1 //===--- HexagonPseudo.td -------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The pat frags in the definitions below need to have a named register,
10 // otherwise i32 will be assumed regardless of the register class. The
11 // name of the register does not matter.
12 def I1 : PatLeaf<(i1 PredRegs:$R)>;
13 def I32 : PatLeaf<(i32 IntRegs:$R)>;
14 def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
15 def F32 : PatLeaf<(f32 IntRegs:$R)>;
16 def F64 : PatLeaf<(f64 DoubleRegs:$R)>;
18 let PrintMethod = "printGlobalOperand" in {
19 def globaladdress : Operand<i32>;
20 def globaladdressExt : Operand<i32>;
24 let isCodeGenOnly = 0 in
25 def A2_iconst : Pseudo<(outs IntRegs:$Rd32),
26 (ins s27_2Imm:$Ii), "${Rd32} = iconst(#${Ii})">;
28 def DUPLEX_Pseudo : InstHexagon<(outs),
29 (ins s32_0Imm:$offset), "DUPLEX", [], "", DUPLEX, TypePSEUDO>;
32 let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
33 isAsmParserOnly = 1 in
34 def TFRI64_V2_ext : InstHexagon<(outs DoubleRegs:$dst),
35 (ins s32_0Imm:$src1, s8_0Imm:$src2),
36 "$dst = combine(#$src1,#$src2)", [], "",
37 A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;
40 let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
41 hasNewValue = 1, opNewValue = 0 in
42 class REG_IMMED<string RegHalf, bit Rs, bits<3> MajOp, bit MinOp,
44 : InstHexagon<(outs IntRegs:$dst),
45 (ins u16_0Imm:$imm_value),
46 "$dst"#RegHalf#" = #$imm_value", [], "",
47 rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
52 let Inst{26-24} = MajOp;
54 let Inst{20-16} = dst;
55 let Inst{23-22} = imm_value{15-14};
56 let Inst{13-0} = imm_value{13-0};
59 let isAsmParserOnly = 1 in {
60 def LO : REG_IMMED<".l", 0b0, 0b001, 0b1, A2_tfril>;
61 def HI : REG_IMMED<".h", 0b0, 0b010, 0b1, A2_tfrih>;
64 let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in {
65 def CONST32 : CONSTLDInst<(outs IntRegs:$Rd), (ins i32imm:$v),
66 "$Rd = CONST32(#$v)", []>;
67 def CONST64 : CONSTLDInst<(outs DoubleRegs:$Rd), (ins i64imm:$v),
68 "$Rd = CONST64(#$v)", []>;
71 let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
73 def PS_true : InstHexagon<(outs PredRegs:$dst), (ins), "",
74 [(set I1:$dst, 1)], "", C2_orn.Itinerary, TypeCR>;
76 let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
78 def PS_false : InstHexagon<(outs PredRegs:$dst), (ins), "",
79 [(set I1:$dst, 0)], "", C2_andn.Itinerary, TypeCR>;
81 let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in
82 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
83 ".error \"should not emit\" ", []>;
85 let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in
86 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
87 ".error \"should not emit\" ", []>;
90 let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
91 Defs = [PC, LC0], Uses = [SA0, LC0] in {
92 def ENDLOOP0 : Endloop<(outs), (ins b30_2Imm:$offset),
97 let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
98 Defs = [PC, LC1], Uses = [SA1, LC1] in {
99 def ENDLOOP1 : Endloop<(outs), (ins b30_2Imm:$offset),
104 let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
105 Defs = [PC, LC0, LC1], Uses = [SA0, SA1, LC0, LC1] in {
106 def ENDLOOP01 : Endloop<(outs), (ins b30_2Imm:$offset),
111 let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
112 opExtendable = 0, hasSideEffects = 0 in
113 class LOOP_iBase<string mnemonic, InstHexagon rootInst>
114 : InstHexagon <(outs), (ins b30_2Imm:$offset, u10_0Imm:$src2),
115 mnemonic#"($offset,#$src2)",
116 [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
122 let Inst{27-22} = 0b100100;
123 let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
124 let Inst{20-16} = src2{9-5};
125 let Inst{12-8} = offset{8-4};
126 let Inst{7-5} = src2{4-2};
127 let Inst{4-3} = offset{3-2};
128 let Inst{1-0} = src2{1-0};
131 let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
132 opExtendable = 0, hasSideEffects = 0 in
133 class LOOP_rBase<string mnemonic, InstHexagon rootInst>
134 : InstHexagon<(outs), (ins b30_2Imm:$offset, IntRegs:$src2),
135 mnemonic#"($offset,$src2)",
136 [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
142 let Inst{27-22} = 0b000000;
143 let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
144 let Inst{20-16} = src2;
145 let Inst{12-8} = offset{8-4};
146 let Inst{4-3} = offset{3-2};
149 let Defs = [SA0, LC0, USR], isCodeGenOnly = 1, isExtended = 1,
150 opExtendable = 0 in {
151 def J2_loop0iext : LOOP_iBase<"loop0", J2_loop0i>;
152 def J2_loop1iext : LOOP_iBase<"loop1", J2_loop1i>;
155 // Interestingly only loop0's appear to set usr.lpcfg
156 let Defs = [SA1, LC1], isCodeGenOnly = 1, isExtended = 1, opExtendable = 0 in {
157 def J2_loop0rext : LOOP_rBase<"loop0", J2_loop0r>;
158 def J2_loop1rext : LOOP_rBase<"loop1", J2_loop1r>;
161 let isCall = 1, hasSideEffects = 1, isPredicable = 0,
162 isExtended = 0, isExtendable = 1, opExtendable = 0,
163 isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2 in
164 class T_Call<string ExtStr>
165 : InstHexagon<(outs), (ins a30_2Imm:$dst),
166 "call " # ExtStr # "$dst", [], "", J2_call.Itinerary, TypeJ>,
168 let BaseOpcode = "call";
172 let Inst{27-25} = 0b101;
173 let Inst{24-16,13-1} = dst{23-2};
177 let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1, Defs = [R16],
179 def CALLProfile : T_Call<"">;
181 let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1,
182 Defs = [PC, R31, R6, R7, P0] in
183 def PS_call_stk : T_Call<"">;
186 let isCall = 1, hasSideEffects = 1, cofMax1 = 1, isCodeGenOnly = 1 in
187 def PS_callr_nr: InstHexagon<(outs), (ins IntRegs:$Rs),
188 "callr $Rs", [], "", J2_callr.Itinerary, TypeJ>, OpcodeHexagon {
191 let isPredicatedFalse = 1;
194 let Inst{27-21} = 0b0000101;
195 let Inst{20-16} = Rs;
198 let isCall = 1, hasSideEffects = 1,
199 isExtended = 0, isExtendable = 1, opExtendable = 0, isCodeGenOnly = 1,
200 BaseOpcode = "PS_call_nr", isExtentSigned = 1, opExtentAlign = 2 in
201 class Call_nr<bits<5> nbits, bit isPred, bit isFalse, dag iops,
203 : Pseudo<(outs), iops, "">, PredRel {
206 let opExtentBits = nbits;
207 let isPredicable = 0; // !if(isPred, 0, 1);
208 let isPredicated = 0; // isPred;
209 let isPredicatedFalse = isFalse;
210 let Itinerary = itin;
213 def PS_call_nr : Call_nr<24, 0, 0, (ins s32_0Imm:$Ii), J2_call.Itinerary>;
214 //def PS_call_nrt: Call_nr<17, 1, 0, (ins PredRegs:$Pu, s32_0Imm:$dst),
215 // J2_callt.Itinerary>;
216 //def PS_call_nrf: Call_nr<17, 1, 1, (ins PredRegs:$Pu, s32_0Imm:$dst),
217 // J2_callf.Itinerary>;
219 let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
220 isPredicable = 1, hasSideEffects = 0, InputType = "reg",
222 class T_JMPr <InstHexagon rootInst>
223 : InstHexagon<(outs), (ins IntRegs:$dst), "jumpr $dst", [],
224 "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
228 let Inst{27-21} = 0b0010100;
229 let Inst{20-16} = dst;
232 // A return through builtin_eh_return.
233 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
234 isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
235 def EH_RETURN_JMPR : T_JMPr<J2_jumpr>;
237 // Indirect tail-call.
238 let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
239 isTerminator = 1, isCodeGenOnly = 1 in
240 def PS_tailcall_r : T_JMPr<J2_jumpr>;
243 // Direct tail-calls.
244 let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
245 isTerminator = 1, isCodeGenOnly = 1 in
246 def PS_tailcall_i : Pseudo<(outs), (ins a30_2Imm:$dst), "", []>;
248 let isCodeGenOnly = 1, isPseudo = 1, Uses = [R30], hasSideEffects = 0 in
249 def PS_aligna : Pseudo<(outs IntRegs:$Rd), (ins u32_0Imm:$A), "", []>;
251 // Generate frameindex addresses. The main reason for the offset operand is
252 // that every instruction that is allowed to have frame index as an operand
253 // will then have that operand followed by an immediate operand (the offset).
254 // This simplifies the frame-index elimination code.
256 let isMoveImm = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
257 isPseudo = 1, isCodeGenOnly = 1, hasSideEffects = 0, isExtendable = 1,
258 isExtentSigned = 1, opExtentBits = 16, opExtentAlign = 0 in {
259 let opExtendable = 2 in
260 def PS_fi : Pseudo<(outs IntRegs:$Rd),
261 (ins IntRegs:$fi, s32_0Imm:$off), "">;
262 let opExtendable = 3 in
263 def PS_fia : Pseudo<(outs IntRegs:$Rd),
264 (ins IntRegs:$Rs, IntRegs:$fi, s32_0Imm:$off), "">;
267 class CondStr<string CReg, bit True, bit New> {
268 string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
270 class JumpOpcStr<string Mnemonic, bit New, bit Taken> {
271 string S = Mnemonic # !if(Taken, ":t", ":nt");
273 let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
274 hasSideEffects = 0, InputType = "reg", cofMax1 = 1 in
275 class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak, InstHexagon rootInst>
276 : InstHexagon<(outs), (ins PredRegs:$src, IntRegs:$dst),
277 CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
278 JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst",
279 [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
282 let isPredicatedFalse = PredNot;
283 let isPredicatedNew = isPredNew;
289 let Inst{27-22} = 0b001101;
290 let Inst{21} = PredNot;
291 let Inst{20-16} = dst;
292 let Inst{12} = isTak;
293 let Inst{11} = isPredNew;
297 let isTerminator = 1, hasSideEffects = 0, isReturn = 1, isCodeGenOnly = 1,
298 isBarrier = 1, BaseOpcode = "JMPret" in {
299 def PS_jmpret : T_JMPr<J2_jumpr>, PredNewRel;
300 def PS_jmprett : T_JMPr_c<0, 0, 0, J2_jumprt>, PredNewRel;
301 def PS_jmpretf : T_JMPr_c<1, 0, 0, J2_jumprf>, PredNewRel;
302 def PS_jmprettnew : T_JMPr_c<0, 1, 0, J2_jumprtnew>, PredNewRel;
303 def PS_jmpretfnew : T_JMPr_c<1, 1, 0, J2_jumprfnew>, PredNewRel;
304 def PS_jmprettnewpt : T_JMPr_c<0, 1, 1, J2_jumprtnewpt>, PredNewRel;
305 def PS_jmpretfnewpt : T_JMPr_c<1, 1, 1, J2_jumprfnewpt>, PredNewRel;
308 //defm V6_vtran2x2_map : HexagonMapping<(outs HvxVR:$Vy32, HvxVR:$Vx32), (ins HvxVR:$Vx32in, IntRegs:$Rt32), "vtrans2x2(${Vy32},${Vx32},${Rt32})", (V6_vshuff HvxVR:$Vy32, HvxVR:$Vx32, HvxVR:$Vx32in, IntRegs:$Rt32)>;
310 // The reason for the custom inserter is to record all ALLOCA instructions
311 // in MachineFunctionInfo.
312 let Defs = [R29], hasSideEffects = 1 in
313 def PS_alloca: Pseudo <(outs IntRegs:$Rd),
314 (ins IntRegs:$Rs, u32_0Imm:$A), "", []>;
317 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
318 isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
319 def LDriw_pred : LDInst<(outs PredRegs:$dst),
320 (ins IntRegs:$addr, s32_0Imm:$off),
321 ".error \"should not emit\"", []>;
324 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
325 isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
326 def LDriw_ctr : LDInst<(outs CtrRegs:$dst),
327 (ins IntRegs:$addr, s32_0Imm:$off),
328 ".error \"should not emit\"", []>;
331 let isCodeGenOnly = 1, isPseudo = 1 in
332 def PS_pselect: InstHexagon<(outs DoubleRegs:$Rd),
333 (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
334 ".error \"should not emit\" ", [], "", A2_tfrpt.Itinerary, TypeALU32_2op>;
336 let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
338 isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
339 opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
340 class T_JMP: InstHexagon<(outs), (ins b30_2Imm:$dst),
342 [], "", J2_jump.Itinerary, TypeJ>, OpcodeHexagon {
346 let Inst{27-25} = 0b100;
347 let Inst{24-16} = dst{23-15};
348 let Inst{13-1} = dst{14-2};
351 // Restore registers and dealloc return function call.
352 let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
353 Defs = [R29, R30, R31, PC], isPredicable = 0, isAsmParserOnly = 1 in {
354 def RESTORE_DEALLOC_RET_JMP_V4 : T_JMP;
356 let isExtended = 1, opExtendable = 0 in
357 def RESTORE_DEALLOC_RET_JMP_V4_EXT : T_JMP;
359 let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
360 def RESTORE_DEALLOC_RET_JMP_V4_PIC : T_JMP;
362 let isExtended = 1, opExtendable = 0 in
363 def RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC : T_JMP;
367 // Restore registers and dealloc frame before a tail call.
368 let isCall = 1, Defs = [R29, R30, R31, PC], isAsmParserOnly = 1 in {
369 def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : T_Call<"">, PredRel;
371 let isExtended = 1, opExtendable = 0 in
372 def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT : T_Call<"">, PredRel;
374 let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
375 def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC : T_Call<"">, PredRel;
377 let isExtended = 1, opExtendable = 0 in
378 def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC : T_Call<"">, PredRel;
382 // Save registers function call.
383 let isCall = 1, Uses = [R29, R31], isAsmParserOnly = 1 in {
384 def SAVE_REGISTERS_CALL_V4 : T_Call<"">, PredRel;
386 let isExtended = 1, opExtendable = 0 in
387 def SAVE_REGISTERS_CALL_V4_EXT : T_Call<"">, PredRel;
390 def SAVE_REGISTERS_CALL_V4STK : T_Call<"">, PredRel;
392 let Defs = [P0], isExtended = 1, opExtendable = 0 in
393 def SAVE_REGISTERS_CALL_V4STK_EXT : T_Call<"">, PredRel;
395 let Defs = [R14, R15, R28] in
396 def SAVE_REGISTERS_CALL_V4_PIC : T_Call<"">, PredRel;
398 let Defs = [R14, R15, R28], isExtended = 1, opExtendable = 0 in
399 def SAVE_REGISTERS_CALL_V4_EXT_PIC : T_Call<"">, PredRel;
401 let Defs = [R14, R15, R28, P0] in
402 def SAVE_REGISTERS_CALL_V4STK_PIC : T_Call<"">, PredRel;
404 let Defs = [R14, R15, R28, P0], isExtended = 1, opExtendable = 0 in
405 def SAVE_REGISTERS_CALL_V4STK_EXT_PIC : T_Call<"">, PredRel;
408 // Vector store pseudos
409 let Predicates = [HasV60,UseHVX], isPseudo = 1, isCodeGenOnly = 1,
410 mayStore = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
411 class STriv_template<RegisterClass RC, InstHexagon rootInst>
412 : InstHexagon<(outs), (ins IntRegs:$addr, s32_0Imm:$off, RC:$src),
413 "", [], "", rootInst.Itinerary, rootInst.Type>;
415 def PS_vstorerv_ai: STriv_template<HvxVR, V6_vS32b_ai>,
416 Requires<[HasV60,UseHVX]>;
417 def PS_vstorerv_nt_ai: STriv_template<HvxVR, V6_vS32b_nt_ai>,
418 Requires<[HasV60,UseHVX]>;
419 def PS_vstorerw_ai: STriv_template<HvxWR, V6_vS32b_ai>,
420 Requires<[HasV60,UseHVX]>;
421 def PS_vstorerw_nt_ai: STriv_template<HvxWR, V6_vS32b_nt_ai>,
422 Requires<[HasV60,UseHVX]>;
424 let isPseudo = 1, isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0 in
425 def PS_vstorerq_ai: Pseudo<(outs),
426 (ins IntRegs:$Rs, s32_0Imm:$Off, HvxQR:$Qt), "", []>,
427 Requires<[HasV60,UseHVX]>;
429 // Vector load pseudos
430 let Predicates = [HasV60, UseHVX], isPseudo = 1, isCodeGenOnly = 1,
431 mayLoad = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
432 class LDriv_template<RegisterClass RC, InstHexagon rootInst>
433 : InstHexagon<(outs RC:$dst), (ins IntRegs:$addr, s32_0Imm:$off),
434 "", [], "", rootInst.Itinerary, rootInst.Type>;
436 def PS_vloadrv_ai: LDriv_template<HvxVR, V6_vL32b_ai>,
437 Requires<[HasV60,UseHVX]>;
438 def PS_vloadrv_nt_ai: LDriv_template<HvxVR, V6_vL32b_nt_ai>,
439 Requires<[HasV60,UseHVX]>;
440 def PS_vloadrw_ai: LDriv_template<HvxWR, V6_vL32b_ai>,
441 Requires<[HasV60,UseHVX]>;
442 def PS_vloadrw_nt_ai: LDriv_template<HvxWR, V6_vL32b_nt_ai>,
443 Requires<[HasV60,UseHVX]>;
445 let isPseudo = 1, isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0 in
446 def PS_vloadrq_ai: Pseudo<(outs HvxQR:$Qd),
447 (ins IntRegs:$Rs, s32_0Imm:$Off), "", []>,
448 Requires<[HasV60,UseHVX]>;
451 let isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
452 class VSELInst<dag outs, dag ins, InstHexagon rootInst>
453 : InstHexagon<outs, ins, "", [], "", rootInst.Itinerary, rootInst.Type>;
455 def PS_vselect: VSELInst<(outs HvxVR:$dst),
456 (ins PredRegs:$src1, HvxVR:$src2, HvxVR:$src3), V6_vcmov>,
457 Requires<[HasV60,UseHVX]>;
458 def PS_wselect: VSELInst<(outs HvxWR:$dst),
459 (ins PredRegs:$src1, HvxWR:$src2, HvxWR:$src3), V6_vccombine>,
460 Requires<[HasV60,UseHVX]>;
462 let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
463 isCodeGenOnly = 1 in {
464 def PS_qtrue: InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
465 V6_veqw.Itinerary, TypeCVI_VA>;
466 def PS_qfalse: InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
467 V6_vgtw.Itinerary, TypeCVI_VA>;
468 def PS_vdd0: InstHexagon<(outs HvxWR:$Vd), (ins), "", [], "",
469 V6_vsubw_dv.Itinerary, TypeCVI_VA_DV>;
473 let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
474 isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
475 def STriw_pred : STInst<(outs),
476 (ins IntRegs:$addr, s32_0Imm:$off, PredRegs:$src1),
477 ".error \"should not emit\"", []>;
479 let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
480 isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
481 def STriw_ctr : STInst<(outs),
482 (ins IntRegs:$addr, s32_0Imm:$off, CtrRegs:$src1),
483 ".error \"should not emit\"", []>;
485 let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
486 isAsmParserOnly = 1 in
487 def TFRI64_V4 : InstHexagon<(outs DoubleRegs:$dst),
488 (ins u64_0Imm:$src1),
489 "$dst = #$src1", [], "",
490 A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;
492 // Hexagon doesn't have a vector multiply with C semantics.
493 // Instead, generate a pseudo instruction that gets expanded into two
494 // scalar MPYI instructions.
495 // This is expanded by ExpandPostRAPseudos.
497 def PS_vmulw : PseudoM<(outs DoubleRegs:$Rd),
498 (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "", []>;
501 def PS_vmulw_acc : PseudoM<(outs DoubleRegs:$Rd),
502 (ins DoubleRegs:$Rx, DoubleRegs:$Rs, DoubleRegs:$Rt), "", [],
505 def DuplexIClass0: InstDuplex < 0 >;
506 def DuplexIClass1: InstDuplex < 1 >;
507 def DuplexIClass2: InstDuplex < 2 >;
508 let isExtendable = 1 in {
509 def DuplexIClass3: InstDuplex < 3 >;
510 def DuplexIClass4: InstDuplex < 4 >;
511 def DuplexIClass5: InstDuplex < 5 >;
512 def DuplexIClass6: InstDuplex < 6 >;
513 def DuplexIClass7: InstDuplex < 7 >;
515 def DuplexIClass8: InstDuplex < 8 >;
516 def DuplexIClass9: InstDuplex < 9 >;
517 def DuplexIClassA: InstDuplex < 0xA >;
518 def DuplexIClassB: InstDuplex < 0xB >;
519 def DuplexIClassC: InstDuplex < 0xC >;
520 def DuplexIClassD: InstDuplex < 0xD >;
521 def DuplexIClassE: InstDuplex < 0xE >;
522 def DuplexIClassF: InstDuplex < 0xF >;
524 // Pseudos for circular buffer instructions. These are needed in order to
525 // allocate the correct pair of CSx and Mx registers.
526 multiclass NewCircularLoad<RegisterClass RC, MemAccessSize MS> {
528 let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
529 addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
530 // Use timing class of L2_loadrb_pci.
531 def NAME#_pci : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
532 (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, IntRegs:$Cs),
533 ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_5ceb2f9e>;
535 // Use timing class of L2_loadrb_pcr.
536 def NAME#_pcr : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
537 (ins IntRegs:$Rx32in, ModRegs:$Mu2, IntRegs:$Cs),
538 ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_075c8dd8>;
542 defm PS_loadrub : NewCircularLoad<IntRegs, ByteAccess>;
543 defm PS_loadrb : NewCircularLoad<IntRegs, ByteAccess>;
544 defm PS_loadruh : NewCircularLoad<IntRegs, HalfWordAccess>;
545 defm PS_loadrh : NewCircularLoad<IntRegs, HalfWordAccess>;
546 defm PS_loadri : NewCircularLoad<IntRegs, WordAccess>;
547 defm PS_loadrd : NewCircularLoad<DoubleRegs, DoubleWordAccess>;
549 multiclass NewCircularStore<RegisterClass RC, MemAccessSize MS> {
551 let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
552 addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
553 // Use timing class of S2_storerb_pci.
554 def NAME#_pci : STInst<(outs IntRegs:$Rx32),
555 (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
556 ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_b4dc7630>;
558 // Use timing class of S2_storerb_pcr.
559 def NAME#_pcr : STInst<(outs IntRegs:$Rx32),
560 (ins IntRegs:$Rx32in, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
561 ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_a2b365d2>;
565 defm PS_storerb : NewCircularStore<IntRegs, ByteAccess>;
566 defm PS_storerh : NewCircularStore<IntRegs, HalfWordAccess>;
567 defm PS_storerf : NewCircularStore<IntRegs, HalfWordAccess>;
568 defm PS_storeri : NewCircularStore<IntRegs, WordAccess>;
569 defm PS_storerd : NewCircularStore<DoubleRegs, WordAccess>;
571 // A pseudo that generates a runtime crash. This is used to implement
573 let hasSideEffects = 1, isPseudo = 1, isCodeGenOnly = 1, isSolo = 1 in
574 def PS_crash: InstHexagon<(outs), (ins), "", [], "", PSEUDO, TypePSEUDO>;