1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls
, "Number of tail calls");
86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
87 cl::desc("MIPS: Don't trap on integer division by zero."),
90 extern cl::opt
<bool> EmitJalrReloc
;
92 static const MCPhysReg Mips64DPRegs
[8] = {
93 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
94 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
97 // If I is a shifted mask, set the size (Size) and the first bit of the
98 // mask (Pos), and return true.
99 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
100 static bool isShiftedMask(uint64_t I
, uint64_t &Pos
, uint64_t &Size
) {
101 if (!isShiftedMask_64(I
))
104 Size
= countPopulation(I
);
105 Pos
= countTrailingZeros(I
);
109 // The MIPS MSA ABI passes vector arguments in the integer register set.
110 // The number of integer registers used is dependant on the ABI used.
111 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
115 return getRegisterType(Context
, VT
);
117 return Subtarget
.isABI_O32() || VT
.getSizeInBits() == 32 ? MVT::i32
121 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
125 return divideCeil(VT
.getSizeInBits(), Subtarget
.isABI_O32() ? 32 : 64);
126 return MipsTargetLowering::getNumRegisters(Context
, VT
);
129 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
130 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
131 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
132 // Break down vector types to either 2 i64s or 4 i32s.
133 RegisterVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
134 IntermediateVT
= RegisterVT
;
136 VT
.getFixedSizeInBits() < RegisterVT
.getFixedSizeInBits()
137 ? VT
.getVectorNumElements()
138 : divideCeil(VT
.getSizeInBits(), RegisterVT
.getSizeInBits());
139 return NumIntermediates
;
142 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
143 MachineFunction
&MF
= DAG
.getMachineFunction();
144 MipsFunctionInfo
*FI
= MF
.getInfo
<MipsFunctionInfo
>();
145 return DAG
.getRegister(FI
->getGlobalBaseReg(MF
), Ty
);
148 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
150 unsigned Flag
) const {
151 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
154 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
156 unsigned Flag
) const {
157 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
160 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
162 unsigned Flag
) const {
163 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
166 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
168 unsigned Flag
) const {
169 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
172 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
174 unsigned Flag
) const {
175 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlign(),
176 N
->getOffset(), Flag
);
179 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
180 switch ((MipsISD::NodeType
)Opcode
) {
181 case MipsISD::FIRST_NUMBER
: break;
182 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
183 case MipsISD::TailCall
: return "MipsISD::TailCall";
184 case MipsISD::Highest
: return "MipsISD::Highest";
185 case MipsISD::Higher
: return "MipsISD::Higher";
186 case MipsISD::Hi
: return "MipsISD::Hi";
187 case MipsISD::Lo
: return "MipsISD::Lo";
188 case MipsISD::GotHi
: return "MipsISD::GotHi";
189 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
190 case MipsISD::GPRel
: return "MipsISD::GPRel";
191 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
192 case MipsISD::Ret
: return "MipsISD::Ret";
193 case MipsISD::ERet
: return "MipsISD::ERet";
194 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
195 case MipsISD::FMS
: return "MipsISD::FMS";
196 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
197 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
198 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
199 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
200 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
201 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
202 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
203 case MipsISD::MFHI
: return "MipsISD::MFHI";
204 case MipsISD::MFLO
: return "MipsISD::MFLO";
205 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
206 case MipsISD::Mult
: return "MipsISD::Mult";
207 case MipsISD::Multu
: return "MipsISD::Multu";
208 case MipsISD::MAdd
: return "MipsISD::MAdd";
209 case MipsISD::MAddu
: return "MipsISD::MAddu";
210 case MipsISD::MSub
: return "MipsISD::MSub";
211 case MipsISD::MSubu
: return "MipsISD::MSubu";
212 case MipsISD::DivRem
: return "MipsISD::DivRem";
213 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
214 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
215 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
216 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
217 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
218 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
219 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
220 case MipsISD::Sync
: return "MipsISD::Sync";
221 case MipsISD::Ext
: return "MipsISD::Ext";
222 case MipsISD::Ins
: return "MipsISD::Ins";
223 case MipsISD::CIns
: return "MipsISD::CIns";
224 case MipsISD::LWL
: return "MipsISD::LWL";
225 case MipsISD::LWR
: return "MipsISD::LWR";
226 case MipsISD::SWL
: return "MipsISD::SWL";
227 case MipsISD::SWR
: return "MipsISD::SWR";
228 case MipsISD::LDL
: return "MipsISD::LDL";
229 case MipsISD::LDR
: return "MipsISD::LDR";
230 case MipsISD::SDL
: return "MipsISD::SDL";
231 case MipsISD::SDR
: return "MipsISD::SDR";
232 case MipsISD::EXTP
: return "MipsISD::EXTP";
233 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
234 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
235 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
236 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
237 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
238 case MipsISD::SHILO
: return "MipsISD::SHILO";
239 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
240 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
241 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
242 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
243 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
244 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
245 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
246 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
247 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
248 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
249 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
250 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
251 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
252 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
253 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
254 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
255 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
256 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
257 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
258 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
259 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
260 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
261 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
262 case MipsISD::MULT
: return "MipsISD::MULT";
263 case MipsISD::MULTU
: return "MipsISD::MULTU";
264 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
265 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
266 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
267 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
268 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
269 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
270 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
271 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
272 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
273 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
274 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
275 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
276 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
277 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
278 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
279 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
280 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
281 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
282 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
283 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
284 case MipsISD::VNOR
: return "MipsISD::VNOR";
285 case MipsISD::VSHF
: return "MipsISD::VSHF";
286 case MipsISD::SHF
: return "MipsISD::SHF";
287 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
288 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
289 case MipsISD::ILVL
: return "MipsISD::ILVL";
290 case MipsISD::ILVR
: return "MipsISD::ILVR";
291 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
292 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
293 case MipsISD::INSVE
: return "MipsISD::INSVE";
298 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
299 const MipsSubtarget
&STI
)
300 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
301 // Mips does not have i1 type, so use i32 for
302 // setcc operations results (slt, sgt, ...).
303 setBooleanContents(ZeroOrOneBooleanContent
);
304 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
305 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
306 // does. Integer booleans still use 0 and 1.
307 if (Subtarget
.hasMips32r6())
308 setBooleanContents(ZeroOrOneBooleanContent
,
309 ZeroOrNegativeOneBooleanContent
);
311 // Load extented operations for i1 types must be promoted
312 for (MVT VT
: MVT::integer_valuetypes()) {
313 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
314 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
315 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
318 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
320 for (MVT VT
: MVT::fp_valuetypes()) {
321 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
322 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
325 // Set LoadExtAction for f16 vectors to Expand
326 for (MVT VT
: MVT::fp_fixedlen_vector_valuetypes()) {
327 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
329 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
332 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
333 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
335 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
337 // Used by legalize types to correctly generate the setcc result.
338 // Without this, every float setcc comes with a AND/OR with the result,
339 // we don't want this, since the fpcmp result goes to a flag register,
340 // which is used implicitly by brcond and select operations.
341 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
343 // Mips Custom Operations
344 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
345 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
346 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
347 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
348 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
349 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
350 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
351 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
352 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
353 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
354 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
355 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
356 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
357 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
358 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
360 if (!(TM
.Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())) {
361 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
362 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
365 if (Subtarget
.isGP64bit()) {
366 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
367 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
368 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
369 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
370 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
371 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
372 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
373 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
374 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
375 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
376 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
377 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
380 if (!Subtarget
.isGP64bit()) {
381 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
382 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
383 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
386 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
387 if (Subtarget
.isGP64bit())
388 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
390 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
391 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
392 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
393 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
394 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
395 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
396 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
397 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
399 // Operations not directly supported by Mips.
400 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
401 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
402 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
403 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
404 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
405 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
406 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
407 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
408 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
409 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
410 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
411 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
412 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
413 if (Subtarget
.hasCnMips()) {
414 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
415 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
417 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
418 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
420 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
421 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
422 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
423 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
424 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
425 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
427 if (!Subtarget
.hasMips32r2())
428 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
430 if (!Subtarget
.hasMips64r2())
431 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
433 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
434 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
435 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
436 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
437 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
438 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
439 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
440 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
441 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
442 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
443 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
444 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
445 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
446 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
447 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
448 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
450 // Lower f16 conversion operations into library calls
451 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
452 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
453 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
454 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
456 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
458 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
459 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
460 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
461 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
463 // Use the default for now
464 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
465 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
467 if (!Subtarget
.isGP64bit()) {
468 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
469 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
472 if (!Subtarget
.hasMips32r2()) {
473 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
474 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
477 // MIPS16 lacks MIPS32's clz and clo instructions.
478 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
479 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
480 if (!Subtarget
.hasMips64())
481 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
483 if (!Subtarget
.hasMips32r2())
484 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
485 if (!Subtarget
.hasMips64r2())
486 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
488 if (Subtarget
.isGP64bit()) {
489 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
490 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
491 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
492 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
495 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
497 setTargetDAGCombine(ISD::SDIVREM
);
498 setTargetDAGCombine(ISD::UDIVREM
);
499 setTargetDAGCombine(ISD::SELECT
);
500 setTargetDAGCombine(ISD::AND
);
501 setTargetDAGCombine(ISD::OR
);
502 setTargetDAGCombine(ISD::ADD
);
503 setTargetDAGCombine(ISD::SUB
);
504 setTargetDAGCombine(ISD::AssertZext
);
505 setTargetDAGCombine(ISD::SHL
);
508 // These libcalls are not available in 32-bit.
509 setLibcallName(RTLIB::SHL_I128
, nullptr);
510 setLibcallName(RTLIB::SRL_I128
, nullptr);
511 setLibcallName(RTLIB::SRA_I128
, nullptr);
514 setMinFunctionAlignment(Subtarget
.isGP64bit() ? Align(8) : Align(4));
516 // The arguments on the stack are defined in terms of 4-byte slots on O32
517 // and 8-byte slots on N32/N64.
518 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? Align(8)
521 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
523 MaxStoresPerMemcpy
= 16;
525 isMicroMips
= Subtarget
.inMicroMipsMode();
528 const MipsTargetLowering
*
529 MipsTargetLowering::create(const MipsTargetMachine
&TM
,
530 const MipsSubtarget
&STI
) {
531 if (STI
.inMips16Mode())
532 return createMips16TargetLowering(TM
, STI
);
534 return createMipsSETargetLowering(TM
, STI
);
537 // Create a fast isel object.
539 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
540 const TargetLibraryInfo
*libInfo
) const {
541 const MipsTargetMachine
&TM
=
542 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
544 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
545 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
546 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
547 !Subtarget
.inMicroMipsMode();
549 // Disable if either of the following is true:
550 // We do not generate PIC, the ABI is not O32, XGOT is being used.
551 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() ||
555 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
558 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
562 return VT
.changeVectorElementTypeToInteger();
565 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
566 TargetLowering::DAGCombinerInfo
&DCI
,
567 const MipsSubtarget
&Subtarget
) {
568 if (DCI
.isBeforeLegalizeOps())
571 EVT Ty
= N
->getValueType(0);
572 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
573 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
574 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
578 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
579 N
->getOperand(0), N
->getOperand(1));
580 SDValue InChain
= DAG
.getEntryNode();
581 SDValue InGlue
= DivRem
;
584 if (N
->hasAnyUseOfValue(0)) {
585 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
587 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
588 InChain
= CopyFromLo
.getValue(1);
589 InGlue
= CopyFromLo
.getValue(2);
593 if (N
->hasAnyUseOfValue(1)) {
594 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
596 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
602 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
604 default: llvm_unreachable("Unknown fp condition code!");
606 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
607 case ISD::SETUNE
: return Mips::FCOND_UNE
;
609 case ISD::SETOLT
: return Mips::FCOND_OLT
;
611 case ISD::SETOGT
: return Mips::FCOND_OGT
;
613 case ISD::SETOLE
: return Mips::FCOND_OLE
;
615 case ISD::SETOGE
: return Mips::FCOND_OGE
;
616 case ISD::SETULT
: return Mips::FCOND_ULT
;
617 case ISD::SETULE
: return Mips::FCOND_ULE
;
618 case ISD::SETUGT
: return Mips::FCOND_UGT
;
619 case ISD::SETUGE
: return Mips::FCOND_UGE
;
620 case ISD::SETUO
: return Mips::FCOND_UN
;
621 case ISD::SETO
: return Mips::FCOND_OR
;
623 case ISD::SETONE
: return Mips::FCOND_ONE
;
624 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
628 /// This function returns true if the floating point conditional branches and
629 /// conditional moves which use condition code CC should be inverted.
630 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
631 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
634 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
635 "Illegal Condition Code");
640 // Creates and returns an FPCmp node from a setcc node.
641 // Returns Op if setcc is not a floating point comparison.
642 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
643 // must be a SETCC node
644 if (Op
.getOpcode() != ISD::SETCC
)
647 SDValue LHS
= Op
.getOperand(0);
649 if (!LHS
.getValueType().isFloatingPoint())
652 SDValue RHS
= Op
.getOperand(1);
655 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
656 // node if necessary.
657 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
659 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
660 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
663 // Creates and returns a CMovFPT/F node.
664 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
665 SDValue False
, const SDLoc
&DL
) {
666 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
667 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
668 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
670 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
671 True
.getValueType(), True
, FCC0
, False
, Cond
);
674 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
675 TargetLowering::DAGCombinerInfo
&DCI
,
676 const MipsSubtarget
&Subtarget
) {
677 if (DCI
.isBeforeLegalizeOps())
680 SDValue SetCC
= N
->getOperand(0);
682 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
683 !SetCC
.getOperand(0).getValueType().isInteger())
686 SDValue False
= N
->getOperand(2);
687 EVT FalseTy
= False
.getValueType();
689 if (!FalseTy
.isInteger())
692 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
694 // If the RHS (False) is 0, we swap the order of the operands
695 // of ISD::SELECT (obviously also inverting the condition) so that we can
696 // take advantage of conditional moves using the $0 register.
698 // return (a != 0) ? x : 0;
706 if (!FalseC
->getZExtValue()) {
707 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
708 SDValue True
= N
->getOperand(1);
710 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
712 ISD::getSetCCInverse(CC
, SetCC
.getValueType()));
714 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
717 // If both operands are integer constants there's a possibility that we
718 // can do some interesting optimizations.
719 SDValue True
= N
->getOperand(1);
720 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
722 if (!TrueC
|| !True
.getValueType().isInteger())
725 // We'll also ignore MVT::i64 operands as this optimizations proves
726 // to be ineffective because of the required sign extensions as the result
727 // of a SETCC operator is always MVT::i32 for non-vector types.
728 if (True
.getValueType() == MVT::i64
)
731 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
733 // 1) (a < x) ? y : y-1
735 // addiu $reg2, $reg1, y-1
737 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
739 // 2) (a < x) ? y-1 : y
741 // xor $reg1, $reg1, 1
742 // addiu $reg2, $reg1, y-1
744 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
745 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
747 ISD::getSetCCInverse(CC
, SetCC
.getValueType()));
748 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
751 // Could not optimize.
755 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
756 TargetLowering::DAGCombinerInfo
&DCI
,
757 const MipsSubtarget
&Subtarget
) {
758 if (DCI
.isBeforeLegalizeOps())
761 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
763 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
764 if (!FalseC
|| FalseC
->getZExtValue())
767 // Since RHS (False) is 0, we swap the order of the True/False operands
768 // (obviously also inverting the condition) so that we can
769 // take advantage of conditional moves using the $0 register.
771 // return (a != 0) ? x : 0;
774 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
777 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
778 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
779 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
782 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
783 TargetLowering::DAGCombinerInfo
&DCI
,
784 const MipsSubtarget
&Subtarget
) {
785 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
788 SDValue FirstOperand
= N
->getOperand(0);
789 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
790 SDValue Mask
= N
->getOperand(1);
791 EVT ValTy
= N
->getValueType(0);
794 uint64_t Pos
= 0, SMPos
, SMSize
;
799 // Op's second operand must be a shifted mask.
800 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
801 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
804 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
805 // Pattern match EXT.
806 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
807 // => ext $dst, $src, pos, size
809 // The second operand of the shift must be an immediate.
810 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
813 Pos
= CN
->getZExtValue();
815 // Return if the shifted mask does not start at bit 0 or the sum of its size
816 // and Pos exceeds the word's size.
817 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
821 NewOperand
= FirstOperand
.getOperand(0);
822 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
823 // Pattern match CINS.
824 // $dst = and (shl $src , pos), mask
825 // => cins $dst, $src, pos, size
826 // mask is a shifted mask with consecutive 1's, pos = shift amount,
827 // size = population count.
829 // The second operand of the shift must be an immediate.
830 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
833 Pos
= CN
->getZExtValue();
835 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
836 Pos
+ SMSize
> ValTy
.getSizeInBits())
839 NewOperand
= FirstOperand
.getOperand(0);
840 // SMSize is 'location' (position) in this case, not size.
844 // Pattern match EXT.
845 // $dst = and $src, (2**size - 1) , if size > 16
846 // => ext $dst, $src, pos, size , pos = 0
848 // If the mask is <= 0xffff, andi can be used instead.
849 if (CN
->getZExtValue() <= 0xffff)
852 // Return if the mask doesn't start at position 0.
857 NewOperand
= FirstOperand
;
859 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
860 DAG
.getConstant(Pos
, DL
, MVT::i32
),
861 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
864 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
865 TargetLowering::DAGCombinerInfo
&DCI
,
866 const MipsSubtarget
&Subtarget
) {
867 // Pattern match INS.
868 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
869 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
870 // => ins $dst, $src, size, pos, $src1
871 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
874 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
875 uint64_t SMPos0
, SMSize0
, SMPos1
, SMSize1
;
876 ConstantSDNode
*CN
, *CN1
;
878 // See if Op's first operand matches (and $src1 , mask0).
879 if (And0
.getOpcode() != ISD::AND
)
882 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
883 !isShiftedMask(~CN
->getSExtValue(), SMPos0
, SMSize0
))
886 // See if Op's second operand matches (and (shl $src, pos), mask1).
887 if (And1
.getOpcode() == ISD::AND
&&
888 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
890 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
891 !isShiftedMask(CN
->getZExtValue(), SMPos1
, SMSize1
))
894 // The shift masks must have the same position and size.
895 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
898 SDValue Shl
= And1
.getOperand(0);
900 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
903 unsigned Shamt
= CN
->getZExtValue();
905 // Return if the shift amount and the first bit position of mask are not the
907 EVT ValTy
= N
->getValueType(0);
908 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
912 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
913 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
914 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
917 // Pattern match DINS.
918 // $dst = or (and $src, mask0), mask1
919 // where mask0 = ((1 << SMSize0) -1) << SMPos0
920 // => dins $dst, $src, pos, size
921 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
922 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
923 (SMSize0
+ SMPos0
<= 32))) {
924 // Check if AND instruction has constant as argument
925 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
926 if (And1
.getOpcode() == ISD::AND
) {
927 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
930 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
933 // Don't generate INS if constant OR operand doesn't fit into bits
934 // cleared by constant AND operand.
935 if (CN
->getSExtValue() & CN1
->getSExtValue())
939 EVT ValTy
= N
->getOperand(0)->getValueType(0);
943 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
944 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
947 MipsISD::Ins
, DL
, N
->getValueType(0),
949 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
951 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
952 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
955 And0
->getOperand(0));
962 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
963 const MipsSubtarget
&Subtarget
) {
964 // ROOTNode must have a multiplication as an operand for the match to be
966 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
967 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
970 // We don't handle vector types here.
971 if (ROOTNode
->getValueType(0).isVector())
974 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
976 // (add (mul a b) c) =>
977 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
978 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
980 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
982 // The overhead of setting up the Hi/Lo registers and reassembling the
983 // result makes this a dubious optimzation for MIPS64. The core of the
984 // problem is that Hi/Lo contain the upper and lower 32 bits of the
985 // operand and result.
987 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
988 // density than doing it naively, 5 for MIPS64. Additionally, using
989 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
990 // extended operands, not true 64 bit values.
992 // FIXME: For the moment, disable this completely for MIPS64.
993 if (Subtarget
.hasMips64())
996 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
997 ? ROOTNode
->getOperand(0)
998 : ROOTNode
->getOperand(1);
1000 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1001 ? ROOTNode
->getOperand(1)
1002 : ROOTNode
->getOperand(0);
1004 // Transform this to a MADD only if the user of this node is the add.
1005 // If there are other users of the mul, this function returns here.
1006 if (!Mult
.hasOneUse())
1009 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1010 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1011 // of the multiply must have 32 or more sign bits, otherwise we cannot
1012 // perform this optimization. We have to check this here as we're performing
1013 // this optimization pre-legalization.
1014 SDValue MultLHS
= Mult
->getOperand(0);
1015 SDValue MultRHS
= Mult
->getOperand(1);
1017 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1018 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1019 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1020 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1022 if (!IsSigned
&& !IsUnsigned
)
1025 // Initialize accumulator.
1029 BottomHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1030 CurDAG
.getIntPtrConstant(0, DL
));
1032 TopHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1033 CurDAG
.getIntPtrConstant(1, DL
));
1034 SDValue ACCIn
= CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
,
1038 // Create MipsMAdd(u) / MipsMSub(u) node.
1039 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1040 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1041 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1042 SDValue MAddOps
[3] = {
1043 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1044 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1045 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1046 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1048 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1049 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1051 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1055 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1056 TargetLowering::DAGCombinerInfo
&DCI
,
1057 const MipsSubtarget
&Subtarget
) {
1058 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1059 if (DCI
.isBeforeLegalizeOps()) {
1060 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1061 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1062 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1070 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1071 TargetLowering::DAGCombinerInfo
&DCI
,
1072 const MipsSubtarget
&Subtarget
) {
1073 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1074 if (DCI
.isBeforeLegalizeOps()) {
1075 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1076 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1077 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1082 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1083 SDValue Add
= N
->getOperand(1);
1085 if (Add
.getOpcode() != ISD::ADD
)
1088 SDValue Lo
= Add
.getOperand(1);
1090 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1091 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1094 EVT ValTy
= N
->getValueType(0);
1097 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1099 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1102 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1103 TargetLowering::DAGCombinerInfo
&DCI
,
1104 const MipsSubtarget
&Subtarget
) {
1105 // Pattern match CINS.
1106 // $dst = shl (and $src , imm), pos
1107 // => cins $dst, $src, pos, size
1109 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1112 SDValue FirstOperand
= N
->getOperand(0);
1113 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1114 SDValue SecondOperand
= N
->getOperand(1);
1115 EVT ValTy
= N
->getValueType(0);
1118 uint64_t Pos
= 0, SMPos
, SMSize
;
1122 // The second operand of the shift must be an immediate.
1123 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1126 Pos
= CN
->getZExtValue();
1128 if (Pos
>= ValTy
.getSizeInBits())
1131 if (FirstOperandOpc
!= ISD::AND
)
1134 // AND's second operand must be a shifted mask.
1135 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1136 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
1139 // Return if the shifted mask does not start at bit 0 or the sum of its size
1140 // and Pos exceeds the word's size.
1141 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1144 NewOperand
= FirstOperand
.getOperand(0);
1145 // SMSize is 'location' (position) in this case, not size.
1148 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1149 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1150 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1153 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1155 SelectionDAG
&DAG
= DCI
.DAG
;
1156 unsigned Opc
= N
->getOpcode();
1162 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1164 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1165 case MipsISD::CMovFP_F
:
1166 case MipsISD::CMovFP_T
:
1167 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1169 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1171 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1173 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1175 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1177 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1183 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1184 return Subtarget
.hasMips32();
1187 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1188 return Subtarget
.hasMips32();
1191 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1192 const SDNode
*N
, CombineLevel Level
) const {
1193 if (N
->getOperand(0).getValueType().isVector())
1199 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1200 SmallVectorImpl
<SDValue
> &Results
,
1201 SelectionDAG
&DAG
) const {
1202 return LowerOperationWrapper(N
, Results
, DAG
);
1205 SDValue
MipsTargetLowering::
1206 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1208 switch (Op
.getOpcode())
1210 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1211 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1212 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1213 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1214 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1215 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1216 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1217 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1218 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1219 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1220 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1221 case ISD::FABS
: return lowerFABS(Op
, DAG
);
1222 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1223 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1224 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1225 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1226 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1227 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1228 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1229 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1230 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1231 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1232 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1237 //===----------------------------------------------------------------------===//
1238 // Lower helper functions
1239 //===----------------------------------------------------------------------===//
1241 // addLiveIn - This helper function adds the specified physical register to the
1242 // MachineFunction as a live in value. It also creates a corresponding
1243 // virtual register for it.
1245 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1247 Register VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1248 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1252 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1253 MachineBasicBlock
&MBB
,
1254 const TargetInstrInfo
&TII
,
1255 bool Is64Bit
, bool IsMicroMips
) {
1259 // Insert instruction "teq $divisor_reg, $zero, 7".
1260 MachineBasicBlock::iterator
I(MI
);
1261 MachineInstrBuilder MIB
;
1262 MachineOperand
&Divisor
= MI
.getOperand(2);
1263 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1264 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1265 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1269 // Use the 32-bit sub-register if this is a 64-bit division.
1271 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1273 // Clear Divisor's kill flag.
1274 Divisor
.setIsKill(false);
1276 // We would normally delete the original instruction here but in this case
1277 // we only needed to inject an additional instruction rather than replace it.
1283 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1284 MachineBasicBlock
*BB
) const {
1285 switch (MI
.getOpcode()) {
1287 llvm_unreachable("Unexpected instr type to insert");
1288 case Mips::ATOMIC_LOAD_ADD_I8
:
1289 return emitAtomicBinaryPartword(MI
, BB
, 1);
1290 case Mips::ATOMIC_LOAD_ADD_I16
:
1291 return emitAtomicBinaryPartword(MI
, BB
, 2);
1292 case Mips::ATOMIC_LOAD_ADD_I32
:
1293 return emitAtomicBinary(MI
, BB
);
1294 case Mips::ATOMIC_LOAD_ADD_I64
:
1295 return emitAtomicBinary(MI
, BB
);
1297 case Mips::ATOMIC_LOAD_AND_I8
:
1298 return emitAtomicBinaryPartword(MI
, BB
, 1);
1299 case Mips::ATOMIC_LOAD_AND_I16
:
1300 return emitAtomicBinaryPartword(MI
, BB
, 2);
1301 case Mips::ATOMIC_LOAD_AND_I32
:
1302 return emitAtomicBinary(MI
, BB
);
1303 case Mips::ATOMIC_LOAD_AND_I64
:
1304 return emitAtomicBinary(MI
, BB
);
1306 case Mips::ATOMIC_LOAD_OR_I8
:
1307 return emitAtomicBinaryPartword(MI
, BB
, 1);
1308 case Mips::ATOMIC_LOAD_OR_I16
:
1309 return emitAtomicBinaryPartword(MI
, BB
, 2);
1310 case Mips::ATOMIC_LOAD_OR_I32
:
1311 return emitAtomicBinary(MI
, BB
);
1312 case Mips::ATOMIC_LOAD_OR_I64
:
1313 return emitAtomicBinary(MI
, BB
);
1315 case Mips::ATOMIC_LOAD_XOR_I8
:
1316 return emitAtomicBinaryPartword(MI
, BB
, 1);
1317 case Mips::ATOMIC_LOAD_XOR_I16
:
1318 return emitAtomicBinaryPartword(MI
, BB
, 2);
1319 case Mips::ATOMIC_LOAD_XOR_I32
:
1320 return emitAtomicBinary(MI
, BB
);
1321 case Mips::ATOMIC_LOAD_XOR_I64
:
1322 return emitAtomicBinary(MI
, BB
);
1324 case Mips::ATOMIC_LOAD_NAND_I8
:
1325 return emitAtomicBinaryPartword(MI
, BB
, 1);
1326 case Mips::ATOMIC_LOAD_NAND_I16
:
1327 return emitAtomicBinaryPartword(MI
, BB
, 2);
1328 case Mips::ATOMIC_LOAD_NAND_I32
:
1329 return emitAtomicBinary(MI
, BB
);
1330 case Mips::ATOMIC_LOAD_NAND_I64
:
1331 return emitAtomicBinary(MI
, BB
);
1333 case Mips::ATOMIC_LOAD_SUB_I8
:
1334 return emitAtomicBinaryPartword(MI
, BB
, 1);
1335 case Mips::ATOMIC_LOAD_SUB_I16
:
1336 return emitAtomicBinaryPartword(MI
, BB
, 2);
1337 case Mips::ATOMIC_LOAD_SUB_I32
:
1338 return emitAtomicBinary(MI
, BB
);
1339 case Mips::ATOMIC_LOAD_SUB_I64
:
1340 return emitAtomicBinary(MI
, BB
);
1342 case Mips::ATOMIC_SWAP_I8
:
1343 return emitAtomicBinaryPartword(MI
, BB
, 1);
1344 case Mips::ATOMIC_SWAP_I16
:
1345 return emitAtomicBinaryPartword(MI
, BB
, 2);
1346 case Mips::ATOMIC_SWAP_I32
:
1347 return emitAtomicBinary(MI
, BB
);
1348 case Mips::ATOMIC_SWAP_I64
:
1349 return emitAtomicBinary(MI
, BB
);
1351 case Mips::ATOMIC_CMP_SWAP_I8
:
1352 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1353 case Mips::ATOMIC_CMP_SWAP_I16
:
1354 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1355 case Mips::ATOMIC_CMP_SWAP_I32
:
1356 return emitAtomicCmpSwap(MI
, BB
);
1357 case Mips::ATOMIC_CMP_SWAP_I64
:
1358 return emitAtomicCmpSwap(MI
, BB
);
1360 case Mips::ATOMIC_LOAD_MIN_I8
:
1361 return emitAtomicBinaryPartword(MI
, BB
, 1);
1362 case Mips::ATOMIC_LOAD_MIN_I16
:
1363 return emitAtomicBinaryPartword(MI
, BB
, 2);
1364 case Mips::ATOMIC_LOAD_MIN_I32
:
1365 return emitAtomicBinary(MI
, BB
);
1366 case Mips::ATOMIC_LOAD_MIN_I64
:
1367 return emitAtomicBinary(MI
, BB
);
1369 case Mips::ATOMIC_LOAD_MAX_I8
:
1370 return emitAtomicBinaryPartword(MI
, BB
, 1);
1371 case Mips::ATOMIC_LOAD_MAX_I16
:
1372 return emitAtomicBinaryPartword(MI
, BB
, 2);
1373 case Mips::ATOMIC_LOAD_MAX_I32
:
1374 return emitAtomicBinary(MI
, BB
);
1375 case Mips::ATOMIC_LOAD_MAX_I64
:
1376 return emitAtomicBinary(MI
, BB
);
1378 case Mips::ATOMIC_LOAD_UMIN_I8
:
1379 return emitAtomicBinaryPartword(MI
, BB
, 1);
1380 case Mips::ATOMIC_LOAD_UMIN_I16
:
1381 return emitAtomicBinaryPartword(MI
, BB
, 2);
1382 case Mips::ATOMIC_LOAD_UMIN_I32
:
1383 return emitAtomicBinary(MI
, BB
);
1384 case Mips::ATOMIC_LOAD_UMIN_I64
:
1385 return emitAtomicBinary(MI
, BB
);
1387 case Mips::ATOMIC_LOAD_UMAX_I8
:
1388 return emitAtomicBinaryPartword(MI
, BB
, 1);
1389 case Mips::ATOMIC_LOAD_UMAX_I16
:
1390 return emitAtomicBinaryPartword(MI
, BB
, 2);
1391 case Mips::ATOMIC_LOAD_UMAX_I32
:
1392 return emitAtomicBinary(MI
, BB
);
1393 case Mips::ATOMIC_LOAD_UMAX_I64
:
1394 return emitAtomicBinary(MI
, BB
);
1396 case Mips::PseudoSDIV
:
1397 case Mips::PseudoUDIV
:
1402 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1404 case Mips::SDIV_MM_Pseudo
:
1405 case Mips::UDIV_MM_Pseudo
:
1408 case Mips::DIV_MMR6
:
1409 case Mips::DIVU_MMR6
:
1410 case Mips::MOD_MMR6
:
1411 case Mips::MODU_MMR6
:
1412 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1413 case Mips::PseudoDSDIV
:
1414 case Mips::PseudoDUDIV
:
1419 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1421 case Mips::PseudoSELECT_I
:
1422 case Mips::PseudoSELECT_I64
:
1423 case Mips::PseudoSELECT_S
:
1424 case Mips::PseudoSELECT_D32
:
1425 case Mips::PseudoSELECT_D64
:
1426 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1427 case Mips::PseudoSELECTFP_F_I
:
1428 case Mips::PseudoSELECTFP_F_I64
:
1429 case Mips::PseudoSELECTFP_F_S
:
1430 case Mips::PseudoSELECTFP_F_D32
:
1431 case Mips::PseudoSELECTFP_F_D64
:
1432 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1433 case Mips::PseudoSELECTFP_T_I
:
1434 case Mips::PseudoSELECTFP_T_I64
:
1435 case Mips::PseudoSELECTFP_T_S
:
1436 case Mips::PseudoSELECTFP_T_D32
:
1437 case Mips::PseudoSELECTFP_T_D64
:
1438 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1439 case Mips::PseudoD_SELECT_I
:
1440 case Mips::PseudoD_SELECT_I64
:
1441 return emitPseudoD_SELECT(MI
, BB
);
1443 return emitLDR_W(MI
, BB
);
1445 return emitLDR_D(MI
, BB
);
1447 return emitSTR_W(MI
, BB
);
1449 return emitSTR_D(MI
, BB
);
1453 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1454 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1456 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1457 MachineBasicBlock
*BB
) const {
1459 MachineFunction
*MF
= BB
->getParent();
1460 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1461 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1462 DebugLoc DL
= MI
.getDebugLoc();
1465 bool NeedsAdditionalReg
= false;
1466 switch (MI
.getOpcode()) {
1467 case Mips::ATOMIC_LOAD_ADD_I32
:
1468 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1470 case Mips::ATOMIC_LOAD_SUB_I32
:
1471 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1473 case Mips::ATOMIC_LOAD_AND_I32
:
1474 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1476 case Mips::ATOMIC_LOAD_OR_I32
:
1477 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1479 case Mips::ATOMIC_LOAD_XOR_I32
:
1480 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1482 case Mips::ATOMIC_LOAD_NAND_I32
:
1483 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1485 case Mips::ATOMIC_SWAP_I32
:
1486 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1488 case Mips::ATOMIC_LOAD_ADD_I64
:
1489 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1491 case Mips::ATOMIC_LOAD_SUB_I64
:
1492 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1494 case Mips::ATOMIC_LOAD_AND_I64
:
1495 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1497 case Mips::ATOMIC_LOAD_OR_I64
:
1498 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1500 case Mips::ATOMIC_LOAD_XOR_I64
:
1501 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1503 case Mips::ATOMIC_LOAD_NAND_I64
:
1504 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1506 case Mips::ATOMIC_SWAP_I64
:
1507 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1509 case Mips::ATOMIC_LOAD_MIN_I32
:
1510 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I32_POSTRA
;
1511 NeedsAdditionalReg
= true;
1513 case Mips::ATOMIC_LOAD_MAX_I32
:
1514 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I32_POSTRA
;
1515 NeedsAdditionalReg
= true;
1517 case Mips::ATOMIC_LOAD_UMIN_I32
:
1518 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I32_POSTRA
;
1519 NeedsAdditionalReg
= true;
1521 case Mips::ATOMIC_LOAD_UMAX_I32
:
1522 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I32_POSTRA
;
1523 NeedsAdditionalReg
= true;
1525 case Mips::ATOMIC_LOAD_MIN_I64
:
1526 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I64_POSTRA
;
1527 NeedsAdditionalReg
= true;
1529 case Mips::ATOMIC_LOAD_MAX_I64
:
1530 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I64_POSTRA
;
1531 NeedsAdditionalReg
= true;
1533 case Mips::ATOMIC_LOAD_UMIN_I64
:
1534 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I64_POSTRA
;
1535 NeedsAdditionalReg
= true;
1537 case Mips::ATOMIC_LOAD_UMAX_I64
:
1538 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I64_POSTRA
;
1539 NeedsAdditionalReg
= true;
1542 llvm_unreachable("Unknown pseudo atomic for replacement!");
1545 Register OldVal
= MI
.getOperand(0).getReg();
1546 Register Ptr
= MI
.getOperand(1).getReg();
1547 Register Incr
= MI
.getOperand(2).getReg();
1548 Register Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1550 MachineBasicBlock::iterator
II(MI
);
1552 // The scratch registers here with the EarlyClobber | Define | Implicit
1553 // flags is used to persuade the register allocator and the machine
1554 // verifier to accept the usage of this register. This has to be a real
1555 // register which has an UNDEF value but is dead after the instruction which
1556 // is unique among the registers chosen for the instruction.
1558 // The EarlyClobber flag has the semantic properties that the operand it is
1559 // attached to is clobbered before the rest of the inputs are read. Hence it
1560 // must be unique among the operands to the instruction.
1561 // The Define flag is needed to coerce the machine verifier that an Undef
1562 // value isn't a problem.
1563 // The Dead flag is needed as the value in scratch isn't used by any other
1564 // instruction. Kill isn't used as Dead is more precise.
1565 // The implicit flag is here due to the interaction between the other flags
1566 // and the machine verifier.
1568 // For correctness purpose, a new pseudo is introduced here. We need this
1569 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1570 // that is spread over >1 basic blocks. A register allocator which
1571 // introduces (or any codegen infact) a store, can violate the expectations
1574 // An atomic read-modify-write sequence starts with a linked load
1575 // instruction and ends with a store conditional instruction. The atomic
1576 // read-modify-write sequence fails if any of the following conditions
1577 // occur between the execution of ll and sc:
1578 // * A coherent store is completed by another process or coherent I/O
1579 // module into the block of synchronizable physical memory containing
1580 // the word. The size and alignment of the block is
1581 // implementation-dependent.
1582 // * A coherent store is executed between an LL and SC sequence on the
1583 // same processor to the block of synchornizable physical memory
1584 // containing the word.
1587 Register PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1588 Register IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1590 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1591 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1593 MachineInstrBuilder MIB
=
1594 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1595 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1598 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1599 RegState::Implicit
| RegState::Dead
);
1600 if (NeedsAdditionalReg
) {
1602 RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1603 MIB
.addReg(Scratch2
, RegState::Define
| RegState::EarlyClobber
|
1604 RegState::Implicit
| RegState::Dead
);
1607 MI
.eraseFromParent();
1612 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1613 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1614 unsigned SrcReg
) const {
1615 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1616 const DebugLoc
&DL
= MI
.getDebugLoc();
1618 if (Subtarget
.hasMips32r2() && Size
== 1) {
1619 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1623 if (Subtarget
.hasMips32r2() && Size
== 2) {
1624 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1628 MachineFunction
*MF
= BB
->getParent();
1629 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1630 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1631 Register ScrReg
= RegInfo
.createVirtualRegister(RC
);
1634 int64_t ShiftImm
= 32 - (Size
* 8);
1636 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1637 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1642 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1643 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1644 assert((Size
== 1 || Size
== 2) &&
1645 "Unsupported size for EmitAtomicBinaryPartial.");
1647 MachineFunction
*MF
= BB
->getParent();
1648 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1649 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1650 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1651 const TargetRegisterClass
*RCp
=
1652 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1653 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1654 DebugLoc DL
= MI
.getDebugLoc();
1656 Register Dest
= MI
.getOperand(0).getReg();
1657 Register Ptr
= MI
.getOperand(1).getReg();
1658 Register Incr
= MI
.getOperand(2).getReg();
1660 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1661 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1662 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1663 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1664 Register Incr2
= RegInfo
.createVirtualRegister(RC
);
1665 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1666 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1667 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1668 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1669 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1670 Register Scratch3
= RegInfo
.createVirtualRegister(RC
);
1672 unsigned AtomicOp
= 0;
1673 bool NeedsAdditionalReg
= false;
1674 switch (MI
.getOpcode()) {
1675 case Mips::ATOMIC_LOAD_NAND_I8
:
1676 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1678 case Mips::ATOMIC_LOAD_NAND_I16
:
1679 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1681 case Mips::ATOMIC_SWAP_I8
:
1682 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1684 case Mips::ATOMIC_SWAP_I16
:
1685 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1687 case Mips::ATOMIC_LOAD_ADD_I8
:
1688 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1690 case Mips::ATOMIC_LOAD_ADD_I16
:
1691 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1693 case Mips::ATOMIC_LOAD_SUB_I8
:
1694 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1696 case Mips::ATOMIC_LOAD_SUB_I16
:
1697 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1699 case Mips::ATOMIC_LOAD_AND_I8
:
1700 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1702 case Mips::ATOMIC_LOAD_AND_I16
:
1703 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1705 case Mips::ATOMIC_LOAD_OR_I8
:
1706 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1708 case Mips::ATOMIC_LOAD_OR_I16
:
1709 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1711 case Mips::ATOMIC_LOAD_XOR_I8
:
1712 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1714 case Mips::ATOMIC_LOAD_XOR_I16
:
1715 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1717 case Mips::ATOMIC_LOAD_MIN_I8
:
1718 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I8_POSTRA
;
1719 NeedsAdditionalReg
= true;
1721 case Mips::ATOMIC_LOAD_MIN_I16
:
1722 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I16_POSTRA
;
1723 NeedsAdditionalReg
= true;
1725 case Mips::ATOMIC_LOAD_MAX_I8
:
1726 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I8_POSTRA
;
1727 NeedsAdditionalReg
= true;
1729 case Mips::ATOMIC_LOAD_MAX_I16
:
1730 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I16_POSTRA
;
1731 NeedsAdditionalReg
= true;
1733 case Mips::ATOMIC_LOAD_UMIN_I8
:
1734 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I8_POSTRA
;
1735 NeedsAdditionalReg
= true;
1737 case Mips::ATOMIC_LOAD_UMIN_I16
:
1738 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I16_POSTRA
;
1739 NeedsAdditionalReg
= true;
1741 case Mips::ATOMIC_LOAD_UMAX_I8
:
1742 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I8_POSTRA
;
1743 NeedsAdditionalReg
= true;
1745 case Mips::ATOMIC_LOAD_UMAX_I16
:
1746 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I16_POSTRA
;
1747 NeedsAdditionalReg
= true;
1750 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1753 // insert new blocks after the current block
1754 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1755 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1756 MachineFunction::iterator It
= ++BB
->getIterator();
1757 MF
->insert(It
, exitMBB
);
1759 // Transfer the remainder of BB and its successor edges to exitMBB.
1760 exitMBB
->splice(exitMBB
->begin(), BB
,
1761 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1762 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1764 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1767 // addiu masklsb2,$0,-4 # 0xfffffffc
1768 // and alignedaddr,ptr,masklsb2
1769 // andi ptrlsb2,ptr,3
1770 // sll shiftamt,ptrlsb2,3
1771 // ori maskupper,$0,255 # 0xff
1772 // sll mask,maskupper,shiftamt
1773 // nor mask2,$0,mask
1774 // sll incr2,incr,shiftamt
1776 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1777 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1778 .addReg(ABI
.GetNullPtr()).addImm(-4);
1779 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1780 .addReg(Ptr
).addReg(MaskLSB2
);
1781 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1782 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1783 if (Subtarget
.isLittle()) {
1784 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1786 Register Off
= RegInfo
.createVirtualRegister(RC
);
1787 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1788 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1789 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1791 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1792 .addReg(Mips::ZERO
).addImm(MaskImm
);
1793 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1794 .addReg(MaskUpper
).addReg(ShiftAmt
);
1795 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1796 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1799 // The purposes of the flags on the scratch registers is explained in
1800 // emitAtomicBinary. In summary, we need a scratch register which is going to
1801 // be undef, that is unique among registers chosen for the instruction.
1803 MachineInstrBuilder MIB
=
1804 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1805 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1806 .addReg(AlignedAddr
)
1811 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1812 RegState::Dead
| RegState::Implicit
)
1813 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1814 RegState::Dead
| RegState::Implicit
)
1815 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1816 RegState::Dead
| RegState::Implicit
);
1817 if (NeedsAdditionalReg
) {
1818 Register Scratch4
= RegInfo
.createVirtualRegister(RC
);
1819 MIB
.addReg(Scratch4
, RegState::EarlyClobber
| RegState::Define
|
1820 RegState::Dead
| RegState::Implicit
);
1823 MI
.eraseFromParent(); // The instruction is gone now.
1828 // Lower atomic compare and swap to a pseudo instruction, taking care to
1829 // define a scratch register for the pseudo instruction's expansion. The
1830 // instruction is expanded after the register allocator as to prevent
1831 // the insertion of stores between the linked load and the store conditional.
1834 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1835 MachineBasicBlock
*BB
) const {
1837 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1838 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1839 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1841 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1843 MachineFunction
*MF
= BB
->getParent();
1844 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1845 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1846 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1847 DebugLoc DL
= MI
.getDebugLoc();
1849 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1850 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1851 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1852 Register Dest
= MI
.getOperand(0).getReg();
1853 Register Ptr
= MI
.getOperand(1).getReg();
1854 Register OldVal
= MI
.getOperand(2).getReg();
1855 Register NewVal
= MI
.getOperand(3).getReg();
1857 Register Scratch
= MRI
.createVirtualRegister(RC
);
1858 MachineBasicBlock::iterator
II(MI
);
1860 // We need to create copies of the various registers and kill them at the
1861 // atomic pseudo. If the copies are not made, when the atomic is expanded
1862 // after fast register allocation, the spills will end up outside of the
1863 // blocks that their values are defined in, causing livein errors.
1865 Register PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1866 Register OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1867 Register NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1869 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1870 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1871 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1873 // The purposes of the flags on the scratch registers is explained in
1874 // emitAtomicBinary. In summary, we need a scratch register which is going to
1875 // be undef, that is unique among registers chosen for the instruction.
1877 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1878 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1879 .addReg(PtrCopy
, RegState::Kill
)
1880 .addReg(OldValCopy
, RegState::Kill
)
1881 .addReg(NewValCopy
, RegState::Kill
)
1882 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1883 RegState::Dead
| RegState::Implicit
);
1885 MI
.eraseFromParent(); // The instruction is gone now.
1890 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1891 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1892 assert((Size
== 1 || Size
== 2) &&
1893 "Unsupported size for EmitAtomicCmpSwapPartial.");
1895 MachineFunction
*MF
= BB
->getParent();
1896 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1897 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1898 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1899 const TargetRegisterClass
*RCp
=
1900 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1901 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1902 DebugLoc DL
= MI
.getDebugLoc();
1904 Register Dest
= MI
.getOperand(0).getReg();
1905 Register Ptr
= MI
.getOperand(1).getReg();
1906 Register CmpVal
= MI
.getOperand(2).getReg();
1907 Register NewVal
= MI
.getOperand(3).getReg();
1909 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1910 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1911 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1912 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1913 Register ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1914 Register ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1915 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1916 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1917 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1918 Register MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1919 Register MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1920 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1921 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1922 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1924 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1925 // flags are used to coerce the register allocator and the machine verifier to
1926 // accept the usage of these registers.
1927 // The EarlyClobber flag has the semantic properties that the operand it is
1928 // attached to is clobbered before the rest of the inputs are read. Hence it
1929 // must be unique among the operands to the instruction.
1930 // The Define flag is needed to coerce the machine verifier that an Undef
1931 // value isn't a problem.
1932 // The Dead flag is needed as the value in scratch isn't used by any other
1933 // instruction. Kill isn't used as Dead is more precise.
1934 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1935 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1937 // insert new blocks after the current block
1938 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1939 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1940 MachineFunction::iterator It
= ++BB
->getIterator();
1941 MF
->insert(It
, exitMBB
);
1943 // Transfer the remainder of BB and its successor edges to exitMBB.
1944 exitMBB
->splice(exitMBB
->begin(), BB
,
1945 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1946 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1948 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1951 // addiu masklsb2,$0,-4 # 0xfffffffc
1952 // and alignedaddr,ptr,masklsb2
1953 // andi ptrlsb2,ptr,3
1954 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1955 // sll shiftamt,ptrlsb2,3
1956 // ori maskupper,$0,255 # 0xff
1957 // sll mask,maskupper,shiftamt
1958 // nor mask2,$0,mask
1959 // andi maskedcmpval,cmpval,255
1960 // sll shiftedcmpval,maskedcmpval,shiftamt
1961 // andi maskednewval,newval,255
1962 // sll shiftednewval,maskednewval,shiftamt
1963 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1964 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1965 .addReg(ABI
.GetNullPtr()).addImm(-4);
1966 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1967 .addReg(Ptr
).addReg(MaskLSB2
);
1968 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1969 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1970 if (Subtarget
.isLittle()) {
1971 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1973 Register Off
= RegInfo
.createVirtualRegister(RC
);
1974 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1975 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1976 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1978 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1979 .addReg(Mips::ZERO
).addImm(MaskImm
);
1980 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1981 .addReg(MaskUpper
).addReg(ShiftAmt
);
1982 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1983 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
1984 .addReg(CmpVal
).addImm(MaskImm
);
1985 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
1986 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
1987 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
1988 .addReg(NewVal
).addImm(MaskImm
);
1989 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
1990 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
1992 // The purposes of the flags on the scratch registers are explained in
1993 // emitAtomicBinary. In summary, we need a scratch register which is going to
1994 // be undef, that is unique among the register chosen for the instruction.
1996 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1997 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1998 .addReg(AlignedAddr
)
2000 .addReg(ShiftedCmpVal
)
2002 .addReg(ShiftedNewVal
)
2004 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
2005 RegState::Dead
| RegState::Implicit
)
2006 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
2007 RegState::Dead
| RegState::Implicit
);
2009 MI
.eraseFromParent(); // The instruction is gone now.
2014 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
2015 // The first operand is the chain, the second is the condition, the third is
2016 // the block to branch to if the condition is true.
2017 SDValue Chain
= Op
.getOperand(0);
2018 SDValue Dest
= Op
.getOperand(2);
2021 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2022 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
2024 // Return if flag is not set by a floating point comparison.
2025 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
2028 SDValue CCNode
= CondRes
.getOperand(2);
2030 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
2031 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
2032 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
2033 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
2034 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
2035 FCC0
, Dest
, CondRes
);
2038 SDValue
MipsTargetLowering::
2039 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
2041 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2042 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
2044 // Return if flag is not set by a floating point comparison.
2045 if (Cond
.getOpcode() != MipsISD::FPCmp
)
2048 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
2052 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
2053 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2054 SDValue Cond
= createFPCmp(DAG
, Op
);
2056 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
2057 "Floating point operand expected.");
2060 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
2061 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
2063 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
2066 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
2067 SelectionDAG
&DAG
) const {
2068 EVT Ty
= Op
.getValueType();
2069 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
2070 const GlobalValue
*GV
= N
->getGlobal();
2072 if (!isPositionIndependent()) {
2073 const MipsTargetObjectFile
*TLOF
=
2074 static_cast<const MipsTargetObjectFile
*>(
2075 getTargetMachine().getObjFileLowering());
2076 const GlobalObject
*GO
= GV
->getBaseObject();
2077 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
2078 // %gp_rel relocation
2079 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2081 // %hi/%lo relocation
2082 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2083 // %highest/%higher/%hi/%lo relocation
2084 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2087 // Every other architecture would use shouldAssumeDSOLocal in here, but
2089 // * In PIC code mips requires got loads even for local statics!
2090 // * To save on got entries, for local statics the got entry contains the
2091 // page and an additional add instruction takes care of the low bits.
2092 // * It is legal to access a hidden symbol with a non hidden undefined,
2093 // so one cannot guarantee that all access to a hidden symbol will know
2095 // * Mips linkers don't support creating a page and a full got entry for
2097 // * Given all that, we have to use a full got entry for hidden symbols :-(
2098 if (GV
->hasLocalLinkage())
2099 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2101 if (Subtarget
.useXGOT())
2102 return getAddrGlobalLargeGOT(
2103 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
2105 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2107 return getAddrGlobal(
2108 N
, SDLoc(N
), Ty
, DAG
,
2109 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
2110 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2113 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
2114 SelectionDAG
&DAG
) const {
2115 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2116 EVT Ty
= Op
.getValueType();
2118 if (!isPositionIndependent())
2119 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2120 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2122 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2125 SDValue
MipsTargetLowering::
2126 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2128 // If the relocation model is PIC, use the General Dynamic TLS Model or
2129 // Local Dynamic TLS model, otherwise use the Initial Exec or
2130 // Local Exec TLS Model.
2132 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2133 if (DAG
.getTarget().useEmulatedTLS())
2134 return LowerToTLSEmulatedModel(GA
, DAG
);
2137 const GlobalValue
*GV
= GA
->getGlobal();
2138 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2140 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2142 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2143 // General Dynamic and Local Dynamic TLS Model.
2144 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2147 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2148 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2149 getGlobalReg(DAG
, PtrVT
), TGA
);
2150 unsigned PtrSize
= PtrVT
.getSizeInBits();
2151 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2153 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2157 Entry
.Node
= Argument
;
2159 Args
.push_back(Entry
);
2161 TargetLowering::CallLoweringInfo
CLI(DAG
);
2163 .setChain(DAG
.getEntryNode())
2164 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2165 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2167 SDValue Ret
= CallResult
.first
;
2169 if (model
!= TLSModel::LocalDynamic
)
2172 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2173 MipsII::MO_DTPREL_HI
);
2174 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2175 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2176 MipsII::MO_DTPREL_LO
);
2177 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2178 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2179 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2183 if (model
== TLSModel::InitialExec
) {
2184 // Initial Exec TLS Model
2185 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2186 MipsII::MO_GOTTPREL
);
2187 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2190 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2192 // Local Exec TLS Model
2193 assert(model
== TLSModel::LocalExec
);
2194 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2195 MipsII::MO_TPREL_HI
);
2196 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2197 MipsII::MO_TPREL_LO
);
2198 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2199 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2200 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2203 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2204 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2207 SDValue
MipsTargetLowering::
2208 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2210 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2211 EVT Ty
= Op
.getValueType();
2213 if (!isPositionIndependent())
2214 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2215 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2217 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2220 SDValue
MipsTargetLowering::
2221 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2223 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2224 EVT Ty
= Op
.getValueType();
2226 if (!isPositionIndependent()) {
2227 const MipsTargetObjectFile
*TLOF
=
2228 static_cast<const MipsTargetObjectFile
*>(
2229 getTargetMachine().getObjFileLowering());
2231 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2232 getTargetMachine()))
2233 // %gp_rel relocation
2234 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2236 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2237 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2240 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2243 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2244 MachineFunction
&MF
= DAG
.getMachineFunction();
2245 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2248 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2249 getPointerTy(MF
.getDataLayout()));
2251 // vastart just stores the address of the VarArgsFrameIndex slot into the
2252 // memory location argument.
2253 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2254 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2255 MachinePointerInfo(SV
));
2258 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2259 SDNode
*Node
= Op
.getNode();
2260 EVT VT
= Node
->getValueType(0);
2261 SDValue Chain
= Node
->getOperand(0);
2262 SDValue VAListPtr
= Node
->getOperand(1);
2264 llvm::MaybeAlign(Node
->getConstantOperandVal(3)).valueOrOne();
2265 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2267 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2269 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2270 VAListPtr
, MachinePointerInfo(SV
));
2271 SDValue VAList
= VAListLoad
;
2273 // Re-align the pointer if necessary.
2274 // It should only ever be necessary for 64-bit types on O32 since the minimum
2275 // argument alignment is the same as the maximum type alignment for N32/N64.
2277 // FIXME: We currently align too often. The code generator doesn't notice
2278 // when the pointer is still aligned from the last va_arg (or pair of
2279 // va_args for the i64 on O32 case).
2280 if (Align
> getMinStackArgumentAlignment()) {
2281 VAList
= DAG
.getNode(
2282 ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2283 DAG
.getConstant(Align
.value() - 1, DL
, VAList
.getValueType()));
2285 VAList
= DAG
.getNode(
2286 ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2287 DAG
.getConstant(-(int64_t)Align
.value(), DL
, VAList
.getValueType()));
2290 // Increment the pointer, VAList, to the next vaarg.
2291 auto &TD
= DAG
.getDataLayout();
2292 unsigned ArgSizeInBytes
=
2293 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2295 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2296 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2297 DL
, VAList
.getValueType()));
2298 // Store the incremented VAList to the legalized pointer
2299 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2300 MachinePointerInfo(SV
));
2302 // In big-endian mode we must adjust the pointer when the load size is smaller
2303 // than the argument slot size. We must also reduce the known alignment to
2304 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2305 // the correct half of the slot, and reduce the alignment from 8 (slot
2306 // alignment) down to 4 (type alignment).
2307 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2308 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2309 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2310 DAG
.getIntPtrConstant(Adjustment
, DL
));
2312 // Load the actual argument out of the pointer VAList
2313 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2316 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2317 bool HasExtractInsert
) {
2318 EVT TyX
= Op
.getOperand(0).getValueType();
2319 EVT TyY
= Op
.getOperand(1).getValueType();
2321 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2322 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2325 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2327 SDValue X
= (TyX
== MVT::f32
) ?
2328 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2329 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2331 SDValue Y
= (TyY
== MVT::f32
) ?
2332 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2333 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2336 if (HasExtractInsert
) {
2337 // ext E, Y, 31, 1 ; extract bit31 of Y
2338 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2339 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2340 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2343 // srl SrlX, SllX, 1
2345 // sll SllY, SrlX, 31
2346 // or Or, SrlX, SllY
2347 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2348 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2349 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2350 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2351 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2354 if (TyX
== MVT::f32
)
2355 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2357 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2359 DAG
.getConstant(0, DL
, MVT::i32
));
2360 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2363 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2364 bool HasExtractInsert
) {
2365 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2366 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2367 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2369 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2371 // Bitcast to integer nodes.
2372 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2373 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2375 if (HasExtractInsert
) {
2376 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2377 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2378 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2379 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2381 if (WidthX
> WidthY
)
2382 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2383 else if (WidthY
> WidthX
)
2384 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2386 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2387 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2389 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2392 // (d)sll SllX, X, 1
2393 // (d)srl SrlX, SllX, 1
2394 // (d)srl SrlY, Y, width(Y)-1
2395 // (d)sll SllY, SrlX, width(Y)-1
2396 // or Or, SrlX, SllY
2397 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2398 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2399 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2400 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2402 if (WidthX
> WidthY
)
2403 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2404 else if (WidthY
> WidthX
)
2405 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2407 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2408 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2409 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2410 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2414 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2415 if (Subtarget
.isGP64bit())
2416 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2418 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2421 static SDValue
lowerFABS32(SDValue Op
, SelectionDAG
&DAG
,
2422 bool HasExtractInsert
) {
2424 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2426 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2428 SDValue X
= (Op
.getValueType() == MVT::f32
)
2429 ? DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0))
2430 : DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2431 Op
.getOperand(0), Const1
);
2434 if (HasExtractInsert
)
2435 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
,
2436 DAG
.getRegister(Mips::ZERO
, MVT::i32
),
2437 DAG
.getConstant(31, DL
, MVT::i32
), Const1
, X
);
2439 // TODO: Provide DAG patterns which transform (and x, cst)
2440 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2441 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2442 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2445 if (Op
.getValueType() == MVT::f32
)
2446 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Res
);
2448 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2449 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2450 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2453 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2454 DAG
.getConstant(0, DL
, MVT::i32
));
2455 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2458 static SDValue
lowerFABS64(SDValue Op
, SelectionDAG
&DAG
,
2459 bool HasExtractInsert
) {
2461 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2463 // Bitcast to integer node.
2464 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Op
.getOperand(0));
2467 if (HasExtractInsert
)
2468 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i64
,
2469 DAG
.getRegister(Mips::ZERO_64
, MVT::i64
),
2470 DAG
.getConstant(63, DL
, MVT::i32
), Const1
, X
);
2472 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, X
, Const1
);
2473 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SllX
, Const1
);
2476 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, Res
);
2479 SDValue
MipsTargetLowering::lowerFABS(SDValue Op
, SelectionDAG
&DAG
) const {
2480 if ((ABI
.IsN32() || ABI
.IsN64()) && (Op
.getValueType() == MVT::f64
))
2481 return lowerFABS64(Op
, DAG
, Subtarget
.hasExtractInsert());
2483 return lowerFABS32(Op
, DAG
, Subtarget
.hasExtractInsert());
2486 SDValue
MipsTargetLowering::
2487 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2489 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2490 DAG
.getContext()->emitError(
2491 "return address can be determined only for current frame");
2495 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2496 MFI
.setFrameAddressIsTaken(true);
2497 EVT VT
= Op
.getValueType();
2499 SDValue FrameAddr
= DAG
.getCopyFromReg(
2500 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2504 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2505 SelectionDAG
&DAG
) const {
2506 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2510 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2511 DAG
.getContext()->emitError(
2512 "return address can be determined only for current frame");
2516 MachineFunction
&MF
= DAG
.getMachineFunction();
2517 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2518 MVT VT
= Op
.getSimpleValueType();
2519 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2520 MFI
.setReturnAddressIsTaken(true);
2522 // Return RA, which contains the return address. Mark it an implicit live-in.
2523 unsigned Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2524 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2527 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2528 // generated from __builtin_eh_return (offset, handler)
2529 // The effect of this is to adjust the stack pointer by "offset"
2530 // and then branch to "handler".
2531 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2533 MachineFunction
&MF
= DAG
.getMachineFunction();
2534 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2536 MipsFI
->setCallsEhReturn();
2537 SDValue Chain
= Op
.getOperand(0);
2538 SDValue Offset
= Op
.getOperand(1);
2539 SDValue Handler
= Op
.getOperand(2);
2541 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2543 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2544 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2545 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2546 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2547 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2548 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2549 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2550 DAG
.getRegister(OffsetReg
, Ty
),
2551 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2555 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2556 SelectionDAG
&DAG
) const {
2557 // FIXME: Need pseudo-fence for 'singlethread' fences
2558 // FIXME: Set SType for weaker fences where supported/appropriate.
2561 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2562 DAG
.getConstant(SType
, DL
, MVT::i32
));
2565 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2566 SelectionDAG
&DAG
) const {
2568 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2570 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2571 SDValue Shamt
= Op
.getOperand(2);
2572 // if shamt < (VT.bits):
2573 // lo = (shl lo, shamt)
2574 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2577 // hi = (shl lo, shamt[4:0])
2578 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2579 DAG
.getConstant(-1, DL
, MVT::i32
));
2580 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2581 DAG
.getConstant(1, DL
, VT
));
2582 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2583 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2584 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2585 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2586 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2587 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2588 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2589 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2590 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2592 SDValue Ops
[2] = {Lo
, Hi
};
2593 return DAG
.getMergeValues(Ops
, DL
);
2596 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2599 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2600 SDValue Shamt
= Op
.getOperand(2);
2601 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2603 // if shamt < (VT.bits):
2604 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2606 // hi = (sra hi, shamt)
2608 // hi = (srl hi, shamt)
2611 // lo = (sra hi, shamt[4:0])
2612 // hi = (sra hi, 31)
2614 // lo = (srl hi, shamt[4:0])
2616 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2617 DAG
.getConstant(-1, DL
, MVT::i32
));
2618 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2619 DAG
.getConstant(1, DL
, VT
));
2620 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2621 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2622 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2623 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2625 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2626 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2627 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2628 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2630 if (!(Subtarget
.hasMips4() || Subtarget
.hasMips32())) {
2631 SDVTList VTList
= DAG
.getVTList(VT
, VT
);
2632 return DAG
.getNode(Subtarget
.isGP64bit() ? Mips::PseudoD_SELECT_I64
2633 : Mips::PseudoD_SELECT_I
,
2634 DL
, VTList
, Cond
, ShiftRightHi
,
2635 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), Or
,
2639 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2640 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2641 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2643 SDValue Ops
[2] = {Lo
, Hi
};
2644 return DAG
.getMergeValues(Ops
, DL
);
2647 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2648 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2649 SDValue Ptr
= LD
->getBasePtr();
2650 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2651 EVT BasePtrVT
= Ptr
.getValueType();
2653 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2656 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2657 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2659 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2660 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2661 LD
->getMemOperand());
2664 // Expand an unaligned 32 or 64-bit integer load node.
2665 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2666 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2667 EVT MemVT
= LD
->getMemoryVT();
2669 if (Subtarget
.systemSupportsUnalignedAccess())
2672 // Return if load is aligned or if MemVT is neither i32 nor i64.
2673 if ((LD
->getAlignment() >= MemVT
.getSizeInBits() / 8) ||
2674 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2677 bool IsLittle
= Subtarget
.isLittle();
2678 EVT VT
= Op
.getValueType();
2679 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2680 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2682 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2685 // (set dst, (i64 (load baseptr)))
2687 // (set tmp, (ldl (add baseptr, 7), undef))
2688 // (set dst, (ldr baseptr, tmp))
2689 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2690 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2692 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2696 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2698 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2702 // (set dst, (i32 (load baseptr))) or
2703 // (set dst, (i64 (sextload baseptr))) or
2704 // (set dst, (i64 (extload baseptr)))
2706 // (set tmp, (lwl (add baseptr, 3), undef))
2707 // (set dst, (lwr baseptr, tmp))
2708 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2709 (ExtType
== ISD::EXTLOAD
))
2712 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2715 // (set dst, (i64 (zextload baseptr)))
2717 // (set tmp0, (lwl (add baseptr, 3), undef))
2718 // (set tmp1, (lwr baseptr, tmp0))
2719 // (set tmp2, (shl tmp1, 32))
2720 // (set dst, (srl tmp2, 32))
2722 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2723 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2724 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2725 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2726 return DAG
.getMergeValues(Ops
, DL
);
2729 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2730 SDValue Chain
, unsigned Offset
) {
2731 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2732 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2734 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2737 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2738 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2740 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2741 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2742 SD
->getMemOperand());
2745 // Expand an unaligned 32 or 64-bit integer store node.
2746 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2748 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2749 EVT VT
= Value
.getValueType();
2752 // (store val, baseptr) or
2753 // (truncstore val, baseptr)
2755 // (swl val, (add baseptr, 3))
2756 // (swr val, baseptr)
2757 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2758 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2760 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2763 assert(VT
== MVT::i64
);
2766 // (store val, baseptr)
2768 // (sdl val, (add baseptr, 7))
2769 // (sdr val, baseptr)
2770 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2771 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2774 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2775 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2777 SDValue Val
= SD
->getValue();
2779 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2780 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2783 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2784 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2786 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2787 SD
->getPointerInfo(), SD
->getAlignment(),
2788 SD
->getMemOperand()->getFlags());
2791 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2792 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2793 EVT MemVT
= SD
->getMemoryVT();
2795 // Lower unaligned integer stores.
2796 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2797 (SD
->getAlignment() < MemVT
.getSizeInBits() / 8) &&
2798 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2799 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2801 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2804 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2805 SelectionDAG
&DAG
) const {
2807 // Return a fixed StackObject with offset 0 which points to the old stack
2809 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2810 EVT ValTy
= Op
->getValueType(0);
2811 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2812 return DAG
.getFrameIndex(FI
, ValTy
);
2815 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2816 SelectionDAG
&DAG
) const {
2817 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2820 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2821 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2823 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2826 //===----------------------------------------------------------------------===//
2827 // Calling Convention Implementation
2828 //===----------------------------------------------------------------------===//
2830 //===----------------------------------------------------------------------===//
2831 // TODO: Implement a generic logic using tblgen that can support this.
2832 // Mips O32 ABI rules:
2834 // i32 - Passed in A0, A1, A2, A3 and stack
2835 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2836 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2837 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2838 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2839 // not used, it must be shadowed. If only A3 is available, shadow it and
2841 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2842 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2843 // with the remainder spilled to the stack.
2844 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2845 // spilling the remainder to the stack.
2847 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2848 //===----------------------------------------------------------------------===//
2850 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2851 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2852 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2853 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2854 State
.getMachineFunction().getSubtarget());
2856 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2858 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2860 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2862 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2864 // Do not process byval args here.
2865 if (ArgFlags
.isByVal())
2868 // Promote i8 and i16
2869 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2870 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2872 if (ArgFlags
.isSExt())
2873 LocInfo
= CCValAssign::SExtUpper
;
2874 else if (ArgFlags
.isZExt())
2875 LocInfo
= CCValAssign::ZExtUpper
;
2877 LocInfo
= CCValAssign::AExtUpper
;
2881 // Promote i8 and i16
2882 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2884 if (ArgFlags
.isSExt())
2885 LocInfo
= CCValAssign::SExt
;
2886 else if (ArgFlags
.isZExt())
2887 LocInfo
= CCValAssign::ZExt
;
2889 LocInfo
= CCValAssign::AExt
;
2894 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2895 // is true: function is vararg, argument is 3rd or higher, there is previous
2896 // argument which is not f32 or f64.
2897 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2898 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2899 Align OrigAlign
= ArgFlags
.getNonZeroOrigAlign();
2900 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== Align(8));
2901 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2903 // The MIPS vector ABI for floats passes them in a pair of registers
2904 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2905 // This is the start of an vector that was scalarized into an unknown number
2906 // of components. It doesn't matter how many there are. Allocate one of the
2907 // notional 8 byte aligned registers which map onto the argument stack, and
2908 // shadow the register lost to alignment requirements.
2909 if (ArgFlags
.isSplit()) {
2910 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2911 if (Reg
== Mips::A2
)
2912 State
.AllocateReg(Mips::A1
);
2914 State
.AllocateReg(Mips::A3
);
2916 // If we're an intermediate component of the split, we can just attempt to
2917 // allocate a register directly.
2918 Reg
= State
.AllocateReg(IntRegs
);
2920 } else if (ValVT
== MVT::i32
||
2921 (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2922 Reg
= State
.AllocateReg(IntRegs
);
2923 // If this is the first part of an i64 arg,
2924 // the allocated register must be either A0 or A2.
2925 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2926 Reg
= State
.AllocateReg(IntRegs
);
2928 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2931 // Allocate int register and shadow next int register. If first
2932 // available register is Mips::A1 or Mips::A3, shadow it too.
2933 Reg
= State
.AllocateReg(IntRegs
);
2934 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2935 Reg
= State
.AllocateReg(IntRegs
);
2939 CCValAssign::getCustomReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2940 MCRegister HiReg
= State
.AllocateReg(IntRegs
);
2943 CCValAssign::getCustomReg(ValNo
, ValVT
, HiReg
, LocVT
, LocInfo
));
2946 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2947 // we are guaranteed to find an available float register
2948 if (ValVT
== MVT::f32
) {
2949 Reg
= State
.AllocateReg(F32Regs
);
2950 // Shadow int register
2951 State
.AllocateReg(IntRegs
);
2953 Reg
= State
.AllocateReg(F64Regs
);
2954 // Shadow int registers
2955 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2956 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2957 State
.AllocateReg(IntRegs
);
2958 State
.AllocateReg(IntRegs
);
2961 llvm_unreachable("Cannot handle this ValVT.");
2964 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
2965 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
2967 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2972 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
2973 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2974 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2975 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
2977 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2980 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
2981 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2982 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2983 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
2985 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2988 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2989 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2990 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
2992 #include "MipsGenCallingConv.inc"
2994 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
2995 return CC_Mips_FixedArg
;
2998 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
3001 //===----------------------------------------------------------------------===//
3002 // Call Calling Convention Implementation
3003 //===----------------------------------------------------------------------===//
3005 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
3006 SDValue Chain
, SDValue Arg
,
3007 const SDLoc
&DL
, bool IsTailCall
,
3008 SelectionDAG
&DAG
) const {
3011 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
3012 DAG
.getIntPtrConstant(Offset
, DL
));
3013 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
3016 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
3017 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
3018 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3019 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(), MaybeAlign(),
3020 MachineMemOperand::MOVolatile
);
3023 void MipsTargetLowering::
3024 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
3025 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
3026 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
3027 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
3028 SDValue Chain
) const {
3029 // Insert node "GP copy globalreg" before call to function.
3031 // R_MIPS_CALL* operators (emitted when non-internal functions are called
3032 // in PIC mode) allow symbols to be resolved via lazy binding.
3033 // The lazy binding stub requires GP to point to the GOT.
3034 // Note that we don't need GP to point to the GOT for indirect calls
3035 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3036 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3037 // used for the function (that is, Mips linker doesn't generate lazy binding
3038 // stub for a function whose address is taken in the program).
3039 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
3040 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
3041 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
3042 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
3045 // Build a sequence of copy-to-reg nodes chained together with token
3046 // chain and flag operands which copy the outgoing args into registers.
3047 // The InFlag in necessary since all emitted instructions must be
3051 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
3052 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, RegsToPass
[i
].first
,
3053 RegsToPass
[i
].second
, InFlag
);
3054 InFlag
= Chain
.getValue(1);
3057 // Add argument registers to the end of the list so that they are
3058 // known live into the call.
3059 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
3060 Ops
.push_back(CLI
.DAG
.getRegister(RegsToPass
[i
].first
,
3061 RegsToPass
[i
].second
.getValueType()));
3063 // Add a register mask operand representing the call-preserved registers.
3064 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
3065 const uint32_t *Mask
=
3066 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
3067 assert(Mask
&& "Missing call preserved mask for calling convention");
3068 if (Subtarget
.inMips16HardFloat()) {
3069 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
3070 StringRef Sym
= G
->getGlobal()->getName();
3071 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
3072 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
3073 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
3077 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
3079 if (InFlag
.getNode())
3080 Ops
.push_back(InFlag
);
3083 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
3084 SDNode
*Node
) const {
3085 switch (MI
.getOpcode()) {
3089 case Mips::JALRPseudo
:
3091 case Mips::JALR64Pseudo
:
3092 case Mips::JALR16_MM
:
3093 case Mips::JALRC16_MMR6
:
3094 case Mips::TAILCALLREG
:
3095 case Mips::TAILCALLREG64
:
3096 case Mips::TAILCALLR6REG
:
3097 case Mips::TAILCALL64R6REG
:
3098 case Mips::TAILCALLREG_MM
:
3099 case Mips::TAILCALLREG_MMR6
: {
3100 if (!EmitJalrReloc
||
3101 Subtarget
.inMips16Mode() ||
3102 !isPositionIndependent() ||
3103 Node
->getNumOperands() < 1 ||
3104 Node
->getOperand(0).getNumOperands() < 2) {
3107 // We are after the callee address, set by LowerCall().
3108 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3110 const SDValue TargetAddr
= Node
->getOperand(0).getOperand(1);
3112 if (const GlobalAddressSDNode
*G
=
3113 dyn_cast_or_null
<const GlobalAddressSDNode
>(TargetAddr
)) {
3114 // We must not emit the R_MIPS_JALR relocation against data symbols
3115 // since this will cause run-time crashes if the linker replaces the
3116 // call instruction with a relative branch to the data symbol.
3117 if (!isa
<Function
>(G
->getGlobal())) {
3118 LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3119 << G
->getGlobal()->getName() << "\n");
3122 Sym
= G
->getGlobal()->getName();
3124 else if (const ExternalSymbolSDNode
*ES
=
3125 dyn_cast_or_null
<const ExternalSymbolSDNode
>(TargetAddr
)) {
3126 Sym
= ES
->getSymbol();
3132 MachineFunction
*MF
= MI
.getParent()->getParent();
3133 MCSymbol
*S
= MF
->getContext().getOrCreateSymbol(Sym
);
3134 LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym
<< "\n");
3135 MI
.addOperand(MachineOperand::CreateMCSymbol(S
, MipsII::MO_JALR
));
3140 /// LowerCall - functions arguments are copied from virtual regs to
3141 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3143 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
3144 SmallVectorImpl
<SDValue
> &InVals
) const {
3145 SelectionDAG
&DAG
= CLI
.DAG
;
3147 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3148 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3149 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3150 SDValue Chain
= CLI
.Chain
;
3151 SDValue Callee
= CLI
.Callee
;
3152 bool &IsTailCall
= CLI
.IsTailCall
;
3153 CallingConv::ID CallConv
= CLI
.CallConv
;
3154 bool IsVarArg
= CLI
.IsVarArg
;
3156 MachineFunction
&MF
= DAG
.getMachineFunction();
3157 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3158 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
3159 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
3160 bool IsPIC
= isPositionIndependent();
3162 // Analyze operands of the call, assigning locations to each operand.
3163 SmallVector
<CCValAssign
, 16> ArgLocs
;
3165 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
3166 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
3168 const ExternalSymbolSDNode
*ES
=
3169 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
3171 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3172 // is during the lowering of a call with a byval argument which produces
3173 // a call to memcpy. For the O32 case, this causes the caller to allocate
3174 // stack space for the reserved argument area for the callee, then recursively
3175 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3176 // ABIs mandate that the callee allocates the reserved argument area. We do
3177 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3179 // If the callee has a byval argument and memcpy is used, we are mandated
3180 // to already have produced a reserved argument area for the callee for O32.
3181 // Therefore, the reserved argument area can be reused for both calls.
3183 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3184 // present, as we have yet to hook that node onto the chain.
3186 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3187 // case. GCC does a similar trick, in that wherever possible, it calculates
3188 // the maximum out going argument area (including the reserved area), and
3189 // preallocates the stack space on entrance to the caller.
3191 // FIXME: We should do the same for efficiency and space.
3193 // Note: The check on the calling convention below must match
3194 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3195 bool MemcpyInByVal
= ES
&&
3196 StringRef(ES
->getSymbol()) == StringRef("memcpy") &&
3197 CallConv
!= CallingConv::Fast
&&
3198 Chain
.getOpcode() == ISD::CALLSEQ_START
;
3200 // Allocate the reserved argument area. It seems strange to do this from the
3201 // caller side but removing it breaks the frame size calculation.
3202 unsigned ReservedArgArea
=
3203 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
3204 CCInfo
.AllocateStack(ReservedArgArea
, Align(1));
3206 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
3207 ES
? ES
->getSymbol() : nullptr);
3209 // Get a count of how many bytes are to be pushed on the stack.
3210 unsigned NextStackOffset
= CCInfo
.getNextStackOffset();
3212 // Call site info for function parameters tracking.
3213 MachineFunction::CallSiteInfo CSInfo
;
3215 // Check if it's really possible to do a tail call. Restrict it to functions
3216 // that are part of this compilation unit.
3217 bool InternalLinkage
= false;
3219 IsTailCall
= isEligibleForTailCallOptimization(
3220 CCInfo
, NextStackOffset
, *MF
.getInfo
<MipsFunctionInfo
>());
3221 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3222 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
3223 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
3224 G
->getGlobal()->hasPrivateLinkage() ||
3225 G
->getGlobal()->hasHiddenVisibility() ||
3226 G
->getGlobal()->hasProtectedVisibility());
3229 if (!IsTailCall
&& CLI
.CB
&& CLI
.CB
->isMustTailCall())
3230 report_fatal_error("failed to perform tail call elimination on a call "
3231 "site marked musttail");
3236 // Chain is the output chain of the last Load/Store or CopyToReg node.
3237 // ByValChain is the output chain of the last Memcpy node created for copying
3238 // byval arguments to the stack.
3239 unsigned StackAlignment
= TFL
->getStackAlignment();
3240 NextStackOffset
= alignTo(NextStackOffset
, StackAlignment
);
3241 SDValue NextStackOffsetVal
= DAG
.getIntPtrConstant(NextStackOffset
, DL
, true);
3243 if (!(IsTailCall
|| MemcpyInByVal
))
3244 Chain
= DAG
.getCALLSEQ_START(Chain
, NextStackOffset
, 0, DL
);
3247 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
3248 getPointerTy(DAG
.getDataLayout()));
3250 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
3251 SmallVector
<SDValue
, 8> MemOpChains
;
3253 CCInfo
.rewindByValRegsInfo();
3255 // Walk the register/memloc assignments, inserting copies/loads.
3256 for (unsigned i
= 0, e
= ArgLocs
.size(), OutIdx
= 0; i
!= e
; ++i
, ++OutIdx
) {
3257 SDValue Arg
= OutVals
[OutIdx
];
3258 CCValAssign
&VA
= ArgLocs
[i
];
3259 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
3260 ISD::ArgFlagsTy Flags
= Outs
[OutIdx
].Flags
;
3261 bool UseUpperBits
= false;
3264 if (Flags
.isByVal()) {
3265 unsigned FirstByValReg
, LastByValReg
;
3266 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3267 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3269 assert(Flags
.getByValSize() &&
3270 "ByVal args of size 0 should have been ignored by front-end.");
3271 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3272 assert(!IsTailCall
&&
3273 "Do not tail-call optimize if there is a byval argument.");
3274 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3275 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3277 CCInfo
.nextInRegsParam();
3281 // Promote the value if needed.
3282 switch (VA
.getLocInfo()) {
3284 llvm_unreachable("Unknown loc info!");
3285 case CCValAssign::Full
:
3286 if (VA
.isRegLoc()) {
3287 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3288 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3289 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3290 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3291 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3292 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3293 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3294 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3295 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3296 if (!Subtarget
.isLittle())
3299 assert(VA
.needsCustom());
3301 Register LocRegLo
= VA
.getLocReg();
3302 Register LocRegHigh
= ArgLocs
[++i
].getLocReg();
3303 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3304 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3309 case CCValAssign::BCvt
:
3310 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3312 case CCValAssign::SExtUpper
:
3313 UseUpperBits
= true;
3315 case CCValAssign::SExt
:
3316 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3318 case CCValAssign::ZExtUpper
:
3319 UseUpperBits
= true;
3321 case CCValAssign::ZExt
:
3322 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3324 case CCValAssign::AExtUpper
:
3325 UseUpperBits
= true;
3327 case CCValAssign::AExt
:
3328 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3333 unsigned ValSizeInBits
= Outs
[OutIdx
].ArgVT
.getSizeInBits();
3334 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3336 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3337 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3340 // Arguments that can be passed on register must be kept at
3341 // RegsToPass vector
3342 if (VA
.isRegLoc()) {
3343 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3345 // If the parameter is passed through reg $D, which splits into
3346 // two physical registers, avoid creating call site info.
3347 if (Mips::AFGR64RegClass
.contains(VA
.getLocReg()))
3350 // Collect CSInfo about which register passes which parameter.
3351 const TargetOptions
&Options
= DAG
.getTarget().Options
;
3352 if (Options
.SupportsDebugEntryValues
)
3353 CSInfo
.emplace_back(VA
.getLocReg(), i
);
3358 // Register can't get to this point...
3359 assert(VA
.isMemLoc());
3361 // emit ISD::STORE whichs stores the
3362 // parameter value to a stack Location
3363 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3364 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3367 // Transform all store nodes into one single node because all store
3368 // nodes are independent of each other.
3369 if (!MemOpChains
.empty())
3370 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3372 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3373 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3374 // node so that legalize doesn't hack it.
3376 EVT Ty
= Callee
.getValueType();
3377 bool GlobalOrExternal
= false, IsCallReloc
= false;
3379 // The long-calls feature is ignored in case of PIC.
3380 // While we do not support -mshared / -mno-shared properly,
3381 // ignore long-calls in case of -mabicalls too.
3382 if (!Subtarget
.isABICalls() && !IsPIC
) {
3383 // If the function should be called using "long call",
3384 // get its address into a register to prevent using
3385 // of the `jal` instruction for the direct call.
3386 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3387 if (Subtarget
.useLongCalls())
3388 Callee
= Subtarget
.hasSym32()
3389 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3390 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3391 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3392 bool UseLongCalls
= Subtarget
.useLongCalls();
3393 // If the function has long-call/far/near attribute
3394 // it overrides command line switch pased to the backend.
3395 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3396 if (F
->hasFnAttribute("long-call"))
3397 UseLongCalls
= true;
3398 else if (F
->hasFnAttribute("short-call"))
3399 UseLongCalls
= false;
3402 Callee
= Subtarget
.hasSym32()
3403 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3404 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3408 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3410 const GlobalValue
*Val
= G
->getGlobal();
3411 InternalLinkage
= Val
->hasInternalLinkage();
3413 if (InternalLinkage
)
3414 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3415 else if (Subtarget
.useXGOT()) {
3416 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3417 MipsII::MO_CALL_LO16
, Chain
,
3418 FuncInfo
->callPtrInfo(MF
, Val
));
3421 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3422 FuncInfo
->callPtrInfo(MF
, Val
));
3426 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3427 getPointerTy(DAG
.getDataLayout()), 0,
3428 MipsII::MO_NO_FLAG
);
3429 GlobalOrExternal
= true;
3431 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3432 const char *Sym
= S
->getSymbol();
3434 if (!IsPIC
) // static
3435 Callee
= DAG
.getTargetExternalSymbol(
3436 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3437 else if (Subtarget
.useXGOT()) {
3438 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3439 MipsII::MO_CALL_LO16
, Chain
,
3440 FuncInfo
->callPtrInfo(MF
, Sym
));
3443 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3444 FuncInfo
->callPtrInfo(MF
, Sym
));
3448 GlobalOrExternal
= true;
3451 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3452 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3454 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3455 IsCallReloc
, CLI
, Callee
, Chain
);
3458 MF
.getFrameInfo().setHasTailCall();
3459 SDValue Ret
= DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3460 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
3464 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3465 SDValue InFlag
= Chain
.getValue(1);
3467 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
3469 // Create the CALLSEQ_END node in the case of where it is not a call to
3471 if (!(MemcpyInByVal
)) {
3472 Chain
= DAG
.getCALLSEQ_END(Chain
, NextStackOffsetVal
,
3473 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
3474 InFlag
= Chain
.getValue(1);
3477 // Handle result values, copying them out of physregs into vregs that we
3479 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3483 /// LowerCallResult - Lower the result values of a call into the
3484 /// appropriate copies out of appropriate physical registers.
3485 SDValue
MipsTargetLowering::LowerCallResult(
3486 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool IsVarArg
,
3487 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3488 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3489 TargetLowering::CallLoweringInfo
&CLI
) const {
3490 // Assign locations to each value returned by this call.
3491 SmallVector
<CCValAssign
, 16> RVLocs
;
3492 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3495 const ExternalSymbolSDNode
*ES
=
3496 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3497 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3498 ES
? ES
->getSymbol() : nullptr);
3500 // Copy all of the result registers out of their specified physreg.
3501 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3502 CCValAssign
&VA
= RVLocs
[i
];
3503 assert(VA
.isRegLoc() && "Can only return in registers!");
3505 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3506 RVLocs
[i
].getLocVT(), InFlag
);
3507 Chain
= Val
.getValue(1);
3508 InFlag
= Val
.getValue(2);
3510 if (VA
.isUpperBitsInLoc()) {
3511 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3512 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3514 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3516 Shift
, DL
, VA
.getLocVT(), Val
,
3517 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3520 switch (VA
.getLocInfo()) {
3522 llvm_unreachable("Unknown loc info!");
3523 case CCValAssign::Full
:
3525 case CCValAssign::BCvt
:
3526 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3528 case CCValAssign::AExt
:
3529 case CCValAssign::AExtUpper
:
3530 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3532 case CCValAssign::ZExt
:
3533 case CCValAssign::ZExtUpper
:
3534 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3535 DAG
.getValueType(VA
.getValVT()));
3536 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3538 case CCValAssign::SExt
:
3539 case CCValAssign::SExtUpper
:
3540 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3541 DAG
.getValueType(VA
.getValVT()));
3542 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3546 InVals
.push_back(Val
);
3552 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3553 EVT ArgVT
, const SDLoc
&DL
,
3554 SelectionDAG
&DAG
) {
3555 MVT LocVT
= VA
.getLocVT();
3556 EVT ValVT
= VA
.getValVT();
3558 // Shift into the upper bits if necessary.
3559 switch (VA
.getLocInfo()) {
3562 case CCValAssign::AExtUpper
:
3563 case CCValAssign::SExtUpper
:
3564 case CCValAssign::ZExtUpper
: {
3565 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3566 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3568 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3570 Opcode
, DL
, VA
.getLocVT(), Val
,
3571 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3576 // If this is an value smaller than the argument slot size (32-bit for O32,
3577 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3578 // size. Extract the value and insert any appropriate assertions regarding
3579 // sign/zero extension.
3580 switch (VA
.getLocInfo()) {
3582 llvm_unreachable("Unknown loc info!");
3583 case CCValAssign::Full
:
3585 case CCValAssign::AExtUpper
:
3586 case CCValAssign::AExt
:
3587 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3589 case CCValAssign::SExtUpper
:
3590 case CCValAssign::SExt
:
3591 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3592 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3594 case CCValAssign::ZExtUpper
:
3595 case CCValAssign::ZExt
:
3596 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3597 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3599 case CCValAssign::BCvt
:
3600 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3607 //===----------------------------------------------------------------------===//
3608 // Formal Arguments Calling Convention Implementation
3609 //===----------------------------------------------------------------------===//
3610 /// LowerFormalArguments - transform physical registers into virtual registers
3611 /// and generate load operations for arguments places on the stack.
3612 SDValue
MipsTargetLowering::LowerFormalArguments(
3613 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3614 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3615 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3616 MachineFunction
&MF
= DAG
.getMachineFunction();
3617 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3618 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3620 MipsFI
->setVarArgsFrameIndex(0);
3622 // Used with vargs to acumulate store chains.
3623 std::vector
<SDValue
> OutChains
;
3625 // Assign locations to all of the incoming arguments.
3626 SmallVector
<CCValAssign
, 16> ArgLocs
;
3627 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3629 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), Align(1));
3630 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3631 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3633 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3635 "Functions with the interrupt attribute cannot have arguments!");
3637 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3638 MipsFI
->setFormalArgInfo(CCInfo
.getNextStackOffset(),
3639 CCInfo
.getInRegsParamsCount() > 0);
3641 unsigned CurArgIdx
= 0;
3642 CCInfo
.rewindByValRegsInfo();
3644 for (unsigned i
= 0, e
= ArgLocs
.size(), InsIdx
= 0; i
!= e
; ++i
, ++InsIdx
) {
3645 CCValAssign
&VA
= ArgLocs
[i
];
3646 if (Ins
[InsIdx
].isOrigArg()) {
3647 std::advance(FuncArg
, Ins
[InsIdx
].getOrigArgIndex() - CurArgIdx
);
3648 CurArgIdx
= Ins
[InsIdx
].getOrigArgIndex();
3650 EVT ValVT
= VA
.getValVT();
3651 ISD::ArgFlagsTy Flags
= Ins
[InsIdx
].Flags
;
3652 bool IsRegLoc
= VA
.isRegLoc();
3654 if (Flags
.isByVal()) {
3655 assert(Ins
[InsIdx
].isOrigArg() && "Byval arguments cannot be implicit");
3656 unsigned FirstByValReg
, LastByValReg
;
3657 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3658 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3660 assert(Flags
.getByValSize() &&
3661 "ByVal args of size 0 should have been ignored by front-end.");
3662 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3663 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3664 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3665 CCInfo
.nextInRegsParam();
3669 // Arguments stored on registers
3671 MVT RegVT
= VA
.getLocVT();
3672 Register ArgReg
= VA
.getLocReg();
3673 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3675 // Transform the arguments stored on
3676 // physical registers into virtual ones
3677 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3678 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3681 UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[InsIdx
].ArgVT
, DL
, DAG
);
3683 // Handle floating point arguments passed in integer registers and
3684 // long double arguments passed in floating point registers.
3685 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3686 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3687 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3688 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3689 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3690 ValVT
== MVT::f64
) {
3691 assert(VA
.needsCustom() && "Expected custom argument for f64 split");
3692 CCValAssign
&NextVA
= ArgLocs
[++i
];
3694 addLiveIn(DAG
.getMachineFunction(), NextVA
.getLocReg(), RC
);
3695 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3696 if (!Subtarget
.isLittle())
3697 std::swap(ArgValue
, ArgValue2
);
3698 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3699 ArgValue
, ArgValue2
);
3702 InVals
.push_back(ArgValue
);
3703 } else { // VA.isRegLoc()
3704 MVT LocVT
= VA
.getLocVT();
3706 assert(!VA
.needsCustom() && "unexpected custom memory argument");
3709 // We ought to be able to use LocVT directly but O32 sets it to i32
3710 // when allocating floating point values to integer registers.
3711 // This shouldn't influence how we load the value into registers unless
3712 // we are targeting softfloat.
3713 if (VA
.getValVT().isFloatingPoint() && !Subtarget
.useSoftFloat())
3714 LocVT
= VA
.getValVT();
3718 assert(VA
.isMemLoc());
3720 // The stack pointer offset is relative to the caller stack frame.
3721 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3722 VA
.getLocMemOffset(), true);
3724 // Create load nodes to retrieve arguments from the stack
3725 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3726 SDValue ArgValue
= DAG
.getLoad(
3727 LocVT
, DL
, Chain
, FIN
,
3728 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3729 OutChains
.push_back(ArgValue
.getValue(1));
3732 UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[InsIdx
].ArgVT
, DL
, DAG
);
3734 InVals
.push_back(ArgValue
);
3738 for (unsigned i
= 0, e
= ArgLocs
.size(), InsIdx
= 0; i
!= e
; ++i
, ++InsIdx
) {
3740 if (ArgLocs
[i
].needsCustom()) {
3745 // The mips ABIs for returning structs by value requires that we copy
3746 // the sret argument into $v0 for the return. Save the argument into
3747 // a virtual register so that we can access it from the return points.
3748 if (Ins
[InsIdx
].Flags
.isSRet()) {
3749 unsigned Reg
= MipsFI
->getSRetReturnReg();
3751 Reg
= MF
.getRegInfo().createVirtualRegister(
3752 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3753 MipsFI
->setSRetReturnReg(Reg
);
3755 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3756 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3762 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3764 // All stores are grouped in one node to allow the matching between
3765 // the size of Ins and InVals. This only happens when on varg functions
3766 if (!OutChains
.empty()) {
3767 OutChains
.push_back(Chain
);
3768 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3774 //===----------------------------------------------------------------------===//
3775 // Return Value Calling Convention Implementation
3776 //===----------------------------------------------------------------------===//
3779 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3780 MachineFunction
&MF
, bool IsVarArg
,
3781 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3782 LLVMContext
&Context
) const {
3783 SmallVector
<CCValAssign
, 16> RVLocs
;
3784 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3785 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3788 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
,
3789 bool IsSigned
) const {
3790 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3797 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3799 SelectionDAG
&DAG
) const {
3800 MachineFunction
&MF
= DAG
.getMachineFunction();
3801 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3805 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3809 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3811 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3812 const SmallVectorImpl
<SDValue
> &OutVals
,
3813 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3814 // CCValAssign - represent the assignment of
3815 // the return value to a location
3816 SmallVector
<CCValAssign
, 16> RVLocs
;
3817 MachineFunction
&MF
= DAG
.getMachineFunction();
3819 // CCState - Info about the registers and stack slot.
3820 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3822 // Analyze return values.
3823 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3826 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3828 // Copy the result values into the output registers.
3829 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3830 SDValue Val
= OutVals
[i
];
3831 CCValAssign
&VA
= RVLocs
[i
];
3832 assert(VA
.isRegLoc() && "Can only return in registers!");
3833 bool UseUpperBits
= false;
3835 switch (VA
.getLocInfo()) {
3837 llvm_unreachable("Unknown loc info!");
3838 case CCValAssign::Full
:
3840 case CCValAssign::BCvt
:
3841 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3843 case CCValAssign::AExtUpper
:
3844 UseUpperBits
= true;
3846 case CCValAssign::AExt
:
3847 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3849 case CCValAssign::ZExtUpper
:
3850 UseUpperBits
= true;
3852 case CCValAssign::ZExt
:
3853 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3855 case CCValAssign::SExtUpper
:
3856 UseUpperBits
= true;
3858 case CCValAssign::SExt
:
3859 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3864 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3865 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3867 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3868 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3871 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Flag
);
3873 // Guarantee that all emitted copies are stuck together with flags.
3874 Flag
= Chain
.getValue(1);
3875 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3878 // The mips ABIs for returning structs by value requires that we copy
3879 // the sret argument into $v0 for the return. We saved the argument into
3880 // a virtual register in the entry block, so now we copy the value out
3882 if (MF
.getFunction().hasStructRetAttr()) {
3883 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3884 unsigned Reg
= MipsFI
->getSRetReturnReg();
3887 llvm_unreachable("sret virtual register not created in the entry block");
3889 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3890 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3892 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Flag
);
3893 Flag
= Chain
.getValue(1);
3894 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3897 RetOps
[0] = Chain
; // Update chain.
3899 // Add the flag if we have it.
3901 RetOps
.push_back(Flag
);
3903 // ISRs must use "eret".
3904 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3905 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3907 // Standard return on Mips is a "jr $ra"
3908 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3911 //===----------------------------------------------------------------------===//
3912 // Mips Inline Assembly Support
3913 //===----------------------------------------------------------------------===//
3915 /// getConstraintType - Given a constraint letter, return the type of
3916 /// constraint it is for this target.
3917 MipsTargetLowering::ConstraintType
3918 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3919 // Mips specific constraints
3920 // GCC config/mips/constraints.md
3922 // 'd' : An address register. Equivalent to r
3923 // unless generating MIPS16 code.
3924 // 'y' : Equivalent to r; retained for
3925 // backwards compatibility.
3926 // 'c' : A register suitable for use in an indirect
3927 // jump. This will always be $25 for -mabicalls.
3928 // 'l' : The lo register. 1 word storage.
3929 // 'x' : The hilo register pair. Double word storage.
3930 if (Constraint
.size() == 1) {
3931 switch (Constraint
[0]) {
3939 return C_RegisterClass
;
3945 if (Constraint
== "ZC")
3948 return TargetLowering::getConstraintType(Constraint
);
3951 /// Examine constraint type and operand type and determine a weight value.
3952 /// This object must already have been set up with the operand type
3953 /// and the current alternative constraint selected.
3954 TargetLowering::ConstraintWeight
3955 MipsTargetLowering::getSingleConstraintMatchWeight(
3956 AsmOperandInfo
&info
, const char *constraint
) const {
3957 ConstraintWeight weight
= CW_Invalid
;
3958 Value
*CallOperandVal
= info
.CallOperandVal
;
3959 // If we don't have a value, we can't do a match,
3960 // but allow it at the lowest weight.
3961 if (!CallOperandVal
)
3963 Type
*type
= CallOperandVal
->getType();
3964 // Look at the constraint type.
3965 switch (*constraint
) {
3967 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3971 if (type
->isIntegerTy())
3972 weight
= CW_Register
;
3974 case 'f': // FPU or MSA register
3975 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
3976 type
->getPrimitiveSizeInBits().getFixedSize() == 128)
3977 weight
= CW_Register
;
3978 else if (type
->isFloatTy())
3979 weight
= CW_Register
;
3981 case 'c': // $25 for indirect jumps
3982 case 'l': // lo register
3983 case 'x': // hilo register pair
3984 if (type
->isIntegerTy())
3985 weight
= CW_SpecificReg
;
3987 case 'I': // signed 16 bit immediate
3988 case 'J': // integer zero
3989 case 'K': // unsigned 16 bit immediate
3990 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3991 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3992 case 'O': // signed 15 bit immediate (+- 16383)
3993 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3994 if (isa
<ConstantInt
>(CallOperandVal
))
3995 weight
= CW_Constant
;
4004 /// This is a helper function to parse a physical register string and split it
4005 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
4006 /// that is returned indicates whether parsing was successful. The second flag
4007 /// is true if the numeric part exists.
4008 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
4009 unsigned long long &Reg
) {
4010 if (C
.front() != '{' || C
.back() != '}')
4011 return std::make_pair(false, false);
4013 // Search for the first numeric character.
4014 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
4015 I
= std::find_if(B
, E
, isdigit
);
4017 Prefix
= StringRef(B
, I
- B
);
4019 // The second flag is set to false if no numeric characters were found.
4021 return std::make_pair(true, false);
4023 // Parse the numeric characters.
4024 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
4028 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
4029 ISD::NodeType
) const {
4030 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
4031 EVT MinVT
= getRegisterType(Context
, Cond
? MVT::i64
: MVT::i32
);
4032 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
4035 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
4036 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
4037 const TargetRegisterInfo
*TRI
=
4038 Subtarget
.getRegisterInfo();
4039 const TargetRegisterClass
*RC
;
4041 unsigned long long Reg
;
4043 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
4046 return std::make_pair(0U, nullptr);
4048 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
4049 // No numeric characters follow "hi" or "lo".
4051 return std::make_pair(0U, nullptr);
4053 RC
= TRI
->getRegClass(Prefix
== "hi" ?
4054 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
4055 return std::make_pair(*(RC
->begin()), RC
);
4056 } else if (Prefix
.startswith("$msa")) {
4057 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4059 // No numeric characters follow the name.
4061 return std::make_pair(0U, nullptr);
4063 Reg
= StringSwitch
<unsigned long long>(Prefix
)
4064 .Case("$msair", Mips::MSAIR
)
4065 .Case("$msacsr", Mips::MSACSR
)
4066 .Case("$msaaccess", Mips::MSAAccess
)
4067 .Case("$msasave", Mips::MSASave
)
4068 .Case("$msamodify", Mips::MSAModify
)
4069 .Case("$msarequest", Mips::MSARequest
)
4070 .Case("$msamap", Mips::MSAMap
)
4071 .Case("$msaunmap", Mips::MSAUnmap
)
4075 return std::make_pair(0U, nullptr);
4077 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
4078 return std::make_pair(Reg
, RC
);
4082 return std::make_pair(0U, nullptr);
4084 if (Prefix
== "$f") { // Parse $f0-$f31.
4085 // If the size of FP registers is 64-bit or Reg is an even number, select
4086 // the 64-bit register class. Otherwise, select the 32-bit register class.
4087 if (VT
== MVT::Other
)
4088 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
4090 RC
= getRegClassFor(VT
);
4092 if (RC
== &Mips::AFGR64RegClass
) {
4093 assert(Reg
% 2 == 0);
4096 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
4097 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
4098 else if (Prefix
== "$w") { // Parse $w0-$w31.
4099 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
4100 } else { // Parse $0-$31.
4101 assert(Prefix
== "$");
4102 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
4105 assert(Reg
< RC
->getNumRegs());
4106 return std::make_pair(*(RC
->begin() + Reg
), RC
);
4109 /// Given a register class constraint, like 'r', if this corresponds directly
4110 /// to an LLVM register class, return a register of 0 and the register class
4112 std::pair
<unsigned, const TargetRegisterClass
*>
4113 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
4114 StringRef Constraint
,
4116 if (Constraint
.size() == 1) {
4117 switch (Constraint
[0]) {
4118 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4119 case 'y': // Same as 'r'. Exists for compatibility.
4121 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
) {
4122 if (Subtarget
.inMips16Mode())
4123 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
4124 return std::make_pair(0U, &Mips::GPR32RegClass
);
4126 if (VT
== MVT::i64
&& !Subtarget
.isGP64bit())
4127 return std::make_pair(0U, &Mips::GPR32RegClass
);
4128 if (VT
== MVT::i64
&& Subtarget
.isGP64bit())
4129 return std::make_pair(0U, &Mips::GPR64RegClass
);
4130 // This will generate an error message
4131 return std::make_pair(0U, nullptr);
4132 case 'f': // FPU or MSA register
4133 if (VT
== MVT::v16i8
)
4134 return std::make_pair(0U, &Mips::MSA128BRegClass
);
4135 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
4136 return std::make_pair(0U, &Mips::MSA128HRegClass
);
4137 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
4138 return std::make_pair(0U, &Mips::MSA128WRegClass
);
4139 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
4140 return std::make_pair(0U, &Mips::MSA128DRegClass
);
4141 else if (VT
== MVT::f32
)
4142 return std::make_pair(0U, &Mips::FGR32RegClass
);
4143 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
4144 if (Subtarget
.isFP64bit())
4145 return std::make_pair(0U, &Mips::FGR64RegClass
);
4146 return std::make_pair(0U, &Mips::AFGR64RegClass
);
4149 case 'c': // register suitable for indirect jump
4151 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
4153 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
4154 // This will generate an error message
4155 return std::make_pair(0U, nullptr);
4156 case 'l': // use the `lo` register to store values
4157 // that are no bigger than a word
4158 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
4159 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
4160 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
4161 case 'x': // use the concatenated `hi` and `lo` registers
4162 // to store doubleword values
4163 // Fixme: Not triggering the use of both hi and low
4164 // This will generate an error message
4165 return std::make_pair(0U, nullptr);
4169 if (!Constraint
.empty()) {
4170 std::pair
<unsigned, const TargetRegisterClass
*> R
;
4171 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
4177 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
4180 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4181 /// vector. If it is invalid, don't add anything to Ops.
4182 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4183 std::string
&Constraint
,
4184 std::vector
<SDValue
>&Ops
,
4185 SelectionDAG
&DAG
) const {
4189 // Only support length 1 constraints for now.
4190 if (Constraint
.length() > 1) return;
4192 char ConstraintLetter
= Constraint
[0];
4193 switch (ConstraintLetter
) {
4194 default: break; // This will fall through to the generic implementation
4195 case 'I': // Signed 16 bit constant
4196 // If this fails, the parent routine will give an error
4197 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4198 EVT Type
= Op
.getValueType();
4199 int64_t Val
= C
->getSExtValue();
4200 if (isInt
<16>(Val
)) {
4201 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4206 case 'J': // integer zero
4207 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4208 EVT Type
= Op
.getValueType();
4209 int64_t Val
= C
->getZExtValue();
4211 Result
= DAG
.getTargetConstant(0, DL
, Type
);
4216 case 'K': // unsigned 16 bit immediate
4217 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4218 EVT Type
= Op
.getValueType();
4219 uint64_t Val
= (uint64_t)C
->getZExtValue();
4220 if (isUInt
<16>(Val
)) {
4221 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4226 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4227 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4228 EVT Type
= Op
.getValueType();
4229 int64_t Val
= C
->getSExtValue();
4230 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
4231 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4236 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4237 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4238 EVT Type
= Op
.getValueType();
4239 int64_t Val
= C
->getSExtValue();
4240 if ((Val
>= -65535) && (Val
<= -1)) {
4241 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4246 case 'O': // signed 15 bit immediate
4247 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4248 EVT Type
= Op
.getValueType();
4249 int64_t Val
= C
->getSExtValue();
4250 if ((isInt
<15>(Val
))) {
4251 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4256 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4257 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4258 EVT Type
= Op
.getValueType();
4259 int64_t Val
= C
->getSExtValue();
4260 if ((Val
<= 65535) && (Val
>= 1)) {
4261 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4268 if (Result
.getNode()) {
4269 Ops
.push_back(Result
);
4273 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
4276 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
4277 const AddrMode
&AM
, Type
*Ty
,
4279 Instruction
*I
) const {
4280 // No global is ever allowed as a base.
4285 case 0: // "r+i" or just "i", depending on HasBaseReg.
4288 if (!AM
.HasBaseReg
) // allow "r+i".
4290 return false; // disallow "r+r" or "r+r+i".
4299 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
4300 // The Mips target isn't yet aware of offsets.
4304 EVT
MipsTargetLowering::getOptimalMemOpType(
4305 const MemOp
&Op
, const AttributeList
&FuncAttributes
) const {
4306 if (Subtarget
.hasMips64())
4312 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
4313 bool ForCodeSize
) const {
4314 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4316 if (Imm
.isNegZero())
4318 return Imm
.isZero();
4321 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4323 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4324 if (ABI
.IsN64() && isPositionIndependent())
4325 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4327 return TargetLowering::getJumpTableEncoding();
4330 bool MipsTargetLowering::useSoftFloat() const {
4331 return Subtarget
.useSoftFloat();
4334 void MipsTargetLowering::copyByValRegs(
4335 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4336 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4337 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4338 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4339 MipsCCState
&State
) const {
4340 MachineFunction
&MF
= DAG
.getMachineFunction();
4341 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4342 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4343 unsigned NumRegs
= LastReg
- FirstReg
;
4344 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4345 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4347 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4351 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4352 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4354 FrameObjOffset
= VA
.getLocMemOffset();
4356 // Create frame object.
4357 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4358 // Make the fixed object stored to mutable so that the load instructions
4359 // referencing it have their memory dependencies added.
4360 // Set the frame object as isAliased which clears the underlying objects
4361 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4362 // stores as dependencies for loads referencing this fixed object.
4363 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4364 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4365 InVals
.push_back(FIN
);
4370 // Copy arg registers.
4371 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4372 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4374 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4375 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4376 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4377 unsigned Offset
= I
* GPRSizeInBytes
;
4378 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4379 DAG
.getConstant(Offset
, DL
, PtrTy
));
4380 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4381 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4382 OutChains
.push_back(Store
);
4386 // Copy byVal arg to registers and stack.
4387 void MipsTargetLowering::passByValArg(
4388 SDValue Chain
, const SDLoc
&DL
,
4389 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4390 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4391 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4392 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4393 const CCValAssign
&VA
) const {
4394 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4395 unsigned OffsetInBytes
= 0; // From beginning of struct
4396 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4398 std::min(Flags
.getNonZeroByValAlign(), Align(RegSizeInBytes
));
4399 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4400 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4401 unsigned NumRegs
= LastReg
- FirstReg
;
4404 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4405 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4408 // Copy words to registers.
4409 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4410 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4411 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4412 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4413 MachinePointerInfo(), Alignment
);
4414 MemOpChains
.push_back(LoadVal
.getValue(1));
4415 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4416 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4419 // Return if the struct has been fully copied.
4420 if (ByValSizeInBytes
== OffsetInBytes
)
4423 // Copy the remainder of the byval argument with sub-word loads and shifts.
4424 if (LeftoverBytes
) {
4427 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4428 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4429 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4431 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4435 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4436 DAG
.getConstant(OffsetInBytes
, DL
,
4438 SDValue LoadVal
= DAG
.getExtLoad(
4439 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4440 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4441 MemOpChains
.push_back(LoadVal
.getValue(1));
4443 // Shift the loaded value.
4447 Shamt
= TotalBytesLoaded
* 8;
4449 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4451 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4452 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4455 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4459 OffsetInBytes
+= LoadSizeInBytes
;
4460 TotalBytesLoaded
+= LoadSizeInBytes
;
4461 Alignment
= std::min(Alignment
, Align(LoadSizeInBytes
));
4464 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4465 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4470 // Copy remainder of byval arg to it with memcpy.
4471 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4472 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4473 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4474 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4475 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4476 Chain
= DAG
.getMemcpy(
4477 Chain
, DL
, Dst
, Src
, DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4478 Align(Alignment
), /*isVolatile=*/false, /*AlwaysInline=*/false,
4479 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
4480 MemOpChains
.push_back(Chain
);
4483 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4484 SDValue Chain
, const SDLoc
&DL
,
4486 CCState
&State
) const {
4487 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4488 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4489 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4490 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4491 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4492 MachineFunction
&MF
= DAG
.getMachineFunction();
4493 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4494 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4496 // Offset of the first variable argument from stack pointer.
4499 if (ArgRegs
.size() == Idx
)
4500 VaArgOffset
= alignTo(State
.getNextStackOffset(), RegSizeInBytes
);
4503 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4504 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4507 // Record the frame index of the first variable argument
4508 // which is a value necessary to VASTART.
4509 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4510 MipsFI
->setVarArgsFrameIndex(FI
);
4512 // Copy the integer registers that have not been used for argument passing
4513 // to the argument register save area. For O32, the save area is allocated
4514 // in the caller's stack frame, while for N32/64, it is allocated in the
4515 // callee's stack frame.
4516 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4517 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4518 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4519 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4520 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4521 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4523 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4524 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4526 OutChains
.push_back(Store
);
4530 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4531 Align Alignment
) const {
4532 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4534 assert(Size
&& "Byval argument's size shouldn't be 0.");
4536 Alignment
= std::min(Alignment
, TFL
->getStackAlign());
4538 unsigned FirstReg
= 0;
4539 unsigned NumRegs
= 0;
4541 if (State
->getCallingConv() != CallingConv::Fast
) {
4542 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4543 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4544 // FIXME: The O32 case actually describes no shadow registers.
4545 const MCPhysReg
*ShadowRegs
=
4546 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4548 // We used to check the size as well but we can't do that anymore since
4549 // CCState::HandleByVal() rounds up the size after calling this function.
4551 Alignment
>= Align(RegSizeInBytes
) &&
4552 "Byval argument's alignment should be a multiple of RegSizeInBytes.");
4554 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4556 // If Alignment > RegSizeInBytes, the first arg register must be even.
4557 // FIXME: This condition happens to do the right thing but it's not the
4558 // right way to test it. We want to check that the stack frame offset
4559 // of the register is aligned.
4560 if ((Alignment
> RegSizeInBytes
) && (FirstReg
% 2)) {
4561 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4565 // Mark the registers allocated.
4566 Size
= alignTo(Size
, RegSizeInBytes
);
4567 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4568 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4569 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4572 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4575 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4576 MachineBasicBlock
*BB
,
4578 unsigned Opc
) const {
4579 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4580 "Subtarget already supports SELECT nodes with the use of"
4581 "conditional-move instructions.");
4583 const TargetInstrInfo
*TII
=
4584 Subtarget
.getInstrInfo();
4585 DebugLoc DL
= MI
.getDebugLoc();
4587 // To "insert" a SELECT instruction, we actually have to insert the
4588 // diamond control-flow pattern. The incoming instruction knows the
4589 // destination vreg to set, the condition code register to branch on, the
4590 // true/false values to select between, and a branch opcode to use.
4591 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4592 MachineFunction::iterator It
= ++BB
->getIterator();
4598 // bNE r1, r0, copy1MBB
4599 // fallthrough --> copy0MBB
4600 MachineBasicBlock
*thisMBB
= BB
;
4601 MachineFunction
*F
= BB
->getParent();
4602 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4603 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4604 F
->insert(It
, copy0MBB
);
4605 F
->insert(It
, sinkMBB
);
4607 // Transfer the remainder of BB and its successor edges to sinkMBB.
4608 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4609 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4610 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4612 // Next, add the true and fallthrough blocks as its successors.
4613 BB
->addSuccessor(copy0MBB
);
4614 BB
->addSuccessor(sinkMBB
);
4617 // bc1[tf] cc, sinkMBB
4618 BuildMI(BB
, DL
, TII
->get(Opc
))
4619 .addReg(MI
.getOperand(1).getReg())
4622 // bne rs, $0, sinkMBB
4623 BuildMI(BB
, DL
, TII
->get(Opc
))
4624 .addReg(MI
.getOperand(1).getReg())
4630 // %FalseValue = ...
4631 // # fallthrough to sinkMBB
4634 // Update machine-CFG edges
4635 BB
->addSuccessor(sinkMBB
);
4638 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4642 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4643 .addReg(MI
.getOperand(2).getReg())
4645 .addReg(MI
.getOperand(3).getReg())
4648 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4654 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr
&MI
,
4655 MachineBasicBlock
*BB
) const {
4656 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4657 "Subtarget already supports SELECT nodes with the use of"
4658 "conditional-move instructions.");
4660 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4661 DebugLoc DL
= MI
.getDebugLoc();
4663 // D_SELECT substitutes two SELECT nodes that goes one after another and
4664 // have the same condition operand. On machines which don't have
4665 // conditional-move instruction, it reduces unnecessary branch instructions
4666 // which are result of using two diamond patterns that are result of two
4667 // SELECT pseudo instructions.
4668 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4669 MachineFunction::iterator It
= ++BB
->getIterator();
4675 // bNE r1, r0, copy1MBB
4676 // fallthrough --> copy0MBB
4677 MachineBasicBlock
*thisMBB
= BB
;
4678 MachineFunction
*F
= BB
->getParent();
4679 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4680 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4681 F
->insert(It
, copy0MBB
);
4682 F
->insert(It
, sinkMBB
);
4684 // Transfer the remainder of BB and its successor edges to sinkMBB.
4685 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4686 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4687 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4689 // Next, add the true and fallthrough blocks as its successors.
4690 BB
->addSuccessor(copy0MBB
);
4691 BB
->addSuccessor(sinkMBB
);
4693 // bne rs, $0, sinkMBB
4694 BuildMI(BB
, DL
, TII
->get(Mips::BNE
))
4695 .addReg(MI
.getOperand(2).getReg())
4700 // %FalseValue = ...
4701 // # fallthrough to sinkMBB
4704 // Update machine-CFG edges
4705 BB
->addSuccessor(sinkMBB
);
4708 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4712 // Use two PHI nodes to select two reults
4713 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4714 .addReg(MI
.getOperand(3).getReg())
4716 .addReg(MI
.getOperand(5).getReg())
4718 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(1).getReg())
4719 .addReg(MI
.getOperand(4).getReg())
4721 .addReg(MI
.getOperand(6).getReg())
4724 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4729 // FIXME? Maybe this could be a TableGen attribute on some registers and
4730 // this table could be generated automatically from RegInfo.
4732 MipsTargetLowering::getRegisterByName(const char *RegName
, LLT VT
,
4733 const MachineFunction
&MF
) const {
4734 // Named registers is expected to be fairly rare. For now, just support $28
4735 // since the linux kernel uses it.
4736 if (Subtarget
.isGP64bit()) {
4737 Register Reg
= StringSwitch
<Register
>(RegName
)
4738 .Case("$28", Mips::GP_64
)
4739 .Default(Register());
4743 Register Reg
= StringSwitch
<Register
>(RegName
)
4744 .Case("$28", Mips::GP
)
4745 .Default(Register());
4749 report_fatal_error("Invalid register name global variable");
4752 MachineBasicBlock
*MipsTargetLowering::emitLDR_W(MachineInstr
&MI
,
4753 MachineBasicBlock
*BB
) const {
4754 MachineFunction
*MF
= BB
->getParent();
4755 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4756 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4757 const bool IsLittle
= Subtarget
.isLittle();
4758 DebugLoc DL
= MI
.getDebugLoc();
4760 Register Dest
= MI
.getOperand(0).getReg();
4761 Register Address
= MI
.getOperand(1).getReg();
4762 unsigned Imm
= MI
.getOperand(2).getImm();
4764 MachineBasicBlock::iterator
I(MI
);
4766 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4767 // Mips release 6 can load from adress that is not naturally-aligned.
4768 Register Temp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4769 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4773 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Dest
).addUse(Temp
);
4775 // Mips release 5 needs to use instructions that can load from an unaligned
4777 Register LoadHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4778 Register LoadFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4779 Register Undef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4780 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(Undef
);
4781 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4784 .addImm(Imm
+ (IsLittle
? 0 : 3))
4786 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4789 .addImm(Imm
+ (IsLittle
? 3 : 0))
4791 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Dest
).addUse(LoadFull
);
4794 MI
.eraseFromParent();
4798 MachineBasicBlock
*MipsTargetLowering::emitLDR_D(MachineInstr
&MI
,
4799 MachineBasicBlock
*BB
) const {
4800 MachineFunction
*MF
= BB
->getParent();
4801 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4802 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4803 const bool IsLittle
= Subtarget
.isLittle();
4804 DebugLoc DL
= MI
.getDebugLoc();
4806 Register Dest
= MI
.getOperand(0).getReg();
4807 Register Address
= MI
.getOperand(1).getReg();
4808 unsigned Imm
= MI
.getOperand(2).getImm();
4810 MachineBasicBlock::iterator
I(MI
);
4812 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4813 // Mips release 6 can load from adress that is not naturally-aligned.
4814 if (Subtarget
.isGP64bit()) {
4815 Register Temp
= MRI
.createVirtualRegister(&Mips::GPR64RegClass
);
4816 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LD
))
4820 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_D
)).addDef(Dest
).addUse(Temp
);
4822 Register Wtemp
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4823 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4824 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4825 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4828 .addImm(Imm
+ (IsLittle
? 0 : 4));
4829 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4832 .addImm(Imm
+ (IsLittle
? 4 : 0));
4833 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Wtemp
).addUse(Lo
);
4834 BuildMI(*BB
, I
, DL
, TII
->get(Mips::INSERT_W
), Dest
)
4840 // Mips release 5 needs to use instructions that can load from an unaligned
4842 Register LoHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4843 Register LoFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4844 Register LoUndef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4845 Register HiHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4846 Register HiFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4847 Register HiUndef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4848 Register Wtemp
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4849 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(LoUndef
);
4850 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4853 .addImm(Imm
+ (IsLittle
? 0 : 7))
4855 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4858 .addImm(Imm
+ (IsLittle
? 3 : 4))
4860 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(HiUndef
);
4861 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4864 .addImm(Imm
+ (IsLittle
? 4 : 3))
4866 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4869 .addImm(Imm
+ (IsLittle
? 7 : 0))
4871 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Wtemp
).addUse(LoFull
);
4872 BuildMI(*BB
, I
, DL
, TII
->get(Mips::INSERT_W
), Dest
)
4878 MI
.eraseFromParent();
4882 MachineBasicBlock
*MipsTargetLowering::emitSTR_W(MachineInstr
&MI
,
4883 MachineBasicBlock
*BB
) const {
4884 MachineFunction
*MF
= BB
->getParent();
4885 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4886 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4887 const bool IsLittle
= Subtarget
.isLittle();
4888 DebugLoc DL
= MI
.getDebugLoc();
4890 Register StoreVal
= MI
.getOperand(0).getReg();
4891 Register Address
= MI
.getOperand(1).getReg();
4892 unsigned Imm
= MI
.getOperand(2).getImm();
4894 MachineBasicBlock::iterator
I(MI
);
4896 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4897 // Mips release 6 can store to adress that is not naturally-aligned.
4898 Register BitcastW
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4899 Register Tmp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4900 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
)).addDef(BitcastW
).addUse(StoreVal
);
4901 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4905 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
4910 // Mips release 5 needs to use instructions that can store to an unaligned
4912 Register Tmp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4913 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4917 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
4920 .addImm(Imm
+ (IsLittle
? 0 : 3));
4921 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
4924 .addImm(Imm
+ (IsLittle
? 3 : 0));
4927 MI
.eraseFromParent();
4932 MachineBasicBlock
*MipsTargetLowering::emitSTR_D(MachineInstr
&MI
,
4933 MachineBasicBlock
*BB
) const {
4934 MachineFunction
*MF
= BB
->getParent();
4935 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4936 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4937 const bool IsLittle
= Subtarget
.isLittle();
4938 DebugLoc DL
= MI
.getDebugLoc();
4940 Register StoreVal
= MI
.getOperand(0).getReg();
4941 Register Address
= MI
.getOperand(1).getReg();
4942 unsigned Imm
= MI
.getOperand(2).getImm();
4944 MachineBasicBlock::iterator
I(MI
);
4946 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4947 // Mips release 6 can store to adress that is not naturally-aligned.
4948 if (Subtarget
.isGP64bit()) {
4949 Register BitcastD
= MRI
.createVirtualRegister(&Mips::MSA128DRegClass
);
4950 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR64RegClass
);
4951 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
))
4954 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_D
))
4958 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SD
))
4963 Register BitcastW
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4964 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4965 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4966 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
))
4969 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4973 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4977 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
4980 .addImm(Imm
+ (IsLittle
? 0 : 4));
4981 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
4984 .addImm(Imm
+ (IsLittle
? 4 : 0));
4987 // Mips release 5 needs to use instructions that can store to an unaligned
4989 Register Bitcast
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4990 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4991 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4992 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
)).addDef(Bitcast
).addUse(StoreVal
);
4993 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4997 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
5001 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
5004 .addImm(Imm
+ (IsLittle
? 0 : 3));
5005 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
5008 .addImm(Imm
+ (IsLittle
? 3 : 0));
5009 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
5012 .addImm(Imm
+ (IsLittle
? 4 : 7));
5013 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
5016 .addImm(Imm
+ (IsLittle
? 7 : 4));
5019 MI
.eraseFromParent();