1 //===-- M68kISelLowering.cpp - M68k DAG Lowering Impl ------*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file defines the interfaces that M68k uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #include "M68kISelLowering.h"
16 #include "M68kCallingConv.h"
17 #include "M68kMachineFunction.h"
18 #include "M68kSubtarget.h"
19 #include "M68kTargetMachine.h"
20 #include "M68kTargetObjectFile.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
42 #define DEBUG_TYPE "M68k-isel"
44 STATISTIC(NumTailCalls
, "Number of tail calls");
46 M68kTargetLowering::M68kTargetLowering(const M68kTargetMachine
&TM
,
47 const M68kSubtarget
&STI
)
48 : TargetLowering(TM
), Subtarget(STI
), TM(TM
) {
52 setBooleanContents(ZeroOrOneBooleanContent
);
54 auto *RegInfo
= Subtarget
.getRegisterInfo();
55 setStackPointerRegisterToSaveRestore(RegInfo
->getStackRegister());
57 // Set up the register classes.
58 addRegisterClass(MVT::i8
, &M68k::DR8RegClass
);
59 addRegisterClass(MVT::i16
, &M68k::XR16RegClass
);
60 addRegisterClass(MVT::i32
, &M68k::XR32RegClass
);
62 for (auto VT
: MVT::integer_valuetypes()) {
63 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
64 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
65 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
68 // We don't accept any truncstore of integer registers.
69 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
70 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
71 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
72 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
73 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
74 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
76 setOperationAction(ISD::MUL
, MVT::i8
, Promote
);
77 setOperationAction(ISD::MUL
, MVT::i16
, Legal
);
78 if (Subtarget
.atLeastM68020())
79 setOperationAction(ISD::MUL
, MVT::i32
, Legal
);
81 setOperationAction(ISD::MUL
, MVT::i32
, LibCall
);
82 setOperationAction(ISD::MUL
, MVT::i64
, LibCall
);
85 {ISD::SDIV
, ISD::UDIV
, ISD::SREM
, ISD::UREM
, ISD::UDIVREM
, ISD::SDIVREM
,
86 ISD::MULHS
, ISD::MULHU
, ISD::UMUL_LOHI
, ISD::SMUL_LOHI
}) {
87 setOperationAction(OP
, MVT::i8
, Promote
);
88 setOperationAction(OP
, MVT::i16
, Legal
);
89 setOperationAction(OP
, MVT::i32
, LibCall
);
92 for (auto OP
: {ISD::UMUL_LOHI
, ISD::SMUL_LOHI
}) {
93 setOperationAction(OP
, MVT::i8
, Expand
);
94 setOperationAction(OP
, MVT::i16
, Expand
);
97 // FIXME It would be better to use a custom lowering
98 for (auto OP
: {ISD::SMULO
, ISD::UMULO
}) {
99 setOperationAction(OP
, MVT::i8
, Expand
);
100 setOperationAction(OP
, MVT::i16
, Expand
);
101 setOperationAction(OP
, MVT::i32
, Expand
);
104 // Add/Sub overflow ops with MVT::Glues are lowered to CCR dependences.
105 for (auto VT
: {MVT::i8
, MVT::i16
, MVT::i32
}) {
106 setOperationAction(ISD::ADDC
, VT
, Custom
);
107 setOperationAction(ISD::ADDE
, VT
, Custom
);
108 setOperationAction(ISD::SUBC
, VT
, Custom
);
109 setOperationAction(ISD::SUBE
, VT
, Custom
);
112 // SADDO and friends are legal with this setup, i hope
113 for (auto VT
: {MVT::i8
, MVT::i16
, MVT::i32
}) {
114 setOperationAction(ISD::SADDO
, VT
, Custom
);
115 setOperationAction(ISD::UADDO
, VT
, Custom
);
116 setOperationAction(ISD::SSUBO
, VT
, Custom
);
117 setOperationAction(ISD::USUBO
, VT
, Custom
);
120 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
121 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
123 for (auto VT
: {MVT::i8
, MVT::i16
, MVT::i32
}) {
124 setOperationAction(ISD::BR_CC
, VT
, Expand
);
125 setOperationAction(ISD::SELECT
, VT
, Custom
);
126 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
127 setOperationAction(ISD::SETCC
, VT
, Custom
);
128 setOperationAction(ISD::SETCCCARRY
, VT
, Custom
);
131 for (auto VT
: {MVT::i8
, MVT::i16
, MVT::i32
}) {
132 setOperationAction(ISD::BSWAP
, VT
, Expand
);
133 setOperationAction(ISD::CTTZ
, VT
, Expand
);
134 setOperationAction(ISD::CTLZ
, VT
, Expand
);
135 setOperationAction(ISD::CTPOP
, VT
, Expand
);
138 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
139 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
140 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
141 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
142 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
143 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
145 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
146 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
147 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
148 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
150 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
151 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
153 setOperationAction(ISD::DYNAMIC_STACKALLOC
, PtrVT
, Custom
);
155 computeRegisterProperties(STI
.getRegisterInfo());
158 // FIXME can it be just 2^1?
159 setMinFunctionAlignment(Align::Constant
<2>());
162 EVT
M68kTargetLowering::getSetCCResultType(const DataLayout
&DL
,
163 LLVMContext
&Context
, EVT VT
) const {
164 // M68k SETcc producess either 0x00 or 0xFF
168 MVT
M68kTargetLowering::getScalarShiftAmountTy(const DataLayout
&DL
,
171 return Ty
.getSimpleVT();
173 return MVT::getIntegerVT(8 * DL
.getPointerSize(0));
176 #include "M68kGenCallingConv.inc"
178 enum StructReturnType
{ NotStructReturn
, RegStructReturn
, StackStructReturn
};
180 static StructReturnType
181 callIsStructReturn(const SmallVectorImpl
<ISD::OutputArg
> &Outs
) {
183 return NotStructReturn
;
185 const ISD::ArgFlagsTy
&Flags
= Outs
[0].Flags
;
187 return NotStructReturn
;
189 return RegStructReturn
;
190 return StackStructReturn
;
193 /// Determines whether a function uses struct return semantics.
194 static StructReturnType
195 argsAreStructReturn(const SmallVectorImpl
<ISD::InputArg
> &Ins
) {
197 return NotStructReturn
;
199 const ISD::ArgFlagsTy
&Flags
= Ins
[0].Flags
;
201 return NotStructReturn
;
203 return RegStructReturn
;
204 return StackStructReturn
;
207 /// Make a copy of an aggregate at address specified by "Src" to address
208 /// "Dst" with size and alignment information specified by the specific
209 /// parameter attribute. The copy will be passed as a byval function parameter.
210 static SDValue
CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
,
211 SDValue Chain
, ISD::ArgFlagsTy Flags
,
212 SelectionDAG
&DAG
, const SDLoc
&DL
) {
213 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), DL
, MVT::i32
);
215 return DAG
.getMemcpy(
216 Chain
, DL
, Dst
, Src
, SizeNode
, Flags
.getNonZeroByValAlign(),
217 /*isVolatile=*/false, /*AlwaysInline=*/true,
218 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
221 /// Return true if the calling convention is one that we can guarantee TCO for.
222 static bool canGuaranteeTCO(CallingConv::ID CC
) { return false; }
224 /// Return true if we might ever do TCO for calls with this calling convention.
225 static bool mayTailCallThisCC(CallingConv::ID CC
) {
227 // C calling conventions:
231 return canGuaranteeTCO(CC
);
235 /// Return true if the function is being made into a tailcall target by
236 /// changing its ABI.
237 static bool shouldGuaranteeTCO(CallingConv::ID CC
, bool GuaranteedTailCallOpt
) {
238 return GuaranteedTailCallOpt
&& canGuaranteeTCO(CC
);
241 /// Return true if the given stack call argument is already available in the
242 /// same position (relatively) of the caller's incoming argument stack.
243 static bool MatchingStackOffset(SDValue Arg
, unsigned Offset
,
244 ISD::ArgFlagsTy Flags
, MachineFrameInfo
&MFI
,
245 const MachineRegisterInfo
*MRI
,
246 const M68kInstrInfo
*TII
,
247 const CCValAssign
&VA
) {
248 unsigned Bytes
= Arg
.getValueType().getSizeInBits() / 8;
251 // Look through nodes that don't alter the bits of the incoming value.
252 unsigned Op
= Arg
.getOpcode();
253 if (Op
== ISD::ZERO_EXTEND
|| Op
== ISD::ANY_EXTEND
|| Op
== ISD::BITCAST
) {
254 Arg
= Arg
.getOperand(0);
257 if (Op
== ISD::TRUNCATE
) {
258 const SDValue
&TruncInput
= Arg
.getOperand(0);
259 if (TruncInput
.getOpcode() == ISD::AssertZext
&&
260 cast
<VTSDNode
>(TruncInput
.getOperand(1))->getVT() ==
261 Arg
.getValueType()) {
262 Arg
= TruncInput
.getOperand(0);
270 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
271 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
272 if (!Register::isVirtualRegister(VR
))
274 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
277 if (!Flags
.isByVal()) {
278 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
281 unsigned Opcode
= Def
->getOpcode();
282 if ((Opcode
== M68k::LEA32p
|| Opcode
== M68k::LEA32f
) &&
283 Def
->getOperand(1).isFI()) {
284 FI
= Def
->getOperand(1).getIndex();
285 Bytes
= Flags
.getByValSize();
289 } else if (auto *Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
291 // ByVal argument is passed in as a pointer but it's now being
292 // dereferenced. e.g.
293 // define @foo(%struct.X* %A) {
294 // tail call @bar(%struct.X* byval %A)
297 SDValue Ptr
= Ld
->getBasePtr();
298 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
301 FI
= FINode
->getIndex();
302 } else if (Arg
.getOpcode() == ISD::FrameIndex
&& Flags
.isByVal()) {
303 FrameIndexSDNode
*FINode
= cast
<FrameIndexSDNode
>(Arg
);
304 FI
= FINode
->getIndex();
305 Bytes
= Flags
.getByValSize();
309 assert(FI
!= INT_MAX
);
310 if (!MFI
.isFixedObjectIndex(FI
))
313 if (Offset
!= MFI
.getObjectOffset(FI
))
316 if (VA
.getLocVT().getSizeInBits() > Arg
.getValueType().getSizeInBits()) {
317 // If the argument location is wider than the argument type, check that any
318 // extension flags match.
319 if (Flags
.isZExt() != MFI
.isObjectZExt(FI
) ||
320 Flags
.isSExt() != MFI
.isObjectSExt(FI
)) {
325 return Bytes
== MFI
.getObjectSize(FI
);
329 M68kTargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) const {
330 MachineFunction
&MF
= DAG
.getMachineFunction();
331 M68kMachineFunctionInfo
*FuncInfo
= MF
.getInfo
<M68kMachineFunctionInfo
>();
332 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
334 if (ReturnAddrIndex
== 0) {
335 // Set up a frame object for the return address.
336 unsigned SlotSize
= Subtarget
.getSlotSize();
337 ReturnAddrIndex
= MF
.getFrameInfo().CreateFixedObject(
338 SlotSize
, -(int64_t)SlotSize
, false);
339 FuncInfo
->setRAIndex(ReturnAddrIndex
);
342 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy(DAG
.getDataLayout()));
345 SDValue
M68kTargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
348 bool IsTailCall
, int FPDiff
,
349 const SDLoc
&DL
) const {
350 EVT VT
= getPointerTy(DAG
.getDataLayout());
351 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
353 // Load the "old" Return address.
354 OutRetAddr
= DAG
.getLoad(VT
, DL
, Chain
, OutRetAddr
, MachinePointerInfo());
355 return SDValue(OutRetAddr
.getNode(), 1);
358 SDValue
M68kTargetLowering::EmitTailCallStoreRetAddr(
359 SelectionDAG
&DAG
, MachineFunction
&MF
, SDValue Chain
, SDValue RetFI
,
360 EVT PtrVT
, unsigned SlotSize
, int FPDiff
, const SDLoc
&DL
) const {
364 // Calculate the new stack slot for the return address.
365 int NewFO
= MF
.getFrameInfo().CreateFixedObject(
366 SlotSize
, (int64_t)FPDiff
- SlotSize
, false);
368 SDValue NewFI
= DAG
.getFrameIndex(NewFO
, PtrVT
);
369 // Store the return address to the appropriate stack slot.
370 Chain
= DAG
.getStore(
371 Chain
, DL
, RetFI
, NewFI
,
372 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), NewFO
));
377 M68kTargetLowering::LowerMemArgument(SDValue Chain
, CallingConv::ID CallConv
,
378 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
379 const SDLoc
&DL
, SelectionDAG
&DAG
,
380 const CCValAssign
&VA
,
381 MachineFrameInfo
&MFI
,
382 unsigned ArgIdx
) const {
383 // Create the nodes corresponding to a load from this parameter slot.
384 ISD::ArgFlagsTy Flags
= Ins
[ArgIdx
].Flags
;
387 // If value is passed by pointer we have address passed instead of the value
389 if (VA
.getLocInfo() == CCValAssign::Indirect
)
390 ValVT
= VA
.getLocVT();
392 ValVT
= VA
.getValVT();
394 // Because we are dealing with BE architecture we need to offset loading of
396 int Offset
= VA
.getLocMemOffset();
397 if (VA
.getValVT() == MVT::i8
) {
399 } else if (VA
.getValVT() == MVT::i16
) {
403 // TODO Interrupt handlers
404 // Calculate SP offset of interrupt parameter, re-arrange the slot normally
405 // taken by a return address.
407 // FIXME For now, all byval parameter objects are marked mutable. This can
408 // be changed with more analysis. In case of tail call optimization mark all
409 // arguments mutable. Since they could be overwritten by lowering of arguments
410 // in case of a tail call.
411 bool AlwaysUseMutable
= shouldGuaranteeTCO(
412 CallConv
, DAG
.getTarget().Options
.GuaranteedTailCallOpt
);
413 bool IsImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
415 if (Flags
.isByVal()) {
416 unsigned Bytes
= Flags
.getByValSize();
418 Bytes
= 1; // Don't create zero-sized stack objects.
419 int FI
= MFI
.CreateFixedObject(Bytes
, Offset
, IsImmutable
);
420 // TODO Interrupt handlers
421 // Adjust SP offset of interrupt parameter.
422 return DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
425 MFI
.CreateFixedObject(ValVT
.getSizeInBits() / 8, Offset
, IsImmutable
);
427 // Set SExt or ZExt flag.
428 if (VA
.getLocInfo() == CCValAssign::ZExt
) {
429 MFI
.setObjectZExt(FI
, true);
430 } else if (VA
.getLocInfo() == CCValAssign::SExt
) {
431 MFI
.setObjectSExt(FI
, true);
434 // TODO Interrupt handlers
435 // Adjust SP offset of interrupt parameter.
437 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
438 SDValue Val
= DAG
.getLoad(
439 ValVT
, DL
, Chain
, FIN
,
440 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
441 return VA
.isExtInLoc() ? DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
)
446 SDValue
M68kTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
447 SDValue Arg
, const SDLoc
&DL
,
449 const CCValAssign
&VA
,
450 ISD::ArgFlagsTy Flags
) const {
451 unsigned LocMemOffset
= VA
.getLocMemOffset();
452 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, DL
);
453 PtrOff
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()),
456 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, DL
);
459 Chain
, DL
, Arg
, PtrOff
,
460 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
463 //===----------------------------------------------------------------------===//
465 //===----------------------------------------------------------------------===//
467 SDValue
M68kTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
468 SmallVectorImpl
<SDValue
> &InVals
) const {
469 SelectionDAG
&DAG
= CLI
.DAG
;
471 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
472 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
473 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
474 SDValue Chain
= CLI
.Chain
;
475 SDValue Callee
= CLI
.Callee
;
476 CallingConv::ID CallConv
= CLI
.CallConv
;
477 bool &IsTailCall
= CLI
.IsTailCall
;
478 bool IsVarArg
= CLI
.IsVarArg
;
480 MachineFunction
&MF
= DAG
.getMachineFunction();
481 StructReturnType SR
= callIsStructReturn(Outs
);
482 bool IsSibcall
= false;
483 M68kMachineFunctionInfo
*MFI
= MF
.getInfo
<M68kMachineFunctionInfo
>();
484 // const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo();
486 if (CallConv
== CallingConv::M68k_INTR
)
487 report_fatal_error("M68k interrupts may not be called directly");
489 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
490 if (Attr
.getValueAsBool())
493 // FIXME Add tailcalls support
495 bool IsMustTail
= CLI
.CB
&& CLI
.CB
->isMustTailCall();
497 // Force this to be a tail call. The verifier rules are enough to ensure
498 // that we can lower this successfully without moving the return address
501 } else if (IsTailCall
) {
502 // Check if it's really possible to do a tail call.
503 IsTailCall
= IsEligibleForTailCallOptimization(
504 Callee
, CallConv
, IsVarArg
, SR
!= NotStructReturn
,
505 MF
.getFunction().hasStructRetAttr(), CLI
.RetTy
, Outs
, OutVals
, Ins
,
508 // Sibcalls are automatically detected tailcalls which do not require
510 if (!MF
.getTarget().Options
.GuaranteedTailCallOpt
&& IsTailCall
)
517 assert(!(IsVarArg
&& canGuaranteeTCO(CallConv
)) &&
518 "Var args not supported with calling convention fastcc");
520 // Analyze operands of the call, assigning locations to each operand.
521 SmallVector
<CCValAssign
, 16> ArgLocs
;
522 SmallVector
<Type
*, 4> ArgTypes
;
523 for (const auto &Arg
: CLI
.getArgs())
524 ArgTypes
.emplace_back(Arg
.Ty
);
525 M68kCCState
CCInfo(ArgTypes
, CallConv
, IsVarArg
, MF
, ArgLocs
,
527 CCInfo
.AnalyzeCallOperands(Outs
, CC_M68k
);
529 // Get a count of how many bytes are to be pushed on the stack.
530 unsigned NumBytes
= CCInfo
.getAlignedCallFrameSize();
532 // This is a sibcall. The memory operands are available in caller's
533 // own caller's stack.
535 } else if (MF
.getTarget().Options
.GuaranteedTailCallOpt
&&
536 canGuaranteeTCO(CallConv
)) {
537 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
541 if (IsTailCall
&& !IsSibcall
&& !IsMustTail
) {
542 // Lower arguments at fp - stackoffset + fpdiff.
543 unsigned NumBytesCallerPushed
= MFI
->getBytesToPopOnReturn();
545 FPDiff
= NumBytesCallerPushed
- NumBytes
;
547 // Set the delta of movement of the returnaddr stackslot.
548 // But only set if delta is greater than previous delta.
549 if (FPDiff
< MFI
->getTCReturnAddrDelta())
550 MFI
->setTCReturnAddrDelta(FPDiff
);
553 unsigned NumBytesToPush
= NumBytes
;
554 unsigned NumBytesToPop
= NumBytes
;
556 // If we have an inalloca argument, all stack space has already been allocated
557 // for us and be right at the top of the stack. We don't support multiple
558 // arguments passed in memory when using inalloca.
559 if (!Outs
.empty() && Outs
.back().Flags
.isInAlloca()) {
561 if (!ArgLocs
.back().isMemLoc())
562 report_fatal_error("cannot use inalloca attribute on a register "
564 if (ArgLocs
.back().getLocMemOffset() != 0)
565 report_fatal_error("any parameter with the inalloca attribute must be "
566 "the only memory argument");
570 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytesToPush
,
571 NumBytes
- NumBytesToPush
, DL
);
574 // Load return address for tail calls.
575 if (IsTailCall
&& FPDiff
)
576 Chain
= EmitTailCallLoadRetAddr(DAG
, RetFI
, Chain
, IsTailCall
, FPDiff
, DL
);
578 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
579 SmallVector
<SDValue
, 8> MemOpChains
;
582 // Walk the register/memloc assignments, inserting copies/loads. In the case
583 // of tail call optimization arguments are handle later.
584 const M68kRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
585 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
586 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
588 // Skip inalloca arguments, they have already been written.
589 if (Flags
.isInAlloca())
592 CCValAssign
&VA
= ArgLocs
[i
];
593 EVT RegVT
= VA
.getLocVT();
594 SDValue Arg
= OutVals
[i
];
595 bool IsByVal
= Flags
.isByVal();
597 // Promote the value if needed.
598 switch (VA
.getLocInfo()) {
600 llvm_unreachable("Unknown loc info!");
601 case CCValAssign::Full
:
603 case CCValAssign::SExt
:
604 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, RegVT
, Arg
);
606 case CCValAssign::ZExt
:
607 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, RegVT
, Arg
);
609 case CCValAssign::AExt
:
610 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, RegVT
, Arg
);
612 case CCValAssign::BCvt
:
613 Arg
= DAG
.getBitcast(RegVT
, Arg
);
615 case CCValAssign::Indirect
: {
616 // Store the argument.
617 SDValue SpillSlot
= DAG
.CreateStackTemporary(VA
.getValVT());
618 int FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
619 Chain
= DAG
.getStore(
620 Chain
, DL
, Arg
, SpillSlot
,
621 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
628 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
629 } else if (!IsSibcall
&& (!IsTailCall
|| IsByVal
)) {
630 assert(VA
.isMemLoc());
631 if (!StackPtr
.getNode()) {
632 StackPtr
= DAG
.getCopyFromReg(Chain
, DL
, RegInfo
->getStackRegister(),
633 getPointerTy(DAG
.getDataLayout()));
635 MemOpChains
.push_back(
636 LowerMemOpCallTo(Chain
, StackPtr
, Arg
, DL
, DAG
, VA
, Flags
));
640 if (!MemOpChains
.empty())
641 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
643 // FIXME Make sure PIC style GOT works as expected
644 // The only time GOT is really needed is for Medium-PIC static data
645 // otherwise we are happy with pc-rel or static references
647 if (IsVarArg
&& IsMustTail
) {
648 const auto &Forwards
= MFI
->getForwardedMustTailRegParms();
649 for (const auto &F
: Forwards
) {
650 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, F
.VReg
, F
.VT
);
651 RegsToPass
.push_back(std::make_pair(unsigned(F
.PReg
), Val
));
655 // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
656 // don't need this because the eligibility check rejects calls that require
657 // shuffling arguments passed in memory.
658 if (!IsSibcall
&& IsTailCall
) {
659 // Force all the incoming stack arguments to be loaded from the stack
660 // before any new outgoing arguments are stored to the stack, because the
661 // outgoing stack slots may alias the incoming argument stack slots, and
662 // the alias isn't otherwise explicit. This is slightly more conservative
663 // than necessary, because it means that each store effectively depends
664 // on every argument instead of just those arguments it would clobber.
665 SDValue ArgChain
= DAG
.getStackArgumentTokenFactor(Chain
);
667 SmallVector
<SDValue
, 8> MemOpChains2
;
670 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
671 CCValAssign
&VA
= ArgLocs
[i
];
674 assert(VA
.isMemLoc());
675 SDValue Arg
= OutVals
[i
];
676 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
677 // Skip inalloca arguments. They don't require any work.
678 if (Flags
.isInAlloca())
680 // Create frame index.
681 int32_t Offset
= VA
.getLocMemOffset() + FPDiff
;
682 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits() + 7) / 8;
683 FI
= MF
.getFrameInfo().CreateFixedObject(OpSize
, Offset
, true);
684 FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
686 if (Flags
.isByVal()) {
687 // Copy relative to framepointer.
688 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
);
689 if (!StackPtr
.getNode()) {
690 StackPtr
= DAG
.getCopyFromReg(Chain
, DL
, RegInfo
->getStackRegister(),
691 getPointerTy(DAG
.getDataLayout()));
693 Source
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()),
696 MemOpChains2
.push_back(
697 CreateCopyOfByValArgument(Source
, FIN
, ArgChain
, Flags
, DAG
, DL
));
699 // Store relative to framepointer.
700 MemOpChains2
.push_back(DAG
.getStore(
701 ArgChain
, DL
, Arg
, FIN
,
702 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
)));
706 if (!MemOpChains2
.empty())
707 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains2
);
709 // Store the return address to the appropriate stack slot.
710 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetFI
,
711 getPointerTy(DAG
.getDataLayout()),
712 Subtarget
.getSlotSize(), FPDiff
, DL
);
715 // Build a sequence of copy-to-reg nodes chained together with token chain
716 // and flag operands which copy the outgoing args into registers.
718 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
719 Chain
= DAG
.getCopyToReg(Chain
, DL
, RegsToPass
[i
].first
,
720 RegsToPass
[i
].second
, InFlag
);
721 InFlag
= Chain
.getValue(1);
724 if (Callee
->getOpcode() == ISD::GlobalAddress
) {
725 // If the callee is a GlobalAddress node (quite common, every direct call
726 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
728 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Callee
);
730 // We should use extra load for direct calls to dllimported functions in
732 const GlobalValue
*GV
= G
->getGlobal();
733 if (!GV
->hasDLLImportStorageClass()) {
734 unsigned char OpFlags
= Subtarget
.classifyGlobalFunctionReference(GV
);
736 Callee
= DAG
.getTargetGlobalAddress(
737 GV
, DL
, getPointerTy(DAG
.getDataLayout()), G
->getOffset(), OpFlags
);
739 if (OpFlags
== M68kII::MO_GOTPCREL
) {
742 Callee
= DAG
.getNode(M68kISD::WrapperPC
, DL
,
743 getPointerTy(DAG
.getDataLayout()), Callee
);
745 // Add extra indirection
746 Callee
= DAG
.getLoad(
747 getPointerTy(DAG
.getDataLayout()), DL
, DAG
.getEntryNode(), Callee
,
748 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
751 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
752 const Module
*Mod
= DAG
.getMachineFunction().getFunction().getParent();
753 unsigned char OpFlags
=
754 Subtarget
.classifyGlobalFunctionReference(nullptr, *Mod
);
756 Callee
= DAG
.getTargetExternalSymbol(
757 S
->getSymbol(), getPointerTy(DAG
.getDataLayout()), OpFlags
);
760 // Returns a chain & a flag for retval copy to use.
761 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
762 SmallVector
<SDValue
, 8> Ops
;
764 if (!IsSibcall
&& IsTailCall
) {
765 Chain
= DAG
.getCALLSEQ_END(Chain
,
766 DAG
.getIntPtrConstant(NumBytesToPop
, DL
, true),
767 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
768 InFlag
= Chain
.getValue(1);
771 Ops
.push_back(Chain
);
772 Ops
.push_back(Callee
);
775 Ops
.push_back(DAG
.getConstant(FPDiff
, DL
, MVT::i32
));
777 // Add argument registers to the end of the list so that they are known live
779 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
780 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
781 RegsToPass
[i
].second
.getValueType()));
783 // Add a register mask operand representing the call-preserved registers.
784 const uint32_t *Mask
= RegInfo
->getCallPreservedMask(MF
, CallConv
);
785 assert(Mask
&& "Missing call preserved mask for calling convention");
787 Ops
.push_back(DAG
.getRegisterMask(Mask
));
789 if (InFlag
.getNode())
790 Ops
.push_back(InFlag
);
793 MF
.getFrameInfo().setHasTailCall();
794 return DAG
.getNode(M68kISD::TC_RETURN
, DL
, NodeTys
, Ops
);
797 Chain
= DAG
.getNode(M68kISD::CALL
, DL
, NodeTys
, Ops
);
798 InFlag
= Chain
.getValue(1);
800 // Create the CALLSEQ_END node.
801 unsigned NumBytesForCalleeToPop
;
802 if (M68k::isCalleePop(CallConv
, IsVarArg
,
803 DAG
.getTarget().Options
.GuaranteedTailCallOpt
)) {
804 NumBytesForCalleeToPop
= NumBytes
; // Callee pops everything
805 } else if (!canGuaranteeTCO(CallConv
) && SR
== StackStructReturn
) {
806 // If this is a call to a struct-return function, the callee
807 // pops the hidden struct pointer, so we have to push it back.
808 NumBytesForCalleeToPop
= 4;
810 NumBytesForCalleeToPop
= 0; // Callee pops nothing.
813 if (CLI
.DoesNotReturn
&& !getTargetMachine().Options
.TrapUnreachable
) {
814 // No need to reset the stack after the call if the call doesn't return. To
815 // make the MI verify, we'll pretend the callee does it for us.
816 NumBytesForCalleeToPop
= NumBytes
;
819 // Returns a flag for retval copy to use.
821 Chain
= DAG
.getCALLSEQ_END(
822 Chain
, DAG
.getIntPtrConstant(NumBytesToPop
, DL
, true),
823 DAG
.getIntPtrConstant(NumBytesForCalleeToPop
, DL
, true), InFlag
, DL
);
824 InFlag
= Chain
.getValue(1);
827 // Handle result values, copying them out of physregs into vregs that we
829 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
833 SDValue
M68kTargetLowering::LowerCallResult(
834 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool IsVarArg
,
835 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
836 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
838 // Assign locations to each value returned by this call.
839 SmallVector
<CCValAssign
, 16> RVLocs
;
840 CCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
842 CCInfo
.AnalyzeCallResult(Ins
, RetCC_M68k
);
844 // Copy all of the result registers out of their specified physreg.
845 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
846 CCValAssign
&VA
= RVLocs
[i
];
847 EVT CopyVT
= VA
.getLocVT();
849 /// ??? is this correct?
850 Chain
= DAG
.getCopyFromReg(Chain
, DL
, VA
.getLocReg(), CopyVT
, InFlag
)
852 SDValue Val
= Chain
.getValue(0);
854 if (VA
.isExtInLoc() && VA
.getValVT().getScalarType() == MVT::i1
)
855 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
857 InFlag
= Chain
.getValue(2);
858 InVals
.push_back(Val
);
864 //===----------------------------------------------------------------------===//
865 // Formal Arguments Calling Convention Implementation
866 //===----------------------------------------------------------------------===//
868 SDValue
M68kTargetLowering::LowerFormalArguments(
869 SDValue Chain
, CallingConv::ID CCID
, bool IsVarArg
,
870 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
871 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
872 MachineFunction
&MF
= DAG
.getMachineFunction();
873 M68kMachineFunctionInfo
*MMFI
= MF
.getInfo
<M68kMachineFunctionInfo
>();
874 // const TargetFrameLowering &TFL = *Subtarget.getFrameLowering();
876 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
878 // Assign locations to all of the incoming arguments.
879 SmallVector
<CCValAssign
, 16> ArgLocs
;
880 SmallVector
<Type
*, 4> ArgTypes
;
881 for (const Argument
&Arg
: MF
.getFunction().args())
882 ArgTypes
.emplace_back(Arg
.getType());
883 M68kCCState
CCInfo(ArgTypes
, CCID
, IsVarArg
, MF
, ArgLocs
, *DAG
.getContext());
885 CCInfo
.AnalyzeFormalArguments(Ins
, CC_M68k
);
887 unsigned LastVal
= ~0U;
889 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
890 CCValAssign
&VA
= ArgLocs
[i
];
891 assert(VA
.getValNo() != LastVal
&& "Same value in different locations");
893 LastVal
= VA
.getValNo();
896 EVT RegVT
= VA
.getLocVT();
897 const TargetRegisterClass
*RC
;
898 if (RegVT
== MVT::i32
)
899 RC
= &M68k::XR32RegClass
;
901 llvm_unreachable("Unknown argument type!");
903 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
904 ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
906 // If this is an 8 or 16-bit value, it is really passed promoted to 32
907 // bits. Insert an assert[sz]ext to capture this, then truncate to the
909 if (VA
.getLocInfo() == CCValAssign::SExt
) {
910 ArgValue
= DAG
.getNode(ISD::AssertSext
, DL
, RegVT
, ArgValue
,
911 DAG
.getValueType(VA
.getValVT()));
912 } else if (VA
.getLocInfo() == CCValAssign::ZExt
) {
913 ArgValue
= DAG
.getNode(ISD::AssertZext
, DL
, RegVT
, ArgValue
,
914 DAG
.getValueType(VA
.getValVT()));
915 } else if (VA
.getLocInfo() == CCValAssign::BCvt
) {
916 ArgValue
= DAG
.getBitcast(VA
.getValVT(), ArgValue
);
919 if (VA
.isExtInLoc()) {
920 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), ArgValue
);
923 assert(VA
.isMemLoc());
924 ArgValue
= LowerMemArgument(Chain
, CCID
, Ins
, DL
, DAG
, VA
, MFI
, i
);
927 // If value is passed via pointer - do a load.
928 // TODO Make sure this handling on indirect arguments is correct
929 if (VA
.getLocInfo() == CCValAssign::Indirect
)
931 DAG
.getLoad(VA
.getValVT(), DL
, Chain
, ArgValue
, MachinePointerInfo());
933 InVals
.push_back(ArgValue
);
936 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
937 // Swift calling convention does not require we copy the sret argument
938 // into %D0 for the return. We don't set SRetReturnReg for Swift.
939 if (CCID
== CallingConv::Swift
)
942 // ABI require that for returning structs by value we copy the sret argument
943 // into %D0 for the return. Save the argument into a virtual register so
944 // that we can access it from the return points.
945 if (Ins
[i
].Flags
.isSRet()) {
946 unsigned Reg
= MMFI
->getSRetReturnReg();
948 MVT PtrTy
= getPointerTy(DAG
.getDataLayout());
949 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy
));
950 MMFI
->setSRetReturnReg(Reg
);
952 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
953 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
958 unsigned StackSize
= CCInfo
.getNextStackOffset();
959 // Align stack specially for tail calls.
960 if (shouldGuaranteeTCO(CCID
, MF
.getTarget().Options
.GuaranteedTailCallOpt
))
961 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
963 // If the function takes variable number of arguments, make a frame index for
964 // the start of the first vararg value... for expansion of llvm.va_start. We
965 // can skip this if there are no va_start calls.
966 if (MFI
.hasVAStart()) {
967 MMFI
->setVarArgsFrameIndex(MFI
.CreateFixedObject(1, StackSize
, true));
970 if (IsVarArg
&& MFI
.hasMustTailInVarArgFunc()) {
971 // We forward some GPRs and some vector types.
972 SmallVector
<MVT
, 2> RegParmTypes
;
973 MVT IntVT
= MVT::i32
;
974 RegParmTypes
.push_back(IntVT
);
976 // Compute the set of forwarded registers. The rest are scratch.
977 // ??? what is this for?
978 SmallVectorImpl
<ForwardedRegister
> &Forwards
=
979 MMFI
->getForwardedMustTailRegParms();
980 CCInfo
.analyzeMustTailForwardedRegisters(Forwards
, RegParmTypes
, CC_M68k
);
982 // Copy all forwards from physical to virtual registers.
983 for (ForwardedRegister
&F
: Forwards
) {
984 // FIXME Can we use a less constrained schedule?
985 SDValue RegVal
= DAG
.getCopyFromReg(Chain
, DL
, F
.VReg
, F
.VT
);
986 F
.VReg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(F
.VT
));
987 Chain
= DAG
.getCopyToReg(Chain
, DL
, F
.VReg
, RegVal
);
991 // Some CCs need callee pop.
992 if (M68k::isCalleePop(CCID
, IsVarArg
,
993 MF
.getTarget().Options
.GuaranteedTailCallOpt
)) {
994 MMFI
->setBytesToPopOnReturn(StackSize
); // Callee pops everything.
996 MMFI
->setBytesToPopOnReturn(0); // Callee pops nothing.
997 // If this is an sret function, the return should pop the hidden pointer.
998 if (!canGuaranteeTCO(CCID
) && argsAreStructReturn(Ins
) == StackStructReturn
)
999 MMFI
->setBytesToPopOnReturn(4);
1002 MMFI
->setArgumentStackSize(StackSize
);
1007 //===----------------------------------------------------------------------===//
1008 // Return Value Calling Convention Implementation
1009 //===----------------------------------------------------------------------===//
1012 M68kTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CCID
,
1014 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1015 const SmallVectorImpl
<SDValue
> &OutVals
,
1016 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1017 MachineFunction
&MF
= DAG
.getMachineFunction();
1018 M68kMachineFunctionInfo
*MFI
= MF
.getInfo
<M68kMachineFunctionInfo
>();
1020 SmallVector
<CCValAssign
, 16> RVLocs
;
1021 CCState
CCInfo(CCID
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
1022 CCInfo
.AnalyzeReturn(Outs
, RetCC_M68k
);
1025 SmallVector
<SDValue
, 6> RetOps
;
1026 // Operand #0 = Chain (updated below)
1027 RetOps
.push_back(Chain
);
1028 // Operand #1 = Bytes To Pop
1030 DAG
.getTargetConstant(MFI
->getBytesToPopOnReturn(), DL
, MVT::i32
));
1032 // Copy the result values into the output registers.
1033 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
1034 CCValAssign
&VA
= RVLocs
[i
];
1035 assert(VA
.isRegLoc() && "Can only return in registers!");
1036 SDValue ValToCopy
= OutVals
[i
];
1037 EVT ValVT
= ValToCopy
.getValueType();
1039 // Promote values to the appropriate types.
1040 if (VA
.getLocInfo() == CCValAssign::SExt
)
1041 ValToCopy
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), ValToCopy
);
1042 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1043 ValToCopy
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), ValToCopy
);
1044 else if (VA
.getLocInfo() == CCValAssign::AExt
) {
1045 if (ValVT
.isVector() && ValVT
.getVectorElementType() == MVT::i1
)
1046 ValToCopy
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), ValToCopy
);
1048 ValToCopy
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), ValToCopy
);
1049 } else if (VA
.getLocInfo() == CCValAssign::BCvt
)
1050 ValToCopy
= DAG
.getBitcast(VA
.getLocVT(), ValToCopy
);
1052 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), ValToCopy
, Flag
);
1053 Flag
= Chain
.getValue(1);
1054 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
1057 // Swift calling convention does not require we copy the sret argument
1058 // into %d0 for the return, and SRetReturnReg is not set for Swift.
1060 // ABI require that for returning structs by value we copy the sret argument
1061 // into %D0 for the return. Save the argument into a virtual register so that
1062 // we can access it from the return points.
1064 // Checking Function.hasStructRetAttr() here is insufficient because the IR
1065 // may not have an explicit sret argument. If MFI.CanLowerReturn is
1066 // false, then an sret argument may be implicitly inserted in the SelDAG. In
1067 // either case MFI->setSRetReturnReg() will have been called.
1068 if (unsigned SRetReg
= MFI
->getSRetReturnReg()) {
1069 // ??? Can i just move this to the top and escape this explanation?
1070 // When we have both sret and another return value, we should use the
1071 // original Chain stored in RetOps[0], instead of the current Chain updated
1072 // in the above loop. If we only have sret, RetOps[0] equals to Chain.
1074 // For the case of sret and another return value, we have
1075 // Chain_0 at the function entry
1076 // Chain_1 = getCopyToReg(Chain_0) in the above loop
1077 // If we use Chain_1 in getCopyFromReg, we will have
1078 // Val = getCopyFromReg(Chain_1)
1079 // Chain_2 = getCopyToReg(Chain_1, Val) from below
1081 // getCopyToReg(Chain_0) will be glued together with
1082 // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
1083 // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
1084 // Data dependency from Unit B to Unit A due to usage of Val in
1085 // getCopyToReg(Chain_1, Val)
1086 // Chain dependency from Unit A to Unit B
1088 // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
1089 SDValue Val
= DAG
.getCopyFromReg(RetOps
[0], DL
, SRetReg
,
1090 getPointerTy(MF
.getDataLayout()));
1092 // ??? How will this work if CC does not use registers for args passing?
1093 // ??? What if I return multiple structs?
1094 unsigned RetValReg
= M68k::D0
;
1095 Chain
= DAG
.getCopyToReg(Chain
, DL
, RetValReg
, Val
, Flag
);
1096 Flag
= Chain
.getValue(1);
1099 DAG
.getRegister(RetValReg
, getPointerTy(DAG
.getDataLayout())));
1102 RetOps
[0] = Chain
; // Update chain.
1104 // Add the flag if we have it.
1106 RetOps
.push_back(Flag
);
1108 return DAG
.getNode(M68kISD::RET
, DL
, MVT::Other
, RetOps
);
1111 //===----------------------------------------------------------------------===//
1112 // Fast Calling Convention (tail call) implementation
1113 //===----------------------------------------------------------------------===//
1115 // Like std call, callee cleans arguments, convention except that ECX is
1116 // reserved for storing the tail called function address. Only 2 registers are
1117 // free for argument passing (inreg). Tail call optimization is performed
1119 // * tailcallopt is enabled
1120 // * caller/callee are fastcc
1121 // On M68k_64 architecture with GOT-style position independent code only
1122 // local (within module) calls are supported at the moment. To keep the stack
1123 // aligned according to platform abi the function GetAlignedArgumentStackSize
1124 // ensures that argument delta is always multiples of stack alignment. (Dynamic
1125 // linkers need this - darwin's dyld for example) If a tail called function
1126 // callee has more arguments than the caller the caller needs to make sure that
1127 // there is room to move the RETADDR to. This is achieved by reserving an area
1128 // the size of the argument delta right after the original RETADDR, but before
1129 // the saved framepointer or the spilled registers e.g. caller(arg1, arg2)
1130 // calls callee(arg1, arg2,arg3,arg4) stack layout:
1141 /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
1144 M68kTargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
1145 SelectionDAG
&DAG
) const {
1146 const TargetFrameLowering
&TFI
= *Subtarget
.getFrameLowering();
1147 unsigned StackAlignment
= TFI
.getStackAlignment();
1148 uint64_t AlignMask
= StackAlignment
- 1;
1149 int64_t Offset
= StackSize
;
1150 unsigned SlotSize
= Subtarget
.getSlotSize();
1151 if ((Offset
& AlignMask
) <= (StackAlignment
- SlotSize
)) {
1152 // Number smaller than 12 so just add the difference.
1153 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
1155 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1157 ((~AlignMask
) & Offset
) + StackAlignment
+ (StackAlignment
- SlotSize
);
1162 /// Check whether the call is eligible for tail call optimization. Targets
1163 /// that want to do tail call optimization should implement this function.
1164 bool M68kTargetLowering::IsEligibleForTailCallOptimization(
1165 SDValue Callee
, CallingConv::ID CalleeCC
, bool IsVarArg
,
1166 bool IsCalleeStructRet
, bool IsCallerStructRet
, Type
*RetTy
,
1167 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1168 const SmallVectorImpl
<SDValue
> &OutVals
,
1169 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
) const {
1170 if (!mayTailCallThisCC(CalleeCC
))
1173 // If -tailcallopt is specified, make fastcc functions tail-callable.
1174 MachineFunction
&MF
= DAG
.getMachineFunction();
1175 const auto &CallerF
= MF
.getFunction();
1177 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
1178 bool CCMatch
= CallerCC
== CalleeCC
;
1180 if (DAG
.getTarget().Options
.GuaranteedTailCallOpt
) {
1181 if (canGuaranteeTCO(CalleeCC
) && CCMatch
)
1186 // Look for obvious safe cases to perform tail call optimization that do not
1187 // require ABI changes. This is what gcc calls sibcall.
1189 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
1190 // emit a special epilogue.
1191 const M68kRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1192 if (RegInfo
->hasStackRealignment(MF
))
1195 // Also avoid sibcall optimization if either caller or callee uses struct
1196 // return semantics.
1197 if (IsCalleeStructRet
|| IsCallerStructRet
)
1200 // Do not sibcall optimize vararg calls unless all arguments are passed via
1202 LLVMContext
&C
= *DAG
.getContext();
1203 if (IsVarArg
&& !Outs
.empty()) {
1205 SmallVector
<CCValAssign
, 16> ArgLocs
;
1206 CCState
CCInfo(CalleeCC
, IsVarArg
, MF
, ArgLocs
, C
);
1208 CCInfo
.AnalyzeCallOperands(Outs
, CC_M68k
);
1209 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
)
1210 if (!ArgLocs
[i
].isRegLoc())
1214 // Check that the call results are passed in the same way.
1215 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
, RetCC_M68k
,
1219 // The callee has to preserve all registers the caller needs to preserve.
1220 const M68kRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
1221 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
1223 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
1224 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
1228 unsigned StackArgsSize
= 0;
1230 // If the callee takes no arguments then go on to check the results of the
1232 if (!Outs
.empty()) {
1233 // Check if stack adjustment is needed. For now, do not do this if any
1234 // argument is passed on the stack.
1235 SmallVector
<CCValAssign
, 16> ArgLocs
;
1236 CCState
CCInfo(CalleeCC
, IsVarArg
, MF
, ArgLocs
, C
);
1238 CCInfo
.AnalyzeCallOperands(Outs
, CC_M68k
);
1239 StackArgsSize
= CCInfo
.getNextStackOffset();
1241 if (CCInfo
.getNextStackOffset()) {
1242 // Check if the arguments are already laid out in the right way as
1243 // the caller's fixed stack objects.
1244 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1245 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
1246 const M68kInstrInfo
*TII
= Subtarget
.getInstrInfo();
1247 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1248 CCValAssign
&VA
= ArgLocs
[i
];
1249 SDValue Arg
= OutVals
[i
];
1250 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
1251 if (VA
.getLocInfo() == CCValAssign::Indirect
)
1253 if (!VA
.isRegLoc()) {
1254 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
, MFI
, MRI
,
1261 bool PositionIndependent
= isPositionIndependent();
1262 // If the tailcall address may be in a register, then make sure it's
1263 // possible to register allocate for it. The call address can
1264 // only target %A0 or %A1 since the tail call must be scheduled after
1265 // callee-saved registers are restored. These happen to be the same
1266 // registers used to pass 'inreg' arguments so watch out for those.
1267 if ((!isa
<GlobalAddressSDNode
>(Callee
) &&
1268 !isa
<ExternalSymbolSDNode
>(Callee
)) ||
1269 PositionIndependent
) {
1270 unsigned NumInRegs
= 0;
1271 // In PIC we need an extra register to formulate the address computation
1273 unsigned MaxInRegs
= PositionIndependent
? 1 : 2;
1275 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1276 CCValAssign
&VA
= ArgLocs
[i
];
1279 unsigned Reg
= VA
.getLocReg();
1285 if (++NumInRegs
== MaxInRegs
)
1292 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1293 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
1297 bool CalleeWillPop
= M68k::isCalleePop(
1298 CalleeCC
, IsVarArg
, MF
.getTarget().Options
.GuaranteedTailCallOpt
);
1300 if (unsigned BytesToPop
=
1301 MF
.getInfo
<M68kMachineFunctionInfo
>()->getBytesToPopOnReturn()) {
1302 // If we have bytes to pop, the callee must pop them.
1303 bool CalleePopMatches
= CalleeWillPop
&& BytesToPop
== StackArgsSize
;
1304 if (!CalleePopMatches
)
1306 } else if (CalleeWillPop
&& StackArgsSize
> 0) {
1307 // If we don't have bytes to pop, make sure the callee doesn't pop any.
1314 //===----------------------------------------------------------------------===//
1316 //===----------------------------------------------------------------------===//
1318 SDValue
M68kTargetLowering::LowerOperation(SDValue Op
,
1319 SelectionDAG
&DAG
) const {
1320 switch (Op
.getOpcode()) {
1322 llvm_unreachable("Should not custom lower this!");
1329 return LowerXALUO(Op
, DAG
);
1331 return LowerSETCC(Op
, DAG
);
1332 case ISD::SETCCCARRY
:
1333 return LowerSETCCCARRY(Op
, DAG
);
1335 return LowerSELECT(Op
, DAG
);
1337 return LowerBRCOND(Op
, DAG
);
1342 return LowerADDC_ADDE_SUBC_SUBE(Op
, DAG
);
1343 case ISD::ConstantPool
:
1344 return LowerConstantPool(Op
, DAG
);
1345 case ISD::GlobalAddress
:
1346 return LowerGlobalAddress(Op
, DAG
);
1347 case ISD::ExternalSymbol
:
1348 return LowerExternalSymbol(Op
, DAG
);
1349 case ISD::BlockAddress
:
1350 return LowerBlockAddress(Op
, DAG
);
1351 case ISD::JumpTable
:
1352 return LowerJumpTable(Op
, DAG
);
1354 return LowerVASTART(Op
, DAG
);
1355 case ISD::DYNAMIC_STACKALLOC
:
1356 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1360 bool M68kTargetLowering::decomposeMulByConstant(LLVMContext
&Context
, EVT VT
,
1362 // Shifts and add instructions in M68000 and M68010 support
1363 // up to 32 bits, but mul only has 16-bit variant. So it's almost
1364 // certainly beneficial to lower 8/16/32-bit mul to their
1365 // add / shifts counterparts. But for 64-bits mul, it might be
1366 // safer to just leave it to compiler runtime implementations.
1367 return VT
.bitsLE(MVT::i32
) || Subtarget
.atLeastM68020();
1370 SDValue
M68kTargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) const {
1371 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
1372 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
1373 // looks for this combo and may remove the "setcc" instruction if the "setcc"
1374 // has only one use.
1375 SDNode
*N
= Op
.getNode();
1376 SDValue LHS
= N
->getOperand(0);
1377 SDValue RHS
= N
->getOperand(1);
1378 unsigned BaseOp
= 0;
1381 switch (Op
.getOpcode()) {
1383 llvm_unreachable("Unknown ovf instruction!");
1385 BaseOp
= M68kISD::ADD
;
1386 Cond
= M68k::COND_VS
;
1389 BaseOp
= M68kISD::ADD
;
1390 Cond
= M68k::COND_CS
;
1393 BaseOp
= M68kISD::SUB
;
1394 Cond
= M68k::COND_VS
;
1397 BaseOp
= M68kISD::SUB
;
1398 Cond
= M68k::COND_CS
;
1403 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i8
);
1404 SDValue Arith
= DAG
.getNode(BaseOp
, DL
, VTs
, LHS
, RHS
);
1405 SDValue SetCC
= DAG
.getNode(M68kISD::SETCC
, DL
, N
->getValueType(1),
1406 DAG
.getConstant(Cond
, DL
, MVT::i8
),
1407 SDValue(Arith
.getNode(), 1));
1409 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Arith
, SetCC
);
1412 /// Create a BT (Bit Test) node - Test bit \p BitNo in \p Src and set condition
1413 /// according to equal/not-equal condition code \p CC.
1414 static SDValue
getBitTestCondition(SDValue Src
, SDValue BitNo
, ISD::CondCode CC
,
1415 const SDLoc
&DL
, SelectionDAG
&DAG
) {
1416 // If Src is i8, promote it to i32 with any_extend. There is no i8 BT
1417 // instruction. Since the shift amount is in-range-or-undefined, we know
1418 // that doing a bittest on the i32 value is ok.
1419 if (Src
.getValueType() == MVT::i8
|| Src
.getValueType() == MVT::i16
)
1420 Src
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, Src
);
1422 // If the operand types disagree, extend the shift amount to match. Since
1423 // BT ignores high bits (like shifts) we can use anyextend.
1424 if (Src
.getValueType() != BitNo
.getValueType())
1425 BitNo
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, Src
.getValueType(), BitNo
);
1427 SDValue BT
= DAG
.getNode(M68kISD::BT
, DL
, MVT::i32
, Src
, BitNo
);
1429 // NOTE BTST sets CCR.Z flag
1430 M68k::CondCode Cond
= CC
== ISD::SETEQ
? M68k::COND_NE
: M68k::COND_EQ
;
1431 return DAG
.getNode(M68kISD::SETCC
, DL
, MVT::i8
,
1432 DAG
.getConstant(Cond
, DL
, MVT::i8
), BT
);
1435 /// Result of 'and' is compared against zero. Change to a BT node if possible.
1436 static SDValue
LowerAndToBT(SDValue And
, ISD::CondCode CC
, const SDLoc
&DL
,
1437 SelectionDAG
&DAG
) {
1438 SDValue Op0
= And
.getOperand(0);
1439 SDValue Op1
= And
.getOperand(1);
1440 if (Op0
.getOpcode() == ISD::TRUNCATE
)
1441 Op0
= Op0
.getOperand(0);
1442 if (Op1
.getOpcode() == ISD::TRUNCATE
)
1443 Op1
= Op1
.getOperand(0);
1446 if (Op1
.getOpcode() == ISD::SHL
)
1447 std::swap(Op0
, Op1
);
1448 if (Op0
.getOpcode() == ISD::SHL
) {
1449 if (isOneConstant(Op0
.getOperand(0))) {
1450 // If we looked past a truncate, check that it's only truncating away
1452 unsigned BitWidth
= Op0
.getValueSizeInBits();
1453 unsigned AndBitWidth
= And
.getValueSizeInBits();
1454 if (BitWidth
> AndBitWidth
) {
1455 auto Known
= DAG
.computeKnownBits(Op0
);
1456 if (Known
.countMinLeadingZeros() < BitWidth
- AndBitWidth
)
1460 RHS
= Op0
.getOperand(1);
1462 } else if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(Op1
)) {
1463 uint64_t AndRHSVal
= AndRHS
->getZExtValue();
1464 SDValue AndLHS
= Op0
;
1466 if (AndRHSVal
== 1 && AndLHS
.getOpcode() == ISD::SRL
) {
1467 LHS
= AndLHS
.getOperand(0);
1468 RHS
= AndLHS
.getOperand(1);
1471 // Use BT if the immediate can't be encoded in a TEST instruction.
1472 if (!isUInt
<32>(AndRHSVal
) && isPowerOf2_64(AndRHSVal
)) {
1474 RHS
= DAG
.getConstant(Log2_64_Ceil(AndRHSVal
), DL
, LHS
.getValueType());
1479 return getBitTestCondition(LHS
, RHS
, CC
, DL
, DAG
);
1484 static M68k::CondCode
TranslateIntegerM68kCC(ISD::CondCode SetCCOpcode
) {
1485 switch (SetCCOpcode
) {
1487 llvm_unreachable("Invalid integer condition!");
1489 return M68k::COND_EQ
;
1491 return M68k::COND_GT
;
1493 return M68k::COND_GE
;
1495 return M68k::COND_LT
;
1497 return M68k::COND_LE
;
1499 return M68k::COND_NE
;
1501 return M68k::COND_CS
;
1503 return M68k::COND_CC
;
1505 return M68k::COND_HI
;
1507 return M68k::COND_LS
;
1511 /// Do a one-to-one translation of a ISD::CondCode to the M68k-specific
1512 /// condition code, returning the condition code and the LHS/RHS of the
1513 /// comparison to make.
1514 static unsigned TranslateM68kCC(ISD::CondCode SetCCOpcode
, const SDLoc
&DL
,
1515 bool IsFP
, SDValue
&LHS
, SDValue
&RHS
,
1516 SelectionDAG
&DAG
) {
1518 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
1519 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
1520 // X > -1 -> X == 0, jump !sign.
1521 RHS
= DAG
.getConstant(0, DL
, RHS
.getValueType());
1522 return M68k::COND_PL
;
1524 if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
1525 // X < 0 -> X == 0, jump on sign.
1526 return M68k::COND_MI
;
1528 if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
1530 RHS
= DAG
.getConstant(0, DL
, RHS
.getValueType());
1531 return M68k::COND_LE
;
1535 return TranslateIntegerM68kCC(SetCCOpcode
);
1538 // First determine if it is required or is profitable to flip the operands.
1540 // If LHS is a foldable load, but RHS is not, flip the condition.
1541 if (ISD::isNON_EXTLoad(LHS
.getNode()) && !ISD::isNON_EXTLoad(RHS
.getNode())) {
1542 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
1543 std::swap(LHS
, RHS
);
1546 switch (SetCCOpcode
) {
1553 std::swap(LHS
, RHS
);
1557 // On a floating point condition, the flags are set as follows:
1559 // 0 | 0 | 0 | X > Y
1560 // 0 | 0 | 1 | X < Y
1561 // 1 | 0 | 0 | X == Y
1562 // 1 | 1 | 1 | unordered
1563 switch (SetCCOpcode
) {
1565 llvm_unreachable("Condcode should be pre-legalized away");
1568 return M68k::COND_EQ
;
1569 case ISD::SETOLT
: // flipped
1572 return M68k::COND_HI
;
1573 case ISD::SETOLE
: // flipped
1576 return M68k::COND_CC
;
1577 case ISD::SETUGT
: // flipped
1580 return M68k::COND_CS
;
1581 case ISD::SETUGE
: // flipped
1584 return M68k::COND_LS
;
1587 return M68k::COND_NE
;
1590 return M68k::COND_INVALID
;
1594 // Convert (truncate (srl X, N) to i1) to (bt X, N)
1595 static SDValue
LowerTruncateToBT(SDValue Op
, ISD::CondCode CC
, const SDLoc
&DL
,
1596 SelectionDAG
&DAG
) {
1598 assert(Op
.getOpcode() == ISD::TRUNCATE
&& Op
.getValueType() == MVT::i1
&&
1599 "Expected TRUNCATE to i1 node");
1601 if (Op
.getOperand(0).getOpcode() != ISD::SRL
)
1604 SDValue ShiftRight
= Op
.getOperand(0);
1605 return getBitTestCondition(ShiftRight
.getOperand(0), ShiftRight
.getOperand(1),
1609 /// \brief return true if \c Op has a use that doesn't just read flags.
1610 static bool hasNonFlagsUse(SDValue Op
) {
1611 for (SDNode::use_iterator UI
= Op
->use_begin(), UE
= Op
->use_end(); UI
!= UE
;
1614 unsigned UOpNo
= UI
.getOperandNo();
1615 if (User
->getOpcode() == ISD::TRUNCATE
&& User
->hasOneUse()) {
1616 // Look pass truncate.
1617 UOpNo
= User
->use_begin().getOperandNo();
1618 User
= *User
->use_begin();
1621 if (User
->getOpcode() != ISD::BRCOND
&& User
->getOpcode() != ISD::SETCC
&&
1622 !(User
->getOpcode() == ISD::SELECT
&& UOpNo
== 0))
1628 SDValue
M68kTargetLowering::EmitTest(SDValue Op
, unsigned M68kCC
,
1629 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1631 // CF and OF aren't always set the way we want. Determine which
1632 // of these we need.
1633 bool NeedCF
= false;
1634 bool NeedOF
= false;
1649 case M68k::COND_VC
: {
1650 // Check if we really need to set the
1651 // Overflow flag. If NoSignedWrap is present
1652 // that is not actually needed.
1653 switch (Op
->getOpcode()) {
1658 if (Op
.getNode()->getFlags().hasNoSignedWrap())
1669 // See if we can use the CCR value from the operand instead of
1670 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
1671 // we prove that the arithmetic won't overflow, we can't use OF or CF.
1672 if (Op
.getResNo() != 0 || NeedOF
|| NeedCF
) {
1673 // Emit a CMP with 0, which is the TEST pattern.
1674 return DAG
.getNode(M68kISD::CMP
, DL
, MVT::i8
,
1675 DAG
.getConstant(0, DL
, Op
.getValueType()), Op
);
1677 unsigned Opcode
= 0;
1678 unsigned NumOperands
= 0;
1680 // Truncate operations may prevent the merge of the SETCC instruction
1681 // and the arithmetic instruction before it. Attempt to truncate the operands
1682 // of the arithmetic instruction and use a reduced bit-width instruction.
1683 bool NeedTruncation
= false;
1684 SDValue ArithOp
= Op
;
1685 if (Op
->getOpcode() == ISD::TRUNCATE
&& Op
->hasOneUse()) {
1686 SDValue Arith
= Op
->getOperand(0);
1687 // Both the trunc and the arithmetic op need to have one user each.
1688 if (Arith
->hasOneUse())
1689 switch (Arith
.getOpcode()) {
1697 NeedTruncation
= true;
1703 // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
1704 // which may be the result of a CAST. We use the variable 'Op', which is the
1705 // non-casted variable when we check for possible users.
1706 switch (ArithOp
.getOpcode()) {
1708 Opcode
= M68kISD::ADD
;
1713 // If we have a constant logical shift that's only used in a comparison
1714 // against zero turn it into an equivalent AND. This allows turning it into
1715 // a TEST instruction later.
1716 if ((M68kCC
== M68k::COND_EQ
|| M68kCC
== M68k::COND_NE
) &&
1717 Op
->hasOneUse() && isa
<ConstantSDNode
>(Op
->getOperand(1)) &&
1718 !hasNonFlagsUse(Op
)) {
1719 EVT VT
= Op
.getValueType();
1720 unsigned BitWidth
= VT
.getSizeInBits();
1721 unsigned ShAmt
= Op
->getConstantOperandVal(1);
1722 if (ShAmt
>= BitWidth
) // Avoid undefined shifts.
1724 APInt Mask
= ArithOp
.getOpcode() == ISD::SRL
1725 ? APInt::getHighBitsSet(BitWidth
, BitWidth
- ShAmt
)
1726 : APInt::getLowBitsSet(BitWidth
, BitWidth
- ShAmt
);
1727 if (!Mask
.isSignedIntN(32)) // Avoid large immediates.
1729 Op
= DAG
.getNode(ISD::AND
, DL
, VT
, Op
->getOperand(0),
1730 DAG
.getConstant(Mask
, DL
, VT
));
1735 // If the primary 'and' result isn't used, don't bother using
1736 // M68kISD::AND, because a TEST instruction will be better.
1737 if (!hasNonFlagsUse(Op
)) {
1738 SDValue Op0
= ArithOp
->getOperand(0);
1739 SDValue Op1
= ArithOp
->getOperand(1);
1740 EVT VT
= ArithOp
.getValueType();
1741 bool IsAndn
= isBitwiseNot(Op0
) || isBitwiseNot(Op1
);
1742 bool IsLegalAndnType
= VT
== MVT::i32
|| VT
== MVT::i64
;
1744 // But if we can combine this into an ANDN operation, then create an AND
1745 // now and allow it to be pattern matched into an ANDN.
1746 if (/*!Subtarget.hasBMI() ||*/ !IsAndn
|| !IsLegalAndnType
)
1753 // Due to the ISEL shortcoming noted above, be conservative if this op is
1754 // likely to be selected as part of a load-modify-store instruction.
1755 for (const auto *U
: Op
.getNode()->uses())
1756 if (U
->getOpcode() == ISD::STORE
)
1759 // Otherwise use a regular CCR-setting instruction.
1760 switch (ArithOp
.getOpcode()) {
1762 llvm_unreachable("unexpected operator!");
1764 Opcode
= M68kISD::SUB
;
1767 Opcode
= M68kISD::XOR
;
1770 Opcode
= M68kISD::AND
;
1773 Opcode
= M68kISD::OR
;
1784 return SDValue(Op
.getNode(), 1);
1790 // If we found that truncation is beneficial, perform the truncation and
1792 if (NeedTruncation
) {
1793 EVT VT
= Op
.getValueType();
1794 SDValue WideVal
= Op
->getOperand(0);
1795 EVT WideVT
= WideVal
.getValueType();
1796 unsigned ConvertedOp
= 0;
1797 // Use a target machine opcode to prevent further DAGCombine
1798 // optimizations that may separate the arithmetic operations
1799 // from the setcc node.
1800 switch (WideVal
.getOpcode()) {
1804 ConvertedOp
= M68kISD::ADD
;
1807 ConvertedOp
= M68kISD::SUB
;
1810 ConvertedOp
= M68kISD::AND
;
1813 ConvertedOp
= M68kISD::OR
;
1816 ConvertedOp
= M68kISD::XOR
;
1821 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1822 if (TLI
.isOperationLegal(WideVal
.getOpcode(), WideVT
)) {
1823 SDValue V0
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, WideVal
.getOperand(0));
1824 SDValue V1
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, WideVal
.getOperand(1));
1825 Op
= DAG
.getNode(ConvertedOp
, DL
, VT
, V0
, V1
);
1831 // Emit a CMP with 0, which is the TEST pattern.
1832 return DAG
.getNode(M68kISD::CMP
, DL
, MVT::i8
,
1833 DAG
.getConstant(0, DL
, Op
.getValueType()), Op
);
1835 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i8
);
1836 SmallVector
<SDValue
, 4> Ops(Op
->op_begin(), Op
->op_begin() + NumOperands
);
1838 SDValue New
= DAG
.getNode(Opcode
, DL
, VTs
, Ops
);
1839 DAG
.ReplaceAllUsesWith(Op
, New
);
1840 return SDValue(New
.getNode(), 1);
1843 /// \brief Return true if the condition is an unsigned comparison operation.
1844 static bool isM68kCCUnsigned(unsigned M68kCC
) {
1847 llvm_unreachable("Invalid integer condition!");
1863 SDValue
M68kTargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned M68kCC
,
1864 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1865 if (isNullConstant(Op1
))
1866 return EmitTest(Op0
, M68kCC
, DL
, DAG
);
1868 assert(!(isa
<ConstantSDNode
>(Op1
) && Op0
.getValueType() == MVT::i1
) &&
1869 "Unexpected comparison operation for MVT::i1 operands");
1871 if ((Op0
.getValueType() == MVT::i8
|| Op0
.getValueType() == MVT::i16
||
1872 Op0
.getValueType() == MVT::i32
|| Op0
.getValueType() == MVT::i64
)) {
1873 // Only promote the compare up to I32 if it is a 16 bit operation
1874 // with an immediate. 16 bit immediates are to be avoided.
1875 if ((Op0
.getValueType() == MVT::i16
&&
1876 (isa
<ConstantSDNode
>(Op0
) || isa
<ConstantSDNode
>(Op1
))) &&
1877 !DAG
.getMachineFunction().getFunction().hasMinSize()) {
1879 isM68kCCUnsigned(M68kCC
) ? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
1880 Op0
= DAG
.getNode(ExtendOp
, DL
, MVT::i32
, Op0
);
1881 Op1
= DAG
.getNode(ExtendOp
, DL
, MVT::i32
, Op1
);
1883 // Use SUB instead of CMP to enable CSE between SUB and CMP.
1884 SDVTList VTs
= DAG
.getVTList(Op0
.getValueType(), MVT::i8
);
1885 SDValue Sub
= DAG
.getNode(M68kISD::SUB
, DL
, VTs
, Op0
, Op1
);
1886 return SDValue(Sub
.getNode(), 1);
1888 return DAG
.getNode(M68kISD::CMP
, DL
, MVT::i8
, Op0
, Op1
);
1891 /// Result of 'and' or 'trunc to i1' is compared against zero.
1892 /// Change to a BT node if possible.
1893 SDValue
M68kTargetLowering::LowerToBT(SDValue Op
, ISD::CondCode CC
,
1895 SelectionDAG
&DAG
) const {
1896 if (Op
.getOpcode() == ISD::AND
)
1897 return LowerAndToBT(Op
, CC
, DL
, DAG
);
1898 if (Op
.getOpcode() == ISD::TRUNCATE
&& Op
.getValueType() == MVT::i1
)
1899 return LowerTruncateToBT(Op
, CC
, DL
, DAG
);
1903 SDValue
M68kTargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1904 MVT VT
= Op
.getSimpleValueType();
1905 assert(VT
== MVT::i8
&& "SetCC type must be 8-bit integer");
1907 SDValue Op0
= Op
.getOperand(0);
1908 SDValue Op1
= Op
.getOperand(1);
1910 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1912 // Optimize to BT if possible.
1913 // Lower (X & (1 << N)) == 0 to BT(X, N).
1914 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
1915 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
1916 // Lower (trunc (X >> N) to i1) to BT(X, N).
1917 if (Op0
.hasOneUse() && isNullConstant(Op1
) &&
1918 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1919 if (SDValue NewSetCC
= LowerToBT(Op0
, CC
, DL
, DAG
)) {
1921 return DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, NewSetCC
);
1926 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
1928 if ((isOneConstant(Op1
) || isNullConstant(Op1
)) &&
1929 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1931 // If the input is a setcc, then reuse the input setcc or use a new one with
1932 // the inverted condition.
1933 if (Op0
.getOpcode() == M68kISD::SETCC
) {
1934 M68k::CondCode CCode
= (M68k::CondCode
)Op0
.getConstantOperandVal(0);
1935 bool Invert
= (CC
== ISD::SETNE
) ^ isNullConstant(Op1
);
1939 CCode
= M68k::GetOppositeBranchCondition(CCode
);
1941 DAG
.getNode(M68kISD::SETCC
, DL
, MVT::i8
,
1942 DAG
.getConstant(CCode
, DL
, MVT::i8
), Op0
.getOperand(1));
1944 return DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, SetCC
);
1948 if (Op0
.getValueType() == MVT::i1
&& (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1949 if (isOneConstant(Op1
)) {
1950 ISD::CondCode NewCC
= ISD::GlobalISel::getSetCCInverse(CC
, true);
1951 return DAG
.getSetCC(DL
, VT
, Op0
, DAG
.getConstant(0, DL
, MVT::i1
), NewCC
);
1953 if (!isNullConstant(Op1
)) {
1954 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, MVT::i1
, Op0
, Op1
);
1955 return DAG
.getSetCC(DL
, VT
, Xor
, DAG
.getConstant(0, DL
, MVT::i1
), CC
);
1959 bool IsFP
= Op1
.getSimpleValueType().isFloatingPoint();
1960 unsigned M68kCC
= TranslateM68kCC(CC
, DL
, IsFP
, Op0
, Op1
, DAG
);
1961 if (M68kCC
== M68k::COND_INVALID
)
1964 SDValue CCR
= EmitCmp(Op0
, Op1
, M68kCC
, DL
, DAG
);
1965 return DAG
.getNode(M68kISD::SETCC
, DL
, MVT::i8
,
1966 DAG
.getConstant(M68kCC
, DL
, MVT::i8
), CCR
);
1969 SDValue
M68kTargetLowering::LowerSETCCCARRY(SDValue Op
,
1970 SelectionDAG
&DAG
) const {
1971 SDValue LHS
= Op
.getOperand(0);
1972 SDValue RHS
= Op
.getOperand(1);
1973 SDValue Carry
= Op
.getOperand(2);
1974 SDValue Cond
= Op
.getOperand(3);
1977 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
1978 M68k::CondCode CC
= TranslateIntegerM68kCC(cast
<CondCodeSDNode
>(Cond
)->get());
1980 EVT CarryVT
= Carry
.getValueType();
1981 APInt NegOne
= APInt::getAllOnesValue(CarryVT
.getScalarSizeInBits());
1982 Carry
= DAG
.getNode(M68kISD::ADD
, DL
, DAG
.getVTList(CarryVT
, MVT::i32
), Carry
,
1983 DAG
.getConstant(NegOne
, DL
, CarryVT
));
1985 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
1987 DAG
.getNode(M68kISD::SUBX
, DL
, VTs
, LHS
, RHS
, Carry
.getValue(1));
1989 return DAG
.getNode(M68kISD::SETCC
, DL
, MVT::i8
,
1990 DAG
.getConstant(CC
, DL
, MVT::i8
), Cmp
.getValue(1));
1993 /// Return true if opcode is a M68k logical comparison.
1994 static bool isM68kLogicalCmp(SDValue Op
) {
1995 unsigned Opc
= Op
.getNode()->getOpcode();
1996 if (Opc
== M68kISD::CMP
)
1998 if (Op
.getResNo() == 1 &&
1999 (Opc
== M68kISD::ADD
|| Opc
== M68kISD::SUB
|| Opc
== M68kISD::ADDX
||
2000 Opc
== M68kISD::SUBX
|| Opc
== M68kISD::SMUL
|| Opc
== M68kISD::UMUL
||
2001 Opc
== M68kISD::OR
|| Opc
== M68kISD::XOR
|| Opc
== M68kISD::AND
))
2004 if (Op
.getResNo() == 2 && Opc
== M68kISD::UMUL
)
2010 static bool isTruncWithZeroHighBitsInput(SDValue V
, SelectionDAG
&DAG
) {
2011 if (V
.getOpcode() != ISD::TRUNCATE
)
2014 SDValue VOp0
= V
.getOperand(0);
2015 unsigned InBits
= VOp0
.getValueSizeInBits();
2016 unsigned Bits
= V
.getValueSizeInBits();
2017 return DAG
.MaskedValueIsZero(VOp0
,
2018 APInt::getHighBitsSet(InBits
, InBits
- Bits
));
2021 SDValue
M68kTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
2022 bool addTest
= true;
2023 SDValue Cond
= Op
.getOperand(0);
2024 SDValue Op1
= Op
.getOperand(1);
2025 SDValue Op2
= Op
.getOperand(2);
2029 if (Cond
.getOpcode() == ISD::SETCC
) {
2030 if (SDValue NewCond
= LowerSETCC(Cond
, DAG
))
2034 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
2035 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
2036 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
2037 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
2038 if (Cond
.getOpcode() == M68kISD::SETCC
&&
2039 Cond
.getOperand(1).getOpcode() == M68kISD::CMP
&&
2040 isNullConstant(Cond
.getOperand(1).getOperand(0))) {
2041 SDValue Cmp
= Cond
.getOperand(1);
2044 cast
<ConstantSDNode
>(Cond
.getOperand(0))->getZExtValue();
2046 if ((isAllOnesConstant(Op1
) || isAllOnesConstant(Op2
)) &&
2047 (CondCode
== M68k::COND_EQ
|| CondCode
== M68k::COND_NE
)) {
2048 SDValue Y
= isAllOnesConstant(Op2
) ? Op1
: Op2
;
2050 SDValue CmpOp0
= Cmp
.getOperand(1);
2051 // Apply further optimizations for special cases
2052 // (select (x != 0), -1, 0) -> neg & sbb
2053 // (select (x == 0), 0, -1) -> neg & sbb
2054 if (isNullConstant(Y
) &&
2055 (isAllOnesConstant(Op1
) == (CondCode
== M68k::COND_NE
))) {
2057 SDVTList VTs
= DAG
.getVTList(CmpOp0
.getValueType(), MVT::i32
);
2060 DAG
.getNode(M68kISD::SUB
, DL
, VTs
,
2061 DAG
.getConstant(0, DL
, CmpOp0
.getValueType()), CmpOp0
);
2063 SDValue Res
= DAG
.getNode(M68kISD::SETCC_CARRY
, DL
, Op
.getValueType(),
2064 DAG
.getConstant(M68k::COND_CS
, DL
, MVT::i8
),
2065 SDValue(Neg
.getNode(), 1));
2069 Cmp
= DAG
.getNode(M68kISD::CMP
, DL
, MVT::i8
,
2070 DAG
.getConstant(1, DL
, CmpOp0
.getValueType()), CmpOp0
);
2072 SDValue Res
= // Res = 0 or -1.
2073 DAG
.getNode(M68kISD::SETCC_CARRY
, DL
, Op
.getValueType(),
2074 DAG
.getConstant(M68k::COND_CS
, DL
, MVT::i8
), Cmp
);
2076 if (isAllOnesConstant(Op1
) != (CondCode
== M68k::COND_EQ
))
2077 Res
= DAG
.getNOT(DL
, Res
, Res
.getValueType());
2079 if (!isNullConstant(Op2
))
2080 Res
= DAG
.getNode(ISD::OR
, DL
, Res
.getValueType(), Res
, Y
);
2085 // Look past (and (setcc_carry (cmp ...)), 1).
2086 if (Cond
.getOpcode() == ISD::AND
&&
2087 Cond
.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY
&&
2088 isOneConstant(Cond
.getOperand(1)))
2089 Cond
= Cond
.getOperand(0);
2091 // If condition flag is set by a M68kISD::CMP, then use it as the condition
2092 // setting operand in place of the M68kISD::SETCC.
2093 unsigned CondOpcode
= Cond
.getOpcode();
2094 if (CondOpcode
== M68kISD::SETCC
|| CondOpcode
== M68kISD::SETCC_CARRY
) {
2095 CC
= Cond
.getOperand(0);
2097 SDValue Cmp
= Cond
.getOperand(1);
2098 unsigned Opc
= Cmp
.getOpcode();
2100 bool IllegalFPCMov
= false;
2102 if ((isM68kLogicalCmp(Cmp
) && !IllegalFPCMov
) || Opc
== M68kISD::BT
) {
2106 } else if (CondOpcode
== ISD::USUBO
|| CondOpcode
== ISD::SSUBO
||
2107 CondOpcode
== ISD::UADDO
|| CondOpcode
== ISD::SADDO
||
2108 CondOpcode
== ISD::UMULO
|| CondOpcode
== ISD::SMULO
) {
2109 SDValue LHS
= Cond
.getOperand(0);
2110 SDValue RHS
= Cond
.getOperand(1);
2114 switch (CondOpcode
) {
2116 MxOpcode
= M68kISD::ADD
;
2117 MxCond
= M68k::COND_CS
;
2120 MxOpcode
= M68kISD::ADD
;
2121 MxCond
= M68k::COND_VS
;
2124 MxOpcode
= M68kISD::SUB
;
2125 MxCond
= M68k::COND_CS
;
2128 MxOpcode
= M68kISD::SUB
;
2129 MxCond
= M68k::COND_VS
;
2132 MxOpcode
= M68kISD::UMUL
;
2133 MxCond
= M68k::COND_VS
;
2136 MxOpcode
= M68kISD::SMUL
;
2137 MxCond
= M68k::COND_VS
;
2140 llvm_unreachable("unexpected overflowing operator");
2142 if (CondOpcode
== ISD::UMULO
)
2143 VTs
= DAG
.getVTList(LHS
.getValueType(), LHS
.getValueType(), MVT::i32
);
2145 VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
2147 SDValue MxOp
= DAG
.getNode(MxOpcode
, DL
, VTs
, LHS
, RHS
);
2149 if (CondOpcode
== ISD::UMULO
)
2150 Cond
= MxOp
.getValue(2);
2152 Cond
= MxOp
.getValue(1);
2154 CC
= DAG
.getConstant(MxCond
, DL
, MVT::i8
);
2159 // Look past the truncate if the high bits are known zero.
2160 if (isTruncWithZeroHighBitsInput(Cond
, DAG
))
2161 Cond
= Cond
.getOperand(0);
2163 // We know the result of AND is compared against zero. Try to match
2165 if (Cond
.getOpcode() == ISD::AND
&& Cond
.hasOneUse()) {
2166 if (SDValue NewSetCC
= LowerToBT(Cond
, ISD::SETNE
, DL
, DAG
)) {
2167 CC
= NewSetCC
.getOperand(0);
2168 Cond
= NewSetCC
.getOperand(1);
2175 CC
= DAG
.getConstant(M68k::COND_NE
, DL
, MVT::i8
);
2176 Cond
= EmitTest(Cond
, M68k::COND_NE
, DL
, DAG
);
2179 // a < b ? -1 : 0 -> RES = ~setcc_carry
2180 // a < b ? 0 : -1 -> RES = setcc_carry
2181 // a >= b ? -1 : 0 -> RES = setcc_carry
2182 // a >= b ? 0 : -1 -> RES = ~setcc_carry
2183 if (Cond
.getOpcode() == M68kISD::SUB
) {
2184 unsigned CondCode
= cast
<ConstantSDNode
>(CC
)->getZExtValue();
2186 if ((CondCode
== M68k::COND_CC
|| CondCode
== M68k::COND_CS
) &&
2187 (isAllOnesConstant(Op1
) || isAllOnesConstant(Op2
)) &&
2188 (isNullConstant(Op1
) || isNullConstant(Op2
))) {
2190 DAG
.getNode(M68kISD::SETCC_CARRY
, DL
, Op
.getValueType(),
2191 DAG
.getConstant(M68k::COND_CS
, DL
, MVT::i8
), Cond
);
2192 if (isAllOnesConstant(Op1
) != (CondCode
== M68k::COND_CS
))
2193 return DAG
.getNOT(DL
, Res
, Res
.getValueType());
2198 // M68k doesn't have an i8 cmov. If both operands are the result of a
2199 // truncate widen the cmov and push the truncate through. This avoids
2200 // introducing a new branch during isel and doesn't add any extensions.
2201 if (Op
.getValueType() == MVT::i8
&& Op1
.getOpcode() == ISD::TRUNCATE
&&
2202 Op2
.getOpcode() == ISD::TRUNCATE
) {
2203 SDValue T1
= Op1
.getOperand(0), T2
= Op2
.getOperand(0);
2204 if (T1
.getValueType() == T2
.getValueType() &&
2205 // Blacklist CopyFromReg to avoid partial register stalls.
2206 T1
.getOpcode() != ISD::CopyFromReg
&&
2207 T2
.getOpcode() != ISD::CopyFromReg
) {
2208 SDVTList VTs
= DAG
.getVTList(T1
.getValueType(), MVT::Glue
);
2209 SDValue Cmov
= DAG
.getNode(M68kISD::CMOV
, DL
, VTs
, T2
, T1
, CC
, Cond
);
2210 return DAG
.getNode(ISD::TRUNCATE
, DL
, Op
.getValueType(), Cmov
);
2214 // M68kISD::CMOV means set the result (which is operand 1) to the RHS if
2215 // condition is true.
2216 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Glue
);
2217 SDValue Ops
[] = {Op2
, Op1
, CC
, Cond
};
2218 return DAG
.getNode(M68kISD::CMOV
, DL
, VTs
, Ops
);
2221 /// Return true if node is an ISD::AND or ISD::OR of two M68k::SETcc nodes
2222 /// each of which has no other use apart from the AND / OR.
2223 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
2224 Opc
= Op
.getOpcode();
2225 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
2227 return (M68k::IsSETCC(Op
.getOperand(0).getOpcode()) &&
2228 Op
.getOperand(0).hasOneUse() &&
2229 M68k::IsSETCC(Op
.getOperand(1).getOpcode()) &&
2230 Op
.getOperand(1).hasOneUse());
2233 /// Return true if node is an ISD::XOR of a M68kISD::SETCC and 1 and that the
2234 /// SETCC node has a single use.
2235 static bool isXor1OfSetCC(SDValue Op
) {
2236 if (Op
.getOpcode() != ISD::XOR
)
2238 if (isOneConstant(Op
.getOperand(1)))
2239 return Op
.getOperand(0).getOpcode() == M68kISD::SETCC
&&
2240 Op
.getOperand(0).hasOneUse();
2244 SDValue
M68kTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
2245 bool AddTest
= true;
2246 SDValue Chain
= Op
.getOperand(0);
2247 SDValue Cond
= Op
.getOperand(1);
2248 SDValue Dest
= Op
.getOperand(2);
2251 bool Inverted
= false;
2253 if (Cond
.getOpcode() == ISD::SETCC
) {
2254 // Check for setcc([su]{add,sub}o == 0).
2255 if (cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get() == ISD::SETEQ
&&
2256 isNullConstant(Cond
.getOperand(1)) &&
2257 Cond
.getOperand(0).getResNo() == 1 &&
2258 (Cond
.getOperand(0).getOpcode() == ISD::SADDO
||
2259 Cond
.getOperand(0).getOpcode() == ISD::UADDO
||
2260 Cond
.getOperand(0).getOpcode() == ISD::SSUBO
||
2261 Cond
.getOperand(0).getOpcode() == ISD::USUBO
)) {
2263 Cond
= Cond
.getOperand(0);
2265 if (SDValue NewCond
= LowerSETCC(Cond
, DAG
))
2270 // Look pass (and (setcc_carry (cmp ...)), 1).
2271 if (Cond
.getOpcode() == ISD::AND
&&
2272 Cond
.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY
&&
2273 isOneConstant(Cond
.getOperand(1)))
2274 Cond
= Cond
.getOperand(0);
2276 // If condition flag is set by a M68kISD::CMP, then use it as the condition
2277 // setting operand in place of the M68kISD::SETCC.
2278 unsigned CondOpcode
= Cond
.getOpcode();
2279 if (CondOpcode
== M68kISD::SETCC
|| CondOpcode
== M68kISD::SETCC_CARRY
) {
2280 CC
= Cond
.getOperand(0);
2282 SDValue Cmp
= Cond
.getOperand(1);
2283 unsigned Opc
= Cmp
.getOpcode();
2285 if (isM68kLogicalCmp(Cmp
) || Opc
== M68kISD::BT
) {
2289 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
2294 // These can only come from an arithmetic instruction with overflow,
2295 // e.g. SADDO, UADDO.
2296 Cond
= Cond
.getNode()->getOperand(1);
2302 CondOpcode
= Cond
.getOpcode();
2303 if (CondOpcode
== ISD::UADDO
|| CondOpcode
== ISD::SADDO
||
2304 CondOpcode
== ISD::USUBO
|| CondOpcode
== ISD::SSUBO
) {
2305 SDValue LHS
= Cond
.getOperand(0);
2306 SDValue RHS
= Cond
.getOperand(1);
2310 // Keep this in sync with LowerXALUO, otherwise we might create redundant
2311 // instructions that can't be removed afterwards (i.e. M68kISD::ADD and
2313 switch (CondOpcode
) {
2315 MxOpcode
= M68kISD::ADD
;
2316 MxCond
= M68k::COND_CS
;
2319 MxOpcode
= M68kISD::ADD
;
2320 MxCond
= M68k::COND_VS
;
2323 MxOpcode
= M68kISD::SUB
;
2324 MxCond
= M68k::COND_CS
;
2327 MxOpcode
= M68kISD::SUB
;
2328 MxCond
= M68k::COND_VS
;
2331 MxOpcode
= M68kISD::UMUL
;
2332 MxCond
= M68k::COND_VS
;
2335 MxOpcode
= M68kISD::SMUL
;
2336 MxCond
= M68k::COND_VS
;
2339 llvm_unreachable("unexpected overflowing operator");
2343 MxCond
= M68k::GetOppositeBranchCondition((M68k::CondCode
)MxCond
);
2345 if (CondOpcode
== ISD::UMULO
)
2346 VTs
= DAG
.getVTList(LHS
.getValueType(), LHS
.getValueType(), MVT::i8
);
2348 VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i8
);
2350 SDValue MxOp
= DAG
.getNode(MxOpcode
, DL
, VTs
, LHS
, RHS
);
2352 if (CondOpcode
== ISD::UMULO
)
2353 Cond
= MxOp
.getValue(2);
2355 Cond
= MxOp
.getValue(1);
2357 CC
= DAG
.getConstant(MxCond
, DL
, MVT::i8
);
2361 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
2362 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
2363 if (CondOpc
== ISD::OR
) {
2364 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
2365 // two branches instead of an explicit OR instruction with a
2367 if (Cmp
== Cond
.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp
)) {
2368 CC
= Cond
.getOperand(0).getOperand(0);
2369 Chain
= DAG
.getNode(M68kISD::BRCOND
, DL
, Op
.getValueType(), Chain
,
2371 CC
= Cond
.getOperand(1).getOperand(0);
2375 } else { // ISD::AND
2376 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
2377 // two branches instead of an explicit AND instruction with a
2378 // separate test. However, we only do this if this block doesn't
2379 // have a fall-through edge, because this requires an explicit
2380 // jmp when the condition is false.
2381 if (Cmp
== Cond
.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp
) &&
2382 Op
.getNode()->hasOneUse()) {
2383 M68k::CondCode CCode
=
2384 (M68k::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
2385 CCode
= M68k::GetOppositeBranchCondition(CCode
);
2386 CC
= DAG
.getConstant(CCode
, DL
, MVT::i8
);
2387 SDNode
*User
= *Op
.getNode()->use_begin();
2388 // Look for an unconditional branch following this conditional branch.
2389 // We need this because we need to reverse the successors in order
2390 // to implement FCMP_OEQ.
2391 if (User
->getOpcode() == ISD::BR
) {
2392 SDValue FalseBB
= User
->getOperand(1);
2394 DAG
.UpdateNodeOperands(User
, User
->getOperand(0), Dest
);
2395 assert(NewBR
== User
);
2399 Chain
= DAG
.getNode(M68kISD::BRCOND
, DL
, Op
.getValueType(), Chain
,
2401 M68k::CondCode CCode
=
2402 (M68k::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
2403 CCode
= M68k::GetOppositeBranchCondition(CCode
);
2404 CC
= DAG
.getConstant(CCode
, DL
, MVT::i8
);
2410 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
2411 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
2412 // It should be transformed during dag combiner except when the condition
2413 // is set by a arithmetics with overflow node.
2414 M68k::CondCode CCode
=
2415 (M68k::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
2416 CCode
= M68k::GetOppositeBranchCondition(CCode
);
2417 CC
= DAG
.getConstant(CCode
, DL
, MVT::i8
);
2418 Cond
= Cond
.getOperand(0).getOperand(1);
2424 // Look pass the truncate if the high bits are known zero.
2425 if (isTruncWithZeroHighBitsInput(Cond
, DAG
))
2426 Cond
= Cond
.getOperand(0);
2428 // We know the result is compared against zero. Try to match it to BT.
2429 if (Cond
.hasOneUse()) {
2430 if (SDValue NewSetCC
= LowerToBT(Cond
, ISD::SETNE
, DL
, DAG
)) {
2431 CC
= NewSetCC
.getOperand(0);
2432 Cond
= NewSetCC
.getOperand(1);
2439 M68k::CondCode MxCond
= Inverted
? M68k::COND_EQ
: M68k::COND_NE
;
2440 CC
= DAG
.getConstant(MxCond
, DL
, MVT::i8
);
2441 Cond
= EmitTest(Cond
, MxCond
, DL
, DAG
);
2443 return DAG
.getNode(M68kISD::BRCOND
, DL
, Op
.getValueType(), Chain
, Dest
, CC
,
2447 SDValue
M68kTargetLowering::LowerADDC_ADDE_SUBC_SUBE(SDValue Op
,
2448 SelectionDAG
&DAG
) const {
2449 MVT VT
= Op
.getNode()->getSimpleValueType(0);
2451 // Let legalize expand this if it isn't a legal type yet.
2452 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
2455 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i8
);
2458 bool ExtraOp
= false;
2459 switch (Op
.getOpcode()) {
2461 llvm_unreachable("Invalid code");
2466 Opc
= M68kISD::ADDX
;
2473 Opc
= M68kISD::SUBX
;
2479 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1));
2480 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1),
2484 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2485 // their target countpart wrapped in the M68kISD::Wrapper node. Suppose N is
2486 // one of the above mentioned nodes. It has to be wrapped because otherwise
2487 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2488 // be used to form addressing mode. These wrapped nodes will be selected
2490 SDValue
M68kTargetLowering::LowerConstantPool(SDValue Op
,
2491 SelectionDAG
&DAG
) const {
2492 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2494 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2496 unsigned char OpFlag
= Subtarget
.classifyLocalReference(nullptr);
2498 unsigned WrapperKind
= M68kISD::Wrapper
;
2499 if (M68kII::isPCRelGlobalReference(OpFlag
)) {
2500 WrapperKind
= M68kISD::WrapperPC
;
2503 MVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2504 SDValue Result
= DAG
.getTargetConstantPool(
2505 CP
->getConstVal(), PtrVT
, CP
->getAlign(), CP
->getOffset(), OpFlag
);
2508 Result
= DAG
.getNode(WrapperKind
, DL
, PtrVT
, Result
);
2510 // With PIC, the address is actually $g + Offset.
2511 if (M68kII::isGlobalRelativeToPICBase(OpFlag
)) {
2512 Result
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
2513 DAG
.getNode(M68kISD::GLOBAL_BASE_REG
, SDLoc(), PtrVT
),
2520 SDValue
M68kTargetLowering::LowerExternalSymbol(SDValue Op
,
2521 SelectionDAG
&DAG
) const {
2522 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
2524 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2526 const Module
*Mod
= DAG
.getMachineFunction().getFunction().getParent();
2527 unsigned char OpFlag
= Subtarget
.classifyExternalReference(*Mod
);
2529 unsigned WrapperKind
= M68kISD::Wrapper
;
2530 if (M68kII::isPCRelGlobalReference(OpFlag
)) {
2531 WrapperKind
= M68kISD::WrapperPC
;
2534 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2535 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
, OpFlag
);
2538 Result
= DAG
.getNode(WrapperKind
, DL
, PtrVT
, Result
);
2540 // With PIC, the address is actually $g + Offset.
2541 if (M68kII::isGlobalRelativeToPICBase(OpFlag
)) {
2542 Result
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
2543 DAG
.getNode(M68kISD::GLOBAL_BASE_REG
, SDLoc(), PtrVT
),
2547 // For symbols that require a load from a stub to get the address, emit the
2549 if (M68kII::isGlobalStubReference(OpFlag
)) {
2550 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
2551 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2557 SDValue
M68kTargetLowering::LowerBlockAddress(SDValue Op
,
2558 SelectionDAG
&DAG
) const {
2559 unsigned char OpFlags
= Subtarget
.classifyBlockAddressReference();
2560 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
2561 int64_t Offset
= cast
<BlockAddressSDNode
>(Op
)->getOffset();
2563 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2565 // Create the TargetBlockAddressAddress node.
2566 SDValue Result
= DAG
.getTargetBlockAddress(BA
, PtrVT
, Offset
, OpFlags
);
2568 if (M68kII::isPCRelBlockReference(OpFlags
)) {
2569 Result
= DAG
.getNode(M68kISD::WrapperPC
, DL
, PtrVT
, Result
);
2571 Result
= DAG
.getNode(M68kISD::Wrapper
, DL
, PtrVT
, Result
);
2574 // With PIC, the address is actually $g + Offset.
2575 if (M68kII::isGlobalRelativeToPICBase(OpFlags
)) {
2577 DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
2578 DAG
.getNode(M68kISD::GLOBAL_BASE_REG
, DL
, PtrVT
), Result
);
2584 SDValue
M68kTargetLowering::LowerGlobalAddress(const GlobalValue
*GV
,
2585 const SDLoc
&DL
, int64_t Offset
,
2586 SelectionDAG
&DAG
) const {
2587 unsigned char OpFlags
= Subtarget
.classifyGlobalReference(GV
);
2588 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2590 // Create the TargetGlobalAddress node, folding in the constant
2591 // offset if it is legal.
2593 if (M68kII::isDirectGlobalReference(OpFlags
)) {
2594 Result
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, Offset
);
2597 Result
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, OpFlags
);
2600 if (M68kII::isPCRelGlobalReference(OpFlags
))
2601 Result
= DAG
.getNode(M68kISD::WrapperPC
, DL
, PtrVT
, Result
);
2603 Result
= DAG
.getNode(M68kISD::Wrapper
, DL
, PtrVT
, Result
);
2605 // With PIC, the address is actually $g + Offset.
2606 if (M68kII::isGlobalRelativeToPICBase(OpFlags
)) {
2608 DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
2609 DAG
.getNode(M68kISD::GLOBAL_BASE_REG
, DL
, PtrVT
), Result
);
2612 // For globals that require a load from a stub to get the address, emit the
2614 if (M68kII::isGlobalStubReference(OpFlags
)) {
2615 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
2616 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2619 // If there was a non-zero offset that we didn't fold, create an explicit
2622 Result
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Result
,
2623 DAG
.getConstant(Offset
, DL
, PtrVT
));
2629 SDValue
M68kTargetLowering::LowerGlobalAddress(SDValue Op
,
2630 SelectionDAG
&DAG
) const {
2631 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
2632 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
2633 return LowerGlobalAddress(GV
, SDLoc(Op
), Offset
, DAG
);
2636 //===----------------------------------------------------------------------===//
2637 // Custom Lower Jump Table
2638 //===----------------------------------------------------------------------===//
2640 SDValue
M68kTargetLowering::LowerJumpTable(SDValue Op
,
2641 SelectionDAG
&DAG
) const {
2642 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
2644 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2646 unsigned char OpFlag
= Subtarget
.classifyLocalReference(nullptr);
2648 unsigned WrapperKind
= M68kISD::Wrapper
;
2649 if (M68kII::isPCRelGlobalReference(OpFlag
)) {
2650 WrapperKind
= M68kISD::WrapperPC
;
2653 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2654 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
, OpFlag
);
2656 Result
= DAG
.getNode(WrapperKind
, DL
, PtrVT
, Result
);
2658 // With PIC, the address is actually $g + Offset.
2659 if (M68kII::isGlobalRelativeToPICBase(OpFlag
)) {
2660 Result
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
2661 DAG
.getNode(M68kISD::GLOBAL_BASE_REG
, SDLoc(), PtrVT
),
2668 unsigned M68kTargetLowering::getJumpTableEncoding() const {
2669 return Subtarget
.getJumpTableEncoding();
2672 const MCExpr
*M68kTargetLowering::LowerCustomJumpTableEntry(
2673 const MachineJumpTableInfo
*MJTI
, const MachineBasicBlock
*MBB
,
2674 unsigned uid
, MCContext
&Ctx
) const {
2675 return MCSymbolRefExpr::create(MBB
->getSymbol(), MCSymbolRefExpr::VK_GOTOFF
,
2679 SDValue
M68kTargetLowering::getPICJumpTableRelocBase(SDValue Table
,
2680 SelectionDAG
&DAG
) const {
2681 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_Custom32
)
2682 return DAG
.getNode(M68kISD::GLOBAL_BASE_REG
, SDLoc(),
2683 getPointerTy(DAG
.getDataLayout()));
2685 // MachineJumpTableInfo::EK_LabelDifference32 entry
2689 // NOTE This only used for MachineJumpTableInfo::EK_LabelDifference32 entries
2690 const MCExpr
*M68kTargetLowering::getPICJumpTableRelocBaseExpr(
2691 const MachineFunction
*MF
, unsigned JTI
, MCContext
&Ctx
) const {
2692 return MCSymbolRefExpr::create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
2695 M68kTargetLowering::ConstraintType
2696 M68kTargetLowering::getConstraintType(StringRef Constraint
) const {
2697 if (Constraint
.size() > 0) {
2698 switch (Constraint
[0]) {
2701 return C_RegisterClass
;
2712 if (Constraint
.size() == 2)
2713 switch (Constraint
[1]) {
2727 return TargetLowering::getConstraintType(Constraint
);
2730 void M68kTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
2731 std::string
&Constraint
,
2732 std::vector
<SDValue
> &Ops
,
2733 SelectionDAG
&DAG
) const {
2736 if (Constraint
.size() == 1) {
2737 // Constant constraints
2738 switch (Constraint
[0]) {
2747 auto *C
= dyn_cast
<ConstantSDNode
>(Op
);
2751 int64_t Val
= C
->getSExtValue();
2752 switch (Constraint
[0]) {
2753 case 'I': // constant integer in the range [1,8]
2754 if (Val
> 0 && Val
<= 8)
2757 case 'J': // constant signed 16-bit integer
2761 case 'K': // constant that is NOT in the range of [-0x80, 0x80)
2762 if (Val
< -0x80 || Val
>= 0x80)
2765 case 'L': // constant integer in the range [-8,-1]
2766 if (Val
< 0 && Val
>= -8)
2769 case 'M': // constant that is NOT in the range of [-0x100, 0x100]
2770 if (Val
< -0x100 || Val
>= 0x100)
2773 case 'N': // constant integer in the range [24,31]
2774 if (Val
>= 24 && Val
<= 31)
2777 case 'O': // constant integer 16
2781 case 'P': // constant integer in the range [8,15]
2782 if (Val
>= 8 && Val
<= 15)
2786 llvm_unreachable("Unhandled constant constraint");
2789 Result
= DAG
.getTargetConstant(Val
, SDLoc(Op
), Op
.getValueType());
2797 if (Constraint
.size() == 2) {
2798 switch (Constraint
[0]) {
2800 // Constant constraints start with 'C'
2801 switch (Constraint
[1]) {
2805 auto *C
= dyn_cast
<ConstantSDNode
>(Op
);
2809 int64_t Val
= C
->getSExtValue();
2810 switch (Constraint
[1]) {
2811 case '0': // constant integer 0
2815 case 'i': // constant integer
2817 case 'j': // integer constant that doesn't fit in 16 bits
2818 if (!isInt
<16>(C
->getSExtValue()))
2822 llvm_unreachable("Unhandled constant constraint");
2825 Result
= DAG
.getTargetConstant(Val
, SDLoc(Op
), Op
.getValueType());
2837 if (Result
.getNode()) {
2838 Ops
.push_back(Result
);
2842 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
2845 std::pair
<unsigned, const TargetRegisterClass
*>
2846 M68kTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
2847 StringRef Constraint
,
2849 if (Constraint
.size() == 1) {
2850 switch (Constraint
[0]) {
2853 switch (VT
.SimpleTy
) {
2855 return std::make_pair(0U, &M68k::DR8RegClass
);
2857 return std::make_pair(0U, &M68k::DR16RegClass
);
2859 return std::make_pair(0U, &M68k::DR32RegClass
);
2865 switch (VT
.SimpleTy
) {
2867 return std::make_pair(0U, &M68k::AR16RegClass
);
2869 return std::make_pair(0U, &M68k::AR32RegClass
);
2879 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
2882 /// Determines whether the callee is required to pop its own arguments.
2883 /// Callee pop is necessary to support tail calls.
2884 bool M68k::isCalleePop(CallingConv::ID CallingConv
, bool IsVarArg
,
2885 bool GuaranteeTCO
) {
2889 // Return true if it is OK for this CMOV pseudo-opcode to be cascaded
2890 // together with other CMOV pseudo-opcodes into a single basic-block with
2891 // conditional jump around it.
2892 static bool isCMOVPseudo(MachineInstr
&MI
) {
2893 switch (MI
.getOpcode()) {
2904 // The CCR operand of SelectItr might be missing a kill marker
2905 // because there were multiple uses of CCR, and ISel didn't know
2906 // which to mark. Figure out whether SelectItr should have had a
2907 // kill marker, and set it if it should. Returns the correct kill
2909 static bool checkAndUpdateCCRKill(MachineBasicBlock::iterator SelectItr
,
2910 MachineBasicBlock
*BB
,
2911 const TargetRegisterInfo
*TRI
) {
2912 // Scan forward through BB for a use/def of CCR.
2913 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
2914 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
2915 const MachineInstr
&mi
= *miI
;
2916 if (mi
.readsRegister(M68k::CCR
))
2918 if (mi
.definesRegister(M68k::CCR
))
2919 break; // Should have kill-flag - update below.
2922 // If we hit the end of the block, check whether CCR is live into a
2924 if (miI
== BB
->end())
2925 for (const auto *SBB
: BB
->successors())
2926 if (SBB
->isLiveIn(M68k::CCR
))
2929 // We found a def, or hit the end of the basic block and CCR wasn't live
2930 // out. SelectMI should have a kill flag on CCR.
2931 SelectItr
->addRegisterKilled(M68k::CCR
, TRI
);
2936 M68kTargetLowering::EmitLoweredSelect(MachineInstr
&MI
,
2937 MachineBasicBlock
*MBB
) const {
2938 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
2939 DebugLoc DL
= MI
.getDebugLoc();
2941 // To "insert" a SELECT_CC instruction, we actually have to insert the
2942 // diamond control-flow pattern. The incoming instruction knows the
2943 // destination vreg to set, the condition code register to branch on, the
2944 // true/false values to select between, and a branch opcode to use.
2945 const BasicBlock
*BB
= MBB
->getBasicBlock();
2946 MachineFunction::iterator It
= ++MBB
->getIterator();
2953 // fallthrough --> Copy0MBB
2954 MachineBasicBlock
*ThisMBB
= MBB
;
2955 MachineFunction
*F
= MBB
->getParent();
2957 // This code lowers all pseudo-CMOV instructions. Generally it lowers these
2958 // as described above, by inserting a MBB, and then making a PHI at the join
2959 // point to select the true and false operands of the CMOV in the PHI.
2961 // The code also handles two different cases of multiple CMOV opcodes
2965 // In this case, there are multiple CMOVs in a row, all which are based on
2966 // the same condition setting (or the exact opposite condition setting).
2967 // In this case we can lower all the CMOVs using a single inserted MBB, and
2968 // then make a number of PHIs at the join point to model the CMOVs. The only
2969 // trickiness here, is that in a case like:
2971 // t2 = CMOV cond1 t1, f1
2972 // t3 = CMOV cond1 t2, f2
2974 // when rewriting this into PHIs, we have to perform some renaming on the
2975 // temps since you cannot have a PHI operand refer to a PHI result earlier
2976 // in the same block. The "simple" but wrong lowering would be:
2978 // t2 = PHI t1(BB1), f1(BB2)
2979 // t3 = PHI t2(BB1), f2(BB2)
2981 // but clearly t2 is not defined in BB1, so that is incorrect. The proper
2982 // renaming is to note that on the path through BB1, t2 is really just a
2983 // copy of t1, and do that renaming, properly generating:
2985 // t2 = PHI t1(BB1), f1(BB2)
2986 // t3 = PHI t1(BB1), f2(BB2)
2988 // Case 2, we lower cascaded CMOVs such as
2990 // (CMOV (CMOV F, T, cc1), T, cc2)
2992 // to two successives branches.
2993 MachineInstr
*CascadedCMOV
= nullptr;
2994 MachineInstr
*LastCMOV
= &MI
;
2995 M68k::CondCode CC
= M68k::CondCode(MI
.getOperand(3).getImm());
2996 M68k::CondCode OppCC
= M68k::GetOppositeBranchCondition(CC
);
2997 MachineBasicBlock::iterator NextMIIt
=
2998 std::next(MachineBasicBlock::iterator(MI
));
3000 // Check for case 1, where there are multiple CMOVs with the same condition
3001 // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
3002 // number of jumps the most.
3004 if (isCMOVPseudo(MI
)) {
3005 // See if we have a string of CMOVS with the same condition.
3006 while (NextMIIt
!= MBB
->end() && isCMOVPseudo(*NextMIIt
) &&
3007 (NextMIIt
->getOperand(3).getImm() == CC
||
3008 NextMIIt
->getOperand(3).getImm() == OppCC
)) {
3009 LastCMOV
= &*NextMIIt
;
3014 // This checks for case 2, but only do this if we didn't already find
3015 // case 1, as indicated by LastCMOV == MI.
3016 if (LastCMOV
== &MI
&& NextMIIt
!= MBB
->end() &&
3017 NextMIIt
->getOpcode() == MI
.getOpcode() &&
3018 NextMIIt
->getOperand(2).getReg() == MI
.getOperand(2).getReg() &&
3019 NextMIIt
->getOperand(1).getReg() == MI
.getOperand(0).getReg() &&
3020 NextMIIt
->getOperand(1).isKill()) {
3021 CascadedCMOV
= &*NextMIIt
;
3024 MachineBasicBlock
*Jcc1MBB
= nullptr;
3026 // If we have a cascaded CMOV, we lower it to two successive branches to
3027 // the same block. CCR is used by both, so mark it as live in the second.
3029 Jcc1MBB
= F
->CreateMachineBasicBlock(BB
);
3030 F
->insert(It
, Jcc1MBB
);
3031 Jcc1MBB
->addLiveIn(M68k::CCR
);
3034 MachineBasicBlock
*Copy0MBB
= F
->CreateMachineBasicBlock(BB
);
3035 MachineBasicBlock
*SinkMBB
= F
->CreateMachineBasicBlock(BB
);
3036 F
->insert(It
, Copy0MBB
);
3037 F
->insert(It
, SinkMBB
);
3039 // If the CCR register isn't dead in the terminator, then claim that it's
3040 // live into the sink and copy blocks.
3041 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
3043 MachineInstr
*LastCCRSUser
= CascadedCMOV
? CascadedCMOV
: LastCMOV
;
3044 if (!LastCCRSUser
->killsRegister(M68k::CCR
) &&
3045 !checkAndUpdateCCRKill(LastCCRSUser
, MBB
, TRI
)) {
3046 Copy0MBB
->addLiveIn(M68k::CCR
);
3047 SinkMBB
->addLiveIn(M68k::CCR
);
3050 // Transfer the remainder of MBB and its successor edges to SinkMBB.
3051 SinkMBB
->splice(SinkMBB
->begin(), MBB
,
3052 std::next(MachineBasicBlock::iterator(LastCMOV
)), MBB
->end());
3053 SinkMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
3055 // Add the true and fallthrough blocks as its successors.
3057 // The fallthrough block may be Jcc1MBB, if we have a cascaded CMOV.
3058 MBB
->addSuccessor(Jcc1MBB
);
3060 // In that case, Jcc1MBB will itself fallthrough the Copy0MBB, and
3061 // jump to the SinkMBB.
3062 Jcc1MBB
->addSuccessor(Copy0MBB
);
3063 Jcc1MBB
->addSuccessor(SinkMBB
);
3065 MBB
->addSuccessor(Copy0MBB
);
3068 // The true block target of the first (or only) branch is always SinkMBB.
3069 MBB
->addSuccessor(SinkMBB
);
3071 // Create the conditional branch instruction.
3072 unsigned Opc
= M68k::GetCondBranchFromCond(CC
);
3073 BuildMI(MBB
, DL
, TII
->get(Opc
)).addMBB(SinkMBB
);
3076 unsigned Opc2
= M68k::GetCondBranchFromCond(
3077 (M68k::CondCode
)CascadedCMOV
->getOperand(3).getImm());
3078 BuildMI(Jcc1MBB
, DL
, TII
->get(Opc2
)).addMBB(SinkMBB
);
3082 // %FalseValue = ...
3083 // # fallthrough to SinkMBB
3084 Copy0MBB
->addSuccessor(SinkMBB
);
3087 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
3089 MachineBasicBlock::iterator MIItBegin
= MachineBasicBlock::iterator(MI
);
3090 MachineBasicBlock::iterator MIItEnd
=
3091 std::next(MachineBasicBlock::iterator(LastCMOV
));
3092 MachineBasicBlock::iterator SinkInsertionPoint
= SinkMBB
->begin();
3093 DenseMap
<unsigned, std::pair
<unsigned, unsigned>> RegRewriteTable
;
3094 MachineInstrBuilder MIB
;
3096 // As we are creating the PHIs, we have to be careful if there is more than
3097 // one. Later CMOVs may reference the results of earlier CMOVs, but later
3098 // PHIs have to reference the individual true/false inputs from earlier PHIs.
3099 // That also means that PHI construction must work forward from earlier to
3100 // later, and that the code must maintain a mapping from earlier PHI's
3101 // destination registers, and the registers that went into the PHI.
3103 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
; ++MIIt
) {
3104 unsigned DestReg
= MIIt
->getOperand(0).getReg();
3105 unsigned Op1Reg
= MIIt
->getOperand(1).getReg();
3106 unsigned Op2Reg
= MIIt
->getOperand(2).getReg();
3108 // If this CMOV we are generating is the opposite condition from
3109 // the jump we generated, then we have to swap the operands for the
3110 // PHI that is going to be generated.
3111 if (MIIt
->getOperand(3).getImm() == OppCC
)
3112 std::swap(Op1Reg
, Op2Reg
);
3114 if (RegRewriteTable
.find(Op1Reg
) != RegRewriteTable
.end())
3115 Op1Reg
= RegRewriteTable
[Op1Reg
].first
;
3117 if (RegRewriteTable
.find(Op2Reg
) != RegRewriteTable
.end())
3118 Op2Reg
= RegRewriteTable
[Op2Reg
].second
;
3121 BuildMI(*SinkMBB
, SinkInsertionPoint
, DL
, TII
->get(M68k::PHI
), DestReg
)
3127 // Add this PHI to the rewrite table.
3128 RegRewriteTable
[DestReg
] = std::make_pair(Op1Reg
, Op2Reg
);
3131 // If we have a cascaded CMOV, the second Jcc provides the same incoming
3132 // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
3134 MIB
.addReg(MI
.getOperand(2).getReg()).addMBB(Jcc1MBB
);
3135 // Copy the PHI result to the register defined by the second CMOV.
3136 BuildMI(*SinkMBB
, std::next(MachineBasicBlock::iterator(MIB
.getInstr())),
3137 DL
, TII
->get(TargetOpcode::COPY
),
3138 CascadedCMOV
->getOperand(0).getReg())
3139 .addReg(MI
.getOperand(0).getReg());
3140 CascadedCMOV
->eraseFromParent();
3143 // Now remove the CMOV(s).
3144 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
;)
3145 (MIIt
++)->eraseFromParent();
3151 M68kTargetLowering::EmitLoweredSegAlloca(MachineInstr
&MI
,
3152 MachineBasicBlock
*BB
) const {
3153 llvm_unreachable("Cannot lower Segmented Stack Alloca with stack-split on");
3157 M68kTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
3158 MachineBasicBlock
*BB
) const {
3159 switch (MI
.getOpcode()) {
3161 llvm_unreachable("Unexpected instr type to insert");
3165 return EmitLoweredSelect(MI
, BB
);
3167 return EmitLoweredSegAlloca(MI
, BB
);
3171 SDValue
M68kTargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
3172 MachineFunction
&MF
= DAG
.getMachineFunction();
3173 auto PtrVT
= getPointerTy(MF
.getDataLayout());
3174 M68kMachineFunctionInfo
*FuncInfo
= MF
.getInfo
<M68kMachineFunctionInfo
>();
3176 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3179 // vastart just stores the address of the VarArgsFrameIndex slot into the
3180 // memory location argument.
3181 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3182 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
3183 MachinePointerInfo(SV
));
3186 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3187 // Calls to _alloca are needed to probe the stack when allocating more than 4k
3188 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
3189 // that the guard pages used by the OS virtual memory manager are allocated in
3190 // correct sequence.
3191 SDValue
M68kTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
3192 SelectionDAG
&DAG
) const {
3193 MachineFunction
&MF
= DAG
.getMachineFunction();
3194 bool SplitStack
= MF
.shouldSplitStack();
3199 SDNode
*Node
= Op
.getNode();
3200 SDValue Chain
= Op
.getOperand(0);
3201 SDValue Size
= Op
.getOperand(1);
3202 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
3203 EVT VT
= Node
->getValueType(0);
3205 // Chain the dynamic stack allocation so that it doesn't modify the stack
3206 // pointer when other instructions are using the stack.
3207 Chain
= DAG
.getCALLSEQ_START(Chain
, 0, 0, DL
);
3211 auto &MRI
= MF
.getRegInfo();
3212 auto SPTy
= getPointerTy(DAG
.getDataLayout());
3213 auto *ARClass
= getRegClassFor(SPTy
);
3214 unsigned Vreg
= MRI
.createVirtualRegister(ARClass
);
3215 Chain
= DAG
.getCopyToReg(Chain
, DL
, Vreg
, Size
);
3216 Result
= DAG
.getNode(M68kISD::SEG_ALLOCA
, DL
, SPTy
, Chain
,
3217 DAG
.getRegister(Vreg
, SPTy
));
3219 auto &TLI
= DAG
.getTargetLoweringInfo();
3220 unsigned SPReg
= TLI
.getStackPointerRegisterToSaveRestore();
3221 assert(SPReg
&& "Target cannot require DYNAMIC_STACKALLOC expansion and"
3222 " not tell us which reg is the stack pointer!");
3224 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, SPReg
, VT
);
3225 Chain
= SP
.getValue(1);
3226 const TargetFrameLowering
&TFI
= *Subtarget
.getFrameLowering();
3227 unsigned StackAlign
= TFI
.getStackAlignment();
3228 Result
= DAG
.getNode(ISD::SUB
, DL
, VT
, SP
, Size
); // Value
3229 if (Align
> StackAlign
)
3230 Result
= DAG
.getNode(ISD::AND
, DL
, VT
, Result
,
3231 DAG
.getConstant(-(uint64_t)Align
, DL
, VT
));
3232 Chain
= DAG
.getCopyToReg(Chain
, DL
, SPReg
, Result
); // Output chain
3235 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, DL
, true),
3236 DAG
.getIntPtrConstant(0, DL
, true), SDValue(), DL
);
3238 SDValue Ops
[2] = {Result
, Chain
};
3239 return DAG
.getMergeValues(Ops
, DL
);
3242 //===----------------------------------------------------------------------===//
3244 //===----------------------------------------------------------------------===//
3246 static SDValue
getSETCC(M68k::CondCode Cond
, SDValue CCR
, const SDLoc
&dl
,
3247 SelectionDAG
&DAG
) {
3248 return DAG
.getNode(M68kISD::SETCC
, dl
, MVT::i8
,
3249 DAG
.getConstant(Cond
, dl
, MVT::i8
), CCR
);
3251 // When legalizing carry, we create carries via add X, -1
3252 // If that comes from an actual carry, via setcc, we use the
3254 static SDValue
combineCarryThroughADD(SDValue CCR
) {
3255 if (CCR
.getOpcode() == M68kISD::ADD
) {
3256 if (isAllOnesConstant(CCR
.getOperand(1))) {
3257 SDValue Carry
= CCR
.getOperand(0);
3258 while (Carry
.getOpcode() == ISD::TRUNCATE
||
3259 Carry
.getOpcode() == ISD::ZERO_EXTEND
||
3260 Carry
.getOpcode() == ISD::SIGN_EXTEND
||
3261 Carry
.getOpcode() == ISD::ANY_EXTEND
||
3262 (Carry
.getOpcode() == ISD::AND
&&
3263 isOneConstant(Carry
.getOperand(1))))
3264 Carry
= Carry
.getOperand(0);
3265 if (Carry
.getOpcode() == M68kISD::SETCC
||
3266 Carry
.getOpcode() == M68kISD::SETCC_CARRY
) {
3267 if (Carry
.getConstantOperandVal(0) == M68k::COND_CS
)
3268 return Carry
.getOperand(1);
3276 /// Optimize a CCR definition used according to the condition code \p CC into
3277 /// a simpler CCR value, potentially returning a new \p CC and replacing uses
3278 /// of chain values.
3279 static SDValue
combineSetCCCCR(SDValue CCR
, M68k::CondCode
&CC
,
3281 const M68kSubtarget
&Subtarget
) {
3282 if (CC
== M68k::COND_CS
)
3283 if (SDValue Flags
= combineCarryThroughADD(CCR
))
3289 // Optimize RES = M68kISD::SETCC CONDCODE, CCR_INPUT
3290 static SDValue
combineM68kSetCC(SDNode
*N
, SelectionDAG
&DAG
,
3291 const M68kSubtarget
&Subtarget
) {
3293 M68k::CondCode CC
= M68k::CondCode(N
->getConstantOperandVal(0));
3294 SDValue CCR
= N
->getOperand(1);
3296 // Try to simplify the CCR and condition code operands.
3297 if (SDValue Flags
= combineSetCCCCR(CCR
, CC
, DAG
, Subtarget
))
3298 return getSETCC(CC
, Flags
, DL
, DAG
);
3302 static SDValue
combineM68kBrCond(SDNode
*N
, SelectionDAG
&DAG
,
3303 const M68kSubtarget
&Subtarget
) {
3305 M68k::CondCode CC
= M68k::CondCode(N
->getConstantOperandVal(2));
3306 SDValue CCR
= N
->getOperand(3);
3308 // Try to simplify the CCR and condition code operands.
3309 // Make sure to not keep references to operands, as combineSetCCCCR can
3310 // RAUW them under us.
3311 if (SDValue Flags
= combineSetCCCCR(CCR
, CC
, DAG
, Subtarget
)) {
3312 SDValue Cond
= DAG
.getConstant(CC
, DL
, MVT::i8
);
3313 return DAG
.getNode(M68kISD::BRCOND
, DL
, N
->getVTList(), N
->getOperand(0),
3314 N
->getOperand(1), Cond
, Flags
);
3320 static SDValue
combineSUBX(SDNode
*N
, SelectionDAG
&DAG
) {
3321 if (SDValue Flags
= combineCarryThroughADD(N
->getOperand(2))) {
3322 MVT VT
= N
->getSimpleValueType(0);
3323 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
3324 return DAG
.getNode(M68kISD::SUBX
, SDLoc(N
), VTs
, N
->getOperand(0),
3325 N
->getOperand(1), Flags
);
3331 // Optimize RES, CCR = M68kISD::ADDX LHS, RHS, CCR
3332 static SDValue
combineADDX(SDNode
*N
, SelectionDAG
&DAG
,
3333 TargetLowering::DAGCombinerInfo
&DCI
) {
3334 if (SDValue Flags
= combineCarryThroughADD(N
->getOperand(2))) {
3335 MVT VT
= N
->getSimpleValueType(0);
3336 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
3337 return DAG
.getNode(M68kISD::ADDX
, SDLoc(N
), VTs
, N
->getOperand(0),
3338 N
->getOperand(1), Flags
);
3344 SDValue
M68kTargetLowering::PerformDAGCombine(SDNode
*N
,
3345 DAGCombinerInfo
&DCI
) const {
3346 SelectionDAG
&DAG
= DCI
.DAG
;
3347 switch (N
->getOpcode()) {
3349 return combineSUBX(N
, DAG
);
3351 return combineADDX(N
, DAG
, DCI
);
3352 case M68kISD::SETCC
:
3353 return combineM68kSetCC(N
, DAG
, Subtarget
);
3354 case M68kISD::BRCOND
:
3355 return combineM68kBrCond(N
, DAG
, Subtarget
);
3361 //===----------------------------------------------------------------------===//
3362 // M68kISD Node Names
3363 //===----------------------------------------------------------------------===//
3364 const char *M68kTargetLowering::getTargetNodeName(unsigned Opcode
) const {
3367 return "M68kISD::CALL";
3368 case M68kISD::TAIL_CALL
:
3369 return "M68kISD::TAIL_CALL";
3371 return "M68kISD::RET";
3372 case M68kISD::TC_RETURN
:
3373 return "M68kISD::TC_RETURN";
3375 return "M68kISD::ADD";
3377 return "M68kISD::SUB";
3379 return "M68kISD::ADDX";
3381 return "M68kISD::SUBX";
3383 return "M68kISD::SMUL";
3385 return "M68kISD::UMUL";
3387 return "M68kISD::OR";
3389 return "M68kISD::XOR";
3391 return "M68kISD::AND";
3393 return "M68kISD::CMP";
3395 return "M68kISD::BT";
3396 case M68kISD::SELECT
:
3397 return "M68kISD::SELECT";
3399 return "M68kISD::CMOV";
3400 case M68kISD::BRCOND
:
3401 return "M68kISD::BRCOND";
3402 case M68kISD::SETCC
:
3403 return "M68kISD::SETCC";
3404 case M68kISD::SETCC_CARRY
:
3405 return "M68kISD::SETCC_CARRY";
3406 case M68kISD::GLOBAL_BASE_REG
:
3407 return "M68kISD::GLOBAL_BASE_REG";
3408 case M68kISD::Wrapper
:
3409 return "M68kISD::Wrapper";
3410 case M68kISD::WrapperPC
:
3411 return "M68kISD::WrapperPC";
3412 case M68kISD::SEG_ALLOCA
:
3413 return "M68kISD::SEG_ALLOCA";
3419 CCAssignFn
*M68kTargetLowering::getCCAssignFn(CallingConv::ID CC
, bool Return
,
3420 bool IsVarArg
) const {
3422 return RetCC_M68k_C
;