
903 ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
905 SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
906 return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
909 SDValue
910 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
911 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
912 MVT VecTy = ty(VecV);
913 unsigned HwLen = Subtarget.getVectorLength();
914 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
915 MVT ElemTy = VecTy.getVectorElementType();
916 unsigned ElemWidth = ElemTy.getSizeInBits();
918 // If the source vector is a vector pair, get the single vector containing
919 // the subvector of interest. The subvector will never overlap two single
920 // vectors.
921 if (isHvxPairTy(VecTy)) {
922 unsigned SubIdx;
923 if (Idx * ElemWidth >= 8*HwLen) {
924 SubIdx = Hexagon::vsub_hi;
925 Idx -= VecTy.getVectorNumElements() / 2;
926 } else {
927 SubIdx = Hexagon::vsub_lo;
929 VecTy = typeSplit(VecTy).first;
930 VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
931 if (VecTy == ResTy)
932 return VecV;
935 // The only meaningful subvectors of a single HVX vector are those that
936 // fit in a scalar register.
937 assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
939 MVT WordTy = tyVector(VecTy, MVT::i32);
940 SDValue WordVec = DAG.getBitcast(WordTy, VecV);
941 unsigned WordIdx = (Idx*ElemWidth) / 32;
943 SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
944 SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
945 if (ResTy.getSizeInBits() == 32)
946 return DAG.getBitcast(ResTy, W0);
948 SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
949 SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
950 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
951 return DAG.getBitcast(ResTy, WW);
954 SDValue
955 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
956 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
957 MVT VecTy = ty(VecV);
958 unsigned HwLen = Subtarget.getVectorLength();
959 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
960 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
961 // IdxV is required to be a constant.
962 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
964 unsigned ResLen = ResTy.getVectorNumElements();
965 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
966 unsigned Offset = Idx * BitBytes;
967 SDValue Undef = DAG.getUNDEF(ByteTy);
968 SmallVector<int,128> Mask;
970 if (Subtarget.isHVXVectorType(ResTy, true)) {
971 // Converting between two vector predicates. Since the result is shorter
972 // than the source, it will correspond to a vector predicate with the
973 // relevant bits replicated. The replication count is the ratio of the
974 // source and target vector lengths.
975 unsigned Rep = VecTy.getVectorNumElements() / ResLen;
976 assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
977 for (unsigned i = 0; i != HwLen/Rep; ++i) {
978 for (unsigned j = 0; j != Rep; ++j)
979 Mask.push_back(i + Offset);
981 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
982 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
985 // Converting between a vector predicate and a scalar predicate. In the
986 // vector predicate, a group of BitBytes bits will correspond to a single
987 // i1 element of the source vector type. Those bits will all have the same
988 // value. The same will be true for ByteVec, where each byte corresponds
989 // to a bit in the vector predicate.
990 // The algorithm is to traverse the ByteVec, going over the i1 values from
991 // the source vector, and generate the corresponding representation in an
992 // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
993 // elements so that the interesting 8 bytes will be in the low end of the
994 // vector.
995 unsigned Rep = 8 / ResLen;
996 // Make sure the output fill the entire vector register, so repeat the
997 // 8-byte groups as many times as necessary.
998 for (unsigned r = 0; r != HwLen/ResLen; ++r) {
999 // This will generate the indexes of the 8 interesting bytes.
1000 for (unsigned i = 0; i != ResLen; ++i) {
1001 for (unsigned j = 0; j != Rep; ++j)
1002 Mask.push_back(Offset + i*BitBytes);
1006 SDValue Zero = getZero(dl, MVT::i32, DAG);
1007 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
1008 // Combine the two low words from ShuffV into a v8i8, and byte-compare
1009 // them against 0.
1010 SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
1011 SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1012 {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
1013 SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
1014 return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
1015 {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
1018 SDValue
1019 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
1020 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1021 MVT VecTy = ty(VecV);
1022 MVT SubTy = ty(SubV);
1023 unsigned HwLen = Subtarget.getVectorLength();
1024 MVT ElemTy = VecTy.getVectorElementType();
1025 unsigned ElemWidth = ElemTy.getSizeInBits();
1027 bool IsPair = isHvxPairTy(VecTy);
1028 MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
1029 // The two single vectors that VecV consists of, if it's a pair.
1030 SDValue V0, V1;
1031 SDValue SingleV = VecV;
1032 SDValue PickHi;
1034 if (IsPair) {
1035 V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
1036 V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
1038 SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
1039 dl, MVT::i32);
1040 PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
1041 if (isHvxSingleTy(SubTy)) {
1042 if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
1043 unsigned Idx = CN->getZExtValue();
1044 assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
1045 unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
1046 return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
1048 // If IdxV is not a constant, generate the two variants: with the
1049 // SubV as the high and as the low subregister, and select the right
1050 // pair based on the IdxV.
1051 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
1052 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
1053 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1055 // The subvector being inserted must be entirely contained in one of
1056 // the vectors V0 or V1. Set SingleV to the correct one, and update
1057 // IdxV to be the index relative to the beginning of that vector.
1058 SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
1059 IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
1060 SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
1063 // The only meaningful subvectors of a single HVX vector are those that
1064 // fit in a scalar register.
1065 assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
1066 // Convert IdxV to be index in bytes.
1067 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1068 if (!IdxN || !IdxN->isNullValue()) {
1069 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1070 DAG.getConstant(ElemWidth/8, dl, MVT::i32));
1071 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
1073 // When inserting a single word, the rotation back to the original position
1074 // would be by HwLen-Idx, but if two words are inserted, it will need to be
1075 // by (HwLen-4)-Idx.
1076 unsigned RolBase = HwLen;
1077 if (VecTy.getSizeInBits() == 32) {
1078 SDValue V = DAG.getBitcast(MVT::i32, SubV);
1079 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
1080 } else {
1081 SDValue V = DAG.getBitcast(MVT::i64, SubV);
1082 SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
1083 SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
1084 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
1085 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
1086 DAG.getConstant(4, dl, MVT::i32));
1087 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
1088 RolBase = HwLen-4;
1090 // If the vector wasn't ror'ed, don't ror it back.
1091 if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
1092 SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1093 DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
1094 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
1097 if (IsPair) {
1098 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
1099 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
1100 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1102 return SingleV;
1105 SDValue
1106 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
1107 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1108 MVT VecTy = ty(VecV);
1109 MVT SubTy = ty(SubV);
1110 assert(Subtarget.isHVXVectorType(VecTy, true));
1111 // VecV is an HVX vector predicate. SubV may be either an HVX vector
1112 // predicate as well, or it can be a scalar predicate.
1114 unsigned VecLen = VecTy.getVectorNumElements();
1115 unsigned HwLen = Subtarget.getVectorLength();
1116 assert(HwLen % VecLen == 0 && "Unexpected vector type");
1118 unsigned Scale = VecLen / SubTy.getVectorNumElements();
1119 unsigned BitBytes = HwLen / VecLen;
1120 unsigned BlockLen = HwLen / Scale;
1122 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1123 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1124 SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
1125 SDValue ByteIdx;
1127 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1128 if (!IdxN || !IdxN->isNullValue()) {
1129 ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1130 DAG.getConstant(BitBytes, dl, MVT::i32));
1131 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
1134 // ByteVec is the target vector VecV rotated in such a way that the
1135 // subvector should be inserted at index 0. Generate a predicate mask
1136 // and use vmux to do the insertion.
1137 assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1138 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1139 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1140 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1141 ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
1142 // Rotate ByteVec back, and convert to a vector predicate.
1143 if (!IdxN || !IdxN->isNullValue()) {
1144 SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
1145 SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
1146 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
1148 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1151 SDValue
1152 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1153 MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1154 // Sign- and any-extending of a vector predicate to a vector register is
1155 // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1156 // a vector of 1s (where the 1s are of type matching the vector type).
1157 assert(Subtarget.isHVXVectorType(ResTy));
1158 if (!ZeroExt)
1159 return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1161 assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1162 SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1163 DAG.getConstant(1, dl, MVT::i32));
1164 SDValue False = getZero(dl, ResTy, DAG);
1165 return DAG.getSelect(dl, ResTy, VecV, True, False);
1168 SDValue
1169 HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
1170 MVT ResTy, SelectionDAG &DAG) const {
1171 // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
1172 // (i.e. the entire predicate register) to bits [0..HwLen-1] of a
1173 // vector register. The remaining bits of the vector register are
1174 // unspecified.
1176 MachineFunction &MF = DAG.getMachineFunction();
1177 unsigned HwLen = Subtarget.getVectorLength();
1178 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1179 MVT PredTy = ty(VecQ);
1180 unsigned PredLen = PredTy.getVectorNumElements();
1181 assert(HwLen % PredLen == 0);
1182 MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen);
1184 Type *Int8Ty = Type::getInt8Ty(*DAG.getContext());
1185 SmallVector<Constant*, 128> Tmp;
1186 // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
1187 // These are bytes with the LSB rotated left with respect to their index.
1188 for (unsigned i = 0; i != HwLen/8; ++i) {
1189 for (unsigned j = 0; j != 8; ++j)
1190 Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j));
1192 Constant *CV = ConstantVector::get(Tmp);
1193 Align Alignment(HwLen);
1194 SDValue CP =
1195 LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG);
1196 SDValue Bytes =
1197 DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP,
1198 MachinePointerInfo::getConstantPool(MF), Alignment);
1200 // Select the bytes that correspond to true bits in the vector predicate.
1201 SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes),
1202 getZero(dl, VecTy, DAG));
1203 // Calculate the OR of all bytes in each group of 8. That will compress
1204 // all the individual bits into a single byte.
1205 // First, OR groups of 4, via vrmpy with 0x01010101.
1206 SDValue All1 =
1207 DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
1208 SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
1209 // Then rotate the accumulated vector by 4 bytes, and do the final OR.
1210 SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
1211 {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
1212 SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot});
1214 // Pick every 8th byte and coalesce them at the beginning of the output.
1215 // For symmetry, coalesce every 1+8th byte after that, then every 2+8th
1216 // byte and so on.
1217 SmallVector<int,128> Mask;
1218 for (unsigned i = 0; i != HwLen; ++i)
1219 Mask.push_back((8*i) % HwLen + i/(HwLen/8));
1220 SDValue Collect =
1221 DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask);
1222 return DAG.getBitcast(ResTy, Collect);
1225 SDValue
1226 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1227 const {
1228 const SDLoc &dl(Op);
1229 MVT VecTy = ty(Op);
1231 unsigned Size = Op.getNumOperands();
1232 SmallVector<SDValue,128> Ops;
1233 for (unsigned i = 0; i != Size; ++i)
1234 Ops.push_back(Op.getOperand(i));
1236 if (VecTy.getVectorElementType() == MVT::i1)
1237 return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1239 if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1240 ArrayRef<SDValue> A(Ops);
1241 MVT SingleTy = typeSplit(VecTy).first;
1242 SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1243 SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1244 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1247 return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1250 SDValue
1251 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1252 const {
1253 // Vector concatenation of two integer (non-bool) vectors does not need
1254 // special lowering. Custom-lower concats of bool vectors and expand
1255 // concats of more than 2 vectors.
1256 MVT VecTy = ty(Op);
1257 const SDLoc &dl(Op);
1258 unsigned NumOp = Op.getNumOperands();
1259 if (VecTy.getVectorElementType() != MVT::i1) {
1260 if (NumOp == 2)
1261 return Op;
1262 // Expand the other cases into a build-vector.
1263 SmallVector<SDValue,8> Elems;
1264 for (SDValue V : Op.getNode()->ops())
1265 DAG.ExtractVectorElements(V, Elems);
1266 // A vector of i16 will be broken up into a build_vector of i16's.
1267 // This is a problem, since at the time of operation legalization,
1268 // all operations are expected to be type-legalized, and i16 is not
1269 // a legal type. If any of the extracted elements is not of a valid
1270 // type, sign-extend it to a valid one.
1271 for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1272 SDValue V = Elems[i];
1273 MVT Ty = ty(V);
1274 if (!isTypeLegal(Ty)) {
1275 EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
1276 if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1277 Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1278 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1279 V.getOperand(0), V.getOperand(1)),
1280 DAG.getValueType(Ty));
1281 continue;
1283 // A few less complicated cases.
1284 switch (V.getOpcode()) {
1285 case ISD::Constant:
1286 Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1287 break;
1288 case ISD::UNDEF:
1289 Elems[i] = DAG.getUNDEF(NTy);
1290 break;
1291 case ISD::TRUNCATE:
1292 Elems[i] = V.getOperand(0);
1293 break;
1294 default:
1295 llvm_unreachable("Unexpected vector element");
1299 return DAG.getBuildVector(VecTy, dl, Elems);
1302 assert(VecTy.getVectorElementType() == MVT::i1);
1303 unsigned HwLen = Subtarget.getVectorLength();
1304 assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1306 SDValue Op0 = Op.getOperand(0);
1308 // If the operands are HVX types (i.e. not scalar predicates), then
1309 // defer the concatenation, and create QCAT instead.
1310 if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1311 if (NumOp == 2)
1312 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1314 ArrayRef<SDUse> U(Op.getNode()->ops());
1315 SmallVector<SDValue,4> SV(U.begin(), U.end());
1316 ArrayRef<SDValue> Ops(SV);
1318 MVT HalfTy = typeSplit(VecTy).first;
1319 SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1320 Ops.take_front(NumOp/2));
1321 SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1322 Ops.take_back(NumOp/2));
1323 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1326 // Count how many bytes (in a vector register) each bit in VecTy
1327 // corresponds to.
1328 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1330 SmallVector<SDValue,8> Prefixes;
1331 for (SDValue V : Op.getNode()->op_values()) {
1332 SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1333 Prefixes.push_back(P);
1336 unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1337 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1338 SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1339 SDValue Res = getZero(dl, ByteTy, DAG);
1340 for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1341 Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1342 Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1344 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1347 SDValue
1348 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1349 const {
1350 // Change the type of the extracted element to i32.
1351 SDValue VecV = Op.getOperand(0);
1352 MVT ElemTy = ty(VecV).getVectorElementType();
1353 const SDLoc &dl(Op);
1354 SDValue IdxV = Op.getOperand(1);
1355 if (ElemTy == MVT::i1)
1356 return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1358 return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1361 SDValue
1362 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1363 const {
1364 const SDLoc &dl(Op);
1365 SDValue VecV = Op.getOperand(0);
1366 SDValue ValV = Op.getOperand(1);
1367 SDValue IdxV = Op.getOperand(2);
1368 MVT ElemTy = ty(VecV).getVectorElementType();
1369 if (ElemTy == MVT::i1)
1370 return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1372 return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1375 SDValue
1376 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1377 const {
1378 SDValue SrcV = Op.getOperand(0);
1379 MVT SrcTy = ty(SrcV);
1380 MVT DstTy = ty(Op);
1381 SDValue IdxV = Op.getOperand(1);
1382 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1383 assert(Idx % DstTy.getVectorNumElements() == 0);
1384 (void)Idx;
1385 const SDLoc &dl(Op);
1387 MVT ElemTy = SrcTy.getVectorElementType();
1388 if (ElemTy == MVT::i1)
1389 return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1391 return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
1394 SDValue
1395 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1396 const {
1397 // Idx does not need to be a constant.
1398 SDValue VecV = Op.getOperand(0);
1399 SDValue ValV = Op.getOperand(1);
1400 SDValue IdxV = Op.getOperand(2);
1402 const SDLoc &dl(Op);
1403 MVT VecTy = ty(VecV);
1404 MVT ElemTy = VecTy.getVectorElementType();
1405 if (ElemTy == MVT::i1)
1406 return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1408 return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1411 SDValue
1412 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1413 // Lower any-extends of boolean vectors to sign-extends, since they
1414 // translate directly to Q2V. Zero-extending could also be done equally
1415 // fast, but Q2V is used/recognized in more places.
1416 // For all other vectors, use zero-extend.
1417 MVT ResTy = ty(Op);
1418 SDValue InpV = Op.getOperand(0);
1419 MVT ElemTy = ty(InpV).getVectorElementType();
1420 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1421 return LowerHvxSignExt(Op, DAG);
1422 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1425 SDValue
1426 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1427 MVT ResTy = ty(Op);
1428 SDValue InpV = Op.getOperand(0);
1429 MVT ElemTy = ty(InpV).getVectorElementType();
1430 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1431 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1432 return Op;
1435 SDValue
1436 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1437 MVT ResTy = ty(Op);
1438 SDValue InpV = Op.getOperand(0);
1439 MVT ElemTy = ty(InpV).getVectorElementType();
1440 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1441 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1442 return Op;
1445 SDValue
1446 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1447 // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1448 // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1449 const SDLoc &dl(Op);
1450 MVT ResTy = ty(Op);
1451 SDValue InpV = Op.getOperand(0);
1452 assert(ResTy == ty(InpV));
1454 // Calculate the vectors of 1 and bitwidth(x).
1455 MVT ElemTy = ty(InpV).getVectorElementType();
1456 unsigned ElemWidth = ElemTy.getSizeInBits();
1458 SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1459 DAG.getConstant(1, dl, MVT::i32));
1460 SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1461 DAG.getConstant(ElemWidth, dl, MVT::i32));
1462 SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1463 DAG.getConstant(-1, dl, MVT::i32));
1465 // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1466 // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1467 // it separately in custom combine or selection).
1468 SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1469 {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1470 DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1471 return DAG.getNode(ISD::SUB, dl, ResTy,
1472 {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1475 SDValue
1476 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1477 MVT ResTy = ty(Op);
1478 assert(ResTy.isVector());
1479 const SDLoc &dl(Op);
1480 SmallVector<int,256> ShuffMask;
1482 MVT ElemTy = ResTy.getVectorElementType();
1483 unsigned VecLen = ResTy.getVectorNumElements();
1484 SDValue Vs = Op.getOperand(0);
1485 SDValue Vt = Op.getOperand(1);
1486 bool IsSigned = Op.getOpcode() == ISD::MULHS;
1488 if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
1489 // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1490 // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1491 // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1492 // For i16, use V6_vmpyhv, which behaves in an analogous way to
1493 // V6_vmpybv: results Lo and Hi are products of even/odd elements
1494 // respectively.
1495 MVT ExtTy = typeExtElem(ResTy, 2);
1496 unsigned MpyOpc = ElemTy == MVT::i8
1497 ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
1498 : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
1499 SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1501 // Discard low halves of the resulting values, collect the high halves.
1502 for (unsigned I = 0; I < VecLen; I += 2) {
1503 ShuffMask.push_back(I+1); // Pick even element.
1504 ShuffMask.push_back(I+VecLen+1); // Pick odd element.
1506 VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1507 SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1508 return DAG.getBitcast(ResTy, BS);
1511 assert(ElemTy == MVT::i32);
1512 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1514 auto MulHS_V60 = [&](SDValue Vs, SDValue Vt) {
1515 // mulhs(Vs,Vt) =
1516 // = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1517 // = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
1518 // + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1519 // = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
1520 // + Lo(Vs) *us Vt] >> 32
1521 // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
1522 // anything, so it cannot produce any carry over to higher bits),
1523 // so everything in [] can be shifted by 16 without loss of precision.
1524 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
1525 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
1526 // Denote Hi(Vs) = Vs':
1527 // = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
1528 // = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
1529 SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
1530 // Get Vs':
1531 SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
1532 SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1533 {T0, S0, Vt}, DAG);
1534 // Shift by 16:
1535 SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
1536 // Get Vs'*Hi(Vt):
1537 SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
1538 // Add:
1539 SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
1540 return T3;
1543 auto MulHS_V62 = [&](SDValue Vs, SDValue Vt) {
1544 MVT PairTy = typeJoin({ResTy, ResTy});
1545 SDValue T0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {Vs, Vt}, DAG);
1546 SDValue T1 = getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy,
1547 {T0, Vs, Vt}, DAG);
1548 return opSplit(T1, dl, DAG).second;
1551 if (IsSigned) {
1552 if (Subtarget.useHVXV62Ops())
1553 return MulHS_V62(Vs, Vt);
1554 return MulHS_V60(Vs, Vt);
1557 // Unsigned mulhw. (Would expansion using signed mulhw be better?)
1559 auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
1560 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
1562 auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
1563 return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
1566 MVT PairTy = typeJoin({ResTy, ResTy});
1567 SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
1568 {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
1569 // Multiply-unsigned halfwords:
1570 // LoVec = Vs.uh[2i] * Vt.uh[2i],
1571 // HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
1572 SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
1573 // The low halves in the LoVec of the pair can be discarded. They are
1574 // not added to anything (in the full-precision product), so they cannot
1575 // produce a carry into the higher bits.
1576 SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
1577 // Swap low and high halves in Vt, and do the halfword multiplication
1578 // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
1579 SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
1580 SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
1581 // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
1582 // These products are words, but cannot be added directly because the
1583 // sums could overflow. Add these products, by halfwords, where each sum
1584 // of a pair of halfwords gives a word.
1585 SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
1586 {LoVec(T2), HiVec(T2)}, DAG);
1587 // Add the high halfwords from the products of the low halfwords.
1588 SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
1589 SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
1590 SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
1591 SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
1592 return T7;
1595 SDValue
1596 HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
1597 SDValue ValQ = Op.getOperand(0);
1598 MVT ResTy = ty(Op);
1599 MVT VecTy = ty(ValQ);
1600 const SDLoc &dl(Op);
1602 if (isHvxBoolTy(VecTy) && ResTy.isScalarInteger()) {
1603 unsigned HwLen = Subtarget.getVectorLength();
1604 MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
1605 SDValue VQ = compressHvxPred(ValQ, dl, WordTy, DAG);
1606 unsigned BitWidth = ResTy.getSizeInBits();
1608 if (BitWidth < 64) {
1609 SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
1610 dl, MVT::i32, DAG);
1611 if (BitWidth == 32)
1612 return W0;
1613 assert(BitWidth < 32u);
1614 return DAG.getZExtOrTrunc(W0, dl, ResTy);
1617 // The result is >= 64 bits. The only options are 64 or 128.
1618 assert(BitWidth == 64 || BitWidth == 128);
1619 SmallVector<SDValue,4> Words;
1620 for (unsigned i = 0; i != BitWidth/32; ++i) {
1621 SDValue W = extractHvxElementReg(
1622 VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
1623 Words.push_back(W);
1625 SmallVector<SDValue,2> Combines;
1626 assert(Words.size() % 2 == 0);
1627 for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
1628 SDValue C = DAG.getNode(
1629 HexagonISD::COMBINE, dl, MVT::i64, {Words[i+1], Words[i]});
1630 Combines.push_back(C);
1633 if (BitWidth == 64)
1634 return Combines[0];
1636 return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines);
1639 return Op;
1642 SDValue
1643 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1644 // Sign- and zero-extends are legal.
1645 assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
1646 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
1647 Op.getOperand(0));
1650 SDValue
1651 HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const {
1652 MVT ResTy = ty(Op);
1653 if (ResTy.getVectorElementType() != MVT::i1)
1654 return Op;
1656 const SDLoc &dl(Op);
1657 unsigned HwLen = Subtarget.getVectorLength();
1658 unsigned VecLen = ResTy.getVectorNumElements();
1659 assert(HwLen % VecLen == 0);
1660 unsigned ElemSize = HwLen / VecLen;
1662 MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen);
1663 SDValue S =
1664 DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0),
1665 DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)),
1666 DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2)));
1667 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S);
1670 SDValue
1671 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
1672 if (SDValue S = getVectorShiftByInt(Op, DAG))
1673 return S;
1674 return Op;
1677 SDValue
1678 HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const {
1679 const SDLoc &dl(Op);
1680 MVT ResTy = ty(Op);
1682 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1683 bool Use64b = Subtarget.useHVX64BOps();
1684 unsigned IntPredCast = Use64b ? Intrinsic::hexagon_V6_pred_typecast
1685 : Intrinsic::hexagon_V6_pred_typecast_128B;
1686 if (IntNo == IntPredCast) {
1687 SDValue Vs = Op.getOperand(1);
1688 MVT OpTy = ty(Vs);
1689 if (isHvxBoolTy(ResTy) && isHvxBoolTy(OpTy)) {
1690 if (ResTy == OpTy)
1691 return Vs;
1692 return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Vs);
1696 return Op;
1699 SDValue
1700 HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const {
1701 const SDLoc &dl(Op);
1702 unsigned HwLen = Subtarget.getVectorLength();
1703 MachineFunction &MF = DAG.getMachineFunction();
1704 auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode());
1705 SDValue Mask = MaskN->getMask();
1706 SDValue Chain = MaskN->getChain();
1707 SDValue Base = MaskN->getBasePtr();
1708 auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen);
1710 unsigned Opc = Op->getOpcode();
1711 assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE);
1713 if (Opc == ISD::MLOAD) {
1714 MVT ValTy = ty(Op);
1715 SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp);
1716 SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru();
1717 if (isUndef(Thru))
1718 return Load;
1719 SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru);
1720 return DAG.getMergeValues({VSel, Load.getValue(1)}, dl);
1723 // MSTORE
1724 // HVX only has aligned masked stores.
1726 // TODO: Fold negations of the mask into the store.
1727 unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai;
1728 SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue();
1729 SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base));
1731 if (MaskN->getAlign().value() % HwLen == 0) {
1732 SDValue Store = getInstr(StoreOpc, dl, MVT::Other,
1733 {Mask, Base, Offset0, Value, Chain}, DAG);
1734 DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp});
1735 return Store;
1738 // Unaligned case.
1739 auto StoreAlign = [&](SDValue V, SDValue A) {
1740 SDValue Z = getZero(dl, ty(V), DAG);
1741 // TODO: use funnel shifts?
1742 // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the
1743 // upper half.
1744 SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG);
1745 SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG);
1746 return std::make_pair(LoV, HiV);
1749 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1750 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1751 SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask);
1752 VectorPair Tmp = StoreAlign(MaskV, Base);
1753 VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first),
1754 DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)};
1755 VectorPair ValueU = StoreAlign(Value, Base);
1757 SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32);
1758 SDValue StoreLo =
1759 getInstr(StoreOpc, dl, MVT::Other,
1760 {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG);
1761 SDValue StoreHi =
1762 getInstr(StoreOpc, dl, MVT::Other,
1763 {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG);
1764 DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp});
1765 DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp});
1766 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi});
1769 SDValue
1770 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
1771 assert(!Op.isMachineOpcode());
1772 SmallVector<SDValue,2> OpsL, OpsH;
1773 const SDLoc &dl(Op);
1775 auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
1776 MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
1777 SDValue TV = DAG.getValueType(Ty);
1778 return std::make_pair(TV, TV);
1781 for (SDValue A : Op.getNode()->ops()) {
1782 VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
1783 ? opSplit(A, dl, DAG)
1784 : std::make_pair(A, A);
1785 // Special case for type operand.
1786 if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1787 if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
1788 P = SplitVTNode(N);
1790 OpsL.push_back(P.first);
1791 OpsH.push_back(P.second);
1794 MVT ResTy = ty(Op);
1795 MVT HalfTy = typeSplit(ResTy).first;
1796 SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
1797 SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
1798 SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
1799 return S;
1802 SDValue
1803 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
1804 auto *MemN = cast<MemSDNode>(Op.getNode());
1806 MVT MemTy = MemN->getMemoryVT().getSimpleVT();
1807 if (!isHvxPairTy(MemTy))
1808 return Op;
1810 const SDLoc &dl(Op);
1811 unsigned HwLen = Subtarget.getVectorLength();
1812 MVT SingleTy = typeSplit(MemTy).first;
1813 SDValue Chain = MemN->getChain();
1814 SDValue Base0 = MemN->getBasePtr();
1815 SDValue Base1 = DAG.getMemBasePlusOffset(Base0, TypeSize::Fixed(HwLen), dl);
1817 MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
1818 if (MachineMemOperand *MMO = MemN->getMemOperand()) {
1819 MachineFunction &MF = DAG.getMachineFunction();
1820 MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
1821 MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
1824 unsigned MemOpc = MemN->getOpcode();
1826 if (MemOpc == ISD::LOAD) {
1827 assert(cast<LoadSDNode>(Op)->isUnindexed());
1828 SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
1829 SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
1830 return DAG.getMergeValues(
1831 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
1832 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1833 Load0.getValue(1), Load1.getValue(1)) }, dl);
1835 if (MemOpc == ISD::STORE) {
1836 assert(cast<StoreSDNode>(Op)->isUnindexed());
1837 VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
1838 SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
1839 SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
1840 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
1843 assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE);
1845 auto MaskN = cast<MaskedLoadStoreSDNode>(Op);
1846 assert(MaskN->isUnindexed());
1847 VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG);
1848 SDValue Offset = DAG.getUNDEF(MVT::i32);
1850 if (MemOpc == ISD::MLOAD) {
1851 VectorPair Thru =
1852 opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG);
1853 SDValue MLoad0 =
1854 DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first,
1855 Thru.first, SingleTy, MOp0, ISD::UNINDEXED,
1856 ISD::NON_EXTLOAD, false);
1857 SDValue MLoad1 =
1858 DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second,
1859 Thru.second, SingleTy, MOp1, ISD::UNINDEXED,
1860 ISD::NON_EXTLOAD, false);
1861 return DAG.getMergeValues(
1862 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1),
1863 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1864 MLoad0.getValue(1), MLoad1.getValue(1)) }, dl);
1866 if (MemOpc == ISD::MSTORE) {
1867 VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG);
1868 SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset,
1869 Masks.first, SingleTy, MOp0,
1870 ISD::UNINDEXED, false, false);
1871 SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset,
1872 Masks.second, SingleTy, MOp1,
1873 ISD::UNINDEXED, false, false);
1874 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1);
1877 std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG);
1878 llvm_unreachable(Name.c_str());
1881 SDValue
1882 HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const {
1883 const SDLoc &dl(Op);
1884 auto *LoadN = cast<LoadSDNode>(Op.getNode());
1885 assert(LoadN->isUnindexed() && "Not widening indexed loads yet");
1886 assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 &&
1887 "Not widening loads of i1 yet");
1889 SDValue Chain = LoadN->getChain();
1890 SDValue Base = LoadN->getBasePtr();
1891 SDValue Offset = DAG.getUNDEF(MVT::i32);
1893 MVT ResTy = ty(Op);
1894 unsigned HwLen = Subtarget.getVectorLength();
1895 unsigned ResLen = ResTy.getStoreSize();
1896 assert(ResLen < HwLen && "vsetq(v1) prerequisite");
1898 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1899 SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1900 {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG);
1902 MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen);
1903 MachineFunction &MF = DAG.getMachineFunction();
1904 auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen);
1906 SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask,
1907 DAG.getUNDEF(LoadTy), LoadTy, MemOp,
1908 ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
1909 SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG);
1910 return DAG.getMergeValues({Value, Chain}, dl);
1913 SDValue
1914 HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const {
1915 const SDLoc &dl(Op);
1916 auto *StoreN = cast<StoreSDNode>(Op.getNode());
1917 assert(StoreN->isUnindexed() && "Not widening indexed stores yet");
1918 assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 &&
1919 "Not widening stores of i1 yet");
1921 SDValue Chain = StoreN->getChain();
1922 SDValue Base = StoreN->getBasePtr();
1923 SDValue Offset = DAG.getUNDEF(MVT::i32);
1925 SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG);
1926 MVT ValueTy = ty(Value);
1927 unsigned ValueLen = ValueTy.getVectorNumElements();
1928 unsigned HwLen = Subtarget.getVectorLength();
1929 assert(isPowerOf2_32(ValueLen));
1931 for (unsigned Len = ValueLen; Len < HwLen; ) {
1932 Value = opJoin({DAG.getUNDEF(ty(Value)), Value}, dl, DAG);
1933 Len = ty(Value).getVectorNumElements(); // This is Len *= 2
1935 assert(ty(Value).getVectorNumElements() == HwLen); // Paranoia
1937 assert(ValueLen < HwLen && "vsetq(v1) prerequisite");
1938 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1939 SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1940 {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG);
1941 MachineFunction &MF = DAG.getMachineFunction();
1942 auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen);
1943 return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value),
1944 MemOp, ISD::UNINDEXED, false, false);
1947 SDValue
1948 HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
1949 const SDLoc &dl(Op);
1950 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1951 MVT ElemTy = ty(Op0).getVectorElementType();
1952 unsigned HwLen = Subtarget.getVectorLength();
1954 unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits();
1955 assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen);
1956 MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen);
1957 if (!Subtarget.isHVXVectorType(WideOpTy, true))
1958 return SDValue();
1960 SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG);
1961 SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG);
1962 EVT ResTy =
1963 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy);
1964 SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy,
1965 {WideOp0, WideOp1, Op.getOperand(2)});
1967 EVT RetTy = getTypeToTransformTo(*DAG.getContext(), ty(Op));
1968 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy,
1969 {SetCC, getZero(dl, MVT::i32, DAG)});
1972 SDValue
1973 HexagonTargetLowering::WidenHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1974 const SDLoc &dl(Op);
1975 unsigned HwWidth = 8*Subtarget.getVectorLength();
1977 SDValue Op0 = Op.getOperand(0);
1978 MVT ResTy = ty(Op);
1979 MVT OpTy = ty(Op0);
1980 if (!Subtarget.isHVXElementType(OpTy) || !Subtarget.isHVXElementType(ResTy))
1981 return SDValue();
1983 // .-res, op-> ScalarVec Illegal HVX
1984 // Scalar ok - -
1985 // Illegal widen(insert) widen -
1986 // HVX - widen ok
1988 auto getFactor = [HwWidth](MVT Ty) {
1989 unsigned Width = Ty.getSizeInBits();
1990 return HwWidth > Width ? HwWidth / Width : 1;
1993 auto getWideTy = [getFactor](MVT Ty) {
1994 unsigned WideLen = Ty.getVectorNumElements() * getFactor(Ty);
1995 return MVT::getVectorVT(Ty.getVectorElementType(), WideLen);
1998 unsigned Opcode = Op.getOpcode() == ISD::SIGN_EXTEND ? HexagonISD::VUNPACK
1999 : HexagonISD::VUNPACKU;
2000 SDValue WideOp = appendUndef(Op0, getWideTy(OpTy), DAG);
2001 SDValue WideRes = DAG.getNode(Opcode, dl, getWideTy(ResTy), WideOp);
2002 return WideRes;
2005 SDValue
2006 HexagonTargetLowering::WidenHvxTruncate(SDValue Op, SelectionDAG &DAG) const {
2007 const SDLoc &dl(Op);
2008 unsigned HwWidth = 8*Subtarget.getVectorLength();
2010 SDValue Op0 = Op.getOperand(0);
2011 MVT ResTy = ty(Op);
2012 MVT OpTy = ty(Op0);
2013 if (!Subtarget.isHVXElementType(OpTy) || !Subtarget.isHVXElementType(ResTy))
2014 return SDValue();
2016 // .-res, op-> ScalarVec Illegal HVX
2017 // Scalar ok extract(widen) -
2018 // Illegal - widen widen
2019 // HVX - - ok
2021 auto getFactor = [HwWidth](MVT Ty) {
2022 unsigned Width = Ty.getSizeInBits();
2023 assert(HwWidth % Width == 0);
2024 return HwWidth / Width;
2027 auto getWideTy = [getFactor](MVT Ty) {
2028 unsigned WideLen = Ty.getVectorNumElements() * getFactor(Ty);
2029 return MVT::getVectorVT(Ty.getVectorElementType(), WideLen);
2032 if (Subtarget.isHVXVectorType(OpTy))
2033 return DAG.getNode(HexagonISD::VPACKL, dl, getWideTy(ResTy), Op0);
2035 assert(!isTypeLegal(OpTy) && "HVX-widening a truncate of scalar?");
2037 SDValue WideOp = appendUndef(Op0, getWideTy(OpTy), DAG);
2038 SDValue WideRes = DAG.getNode(HexagonISD::VPACKL, dl, getWideTy(ResTy),
2039 WideOp);
2040 // If the original result wasn't legal and was supposed to be widened,
2041 // we're done.
2042 if (shouldWidenToHvx(ResTy, DAG))
2043 return WideRes;
2045 // The original result type wasn't meant to be widened to HVX, so
2046 // leave it as it is. Standard legalization should be able to deal
2047 // with it (since now it's a result of a target-idendependent ISD
2048 // node).
2049 assert(ResTy.isVector());
2050 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResTy,
2051 {WideRes, getZero(dl, MVT::i32, DAG)});
2054 SDValue
2055 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
2056 unsigned Opc = Op.getOpcode();
2057 bool IsPairOp = isHvxPairTy(ty(Op)) ||
2058 llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
2059 return isHvxPairTy(ty(V));
2062 if (IsPairOp) {
2063 switch (Opc) {
2064 default:
2065 break;
2066 case ISD::LOAD:
2067 case ISD::STORE:
2068 case ISD::MLOAD:
2069 case ISD::MSTORE:
2070 return SplitHvxMemOp(Op, DAG);
2071 case ISD::CTPOP:
2072 case ISD::CTLZ:
2073 case ISD::CTTZ:
2074 case ISD::MUL:
2075 case ISD::MULHS:
2076 case ISD::MULHU:
2077 case ISD::AND:
2078 case ISD::OR:
2079 case ISD::XOR:
2080 case ISD::SRA:
2081 case ISD::SHL:
2082 case ISD::SRL:
2083 case ISD::SMIN:
2084 case ISD::SMAX:
2085 case ISD::UMIN:
2086 case ISD::UMAX:
2087 case ISD::SETCC:
2088 case ISD::VSELECT:
2089 case ISD::SIGN_EXTEND:
2090 case ISD::ZERO_EXTEND:
2091 case ISD::SIGN_EXTEND_INREG:
2092 case ISD::SPLAT_VECTOR:
2093 return SplitHvxPairOp(Op, DAG);
2097 switch (Opc) {
2098 default:
2099 break;
2100 case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG);
2101 case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG);
2102 case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG);
2103 case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG);
2104 case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG);
2105 case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG);
2106 case ISD::BITCAST: return LowerHvxBitcast(Op, DAG);
2107 case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG);
2108 case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG);
2109 case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG);
2110 case ISD::CTTZ: return LowerHvxCttz(Op, DAG);
2111 case ISD::SELECT: return LowerHvxSelect(Op, DAG);
2112 case ISD::SRA:
2113 case ISD::SHL:
2114 case ISD::SRL: return LowerHvxShift(Op, DAG);
2115 case ISD::MULHS:
2116 case ISD::MULHU: return LowerHvxMulh(Op, DAG);
2117 case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
2118 case ISD::SETCC:
2119 case ISD::INTRINSIC_VOID: return Op;
2120 case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG);
2121 case ISD::MLOAD:
2122 case ISD::MSTORE: return LowerHvxMaskedOp(Op, DAG);
2123 // Unaligned loads will be handled by the default lowering.
2124 case ISD::LOAD: return SDValue();
2126 #ifndef NDEBUG
2127 Op.dumpr(&DAG);
2128 #endif
2129 llvm_unreachable("Unhandled HVX operation");
2132 void
2133 HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
2134 SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
2135 unsigned Opc = N->getOpcode();
2136 SDValue Op(N, 0);
2138 switch (Opc) {
2139 case ISD::ANY_EXTEND:
2140 case ISD::SIGN_EXTEND:
2141 case ISD::ZERO_EXTEND:
2142 if (shouldWidenToHvx(ty(Op.getOperand(0)), DAG)) {
2143 if (SDValue T = WidenHvxExtend(Op, DAG))
2144 Results.push_back(T);
2146 break;
2147 case ISD::SETCC:
2148 if (shouldWidenToHvx(ty(Op.getOperand(0)), DAG)) {
2149 if (SDValue T = WidenHvxSetCC(Op, DAG))
2150 Results.push_back(T);
2152 break;
2153 case ISD::TRUNCATE:
2154 if (shouldWidenToHvx(ty(Op.getOperand(0)), DAG)) {
2155 if (SDValue T = WidenHvxTruncate(Op, DAG))
2156 Results.push_back(T);
2158 break;
2159 case ISD::STORE: {
2160 if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) {
2161 SDValue Store = WidenHvxStore(Op, DAG);
2162 Results.push_back(Store);
2164 break;
2166 case ISD::MLOAD:
2167 if (isHvxPairTy(ty(Op))) {
2168 SDValue S = SplitHvxMemOp(Op, DAG);
2169 assert(S->getOpcode() == ISD::MERGE_VALUES);
2170 Results.push_back(S.getOperand(0));
2171 Results.push_back(S.getOperand(1));
2173 break;
2174 case ISD::MSTORE:
2175 if (isHvxPairTy(ty(Op->getOperand(1)))) { // Stored value
2176 SDValue S = SplitHvxMemOp(Op, DAG);
2177 Results.push_back(S);
2179 break;
2180 default:
2181 break;
2185 void
2186 HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
2187 SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
2188 unsigned Opc = N->getOpcode();
2189 SDValue Op(N, 0);
2190 switch (Opc) {
2191 case ISD::ANY_EXTEND:
2192 case ISD::SIGN_EXTEND:
2193 case ISD::ZERO_EXTEND:
2194 if (shouldWidenToHvx(ty(Op), DAG)) {
2195 if (SDValue T = WidenHvxExtend(Op, DAG))
2196 Results.push_back(T);
2198 break;
2199 case ISD::SETCC:
2200 if (shouldWidenToHvx(ty(Op), DAG)) {
2201 if (SDValue T = WidenHvxSetCC(Op, DAG))
2202 Results.push_back(T);
2204 break;
2205 case ISD::TRUNCATE:
2206 if (shouldWidenToHvx(ty(Op), DAG)) {
2207 if (SDValue T = WidenHvxTruncate(Op, DAG))
2208 Results.push_back(T);
2210 break;
2211 case ISD::LOAD: {
2212 if (shouldWidenToHvx(ty(Op), DAG)) {
2213 SDValue Load = WidenHvxLoad(Op, DAG);
2214 assert(Load->getOpcode() == ISD::MERGE_VALUES);
2215 Results.push_back(Load.getOperand(0));
2216 Results.push_back(Load.getOperand(1));
2218 break;
2220 case ISD::BITCAST:
2221 if (isHvxBoolTy(ty(N->getOperand(0)))) {
2222 SDValue Op(N, 0);
2223 SDValue C = LowerHvxBitcast(Op, DAG);
2224 Results.push_back(C);
2226 break;
2227 default:
2228 break;
2232 SDValue
2233 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
2234 const {
2235 const SDLoc &dl(N);
2236 SelectionDAG &DAG = DCI.DAG;
2237 SDValue Op(N, 0);
2238 unsigned Opc = Op.getOpcode();
2239 if (DCI.isBeforeLegalizeOps())
2240 return SDValue();
2242 SmallVector<SDValue, 4> Ops(N->ops().begin(), N->ops().end());
2244 switch (Opc) {
2245 case ISD::VSELECT: {
2246 // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
2247 SDValue Cond = Ops[0];
2248 if (Cond->getOpcode() == ISD::XOR) {
2249 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
2250 if (C1->getOpcode() == HexagonISD::QTRUE)
2251 return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]);
2253 break;
2255 case HexagonISD::V2Q:
2256 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) {
2257 if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0)))
2258 return C->isNullValue() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op))
2259 : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op));
2261 break;
2262 case HexagonISD::Q2V:
2263 if (Ops[0].getOpcode() == HexagonISD::QTRUE)
2264 return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op),
2265 DAG.getConstant(-1, dl, MVT::i32));
2266 if (Ops[0].getOpcode() == HexagonISD::QFALSE)
2267 return getZero(dl, ty(Op), DAG);
2268 break;
2269 case HexagonISD::VINSERTW0:
2270 if (isUndef(Ops[1]))
2271 return Ops[0];;
2272 break;
2273 case HexagonISD::VROR: {
2274 if (Ops[0].getOpcode() == HexagonISD::VROR) {
2275 SDValue Vec = Ops[0].getOperand(0);
2276 SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1);
2277 SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1});
2278 return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot});
2280 break;
2284 return SDValue();
2287 bool
2288 HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const {
2289 auto Action = getPreferredHvxVectorAction(Ty);
2290 if (Action == TargetLoweringBase::TypeWidenVector) {
2291 EVT WideTy = getTypeToTransformTo(*DAG.getContext(), Ty);
2292 assert(WideTy.isSimple());
2293 return Subtarget.isHVXVectorType(WideTy.getSimpleVT(), true);
2295 return false;
2298 bool
2299 HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const {
2300 if (!Subtarget.useHVXOps())
2301 return false;
2302 // If the type of any result, or any operand type are HVX vector types,
2303 // this is an HVX operation.
2304 auto IsHvxTy = [this](EVT Ty) {
2305 return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true);
2307 auto IsHvxOp = [this](SDValue Op) {
2308 return Op.getValueType().isSimple() &&
2309 Subtarget.isHVXVectorType(ty(Op), true);
2311 if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp))
2312 return true;
2314 // Check if this could be an HVX operation after type widening.
2315 auto IsWidenedToHvx = [this, &DAG](SDValue Op) {
2316 if (!Op.getValueType().isSimple())
2317 return false;
2318 MVT ValTy = ty(Op);
2319 return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG);
2322 for (int i = 0, e = N->getNumValues(); i != e; ++i) {
2323 if (IsWidenedToHvx(SDValue(N, i)))
2324 return true;
2326 return llvm::any_of(N->ops(), IsWidenedToHvx);