[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Mips / MipsAsmPrinter.cpp
blobb460bc71b11f55f498e6c478617108ebf0f56395
1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "MipsAsmPrinter.h"
15 #include "MCTargetDesc/MipsABIInfo.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsInstPrinter.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
20 #include "Mips.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "TargetInfo/MipsTargetInfo.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCInst.h"
50 #include "llvm/MC/MCInstBuilder.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCSectionELF.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/MC/MCSymbolELF.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetLoweringObjectFile.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <cstdint>
63 #include <map>
64 #include <memory>
65 #include <string>
66 #include <vector>
68 using namespace llvm;
70 #define DEBUG_TYPE "mips-asm-printer"
72 extern cl::opt<bool> EmitJalrReloc;
74 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
75 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
78 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
79 Subtarget = &MF.getSubtarget<MipsSubtarget>();
81 MipsFI = MF.getInfo<MipsFunctionInfo>();
82 if (Subtarget->inMips16Mode())
83 for (std::map<
84 const char *,
85 const Mips16HardFloatInfo::FuncSignature *>::const_iterator
86 it = MipsFI->StubsNeeded.begin();
87 it != MipsFI->StubsNeeded.end(); ++it) {
88 const char *Symbol = it->first;
89 const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
90 if (StubsNeeded.find(Symbol) == StubsNeeded.end())
91 StubsNeeded[Symbol] = Signature;
93 MCP = MF.getConstantPool();
95 // In NaCl, all indirect jump targets must be aligned to bundle size.
96 if (Subtarget->isTargetNaCl())
97 NaClAlignIndirectJumpTargets(MF);
99 AsmPrinter::runOnMachineFunction(MF);
101 emitXRayTable();
103 return true;
106 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
107 MCOp = MCInstLowering.LowerOperand(MO);
108 return MCOp.isValid();
111 #include "MipsGenMCPseudoLowering.inc"
113 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
114 // JALR, or JALR64 as appropriate for the target.
115 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
116 const MachineInstr *MI) {
117 bool HasLinkReg = false;
118 bool InMicroMipsMode = Subtarget->inMicroMipsMode();
119 MCInst TmpInst0;
121 if (Subtarget->hasMips64r6()) {
122 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
123 TmpInst0.setOpcode(Mips::JALR64);
124 HasLinkReg = true;
125 } else if (Subtarget->hasMips32r6()) {
126 // MIPS32r6 should use (JALR ZERO, $rs)
127 if (InMicroMipsMode)
128 TmpInst0.setOpcode(Mips::JRC16_MMR6);
129 else {
130 TmpInst0.setOpcode(Mips::JALR);
131 HasLinkReg = true;
133 } else if (Subtarget->inMicroMipsMode())
134 // microMIPS should use (JR_MM $rs)
135 TmpInst0.setOpcode(Mips::JR_MM);
136 else {
137 // Everything else should use (JR $rs)
138 TmpInst0.setOpcode(Mips::JR);
141 MCOperand MCOp;
143 if (HasLinkReg) {
144 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
145 TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
148 lowerOperand(MI->getOperand(0), MCOp);
149 TmpInst0.addOperand(MCOp);
151 EmitToStreamer(OutStreamer, TmpInst0);
154 // If there is an MO_JALR operand, insert:
156 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
157 // tmplabel:
159 // This is an optimization hint for the linker which may then replace
160 // an indirect call with a direct branch.
161 static void emitDirectiveRelocJalr(const MachineInstr &MI,
162 MCContext &OutContext,
163 TargetMachine &TM,
164 MCStreamer &OutStreamer,
165 const MipsSubtarget &Subtarget) {
166 for (unsigned int I = MI.getDesc().getNumOperands(), E = MI.getNumOperands();
167 I < E; ++I) {
168 MachineOperand MO = MI.getOperand(I);
169 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) {
170 MCSymbol *Callee = MO.getMCSymbol();
171 if (Callee && !Callee->getName().empty()) {
172 MCSymbol *OffsetLabel = OutContext.createTempSymbol();
173 const MCExpr *OffsetExpr =
174 MCSymbolRefExpr::create(OffsetLabel, OutContext);
175 const MCExpr *CaleeExpr =
176 MCSymbolRefExpr::create(Callee, OutContext);
177 OutStreamer.emitRelocDirective(
178 *OffsetExpr,
179 Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
180 CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo());
181 OutStreamer.emitLabel(OffsetLabel);
182 return;
188 void MipsAsmPrinter::emitInstruction(const MachineInstr *MI) {
189 MipsTargetStreamer &TS = getTargetStreamer();
190 unsigned Opc = MI->getOpcode();
191 TS.forbidModuleDirective();
193 if (MI->isDebugValue()) {
194 SmallString<128> Str;
195 raw_svector_ostream OS(Str);
197 PrintDebugValueComment(MI, OS);
198 return;
200 if (MI->isDebugLabel())
201 return;
203 // If we just ended a constant pool, mark it as such.
204 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
205 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
206 InConstantPool = false;
208 if (Opc == Mips::CONSTPOOL_ENTRY) {
209 // CONSTPOOL_ENTRY - This instruction represents a floating
210 // constant pool in the function. The first operand is the ID#
211 // for this instruction, the second is the index into the
212 // MachineConstantPool that this is, the third is the size in
213 // bytes of this constant pool entry.
214 // The required alignment is specified on the basic block holding this MI.
216 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
217 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
219 // If this is the first entry of the pool, mark it.
220 if (!InConstantPool) {
221 OutStreamer->emitDataRegion(MCDR_DataRegion);
222 InConstantPool = true;
225 OutStreamer->emitLabel(GetCPISymbol(LabelId));
227 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
228 if (MCPE.isMachineConstantPoolEntry())
229 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
230 else
231 emitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
232 return;
235 switch (Opc) {
236 case Mips::PATCHABLE_FUNCTION_ENTER:
237 LowerPATCHABLE_FUNCTION_ENTER(*MI);
238 return;
239 case Mips::PATCHABLE_FUNCTION_EXIT:
240 LowerPATCHABLE_FUNCTION_EXIT(*MI);
241 return;
242 case Mips::PATCHABLE_TAIL_CALL:
243 LowerPATCHABLE_TAIL_CALL(*MI);
244 return;
247 if (EmitJalrReloc &&
248 (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) {
249 emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget);
252 MachineBasicBlock::const_instr_iterator I = MI->getIterator();
253 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
255 do {
256 // Do any auto-generated pseudo lowerings.
257 if (emitPseudoExpansionLowering(*OutStreamer, &*I))
258 continue;
260 // Skip the BUNDLE pseudo instruction and lower the contents
261 if (I->isBundle())
262 continue;
264 if (I->getOpcode() == Mips::PseudoReturn ||
265 I->getOpcode() == Mips::PseudoReturn64 ||
266 I->getOpcode() == Mips::PseudoIndirectBranch ||
267 I->getOpcode() == Mips::PseudoIndirectBranch64 ||
268 I->getOpcode() == Mips::TAILCALLREG ||
269 I->getOpcode() == Mips::TAILCALLREG64) {
270 emitPseudoIndirectBranch(*OutStreamer, &*I);
271 continue;
274 // The inMips16Mode() test is not permanent.
275 // Some instructions are marked as pseudo right now which
276 // would make the test fail for the wrong reason but
277 // that will be fixed soon. We need this here because we are
278 // removing another test for this situation downstream in the
279 // callchain.
281 if (I->isPseudo() && !Subtarget->inMips16Mode()
282 && !isLongBranchPseudo(I->getOpcode()))
283 llvm_unreachable("Pseudo opcode found in emitInstruction()");
285 MCInst TmpInst0;
286 MCInstLowering.Lower(&*I, TmpInst0);
287 EmitToStreamer(*OutStreamer, TmpInst0);
288 } while ((++I != E) && I->isInsideBundle()); // Delay slot check
291 //===----------------------------------------------------------------------===//
293 // Mips Asm Directives
295 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
296 // Describe the stack frame.
298 // -- Mask directives "(f)mask bitmask, offset"
299 // Tells the assembler which registers are saved and where.
300 // bitmask - contain a little endian bitset indicating which registers are
301 // saved on function prologue (e.g. with a 0x80000000 mask, the
302 // assembler knows the register 31 (RA) is saved at prologue.
303 // offset - the position before stack pointer subtraction indicating where
304 // the first saved register on prologue is located. (e.g. with a
306 // Consider the following function prologue:
308 // .frame $fp,48,$ra
309 // .mask 0xc0000000,-8
310 // addiu $sp, $sp, -48
311 // sw $ra, 40($sp)
312 // sw $fp, 36($sp)
314 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
315 // 30 (FP) are saved at prologue. As the save order on prologue is from
316 // left to right, RA is saved first. A -8 offset means that after the
317 // stack pointer subtration, the first register in the mask (RA) will be
318 // saved at address 48-8=40.
320 //===----------------------------------------------------------------------===//
322 //===----------------------------------------------------------------------===//
323 // Mask directives
324 //===----------------------------------------------------------------------===//
326 // Create a bitmask with all callee saved registers for CPU or Floating Point
327 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
328 void MipsAsmPrinter::printSavedRegsBitmask() {
329 // CPU and FPU Saved Registers Bitmasks
330 unsigned CPUBitmask = 0, FPUBitmask = 0;
331 int CPUTopSavedRegOff, FPUTopSavedRegOff;
333 // Set the CPU and FPU Bitmasks
334 const MachineFrameInfo &MFI = MF->getFrameInfo();
335 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
336 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
337 // size of stack area to which FP callee-saved regs are saved.
338 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
339 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
340 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
341 bool HasAFGR64Reg = false;
342 unsigned CSFPRegsSize = 0;
344 for (const auto &I : CSI) {
345 unsigned Reg = I.getReg();
346 unsigned RegNum = TRI->getEncodingValue(Reg);
348 // If it's a floating point register, set the FPU Bitmask.
349 // If it's a general purpose register, set the CPU Bitmask.
350 if (Mips::FGR32RegClass.contains(Reg)) {
351 FPUBitmask |= (1 << RegNum);
352 CSFPRegsSize += FGR32RegSize;
353 } else if (Mips::AFGR64RegClass.contains(Reg)) {
354 FPUBitmask |= (3 << RegNum);
355 CSFPRegsSize += AFGR64RegSize;
356 HasAFGR64Reg = true;
357 } else if (Mips::GPR32RegClass.contains(Reg))
358 CPUBitmask |= (1 << RegNum);
361 // FP Regs are saved right below where the virtual frame pointer points to.
362 FPUTopSavedRegOff = FPUBitmask ?
363 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
365 // CPU Regs are saved below FP Regs.
366 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
368 MipsTargetStreamer &TS = getTargetStreamer();
369 // Print CPUBitmask
370 TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
372 // Print FPUBitmask
373 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
376 //===----------------------------------------------------------------------===//
377 // Frame and Set directives
378 //===----------------------------------------------------------------------===//
380 /// Frame Directive
381 void MipsAsmPrinter::emitFrameDirective() {
382 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
384 Register stackReg = RI.getFrameRegister(*MF);
385 unsigned returnReg = RI.getRARegister();
386 unsigned stackSize = MF->getFrameInfo().getStackSize();
388 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
391 /// Emit Set directives.
392 const char *MipsAsmPrinter::getCurrentABIString() const {
393 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
394 case MipsABIInfo::ABI::O32: return "abi32";
395 case MipsABIInfo::ABI::N32: return "abiN32";
396 case MipsABIInfo::ABI::N64: return "abi64";
397 default: llvm_unreachable("Unknown Mips ABI");
401 void MipsAsmPrinter::emitFunctionEntryLabel() {
402 MipsTargetStreamer &TS = getTargetStreamer();
404 // NaCl sandboxing requires that indirect call instructions are masked.
405 // This means that function entry points should be bundle-aligned.
406 if (Subtarget->isTargetNaCl())
407 emitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
409 if (Subtarget->inMicroMipsMode()) {
410 TS.emitDirectiveSetMicroMips();
411 TS.setUsesMicroMips();
412 TS.updateABIInfo(*Subtarget);
413 } else
414 TS.emitDirectiveSetNoMicroMips();
416 if (Subtarget->inMips16Mode())
417 TS.emitDirectiveSetMips16();
418 else
419 TS.emitDirectiveSetNoMips16();
421 TS.emitDirectiveEnt(*CurrentFnSym);
422 OutStreamer->emitLabel(CurrentFnSym);
425 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
426 /// the first basic block in the function.
427 void MipsAsmPrinter::emitFunctionBodyStart() {
428 MipsTargetStreamer &TS = getTargetStreamer();
430 MCInstLowering.Initialize(&MF->getContext());
432 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
433 if (!IsNakedFunction)
434 emitFrameDirective();
436 if (!IsNakedFunction)
437 printSavedRegsBitmask();
439 if (!Subtarget->inMips16Mode()) {
440 TS.emitDirectiveSetNoReorder();
441 TS.emitDirectiveSetNoMacro();
442 TS.emitDirectiveSetNoAt();
446 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
447 /// the last basic block in the function.
448 void MipsAsmPrinter::emitFunctionBodyEnd() {
449 MipsTargetStreamer &TS = getTargetStreamer();
451 // There are instruction for this macros, but they must
452 // always be at the function end, and we can't emit and
453 // break with BB logic.
454 if (!Subtarget->inMips16Mode()) {
455 TS.emitDirectiveSetAt();
456 TS.emitDirectiveSetMacro();
457 TS.emitDirectiveSetReorder();
459 TS.emitDirectiveEnd(CurrentFnSym->getName());
460 // Make sure to terminate any constant pools that were at the end
461 // of the function.
462 if (!InConstantPool)
463 return;
464 InConstantPool = false;
465 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
468 void MipsAsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
469 AsmPrinter::emitBasicBlockEnd(MBB);
470 MipsTargetStreamer &TS = getTargetStreamer();
471 if (MBB.empty())
472 TS.emitDirectiveInsn();
475 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
476 /// exactly one predecessor and the control transfer mechanism between
477 /// the predecessor and this block is a fall-through.
478 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
479 MBB) const {
480 // The predecessor has to be immediately before this block.
481 const MachineBasicBlock *Pred = *MBB->pred_begin();
483 // If the predecessor is a switch statement, assume a jump table
484 // implementation, so it is not a fall through.
485 if (const BasicBlock *bb = Pred->getBasicBlock())
486 if (isa<SwitchInst>(bb->getTerminator()))
487 return false;
489 // If this is a landing pad, it isn't a fall through. If it has no preds,
490 // then nothing falls through to it.
491 if (MBB->isEHPad() || MBB->pred_empty())
492 return false;
494 // If there isn't exactly one predecessor, it can't be a fall through.
495 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
496 ++PI2;
498 if (PI2 != MBB->pred_end())
499 return false;
501 // The predecessor has to be immediately before this block.
502 if (!Pred->isLayoutSuccessor(MBB))
503 return false;
505 // If the block is completely empty, then it definitely does fall through.
506 if (Pred->empty())
507 return true;
509 // Otherwise, check the last instruction.
510 // Check if the last terminator is an unconditional branch.
511 MachineBasicBlock::const_iterator I = Pred->end();
512 while (I != Pred->begin() && !(--I)->isTerminator()) ;
514 return !I->isBarrier();
517 // Print out an operand for an inline asm expression.
518 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
519 const char *ExtraCode, raw_ostream &O) {
520 // Does this asm operand have a single letter operand modifier?
521 if (ExtraCode && ExtraCode[0]) {
522 if (ExtraCode[1] != 0) return true; // Unknown modifier.
524 const MachineOperand &MO = MI->getOperand(OpNum);
525 switch (ExtraCode[0]) {
526 default:
527 // See if this is a generic print operand
528 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
529 case 'X': // hex const int
530 if ((MO.getType()) != MachineOperand::MO_Immediate)
531 return true;
532 O << "0x" << Twine::utohexstr(MO.getImm());
533 return false;
534 case 'x': // hex const int (low 16 bits)
535 if ((MO.getType()) != MachineOperand::MO_Immediate)
536 return true;
537 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
538 return false;
539 case 'd': // decimal const int
540 if ((MO.getType()) != MachineOperand::MO_Immediate)
541 return true;
542 O << MO.getImm();
543 return false;
544 case 'm': // decimal const int minus 1
545 if ((MO.getType()) != MachineOperand::MO_Immediate)
546 return true;
547 O << MO.getImm() - 1;
548 return false;
549 case 'y': // exact log2
550 if ((MO.getType()) != MachineOperand::MO_Immediate)
551 return true;
552 if (!isPowerOf2_64(MO.getImm()))
553 return true;
554 O << Log2_64(MO.getImm());
555 return false;
556 case 'z':
557 // $0 if zero, regular printing otherwise
558 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
559 O << "$0";
560 return false;
562 // If not, call printOperand as normal.
563 break;
564 case 'D': // Second part of a double word register operand
565 case 'L': // Low order register of a double word register operand
566 case 'M': // High order register of a double word register operand
568 if (OpNum == 0)
569 return true;
570 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
571 if (!FlagsOP.isImm())
572 return true;
573 unsigned Flags = FlagsOP.getImm();
574 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
575 // Number of registers represented by this operand. We are looking
576 // for 2 for 32 bit mode and 1 for 64 bit mode.
577 if (NumVals != 2) {
578 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
579 Register Reg = MO.getReg();
580 O << '$' << MipsInstPrinter::getRegisterName(Reg);
581 return false;
583 return true;
586 unsigned RegOp = OpNum;
587 if (!Subtarget->isGP64bit()){
588 // Endianness reverses which register holds the high or low value
589 // between M and L.
590 switch(ExtraCode[0]) {
591 case 'M':
592 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
593 break;
594 case 'L':
595 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
596 break;
597 case 'D': // Always the second part
598 RegOp = OpNum + 1;
600 if (RegOp >= MI->getNumOperands())
601 return true;
602 const MachineOperand &MO = MI->getOperand(RegOp);
603 if (!MO.isReg())
604 return true;
605 Register Reg = MO.getReg();
606 O << '$' << MipsInstPrinter::getRegisterName(Reg);
607 return false;
609 break;
611 case 'w':
612 // Print MSA registers for the 'f' constraint
613 // In LLVM, the 'w' modifier doesn't need to do anything.
614 // We can just call printOperand as normal.
615 break;
619 printOperand(MI, OpNum, O);
620 return false;
623 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
624 unsigned OpNum,
625 const char *ExtraCode,
626 raw_ostream &O) {
627 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
628 const MachineOperand &BaseMO = MI->getOperand(OpNum);
629 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
630 assert(BaseMO.isReg() &&
631 "Unexpected base pointer for inline asm memory operand.");
632 assert(OffsetMO.isImm() &&
633 "Unexpected offset for inline asm memory operand.");
634 int Offset = OffsetMO.getImm();
636 // Currently we are expecting either no ExtraCode or 'D','M','L'.
637 if (ExtraCode) {
638 switch (ExtraCode[0]) {
639 case 'D':
640 Offset += 4;
641 break;
642 case 'M':
643 if (Subtarget->isLittle())
644 Offset += 4;
645 break;
646 case 'L':
647 if (!Subtarget->isLittle())
648 Offset += 4;
649 break;
650 default:
651 return true; // Unknown modifier.
655 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
656 << ")";
658 return false;
661 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
662 raw_ostream &O) {
663 const MachineOperand &MO = MI->getOperand(opNum);
664 bool closeP = false;
666 if (MO.getTargetFlags())
667 closeP = true;
669 switch(MO.getTargetFlags()) {
670 case MipsII::MO_GPREL: O << "%gp_rel("; break;
671 case MipsII::MO_GOT_CALL: O << "%call16("; break;
672 case MipsII::MO_GOT: O << "%got("; break;
673 case MipsII::MO_ABS_HI: O << "%hi("; break;
674 case MipsII::MO_ABS_LO: O << "%lo("; break;
675 case MipsII::MO_HIGHER: O << "%higher("; break;
676 case MipsII::MO_HIGHEST: O << "%highest(("; break;
677 case MipsII::MO_TLSGD: O << "%tlsgd("; break;
678 case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
679 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
680 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
681 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
682 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
683 case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
684 case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
685 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
688 switch (MO.getType()) {
689 case MachineOperand::MO_Register:
690 O << '$'
691 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
692 break;
694 case MachineOperand::MO_Immediate:
695 O << MO.getImm();
696 break;
698 case MachineOperand::MO_MachineBasicBlock:
699 MO.getMBB()->getSymbol()->print(O, MAI);
700 return;
702 case MachineOperand::MO_GlobalAddress:
703 PrintSymbolOperand(MO, O);
704 break;
706 case MachineOperand::MO_BlockAddress: {
707 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
708 O << BA->getName();
709 break;
712 case MachineOperand::MO_ConstantPoolIndex:
713 O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
714 << getFunctionNumber() << "_" << MO.getIndex();
715 if (MO.getOffset())
716 O << "+" << MO.getOffset();
717 break;
719 default:
720 llvm_unreachable("<unknown operand type>");
723 if (closeP) O << ")";
726 void MipsAsmPrinter::
727 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
728 // Load/Store memory operands -- imm($reg)
729 // If PIC target the target is loaded as the
730 // pattern lw $25,%call16($28)
732 // opNum can be invalid if instruction has reglist as operand.
733 // MemOperand is always last operand of instruction (base + offset).
734 switch (MI->getOpcode()) {
735 default:
736 break;
737 case Mips::SWM32_MM:
738 case Mips::LWM32_MM:
739 opNum = MI->getNumOperands() - 2;
740 break;
743 printOperand(MI, opNum+1, O);
744 O << "(";
745 printOperand(MI, opNum, O);
746 O << ")";
749 void MipsAsmPrinter::
750 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
751 // when using stack locations for not load/store instructions
752 // print the same way as all normal 3 operand instructions.
753 printOperand(MI, opNum, O);
754 O << ", ";
755 printOperand(MI, opNum+1, O);
758 void MipsAsmPrinter::
759 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
760 const char *Modifier) {
761 const MachineOperand &MO = MI->getOperand(opNum);
762 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
765 void MipsAsmPrinter::
766 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
767 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
768 if (i != opNum) O << ", ";
769 printOperand(MI, i, O);
773 void MipsAsmPrinter::emitStartOfAsmFile(Module &M) {
774 MipsTargetStreamer &TS = getTargetStreamer();
776 // MipsTargetStreamer has an initialization order problem when emitting an
777 // object file directly (see MipsTargetELFStreamer for full details). Work
778 // around it by re-initializing the PIC state here.
779 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
781 // Compute MIPS architecture attributes based on the default subtarget
782 // that we'd have constructed. Module level directives aren't LTO
783 // clean anyhow.
784 // FIXME: For ifunc related functions we could iterate over and look
785 // for a feature string that doesn't match the default one.
786 const Triple &TT = TM.getTargetTriple();
787 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
788 StringRef FS = TM.getTargetFeatureString();
789 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
790 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, None);
792 bool IsABICalls = STI.isABICalls();
793 const MipsABIInfo &ABI = MTM.getABI();
794 if (IsABICalls) {
795 TS.emitDirectiveAbiCalls();
796 // FIXME: This condition should be a lot more complicated that it is here.
797 // Ideally it should test for properties of the ABI and not the ABI
798 // itself.
799 // For the moment, I'm only correcting enough to make MIPS-IV work.
800 if (!isPositionIndependent() && STI.hasSym32())
801 TS.emitDirectiveOptionPic0();
804 // Tell the assembler which ABI we are using
805 std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
806 OutStreamer->SwitchSection(
807 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
809 // NaN: At the moment we only support:
810 // 1. .nan legacy (default)
811 // 2. .nan 2008
812 STI.isNaN2008() ? TS.emitDirectiveNaN2008()
813 : TS.emitDirectiveNaNLegacy();
815 // TODO: handle O64 ABI
817 TS.updateABIInfo(STI);
819 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
820 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
821 // -mfp64) and omit it otherwise.
822 if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) ||
823 STI.useSoftFloat())
824 TS.emitDirectiveModuleFP();
826 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
827 // accept it. We therefore emit it when it contradicts the default or an
828 // option has changed the default (i.e. FPXX) and omit it otherwise.
829 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
830 TS.emitDirectiveModuleOddSPReg();
832 // Switch to the .text section.
833 OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
836 void MipsAsmPrinter::emitInlineAsmStart() const {
837 MipsTargetStreamer &TS = getTargetStreamer();
839 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
840 // and 'reorder') is different from LLVM's choice for generated code ('noat',
841 // 'nomacro' and 'noreorder').
842 // In order to maintain compatibility with inline assembly code which depends
843 // on GCC's assembler options being used, we have to switch to those options
844 // for the duration of the inline assembly block and then switch back.
845 TS.emitDirectiveSetPush();
846 TS.emitDirectiveSetAt();
847 TS.emitDirectiveSetMacro();
848 TS.emitDirectiveSetReorder();
849 OutStreamer->AddBlankLine();
852 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
853 const MCSubtargetInfo *EndInfo) const {
854 OutStreamer->AddBlankLine();
855 getTargetStreamer().emitDirectiveSetPop();
858 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
859 MCInst I;
860 I.setOpcode(Mips::JAL);
861 I.addOperand(
862 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
863 OutStreamer->emitInstruction(I, STI);
866 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
867 unsigned Reg) {
868 MCInst I;
869 I.setOpcode(Opcode);
870 I.addOperand(MCOperand::createReg(Reg));
871 OutStreamer->emitInstruction(I, STI);
874 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
875 unsigned Opcode, unsigned Reg1,
876 unsigned Reg2) {
877 MCInst I;
879 // Because of the current td files for Mips32, the operands for MTC1
880 // appear backwards from their normal assembly order. It's not a trivial
881 // change to fix this in the td file so we adjust for it here.
883 if (Opcode == Mips::MTC1) {
884 unsigned Temp = Reg1;
885 Reg1 = Reg2;
886 Reg2 = Temp;
888 I.setOpcode(Opcode);
889 I.addOperand(MCOperand::createReg(Reg1));
890 I.addOperand(MCOperand::createReg(Reg2));
891 OutStreamer->emitInstruction(I, STI);
894 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
895 unsigned Opcode, unsigned Reg1,
896 unsigned Reg2, unsigned Reg3) {
897 MCInst I;
898 I.setOpcode(Opcode);
899 I.addOperand(MCOperand::createReg(Reg1));
900 I.addOperand(MCOperand::createReg(Reg2));
901 I.addOperand(MCOperand::createReg(Reg3));
902 OutStreamer->emitInstruction(I, STI);
905 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
906 unsigned MovOpc, unsigned Reg1,
907 unsigned Reg2, unsigned FPReg1,
908 unsigned FPReg2, bool LE) {
909 if (!LE) {
910 unsigned temp = Reg1;
911 Reg1 = Reg2;
912 Reg2 = temp;
914 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
915 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
918 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
919 Mips16HardFloatInfo::FPParamVariant PV,
920 bool LE, bool ToFP) {
921 using namespace Mips16HardFloatInfo;
923 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
924 switch (PV) {
925 case FSig:
926 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
927 break;
928 case FFSig:
929 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
930 break;
931 case FDSig:
932 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
933 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
934 break;
935 case DSig:
936 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
937 break;
938 case DDSig:
939 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
940 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
941 break;
942 case DFSig:
943 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
944 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
945 break;
946 case NoSig:
947 return;
951 void MipsAsmPrinter::EmitSwapFPIntRetval(
952 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
953 bool LE) {
954 using namespace Mips16HardFloatInfo;
956 unsigned MovOpc = Mips::MFC1;
957 switch (RV) {
958 case FRet:
959 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
960 break;
961 case DRet:
962 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
963 break;
964 case CFRet:
965 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
966 break;
967 case CDRet:
968 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
969 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
970 break;
971 case NoFPRet:
972 break;
976 void MipsAsmPrinter::EmitFPCallStub(
977 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
978 using namespace Mips16HardFloatInfo;
980 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
981 bool LE = getDataLayout().isLittleEndian();
982 // Construct a local MCSubtargetInfo here.
983 // This is because the MachineFunction won't exist (but have not yet been
984 // freed) and since we're at the global level we can use the default
985 // constructed subtarget.
986 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
987 TM.getTargetTriple().str(), TM.getTargetCPU(),
988 TM.getTargetFeatureString()));
991 // .global xxxx
993 OutStreamer->emitSymbolAttribute(MSymbol, MCSA_Global);
994 const char *RetType;
996 // make the comment field identifying the return and parameter
997 // types of the floating point stub
998 // # Stub function to call rettype xxxx (params)
1000 switch (Signature->RetSig) {
1001 case FRet:
1002 RetType = "float";
1003 break;
1004 case DRet:
1005 RetType = "double";
1006 break;
1007 case CFRet:
1008 RetType = "complex";
1009 break;
1010 case CDRet:
1011 RetType = "double complex";
1012 break;
1013 case NoFPRet:
1014 RetType = "";
1015 break;
1017 const char *Parms;
1018 switch (Signature->ParamSig) {
1019 case FSig:
1020 Parms = "float";
1021 break;
1022 case FFSig:
1023 Parms = "float, float";
1024 break;
1025 case FDSig:
1026 Parms = "float, double";
1027 break;
1028 case DSig:
1029 Parms = "double";
1030 break;
1031 case DDSig:
1032 Parms = "double, double";
1033 break;
1034 case DFSig:
1035 Parms = "double, float";
1036 break;
1037 case NoSig:
1038 Parms = "";
1039 break;
1041 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
1042 Twine(Symbol) + " (" + Twine(Parms) + ")");
1044 // probably not necessary but we save and restore the current section state
1046 OutStreamer->PushSection();
1048 // .section mips16.call.fpxxxx,"ax",@progbits
1050 MCSectionELF *M = OutContext.getELFSection(
1051 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
1052 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
1053 OutStreamer->SwitchSection(M, nullptr);
1055 // .align 2
1057 OutStreamer->emitValueToAlignment(4);
1058 MipsTargetStreamer &TS = getTargetStreamer();
1060 // .set nomips16
1061 // .set nomicromips
1063 TS.emitDirectiveSetNoMips16();
1064 TS.emitDirectiveSetNoMicroMips();
1066 // .ent __call_stub_fp_xxxx
1067 // .type __call_stub_fp_xxxx,@function
1068 // __call_stub_fp_xxxx:
1070 std::string x = "__call_stub_fp_" + std::string(Symbol);
1071 MCSymbolELF *Stub =
1072 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
1073 TS.emitDirectiveEnt(*Stub);
1074 MCSymbol *MType =
1075 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
1076 OutStreamer->emitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
1077 OutStreamer->emitLabel(Stub);
1079 // Only handle non-pic for now.
1080 assert(!isPositionIndependent() &&
1081 "should not be here if we are compiling pic");
1082 TS.emitDirectiveSetReorder();
1084 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1085 // stubs without raw text but this current patch is for compiler generated
1086 // functions and they all return some value.
1087 // The calling sequence for non pic is different in that case and we need
1088 // to implement %lo and %hi in order to handle the case of no return value
1089 // See the corresponding method in Mips16HardFloat for details.
1091 // mov the return address to S2.
1092 // we have no stack space to store it and we are about to make another call.
1093 // We need to make sure that the enclosing function knows to save S2
1094 // This should have already been handled.
1096 // Mov $18, $31
1098 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1100 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1102 // Jal xxxx
1104 EmitJal(*STI, MSymbol);
1106 // fix return values
1107 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1109 // do the return
1110 // if (Signature->RetSig == NoFPRet)
1111 // llvm_unreachable("should not be any stubs here with no return value");
1112 // else
1113 EmitInstrReg(*STI, Mips::JR, Mips::S2);
1115 MCSymbol *Tmp = OutContext.createTempSymbol();
1116 OutStreamer->emitLabel(Tmp);
1117 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1118 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1119 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1120 OutStreamer->emitELFSize(Stub, T_min_E);
1121 TS.emitDirectiveEnd(x);
1122 OutStreamer->PopSection();
1125 void MipsAsmPrinter::emitEndOfAsmFile(Module &M) {
1126 // Emit needed stubs
1128 for (std::map<
1129 const char *,
1130 const Mips16HardFloatInfo::FuncSignature *>::const_iterator
1131 it = StubsNeeded.begin();
1132 it != StubsNeeded.end(); ++it) {
1133 const char *Symbol = it->first;
1134 const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1135 EmitFPCallStub(Symbol, Signature);
1137 // return to the text section
1138 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1141 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
1142 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
1143 // For mips32 we want to emit the following pattern:
1145 // .Lxray_sled_N:
1146 // ALIGN
1147 // B .tmpN
1148 // 11 NOP instructions (44 bytes)
1149 // ADDIU T9, T9, 52
1150 // .tmpN
1152 // We need the 44 bytes (11 instructions) because at runtime, we'd
1153 // be patching over the full 48 bytes (12 instructions) with the following
1154 // pattern:
1156 // ADDIU SP, SP, -8
1157 // NOP
1158 // SW RA, 4(SP)
1159 // SW T9, 0(SP)
1160 // LUI T9, %hi(__xray_FunctionEntry/Exit)
1161 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1162 // LUI T0, %hi(function_id)
1163 // JALR T9
1164 // ORI T0, T0, %lo(function_id)
1165 // LW T9, 0(SP)
1166 // LW RA, 4(SP)
1167 // ADDIU SP, SP, 8
1169 // We add 52 bytes to t9 because we want to adjust the function pointer to
1170 // the actual start of function i.e. the address just after the noop sled.
1171 // We do this because gp displacement relocation is emitted at the start of
1172 // of the function i.e after the nop sled and to correctly calculate the
1173 // global offset table address, t9 must hold the address of the instruction
1174 // containing the gp displacement relocation.
1175 // FIXME: Is this correct for the static relocation model?
1177 // For mips64 we want to emit the following pattern:
1179 // .Lxray_sled_N:
1180 // ALIGN
1181 // B .tmpN
1182 // 15 NOP instructions (60 bytes)
1183 // .tmpN
1185 // We need the 60 bytes (15 instructions) because at runtime, we'd
1186 // be patching over the full 64 bytes (16 instructions) with the following
1187 // pattern:
1189 // DADDIU SP, SP, -16
1190 // NOP
1191 // SD RA, 8(SP)
1192 // SD T9, 0(SP)
1193 // LUI T9, %highest(__xray_FunctionEntry/Exit)
1194 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit)
1195 // DSLL T9, T9, 16
1196 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit)
1197 // DSLL T9, T9, 16
1198 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1199 // LUI T0, %hi(function_id)
1200 // JALR T9
1201 // ADDIU T0, T0, %lo(function_id)
1202 // LD T9, 0(SP)
1203 // LD RA, 8(SP)
1204 // DADDIU SP, SP, 16
1206 OutStreamer->emitCodeAlignment(4);
1207 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1208 OutStreamer->emitLabel(CurSled);
1209 auto Target = OutContext.createTempSymbol();
1211 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1212 // start of function
1213 const MCExpr *TargetExpr = MCSymbolRefExpr::create(
1214 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
1215 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
1216 .addReg(Mips::ZERO)
1217 .addReg(Mips::ZERO)
1218 .addExpr(TargetExpr));
1220 for (int8_t I = 0; I < NoopsInSledCount; I++)
1221 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
1222 .addReg(Mips::ZERO)
1223 .addReg(Mips::ZERO)
1224 .addImm(0));
1226 OutStreamer->emitLabel(Target);
1228 if (!Subtarget->isGP64bit()) {
1229 EmitToStreamer(*OutStreamer,
1230 MCInstBuilder(Mips::ADDiu)
1231 .addReg(Mips::T9)
1232 .addReg(Mips::T9)
1233 .addImm(0x34));
1236 recordSled(CurSled, MI, Kind, 2);
1239 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
1240 EmitSled(MI, SledKind::FUNCTION_ENTER);
1243 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
1244 EmitSled(MI, SledKind::FUNCTION_EXIT);
1247 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
1248 EmitSled(MI, SledKind::TAIL_CALL);
1251 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1252 raw_ostream &OS) {
1253 // TODO: implement
1256 // Emit .dtprelword or .dtpreldword directive
1257 // and value for debug thread local expression.
1258 void MipsAsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
1259 if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) {
1260 if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) {
1261 switch (Size) {
1262 case 4:
1263 OutStreamer->emitDTPRel32Value(MipsExpr->getSubExpr());
1264 break;
1265 case 8:
1266 OutStreamer->emitDTPRel64Value(MipsExpr->getSubExpr());
1267 break;
1268 default:
1269 llvm_unreachable("Unexpected size of expression value.");
1271 return;
1274 AsmPrinter::emitDebugValue(Value, Size);
1277 // Align all targets of indirect branches on bundle size. Used only if target
1278 // is NaCl.
1279 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1280 // Align all blocks that are jumped to through jump table.
1281 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1282 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1283 for (unsigned I = 0; I < JT.size(); ++I) {
1284 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1286 for (unsigned J = 0; J < MBBs.size(); ++J)
1287 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1291 // If basic block address is taken, block can be target of indirect branch.
1292 for (auto &MBB : MF) {
1293 if (MBB.hasAddressTaken())
1294 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1298 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1299 return (Opcode == Mips::LONG_BRANCH_LUi
1300 || Opcode == Mips::LONG_BRANCH_LUi2Op
1301 || Opcode == Mips::LONG_BRANCH_LUi2Op_64
1302 || Opcode == Mips::LONG_BRANCH_ADDiu
1303 || Opcode == Mips::LONG_BRANCH_ADDiu2Op
1304 || Opcode == Mips::LONG_BRANCH_DADDiu
1305 || Opcode == Mips::LONG_BRANCH_DADDiu2Op);
1308 // Force static initialization.
1309 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeMipsAsmPrinter() {
1310 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
1311 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
1312 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
1313 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());