[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonTargetTransformInfo.cpp
blob1bdd8c3c513a11bfbf1bc5e84211309787610006
1 //===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 /// This file implements a TargetTransformInfo analysis pass specific to the
9 /// Hexagon target machine. It uses the target's detailed information to provide
10 /// more precise answers to certain TTI queries, while letting the target
11 /// independent and default TTI implementations handle the rest.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "HexagonTargetTransformInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/InstrTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/User.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Transforms/Utils/LoopPeel.h"
25 #include "llvm/Transforms/Utils/UnrollLoop.h"
27 using namespace llvm;
29 #define DEBUG_TYPE "hexagontti"
31 static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
32 cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
34 static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
35 cl::init(true), cl::Hidden,
36 cl::desc("Control lookup table emission on Hexagon target"));
38 static cl::opt<bool> HexagonMaskedVMem("hexagon-masked-vmem", cl::init(true),
39 cl::Hidden, cl::desc("Enable masked loads/stores for HVX"));
41 // Constant "cost factor" to make floating point operations more expensive
42 // in terms of vectorization cost. This isn't the best way, but it should
43 // do. Ultimately, the cost should use cycles.
44 static const unsigned FloatFactor = 4;
46 bool HexagonTTIImpl::useHVX() const {
47 return ST.useHVXOps() && HexagonAutoHVX;
50 unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
51 if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
52 return VTy->getNumElements();
53 assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
54 "Expecting scalar type");
55 return 1;
58 TargetTransformInfo::PopcntSupportKind
59 HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
60 // Return fast hardware support as every input < 64 bits will be promoted
61 // to 64 bits.
62 return TargetTransformInfo::PSK_FastHardware;
65 // The Hexagon target can unroll loops with run-time trip counts.
66 void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
67 TTI::UnrollingPreferences &UP,
68 OptimizationRemarkEmitter *ORE) {
69 UP.Runtime = UP.Partial = true;
72 void HexagonTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
73 TTI::PeelingPreferences &PP) {
74 BaseT::getPeelingPreferences(L, SE, PP);
75 // Only try to peel innermost loops with small runtime trip counts.
76 if (L && L->isInnermost() && canPeel(L) &&
77 SE.getSmallConstantTripCount(L) == 0 &&
78 SE.getSmallConstantMaxTripCount(L) > 0 &&
79 SE.getSmallConstantMaxTripCount(L) <= 5) {
80 PP.PeelCount = 2;
84 TTI::AddressingModeKind
85 HexagonTTIImpl::getPreferredAddressingMode(const Loop *L,
86 ScalarEvolution *SE) const {
87 return TTI::AMK_PostIndexed;
90 /// --- Vector TTI begin ---
92 unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
93 if (Vector)
94 return useHVX() ? 32 : 0;
95 return 32;
98 unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 return useHVX() ? 2 : 1;
102 TypeSize
103 HexagonTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
104 switch (K) {
105 case TargetTransformInfo::RGK_Scalar:
106 return TypeSize::getFixed(32);
107 case TargetTransformInfo::RGK_FixedWidthVector:
108 return TypeSize::getFixed(getMinVectorRegisterBitWidth());
109 case TargetTransformInfo::RGK_ScalableVector:
110 return TypeSize::getScalable(0);
113 llvm_unreachable("Unsupported register kind");
116 unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
117 return useHVX() ? ST.getVectorLength()*8 : 32;
120 ElementCount HexagonTTIImpl::getMinimumVF(unsigned ElemWidth,
121 bool IsScalable) const {
122 assert(!IsScalable && "Scalable VFs are not supported for Hexagon");
123 return ElementCount::getFixed((8 * ST.getVectorLength()) / ElemWidth);
126 InstructionCost HexagonTTIImpl::getScalarizationOverhead(
127 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract) {
128 return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
131 InstructionCost
132 HexagonTTIImpl::getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
133 ArrayRef<Type *> Tys) {
134 return BaseT::getOperandsScalarizationOverhead(Args, Tys);
137 InstructionCost HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
138 ArrayRef<Type *> Tys,
139 TTI::TargetCostKind CostKind) {
140 return BaseT::getCallInstrCost(F, RetTy, Tys, CostKind);
143 InstructionCost
144 HexagonTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
145 TTI::TargetCostKind CostKind) {
146 if (ICA.getID() == Intrinsic::bswap) {
147 std::pair<InstructionCost, MVT> LT =
148 TLI.getTypeLegalizationCost(DL, ICA.getReturnType());
149 return LT.first + 2;
151 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
154 InstructionCost HexagonTTIImpl::getAddressComputationCost(Type *Tp,
155 ScalarEvolution *SE,
156 const SCEV *S) {
157 return 0;
160 InstructionCost HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
161 MaybeAlign Alignment,
162 unsigned AddressSpace,
163 TTI::TargetCostKind CostKind,
164 const Instruction *I) {
165 assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
166 // TODO: Handle other cost kinds.
167 if (CostKind != TTI::TCK_RecipThroughput)
168 return 1;
170 if (Opcode == Instruction::Store)
171 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
172 CostKind, I);
174 if (Src->isVectorTy()) {
175 VectorType *VecTy = cast<VectorType>(Src);
176 unsigned VecWidth = VecTy->getPrimitiveSizeInBits().getFixedSize();
177 if (useHVX() && ST.isTypeForHVX(VecTy)) {
178 unsigned RegWidth =
179 getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
180 .getFixedSize();
181 assert(RegWidth && "Non-zero vector register width expected");
182 // Cost of HVX loads.
183 if (VecWidth % RegWidth == 0)
184 return VecWidth / RegWidth;
185 // Cost of constructing HVX vector from scalar loads
186 const Align RegAlign(RegWidth / 8);
187 if (!Alignment || *Alignment > RegAlign)
188 Alignment = RegAlign;
189 assert(Alignment);
190 unsigned AlignWidth = 8 * Alignment->value();
191 unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
192 return 3 * NumLoads;
195 // Non-HVX vectors.
196 // Add extra cost for floating point types.
197 unsigned Cost =
198 VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
200 // At this point unspecified alignment is considered as Align(1).
201 const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
202 unsigned AlignWidth = 8 * BoundAlignment.value();
203 unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
204 if (Alignment == Align(4) || Alignment == Align(8))
205 return Cost * NumLoads;
206 // Loads of less than 32 bits will need extra inserts to compose a vector.
207 assert(BoundAlignment <= Align(8));
208 unsigned LogA = Log2(BoundAlignment);
209 return (3 - LogA) * Cost * NumLoads;
212 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
213 CostKind, I);
216 InstructionCost
217 HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
218 Align Alignment, unsigned AddressSpace,
219 TTI::TargetCostKind CostKind) {
220 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
221 CostKind);
224 InstructionCost HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
225 ArrayRef<int> Mask, int Index,
226 Type *SubTp) {
227 return 1;
230 InstructionCost HexagonTTIImpl::getGatherScatterOpCost(
231 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
232 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
233 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
234 Alignment, CostKind, I);
237 InstructionCost HexagonTTIImpl::getInterleavedMemoryOpCost(
238 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
239 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
240 bool UseMaskForCond, bool UseMaskForGaps) {
241 if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
242 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
243 Alignment, AddressSpace,
244 CostKind,
245 UseMaskForCond, UseMaskForGaps);
246 return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
247 CostKind);
250 InstructionCost HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
251 Type *CondTy,
252 CmpInst::Predicate VecPred,
253 TTI::TargetCostKind CostKind,
254 const Instruction *I) {
255 if (ValTy->isVectorTy() && CostKind == TTI::TCK_RecipThroughput) {
256 std::pair<InstructionCost, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
257 if (Opcode == Instruction::FCmp)
258 return LT.first + FloatFactor * getTypeNumElements(ValTy);
260 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
263 InstructionCost HexagonTTIImpl::getArithmeticInstrCost(
264 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
265 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
266 TTI::OperandValueProperties Opd1PropInfo,
267 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
268 const Instruction *CxtI) {
269 // TODO: Handle more cost kinds.
270 if (CostKind != TTI::TCK_RecipThroughput)
271 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
272 Opd2Info, Opd1PropInfo,
273 Opd2PropInfo, Args, CxtI);
275 if (Ty->isVectorTy()) {
276 std::pair<InstructionCost, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
277 if (LT.second.isFloatingPoint())
278 return LT.first + FloatFactor * getTypeNumElements(Ty);
280 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
281 Opd1PropInfo, Opd2PropInfo, Args, CxtI);
284 InstructionCost HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
285 Type *SrcTy,
286 TTI::CastContextHint CCH,
287 TTI::TargetCostKind CostKind,
288 const Instruction *I) {
289 if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
290 unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
291 unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
293 std::pair<InstructionCost, MVT> SrcLT =
294 TLI.getTypeLegalizationCost(DL, SrcTy);
295 std::pair<InstructionCost, MVT> DstLT =
296 TLI.getTypeLegalizationCost(DL, DstTy);
297 InstructionCost Cost =
298 std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
299 // TODO: Allow non-throughput costs that aren't binary.
300 if (CostKind != TTI::TCK_RecipThroughput)
301 return Cost == 0 ? 0 : 1;
302 return Cost;
304 return 1;
307 InstructionCost HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
308 unsigned Index) {
309 Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
310 : Val;
311 if (Opcode == Instruction::InsertElement) {
312 // Need two rotations for non-zero index.
313 unsigned Cost = (Index != 0) ? 2 : 0;
314 if (ElemTy->isIntegerTy(32))
315 return Cost;
316 // If it's not a 32-bit value, there will need to be an extract.
317 return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
320 if (Opcode == Instruction::ExtractElement)
321 return 2;
323 return 1;
326 bool HexagonTTIImpl::isLegalMaskedStore(Type *DataType, Align /*Alignment*/) {
327 return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
330 bool HexagonTTIImpl::isLegalMaskedLoad(Type *DataType, Align /*Alignment*/) {
331 return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
334 /// --- Vector TTI end ---
336 unsigned HexagonTTIImpl::getPrefetchDistance() const {
337 return ST.getL1PrefetchDistance();
340 unsigned HexagonTTIImpl::getCacheLineSize() const {
341 return ST.getL1CacheLineSize();
344 InstructionCost HexagonTTIImpl::getUserCost(const User *U,
345 ArrayRef<const Value *> Operands,
346 TTI::TargetCostKind CostKind) {
347 auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
348 if (!CI->isIntegerCast())
349 return false;
350 // Only extensions from an integer type shorter than 32-bit to i32
351 // can be folded into the load.
352 const DataLayout &DL = getDataLayout();
353 unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
354 unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
355 if (DBW != 32 || SBW >= DBW)
356 return false;
358 const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
359 // Technically, this code could allow multiple uses of the load, and
360 // check if all the uses are the same extension operation, but this
361 // should be sufficient for most cases.
362 return LI && LI->hasOneUse();
365 if (const CastInst *CI = dyn_cast<const CastInst>(U))
366 if (isCastFoldedIntoLoad(CI))
367 return TargetTransformInfo::TCC_Free;
368 return BaseT::getUserCost(U, Operands, CostKind);
371 bool HexagonTTIImpl::shouldBuildLookupTables() const {
372 return EmitLookupTables;