[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Hexagon / MCTargetDesc / HexagonMCInstrInfo.h
blob7b3c079880f8de4cd79b640aef4516c804a3bbaf
1 //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Utility functions for Hexagon specific MCInst queries
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
14 #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/MC/MCInst.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cstddef>
22 #include <cstdint>
24 namespace llvm {
26 class HexagonMCChecker;
27 class MCContext;
28 class MCExpr;
29 class MCInstrDesc;
30 class MCInstrInfo;
31 class MCRegisterInfo;
32 class MCSubtargetInfo;
34 class DuplexCandidate {
35 public:
36 unsigned packetIndexI, packetIndexJ, iClass;
38 DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
39 : packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
42 namespace Hexagon {
44 class PacketIterator {
45 MCInstrInfo const &MCII;
46 MCInst::const_iterator BundleCurrent;
47 MCInst::const_iterator BundleEnd;
48 MCInst::const_iterator DuplexCurrent;
49 MCInst::const_iterator DuplexEnd;
51 public:
52 PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst);
53 PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t);
55 PacketIterator &operator++();
56 MCInst const &operator*() const;
57 bool operator==(PacketIterator const &Other) const;
58 bool operator!=(PacketIterator const &Other) const {
59 return !(*this == Other);
63 } // end namespace Hexagon
65 namespace HexagonMCInstrInfo {
67 size_t const innerLoopOffset = 0;
68 int64_t const innerLoopMask = 1 << innerLoopOffset;
70 size_t const outerLoopOffset = 1;
71 int64_t const outerLoopMask = 1 << outerLoopOffset;
73 // do not reorder memory load/stores by default load/stores are re-ordered
74 // and by default loads can be re-ordered
75 size_t const memReorderDisabledOffset = 2;
76 int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;
78 size_t const bundleInstructionsOffset = 1;
80 void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
81 void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
82 MCInst const &MCI);
84 // Returns a iterator range of instructions in this bundle
85 iterator_range<Hexagon::PacketIterator>
86 bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI);
87 iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
89 // Returns the number of instructions in the bundle
90 size_t bundleSize(MCInst const &MCI);
92 // Put the packet in to canonical form, compound, duplex, pad, and shuffle
93 bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
94 MCContext &Context, MCInst &MCB,
95 HexagonMCChecker *Checker,
96 bool AttemptCompatibility = false);
98 // Create a duplex instruction given the two subinsts
99 MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
100 MCInst const &inst1);
101 MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
102 MCOperand const &MO);
104 // Convert this instruction in to a duplex subinst
105 MCInst deriveSubInst(MCInst const &Inst);
107 // Return the extender for instruction at Index or nullptr if none
108 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
109 void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
110 MCInst const &MCI);
112 // Return memory access size in bytes
113 unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI);
115 // Return memory access size
116 unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI);
118 MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
120 // Return which duplex group this instruction belongs to
121 unsigned getDuplexCandidateGroup(MCInst const &MI);
123 // Return a list of all possible instruction duplex combinations
124 SmallVector<DuplexCandidate, 8>
125 getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
126 MCInst const &MCB);
127 unsigned getDuplexRegisterNumbering(unsigned Reg);
129 MCExpr const &getExpr(MCExpr const &Expr);
131 // Return the index of the extendable operand
132 unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
134 // Return a reference to the extendable operand
135 MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
136 MCInst const &MCI);
138 // Return the implicit alignment of the extendable operand
139 unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);
141 // Return the number of logical bits of the extendable operand
142 unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);
144 // Check if the extendable operand is signed.
145 bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI);
147 // Return the max value that a constant extendable operand can have
148 // without being extended.
149 int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);
151 // Return the min value that a constant extendable operand can have
152 // without being extended.
153 int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);
155 // Return instruction name
156 StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI);
158 // Return the operand index for the new value.
159 unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
161 // Return the operand that consumes or produces a new value.
162 MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
163 unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
164 MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
165 MCInst const &MCI);
167 // Return the Hexagon ISA class for the insn.
168 unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
170 /// Return the resources used by this instruction
171 unsigned getCVIResources(MCInstrInfo const &MCII,
172 MCSubtargetInfo const &STI,
173 MCInst const &MCI);
175 /// Return the slots used by the insn.
176 unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
177 MCInst const &MCI);
178 unsigned getOtherReservedSlots(MCInstrInfo const &MCII,
179 MCSubtargetInfo const &STI, MCInst const &MCI);
180 bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
182 // Does the packet have an extender for the instruction at Index
183 bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
185 bool hasImmExt(MCInst const &MCI);
187 // Return whether the instruction is a legal new-value producer.
188 bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
189 bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
190 bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI);
191 unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
193 int64_t minConstant(MCInst const &MCI, size_t Index);
194 template <unsigned N, unsigned S>
195 bool inRange(MCInst const &MCI, size_t Index) {
196 return isShiftedUInt<N, S>(minConstant(MCI, Index));
198 template <unsigned N, unsigned S>
199 bool inSRange(MCInst const &MCI, size_t Index) {
200 return isShiftedInt<N, S>(minConstant(MCI, Index));
202 template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
203 return isUInt<N>(minConstant(MCI, Index));
206 // Return the instruction at Index
207 MCInst const &instruction(MCInst const &MCB, size_t Index);
208 bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI);
210 // Returns whether this MCInst is a wellformed bundle
211 bool isBundle(MCInst const &MCI);
213 // Return whether the insn is an actual insn.
214 bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
215 bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI);
216 bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI);
217 bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI);
218 bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
220 // Return whether the instruction needs to be constant extended.
221 bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
222 bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI);
224 // Is this double register suitable for use in a duplex subinst
225 bool isDblRegForSubInst(unsigned Reg);
227 // Is this a duplex instruction
228 bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
230 // Can these instructions be duplexed
231 bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
233 // Can these duplex classes be combine in to a duplex instruction
234 bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
236 // Return true if the insn may be extended based on the operand value.
237 bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
239 // Return whether the instruction must be always extended.
240 bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);
242 /// Return whether it is a floating-point insn.
243 bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);
245 bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI);
247 // Returns whether this instruction is an immediate extender
248 bool isImmext(MCInst const &MCI);
250 // Returns whether this bundle is an endloop0
251 bool isInnerLoop(MCInst const &MCI);
253 // Is this an integer register
254 bool isIntReg(unsigned Reg);
256 // Is this register suitable for use in a duplex subinst
257 bool isIntRegForSubInst(unsigned Reg);
258 bool isMemReorderDisabled(MCInst const &MCI);
260 // Return whether the insn is a new-value consumer.
261 bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
262 /// Return true if the operand is a new-value store insn.
263 bool isNewValueStore(MCInstrInfo const &MCII, MCInst const &MCI);
264 bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short);
266 // Can these two instructions be duplexed
267 bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
268 bool ExtendedA, MCInst const &MIb, bool ExtendedB,
269 bool bisReversable, MCSubtargetInfo const &STI);
271 // Returns whether this bundle is an endloop1
272 bool isOuterLoop(MCInst const &MCI);
274 // Return whether this instruction is predicated
275 bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
276 bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
277 bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
279 // Return whether the predicate sense is true
280 bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
282 // Return true if this is a scalar predicate register.
283 bool isPredReg(MCRegisterInfo const &MRI, unsigned Reg);
285 // Returns true if the Ith operand is a predicate register.
286 bool isPredRegister(MCInstrInfo const &MCII, MCInst const &Inst, unsigned I);
288 // Return whether the insn is a prefix.
289 bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
291 // Return whether the insn is solo, i.e., cannot be in a packet.
292 bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);
294 /// Return whether the insn can be packaged only with A and X-type insns.
295 bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
297 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
298 bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI);
299 bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI);
300 bool isSubInstruction(MCInst const &MCI);
301 bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
302 bool mustExtend(MCExpr const &Expr);
303 bool mustNotExtend(MCExpr const &Expr);
305 // Returns true if this instruction requires a slot to execute.
306 bool requiresSlot(MCSubtargetInfo const &STI, MCInst const &MCI);
308 unsigned packetSize(StringRef CPU);
310 // Returns the maximum number of slots available in the given
311 // subtarget's packets.
312 unsigned packetSizeSlots(MCSubtargetInfo const &STI);
314 // Returns the number of slots consumed by this packet, considering duplexed
315 // and compound instructions.
316 unsigned slotsConsumed(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
317 MCInst const &MCI);
320 // Pad the bundle with nops to satisfy endloop requirements
321 void padEndloop(MCInst &MCI, MCContext &Context);
322 class PredicateInfo {
323 public:
324 PredicateInfo() : Register(0), Operand(0), PredicatedTrue(false) {}
325 PredicateInfo(unsigned Register, unsigned Operand, bool PredicatedTrue)
326 : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {}
327 bool isPredicated() const;
328 unsigned Register;
329 unsigned Operand;
330 bool PredicatedTrue;
332 PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI);
333 bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
335 // Replace the instructions inside MCB, represented by Candidate
336 void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate);
338 bool s27_2_reloc(MCExpr const &Expr);
339 // Marks a bundle as endloop0
340 void setInnerLoop(MCInst &MCI);
341 void setMemReorderDisabled(MCInst &MCI);
342 void setMustExtend(MCExpr const &Expr, bool Val = true);
343 void setMustNotExtend(MCExpr const &Expr, bool Val = true);
344 void setS27_2_reloc(MCExpr const &Expr, bool Val = true);
346 // Marks a bundle as endloop1
347 void setOuterLoop(MCInst &MCI);
349 // Would duplexing this instruction create a requirement to extend
350 bool subInstWouldBeExtended(MCInst const &potentialDuplex);
351 unsigned SubregisterBit(unsigned Consumer, unsigned Producer,
352 unsigned Producer2);
354 bool IsVecRegSingle(unsigned VecReg);
355 bool IsVecRegPair(unsigned VecReg);
356 bool IsReverseVecRegPair(unsigned VecReg);
357 bool IsSingleConsumerRefPairProducer(unsigned Producer, unsigned Consumer);
359 /// Returns an ordered pair of the constituent register ordinals for
360 /// each of the elements of \a VecRegPair. For example, Hexagon::W0 ("v0:1")
361 /// returns { 0, 1 } and Hexagon::W1 ("v3:2") returns { 3, 2 }.
362 std::pair<unsigned, unsigned> GetVecRegPairIndices(unsigned VecRegPair);
364 // Attempt to find and replace compound pairs
365 void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
366 MCContext &Context, MCInst &MCI);
368 } // end namespace HexagonMCInstrInfo
370 } // end namespace llvm
372 #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H