[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / MSP430 / MSP430ISelLowering.cpp
blob9c6d44bf92de0e7b6947139936403bb0e9764100
1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MSP430TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "MSP430ISelLowering.h"
14 #include "MSP430.h"
15 #include "MSP430MachineFunctionInfo.h"
16 #include "MSP430Subtarget.h"
17 #include "MSP430TargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "msp430-lower"
39 static cl::opt<bool>MSP430NoLegalImmediate(
40 "msp430-no-legal-immediate", cl::Hidden,
41 cl::desc("Enable non legal immediates (for testing purposes only)"),
42 cl::init(false));
44 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
45 const MSP430Subtarget &STI)
46 : TargetLowering(TM) {
48 // Set up the register classes.
49 addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
50 addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
52 // Compute derived properties from the register classes
53 computeRegisterProperties(STI.getRegisterInfo());
55 // Provide all sorts of operation actions
56 setStackPointerRegisterToSaveRestore(MSP430::SP);
57 setBooleanContents(ZeroOrOneBooleanContent);
58 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
60 // We have post-incremented loads / stores.
61 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
62 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
64 for (MVT VT : MVT::integer_valuetypes()) {
65 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
66 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
67 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
68 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
69 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
72 // We don't have any truncstores
73 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
75 setOperationAction(ISD::SRA, MVT::i8, Custom);
76 setOperationAction(ISD::SHL, MVT::i8, Custom);
77 setOperationAction(ISD::SRL, MVT::i8, Custom);
78 setOperationAction(ISD::SRA, MVT::i16, Custom);
79 setOperationAction(ISD::SHL, MVT::i16, Custom);
80 setOperationAction(ISD::SRL, MVT::i16, Custom);
81 setOperationAction(ISD::ROTL, MVT::i8, Expand);
82 setOperationAction(ISD::ROTR, MVT::i8, Expand);
83 setOperationAction(ISD::ROTL, MVT::i16, Expand);
84 setOperationAction(ISD::ROTR, MVT::i16, Expand);
85 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
86 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
87 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
88 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
89 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
90 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
91 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
92 setOperationAction(ISD::SETCC, MVT::i8, Custom);
93 setOperationAction(ISD::SETCC, MVT::i16, Custom);
94 setOperationAction(ISD::SELECT, MVT::i8, Expand);
95 setOperationAction(ISD::SELECT, MVT::i16, Expand);
96 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
97 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
98 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
99 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
100 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
101 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
102 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
104 setOperationAction(ISD::CTTZ, MVT::i8, Expand);
105 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
106 setOperationAction(ISD::CTLZ, MVT::i8, Expand);
107 setOperationAction(ISD::CTLZ, MVT::i16, Expand);
108 setOperationAction(ISD::CTPOP, MVT::i8, Expand);
109 setOperationAction(ISD::CTPOP, MVT::i16, Expand);
111 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
112 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
113 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
114 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
115 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
116 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
120 // FIXME: Implement efficiently multiplication by a constant
121 setOperationAction(ISD::MUL, MVT::i8, Promote);
122 setOperationAction(ISD::MULHS, MVT::i8, Promote);
123 setOperationAction(ISD::MULHU, MVT::i8, Promote);
124 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote);
125 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote);
126 setOperationAction(ISD::MUL, MVT::i16, LibCall);
127 setOperationAction(ISD::MULHS, MVT::i16, Expand);
128 setOperationAction(ISD::MULHU, MVT::i16, Expand);
129 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
130 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
132 setOperationAction(ISD::UDIV, MVT::i8, Promote);
133 setOperationAction(ISD::UDIVREM, MVT::i8, Promote);
134 setOperationAction(ISD::UREM, MVT::i8, Promote);
135 setOperationAction(ISD::SDIV, MVT::i8, Promote);
136 setOperationAction(ISD::SDIVREM, MVT::i8, Promote);
137 setOperationAction(ISD::SREM, MVT::i8, Promote);
138 setOperationAction(ISD::UDIV, MVT::i16, LibCall);
139 setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
140 setOperationAction(ISD::UREM, MVT::i16, LibCall);
141 setOperationAction(ISD::SDIV, MVT::i16, LibCall);
142 setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
143 setOperationAction(ISD::SREM, MVT::i16, LibCall);
145 // varargs support
146 setOperationAction(ISD::VASTART, MVT::Other, Custom);
147 setOperationAction(ISD::VAARG, MVT::Other, Expand);
148 setOperationAction(ISD::VAEND, MVT::Other, Expand);
149 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
150 setOperationAction(ISD::JumpTable, MVT::i16, Custom);
152 // EABI Libcalls - EABI Section 6.2
153 const struct {
154 const RTLIB::Libcall Op;
155 const char * const Name;
156 const ISD::CondCode Cond;
157 } LibraryCalls[] = {
158 // Floating point conversions - EABI Table 6
159 { RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
160 { RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
161 // The following is NOT implemented in libgcc
162 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
163 { RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
164 { RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
165 // The following is NOT implemented in libgcc
166 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
167 { RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
168 { RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
169 // The following is NOT implemented in libgcc
170 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
171 { RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
172 { RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
173 // The following is NOT implemented in libgcc
174 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
175 { RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
176 { RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
177 // TODO The following IS implemented in libgcc
178 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
179 { RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
180 // TODO The following IS implemented in libgcc but is not in the EABI
181 { RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
182 // TODO The following IS implemented in libgcc
183 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
184 { RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
185 // The following IS implemented in libgcc but is not in the EABI
186 { RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
187 // TODO The following IS implemented in libgcc
188 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
189 { RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
190 // TODO The following IS implemented in libgcc but is not in the EABI
191 { RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
192 // TODO The following IS implemented in libgcc
193 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
194 { RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
195 // The following IS implemented in libgcc but is not in the EABI
196 { RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
198 // Floating point comparisons - EABI Table 7
199 { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
200 { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
201 { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
202 { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
203 { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
204 { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
205 { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
206 { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
207 { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
208 { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
209 { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
210 { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
212 // Floating point arithmetic - EABI Table 8
213 { RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
214 { RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
215 { RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
216 { RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
217 { RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
218 { RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
219 { RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
220 { RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
221 // The following are NOT implemented in libgcc
222 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
223 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
225 // Universal Integer Operations - EABI Table 9
226 { RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
227 { RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
228 { RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
229 { RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
230 { RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
231 { RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
232 { RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
233 { RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
234 { RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
235 { RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
236 { RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
237 { RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
239 // Bitwise Operations - EABI Table 10
240 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
241 { RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
242 { RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
243 { RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
244 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
248 for (const auto &LC : LibraryCalls) {
249 setLibcallName(LC.Op, LC.Name);
250 if (LC.Cond != ISD::SETCC_INVALID)
251 setCmpLibcallCC(LC.Op, LC.Cond);
254 if (STI.hasHWMult16()) {
255 const struct {
256 const RTLIB::Libcall Op;
257 const char * const Name;
258 } LibraryCalls[] = {
259 // Integer Multiply - EABI Table 9
260 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
261 { RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
262 { RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
263 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
264 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
266 for (const auto &LC : LibraryCalls) {
267 setLibcallName(LC.Op, LC.Name);
269 } else if (STI.hasHWMult32()) {
270 const struct {
271 const RTLIB::Libcall Op;
272 const char * const Name;
273 } LibraryCalls[] = {
274 // Integer Multiply - EABI Table 9
275 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
276 { RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
277 { RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
278 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
279 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
281 for (const auto &LC : LibraryCalls) {
282 setLibcallName(LC.Op, LC.Name);
284 } else if (STI.hasHWMultF5()) {
285 const struct {
286 const RTLIB::Libcall Op;
287 const char * const Name;
288 } LibraryCalls[] = {
289 // Integer Multiply - EABI Table 9
290 { RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
291 { RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
292 { RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
293 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
294 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
296 for (const auto &LC : LibraryCalls) {
297 setLibcallName(LC.Op, LC.Name);
299 } else { // NoHWMult
300 const struct {
301 const RTLIB::Libcall Op;
302 const char * const Name;
303 } LibraryCalls[] = {
304 // Integer Multiply - EABI Table 9
305 { RTLIB::MUL_I16, "__mspabi_mpyi" },
306 { RTLIB::MUL_I32, "__mspabi_mpyl" },
307 { RTLIB::MUL_I64, "__mspabi_mpyll" },
308 // The __mspabi_mpysl* functions are NOT implemented in libgcc
309 // The __mspabi_mpyul* functions are NOT implemented in libgcc
311 for (const auto &LC : LibraryCalls) {
312 setLibcallName(LC.Op, LC.Name);
314 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
317 // Several of the runtime library functions use a special calling conv
318 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
319 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
320 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
321 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
322 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
323 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
324 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
325 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
326 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
327 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
328 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
329 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
330 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
331 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
332 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
334 setMinFunctionAlignment(Align(2));
335 setPrefFunctionAlignment(Align(2));
338 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
339 SelectionDAG &DAG) const {
340 switch (Op.getOpcode()) {
341 case ISD::SHL: // FALLTHROUGH
342 case ISD::SRL:
343 case ISD::SRA: return LowerShifts(Op, DAG);
344 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
345 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
346 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
347 case ISD::SETCC: return LowerSETCC(Op, DAG);
348 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
349 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
350 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
351 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
352 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
353 case ISD::VASTART: return LowerVASTART(Op, DAG);
354 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
355 default:
356 llvm_unreachable("unimplemented operand");
360 // Define non profitable transforms into shifts
361 bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT,
362 unsigned Amount) const {
363 return !(Amount == 8 || Amount == 9 || Amount<=2);
366 // Implemented to verify test case assertions in
367 // tests/codegen/msp430/shift-amount-threshold-b.ll
368 bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
369 if (MSP430NoLegalImmediate)
370 return Immed >= -32 && Immed < 32;
371 return TargetLowering::isLegalICmpImmediate(Immed);
374 //===----------------------------------------------------------------------===//
375 // MSP430 Inline Assembly Support
376 //===----------------------------------------------------------------------===//
378 /// getConstraintType - Given a constraint letter, return the type of
379 /// constraint it is for this target.
380 TargetLowering::ConstraintType
381 MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
382 if (Constraint.size() == 1) {
383 switch (Constraint[0]) {
384 case 'r':
385 return C_RegisterClass;
386 default:
387 break;
390 return TargetLowering::getConstraintType(Constraint);
393 std::pair<unsigned, const TargetRegisterClass *>
394 MSP430TargetLowering::getRegForInlineAsmConstraint(
395 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
396 if (Constraint.size() == 1) {
397 // GCC Constraint Letters
398 switch (Constraint[0]) {
399 default: break;
400 case 'r': // GENERAL_REGS
401 if (VT == MVT::i8)
402 return std::make_pair(0U, &MSP430::GR8RegClass);
404 return std::make_pair(0U, &MSP430::GR16RegClass);
408 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
411 //===----------------------------------------------------------------------===//
412 // Calling Convention Implementation
413 //===----------------------------------------------------------------------===//
415 #include "MSP430GenCallingConv.inc"
417 /// For each argument in a function store the number of pieces it is composed
418 /// of.
419 template<typename ArgT>
420 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
421 SmallVectorImpl<unsigned> &Out) {
422 unsigned CurrentArgIndex;
424 if (Args.empty())
425 return;
427 CurrentArgIndex = Args[0].OrigArgIndex;
428 Out.push_back(0);
430 for (auto &Arg : Args) {
431 if (CurrentArgIndex == Arg.OrigArgIndex) {
432 Out.back() += 1;
433 } else {
434 Out.push_back(1);
435 CurrentArgIndex = Arg.OrigArgIndex;
440 static void AnalyzeVarArgs(CCState &State,
441 const SmallVectorImpl<ISD::OutputArg> &Outs) {
442 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
445 static void AnalyzeVarArgs(CCState &State,
446 const SmallVectorImpl<ISD::InputArg> &Ins) {
447 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
450 /// Analyze incoming and outgoing function arguments. We need custom C++ code
451 /// to handle special constraints in the ABI like reversing the order of the
452 /// pieces of splitted arguments. In addition, all pieces of a certain argument
453 /// have to be passed either using registers or the stack but never mixing both.
454 template<typename ArgT>
455 static void AnalyzeArguments(CCState &State,
456 SmallVectorImpl<CCValAssign> &ArgLocs,
457 const SmallVectorImpl<ArgT> &Args) {
458 static const MCPhysReg CRegList[] = {
459 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
461 static const unsigned CNbRegs = array_lengthof(CRegList);
462 static const MCPhysReg BuiltinRegList[] = {
463 MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
464 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
466 static const unsigned BuiltinNbRegs = array_lengthof(BuiltinRegList);
468 ArrayRef<MCPhysReg> RegList;
469 unsigned NbRegs;
471 bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
472 if (Builtin) {
473 RegList = BuiltinRegList;
474 NbRegs = BuiltinNbRegs;
475 } else {
476 RegList = CRegList;
477 NbRegs = CNbRegs;
480 if (State.isVarArg()) {
481 AnalyzeVarArgs(State, Args);
482 return;
485 SmallVector<unsigned, 4> ArgsParts;
486 ParseFunctionArgs(Args, ArgsParts);
488 if (Builtin) {
489 assert(ArgsParts.size() == 2 &&
490 "Builtin calling convention requires two arguments");
493 unsigned RegsLeft = NbRegs;
494 bool UsedStack = false;
495 unsigned ValNo = 0;
497 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
498 MVT ArgVT = Args[ValNo].VT;
499 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
500 MVT LocVT = ArgVT;
501 CCValAssign::LocInfo LocInfo = CCValAssign::Full;
503 // Promote i8 to i16
504 if (LocVT == MVT::i8) {
505 LocVT = MVT::i16;
506 if (ArgFlags.isSExt())
507 LocInfo = CCValAssign::SExt;
508 else if (ArgFlags.isZExt())
509 LocInfo = CCValAssign::ZExt;
510 else
511 LocInfo = CCValAssign::AExt;
514 // Handle byval arguments
515 if (ArgFlags.isByVal()) {
516 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, Align(2), ArgFlags);
517 continue;
520 unsigned Parts = ArgsParts[i];
522 if (Builtin) {
523 assert(Parts == 4 &&
524 "Builtin calling convention requires 64-bit arguments");
527 if (!UsedStack && Parts == 2 && RegsLeft == 1) {
528 // Special case for 32-bit register split, see EABI section 3.3.3
529 unsigned Reg = State.AllocateReg(RegList);
530 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
531 RegsLeft -= 1;
533 UsedStack = true;
534 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
535 } else if (Parts <= RegsLeft) {
536 for (unsigned j = 0; j < Parts; j++) {
537 unsigned Reg = State.AllocateReg(RegList);
538 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
539 RegsLeft--;
541 } else {
542 UsedStack = true;
543 for (unsigned j = 0; j < Parts; j++)
544 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
549 static void AnalyzeRetResult(CCState &State,
550 const SmallVectorImpl<ISD::InputArg> &Ins) {
551 State.AnalyzeCallResult(Ins, RetCC_MSP430);
554 static void AnalyzeRetResult(CCState &State,
555 const SmallVectorImpl<ISD::OutputArg> &Outs) {
556 State.AnalyzeReturn(Outs, RetCC_MSP430);
559 template<typename ArgT>
560 static void AnalyzeReturnValues(CCState &State,
561 SmallVectorImpl<CCValAssign> &RVLocs,
562 const SmallVectorImpl<ArgT> &Args) {
563 AnalyzeRetResult(State, Args);
566 SDValue MSP430TargetLowering::LowerFormalArguments(
567 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
568 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
569 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
571 switch (CallConv) {
572 default:
573 report_fatal_error("Unsupported calling convention");
574 case CallingConv::C:
575 case CallingConv::Fast:
576 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
577 case CallingConv::MSP430_INTR:
578 if (Ins.empty())
579 return Chain;
580 report_fatal_error("ISRs cannot have arguments");
584 SDValue
585 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
586 SmallVectorImpl<SDValue> &InVals) const {
587 SelectionDAG &DAG = CLI.DAG;
588 SDLoc &dl = CLI.DL;
589 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
590 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
591 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
592 SDValue Chain = CLI.Chain;
593 SDValue Callee = CLI.Callee;
594 bool &isTailCall = CLI.IsTailCall;
595 CallingConv::ID CallConv = CLI.CallConv;
596 bool isVarArg = CLI.IsVarArg;
598 // MSP430 target does not yet support tail call optimization.
599 isTailCall = false;
601 switch (CallConv) {
602 default:
603 report_fatal_error("Unsupported calling convention");
604 case CallingConv::MSP430_BUILTIN:
605 case CallingConv::Fast:
606 case CallingConv::C:
607 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
608 Outs, OutVals, Ins, dl, DAG, InVals);
609 case CallingConv::MSP430_INTR:
610 report_fatal_error("ISRs cannot be called directly");
614 /// LowerCCCArguments - transform physical registers into virtual registers and
615 /// generate load operations for arguments places on the stack.
616 // FIXME: struct return stuff
617 SDValue MSP430TargetLowering::LowerCCCArguments(
618 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
619 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
620 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
621 MachineFunction &MF = DAG.getMachineFunction();
622 MachineFrameInfo &MFI = MF.getFrameInfo();
623 MachineRegisterInfo &RegInfo = MF.getRegInfo();
624 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
626 // Assign locations to all of the incoming arguments.
627 SmallVector<CCValAssign, 16> ArgLocs;
628 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
629 *DAG.getContext());
630 AnalyzeArguments(CCInfo, ArgLocs, Ins);
632 // Create frame index for the start of the first vararg value
633 if (isVarArg) {
634 unsigned Offset = CCInfo.getNextStackOffset();
635 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
638 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
639 CCValAssign &VA = ArgLocs[i];
640 if (VA.isRegLoc()) {
641 // Arguments passed in registers
642 EVT RegVT = VA.getLocVT();
643 switch (RegVT.getSimpleVT().SimpleTy) {
644 default:
646 #ifndef NDEBUG
647 errs() << "LowerFormalArguments Unhandled argument type: "
648 << RegVT.getEVTString() << "\n";
649 #endif
650 llvm_unreachable(nullptr);
652 case MVT::i16:
653 Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
654 RegInfo.addLiveIn(VA.getLocReg(), VReg);
655 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
657 // If this is an 8-bit value, it is really passed promoted to 16
658 // bits. Insert an assert[sz]ext to capture this, then truncate to the
659 // right size.
660 if (VA.getLocInfo() == CCValAssign::SExt)
661 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
662 DAG.getValueType(VA.getValVT()));
663 else if (VA.getLocInfo() == CCValAssign::ZExt)
664 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
665 DAG.getValueType(VA.getValVT()));
667 if (VA.getLocInfo() != CCValAssign::Full)
668 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
670 InVals.push_back(ArgValue);
672 } else {
673 // Sanity check
674 assert(VA.isMemLoc());
676 SDValue InVal;
677 ISD::ArgFlagsTy Flags = Ins[i].Flags;
679 if (Flags.isByVal()) {
680 int FI = MFI.CreateFixedObject(Flags.getByValSize(),
681 VA.getLocMemOffset(), true);
682 InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
683 } else {
684 // Load the argument to a virtual register
685 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
686 if (ObjSize > 2) {
687 errs() << "LowerFormalArguments Unhandled argument type: "
688 << EVT(VA.getLocVT()).getEVTString()
689 << "\n";
691 // Create the frame index object for this incoming parameter...
692 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
694 // Create the SelectionDAG nodes corresponding to a load
695 //from this parameter
696 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
697 InVal = DAG.getLoad(
698 VA.getLocVT(), dl, Chain, FIN,
699 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
702 InVals.push_back(InVal);
706 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
707 if (Ins[i].Flags.isSRet()) {
708 unsigned Reg = FuncInfo->getSRetReturnReg();
709 if (!Reg) {
710 Reg = MF.getRegInfo().createVirtualRegister(
711 getRegClassFor(MVT::i16));
712 FuncInfo->setSRetReturnReg(Reg);
714 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
715 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
719 return Chain;
722 bool
723 MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
724 MachineFunction &MF,
725 bool IsVarArg,
726 const SmallVectorImpl<ISD::OutputArg> &Outs,
727 LLVMContext &Context) const {
728 SmallVector<CCValAssign, 16> RVLocs;
729 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
730 return CCInfo.CheckReturn(Outs, RetCC_MSP430);
733 SDValue
734 MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
735 bool isVarArg,
736 const SmallVectorImpl<ISD::OutputArg> &Outs,
737 const SmallVectorImpl<SDValue> &OutVals,
738 const SDLoc &dl, SelectionDAG &DAG) const {
740 MachineFunction &MF = DAG.getMachineFunction();
742 // CCValAssign - represent the assignment of the return value to a location
743 SmallVector<CCValAssign, 16> RVLocs;
745 // ISRs cannot return any value.
746 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
747 report_fatal_error("ISRs cannot return any value");
749 // CCState - Info about the registers and stack slot.
750 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
751 *DAG.getContext());
753 // Analize return values.
754 AnalyzeReturnValues(CCInfo, RVLocs, Outs);
756 SDValue Flag;
757 SmallVector<SDValue, 4> RetOps(1, Chain);
759 // Copy the result values into the output registers.
760 for (unsigned i = 0; i != RVLocs.size(); ++i) {
761 CCValAssign &VA = RVLocs[i];
762 assert(VA.isRegLoc() && "Can only return in registers!");
764 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
765 OutVals[i], Flag);
767 // Guarantee that all emitted copies are stuck together,
768 // avoiding something bad.
769 Flag = Chain.getValue(1);
770 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
773 if (MF.getFunction().hasStructRetAttr()) {
774 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
775 unsigned Reg = FuncInfo->getSRetReturnReg();
777 if (!Reg)
778 llvm_unreachable("sret virtual register not created in entry block");
780 SDValue Val =
781 DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy(DAG.getDataLayout()));
782 unsigned R12 = MSP430::R12;
784 Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag);
785 Flag = Chain.getValue(1);
786 RetOps.push_back(DAG.getRegister(R12, getPointerTy(DAG.getDataLayout())));
789 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
790 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
792 RetOps[0] = Chain; // Update chain.
794 // Add the flag if we have it.
795 if (Flag.getNode())
796 RetOps.push_back(Flag);
798 return DAG.getNode(Opc, dl, MVT::Other, RetOps);
801 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
802 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
803 SDValue MSP430TargetLowering::LowerCCCCallTo(
804 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
805 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
806 const SmallVectorImpl<SDValue> &OutVals,
807 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
808 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
809 // Analyze operands of the call, assigning locations to each operand.
810 SmallVector<CCValAssign, 16> ArgLocs;
811 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
812 *DAG.getContext());
813 AnalyzeArguments(CCInfo, ArgLocs, Outs);
815 // Get a count of how many bytes are to be pushed on the stack.
816 unsigned NumBytes = CCInfo.getNextStackOffset();
817 auto PtrVT = getPointerTy(DAG.getDataLayout());
819 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
821 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
822 SmallVector<SDValue, 12> MemOpChains;
823 SDValue StackPtr;
825 // Walk the register/memloc assignments, inserting copies/loads.
826 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
827 CCValAssign &VA = ArgLocs[i];
829 SDValue Arg = OutVals[i];
831 // Promote the value if needed.
832 switch (VA.getLocInfo()) {
833 default: llvm_unreachable("Unknown loc info!");
834 case CCValAssign::Full: break;
835 case CCValAssign::SExt:
836 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
837 break;
838 case CCValAssign::ZExt:
839 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
840 break;
841 case CCValAssign::AExt:
842 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
843 break;
846 // Arguments that can be passed on register must be kept at RegsToPass
847 // vector
848 if (VA.isRegLoc()) {
849 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
850 } else {
851 assert(VA.isMemLoc());
853 if (!StackPtr.getNode())
854 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
856 SDValue PtrOff =
857 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
858 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
860 SDValue MemOp;
861 ISD::ArgFlagsTy Flags = Outs[i].Flags;
863 if (Flags.isByVal()) {
864 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
865 MemOp = DAG.getMemcpy(
866 Chain, dl, PtrOff, Arg, SizeNode, Flags.getNonZeroByValAlign(),
867 /*isVolatile*/ false,
868 /*AlwaysInline=*/true,
869 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
870 } else {
871 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
874 MemOpChains.push_back(MemOp);
878 // Transform all store nodes into one single node because all store nodes are
879 // independent of each other.
880 if (!MemOpChains.empty())
881 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
883 // Build a sequence of copy-to-reg nodes chained together with token chain and
884 // flag operands which copy the outgoing args into registers. The InFlag in
885 // necessary since all emitted instructions must be stuck together.
886 SDValue InFlag;
887 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
888 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
889 RegsToPass[i].second, InFlag);
890 InFlag = Chain.getValue(1);
893 // If the callee is a GlobalAddress node (quite common, every direct call is)
894 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
895 // Likewise ExternalSymbol -> TargetExternalSymbol.
896 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
897 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
898 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
899 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
901 // Returns a chain & a flag for retval copy to use.
902 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
903 SmallVector<SDValue, 8> Ops;
904 Ops.push_back(Chain);
905 Ops.push_back(Callee);
907 // Add argument registers to the end of the list so that they are
908 // known live into the call.
909 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
910 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
911 RegsToPass[i].second.getValueType()));
913 if (InFlag.getNode())
914 Ops.push_back(InFlag);
916 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
917 InFlag = Chain.getValue(1);
919 // Create the CALLSEQ_END node.
920 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
921 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
922 InFlag = Chain.getValue(1);
924 // Handle result values, copying them out of physregs into vregs that we
925 // return.
926 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
927 DAG, InVals);
930 /// LowerCallResult - Lower the result values of a call into the
931 /// appropriate copies out of appropriate physical registers.
933 SDValue MSP430TargetLowering::LowerCallResult(
934 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
935 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
936 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
938 // Assign locations to each value returned by this call.
939 SmallVector<CCValAssign, 16> RVLocs;
940 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
941 *DAG.getContext());
943 AnalyzeReturnValues(CCInfo, RVLocs, Ins);
945 // Copy all of the result registers out of their specified physreg.
946 for (unsigned i = 0; i != RVLocs.size(); ++i) {
947 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
948 RVLocs[i].getValVT(), InFlag).getValue(1);
949 InFlag = Chain.getValue(2);
950 InVals.push_back(Chain.getValue(0));
953 return Chain;
956 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
957 SelectionDAG &DAG) const {
958 unsigned Opc = Op.getOpcode();
959 SDNode* N = Op.getNode();
960 EVT VT = Op.getValueType();
961 SDLoc dl(N);
963 // Expand non-constant shifts to loops:
964 if (!isa<ConstantSDNode>(N->getOperand(1)))
965 return Op;
967 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
969 // Expand the stuff into sequence of shifts.
970 SDValue Victim = N->getOperand(0);
972 if (ShiftAmount >= 8) {
973 assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
974 switch(Opc) {
975 default:
976 llvm_unreachable("Unknown shift");
977 case ISD::SHL:
978 // foo << (8 + N) => swpb(zext(foo)) << N
979 Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
980 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
981 break;
982 case ISD::SRA:
983 case ISD::SRL:
984 // foo >> (8 + N) => sxt(swpb(foo)) >> N
985 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
986 Victim = (Opc == ISD::SRA)
987 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
988 DAG.getValueType(MVT::i8))
989 : DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
990 break;
992 ShiftAmount -= 8;
995 if (Opc == ISD::SRL && ShiftAmount) {
996 // Emit a special goodness here:
997 // srl A, 1 => clrc; rrc A
998 Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
999 ShiftAmount -= 1;
1002 while (ShiftAmount--)
1003 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
1004 dl, VT, Victim);
1006 return Victim;
1009 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
1010 SelectionDAG &DAG) const {
1011 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1012 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1013 auto PtrVT = getPointerTy(DAG.getDataLayout());
1015 // Create the TargetGlobalAddress node, folding in the constant offset.
1016 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
1017 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
1020 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
1021 SelectionDAG &DAG) const {
1022 SDLoc dl(Op);
1023 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
1024 auto PtrVT = getPointerTy(DAG.getDataLayout());
1025 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
1027 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1030 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
1031 SelectionDAG &DAG) const {
1032 SDLoc dl(Op);
1033 auto PtrVT = getPointerTy(DAG.getDataLayout());
1034 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1035 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
1037 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1040 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
1041 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
1042 // FIXME: Handle bittests someday
1043 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
1045 // FIXME: Handle jump negative someday
1046 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
1047 switch (CC) {
1048 default: llvm_unreachable("Invalid integer condition!");
1049 case ISD::SETEQ:
1050 TCC = MSP430CC::COND_E; // aka COND_Z
1051 // Minor optimization: if LHS is a constant, swap operands, then the
1052 // constant can be folded into comparison.
1053 if (LHS.getOpcode() == ISD::Constant)
1054 std::swap(LHS, RHS);
1055 break;
1056 case ISD::SETNE:
1057 TCC = MSP430CC::COND_NE; // aka COND_NZ
1058 // Minor optimization: if LHS is a constant, swap operands, then the
1059 // constant can be folded into comparison.
1060 if (LHS.getOpcode() == ISD::Constant)
1061 std::swap(LHS, RHS);
1062 break;
1063 case ISD::SETULE:
1064 std::swap(LHS, RHS);
1065 LLVM_FALLTHROUGH;
1066 case ISD::SETUGE:
1067 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1068 // fold constant into instruction.
1069 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1070 LHS = RHS;
1071 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1072 TCC = MSP430CC::COND_LO;
1073 break;
1075 TCC = MSP430CC::COND_HS; // aka COND_C
1076 break;
1077 case ISD::SETUGT:
1078 std::swap(LHS, RHS);
1079 LLVM_FALLTHROUGH;
1080 case ISD::SETULT:
1081 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1082 // fold constant into instruction.
1083 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1084 LHS = RHS;
1085 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1086 TCC = MSP430CC::COND_HS;
1087 break;
1089 TCC = MSP430CC::COND_LO; // aka COND_NC
1090 break;
1091 case ISD::SETLE:
1092 std::swap(LHS, RHS);
1093 LLVM_FALLTHROUGH;
1094 case ISD::SETGE:
1095 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1096 // fold constant into instruction.
1097 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1098 LHS = RHS;
1099 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1100 TCC = MSP430CC::COND_L;
1101 break;
1103 TCC = MSP430CC::COND_GE;
1104 break;
1105 case ISD::SETGT:
1106 std::swap(LHS, RHS);
1107 LLVM_FALLTHROUGH;
1108 case ISD::SETLT:
1109 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1110 // fold constant into instruction.
1111 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1112 LHS = RHS;
1113 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1114 TCC = MSP430CC::COND_GE;
1115 break;
1117 TCC = MSP430CC::COND_L;
1118 break;
1121 TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
1122 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
1126 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1127 SDValue Chain = Op.getOperand(0);
1128 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1129 SDValue LHS = Op.getOperand(2);
1130 SDValue RHS = Op.getOperand(3);
1131 SDValue Dest = Op.getOperand(4);
1132 SDLoc dl (Op);
1134 SDValue TargetCC;
1135 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1137 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
1138 Chain, Dest, TargetCC, Flag);
1141 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1142 SDValue LHS = Op.getOperand(0);
1143 SDValue RHS = Op.getOperand(1);
1144 SDLoc dl (Op);
1146 // If we are doing an AND and testing against zero, then the CMP
1147 // will not be generated. The AND (or BIT) will generate the condition codes,
1148 // but they are different from CMP.
1149 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1150 // lowering & isel wouldn't diverge.
1151 bool andCC = false;
1152 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1153 if (RHSC->isNullValue() && LHS.hasOneUse() &&
1154 (LHS.getOpcode() == ISD::AND ||
1155 (LHS.getOpcode() == ISD::TRUNCATE &&
1156 LHS.getOperand(0).getOpcode() == ISD::AND))) {
1157 andCC = true;
1160 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1161 SDValue TargetCC;
1162 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1164 // Get the condition codes directly from the status register, if its easy.
1165 // Otherwise a branch will be generated. Note that the AND and BIT
1166 // instructions generate different flags than CMP, the carry bit can be used
1167 // for NE/EQ.
1168 bool Invert = false;
1169 bool Shift = false;
1170 bool Convert = true;
1171 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
1172 default:
1173 Convert = false;
1174 break;
1175 case MSP430CC::COND_HS:
1176 // Res = SR & 1, no processing is required
1177 break;
1178 case MSP430CC::COND_LO:
1179 // Res = ~(SR & 1)
1180 Invert = true;
1181 break;
1182 case MSP430CC::COND_NE:
1183 if (andCC) {
1184 // C = ~Z, thus Res = SR & 1, no processing is required
1185 } else {
1186 // Res = ~((SR >> 1) & 1)
1187 Shift = true;
1188 Invert = true;
1190 break;
1191 case MSP430CC::COND_E:
1192 Shift = true;
1193 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1194 // Res = (SR >> 1) & 1 is 1 word shorter.
1195 break;
1197 EVT VT = Op.getValueType();
1198 SDValue One = DAG.getConstant(1, dl, VT);
1199 if (Convert) {
1200 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
1201 MVT::i16, Flag);
1202 if (Shift)
1203 // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1204 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
1205 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
1206 if (Invert)
1207 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
1208 return SR;
1209 } else {
1210 SDValue Zero = DAG.getConstant(0, dl, VT);
1211 SDValue Ops[] = {One, Zero, TargetCC, Flag};
1212 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1216 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
1217 SelectionDAG &DAG) const {
1218 SDValue LHS = Op.getOperand(0);
1219 SDValue RHS = Op.getOperand(1);
1220 SDValue TrueV = Op.getOperand(2);
1221 SDValue FalseV = Op.getOperand(3);
1222 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1223 SDLoc dl (Op);
1225 SDValue TargetCC;
1226 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1228 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1230 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1233 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1234 SelectionDAG &DAG) const {
1235 SDValue Val = Op.getOperand(0);
1236 EVT VT = Op.getValueType();
1237 SDLoc dl(Op);
1239 assert(VT == MVT::i16 && "Only support i16 for now!");
1241 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1242 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1243 DAG.getValueType(Val.getValueType()));
1246 SDValue
1247 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1248 MachineFunction &MF = DAG.getMachineFunction();
1249 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1250 int ReturnAddrIndex = FuncInfo->getRAIndex();
1251 auto PtrVT = getPointerTy(MF.getDataLayout());
1253 if (ReturnAddrIndex == 0) {
1254 // Set up a frame object for the return address.
1255 uint64_t SlotSize = MF.getDataLayout().getPointerSize();
1256 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
1257 true);
1258 FuncInfo->setRAIndex(ReturnAddrIndex);
1261 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1264 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1265 SelectionDAG &DAG) const {
1266 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1267 MFI.setReturnAddressIsTaken(true);
1269 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1270 return SDValue();
1272 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1273 SDLoc dl(Op);
1274 auto PtrVT = getPointerTy(DAG.getDataLayout());
1276 if (Depth > 0) {
1277 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1278 SDValue Offset =
1279 DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
1280 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1281 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1282 MachinePointerInfo());
1285 // Just load the return address.
1286 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1287 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1288 MachinePointerInfo());
1291 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1292 SelectionDAG &DAG) const {
1293 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1294 MFI.setFrameAddressIsTaken(true);
1296 EVT VT = Op.getValueType();
1297 SDLoc dl(Op); // FIXME probably not meaningful
1298 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1299 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1300 MSP430::R4, VT);
1301 while (Depth--)
1302 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1303 MachinePointerInfo());
1304 return FrameAddr;
1307 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1308 SelectionDAG &DAG) const {
1309 MachineFunction &MF = DAG.getMachineFunction();
1310 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1311 auto PtrVT = getPointerTy(DAG.getDataLayout());
1313 // Frame index of first vararg argument
1314 SDValue FrameIndex =
1315 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1316 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1318 // Create a store of the frame index to the location operand
1319 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Op.getOperand(1),
1320 MachinePointerInfo(SV));
1323 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1324 SelectionDAG &DAG) const {
1325 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1326 auto PtrVT = getPointerTy(DAG.getDataLayout());
1327 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1328 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1331 /// getPostIndexedAddressParts - returns true by value, base pointer and
1332 /// offset pointer and addressing mode by reference if this node can be
1333 /// combined with a load / store to form a post-indexed load / store.
1334 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1335 SDValue &Base,
1336 SDValue &Offset,
1337 ISD::MemIndexedMode &AM,
1338 SelectionDAG &DAG) const {
1340 LoadSDNode *LD = cast<LoadSDNode>(N);
1341 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1342 return false;
1344 EVT VT = LD->getMemoryVT();
1345 if (VT != MVT::i8 && VT != MVT::i16)
1346 return false;
1348 if (Op->getOpcode() != ISD::ADD)
1349 return false;
1351 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1352 uint64_t RHSC = RHS->getZExtValue();
1353 if ((VT == MVT::i16 && RHSC != 2) ||
1354 (VT == MVT::i8 && RHSC != 1))
1355 return false;
1357 Base = Op->getOperand(0);
1358 Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1359 AM = ISD::POST_INC;
1360 return true;
1363 return false;
1367 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1368 switch ((MSP430ISD::NodeType)Opcode) {
1369 case MSP430ISD::FIRST_NUMBER: break;
1370 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG";
1371 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG";
1372 case MSP430ISD::RRA: return "MSP430ISD::RRA";
1373 case MSP430ISD::RLA: return "MSP430ISD::RLA";
1374 case MSP430ISD::RRC: return "MSP430ISD::RRC";
1375 case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
1376 case MSP430ISD::CALL: return "MSP430ISD::CALL";
1377 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
1378 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
1379 case MSP430ISD::CMP: return "MSP430ISD::CMP";
1380 case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
1381 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
1382 case MSP430ISD::DADD: return "MSP430ISD::DADD";
1384 return nullptr;
1387 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1388 Type *Ty2) const {
1389 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1390 return false;
1392 return (Ty1->getPrimitiveSizeInBits().getFixedSize() >
1393 Ty2->getPrimitiveSizeInBits().getFixedSize());
1396 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1397 if (!VT1.isInteger() || !VT2.isInteger())
1398 return false;
1400 return (VT1.getFixedSizeInBits() > VT2.getFixedSizeInBits());
1403 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1404 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1405 return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1408 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1409 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1410 return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
1413 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1414 return isZExtFree(Val.getValueType(), VT2);
1417 //===----------------------------------------------------------------------===//
1418 // Other Lowering Code
1419 //===----------------------------------------------------------------------===//
1421 MachineBasicBlock *
1422 MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
1423 MachineBasicBlock *BB) const {
1424 MachineFunction *F = BB->getParent();
1425 MachineRegisterInfo &RI = F->getRegInfo();
1426 DebugLoc dl = MI.getDebugLoc();
1427 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1429 unsigned Opc;
1430 bool ClearCarry = false;
1431 const TargetRegisterClass * RC;
1432 switch (MI.getOpcode()) {
1433 default: llvm_unreachable("Invalid shift opcode!");
1434 case MSP430::Shl8:
1435 Opc = MSP430::ADD8rr;
1436 RC = &MSP430::GR8RegClass;
1437 break;
1438 case MSP430::Shl16:
1439 Opc = MSP430::ADD16rr;
1440 RC = &MSP430::GR16RegClass;
1441 break;
1442 case MSP430::Sra8:
1443 Opc = MSP430::RRA8r;
1444 RC = &MSP430::GR8RegClass;
1445 break;
1446 case MSP430::Sra16:
1447 Opc = MSP430::RRA16r;
1448 RC = &MSP430::GR16RegClass;
1449 break;
1450 case MSP430::Srl8:
1451 ClearCarry = true;
1452 Opc = MSP430::RRC8r;
1453 RC = &MSP430::GR8RegClass;
1454 break;
1455 case MSP430::Srl16:
1456 ClearCarry = true;
1457 Opc = MSP430::RRC16r;
1458 RC = &MSP430::GR16RegClass;
1459 break;
1460 case MSP430::Rrcl8:
1461 case MSP430::Rrcl16: {
1462 BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1463 .addReg(MSP430::SR).addImm(1);
1464 Register SrcReg = MI.getOperand(1).getReg();
1465 Register DstReg = MI.getOperand(0).getReg();
1466 unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
1467 ? MSP430::RRC16r : MSP430::RRC8r;
1468 BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
1469 .addReg(SrcReg);
1470 MI.eraseFromParent(); // The pseudo instruction is gone now.
1471 return BB;
1475 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1476 MachineFunction::iterator I = ++BB->getIterator();
1478 // Create loop block
1479 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1480 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1482 F->insert(I, LoopBB);
1483 F->insert(I, RemBB);
1485 // Update machine-CFG edges by transferring all successors of the current
1486 // block to the block containing instructions after shift.
1487 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1488 BB->end());
1489 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1491 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1492 BB->addSuccessor(LoopBB);
1493 BB->addSuccessor(RemBB);
1494 LoopBB->addSuccessor(RemBB);
1495 LoopBB->addSuccessor(LoopBB);
1497 Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1498 Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1499 Register ShiftReg = RI.createVirtualRegister(RC);
1500 Register ShiftReg2 = RI.createVirtualRegister(RC);
1501 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1502 Register SrcReg = MI.getOperand(1).getReg();
1503 Register DstReg = MI.getOperand(0).getReg();
1505 // BB:
1506 // cmp 0, N
1507 // je RemBB
1508 BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1509 .addReg(ShiftAmtSrcReg).addImm(0);
1510 BuildMI(BB, dl, TII.get(MSP430::JCC))
1511 .addMBB(RemBB)
1512 .addImm(MSP430CC::COND_E);
1514 // LoopBB:
1515 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1516 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1517 // ShiftReg2 = shift ShiftReg
1518 // ShiftAmt2 = ShiftAmt - 1;
1519 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1520 .addReg(SrcReg).addMBB(BB)
1521 .addReg(ShiftReg2).addMBB(LoopBB);
1522 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1523 .addReg(ShiftAmtSrcReg).addMBB(BB)
1524 .addReg(ShiftAmtReg2).addMBB(LoopBB);
1525 if (ClearCarry)
1526 BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1527 .addReg(MSP430::SR).addImm(1);
1528 if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
1529 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1530 .addReg(ShiftReg)
1531 .addReg(ShiftReg);
1532 else
1533 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1534 .addReg(ShiftReg);
1535 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1536 .addReg(ShiftAmtReg).addImm(1);
1537 BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1538 .addMBB(LoopBB)
1539 .addImm(MSP430CC::COND_NE);
1541 // RemBB:
1542 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1543 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1544 .addReg(SrcReg).addMBB(BB)
1545 .addReg(ShiftReg2).addMBB(LoopBB);
1547 MI.eraseFromParent(); // The pseudo instruction is gone now.
1548 return RemBB;
1551 MachineBasicBlock *
1552 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1553 MachineBasicBlock *BB) const {
1554 unsigned Opc = MI.getOpcode();
1556 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1557 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1558 Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
1559 Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
1560 return EmitShiftInstr(MI, BB);
1562 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1563 DebugLoc dl = MI.getDebugLoc();
1565 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1566 "Unexpected instr type to insert");
1568 // To "insert" a SELECT instruction, we actually have to insert the diamond
1569 // control-flow pattern. The incoming instruction knows the destination vreg
1570 // to set, the condition code register to branch on, the true/false values to
1571 // select between, and a branch opcode to use.
1572 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1573 MachineFunction::iterator I = ++BB->getIterator();
1575 // thisMBB:
1576 // ...
1577 // TrueVal = ...
1578 // cmpTY ccX, r1, r2
1579 // jCC copy1MBB
1580 // fallthrough --> copy0MBB
1581 MachineBasicBlock *thisMBB = BB;
1582 MachineFunction *F = BB->getParent();
1583 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1584 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1585 F->insert(I, copy0MBB);
1586 F->insert(I, copy1MBB);
1587 // Update machine-CFG edges by transferring all successors of the current
1588 // block to the new block which will contain the Phi node for the select.
1589 copy1MBB->splice(copy1MBB->begin(), BB,
1590 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1591 copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1592 // Next, add the true and fallthrough blocks as its successors.
1593 BB->addSuccessor(copy0MBB);
1594 BB->addSuccessor(copy1MBB);
1596 BuildMI(BB, dl, TII.get(MSP430::JCC))
1597 .addMBB(copy1MBB)
1598 .addImm(MI.getOperand(3).getImm());
1600 // copy0MBB:
1601 // %FalseValue = ...
1602 // # fallthrough to copy1MBB
1603 BB = copy0MBB;
1605 // Update machine-CFG edges
1606 BB->addSuccessor(copy1MBB);
1608 // copy1MBB:
1609 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1610 // ...
1611 BB = copy1MBB;
1612 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
1613 .addReg(MI.getOperand(2).getReg())
1614 .addMBB(copy0MBB)
1615 .addReg(MI.getOperand(1).getReg())
1616 .addMBB(thisMBB);
1618 MI.eraseFromParent(); // The pseudo instruction is gone now.
1619 return BB;