[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / Mips / MipsISelLowering.cpp
blob9399c949a3f232131e674e622f8b486906e49f4e
1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cctype>
73 #include <cstdint>
74 #include <deque>
75 #include <iterator>
76 #include <utility>
77 #include <vector>
79 using namespace llvm;
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls, "Number of tail calls");
85 static cl::opt<bool>
86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
87 cl::desc("MIPS: Don't trap on integer division by zero."),
88 cl::init(false));
90 extern cl::opt<bool> EmitJalrReloc;
92 static const MCPhysReg Mips64DPRegs[8] = {
93 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
94 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
97 // If I is a shifted mask, set the size (Size) and the first bit of the
98 // mask (Pos), and return true.
99 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
100 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
101 if (!isShiftedMask_64(I))
102 return false;
104 Size = countPopulation(I);
105 Pos = countTrailingZeros(I);
106 return true;
109 // The MIPS MSA ABI passes vector arguments in the integer register set.
110 // The number of integer registers used is dependant on the ABI used.
111 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
112 CallingConv::ID CC,
113 EVT VT) const {
114 if (!VT.isVector())
115 return getRegisterType(Context, VT);
117 return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32
118 : MVT::i64;
121 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
122 CallingConv::ID CC,
123 EVT VT) const {
124 if (VT.isVector())
125 return divideCeil(VT.getSizeInBits(), Subtarget.isABI_O32() ? 32 : 64);
126 return MipsTargetLowering::getNumRegisters(Context, VT);
129 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
130 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
131 unsigned &NumIntermediates, MVT &RegisterVT) const {
132 // Break down vector types to either 2 i64s or 4 i32s.
133 RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
134 IntermediateVT = RegisterVT;
135 NumIntermediates =
136 VT.getFixedSizeInBits() < RegisterVT.getFixedSizeInBits()
137 ? VT.getVectorNumElements()
138 : divideCeil(VT.getSizeInBits(), RegisterVT.getSizeInBits());
139 return NumIntermediates;
142 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
143 MachineFunction &MF = DAG.getMachineFunction();
144 MipsFunctionInfo *FI = MF.getInfo<MipsFunctionInfo>();
145 return DAG.getRegister(FI->getGlobalBaseReg(MF), Ty);
148 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
149 SelectionDAG &DAG,
150 unsigned Flag) const {
151 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
154 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
155 SelectionDAG &DAG,
156 unsigned Flag) const {
157 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
160 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
161 SelectionDAG &DAG,
162 unsigned Flag) const {
163 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
166 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
167 SelectionDAG &DAG,
168 unsigned Flag) const {
169 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
172 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
173 SelectionDAG &DAG,
174 unsigned Flag) const {
175 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
176 N->getOffset(), Flag);
179 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
180 switch ((MipsISD::NodeType)Opcode) {
181 case MipsISD::FIRST_NUMBER: break;
182 case MipsISD::JmpLink: return "MipsISD::JmpLink";
183 case MipsISD::TailCall: return "MipsISD::TailCall";
184 case MipsISD::Highest: return "MipsISD::Highest";
185 case MipsISD::Higher: return "MipsISD::Higher";
186 case MipsISD::Hi: return "MipsISD::Hi";
187 case MipsISD::Lo: return "MipsISD::Lo";
188 case MipsISD::GotHi: return "MipsISD::GotHi";
189 case MipsISD::TlsHi: return "MipsISD::TlsHi";
190 case MipsISD::GPRel: return "MipsISD::GPRel";
191 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
192 case MipsISD::Ret: return "MipsISD::Ret";
193 case MipsISD::ERet: return "MipsISD::ERet";
194 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
195 case MipsISD::FMS: return "MipsISD::FMS";
196 case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
197 case MipsISD::FPCmp: return "MipsISD::FPCmp";
198 case MipsISD::FSELECT: return "MipsISD::FSELECT";
199 case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
200 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
201 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
202 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
203 case MipsISD::MFHI: return "MipsISD::MFHI";
204 case MipsISD::MFLO: return "MipsISD::MFLO";
205 case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
206 case MipsISD::Mult: return "MipsISD::Mult";
207 case MipsISD::Multu: return "MipsISD::Multu";
208 case MipsISD::MAdd: return "MipsISD::MAdd";
209 case MipsISD::MAddu: return "MipsISD::MAddu";
210 case MipsISD::MSub: return "MipsISD::MSub";
211 case MipsISD::MSubu: return "MipsISD::MSubu";
212 case MipsISD::DivRem: return "MipsISD::DivRem";
213 case MipsISD::DivRemU: return "MipsISD::DivRemU";
214 case MipsISD::DivRem16: return "MipsISD::DivRem16";
215 case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
216 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
217 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
218 case MipsISD::Wrapper: return "MipsISD::Wrapper";
219 case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
220 case MipsISD::Sync: return "MipsISD::Sync";
221 case MipsISD::Ext: return "MipsISD::Ext";
222 case MipsISD::Ins: return "MipsISD::Ins";
223 case MipsISD::CIns: return "MipsISD::CIns";
224 case MipsISD::LWL: return "MipsISD::LWL";
225 case MipsISD::LWR: return "MipsISD::LWR";
226 case MipsISD::SWL: return "MipsISD::SWL";
227 case MipsISD::SWR: return "MipsISD::SWR";
228 case MipsISD::LDL: return "MipsISD::LDL";
229 case MipsISD::LDR: return "MipsISD::LDR";
230 case MipsISD::SDL: return "MipsISD::SDL";
231 case MipsISD::SDR: return "MipsISD::SDR";
232 case MipsISD::EXTP: return "MipsISD::EXTP";
233 case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
234 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
235 case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
236 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
237 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
238 case MipsISD::SHILO: return "MipsISD::SHILO";
239 case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
240 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
241 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
242 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
243 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
244 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
245 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
246 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
247 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
248 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
249 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
250 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
251 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
252 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
253 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
254 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
255 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
256 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
257 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
258 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
259 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
260 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
261 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
262 case MipsISD::MULT: return "MipsISD::MULT";
263 case MipsISD::MULTU: return "MipsISD::MULTU";
264 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
265 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
266 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
267 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
268 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
269 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
270 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
271 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
272 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
273 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
274 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
275 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
276 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
277 case MipsISD::VCEQ: return "MipsISD::VCEQ";
278 case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
279 case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
280 case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
281 case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
282 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
283 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
284 case MipsISD::VNOR: return "MipsISD::VNOR";
285 case MipsISD::VSHF: return "MipsISD::VSHF";
286 case MipsISD::SHF: return "MipsISD::SHF";
287 case MipsISD::ILVEV: return "MipsISD::ILVEV";
288 case MipsISD::ILVOD: return "MipsISD::ILVOD";
289 case MipsISD::ILVL: return "MipsISD::ILVL";
290 case MipsISD::ILVR: return "MipsISD::ILVR";
291 case MipsISD::PCKEV: return "MipsISD::PCKEV";
292 case MipsISD::PCKOD: return "MipsISD::PCKOD";
293 case MipsISD::INSVE: return "MipsISD::INSVE";
295 return nullptr;
298 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
299 const MipsSubtarget &STI)
300 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
301 // Mips does not have i1 type, so use i32 for
302 // setcc operations results (slt, sgt, ...).
303 setBooleanContents(ZeroOrOneBooleanContent);
304 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
305 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
306 // does. Integer booleans still use 0 and 1.
307 if (Subtarget.hasMips32r6())
308 setBooleanContents(ZeroOrOneBooleanContent,
309 ZeroOrNegativeOneBooleanContent);
311 // Load extented operations for i1 types must be promoted
312 for (MVT VT : MVT::integer_valuetypes()) {
313 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
314 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
315 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
318 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
319 // for f32, f16
320 for (MVT VT : MVT::fp_valuetypes()) {
321 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
322 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
325 // Set LoadExtAction for f16 vectors to Expand
326 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
327 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
328 if (F16VT.isValid())
329 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
332 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
333 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
335 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
337 // Used by legalize types to correctly generate the setcc result.
338 // Without this, every float setcc comes with a AND/OR with the result,
339 // we don't want this, since the fpcmp result goes to a flag register,
340 // which is used implicitly by brcond and select operations.
341 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
343 // Mips Custom Operations
344 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
345 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
346 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
347 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
348 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
349 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
350 setOperationAction(ISD::SELECT, MVT::f32, Custom);
351 setOperationAction(ISD::SELECT, MVT::f64, Custom);
352 setOperationAction(ISD::SELECT, MVT::i32, Custom);
353 setOperationAction(ISD::SETCC, MVT::f32, Custom);
354 setOperationAction(ISD::SETCC, MVT::f64, Custom);
355 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
356 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
357 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
358 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
360 if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
361 setOperationAction(ISD::FABS, MVT::f32, Custom);
362 setOperationAction(ISD::FABS, MVT::f64, Custom);
365 if (Subtarget.isGP64bit()) {
366 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
367 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
368 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
369 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
370 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
371 setOperationAction(ISD::SELECT, MVT::i64, Custom);
372 setOperationAction(ISD::LOAD, MVT::i64, Custom);
373 setOperationAction(ISD::STORE, MVT::i64, Custom);
374 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
375 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
376 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
377 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
380 if (!Subtarget.isGP64bit()) {
381 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
382 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
383 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
386 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
387 if (Subtarget.isGP64bit())
388 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
390 setOperationAction(ISD::SDIV, MVT::i32, Expand);
391 setOperationAction(ISD::SREM, MVT::i32, Expand);
392 setOperationAction(ISD::UDIV, MVT::i32, Expand);
393 setOperationAction(ISD::UREM, MVT::i32, Expand);
394 setOperationAction(ISD::SDIV, MVT::i64, Expand);
395 setOperationAction(ISD::SREM, MVT::i64, Expand);
396 setOperationAction(ISD::UDIV, MVT::i64, Expand);
397 setOperationAction(ISD::UREM, MVT::i64, Expand);
399 // Operations not directly supported by Mips.
400 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
401 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
402 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
403 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
404 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
405 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
406 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
407 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
408 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
409 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
410 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
411 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
412 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
413 if (Subtarget.hasCnMips()) {
414 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
415 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
416 } else {
417 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
418 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
420 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
421 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
422 setOperationAction(ISD::ROTL, MVT::i32, Expand);
423 setOperationAction(ISD::ROTL, MVT::i64, Expand);
424 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
425 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427 if (!Subtarget.hasMips32r2())
428 setOperationAction(ISD::ROTR, MVT::i32, Expand);
430 if (!Subtarget.hasMips64r2())
431 setOperationAction(ISD::ROTR, MVT::i64, Expand);
433 setOperationAction(ISD::FSIN, MVT::f32, Expand);
434 setOperationAction(ISD::FSIN, MVT::f64, Expand);
435 setOperationAction(ISD::FCOS, MVT::f32, Expand);
436 setOperationAction(ISD::FCOS, MVT::f64, Expand);
437 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
438 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
439 setOperationAction(ISD::FPOW, MVT::f32, Expand);
440 setOperationAction(ISD::FPOW, MVT::f64, Expand);
441 setOperationAction(ISD::FLOG, MVT::f32, Expand);
442 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
443 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
444 setOperationAction(ISD::FEXP, MVT::f32, Expand);
445 setOperationAction(ISD::FMA, MVT::f32, Expand);
446 setOperationAction(ISD::FMA, MVT::f64, Expand);
447 setOperationAction(ISD::FREM, MVT::f32, Expand);
448 setOperationAction(ISD::FREM, MVT::f64, Expand);
450 // Lower f16 conversion operations into library calls
451 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
452 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
453 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
454 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
456 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
458 setOperationAction(ISD::VASTART, MVT::Other, Custom);
459 setOperationAction(ISD::VAARG, MVT::Other, Custom);
460 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
461 setOperationAction(ISD::VAEND, MVT::Other, Expand);
463 // Use the default for now
464 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
465 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
467 if (!Subtarget.isGP64bit()) {
468 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
469 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
472 if (!Subtarget.hasMips32r2()) {
473 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
474 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
477 // MIPS16 lacks MIPS32's clz and clo instructions.
478 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
479 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
480 if (!Subtarget.hasMips64())
481 setOperationAction(ISD::CTLZ, MVT::i64, Expand);
483 if (!Subtarget.hasMips32r2())
484 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
485 if (!Subtarget.hasMips64r2())
486 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
488 if (Subtarget.isGP64bit()) {
489 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
490 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
491 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
492 setTruncStoreAction(MVT::i64, MVT::i32, Custom);
495 setOperationAction(ISD::TRAP, MVT::Other, Legal);
497 setTargetDAGCombine(ISD::SDIVREM);
498 setTargetDAGCombine(ISD::UDIVREM);
499 setTargetDAGCombine(ISD::SELECT);
500 setTargetDAGCombine(ISD::AND);
501 setTargetDAGCombine(ISD::OR);
502 setTargetDAGCombine(ISD::ADD);
503 setTargetDAGCombine(ISD::SUB);
504 setTargetDAGCombine(ISD::AssertZext);
505 setTargetDAGCombine(ISD::SHL);
507 if (ABI.IsO32()) {
508 // These libcalls are not available in 32-bit.
509 setLibcallName(RTLIB::SHL_I128, nullptr);
510 setLibcallName(RTLIB::SRL_I128, nullptr);
511 setLibcallName(RTLIB::SRA_I128, nullptr);
514 setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4));
516 // The arguments on the stack are defined in terms of 4-byte slots on O32
517 // and 8-byte slots on N32/N64.
518 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8)
519 : Align(4));
521 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
523 MaxStoresPerMemcpy = 16;
525 isMicroMips = Subtarget.inMicroMipsMode();
528 const MipsTargetLowering *
529 MipsTargetLowering::create(const MipsTargetMachine &TM,
530 const MipsSubtarget &STI) {
531 if (STI.inMips16Mode())
532 return createMips16TargetLowering(TM, STI);
534 return createMipsSETargetLowering(TM, STI);
537 // Create a fast isel object.
538 FastISel *
539 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
540 const TargetLibraryInfo *libInfo) const {
541 const MipsTargetMachine &TM =
542 static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
544 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
545 bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
546 !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
547 !Subtarget.inMicroMipsMode();
549 // Disable if either of the following is true:
550 // We do not generate PIC, the ABI is not O32, XGOT is being used.
551 if (!TM.isPositionIndependent() || !TM.getABI().IsO32() ||
552 Subtarget.useXGOT())
553 UseFastISel = false;
555 return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
558 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
559 EVT VT) const {
560 if (!VT.isVector())
561 return MVT::i32;
562 return VT.changeVectorElementTypeToInteger();
565 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
566 TargetLowering::DAGCombinerInfo &DCI,
567 const MipsSubtarget &Subtarget) {
568 if (DCI.isBeforeLegalizeOps())
569 return SDValue();
571 EVT Ty = N->getValueType(0);
572 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
573 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
574 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
575 MipsISD::DivRemU16;
576 SDLoc DL(N);
578 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
579 N->getOperand(0), N->getOperand(1));
580 SDValue InChain = DAG.getEntryNode();
581 SDValue InGlue = DivRem;
583 // insert MFLO
584 if (N->hasAnyUseOfValue(0)) {
585 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
586 InGlue);
587 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
588 InChain = CopyFromLo.getValue(1);
589 InGlue = CopyFromLo.getValue(2);
592 // insert MFHI
593 if (N->hasAnyUseOfValue(1)) {
594 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
595 HI, Ty, InGlue);
596 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
599 return SDValue();
602 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
603 switch (CC) {
604 default: llvm_unreachable("Unknown fp condition code!");
605 case ISD::SETEQ:
606 case ISD::SETOEQ: return Mips::FCOND_OEQ;
607 case ISD::SETUNE: return Mips::FCOND_UNE;
608 case ISD::SETLT:
609 case ISD::SETOLT: return Mips::FCOND_OLT;
610 case ISD::SETGT:
611 case ISD::SETOGT: return Mips::FCOND_OGT;
612 case ISD::SETLE:
613 case ISD::SETOLE: return Mips::FCOND_OLE;
614 case ISD::SETGE:
615 case ISD::SETOGE: return Mips::FCOND_OGE;
616 case ISD::SETULT: return Mips::FCOND_ULT;
617 case ISD::SETULE: return Mips::FCOND_ULE;
618 case ISD::SETUGT: return Mips::FCOND_UGT;
619 case ISD::SETUGE: return Mips::FCOND_UGE;
620 case ISD::SETUO: return Mips::FCOND_UN;
621 case ISD::SETO: return Mips::FCOND_OR;
622 case ISD::SETNE:
623 case ISD::SETONE: return Mips::FCOND_ONE;
624 case ISD::SETUEQ: return Mips::FCOND_UEQ;
628 /// This function returns true if the floating point conditional branches and
629 /// conditional moves which use condition code CC should be inverted.
630 static bool invertFPCondCodeUser(Mips::CondCode CC) {
631 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
632 return false;
634 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
635 "Illegal Condition Code");
637 return true;
640 // Creates and returns an FPCmp node from a setcc node.
641 // Returns Op if setcc is not a floating point comparison.
642 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
643 // must be a SETCC node
644 if (Op.getOpcode() != ISD::SETCC)
645 return Op;
647 SDValue LHS = Op.getOperand(0);
649 if (!LHS.getValueType().isFloatingPoint())
650 return Op;
652 SDValue RHS = Op.getOperand(1);
653 SDLoc DL(Op);
655 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
656 // node if necessary.
657 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
659 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
660 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
663 // Creates and returns a CMovFPT/F node.
664 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
665 SDValue False, const SDLoc &DL) {
666 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
667 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
668 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
670 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
671 True.getValueType(), True, FCC0, False, Cond);
674 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
675 TargetLowering::DAGCombinerInfo &DCI,
676 const MipsSubtarget &Subtarget) {
677 if (DCI.isBeforeLegalizeOps())
678 return SDValue();
680 SDValue SetCC = N->getOperand(0);
682 if ((SetCC.getOpcode() != ISD::SETCC) ||
683 !SetCC.getOperand(0).getValueType().isInteger())
684 return SDValue();
686 SDValue False = N->getOperand(2);
687 EVT FalseTy = False.getValueType();
689 if (!FalseTy.isInteger())
690 return SDValue();
692 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
694 // If the RHS (False) is 0, we swap the order of the operands
695 // of ISD::SELECT (obviously also inverting the condition) so that we can
696 // take advantage of conditional moves using the $0 register.
697 // Example:
698 // return (a != 0) ? x : 0;
699 // load $reg, x
700 // movz $reg, $0, a
701 if (!FalseC)
702 return SDValue();
704 const SDLoc DL(N);
706 if (!FalseC->getZExtValue()) {
707 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
708 SDValue True = N->getOperand(1);
710 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
711 SetCC.getOperand(1),
712 ISD::getSetCCInverse(CC, SetCC.getValueType()));
714 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
717 // If both operands are integer constants there's a possibility that we
718 // can do some interesting optimizations.
719 SDValue True = N->getOperand(1);
720 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
722 if (!TrueC || !True.getValueType().isInteger())
723 return SDValue();
725 // We'll also ignore MVT::i64 operands as this optimizations proves
726 // to be ineffective because of the required sign extensions as the result
727 // of a SETCC operator is always MVT::i32 for non-vector types.
728 if (True.getValueType() == MVT::i64)
729 return SDValue();
731 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
733 // 1) (a < x) ? y : y-1
734 // slti $reg1, a, x
735 // addiu $reg2, $reg1, y-1
736 if (Diff == 1)
737 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
739 // 2) (a < x) ? y-1 : y
740 // slti $reg1, a, x
741 // xor $reg1, $reg1, 1
742 // addiu $reg2, $reg1, y-1
743 if (Diff == -1) {
744 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
745 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
746 SetCC.getOperand(1),
747 ISD::getSetCCInverse(CC, SetCC.getValueType()));
748 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
751 // Could not optimize.
752 return SDValue();
755 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
756 TargetLowering::DAGCombinerInfo &DCI,
757 const MipsSubtarget &Subtarget) {
758 if (DCI.isBeforeLegalizeOps())
759 return SDValue();
761 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
763 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
764 if (!FalseC || FalseC->getZExtValue())
765 return SDValue();
767 // Since RHS (False) is 0, we swap the order of the True/False operands
768 // (obviously also inverting the condition) so that we can
769 // take advantage of conditional moves using the $0 register.
770 // Example:
771 // return (a != 0) ? x : 0;
772 // load $reg, x
773 // movz $reg, $0, a
774 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
775 MipsISD::CMovFP_T;
777 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
778 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
779 ValueIfFalse, FCC, ValueIfTrue, Glue);
782 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
783 TargetLowering::DAGCombinerInfo &DCI,
784 const MipsSubtarget &Subtarget) {
785 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
786 return SDValue();
788 SDValue FirstOperand = N->getOperand(0);
789 unsigned FirstOperandOpc = FirstOperand.getOpcode();
790 SDValue Mask = N->getOperand(1);
791 EVT ValTy = N->getValueType(0);
792 SDLoc DL(N);
794 uint64_t Pos = 0, SMPos, SMSize;
795 ConstantSDNode *CN;
796 SDValue NewOperand;
797 unsigned Opc;
799 // Op's second operand must be a shifted mask.
800 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
801 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
802 return SDValue();
804 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
805 // Pattern match EXT.
806 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
807 // => ext $dst, $src, pos, size
809 // The second operand of the shift must be an immediate.
810 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
811 return SDValue();
813 Pos = CN->getZExtValue();
815 // Return if the shifted mask does not start at bit 0 or the sum of its size
816 // and Pos exceeds the word's size.
817 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
818 return SDValue();
820 Opc = MipsISD::Ext;
821 NewOperand = FirstOperand.getOperand(0);
822 } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
823 // Pattern match CINS.
824 // $dst = and (shl $src , pos), mask
825 // => cins $dst, $src, pos, size
826 // mask is a shifted mask with consecutive 1's, pos = shift amount,
827 // size = population count.
829 // The second operand of the shift must be an immediate.
830 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
831 return SDValue();
833 Pos = CN->getZExtValue();
835 if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
836 Pos + SMSize > ValTy.getSizeInBits())
837 return SDValue();
839 NewOperand = FirstOperand.getOperand(0);
840 // SMSize is 'location' (position) in this case, not size.
841 SMSize--;
842 Opc = MipsISD::CIns;
843 } else {
844 // Pattern match EXT.
845 // $dst = and $src, (2**size - 1) , if size > 16
846 // => ext $dst, $src, pos, size , pos = 0
848 // If the mask is <= 0xffff, andi can be used instead.
849 if (CN->getZExtValue() <= 0xffff)
850 return SDValue();
852 // Return if the mask doesn't start at position 0.
853 if (SMPos)
854 return SDValue();
856 Opc = MipsISD::Ext;
857 NewOperand = FirstOperand;
859 return DAG.getNode(Opc, DL, ValTy, NewOperand,
860 DAG.getConstant(Pos, DL, MVT::i32),
861 DAG.getConstant(SMSize, DL, MVT::i32));
864 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
865 TargetLowering::DAGCombinerInfo &DCI,
866 const MipsSubtarget &Subtarget) {
867 // Pattern match INS.
868 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
869 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
870 // => ins $dst, $src, size, pos, $src1
871 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
872 return SDValue();
874 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
875 uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
876 ConstantSDNode *CN, *CN1;
878 // See if Op's first operand matches (and $src1 , mask0).
879 if (And0.getOpcode() != ISD::AND)
880 return SDValue();
882 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
883 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
884 return SDValue();
886 // See if Op's second operand matches (and (shl $src, pos), mask1).
887 if (And1.getOpcode() == ISD::AND &&
888 And1.getOperand(0).getOpcode() == ISD::SHL) {
890 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
891 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
892 return SDValue();
894 // The shift masks must have the same position and size.
895 if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
896 return SDValue();
898 SDValue Shl = And1.getOperand(0);
900 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
901 return SDValue();
903 unsigned Shamt = CN->getZExtValue();
905 // Return if the shift amount and the first bit position of mask are not the
906 // same.
907 EVT ValTy = N->getValueType(0);
908 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
909 return SDValue();
911 SDLoc DL(N);
912 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
913 DAG.getConstant(SMPos0, DL, MVT::i32),
914 DAG.getConstant(SMSize0, DL, MVT::i32),
915 And0.getOperand(0));
916 } else {
917 // Pattern match DINS.
918 // $dst = or (and $src, mask0), mask1
919 // where mask0 = ((1 << SMSize0) -1) << SMPos0
920 // => dins $dst, $src, pos, size
921 if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
922 ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
923 (SMSize0 + SMPos0 <= 32))) {
924 // Check if AND instruction has constant as argument
925 bool isConstCase = And1.getOpcode() != ISD::AND;
926 if (And1.getOpcode() == ISD::AND) {
927 if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
928 return SDValue();
929 } else {
930 if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
931 return SDValue();
933 // Don't generate INS if constant OR operand doesn't fit into bits
934 // cleared by constant AND operand.
935 if (CN->getSExtValue() & CN1->getSExtValue())
936 return SDValue();
938 SDLoc DL(N);
939 EVT ValTy = N->getOperand(0)->getValueType(0);
940 SDValue Const1;
941 SDValue SrlX;
942 if (!isConstCase) {
943 Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
944 SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
946 return DAG.getNode(
947 MipsISD::Ins, DL, N->getValueType(0),
948 isConstCase
949 ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
950 : SrlX,
951 DAG.getConstant(SMPos0, DL, MVT::i32),
952 DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
953 : SMSize0,
954 DL, MVT::i32),
955 And0->getOperand(0));
958 return SDValue();
962 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
963 const MipsSubtarget &Subtarget) {
964 // ROOTNode must have a multiplication as an operand for the match to be
965 // successful.
966 if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
967 ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
968 return SDValue();
970 // We don't handle vector types here.
971 if (ROOTNode->getValueType(0).isVector())
972 return SDValue();
974 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
975 // arithmetic. E.g.
976 // (add (mul a b) c) =>
977 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
978 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
979 // or
980 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
982 // The overhead of setting up the Hi/Lo registers and reassembling the
983 // result makes this a dubious optimzation for MIPS64. The core of the
984 // problem is that Hi/Lo contain the upper and lower 32 bits of the
985 // operand and result.
987 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
988 // density than doing it naively, 5 for MIPS64. Additionally, using
989 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
990 // extended operands, not true 64 bit values.
992 // FIXME: For the moment, disable this completely for MIPS64.
993 if (Subtarget.hasMips64())
994 return SDValue();
996 SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
997 ? ROOTNode->getOperand(0)
998 : ROOTNode->getOperand(1);
1000 SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1001 ? ROOTNode->getOperand(1)
1002 : ROOTNode->getOperand(0);
1004 // Transform this to a MADD only if the user of this node is the add.
1005 // If there are other users of the mul, this function returns here.
1006 if (!Mult.hasOneUse())
1007 return SDValue();
1009 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1010 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1011 // of the multiply must have 32 or more sign bits, otherwise we cannot
1012 // perform this optimization. We have to check this here as we're performing
1013 // this optimization pre-legalization.
1014 SDValue MultLHS = Mult->getOperand(0);
1015 SDValue MultRHS = Mult->getOperand(1);
1017 bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1018 MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1019 bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1020 MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1022 if (!IsSigned && !IsUnsigned)
1023 return SDValue();
1025 // Initialize accumulator.
1026 SDLoc DL(ROOTNode);
1027 SDValue TopHalf;
1028 SDValue BottomHalf;
1029 BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1030 CurDAG.getIntPtrConstant(0, DL));
1032 TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1033 CurDAG.getIntPtrConstant(1, DL));
1034 SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1035 BottomHalf,
1036 TopHalf);
1038 // Create MipsMAdd(u) / MipsMSub(u) node.
1039 bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1040 unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1041 : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1042 SDValue MAddOps[3] = {
1043 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1044 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1045 EVT VTs[2] = {MVT::i32, MVT::i32};
1046 SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1048 SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1049 SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1050 SDValue Combined =
1051 CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1052 return Combined;
1055 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1056 TargetLowering::DAGCombinerInfo &DCI,
1057 const MipsSubtarget &Subtarget) {
1058 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1059 if (DCI.isBeforeLegalizeOps()) {
1060 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1061 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1062 return performMADD_MSUBCombine(N, DAG, Subtarget);
1064 return SDValue();
1067 return SDValue();
1070 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1071 TargetLowering::DAGCombinerInfo &DCI,
1072 const MipsSubtarget &Subtarget) {
1073 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1074 if (DCI.isBeforeLegalizeOps()) {
1075 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1076 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1077 return performMADD_MSUBCombine(N, DAG, Subtarget);
1079 return SDValue();
1082 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1083 SDValue Add = N->getOperand(1);
1085 if (Add.getOpcode() != ISD::ADD)
1086 return SDValue();
1088 SDValue Lo = Add.getOperand(1);
1090 if ((Lo.getOpcode() != MipsISD::Lo) ||
1091 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1092 return SDValue();
1094 EVT ValTy = N->getValueType(0);
1095 SDLoc DL(N);
1097 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1098 Add.getOperand(0));
1099 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1102 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1103 TargetLowering::DAGCombinerInfo &DCI,
1104 const MipsSubtarget &Subtarget) {
1105 // Pattern match CINS.
1106 // $dst = shl (and $src , imm), pos
1107 // => cins $dst, $src, pos, size
1109 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1110 return SDValue();
1112 SDValue FirstOperand = N->getOperand(0);
1113 unsigned FirstOperandOpc = FirstOperand.getOpcode();
1114 SDValue SecondOperand = N->getOperand(1);
1115 EVT ValTy = N->getValueType(0);
1116 SDLoc DL(N);
1118 uint64_t Pos = 0, SMPos, SMSize;
1119 ConstantSDNode *CN;
1120 SDValue NewOperand;
1122 // The second operand of the shift must be an immediate.
1123 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1124 return SDValue();
1126 Pos = CN->getZExtValue();
1128 if (Pos >= ValTy.getSizeInBits())
1129 return SDValue();
1131 if (FirstOperandOpc != ISD::AND)
1132 return SDValue();
1134 // AND's second operand must be a shifted mask.
1135 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1136 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1137 return SDValue();
1139 // Return if the shifted mask does not start at bit 0 or the sum of its size
1140 // and Pos exceeds the word's size.
1141 if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1142 return SDValue();
1144 NewOperand = FirstOperand.getOperand(0);
1145 // SMSize is 'location' (position) in this case, not size.
1146 SMSize--;
1148 return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1149 DAG.getConstant(Pos, DL, MVT::i32),
1150 DAG.getConstant(SMSize, DL, MVT::i32));
1153 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1154 const {
1155 SelectionDAG &DAG = DCI.DAG;
1156 unsigned Opc = N->getOpcode();
1158 switch (Opc) {
1159 default: break;
1160 case ISD::SDIVREM:
1161 case ISD::UDIVREM:
1162 return performDivRemCombine(N, DAG, DCI, Subtarget);
1163 case ISD::SELECT:
1164 return performSELECTCombine(N, DAG, DCI, Subtarget);
1165 case MipsISD::CMovFP_F:
1166 case MipsISD::CMovFP_T:
1167 return performCMovFPCombine(N, DAG, DCI, Subtarget);
1168 case ISD::AND:
1169 return performANDCombine(N, DAG, DCI, Subtarget);
1170 case ISD::OR:
1171 return performORCombine(N, DAG, DCI, Subtarget);
1172 case ISD::ADD:
1173 return performADDCombine(N, DAG, DCI, Subtarget);
1174 case ISD::SHL:
1175 return performSHLCombine(N, DAG, DCI, Subtarget);
1176 case ISD::SUB:
1177 return performSUBCombine(N, DAG, DCI, Subtarget);
1180 return SDValue();
1183 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1184 return Subtarget.hasMips32();
1187 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1188 return Subtarget.hasMips32();
1191 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1192 const SDNode *N, CombineLevel Level) const {
1193 if (N->getOperand(0).getValueType().isVector())
1194 return false;
1195 return true;
1198 void
1199 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1200 SmallVectorImpl<SDValue> &Results,
1201 SelectionDAG &DAG) const {
1202 return LowerOperationWrapper(N, Results, DAG);
1205 SDValue MipsTargetLowering::
1206 LowerOperation(SDValue Op, SelectionDAG &DAG) const
1208 switch (Op.getOpcode())
1210 case ISD::BRCOND: return lowerBRCOND(Op, DAG);
1211 case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
1212 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
1213 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
1214 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
1215 case ISD::JumpTable: return lowerJumpTable(Op, DAG);
1216 case ISD::SELECT: return lowerSELECT(Op, DAG);
1217 case ISD::SETCC: return lowerSETCC(Op, DAG);
1218 case ISD::VASTART: return lowerVASTART(Op, DAG);
1219 case ISD::VAARG: return lowerVAARG(Op, DAG);
1220 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
1221 case ISD::FABS: return lowerFABS(Op, DAG);
1222 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
1223 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
1224 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
1225 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
1226 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
1227 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
1228 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
1229 case ISD::LOAD: return lowerLOAD(Op, DAG);
1230 case ISD::STORE: return lowerSTORE(Op, DAG);
1231 case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
1232 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
1234 return SDValue();
1237 //===----------------------------------------------------------------------===//
1238 // Lower helper functions
1239 //===----------------------------------------------------------------------===//
1241 // addLiveIn - This helper function adds the specified physical register to the
1242 // MachineFunction as a live in value. It also creates a corresponding
1243 // virtual register for it.
1244 static unsigned
1245 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1247 Register VReg = MF.getRegInfo().createVirtualRegister(RC);
1248 MF.getRegInfo().addLiveIn(PReg, VReg);
1249 return VReg;
1252 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1253 MachineBasicBlock &MBB,
1254 const TargetInstrInfo &TII,
1255 bool Is64Bit, bool IsMicroMips) {
1256 if (NoZeroDivCheck)
1257 return &MBB;
1259 // Insert instruction "teq $divisor_reg, $zero, 7".
1260 MachineBasicBlock::iterator I(MI);
1261 MachineInstrBuilder MIB;
1262 MachineOperand &Divisor = MI.getOperand(2);
1263 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1264 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1265 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1266 .addReg(Mips::ZERO)
1267 .addImm(7);
1269 // Use the 32-bit sub-register if this is a 64-bit division.
1270 if (Is64Bit)
1271 MIB->getOperand(0).setSubReg(Mips::sub_32);
1273 // Clear Divisor's kill flag.
1274 Divisor.setIsKill(false);
1276 // We would normally delete the original instruction here but in this case
1277 // we only needed to inject an additional instruction rather than replace it.
1279 return &MBB;
1282 MachineBasicBlock *
1283 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1284 MachineBasicBlock *BB) const {
1285 switch (MI.getOpcode()) {
1286 default:
1287 llvm_unreachable("Unexpected instr type to insert");
1288 case Mips::ATOMIC_LOAD_ADD_I8:
1289 return emitAtomicBinaryPartword(MI, BB, 1);
1290 case Mips::ATOMIC_LOAD_ADD_I16:
1291 return emitAtomicBinaryPartword(MI, BB, 2);
1292 case Mips::ATOMIC_LOAD_ADD_I32:
1293 return emitAtomicBinary(MI, BB);
1294 case Mips::ATOMIC_LOAD_ADD_I64:
1295 return emitAtomicBinary(MI, BB);
1297 case Mips::ATOMIC_LOAD_AND_I8:
1298 return emitAtomicBinaryPartword(MI, BB, 1);
1299 case Mips::ATOMIC_LOAD_AND_I16:
1300 return emitAtomicBinaryPartword(MI, BB, 2);
1301 case Mips::ATOMIC_LOAD_AND_I32:
1302 return emitAtomicBinary(MI, BB);
1303 case Mips::ATOMIC_LOAD_AND_I64:
1304 return emitAtomicBinary(MI, BB);
1306 case Mips::ATOMIC_LOAD_OR_I8:
1307 return emitAtomicBinaryPartword(MI, BB, 1);
1308 case Mips::ATOMIC_LOAD_OR_I16:
1309 return emitAtomicBinaryPartword(MI, BB, 2);
1310 case Mips::ATOMIC_LOAD_OR_I32:
1311 return emitAtomicBinary(MI, BB);
1312 case Mips::ATOMIC_LOAD_OR_I64:
1313 return emitAtomicBinary(MI, BB);
1315 case Mips::ATOMIC_LOAD_XOR_I8:
1316 return emitAtomicBinaryPartword(MI, BB, 1);
1317 case Mips::ATOMIC_LOAD_XOR_I16:
1318 return emitAtomicBinaryPartword(MI, BB, 2);
1319 case Mips::ATOMIC_LOAD_XOR_I32:
1320 return emitAtomicBinary(MI, BB);
1321 case Mips::ATOMIC_LOAD_XOR_I64:
1322 return emitAtomicBinary(MI, BB);
1324 case Mips::ATOMIC_LOAD_NAND_I8:
1325 return emitAtomicBinaryPartword(MI, BB, 1);
1326 case Mips::ATOMIC_LOAD_NAND_I16:
1327 return emitAtomicBinaryPartword(MI, BB, 2);
1328 case Mips::ATOMIC_LOAD_NAND_I32:
1329 return emitAtomicBinary(MI, BB);
1330 case Mips::ATOMIC_LOAD_NAND_I64:
1331 return emitAtomicBinary(MI, BB);
1333 case Mips::ATOMIC_LOAD_SUB_I8:
1334 return emitAtomicBinaryPartword(MI, BB, 1);
1335 case Mips::ATOMIC_LOAD_SUB_I16:
1336 return emitAtomicBinaryPartword(MI, BB, 2);
1337 case Mips::ATOMIC_LOAD_SUB_I32:
1338 return emitAtomicBinary(MI, BB);
1339 case Mips::ATOMIC_LOAD_SUB_I64:
1340 return emitAtomicBinary(MI, BB);
1342 case Mips::ATOMIC_SWAP_I8:
1343 return emitAtomicBinaryPartword(MI, BB, 1);
1344 case Mips::ATOMIC_SWAP_I16:
1345 return emitAtomicBinaryPartword(MI, BB, 2);
1346 case Mips::ATOMIC_SWAP_I32:
1347 return emitAtomicBinary(MI, BB);
1348 case Mips::ATOMIC_SWAP_I64:
1349 return emitAtomicBinary(MI, BB);
1351 case Mips::ATOMIC_CMP_SWAP_I8:
1352 return emitAtomicCmpSwapPartword(MI, BB, 1);
1353 case Mips::ATOMIC_CMP_SWAP_I16:
1354 return emitAtomicCmpSwapPartword(MI, BB, 2);
1355 case Mips::ATOMIC_CMP_SWAP_I32:
1356 return emitAtomicCmpSwap(MI, BB);
1357 case Mips::ATOMIC_CMP_SWAP_I64:
1358 return emitAtomicCmpSwap(MI, BB);
1360 case Mips::ATOMIC_LOAD_MIN_I8:
1361 return emitAtomicBinaryPartword(MI, BB, 1);
1362 case Mips::ATOMIC_LOAD_MIN_I16:
1363 return emitAtomicBinaryPartword(MI, BB, 2);
1364 case Mips::ATOMIC_LOAD_MIN_I32:
1365 return emitAtomicBinary(MI, BB);
1366 case Mips::ATOMIC_LOAD_MIN_I64:
1367 return emitAtomicBinary(MI, BB);
1369 case Mips::ATOMIC_LOAD_MAX_I8:
1370 return emitAtomicBinaryPartword(MI, BB, 1);
1371 case Mips::ATOMIC_LOAD_MAX_I16:
1372 return emitAtomicBinaryPartword(MI, BB, 2);
1373 case Mips::ATOMIC_LOAD_MAX_I32:
1374 return emitAtomicBinary(MI, BB);
1375 case Mips::ATOMIC_LOAD_MAX_I64:
1376 return emitAtomicBinary(MI, BB);
1378 case Mips::ATOMIC_LOAD_UMIN_I8:
1379 return emitAtomicBinaryPartword(MI, BB, 1);
1380 case Mips::ATOMIC_LOAD_UMIN_I16:
1381 return emitAtomicBinaryPartword(MI, BB, 2);
1382 case Mips::ATOMIC_LOAD_UMIN_I32:
1383 return emitAtomicBinary(MI, BB);
1384 case Mips::ATOMIC_LOAD_UMIN_I64:
1385 return emitAtomicBinary(MI, BB);
1387 case Mips::ATOMIC_LOAD_UMAX_I8:
1388 return emitAtomicBinaryPartword(MI, BB, 1);
1389 case Mips::ATOMIC_LOAD_UMAX_I16:
1390 return emitAtomicBinaryPartword(MI, BB, 2);
1391 case Mips::ATOMIC_LOAD_UMAX_I32:
1392 return emitAtomicBinary(MI, BB);
1393 case Mips::ATOMIC_LOAD_UMAX_I64:
1394 return emitAtomicBinary(MI, BB);
1396 case Mips::PseudoSDIV:
1397 case Mips::PseudoUDIV:
1398 case Mips::DIV:
1399 case Mips::DIVU:
1400 case Mips::MOD:
1401 case Mips::MODU:
1402 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1403 false);
1404 case Mips::SDIV_MM_Pseudo:
1405 case Mips::UDIV_MM_Pseudo:
1406 case Mips::SDIV_MM:
1407 case Mips::UDIV_MM:
1408 case Mips::DIV_MMR6:
1409 case Mips::DIVU_MMR6:
1410 case Mips::MOD_MMR6:
1411 case Mips::MODU_MMR6:
1412 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1413 case Mips::PseudoDSDIV:
1414 case Mips::PseudoDUDIV:
1415 case Mips::DDIV:
1416 case Mips::DDIVU:
1417 case Mips::DMOD:
1418 case Mips::DMODU:
1419 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1421 case Mips::PseudoSELECT_I:
1422 case Mips::PseudoSELECT_I64:
1423 case Mips::PseudoSELECT_S:
1424 case Mips::PseudoSELECT_D32:
1425 case Mips::PseudoSELECT_D64:
1426 return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1427 case Mips::PseudoSELECTFP_F_I:
1428 case Mips::PseudoSELECTFP_F_I64:
1429 case Mips::PseudoSELECTFP_F_S:
1430 case Mips::PseudoSELECTFP_F_D32:
1431 case Mips::PseudoSELECTFP_F_D64:
1432 return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1433 case Mips::PseudoSELECTFP_T_I:
1434 case Mips::PseudoSELECTFP_T_I64:
1435 case Mips::PseudoSELECTFP_T_S:
1436 case Mips::PseudoSELECTFP_T_D32:
1437 case Mips::PseudoSELECTFP_T_D64:
1438 return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1439 case Mips::PseudoD_SELECT_I:
1440 case Mips::PseudoD_SELECT_I64:
1441 return emitPseudoD_SELECT(MI, BB);
1442 case Mips::LDR_W:
1443 return emitLDR_W(MI, BB);
1444 case Mips::LDR_D:
1445 return emitLDR_D(MI, BB);
1446 case Mips::STR_W:
1447 return emitSTR_W(MI, BB);
1448 case Mips::STR_D:
1449 return emitSTR_D(MI, BB);
1453 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1454 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1455 MachineBasicBlock *
1456 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1457 MachineBasicBlock *BB) const {
1459 MachineFunction *MF = BB->getParent();
1460 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1461 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1462 DebugLoc DL = MI.getDebugLoc();
1464 unsigned AtomicOp;
1465 bool NeedsAdditionalReg = false;
1466 switch (MI.getOpcode()) {
1467 case Mips::ATOMIC_LOAD_ADD_I32:
1468 AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1469 break;
1470 case Mips::ATOMIC_LOAD_SUB_I32:
1471 AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1472 break;
1473 case Mips::ATOMIC_LOAD_AND_I32:
1474 AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1475 break;
1476 case Mips::ATOMIC_LOAD_OR_I32:
1477 AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1478 break;
1479 case Mips::ATOMIC_LOAD_XOR_I32:
1480 AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1481 break;
1482 case Mips::ATOMIC_LOAD_NAND_I32:
1483 AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1484 break;
1485 case Mips::ATOMIC_SWAP_I32:
1486 AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1487 break;
1488 case Mips::ATOMIC_LOAD_ADD_I64:
1489 AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1490 break;
1491 case Mips::ATOMIC_LOAD_SUB_I64:
1492 AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1493 break;
1494 case Mips::ATOMIC_LOAD_AND_I64:
1495 AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1496 break;
1497 case Mips::ATOMIC_LOAD_OR_I64:
1498 AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1499 break;
1500 case Mips::ATOMIC_LOAD_XOR_I64:
1501 AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1502 break;
1503 case Mips::ATOMIC_LOAD_NAND_I64:
1504 AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1505 break;
1506 case Mips::ATOMIC_SWAP_I64:
1507 AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1508 break;
1509 case Mips::ATOMIC_LOAD_MIN_I32:
1510 AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA;
1511 NeedsAdditionalReg = true;
1512 break;
1513 case Mips::ATOMIC_LOAD_MAX_I32:
1514 AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA;
1515 NeedsAdditionalReg = true;
1516 break;
1517 case Mips::ATOMIC_LOAD_UMIN_I32:
1518 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA;
1519 NeedsAdditionalReg = true;
1520 break;
1521 case Mips::ATOMIC_LOAD_UMAX_I32:
1522 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA;
1523 NeedsAdditionalReg = true;
1524 break;
1525 case Mips::ATOMIC_LOAD_MIN_I64:
1526 AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA;
1527 NeedsAdditionalReg = true;
1528 break;
1529 case Mips::ATOMIC_LOAD_MAX_I64:
1530 AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA;
1531 NeedsAdditionalReg = true;
1532 break;
1533 case Mips::ATOMIC_LOAD_UMIN_I64:
1534 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA;
1535 NeedsAdditionalReg = true;
1536 break;
1537 case Mips::ATOMIC_LOAD_UMAX_I64:
1538 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA;
1539 NeedsAdditionalReg = true;
1540 break;
1541 default:
1542 llvm_unreachable("Unknown pseudo atomic for replacement!");
1545 Register OldVal = MI.getOperand(0).getReg();
1546 Register Ptr = MI.getOperand(1).getReg();
1547 Register Incr = MI.getOperand(2).getReg();
1548 Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1550 MachineBasicBlock::iterator II(MI);
1552 // The scratch registers here with the EarlyClobber | Define | Implicit
1553 // flags is used to persuade the register allocator and the machine
1554 // verifier to accept the usage of this register. This has to be a real
1555 // register which has an UNDEF value but is dead after the instruction which
1556 // is unique among the registers chosen for the instruction.
1558 // The EarlyClobber flag has the semantic properties that the operand it is
1559 // attached to is clobbered before the rest of the inputs are read. Hence it
1560 // must be unique among the operands to the instruction.
1561 // The Define flag is needed to coerce the machine verifier that an Undef
1562 // value isn't a problem.
1563 // The Dead flag is needed as the value in scratch isn't used by any other
1564 // instruction. Kill isn't used as Dead is more precise.
1565 // The implicit flag is here due to the interaction between the other flags
1566 // and the machine verifier.
1568 // For correctness purpose, a new pseudo is introduced here. We need this
1569 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1570 // that is spread over >1 basic blocks. A register allocator which
1571 // introduces (or any codegen infact) a store, can violate the expectations
1572 // of the hardware.
1574 // An atomic read-modify-write sequence starts with a linked load
1575 // instruction and ends with a store conditional instruction. The atomic
1576 // read-modify-write sequence fails if any of the following conditions
1577 // occur between the execution of ll and sc:
1578 // * A coherent store is completed by another process or coherent I/O
1579 // module into the block of synchronizable physical memory containing
1580 // the word. The size and alignment of the block is
1581 // implementation-dependent.
1582 // * A coherent store is executed between an LL and SC sequence on the
1583 // same processor to the block of synchornizable physical memory
1584 // containing the word.
1587 Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1588 Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1590 BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1591 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1593 MachineInstrBuilder MIB =
1594 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1595 .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1596 .addReg(PtrCopy)
1597 .addReg(IncrCopy)
1598 .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1599 RegState::Implicit | RegState::Dead);
1600 if (NeedsAdditionalReg) {
1601 Register Scratch2 =
1602 RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1603 MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber |
1604 RegState::Implicit | RegState::Dead);
1607 MI.eraseFromParent();
1609 return BB;
1612 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1613 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1614 unsigned SrcReg) const {
1615 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1616 const DebugLoc &DL = MI.getDebugLoc();
1618 if (Subtarget.hasMips32r2() && Size == 1) {
1619 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1620 return BB;
1623 if (Subtarget.hasMips32r2() && Size == 2) {
1624 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1625 return BB;
1628 MachineFunction *MF = BB->getParent();
1629 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1630 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1631 Register ScrReg = RegInfo.createVirtualRegister(RC);
1633 assert(Size < 32);
1634 int64_t ShiftImm = 32 - (Size * 8);
1636 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1637 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1639 return BB;
1642 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1643 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1644 assert((Size == 1 || Size == 2) &&
1645 "Unsupported size for EmitAtomicBinaryPartial.");
1647 MachineFunction *MF = BB->getParent();
1648 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1649 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1650 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1651 const TargetRegisterClass *RCp =
1652 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1653 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1654 DebugLoc DL = MI.getDebugLoc();
1656 Register Dest = MI.getOperand(0).getReg();
1657 Register Ptr = MI.getOperand(1).getReg();
1658 Register Incr = MI.getOperand(2).getReg();
1660 Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1661 Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1662 Register Mask = RegInfo.createVirtualRegister(RC);
1663 Register Mask2 = RegInfo.createVirtualRegister(RC);
1664 Register Incr2 = RegInfo.createVirtualRegister(RC);
1665 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1666 Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1667 Register MaskUpper = RegInfo.createVirtualRegister(RC);
1668 Register Scratch = RegInfo.createVirtualRegister(RC);
1669 Register Scratch2 = RegInfo.createVirtualRegister(RC);
1670 Register Scratch3 = RegInfo.createVirtualRegister(RC);
1672 unsigned AtomicOp = 0;
1673 bool NeedsAdditionalReg = false;
1674 switch (MI.getOpcode()) {
1675 case Mips::ATOMIC_LOAD_NAND_I8:
1676 AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1677 break;
1678 case Mips::ATOMIC_LOAD_NAND_I16:
1679 AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1680 break;
1681 case Mips::ATOMIC_SWAP_I8:
1682 AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1683 break;
1684 case Mips::ATOMIC_SWAP_I16:
1685 AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1686 break;
1687 case Mips::ATOMIC_LOAD_ADD_I8:
1688 AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1689 break;
1690 case Mips::ATOMIC_LOAD_ADD_I16:
1691 AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1692 break;
1693 case Mips::ATOMIC_LOAD_SUB_I8:
1694 AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1695 break;
1696 case Mips::ATOMIC_LOAD_SUB_I16:
1697 AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1698 break;
1699 case Mips::ATOMIC_LOAD_AND_I8:
1700 AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1701 break;
1702 case Mips::ATOMIC_LOAD_AND_I16:
1703 AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1704 break;
1705 case Mips::ATOMIC_LOAD_OR_I8:
1706 AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1707 break;
1708 case Mips::ATOMIC_LOAD_OR_I16:
1709 AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1710 break;
1711 case Mips::ATOMIC_LOAD_XOR_I8:
1712 AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1713 break;
1714 case Mips::ATOMIC_LOAD_XOR_I16:
1715 AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1716 break;
1717 case Mips::ATOMIC_LOAD_MIN_I8:
1718 AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA;
1719 NeedsAdditionalReg = true;
1720 break;
1721 case Mips::ATOMIC_LOAD_MIN_I16:
1722 AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA;
1723 NeedsAdditionalReg = true;
1724 break;
1725 case Mips::ATOMIC_LOAD_MAX_I8:
1726 AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA;
1727 NeedsAdditionalReg = true;
1728 break;
1729 case Mips::ATOMIC_LOAD_MAX_I16:
1730 AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA;
1731 NeedsAdditionalReg = true;
1732 break;
1733 case Mips::ATOMIC_LOAD_UMIN_I8:
1734 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA;
1735 NeedsAdditionalReg = true;
1736 break;
1737 case Mips::ATOMIC_LOAD_UMIN_I16:
1738 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA;
1739 NeedsAdditionalReg = true;
1740 break;
1741 case Mips::ATOMIC_LOAD_UMAX_I8:
1742 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA;
1743 NeedsAdditionalReg = true;
1744 break;
1745 case Mips::ATOMIC_LOAD_UMAX_I16:
1746 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA;
1747 NeedsAdditionalReg = true;
1748 break;
1749 default:
1750 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1753 // insert new blocks after the current block
1754 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1755 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1756 MachineFunction::iterator It = ++BB->getIterator();
1757 MF->insert(It, exitMBB);
1759 // Transfer the remainder of BB and its successor edges to exitMBB.
1760 exitMBB->splice(exitMBB->begin(), BB,
1761 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1762 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1764 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1766 // thisMBB:
1767 // addiu masklsb2,$0,-4 # 0xfffffffc
1768 // and alignedaddr,ptr,masklsb2
1769 // andi ptrlsb2,ptr,3
1770 // sll shiftamt,ptrlsb2,3
1771 // ori maskupper,$0,255 # 0xff
1772 // sll mask,maskupper,shiftamt
1773 // nor mask2,$0,mask
1774 // sll incr2,incr,shiftamt
1776 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1777 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1778 .addReg(ABI.GetNullPtr()).addImm(-4);
1779 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1780 .addReg(Ptr).addReg(MaskLSB2);
1781 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1782 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1783 if (Subtarget.isLittle()) {
1784 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1785 } else {
1786 Register Off = RegInfo.createVirtualRegister(RC);
1787 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1788 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1789 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1791 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1792 .addReg(Mips::ZERO).addImm(MaskImm);
1793 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1794 .addReg(MaskUpper).addReg(ShiftAmt);
1795 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1796 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1799 // The purposes of the flags on the scratch registers is explained in
1800 // emitAtomicBinary. In summary, we need a scratch register which is going to
1801 // be undef, that is unique among registers chosen for the instruction.
1803 MachineInstrBuilder MIB =
1804 BuildMI(BB, DL, TII->get(AtomicOp))
1805 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1806 .addReg(AlignedAddr)
1807 .addReg(Incr2)
1808 .addReg(Mask)
1809 .addReg(Mask2)
1810 .addReg(ShiftAmt)
1811 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1812 RegState::Dead | RegState::Implicit)
1813 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1814 RegState::Dead | RegState::Implicit)
1815 .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1816 RegState::Dead | RegState::Implicit);
1817 if (NeedsAdditionalReg) {
1818 Register Scratch4 = RegInfo.createVirtualRegister(RC);
1819 MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define |
1820 RegState::Dead | RegState::Implicit);
1823 MI.eraseFromParent(); // The instruction is gone now.
1825 return exitMBB;
1828 // Lower atomic compare and swap to a pseudo instruction, taking care to
1829 // define a scratch register for the pseudo instruction's expansion. The
1830 // instruction is expanded after the register allocator as to prevent
1831 // the insertion of stores between the linked load and the store conditional.
1833 MachineBasicBlock *
1834 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1835 MachineBasicBlock *BB) const {
1837 assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1838 MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1839 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1841 const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1843 MachineFunction *MF = BB->getParent();
1844 MachineRegisterInfo &MRI = MF->getRegInfo();
1845 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1846 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1847 DebugLoc DL = MI.getDebugLoc();
1849 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1850 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1851 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1852 Register Dest = MI.getOperand(0).getReg();
1853 Register Ptr = MI.getOperand(1).getReg();
1854 Register OldVal = MI.getOperand(2).getReg();
1855 Register NewVal = MI.getOperand(3).getReg();
1857 Register Scratch = MRI.createVirtualRegister(RC);
1858 MachineBasicBlock::iterator II(MI);
1860 // We need to create copies of the various registers and kill them at the
1861 // atomic pseudo. If the copies are not made, when the atomic is expanded
1862 // after fast register allocation, the spills will end up outside of the
1863 // blocks that their values are defined in, causing livein errors.
1865 Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1866 Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1867 Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1869 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1870 BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1871 BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1873 // The purposes of the flags on the scratch registers is explained in
1874 // emitAtomicBinary. In summary, we need a scratch register which is going to
1875 // be undef, that is unique among registers chosen for the instruction.
1877 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1878 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1879 .addReg(PtrCopy, RegState::Kill)
1880 .addReg(OldValCopy, RegState::Kill)
1881 .addReg(NewValCopy, RegState::Kill)
1882 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1883 RegState::Dead | RegState::Implicit);
1885 MI.eraseFromParent(); // The instruction is gone now.
1887 return BB;
1890 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1891 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1892 assert((Size == 1 || Size == 2) &&
1893 "Unsupported size for EmitAtomicCmpSwapPartial.");
1895 MachineFunction *MF = BB->getParent();
1896 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1897 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1898 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1899 const TargetRegisterClass *RCp =
1900 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1901 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1902 DebugLoc DL = MI.getDebugLoc();
1904 Register Dest = MI.getOperand(0).getReg();
1905 Register Ptr = MI.getOperand(1).getReg();
1906 Register CmpVal = MI.getOperand(2).getReg();
1907 Register NewVal = MI.getOperand(3).getReg();
1909 Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1910 Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1911 Register Mask = RegInfo.createVirtualRegister(RC);
1912 Register Mask2 = RegInfo.createVirtualRegister(RC);
1913 Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1914 Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1915 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1916 Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1917 Register MaskUpper = RegInfo.createVirtualRegister(RC);
1918 Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1919 Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
1920 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1921 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1922 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1924 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1925 // flags are used to coerce the register allocator and the machine verifier to
1926 // accept the usage of these registers.
1927 // The EarlyClobber flag has the semantic properties that the operand it is
1928 // attached to is clobbered before the rest of the inputs are read. Hence it
1929 // must be unique among the operands to the instruction.
1930 // The Define flag is needed to coerce the machine verifier that an Undef
1931 // value isn't a problem.
1932 // The Dead flag is needed as the value in scratch isn't used by any other
1933 // instruction. Kill isn't used as Dead is more precise.
1934 Register Scratch = RegInfo.createVirtualRegister(RC);
1935 Register Scratch2 = RegInfo.createVirtualRegister(RC);
1937 // insert new blocks after the current block
1938 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1939 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1940 MachineFunction::iterator It = ++BB->getIterator();
1941 MF->insert(It, exitMBB);
1943 // Transfer the remainder of BB and its successor edges to exitMBB.
1944 exitMBB->splice(exitMBB->begin(), BB,
1945 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1946 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1948 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1950 // thisMBB:
1951 // addiu masklsb2,$0,-4 # 0xfffffffc
1952 // and alignedaddr,ptr,masklsb2
1953 // andi ptrlsb2,ptr,3
1954 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1955 // sll shiftamt,ptrlsb2,3
1956 // ori maskupper,$0,255 # 0xff
1957 // sll mask,maskupper,shiftamt
1958 // nor mask2,$0,mask
1959 // andi maskedcmpval,cmpval,255
1960 // sll shiftedcmpval,maskedcmpval,shiftamt
1961 // andi maskednewval,newval,255
1962 // sll shiftednewval,maskednewval,shiftamt
1963 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1964 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1965 .addReg(ABI.GetNullPtr()).addImm(-4);
1966 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1967 .addReg(Ptr).addReg(MaskLSB2);
1968 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1969 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1970 if (Subtarget.isLittle()) {
1971 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1972 } else {
1973 Register Off = RegInfo.createVirtualRegister(RC);
1974 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1975 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1976 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1978 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1979 .addReg(Mips::ZERO).addImm(MaskImm);
1980 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1981 .addReg(MaskUpper).addReg(ShiftAmt);
1982 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1983 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1984 .addReg(CmpVal).addImm(MaskImm);
1985 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1986 .addReg(MaskedCmpVal).addReg(ShiftAmt);
1987 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1988 .addReg(NewVal).addImm(MaskImm);
1989 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1990 .addReg(MaskedNewVal).addReg(ShiftAmt);
1992 // The purposes of the flags on the scratch registers are explained in
1993 // emitAtomicBinary. In summary, we need a scratch register which is going to
1994 // be undef, that is unique among the register chosen for the instruction.
1996 BuildMI(BB, DL, TII->get(AtomicOp))
1997 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1998 .addReg(AlignedAddr)
1999 .addReg(Mask)
2000 .addReg(ShiftedCmpVal)
2001 .addReg(Mask2)
2002 .addReg(ShiftedNewVal)
2003 .addReg(ShiftAmt)
2004 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
2005 RegState::Dead | RegState::Implicit)
2006 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
2007 RegState::Dead | RegState::Implicit);
2009 MI.eraseFromParent(); // The instruction is gone now.
2011 return exitMBB;
2014 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2015 // The first operand is the chain, the second is the condition, the third is
2016 // the block to branch to if the condition is true.
2017 SDValue Chain = Op.getOperand(0);
2018 SDValue Dest = Op.getOperand(2);
2019 SDLoc DL(Op);
2021 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2022 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
2024 // Return if flag is not set by a floating point comparison.
2025 if (CondRes.getOpcode() != MipsISD::FPCmp)
2026 return Op;
2028 SDValue CCNode = CondRes.getOperand(2);
2029 Mips::CondCode CC =
2030 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
2031 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
2032 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
2033 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
2034 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
2035 FCC0, Dest, CondRes);
2038 SDValue MipsTargetLowering::
2039 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
2041 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2042 SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
2044 // Return if flag is not set by a floating point comparison.
2045 if (Cond.getOpcode() != MipsISD::FPCmp)
2046 return Op;
2048 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2049 SDLoc(Op));
2052 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2053 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2054 SDValue Cond = createFPCmp(DAG, Op);
2056 assert(Cond.getOpcode() == MipsISD::FPCmp &&
2057 "Floating point operand expected.");
2059 SDLoc DL(Op);
2060 SDValue True = DAG.getConstant(1, DL, MVT::i32);
2061 SDValue False = DAG.getConstant(0, DL, MVT::i32);
2063 return createCMovFP(DAG, Cond, True, False, DL);
2066 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
2067 SelectionDAG &DAG) const {
2068 EVT Ty = Op.getValueType();
2069 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2070 const GlobalValue *GV = N->getGlobal();
2072 if (!isPositionIndependent()) {
2073 const MipsTargetObjectFile *TLOF =
2074 static_cast<const MipsTargetObjectFile *>(
2075 getTargetMachine().getObjFileLowering());
2076 const GlobalObject *GO = GV->getBaseObject();
2077 if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
2078 // %gp_rel relocation
2079 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2081 // %hi/%lo relocation
2082 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2083 // %highest/%higher/%hi/%lo relocation
2084 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2087 // Every other architecture would use shouldAssumeDSOLocal in here, but
2088 // mips is special.
2089 // * In PIC code mips requires got loads even for local statics!
2090 // * To save on got entries, for local statics the got entry contains the
2091 // page and an additional add instruction takes care of the low bits.
2092 // * It is legal to access a hidden symbol with a non hidden undefined,
2093 // so one cannot guarantee that all access to a hidden symbol will know
2094 // it is hidden.
2095 // * Mips linkers don't support creating a page and a full got entry for
2096 // the same symbol.
2097 // * Given all that, we have to use a full got entry for hidden symbols :-(
2098 if (GV->hasLocalLinkage())
2099 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2101 if (Subtarget.useXGOT())
2102 return getAddrGlobalLargeGOT(
2103 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
2104 DAG.getEntryNode(),
2105 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2107 return getAddrGlobal(
2108 N, SDLoc(N), Ty, DAG,
2109 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
2110 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2113 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2114 SelectionDAG &DAG) const {
2115 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2116 EVT Ty = Op.getValueType();
2118 if (!isPositionIndependent())
2119 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2120 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2122 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2125 SDValue MipsTargetLowering::
2126 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2128 // If the relocation model is PIC, use the General Dynamic TLS Model or
2129 // Local Dynamic TLS model, otherwise use the Initial Exec or
2130 // Local Exec TLS Model.
2132 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2133 if (DAG.getTarget().useEmulatedTLS())
2134 return LowerToTLSEmulatedModel(GA, DAG);
2136 SDLoc DL(GA);
2137 const GlobalValue *GV = GA->getGlobal();
2138 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2140 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2142 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2143 // General Dynamic and Local Dynamic TLS Model.
2144 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2145 : MipsII::MO_TLSGD;
2147 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2148 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2149 getGlobalReg(DAG, PtrVT), TGA);
2150 unsigned PtrSize = PtrVT.getSizeInBits();
2151 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2153 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2155 ArgListTy Args;
2156 ArgListEntry Entry;
2157 Entry.Node = Argument;
2158 Entry.Ty = PtrTy;
2159 Args.push_back(Entry);
2161 TargetLowering::CallLoweringInfo CLI(DAG);
2162 CLI.setDebugLoc(DL)
2163 .setChain(DAG.getEntryNode())
2164 .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2165 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2167 SDValue Ret = CallResult.first;
2169 if (model != TLSModel::LocalDynamic)
2170 return Ret;
2172 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2173 MipsII::MO_DTPREL_HI);
2174 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2175 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2176 MipsII::MO_DTPREL_LO);
2177 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2178 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2179 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2182 SDValue Offset;
2183 if (model == TLSModel::InitialExec) {
2184 // Initial Exec TLS Model
2185 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2186 MipsII::MO_GOTTPREL);
2187 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2188 TGA);
2189 Offset =
2190 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2191 } else {
2192 // Local Exec TLS Model
2193 assert(model == TLSModel::LocalExec);
2194 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2195 MipsII::MO_TPREL_HI);
2196 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2197 MipsII::MO_TPREL_LO);
2198 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2199 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2200 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2203 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2204 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2207 SDValue MipsTargetLowering::
2208 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2210 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2211 EVT Ty = Op.getValueType();
2213 if (!isPositionIndependent())
2214 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2215 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2217 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2220 SDValue MipsTargetLowering::
2221 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2223 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2224 EVT Ty = Op.getValueType();
2226 if (!isPositionIndependent()) {
2227 const MipsTargetObjectFile *TLOF =
2228 static_cast<const MipsTargetObjectFile *>(
2229 getTargetMachine().getObjFileLowering());
2231 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2232 getTargetMachine()))
2233 // %gp_rel relocation
2234 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2236 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2237 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2240 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2243 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2244 MachineFunction &MF = DAG.getMachineFunction();
2245 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2247 SDLoc DL(Op);
2248 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2249 getPointerTy(MF.getDataLayout()));
2251 // vastart just stores the address of the VarArgsFrameIndex slot into the
2252 // memory location argument.
2253 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2254 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2255 MachinePointerInfo(SV));
2258 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2259 SDNode *Node = Op.getNode();
2260 EVT VT = Node->getValueType(0);
2261 SDValue Chain = Node->getOperand(0);
2262 SDValue VAListPtr = Node->getOperand(1);
2263 const Align Align =
2264 llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
2265 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2266 SDLoc DL(Node);
2267 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2269 SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2270 VAListPtr, MachinePointerInfo(SV));
2271 SDValue VAList = VAListLoad;
2273 // Re-align the pointer if necessary.
2274 // It should only ever be necessary for 64-bit types on O32 since the minimum
2275 // argument alignment is the same as the maximum type alignment for N32/N64.
2277 // FIXME: We currently align too often. The code generator doesn't notice
2278 // when the pointer is still aligned from the last va_arg (or pair of
2279 // va_args for the i64 on O32 case).
2280 if (Align > getMinStackArgumentAlignment()) {
2281 VAList = DAG.getNode(
2282 ISD::ADD, DL, VAList.getValueType(), VAList,
2283 DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));
2285 VAList = DAG.getNode(
2286 ISD::AND, DL, VAList.getValueType(), VAList,
2287 DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
2290 // Increment the pointer, VAList, to the next vaarg.
2291 auto &TD = DAG.getDataLayout();
2292 unsigned ArgSizeInBytes =
2293 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2294 SDValue Tmp3 =
2295 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2296 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2297 DL, VAList.getValueType()));
2298 // Store the incremented VAList to the legalized pointer
2299 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2300 MachinePointerInfo(SV));
2302 // In big-endian mode we must adjust the pointer when the load size is smaller
2303 // than the argument slot size. We must also reduce the known alignment to
2304 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2305 // the correct half of the slot, and reduce the alignment from 8 (slot
2306 // alignment) down to 4 (type alignment).
2307 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2308 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2309 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2310 DAG.getIntPtrConstant(Adjustment, DL));
2312 // Load the actual argument out of the pointer VAList
2313 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2316 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2317 bool HasExtractInsert) {
2318 EVT TyX = Op.getOperand(0).getValueType();
2319 EVT TyY = Op.getOperand(1).getValueType();
2320 SDLoc DL(Op);
2321 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2322 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2323 SDValue Res;
2325 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2326 // to i32.
2327 SDValue X = (TyX == MVT::f32) ?
2328 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2329 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2330 Const1);
2331 SDValue Y = (TyY == MVT::f32) ?
2332 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2333 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2334 Const1);
2336 if (HasExtractInsert) {
2337 // ext E, Y, 31, 1 ; extract bit31 of Y
2338 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2339 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2340 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2341 } else {
2342 // sll SllX, X, 1
2343 // srl SrlX, SllX, 1
2344 // srl SrlY, Y, 31
2345 // sll SllY, SrlX, 31
2346 // or Or, SrlX, SllY
2347 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2348 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2349 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2350 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2351 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2354 if (TyX == MVT::f32)
2355 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2357 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2358 Op.getOperand(0),
2359 DAG.getConstant(0, DL, MVT::i32));
2360 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2363 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2364 bool HasExtractInsert) {
2365 unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2366 unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2367 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2368 SDLoc DL(Op);
2369 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2371 // Bitcast to integer nodes.
2372 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2373 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2375 if (HasExtractInsert) {
2376 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2377 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2378 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2379 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2381 if (WidthX > WidthY)
2382 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2383 else if (WidthY > WidthX)
2384 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2386 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2387 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2389 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2392 // (d)sll SllX, X, 1
2393 // (d)srl SrlX, SllX, 1
2394 // (d)srl SrlY, Y, width(Y)-1
2395 // (d)sll SllY, SrlX, width(Y)-1
2396 // or Or, SrlX, SllY
2397 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2398 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2399 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2400 DAG.getConstant(WidthY - 1, DL, MVT::i32));
2402 if (WidthX > WidthY)
2403 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2404 else if (WidthY > WidthX)
2405 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2407 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2408 DAG.getConstant(WidthX - 1, DL, MVT::i32));
2409 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2410 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2413 SDValue
2414 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2415 if (Subtarget.isGP64bit())
2416 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2418 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2421 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
2422 bool HasExtractInsert) {
2423 SDLoc DL(Op);
2424 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2426 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2427 // to i32.
2428 SDValue X = (Op.getValueType() == MVT::f32)
2429 ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2430 : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2431 Op.getOperand(0), Const1);
2433 // Clear MSB.
2434 if (HasExtractInsert)
2435 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2436 DAG.getRegister(Mips::ZERO, MVT::i32),
2437 DAG.getConstant(31, DL, MVT::i32), Const1, X);
2438 else {
2439 // TODO: Provide DAG patterns which transform (and x, cst)
2440 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2441 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2442 Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2445 if (Op.getValueType() == MVT::f32)
2446 return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2448 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2449 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2450 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2451 // place.
2452 SDValue LowX =
2453 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2454 DAG.getConstant(0, DL, MVT::i32));
2455 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2458 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
2459 bool HasExtractInsert) {
2460 SDLoc DL(Op);
2461 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2463 // Bitcast to integer node.
2464 SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2466 // Clear MSB.
2467 if (HasExtractInsert)
2468 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2469 DAG.getRegister(Mips::ZERO_64, MVT::i64),
2470 DAG.getConstant(63, DL, MVT::i32), Const1, X);
2471 else {
2472 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2473 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2476 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2479 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2480 if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2481 return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2483 return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2486 SDValue MipsTargetLowering::
2487 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2488 // check the depth
2489 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2490 DAG.getContext()->emitError(
2491 "return address can be determined only for current frame");
2492 return SDValue();
2495 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2496 MFI.setFrameAddressIsTaken(true);
2497 EVT VT = Op.getValueType();
2498 SDLoc DL(Op);
2499 SDValue FrameAddr = DAG.getCopyFromReg(
2500 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2501 return FrameAddr;
2504 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2505 SelectionDAG &DAG) const {
2506 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2507 return SDValue();
2509 // check the depth
2510 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2511 DAG.getContext()->emitError(
2512 "return address can be determined only for current frame");
2513 return SDValue();
2516 MachineFunction &MF = DAG.getMachineFunction();
2517 MachineFrameInfo &MFI = MF.getFrameInfo();
2518 MVT VT = Op.getSimpleValueType();
2519 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2520 MFI.setReturnAddressIsTaken(true);
2522 // Return RA, which contains the return address. Mark it an implicit live-in.
2523 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2524 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2527 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2528 // generated from __builtin_eh_return (offset, handler)
2529 // The effect of this is to adjust the stack pointer by "offset"
2530 // and then branch to "handler".
2531 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2532 const {
2533 MachineFunction &MF = DAG.getMachineFunction();
2534 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2536 MipsFI->setCallsEhReturn();
2537 SDValue Chain = Op.getOperand(0);
2538 SDValue Offset = Op.getOperand(1);
2539 SDValue Handler = Op.getOperand(2);
2540 SDLoc DL(Op);
2541 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2543 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2544 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2545 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2546 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2547 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2548 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2549 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2550 DAG.getRegister(OffsetReg, Ty),
2551 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2552 Chain.getValue(1));
2555 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2556 SelectionDAG &DAG) const {
2557 // FIXME: Need pseudo-fence for 'singlethread' fences
2558 // FIXME: Set SType for weaker fences where supported/appropriate.
2559 unsigned SType = 0;
2560 SDLoc DL(Op);
2561 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2562 DAG.getConstant(SType, DL, MVT::i32));
2565 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2566 SelectionDAG &DAG) const {
2567 SDLoc DL(Op);
2568 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2570 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2571 SDValue Shamt = Op.getOperand(2);
2572 // if shamt < (VT.bits):
2573 // lo = (shl lo, shamt)
2574 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2575 // else:
2576 // lo = 0
2577 // hi = (shl lo, shamt[4:0])
2578 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2579 DAG.getConstant(-1, DL, MVT::i32));
2580 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2581 DAG.getConstant(1, DL, VT));
2582 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2583 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2584 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2585 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2586 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2587 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2588 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2589 DAG.getConstant(0, DL, VT), ShiftLeftLo);
2590 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2592 SDValue Ops[2] = {Lo, Hi};
2593 return DAG.getMergeValues(Ops, DL);
2596 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2597 bool IsSRA) const {
2598 SDLoc DL(Op);
2599 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2600 SDValue Shamt = Op.getOperand(2);
2601 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2603 // if shamt < (VT.bits):
2604 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2605 // if isSRA:
2606 // hi = (sra hi, shamt)
2607 // else:
2608 // hi = (srl hi, shamt)
2609 // else:
2610 // if isSRA:
2611 // lo = (sra hi, shamt[4:0])
2612 // hi = (sra hi, 31)
2613 // else:
2614 // lo = (srl hi, shamt[4:0])
2615 // hi = 0
2616 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2617 DAG.getConstant(-1, DL, MVT::i32));
2618 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2619 DAG.getConstant(1, DL, VT));
2620 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2621 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2622 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2623 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2624 DL, VT, Hi, Shamt);
2625 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2626 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2627 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2628 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2630 if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2631 SDVTList VTList = DAG.getVTList(VT, VT);
2632 return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2633 : Mips::PseudoD_SELECT_I,
2634 DL, VTList, Cond, ShiftRightHi,
2635 IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2636 ShiftRightHi);
2639 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2640 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2641 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2643 SDValue Ops[2] = {Lo, Hi};
2644 return DAG.getMergeValues(Ops, DL);
2647 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2648 SDValue Chain, SDValue Src, unsigned Offset) {
2649 SDValue Ptr = LD->getBasePtr();
2650 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2651 EVT BasePtrVT = Ptr.getValueType();
2652 SDLoc DL(LD);
2653 SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2655 if (Offset)
2656 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2657 DAG.getConstant(Offset, DL, BasePtrVT));
2659 SDValue Ops[] = { Chain, Ptr, Src };
2660 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2661 LD->getMemOperand());
2664 // Expand an unaligned 32 or 64-bit integer load node.
2665 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2666 LoadSDNode *LD = cast<LoadSDNode>(Op);
2667 EVT MemVT = LD->getMemoryVT();
2669 if (Subtarget.systemSupportsUnalignedAccess())
2670 return Op;
2672 // Return if load is aligned or if MemVT is neither i32 nor i64.
2673 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2674 ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2675 return SDValue();
2677 bool IsLittle = Subtarget.isLittle();
2678 EVT VT = Op.getValueType();
2679 ISD::LoadExtType ExtType = LD->getExtensionType();
2680 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2682 assert((VT == MVT::i32) || (VT == MVT::i64));
2684 // Expand
2685 // (set dst, (i64 (load baseptr)))
2686 // to
2687 // (set tmp, (ldl (add baseptr, 7), undef))
2688 // (set dst, (ldr baseptr, tmp))
2689 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2690 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2691 IsLittle ? 7 : 0);
2692 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2693 IsLittle ? 0 : 7);
2696 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2697 IsLittle ? 3 : 0);
2698 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2699 IsLittle ? 0 : 3);
2701 // Expand
2702 // (set dst, (i32 (load baseptr))) or
2703 // (set dst, (i64 (sextload baseptr))) or
2704 // (set dst, (i64 (extload baseptr)))
2705 // to
2706 // (set tmp, (lwl (add baseptr, 3), undef))
2707 // (set dst, (lwr baseptr, tmp))
2708 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2709 (ExtType == ISD::EXTLOAD))
2710 return LWR;
2712 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2714 // Expand
2715 // (set dst, (i64 (zextload baseptr)))
2716 // to
2717 // (set tmp0, (lwl (add baseptr, 3), undef))
2718 // (set tmp1, (lwr baseptr, tmp0))
2719 // (set tmp2, (shl tmp1, 32))
2720 // (set dst, (srl tmp2, 32))
2721 SDLoc DL(LD);
2722 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2723 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2724 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2725 SDValue Ops[] = { SRL, LWR.getValue(1) };
2726 return DAG.getMergeValues(Ops, DL);
2729 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2730 SDValue Chain, unsigned Offset) {
2731 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2732 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2733 SDLoc DL(SD);
2734 SDVTList VTList = DAG.getVTList(MVT::Other);
2736 if (Offset)
2737 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2738 DAG.getConstant(Offset, DL, BasePtrVT));
2740 SDValue Ops[] = { Chain, Value, Ptr };
2741 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2742 SD->getMemOperand());
2745 // Expand an unaligned 32 or 64-bit integer store node.
2746 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2747 bool IsLittle) {
2748 SDValue Value = SD->getValue(), Chain = SD->getChain();
2749 EVT VT = Value.getValueType();
2751 // Expand
2752 // (store val, baseptr) or
2753 // (truncstore val, baseptr)
2754 // to
2755 // (swl val, (add baseptr, 3))
2756 // (swr val, baseptr)
2757 if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2758 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2759 IsLittle ? 3 : 0);
2760 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2763 assert(VT == MVT::i64);
2765 // Expand
2766 // (store val, baseptr)
2767 // to
2768 // (sdl val, (add baseptr, 7))
2769 // (sdr val, baseptr)
2770 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2771 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2774 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2775 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2776 bool SingleFloat) {
2777 SDValue Val = SD->getValue();
2779 if (Val.getOpcode() != ISD::FP_TO_SINT ||
2780 (Val.getValueSizeInBits() > 32 && SingleFloat))
2781 return SDValue();
2783 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2784 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2785 Val.getOperand(0));
2786 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2787 SD->getPointerInfo(), SD->getAlignment(),
2788 SD->getMemOperand()->getFlags());
2791 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2792 StoreSDNode *SD = cast<StoreSDNode>(Op);
2793 EVT MemVT = SD->getMemoryVT();
2795 // Lower unaligned integer stores.
2796 if (!Subtarget.systemSupportsUnalignedAccess() &&
2797 (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2798 ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2799 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2801 return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2804 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2805 SelectionDAG &DAG) const {
2807 // Return a fixed StackObject with offset 0 which points to the old stack
2808 // pointer.
2809 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2810 EVT ValTy = Op->getValueType(0);
2811 int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2812 return DAG.getFrameIndex(FI, ValTy);
2815 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2816 SelectionDAG &DAG) const {
2817 if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2818 return SDValue();
2820 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2821 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2822 Op.getOperand(0));
2823 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2826 //===----------------------------------------------------------------------===//
2827 // Calling Convention Implementation
2828 //===----------------------------------------------------------------------===//
2830 //===----------------------------------------------------------------------===//
2831 // TODO: Implement a generic logic using tblgen that can support this.
2832 // Mips O32 ABI rules:
2833 // ---
2834 // i32 - Passed in A0, A1, A2, A3 and stack
2835 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2836 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2837 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2838 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2839 // not used, it must be shadowed. If only A3 is available, shadow it and
2840 // go to stack.
2841 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2842 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2843 // with the remainder spilled to the stack.
2844 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2845 // spilling the remainder to the stack.
2847 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2848 //===----------------------------------------------------------------------===//
2850 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2851 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2852 CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2853 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2854 State.getMachineFunction().getSubtarget());
2856 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2858 const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2860 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2862 static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2864 // Do not process byval args here.
2865 if (ArgFlags.isByVal())
2866 return true;
2868 // Promote i8 and i16
2869 if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2870 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2871 LocVT = MVT::i32;
2872 if (ArgFlags.isSExt())
2873 LocInfo = CCValAssign::SExtUpper;
2874 else if (ArgFlags.isZExt())
2875 LocInfo = CCValAssign::ZExtUpper;
2876 else
2877 LocInfo = CCValAssign::AExtUpper;
2881 // Promote i8 and i16
2882 if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2883 LocVT = MVT::i32;
2884 if (ArgFlags.isSExt())
2885 LocInfo = CCValAssign::SExt;
2886 else if (ArgFlags.isZExt())
2887 LocInfo = CCValAssign::ZExt;
2888 else
2889 LocInfo = CCValAssign::AExt;
2892 unsigned Reg;
2894 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2895 // is true: function is vararg, argument is 3rd or higher, there is previous
2896 // argument which is not f32 or f64.
2897 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2898 State.getFirstUnallocated(F32Regs) != ValNo;
2899 Align OrigAlign = ArgFlags.getNonZeroOrigAlign();
2900 bool isI64 = (ValVT == MVT::i32 && OrigAlign == Align(8));
2901 bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2903 // The MIPS vector ABI for floats passes them in a pair of registers
2904 if (ValVT == MVT::i32 && isVectorFloat) {
2905 // This is the start of an vector that was scalarized into an unknown number
2906 // of components. It doesn't matter how many there are. Allocate one of the
2907 // notional 8 byte aligned registers which map onto the argument stack, and
2908 // shadow the register lost to alignment requirements.
2909 if (ArgFlags.isSplit()) {
2910 Reg = State.AllocateReg(FloatVectorIntRegs);
2911 if (Reg == Mips::A2)
2912 State.AllocateReg(Mips::A1);
2913 else if (Reg == 0)
2914 State.AllocateReg(Mips::A3);
2915 } else {
2916 // If we're an intermediate component of the split, we can just attempt to
2917 // allocate a register directly.
2918 Reg = State.AllocateReg(IntRegs);
2920 } else if (ValVT == MVT::i32 ||
2921 (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2922 Reg = State.AllocateReg(IntRegs);
2923 // If this is the first part of an i64 arg,
2924 // the allocated register must be either A0 or A2.
2925 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2926 Reg = State.AllocateReg(IntRegs);
2927 LocVT = MVT::i32;
2928 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2929 LocVT = MVT::i32;
2931 // Allocate int register and shadow next int register. If first
2932 // available register is Mips::A1 or Mips::A3, shadow it too.
2933 Reg = State.AllocateReg(IntRegs);
2934 if (Reg == Mips::A1 || Reg == Mips::A3)
2935 Reg = State.AllocateReg(IntRegs);
2937 if (Reg) {
2938 State.addLoc(
2939 CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2940 MCRegister HiReg = State.AllocateReg(IntRegs);
2941 assert(HiReg);
2942 State.addLoc(
2943 CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo));
2944 return false;
2946 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2947 // we are guaranteed to find an available float register
2948 if (ValVT == MVT::f32) {
2949 Reg = State.AllocateReg(F32Regs);
2950 // Shadow int register
2951 State.AllocateReg(IntRegs);
2952 } else {
2953 Reg = State.AllocateReg(F64Regs);
2954 // Shadow int registers
2955 unsigned Reg2 = State.AllocateReg(IntRegs);
2956 if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2957 State.AllocateReg(IntRegs);
2958 State.AllocateReg(IntRegs);
2960 } else
2961 llvm_unreachable("Cannot handle this ValVT.");
2963 if (!Reg) {
2964 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2965 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2966 } else
2967 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2969 return false;
2972 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2973 MVT LocVT, CCValAssign::LocInfo LocInfo,
2974 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2975 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2977 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2980 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2981 MVT LocVT, CCValAssign::LocInfo LocInfo,
2982 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2983 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2985 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2988 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2989 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2990 CCState &State) LLVM_ATTRIBUTE_UNUSED;
2992 #include "MipsGenCallingConv.inc"
2994 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2995 return CC_Mips_FixedArg;
2998 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
2999 return RetCC_Mips;
3001 //===----------------------------------------------------------------------===//
3002 // Call Calling Convention Implementation
3003 //===----------------------------------------------------------------------===//
3005 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3006 SDValue Chain, SDValue Arg,
3007 const SDLoc &DL, bool IsTailCall,
3008 SelectionDAG &DAG) const {
3009 if (!IsTailCall) {
3010 SDValue PtrOff =
3011 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
3012 DAG.getIntPtrConstant(Offset, DL));
3013 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
3016 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3017 int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3018 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3019 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), MaybeAlign(),
3020 MachineMemOperand::MOVolatile);
3023 void MipsTargetLowering::
3024 getOpndList(SmallVectorImpl<SDValue> &Ops,
3025 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3026 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
3027 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
3028 SDValue Chain) const {
3029 // Insert node "GP copy globalreg" before call to function.
3031 // R_MIPS_CALL* operators (emitted when non-internal functions are called
3032 // in PIC mode) allow symbols to be resolved via lazy binding.
3033 // The lazy binding stub requires GP to point to the GOT.
3034 // Note that we don't need GP to point to the GOT for indirect calls
3035 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3036 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3037 // used for the function (that is, Mips linker doesn't generate lazy binding
3038 // stub for a function whose address is taken in the program).
3039 if (IsPICCall && !InternalLinkage && IsCallReloc) {
3040 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
3041 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
3042 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
3045 // Build a sequence of copy-to-reg nodes chained together with token
3046 // chain and flag operands which copy the outgoing args into registers.
3047 // The InFlag in necessary since all emitted instructions must be
3048 // stuck together.
3049 SDValue InFlag;
3051 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3052 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
3053 RegsToPass[i].second, InFlag);
3054 InFlag = Chain.getValue(1);
3057 // Add argument registers to the end of the list so that they are
3058 // known live into the call.
3059 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3060 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
3061 RegsToPass[i].second.getValueType()));
3063 // Add a register mask operand representing the call-preserved registers.
3064 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3065 const uint32_t *Mask =
3066 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
3067 assert(Mask && "Missing call preserved mask for calling convention");
3068 if (Subtarget.inMips16HardFloat()) {
3069 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
3070 StringRef Sym = G->getGlobal()->getName();
3071 Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3072 if (F && F->hasFnAttribute("__Mips16RetHelper")) {
3073 Mask = MipsRegisterInfo::getMips16RetHelperMask();
3077 Ops.push_back(CLI.DAG.getRegisterMask(Mask));
3079 if (InFlag.getNode())
3080 Ops.push_back(InFlag);
3083 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3084 SDNode *Node) const {
3085 switch (MI.getOpcode()) {
3086 default:
3087 return;
3088 case Mips::JALR:
3089 case Mips::JALRPseudo:
3090 case Mips::JALR64:
3091 case Mips::JALR64Pseudo:
3092 case Mips::JALR16_MM:
3093 case Mips::JALRC16_MMR6:
3094 case Mips::TAILCALLREG:
3095 case Mips::TAILCALLREG64:
3096 case Mips::TAILCALLR6REG:
3097 case Mips::TAILCALL64R6REG:
3098 case Mips::TAILCALLREG_MM:
3099 case Mips::TAILCALLREG_MMR6: {
3100 if (!EmitJalrReloc ||
3101 Subtarget.inMips16Mode() ||
3102 !isPositionIndependent() ||
3103 Node->getNumOperands() < 1 ||
3104 Node->getOperand(0).getNumOperands() < 2) {
3105 return;
3107 // We are after the callee address, set by LowerCall().
3108 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3109 // symbol.
3110 const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
3111 StringRef Sym;
3112 if (const GlobalAddressSDNode *G =
3113 dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
3114 // We must not emit the R_MIPS_JALR relocation against data symbols
3115 // since this will cause run-time crashes if the linker replaces the
3116 // call instruction with a relative branch to the data symbol.
3117 if (!isa<Function>(G->getGlobal())) {
3118 LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3119 << G->getGlobal()->getName() << "\n");
3120 return;
3122 Sym = G->getGlobal()->getName();
3124 else if (const ExternalSymbolSDNode *ES =
3125 dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3126 Sym = ES->getSymbol();
3129 if (Sym.empty())
3130 return;
3132 MachineFunction *MF = MI.getParent()->getParent();
3133 MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3134 LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n");
3135 MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3140 /// LowerCall - functions arguments are copied from virtual regs to
3141 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3142 SDValue
3143 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3144 SmallVectorImpl<SDValue> &InVals) const {
3145 SelectionDAG &DAG = CLI.DAG;
3146 SDLoc DL = CLI.DL;
3147 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3148 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3149 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3150 SDValue Chain = CLI.Chain;
3151 SDValue Callee = CLI.Callee;
3152 bool &IsTailCall = CLI.IsTailCall;
3153 CallingConv::ID CallConv = CLI.CallConv;
3154 bool IsVarArg = CLI.IsVarArg;
3156 MachineFunction &MF = DAG.getMachineFunction();
3157 MachineFrameInfo &MFI = MF.getFrameInfo();
3158 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3159 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3160 bool IsPIC = isPositionIndependent();
3162 // Analyze operands of the call, assigning locations to each operand.
3163 SmallVector<CCValAssign, 16> ArgLocs;
3164 MipsCCState CCInfo(
3165 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3166 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3168 const ExternalSymbolSDNode *ES =
3169 dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3171 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3172 // is during the lowering of a call with a byval argument which produces
3173 // a call to memcpy. For the O32 case, this causes the caller to allocate
3174 // stack space for the reserved argument area for the callee, then recursively
3175 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3176 // ABIs mandate that the callee allocates the reserved argument area. We do
3177 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3179 // If the callee has a byval argument and memcpy is used, we are mandated
3180 // to already have produced a reserved argument area for the callee for O32.
3181 // Therefore, the reserved argument area can be reused for both calls.
3183 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3184 // present, as we have yet to hook that node onto the chain.
3186 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3187 // case. GCC does a similar trick, in that wherever possible, it calculates
3188 // the maximum out going argument area (including the reserved area), and
3189 // preallocates the stack space on entrance to the caller.
3191 // FIXME: We should do the same for efficiency and space.
3193 // Note: The check on the calling convention below must match
3194 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3195 bool MemcpyInByVal = ES &&
3196 StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3197 CallConv != CallingConv::Fast &&
3198 Chain.getOpcode() == ISD::CALLSEQ_START;
3200 // Allocate the reserved argument area. It seems strange to do this from the
3201 // caller side but removing it breaks the frame size calculation.
3202 unsigned ReservedArgArea =
3203 MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3204 CCInfo.AllocateStack(ReservedArgArea, Align(1));
3206 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3207 ES ? ES->getSymbol() : nullptr);
3209 // Get a count of how many bytes are to be pushed on the stack.
3210 unsigned NextStackOffset = CCInfo.getNextStackOffset();
3212 // Call site info for function parameters tracking.
3213 MachineFunction::CallSiteInfo CSInfo;
3215 // Check if it's really possible to do a tail call. Restrict it to functions
3216 // that are part of this compilation unit.
3217 bool InternalLinkage = false;
3218 if (IsTailCall) {
3219 IsTailCall = isEligibleForTailCallOptimization(
3220 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
3221 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3222 InternalLinkage = G->getGlobal()->hasInternalLinkage();
3223 IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3224 G->getGlobal()->hasPrivateLinkage() ||
3225 G->getGlobal()->hasHiddenVisibility() ||
3226 G->getGlobal()->hasProtectedVisibility());
3229 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
3230 report_fatal_error("failed to perform tail call elimination on a call "
3231 "site marked musttail");
3233 if (IsTailCall)
3234 ++NumTailCalls;
3236 // Chain is the output chain of the last Load/Store or CopyToReg node.
3237 // ByValChain is the output chain of the last Memcpy node created for copying
3238 // byval arguments to the stack.
3239 unsigned StackAlignment = TFL->getStackAlignment();
3240 NextStackOffset = alignTo(NextStackOffset, StackAlignment);
3241 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
3243 if (!(IsTailCall || MemcpyInByVal))
3244 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
3246 SDValue StackPtr =
3247 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3248 getPointerTy(DAG.getDataLayout()));
3250 std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3251 SmallVector<SDValue, 8> MemOpChains;
3253 CCInfo.rewindByValRegsInfo();
3255 // Walk the register/memloc assignments, inserting copies/loads.
3256 for (unsigned i = 0, e = ArgLocs.size(), OutIdx = 0; i != e; ++i, ++OutIdx) {
3257 SDValue Arg = OutVals[OutIdx];
3258 CCValAssign &VA = ArgLocs[i];
3259 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3260 ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags;
3261 bool UseUpperBits = false;
3263 // ByVal Arg.
3264 if (Flags.isByVal()) {
3265 unsigned FirstByValReg, LastByValReg;
3266 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3267 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3269 assert(Flags.getByValSize() &&
3270 "ByVal args of size 0 should have been ignored by front-end.");
3271 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3272 assert(!IsTailCall &&
3273 "Do not tail-call optimize if there is a byval argument.");
3274 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3275 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3276 VA);
3277 CCInfo.nextInRegsParam();
3278 continue;
3281 // Promote the value if needed.
3282 switch (VA.getLocInfo()) {
3283 default:
3284 llvm_unreachable("Unknown loc info!");
3285 case CCValAssign::Full:
3286 if (VA.isRegLoc()) {
3287 if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3288 (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3289 (ValVT == MVT::i64 && LocVT == MVT::f64))
3290 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3291 else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3292 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3293 Arg, DAG.getConstant(0, DL, MVT::i32));
3294 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3295 Arg, DAG.getConstant(1, DL, MVT::i32));
3296 if (!Subtarget.isLittle())
3297 std::swap(Lo, Hi);
3299 assert(VA.needsCustom());
3301 Register LocRegLo = VA.getLocReg();
3302 Register LocRegHigh = ArgLocs[++i].getLocReg();
3303 RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3304 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3305 continue;
3308 break;
3309 case CCValAssign::BCvt:
3310 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3311 break;
3312 case CCValAssign::SExtUpper:
3313 UseUpperBits = true;
3314 LLVM_FALLTHROUGH;
3315 case CCValAssign::SExt:
3316 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3317 break;
3318 case CCValAssign::ZExtUpper:
3319 UseUpperBits = true;
3320 LLVM_FALLTHROUGH;
3321 case CCValAssign::ZExt:
3322 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3323 break;
3324 case CCValAssign::AExtUpper:
3325 UseUpperBits = true;
3326 LLVM_FALLTHROUGH;
3327 case CCValAssign::AExt:
3328 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3329 break;
3332 if (UseUpperBits) {
3333 unsigned ValSizeInBits = Outs[OutIdx].ArgVT.getSizeInBits();
3334 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3335 Arg = DAG.getNode(
3336 ISD::SHL, DL, VA.getLocVT(), Arg,
3337 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3340 // Arguments that can be passed on register must be kept at
3341 // RegsToPass vector
3342 if (VA.isRegLoc()) {
3343 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3345 // If the parameter is passed through reg $D, which splits into
3346 // two physical registers, avoid creating call site info.
3347 if (Mips::AFGR64RegClass.contains(VA.getLocReg()))
3348 continue;
3350 // Collect CSInfo about which register passes which parameter.
3351 const TargetOptions &Options = DAG.getTarget().Options;
3352 if (Options.SupportsDebugEntryValues)
3353 CSInfo.emplace_back(VA.getLocReg(), i);
3355 continue;
3358 // Register can't get to this point...
3359 assert(VA.isMemLoc());
3361 // emit ISD::STORE whichs stores the
3362 // parameter value to a stack Location
3363 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3364 Chain, Arg, DL, IsTailCall, DAG));
3367 // Transform all store nodes into one single node because all store
3368 // nodes are independent of each other.
3369 if (!MemOpChains.empty())
3370 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3372 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3373 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3374 // node so that legalize doesn't hack it.
3376 EVT Ty = Callee.getValueType();
3377 bool GlobalOrExternal = false, IsCallReloc = false;
3379 // The long-calls feature is ignored in case of PIC.
3380 // While we do not support -mshared / -mno-shared properly,
3381 // ignore long-calls in case of -mabicalls too.
3382 if (!Subtarget.isABICalls() && !IsPIC) {
3383 // If the function should be called using "long call",
3384 // get its address into a register to prevent using
3385 // of the `jal` instruction for the direct call.
3386 if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3387 if (Subtarget.useLongCalls())
3388 Callee = Subtarget.hasSym32()
3389 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3390 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3391 } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3392 bool UseLongCalls = Subtarget.useLongCalls();
3393 // If the function has long-call/far/near attribute
3394 // it overrides command line switch pased to the backend.
3395 if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3396 if (F->hasFnAttribute("long-call"))
3397 UseLongCalls = true;
3398 else if (F->hasFnAttribute("short-call"))
3399 UseLongCalls = false;
3401 if (UseLongCalls)
3402 Callee = Subtarget.hasSym32()
3403 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3404 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3408 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3409 if (IsPIC) {
3410 const GlobalValue *Val = G->getGlobal();
3411 InternalLinkage = Val->hasInternalLinkage();
3413 if (InternalLinkage)
3414 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3415 else if (Subtarget.useXGOT()) {
3416 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3417 MipsII::MO_CALL_LO16, Chain,
3418 FuncInfo->callPtrInfo(MF, Val));
3419 IsCallReloc = true;
3420 } else {
3421 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3422 FuncInfo->callPtrInfo(MF, Val));
3423 IsCallReloc = true;
3425 } else
3426 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3427 getPointerTy(DAG.getDataLayout()), 0,
3428 MipsII::MO_NO_FLAG);
3429 GlobalOrExternal = true;
3431 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3432 const char *Sym = S->getSymbol();
3434 if (!IsPIC) // static
3435 Callee = DAG.getTargetExternalSymbol(
3436 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3437 else if (Subtarget.useXGOT()) {
3438 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3439 MipsII::MO_CALL_LO16, Chain,
3440 FuncInfo->callPtrInfo(MF, Sym));
3441 IsCallReloc = true;
3442 } else { // PIC
3443 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3444 FuncInfo->callPtrInfo(MF, Sym));
3445 IsCallReloc = true;
3448 GlobalOrExternal = true;
3451 SmallVector<SDValue, 8> Ops(1, Chain);
3452 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3454 getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3455 IsCallReloc, CLI, Callee, Chain);
3457 if (IsTailCall) {
3458 MF.getFrameInfo().setHasTailCall();
3459 SDValue Ret = DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3460 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
3461 return Ret;
3464 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3465 SDValue InFlag = Chain.getValue(1);
3467 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
3469 // Create the CALLSEQ_END node in the case of where it is not a call to
3470 // memcpy.
3471 if (!(MemcpyInByVal)) {
3472 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3473 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3474 InFlag = Chain.getValue(1);
3477 // Handle result values, copying them out of physregs into vregs that we
3478 // return.
3479 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3480 InVals, CLI);
3483 /// LowerCallResult - Lower the result values of a call into the
3484 /// appropriate copies out of appropriate physical registers.
3485 SDValue MipsTargetLowering::LowerCallResult(
3486 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3487 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3488 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3489 TargetLowering::CallLoweringInfo &CLI) const {
3490 // Assign locations to each value returned by this call.
3491 SmallVector<CCValAssign, 16> RVLocs;
3492 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3493 *DAG.getContext());
3495 const ExternalSymbolSDNode *ES =
3496 dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3497 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3498 ES ? ES->getSymbol() : nullptr);
3500 // Copy all of the result registers out of their specified physreg.
3501 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3502 CCValAssign &VA = RVLocs[i];
3503 assert(VA.isRegLoc() && "Can only return in registers!");
3505 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3506 RVLocs[i].getLocVT(), InFlag);
3507 Chain = Val.getValue(1);
3508 InFlag = Val.getValue(2);
3510 if (VA.isUpperBitsInLoc()) {
3511 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3512 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3513 unsigned Shift =
3514 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3515 Val = DAG.getNode(
3516 Shift, DL, VA.getLocVT(), Val,
3517 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3520 switch (VA.getLocInfo()) {
3521 default:
3522 llvm_unreachable("Unknown loc info!");
3523 case CCValAssign::Full:
3524 break;
3525 case CCValAssign::BCvt:
3526 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3527 break;
3528 case CCValAssign::AExt:
3529 case CCValAssign::AExtUpper:
3530 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3531 break;
3532 case CCValAssign::ZExt:
3533 case CCValAssign::ZExtUpper:
3534 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3535 DAG.getValueType(VA.getValVT()));
3536 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3537 break;
3538 case CCValAssign::SExt:
3539 case CCValAssign::SExtUpper:
3540 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3541 DAG.getValueType(VA.getValVT()));
3542 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3543 break;
3546 InVals.push_back(Val);
3549 return Chain;
3552 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3553 EVT ArgVT, const SDLoc &DL,
3554 SelectionDAG &DAG) {
3555 MVT LocVT = VA.getLocVT();
3556 EVT ValVT = VA.getValVT();
3558 // Shift into the upper bits if necessary.
3559 switch (VA.getLocInfo()) {
3560 default:
3561 break;
3562 case CCValAssign::AExtUpper:
3563 case CCValAssign::SExtUpper:
3564 case CCValAssign::ZExtUpper: {
3565 unsigned ValSizeInBits = ArgVT.getSizeInBits();
3566 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3567 unsigned Opcode =
3568 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3569 Val = DAG.getNode(
3570 Opcode, DL, VA.getLocVT(), Val,
3571 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3572 break;
3576 // If this is an value smaller than the argument slot size (32-bit for O32,
3577 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3578 // size. Extract the value and insert any appropriate assertions regarding
3579 // sign/zero extension.
3580 switch (VA.getLocInfo()) {
3581 default:
3582 llvm_unreachable("Unknown loc info!");
3583 case CCValAssign::Full:
3584 break;
3585 case CCValAssign::AExtUpper:
3586 case CCValAssign::AExt:
3587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3588 break;
3589 case CCValAssign::SExtUpper:
3590 case CCValAssign::SExt:
3591 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3592 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3593 break;
3594 case CCValAssign::ZExtUpper:
3595 case CCValAssign::ZExt:
3596 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3598 break;
3599 case CCValAssign::BCvt:
3600 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3601 break;
3604 return Val;
3607 //===----------------------------------------------------------------------===//
3608 // Formal Arguments Calling Convention Implementation
3609 //===----------------------------------------------------------------------===//
3610 /// LowerFormalArguments - transform physical registers into virtual registers
3611 /// and generate load operations for arguments places on the stack.
3612 SDValue MipsTargetLowering::LowerFormalArguments(
3613 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3614 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3615 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3616 MachineFunction &MF = DAG.getMachineFunction();
3617 MachineFrameInfo &MFI = MF.getFrameInfo();
3618 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3620 MipsFI->setVarArgsFrameIndex(0);
3622 // Used with vargs to acumulate store chains.
3623 std::vector<SDValue> OutChains;
3625 // Assign locations to all of the incoming arguments.
3626 SmallVector<CCValAssign, 16> ArgLocs;
3627 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3628 *DAG.getContext());
3629 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), Align(1));
3630 const Function &Func = DAG.getMachineFunction().getFunction();
3631 Function::const_arg_iterator FuncArg = Func.arg_begin();
3633 if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3634 report_fatal_error(
3635 "Functions with the interrupt attribute cannot have arguments!");
3637 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3638 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3639 CCInfo.getInRegsParamsCount() > 0);
3641 unsigned CurArgIdx = 0;
3642 CCInfo.rewindByValRegsInfo();
3644 for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
3645 CCValAssign &VA = ArgLocs[i];
3646 if (Ins[InsIdx].isOrigArg()) {
3647 std::advance(FuncArg, Ins[InsIdx].getOrigArgIndex() - CurArgIdx);
3648 CurArgIdx = Ins[InsIdx].getOrigArgIndex();
3650 EVT ValVT = VA.getValVT();
3651 ISD::ArgFlagsTy Flags = Ins[InsIdx].Flags;
3652 bool IsRegLoc = VA.isRegLoc();
3654 if (Flags.isByVal()) {
3655 assert(Ins[InsIdx].isOrigArg() && "Byval arguments cannot be implicit");
3656 unsigned FirstByValReg, LastByValReg;
3657 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3658 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3660 assert(Flags.getByValSize() &&
3661 "ByVal args of size 0 should have been ignored by front-end.");
3662 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3663 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3664 FirstByValReg, LastByValReg, VA, CCInfo);
3665 CCInfo.nextInRegsParam();
3666 continue;
3669 // Arguments stored on registers
3670 if (IsRegLoc) {
3671 MVT RegVT = VA.getLocVT();
3672 Register ArgReg = VA.getLocReg();
3673 const TargetRegisterClass *RC = getRegClassFor(RegVT);
3675 // Transform the arguments stored on
3676 // physical registers into virtual ones
3677 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3678 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3680 ArgValue =
3681 UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG);
3683 // Handle floating point arguments passed in integer registers and
3684 // long double arguments passed in floating point registers.
3685 if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3686 (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3687 (RegVT == MVT::f64 && ValVT == MVT::i64))
3688 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3689 else if (ABI.IsO32() && RegVT == MVT::i32 &&
3690 ValVT == MVT::f64) {
3691 assert(VA.needsCustom() && "Expected custom argument for f64 split");
3692 CCValAssign &NextVA = ArgLocs[++i];
3693 unsigned Reg2 =
3694 addLiveIn(DAG.getMachineFunction(), NextVA.getLocReg(), RC);
3695 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3696 if (!Subtarget.isLittle())
3697 std::swap(ArgValue, ArgValue2);
3698 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3699 ArgValue, ArgValue2);
3702 InVals.push_back(ArgValue);
3703 } else { // VA.isRegLoc()
3704 MVT LocVT = VA.getLocVT();
3706 assert(!VA.needsCustom() && "unexpected custom memory argument");
3708 if (ABI.IsO32()) {
3709 // We ought to be able to use LocVT directly but O32 sets it to i32
3710 // when allocating floating point values to integer registers.
3711 // This shouldn't influence how we load the value into registers unless
3712 // we are targeting softfloat.
3713 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3714 LocVT = VA.getValVT();
3717 // sanity check
3718 assert(VA.isMemLoc());
3720 // The stack pointer offset is relative to the caller stack frame.
3721 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3722 VA.getLocMemOffset(), true);
3724 // Create load nodes to retrieve arguments from the stack
3725 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3726 SDValue ArgValue = DAG.getLoad(
3727 LocVT, DL, Chain, FIN,
3728 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3729 OutChains.push_back(ArgValue.getValue(1));
3731 ArgValue =
3732 UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG);
3734 InVals.push_back(ArgValue);
3738 for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
3740 if (ArgLocs[i].needsCustom()) {
3741 ++i;
3742 continue;
3745 // The mips ABIs for returning structs by value requires that we copy
3746 // the sret argument into $v0 for the return. Save the argument into
3747 // a virtual register so that we can access it from the return points.
3748 if (Ins[InsIdx].Flags.isSRet()) {
3749 unsigned Reg = MipsFI->getSRetReturnReg();
3750 if (!Reg) {
3751 Reg = MF.getRegInfo().createVirtualRegister(
3752 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3753 MipsFI->setSRetReturnReg(Reg);
3755 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3756 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3757 break;
3761 if (IsVarArg)
3762 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3764 // All stores are grouped in one node to allow the matching between
3765 // the size of Ins and InVals. This only happens when on varg functions
3766 if (!OutChains.empty()) {
3767 OutChains.push_back(Chain);
3768 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3771 return Chain;
3774 //===----------------------------------------------------------------------===//
3775 // Return Value Calling Convention Implementation
3776 //===----------------------------------------------------------------------===//
3778 bool
3779 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3780 MachineFunction &MF, bool IsVarArg,
3781 const SmallVectorImpl<ISD::OutputArg> &Outs,
3782 LLVMContext &Context) const {
3783 SmallVector<CCValAssign, 16> RVLocs;
3784 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3785 return CCInfo.CheckReturn(Outs, RetCC_Mips);
3788 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type,
3789 bool IsSigned) const {
3790 if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3791 return true;
3793 return IsSigned;
3796 SDValue
3797 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3798 const SDLoc &DL,
3799 SelectionDAG &DAG) const {
3800 MachineFunction &MF = DAG.getMachineFunction();
3801 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3803 MipsFI->setISR();
3805 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3808 SDValue
3809 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3810 bool IsVarArg,
3811 const SmallVectorImpl<ISD::OutputArg> &Outs,
3812 const SmallVectorImpl<SDValue> &OutVals,
3813 const SDLoc &DL, SelectionDAG &DAG) const {
3814 // CCValAssign - represent the assignment of
3815 // the return value to a location
3816 SmallVector<CCValAssign, 16> RVLocs;
3817 MachineFunction &MF = DAG.getMachineFunction();
3819 // CCState - Info about the registers and stack slot.
3820 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3822 // Analyze return values.
3823 CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3825 SDValue Flag;
3826 SmallVector<SDValue, 4> RetOps(1, Chain);
3828 // Copy the result values into the output registers.
3829 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3830 SDValue Val = OutVals[i];
3831 CCValAssign &VA = RVLocs[i];
3832 assert(VA.isRegLoc() && "Can only return in registers!");
3833 bool UseUpperBits = false;
3835 switch (VA.getLocInfo()) {
3836 default:
3837 llvm_unreachable("Unknown loc info!");
3838 case CCValAssign::Full:
3839 break;
3840 case CCValAssign::BCvt:
3841 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3842 break;
3843 case CCValAssign::AExtUpper:
3844 UseUpperBits = true;
3845 LLVM_FALLTHROUGH;
3846 case CCValAssign::AExt:
3847 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3848 break;
3849 case CCValAssign::ZExtUpper:
3850 UseUpperBits = true;
3851 LLVM_FALLTHROUGH;
3852 case CCValAssign::ZExt:
3853 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3854 break;
3855 case CCValAssign::SExtUpper:
3856 UseUpperBits = true;
3857 LLVM_FALLTHROUGH;
3858 case CCValAssign::SExt:
3859 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3860 break;
3863 if (UseUpperBits) {
3864 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3865 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3866 Val = DAG.getNode(
3867 ISD::SHL, DL, VA.getLocVT(), Val,
3868 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3871 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3873 // Guarantee that all emitted copies are stuck together with flags.
3874 Flag = Chain.getValue(1);
3875 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3878 // The mips ABIs for returning structs by value requires that we copy
3879 // the sret argument into $v0 for the return. We saved the argument into
3880 // a virtual register in the entry block, so now we copy the value out
3881 // and into $v0.
3882 if (MF.getFunction().hasStructRetAttr()) {
3883 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3884 unsigned Reg = MipsFI->getSRetReturnReg();
3886 if (!Reg)
3887 llvm_unreachable("sret virtual register not created in the entry block");
3888 SDValue Val =
3889 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3890 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3892 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3893 Flag = Chain.getValue(1);
3894 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3897 RetOps[0] = Chain; // Update chain.
3899 // Add the flag if we have it.
3900 if (Flag.getNode())
3901 RetOps.push_back(Flag);
3903 // ISRs must use "eret".
3904 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3905 return LowerInterruptReturn(RetOps, DL, DAG);
3907 // Standard return on Mips is a "jr $ra"
3908 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3911 //===----------------------------------------------------------------------===//
3912 // Mips Inline Assembly Support
3913 //===----------------------------------------------------------------------===//
3915 /// getConstraintType - Given a constraint letter, return the type of
3916 /// constraint it is for this target.
3917 MipsTargetLowering::ConstraintType
3918 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3919 // Mips specific constraints
3920 // GCC config/mips/constraints.md
3922 // 'd' : An address register. Equivalent to r
3923 // unless generating MIPS16 code.
3924 // 'y' : Equivalent to r; retained for
3925 // backwards compatibility.
3926 // 'c' : A register suitable for use in an indirect
3927 // jump. This will always be $25 for -mabicalls.
3928 // 'l' : The lo register. 1 word storage.
3929 // 'x' : The hilo register pair. Double word storage.
3930 if (Constraint.size() == 1) {
3931 switch (Constraint[0]) {
3932 default : break;
3933 case 'd':
3934 case 'y':
3935 case 'f':
3936 case 'c':
3937 case 'l':
3938 case 'x':
3939 return C_RegisterClass;
3940 case 'R':
3941 return C_Memory;
3945 if (Constraint == "ZC")
3946 return C_Memory;
3948 return TargetLowering::getConstraintType(Constraint);
3951 /// Examine constraint type and operand type and determine a weight value.
3952 /// This object must already have been set up with the operand type
3953 /// and the current alternative constraint selected.
3954 TargetLowering::ConstraintWeight
3955 MipsTargetLowering::getSingleConstraintMatchWeight(
3956 AsmOperandInfo &info, const char *constraint) const {
3957 ConstraintWeight weight = CW_Invalid;
3958 Value *CallOperandVal = info.CallOperandVal;
3959 // If we don't have a value, we can't do a match,
3960 // but allow it at the lowest weight.
3961 if (!CallOperandVal)
3962 return CW_Default;
3963 Type *type = CallOperandVal->getType();
3964 // Look at the constraint type.
3965 switch (*constraint) {
3966 default:
3967 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3968 break;
3969 case 'd':
3970 case 'y':
3971 if (type->isIntegerTy())
3972 weight = CW_Register;
3973 break;
3974 case 'f': // FPU or MSA register
3975 if (Subtarget.hasMSA() && type->isVectorTy() &&
3976 type->getPrimitiveSizeInBits().getFixedSize() == 128)
3977 weight = CW_Register;
3978 else if (type->isFloatTy())
3979 weight = CW_Register;
3980 break;
3981 case 'c': // $25 for indirect jumps
3982 case 'l': // lo register
3983 case 'x': // hilo register pair
3984 if (type->isIntegerTy())
3985 weight = CW_SpecificReg;
3986 break;
3987 case 'I': // signed 16 bit immediate
3988 case 'J': // integer zero
3989 case 'K': // unsigned 16 bit immediate
3990 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3991 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3992 case 'O': // signed 15 bit immediate (+- 16383)
3993 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3994 if (isa<ConstantInt>(CallOperandVal))
3995 weight = CW_Constant;
3996 break;
3997 case 'R':
3998 weight = CW_Memory;
3999 break;
4001 return weight;
4004 /// This is a helper function to parse a physical register string and split it
4005 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
4006 /// that is returned indicates whether parsing was successful. The second flag
4007 /// is true if the numeric part exists.
4008 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
4009 unsigned long long &Reg) {
4010 if (C.front() != '{' || C.back() != '}')
4011 return std::make_pair(false, false);
4013 // Search for the first numeric character.
4014 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
4015 I = std::find_if(B, E, isdigit);
4017 Prefix = StringRef(B, I - B);
4019 // The second flag is set to false if no numeric characters were found.
4020 if (I == E)
4021 return std::make_pair(true, false);
4023 // Parse the numeric characters.
4024 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
4025 true);
4028 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
4029 ISD::NodeType) const {
4030 bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
4031 EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
4032 return VT.bitsLT(MinVT) ? MinVT : VT;
4035 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
4036 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
4037 const TargetRegisterInfo *TRI =
4038 Subtarget.getRegisterInfo();
4039 const TargetRegisterClass *RC;
4040 StringRef Prefix;
4041 unsigned long long Reg;
4043 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
4045 if (!R.first)
4046 return std::make_pair(0U, nullptr);
4048 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
4049 // No numeric characters follow "hi" or "lo".
4050 if (R.second)
4051 return std::make_pair(0U, nullptr);
4053 RC = TRI->getRegClass(Prefix == "hi" ?
4054 Mips::HI32RegClassID : Mips::LO32RegClassID);
4055 return std::make_pair(*(RC->begin()), RC);
4056 } else if (Prefix.startswith("$msa")) {
4057 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4059 // No numeric characters follow the name.
4060 if (R.second)
4061 return std::make_pair(0U, nullptr);
4063 Reg = StringSwitch<unsigned long long>(Prefix)
4064 .Case("$msair", Mips::MSAIR)
4065 .Case("$msacsr", Mips::MSACSR)
4066 .Case("$msaaccess", Mips::MSAAccess)
4067 .Case("$msasave", Mips::MSASave)
4068 .Case("$msamodify", Mips::MSAModify)
4069 .Case("$msarequest", Mips::MSARequest)
4070 .Case("$msamap", Mips::MSAMap)
4071 .Case("$msaunmap", Mips::MSAUnmap)
4072 .Default(0);
4074 if (!Reg)
4075 return std::make_pair(0U, nullptr);
4077 RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
4078 return std::make_pair(Reg, RC);
4081 if (!R.second)
4082 return std::make_pair(0U, nullptr);
4084 if (Prefix == "$f") { // Parse $f0-$f31.
4085 // If the size of FP registers is 64-bit or Reg is an even number, select
4086 // the 64-bit register class. Otherwise, select the 32-bit register class.
4087 if (VT == MVT::Other)
4088 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
4090 RC = getRegClassFor(VT);
4092 if (RC == &Mips::AFGR64RegClass) {
4093 assert(Reg % 2 == 0);
4094 Reg >>= 1;
4096 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
4097 RC = TRI->getRegClass(Mips::FCCRegClassID);
4098 else if (Prefix == "$w") { // Parse $w0-$w31.
4099 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
4100 } else { // Parse $0-$31.
4101 assert(Prefix == "$");
4102 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
4105 assert(Reg < RC->getNumRegs());
4106 return std::make_pair(*(RC->begin() + Reg), RC);
4109 /// Given a register class constraint, like 'r', if this corresponds directly
4110 /// to an LLVM register class, return a register of 0 and the register class
4111 /// pointer.
4112 std::pair<unsigned, const TargetRegisterClass *>
4113 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4114 StringRef Constraint,
4115 MVT VT) const {
4116 if (Constraint.size() == 1) {
4117 switch (Constraint[0]) {
4118 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4119 case 'y': // Same as 'r'. Exists for compatibility.
4120 case 'r':
4121 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
4122 if (Subtarget.inMips16Mode())
4123 return std::make_pair(0U, &Mips::CPU16RegsRegClass);
4124 return std::make_pair(0U, &Mips::GPR32RegClass);
4126 if (VT == MVT::i64 && !Subtarget.isGP64bit())
4127 return std::make_pair(0U, &Mips::GPR32RegClass);
4128 if (VT == MVT::i64 && Subtarget.isGP64bit())
4129 return std::make_pair(0U, &Mips::GPR64RegClass);
4130 // This will generate an error message
4131 return std::make_pair(0U, nullptr);
4132 case 'f': // FPU or MSA register
4133 if (VT == MVT::v16i8)
4134 return std::make_pair(0U, &Mips::MSA128BRegClass);
4135 else if (VT == MVT::v8i16 || VT == MVT::v8f16)
4136 return std::make_pair(0U, &Mips::MSA128HRegClass);
4137 else if (VT == MVT::v4i32 || VT == MVT::v4f32)
4138 return std::make_pair(0U, &Mips::MSA128WRegClass);
4139 else if (VT == MVT::v2i64 || VT == MVT::v2f64)
4140 return std::make_pair(0U, &Mips::MSA128DRegClass);
4141 else if (VT == MVT::f32)
4142 return std::make_pair(0U, &Mips::FGR32RegClass);
4143 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
4144 if (Subtarget.isFP64bit())
4145 return std::make_pair(0U, &Mips::FGR64RegClass);
4146 return std::make_pair(0U, &Mips::AFGR64RegClass);
4148 break;
4149 case 'c': // register suitable for indirect jump
4150 if (VT == MVT::i32)
4151 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
4152 if (VT == MVT::i64)
4153 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
4154 // This will generate an error message
4155 return std::make_pair(0U, nullptr);
4156 case 'l': // use the `lo` register to store values
4157 // that are no bigger than a word
4158 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4159 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4160 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4161 case 'x': // use the concatenated `hi` and `lo` registers
4162 // to store doubleword values
4163 // Fixme: Not triggering the use of both hi and low
4164 // This will generate an error message
4165 return std::make_pair(0U, nullptr);
4169 if (!Constraint.empty()) {
4170 std::pair<unsigned, const TargetRegisterClass *> R;
4171 R = parseRegForInlineAsmConstraint(Constraint, VT);
4173 if (R.second)
4174 return R;
4177 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4180 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4181 /// vector. If it is invalid, don't add anything to Ops.
4182 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4183 std::string &Constraint,
4184 std::vector<SDValue>&Ops,
4185 SelectionDAG &DAG) const {
4186 SDLoc DL(Op);
4187 SDValue Result;
4189 // Only support length 1 constraints for now.
4190 if (Constraint.length() > 1) return;
4192 char ConstraintLetter = Constraint[0];
4193 switch (ConstraintLetter) {
4194 default: break; // This will fall through to the generic implementation
4195 case 'I': // Signed 16 bit constant
4196 // If this fails, the parent routine will give an error
4197 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4198 EVT Type = Op.getValueType();
4199 int64_t Val = C->getSExtValue();
4200 if (isInt<16>(Val)) {
4201 Result = DAG.getTargetConstant(Val, DL, Type);
4202 break;
4205 return;
4206 case 'J': // integer zero
4207 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4208 EVT Type = Op.getValueType();
4209 int64_t Val = C->getZExtValue();
4210 if (Val == 0) {
4211 Result = DAG.getTargetConstant(0, DL, Type);
4212 break;
4215 return;
4216 case 'K': // unsigned 16 bit immediate
4217 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4218 EVT Type = Op.getValueType();
4219 uint64_t Val = (uint64_t)C->getZExtValue();
4220 if (isUInt<16>(Val)) {
4221 Result = DAG.getTargetConstant(Val, DL, Type);
4222 break;
4225 return;
4226 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4227 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4228 EVT Type = Op.getValueType();
4229 int64_t Val = C->getSExtValue();
4230 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4231 Result = DAG.getTargetConstant(Val, DL, Type);
4232 break;
4235 return;
4236 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4237 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4238 EVT Type = Op.getValueType();
4239 int64_t Val = C->getSExtValue();
4240 if ((Val >= -65535) && (Val <= -1)) {
4241 Result = DAG.getTargetConstant(Val, DL, Type);
4242 break;
4245 return;
4246 case 'O': // signed 15 bit immediate
4247 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4248 EVT Type = Op.getValueType();
4249 int64_t Val = C->getSExtValue();
4250 if ((isInt<15>(Val))) {
4251 Result = DAG.getTargetConstant(Val, DL, Type);
4252 break;
4255 return;
4256 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4257 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4258 EVT Type = Op.getValueType();
4259 int64_t Val = C->getSExtValue();
4260 if ((Val <= 65535) && (Val >= 1)) {
4261 Result = DAG.getTargetConstant(Val, DL, Type);
4262 break;
4265 return;
4268 if (Result.getNode()) {
4269 Ops.push_back(Result);
4270 return;
4273 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4276 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4277 const AddrMode &AM, Type *Ty,
4278 unsigned AS,
4279 Instruction *I) const {
4280 // No global is ever allowed as a base.
4281 if (AM.BaseGV)
4282 return false;
4284 switch (AM.Scale) {
4285 case 0: // "r+i" or just "i", depending on HasBaseReg.
4286 break;
4287 case 1:
4288 if (!AM.HasBaseReg) // allow "r+i".
4289 break;
4290 return false; // disallow "r+r" or "r+r+i".
4291 default:
4292 return false;
4295 return true;
4298 bool
4299 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4300 // The Mips target isn't yet aware of offsets.
4301 return false;
4304 EVT MipsTargetLowering::getOptimalMemOpType(
4305 const MemOp &Op, const AttributeList &FuncAttributes) const {
4306 if (Subtarget.hasMips64())
4307 return MVT::i64;
4309 return MVT::i32;
4312 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4313 bool ForCodeSize) const {
4314 if (VT != MVT::f32 && VT != MVT::f64)
4315 return false;
4316 if (Imm.isNegZero())
4317 return false;
4318 return Imm.isZero();
4321 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4323 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4324 if (ABI.IsN64() && isPositionIndependent())
4325 return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4327 return TargetLowering::getJumpTableEncoding();
4330 bool MipsTargetLowering::useSoftFloat() const {
4331 return Subtarget.useSoftFloat();
4334 void MipsTargetLowering::copyByValRegs(
4335 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4336 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4337 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4338 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4339 MipsCCState &State) const {
4340 MachineFunction &MF = DAG.getMachineFunction();
4341 MachineFrameInfo &MFI = MF.getFrameInfo();
4342 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4343 unsigned NumRegs = LastReg - FirstReg;
4344 unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4345 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4346 int FrameObjOffset;
4347 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4349 if (RegAreaSize)
4350 FrameObjOffset =
4351 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4352 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4353 else
4354 FrameObjOffset = VA.getLocMemOffset();
4356 // Create frame object.
4357 EVT PtrTy = getPointerTy(DAG.getDataLayout());
4358 // Make the fixed object stored to mutable so that the load instructions
4359 // referencing it have their memory dependencies added.
4360 // Set the frame object as isAliased which clears the underlying objects
4361 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4362 // stores as dependencies for loads referencing this fixed object.
4363 int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4364 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4365 InVals.push_back(FIN);
4367 if (!NumRegs)
4368 return;
4370 // Copy arg registers.
4371 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4372 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4374 for (unsigned I = 0; I < NumRegs; ++I) {
4375 unsigned ArgReg = ByValArgRegs[FirstReg + I];
4376 unsigned VReg = addLiveIn(MF, ArgReg, RC);
4377 unsigned Offset = I * GPRSizeInBytes;
4378 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4379 DAG.getConstant(Offset, DL, PtrTy));
4380 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4381 StorePtr, MachinePointerInfo(FuncArg, Offset));
4382 OutChains.push_back(Store);
4386 // Copy byVal arg to registers and stack.
4387 void MipsTargetLowering::passByValArg(
4388 SDValue Chain, const SDLoc &DL,
4389 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4390 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4391 MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4392 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4393 const CCValAssign &VA) const {
4394 unsigned ByValSizeInBytes = Flags.getByValSize();
4395 unsigned OffsetInBytes = 0; // From beginning of struct
4396 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4397 Align Alignment =
4398 std::min(Flags.getNonZeroByValAlign(), Align(RegSizeInBytes));
4399 EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4400 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4401 unsigned NumRegs = LastReg - FirstReg;
4403 if (NumRegs) {
4404 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4405 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4406 unsigned I = 0;
4408 // Copy words to registers.
4409 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4410 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4411 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4412 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4413 MachinePointerInfo(), Alignment);
4414 MemOpChains.push_back(LoadVal.getValue(1));
4415 unsigned ArgReg = ArgRegs[FirstReg + I];
4416 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4419 // Return if the struct has been fully copied.
4420 if (ByValSizeInBytes == OffsetInBytes)
4421 return;
4423 // Copy the remainder of the byval argument with sub-word loads and shifts.
4424 if (LeftoverBytes) {
4425 SDValue Val;
4427 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4428 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4429 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4431 if (RemainingSizeInBytes < LoadSizeInBytes)
4432 continue;
4434 // Load subword.
4435 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4436 DAG.getConstant(OffsetInBytes, DL,
4437 PtrTy));
4438 SDValue LoadVal = DAG.getExtLoad(
4439 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4440 MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4441 MemOpChains.push_back(LoadVal.getValue(1));
4443 // Shift the loaded value.
4444 unsigned Shamt;
4446 if (isLittle)
4447 Shamt = TotalBytesLoaded * 8;
4448 else
4449 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4451 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4452 DAG.getConstant(Shamt, DL, MVT::i32));
4454 if (Val.getNode())
4455 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4456 else
4457 Val = Shift;
4459 OffsetInBytes += LoadSizeInBytes;
4460 TotalBytesLoaded += LoadSizeInBytes;
4461 Alignment = std::min(Alignment, Align(LoadSizeInBytes));
4464 unsigned ArgReg = ArgRegs[FirstReg + I];
4465 RegsToPass.push_back(std::make_pair(ArgReg, Val));
4466 return;
4470 // Copy remainder of byval arg to it with memcpy.
4471 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4472 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4473 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4474 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4475 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4476 Chain = DAG.getMemcpy(
4477 Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, DL, PtrTy),
4478 Align(Alignment), /*isVolatile=*/false, /*AlwaysInline=*/false,
4479 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
4480 MemOpChains.push_back(Chain);
4483 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4484 SDValue Chain, const SDLoc &DL,
4485 SelectionDAG &DAG,
4486 CCState &State) const {
4487 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4488 unsigned Idx = State.getFirstUnallocated(ArgRegs);
4489 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4490 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4491 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4492 MachineFunction &MF = DAG.getMachineFunction();
4493 MachineFrameInfo &MFI = MF.getFrameInfo();
4494 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4496 // Offset of the first variable argument from stack pointer.
4497 int VaArgOffset;
4499 if (ArgRegs.size() == Idx)
4500 VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4501 else {
4502 VaArgOffset =
4503 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4504 (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4507 // Record the frame index of the first variable argument
4508 // which is a value necessary to VASTART.
4509 int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4510 MipsFI->setVarArgsFrameIndex(FI);
4512 // Copy the integer registers that have not been used for argument passing
4513 // to the argument register save area. For O32, the save area is allocated
4514 // in the caller's stack frame, while for N32/64, it is allocated in the
4515 // callee's stack frame.
4516 for (unsigned I = Idx; I < ArgRegs.size();
4517 ++I, VaArgOffset += RegSizeInBytes) {
4518 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4519 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4520 FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4521 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4522 SDValue Store =
4523 DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4524 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4525 (Value *)nullptr);
4526 OutChains.push_back(Store);
4530 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4531 Align Alignment) const {
4532 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4534 assert(Size && "Byval argument's size shouldn't be 0.");
4536 Alignment = std::min(Alignment, TFL->getStackAlign());
4538 unsigned FirstReg = 0;
4539 unsigned NumRegs = 0;
4541 if (State->getCallingConv() != CallingConv::Fast) {
4542 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4543 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4544 // FIXME: The O32 case actually describes no shadow registers.
4545 const MCPhysReg *ShadowRegs =
4546 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4548 // We used to check the size as well but we can't do that anymore since
4549 // CCState::HandleByVal() rounds up the size after calling this function.
4550 assert(
4551 Alignment >= Align(RegSizeInBytes) &&
4552 "Byval argument's alignment should be a multiple of RegSizeInBytes.");
4554 FirstReg = State->getFirstUnallocated(IntArgRegs);
4556 // If Alignment > RegSizeInBytes, the first arg register must be even.
4557 // FIXME: This condition happens to do the right thing but it's not the
4558 // right way to test it. We want to check that the stack frame offset
4559 // of the register is aligned.
4560 if ((Alignment > RegSizeInBytes) && (FirstReg % 2)) {
4561 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4562 ++FirstReg;
4565 // Mark the registers allocated.
4566 Size = alignTo(Size, RegSizeInBytes);
4567 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4568 Size -= RegSizeInBytes, ++I, ++NumRegs)
4569 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4572 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4575 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4576 MachineBasicBlock *BB,
4577 bool isFPCmp,
4578 unsigned Opc) const {
4579 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4580 "Subtarget already supports SELECT nodes with the use of"
4581 "conditional-move instructions.");
4583 const TargetInstrInfo *TII =
4584 Subtarget.getInstrInfo();
4585 DebugLoc DL = MI.getDebugLoc();
4587 // To "insert" a SELECT instruction, we actually have to insert the
4588 // diamond control-flow pattern. The incoming instruction knows the
4589 // destination vreg to set, the condition code register to branch on, the
4590 // true/false values to select between, and a branch opcode to use.
4591 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4592 MachineFunction::iterator It = ++BB->getIterator();
4594 // thisMBB:
4595 // ...
4596 // TrueVal = ...
4597 // setcc r1, r2, r3
4598 // bNE r1, r0, copy1MBB
4599 // fallthrough --> copy0MBB
4600 MachineBasicBlock *thisMBB = BB;
4601 MachineFunction *F = BB->getParent();
4602 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4603 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4604 F->insert(It, copy0MBB);
4605 F->insert(It, sinkMBB);
4607 // Transfer the remainder of BB and its successor edges to sinkMBB.
4608 sinkMBB->splice(sinkMBB->begin(), BB,
4609 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4610 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4612 // Next, add the true and fallthrough blocks as its successors.
4613 BB->addSuccessor(copy0MBB);
4614 BB->addSuccessor(sinkMBB);
4616 if (isFPCmp) {
4617 // bc1[tf] cc, sinkMBB
4618 BuildMI(BB, DL, TII->get(Opc))
4619 .addReg(MI.getOperand(1).getReg())
4620 .addMBB(sinkMBB);
4621 } else {
4622 // bne rs, $0, sinkMBB
4623 BuildMI(BB, DL, TII->get(Opc))
4624 .addReg(MI.getOperand(1).getReg())
4625 .addReg(Mips::ZERO)
4626 .addMBB(sinkMBB);
4629 // copy0MBB:
4630 // %FalseValue = ...
4631 // # fallthrough to sinkMBB
4632 BB = copy0MBB;
4634 // Update machine-CFG edges
4635 BB->addSuccessor(sinkMBB);
4637 // sinkMBB:
4638 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4639 // ...
4640 BB = sinkMBB;
4642 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4643 .addReg(MI.getOperand(2).getReg())
4644 .addMBB(thisMBB)
4645 .addReg(MI.getOperand(3).getReg())
4646 .addMBB(copy0MBB);
4648 MI.eraseFromParent(); // The pseudo instruction is gone now.
4650 return BB;
4653 MachineBasicBlock *
4654 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4655 MachineBasicBlock *BB) const {
4656 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4657 "Subtarget already supports SELECT nodes with the use of"
4658 "conditional-move instructions.");
4660 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4661 DebugLoc DL = MI.getDebugLoc();
4663 // D_SELECT substitutes two SELECT nodes that goes one after another and
4664 // have the same condition operand. On machines which don't have
4665 // conditional-move instruction, it reduces unnecessary branch instructions
4666 // which are result of using two diamond patterns that are result of two
4667 // SELECT pseudo instructions.
4668 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4669 MachineFunction::iterator It = ++BB->getIterator();
4671 // thisMBB:
4672 // ...
4673 // TrueVal = ...
4674 // setcc r1, r2, r3
4675 // bNE r1, r0, copy1MBB
4676 // fallthrough --> copy0MBB
4677 MachineBasicBlock *thisMBB = BB;
4678 MachineFunction *F = BB->getParent();
4679 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4680 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4681 F->insert(It, copy0MBB);
4682 F->insert(It, sinkMBB);
4684 // Transfer the remainder of BB and its successor edges to sinkMBB.
4685 sinkMBB->splice(sinkMBB->begin(), BB,
4686 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4687 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4689 // Next, add the true and fallthrough blocks as its successors.
4690 BB->addSuccessor(copy0MBB);
4691 BB->addSuccessor(sinkMBB);
4693 // bne rs, $0, sinkMBB
4694 BuildMI(BB, DL, TII->get(Mips::BNE))
4695 .addReg(MI.getOperand(2).getReg())
4696 .addReg(Mips::ZERO)
4697 .addMBB(sinkMBB);
4699 // copy0MBB:
4700 // %FalseValue = ...
4701 // # fallthrough to sinkMBB
4702 BB = copy0MBB;
4704 // Update machine-CFG edges
4705 BB->addSuccessor(sinkMBB);
4707 // sinkMBB:
4708 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4709 // ...
4710 BB = sinkMBB;
4712 // Use two PHI nodes to select two reults
4713 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4714 .addReg(MI.getOperand(3).getReg())
4715 .addMBB(thisMBB)
4716 .addReg(MI.getOperand(5).getReg())
4717 .addMBB(copy0MBB);
4718 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4719 .addReg(MI.getOperand(4).getReg())
4720 .addMBB(thisMBB)
4721 .addReg(MI.getOperand(6).getReg())
4722 .addMBB(copy0MBB);
4724 MI.eraseFromParent(); // The pseudo instruction is gone now.
4726 return BB;
4729 // FIXME? Maybe this could be a TableGen attribute on some registers and
4730 // this table could be generated automatically from RegInfo.
4731 Register
4732 MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT,
4733 const MachineFunction &MF) const {
4734 // Named registers is expected to be fairly rare. For now, just support $28
4735 // since the linux kernel uses it.
4736 if (Subtarget.isGP64bit()) {
4737 Register Reg = StringSwitch<Register>(RegName)
4738 .Case("$28", Mips::GP_64)
4739 .Default(Register());
4740 if (Reg)
4741 return Reg;
4742 } else {
4743 Register Reg = StringSwitch<Register>(RegName)
4744 .Case("$28", Mips::GP)
4745 .Default(Register());
4746 if (Reg)
4747 return Reg;
4749 report_fatal_error("Invalid register name global variable");
4752 MachineBasicBlock *MipsTargetLowering::emitLDR_W(MachineInstr &MI,
4753 MachineBasicBlock *BB) const {
4754 MachineFunction *MF = BB->getParent();
4755 MachineRegisterInfo &MRI = MF->getRegInfo();
4756 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4757 const bool IsLittle = Subtarget.isLittle();
4758 DebugLoc DL = MI.getDebugLoc();
4760 Register Dest = MI.getOperand(0).getReg();
4761 Register Address = MI.getOperand(1).getReg();
4762 unsigned Imm = MI.getOperand(2).getImm();
4764 MachineBasicBlock::iterator I(MI);
4766 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4767 // Mips release 6 can load from adress that is not naturally-aligned.
4768 Register Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4769 BuildMI(*BB, I, DL, TII->get(Mips::LW))
4770 .addDef(Temp)
4771 .addUse(Address)
4772 .addImm(Imm);
4773 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(Temp);
4774 } else {
4775 // Mips release 5 needs to use instructions that can load from an unaligned
4776 // memory address.
4777 Register LoadHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4778 Register LoadFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4779 Register Undef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4780 BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(Undef);
4781 BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4782 .addDef(LoadHalf)
4783 .addUse(Address)
4784 .addImm(Imm + (IsLittle ? 0 : 3))
4785 .addUse(Undef);
4786 BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4787 .addDef(LoadFull)
4788 .addUse(Address)
4789 .addImm(Imm + (IsLittle ? 3 : 0))
4790 .addUse(LoadHalf);
4791 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(LoadFull);
4794 MI.eraseFromParent();
4795 return BB;
4798 MachineBasicBlock *MipsTargetLowering::emitLDR_D(MachineInstr &MI,
4799 MachineBasicBlock *BB) const {
4800 MachineFunction *MF = BB->getParent();
4801 MachineRegisterInfo &MRI = MF->getRegInfo();
4802 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4803 const bool IsLittle = Subtarget.isLittle();
4804 DebugLoc DL = MI.getDebugLoc();
4806 Register Dest = MI.getOperand(0).getReg();
4807 Register Address = MI.getOperand(1).getReg();
4808 unsigned Imm = MI.getOperand(2).getImm();
4810 MachineBasicBlock::iterator I(MI);
4812 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4813 // Mips release 6 can load from adress that is not naturally-aligned.
4814 if (Subtarget.isGP64bit()) {
4815 Register Temp = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4816 BuildMI(*BB, I, DL, TII->get(Mips::LD))
4817 .addDef(Temp)
4818 .addUse(Address)
4819 .addImm(Imm);
4820 BuildMI(*BB, I, DL, TII->get(Mips::FILL_D)).addDef(Dest).addUse(Temp);
4821 } else {
4822 Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4823 Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4824 Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4825 BuildMI(*BB, I, DL, TII->get(Mips::LW))
4826 .addDef(Lo)
4827 .addUse(Address)
4828 .addImm(Imm + (IsLittle ? 0 : 4));
4829 BuildMI(*BB, I, DL, TII->get(Mips::LW))
4830 .addDef(Hi)
4831 .addUse(Address)
4832 .addImm(Imm + (IsLittle ? 4 : 0));
4833 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(Lo);
4834 BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4835 .addUse(Wtemp)
4836 .addUse(Hi)
4837 .addImm(1);
4839 } else {
4840 // Mips release 5 needs to use instructions that can load from an unaligned
4841 // memory address.
4842 Register LoHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4843 Register LoFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4844 Register LoUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4845 Register HiHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4846 Register HiFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4847 Register HiUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4848 Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4849 BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(LoUndef);
4850 BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4851 .addDef(LoHalf)
4852 .addUse(Address)
4853 .addImm(Imm + (IsLittle ? 0 : 7))
4854 .addUse(LoUndef);
4855 BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4856 .addDef(LoFull)
4857 .addUse(Address)
4858 .addImm(Imm + (IsLittle ? 3 : 4))
4859 .addUse(LoHalf);
4860 BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(HiUndef);
4861 BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4862 .addDef(HiHalf)
4863 .addUse(Address)
4864 .addImm(Imm + (IsLittle ? 4 : 3))
4865 .addUse(HiUndef);
4866 BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4867 .addDef(HiFull)
4868 .addUse(Address)
4869 .addImm(Imm + (IsLittle ? 7 : 0))
4870 .addUse(HiHalf);
4871 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(LoFull);
4872 BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4873 .addUse(Wtemp)
4874 .addUse(HiFull)
4875 .addImm(1);
4878 MI.eraseFromParent();
4879 return BB;
4882 MachineBasicBlock *MipsTargetLowering::emitSTR_W(MachineInstr &MI,
4883 MachineBasicBlock *BB) const {
4884 MachineFunction *MF = BB->getParent();
4885 MachineRegisterInfo &MRI = MF->getRegInfo();
4886 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4887 const bool IsLittle = Subtarget.isLittle();
4888 DebugLoc DL = MI.getDebugLoc();
4890 Register StoreVal = MI.getOperand(0).getReg();
4891 Register Address = MI.getOperand(1).getReg();
4892 unsigned Imm = MI.getOperand(2).getImm();
4894 MachineBasicBlock::iterator I(MI);
4896 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4897 // Mips release 6 can store to adress that is not naturally-aligned.
4898 Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4899 Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4900 BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(BitcastW).addUse(StoreVal);
4901 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4902 .addDef(Tmp)
4903 .addUse(BitcastW)
4904 .addImm(0);
4905 BuildMI(*BB, I, DL, TII->get(Mips::SW))
4906 .addUse(Tmp)
4907 .addUse(Address)
4908 .addImm(Imm);
4909 } else {
4910 // Mips release 5 needs to use instructions that can store to an unaligned
4911 // memory address.
4912 Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4913 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4914 .addDef(Tmp)
4915 .addUse(StoreVal)
4916 .addImm(0);
4917 BuildMI(*BB, I, DL, TII->get(Mips::SWR))
4918 .addUse(Tmp)
4919 .addUse(Address)
4920 .addImm(Imm + (IsLittle ? 0 : 3));
4921 BuildMI(*BB, I, DL, TII->get(Mips::SWL))
4922 .addUse(Tmp)
4923 .addUse(Address)
4924 .addImm(Imm + (IsLittle ? 3 : 0));
4927 MI.eraseFromParent();
4929 return BB;
4932 MachineBasicBlock *MipsTargetLowering::emitSTR_D(MachineInstr &MI,
4933 MachineBasicBlock *BB) const {
4934 MachineFunction *MF = BB->getParent();
4935 MachineRegisterInfo &MRI = MF->getRegInfo();
4936 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4937 const bool IsLittle = Subtarget.isLittle();
4938 DebugLoc DL = MI.getDebugLoc();
4940 Register StoreVal = MI.getOperand(0).getReg();
4941 Register Address = MI.getOperand(1).getReg();
4942 unsigned Imm = MI.getOperand(2).getImm();
4944 MachineBasicBlock::iterator I(MI);
4946 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4947 // Mips release 6 can store to adress that is not naturally-aligned.
4948 if (Subtarget.isGP64bit()) {
4949 Register BitcastD = MRI.createVirtualRegister(&Mips::MSA128DRegClass);
4950 Register Lo = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4951 BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4952 .addDef(BitcastD)
4953 .addUse(StoreVal);
4954 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_D))
4955 .addDef(Lo)
4956 .addUse(BitcastD)
4957 .addImm(0);
4958 BuildMI(*BB, I, DL, TII->get(Mips::SD))
4959 .addUse(Lo)
4960 .addUse(Address)
4961 .addImm(Imm);
4962 } else {
4963 Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4964 Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4965 Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4966 BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4967 .addDef(BitcastW)
4968 .addUse(StoreVal);
4969 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4970 .addDef(Lo)
4971 .addUse(BitcastW)
4972 .addImm(0);
4973 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4974 .addDef(Hi)
4975 .addUse(BitcastW)
4976 .addImm(1);
4977 BuildMI(*BB, I, DL, TII->get(Mips::SW))
4978 .addUse(Lo)
4979 .addUse(Address)
4980 .addImm(Imm + (IsLittle ? 0 : 4));
4981 BuildMI(*BB, I, DL, TII->get(Mips::SW))
4982 .addUse(Hi)
4983 .addUse(Address)
4984 .addImm(Imm + (IsLittle ? 4 : 0));
4986 } else {
4987 // Mips release 5 needs to use instructions that can store to an unaligned
4988 // memory address.
4989 Register Bitcast = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4990 Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4991 Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4992 BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(Bitcast).addUse(StoreVal);
4993 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4994 .addDef(Lo)
4995 .addUse(Bitcast)
4996 .addImm(0);
4997 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4998 .addDef(Hi)
4999 .addUse(Bitcast)
5000 .addImm(1);
5001 BuildMI(*BB, I, DL, TII->get(Mips::SWR))
5002 .addUse(Lo)
5003 .addUse(Address)
5004 .addImm(Imm + (IsLittle ? 0 : 3));
5005 BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5006 .addUse(Lo)
5007 .addUse(Address)
5008 .addImm(Imm + (IsLittle ? 3 : 0));
5009 BuildMI(*BB, I, DL, TII->get(Mips::SWR))
5010 .addUse(Hi)
5011 .addUse(Address)
5012 .addImm(Imm + (IsLittle ? 4 : 7));
5013 BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5014 .addUse(Hi)
5015 .addUse(Address)
5016 .addImm(Imm + (IsLittle ? 7 : 4));
5019 MI.eraseFromParent();
5020 return BB;