[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / NVPTX / NVPTXAsmPrinter.cpp
blobfdc413d08b77d90d333563a8790eb8c8bbec80d8
1 //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to NVPTX assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "NVPTXAsmPrinter.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "MCTargetDesc/NVPTXInstPrinter.h"
17 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
18 #include "MCTargetDesc/NVPTXTargetStreamer.h"
19 #include "NVPTX.h"
20 #include "NVPTXMCExpr.h"
21 #include "NVPTXMachineFunctionInfo.h"
22 #include "NVPTXRegisterInfo.h"
23 #include "NVPTXSubtarget.h"
24 #include "NVPTXTargetMachine.h"
25 #include "NVPTXUtilities.h"
26 #include "TargetInfo/NVPTXTargetInfo.h"
27 #include "cl_common_defines.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/Analysis/ConstantFolding.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineLoopInfo.h"
45 #include "llvm/CodeGen/MachineModuleInfo.h"
46 #include "llvm/CodeGen/MachineOperand.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/ValueTypes.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugInfo.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/GlobalValue.h"
62 #include "llvm/IR/GlobalVariable.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/MC/MCExpr.h"
70 #include "llvm/MC/MCInst.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCStreamer.h"
73 #include "llvm/MC/MCSymbol.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/MachineValueType.h"
78 #include "llvm/Support/Path.h"
79 #include "llvm/Support/TargetRegistry.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Target/TargetLoweringObjectFile.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include "llvm/Transforms/Utils/UnrollLoop.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <cstring>
87 #include <new>
88 #include <string>
89 #include <utility>
90 #include <vector>
92 using namespace llvm;
94 #define DEPOTNAME "__local_depot"
96 /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
97 /// depends.
98 static void
99 DiscoverDependentGlobals(const Value *V,
100 DenseSet<const GlobalVariable *> &Globals) {
101 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
102 Globals.insert(GV);
103 else {
104 if (const User *U = dyn_cast<User>(V)) {
105 for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
106 DiscoverDependentGlobals(U->getOperand(i), Globals);
112 /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
113 /// instances to be emitted, but only after any dependents have been added
114 /// first.s
115 static void
116 VisitGlobalVariableForEmission(const GlobalVariable *GV,
117 SmallVectorImpl<const GlobalVariable *> &Order,
118 DenseSet<const GlobalVariable *> &Visited,
119 DenseSet<const GlobalVariable *> &Visiting) {
120 // Have we already visited this one?
121 if (Visited.count(GV))
122 return;
124 // Do we have a circular dependency?
125 if (!Visiting.insert(GV).second)
126 report_fatal_error("Circular dependency found in global variable set");
128 // Make sure we visit all dependents first
129 DenseSet<const GlobalVariable *> Others;
130 for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
131 DiscoverDependentGlobals(GV->getOperand(i), Others);
133 for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
134 E = Others.end();
135 I != E; ++I)
136 VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
138 // Now we can visit ourself
139 Order.push_back(GV);
140 Visited.insert(GV);
141 Visiting.erase(GV);
144 void NVPTXAsmPrinter::emitInstruction(const MachineInstr *MI) {
145 MCInst Inst;
146 lowerToMCInst(MI, Inst);
147 EmitToStreamer(*OutStreamer, Inst);
150 // Handle symbol backtracking for targets that do not support image handles
151 bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
152 unsigned OpNo, MCOperand &MCOp) {
153 const MachineOperand &MO = MI->getOperand(OpNo);
154 const MCInstrDesc &MCID = MI->getDesc();
156 if (MCID.TSFlags & NVPTXII::IsTexFlag) {
157 // This is a texture fetch, so operand 4 is a texref and operand 5 is
158 // a samplerref
159 if (OpNo == 4 && MO.isImm()) {
160 lowerImageHandleSymbol(MO.getImm(), MCOp);
161 return true;
163 if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
164 lowerImageHandleSymbol(MO.getImm(), MCOp);
165 return true;
168 return false;
169 } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
170 unsigned VecSize =
171 1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
173 // For a surface load of vector size N, the Nth operand will be the surfref
174 if (OpNo == VecSize && MO.isImm()) {
175 lowerImageHandleSymbol(MO.getImm(), MCOp);
176 return true;
179 return false;
180 } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
181 // This is a surface store, so operand 0 is a surfref
182 if (OpNo == 0 && MO.isImm()) {
183 lowerImageHandleSymbol(MO.getImm(), MCOp);
184 return true;
187 return false;
188 } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
189 // This is a query, so operand 1 is a surfref/texref
190 if (OpNo == 1 && MO.isImm()) {
191 lowerImageHandleSymbol(MO.getImm(), MCOp);
192 return true;
195 return false;
198 return false;
201 void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
202 // Ewwww
203 LLVMTargetMachine &TM = const_cast<LLVMTargetMachine&>(MF->getTarget());
204 NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
205 const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
206 const char *Sym = MFI->getImageHandleSymbol(Index);
207 std::string *SymNamePtr =
208 nvTM.getManagedStrPool()->getManagedString(Sym);
209 MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(StringRef(*SymNamePtr)));
212 void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
213 OutMI.setOpcode(MI->getOpcode());
214 // Special: Do not mangle symbol operand of CALL_PROTOTYPE
215 if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
216 const MachineOperand &MO = MI->getOperand(0);
217 OutMI.addOperand(GetSymbolRef(
218 OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
219 return;
222 const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
223 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
224 const MachineOperand &MO = MI->getOperand(i);
226 MCOperand MCOp;
227 if (!STI.hasImageHandles()) {
228 if (lowerImageHandleOperand(MI, i, MCOp)) {
229 OutMI.addOperand(MCOp);
230 continue;
234 if (lowerOperand(MO, MCOp))
235 OutMI.addOperand(MCOp);
239 bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
240 MCOperand &MCOp) {
241 switch (MO.getType()) {
242 default: llvm_unreachable("unknown operand type");
243 case MachineOperand::MO_Register:
244 MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
245 break;
246 case MachineOperand::MO_Immediate:
247 MCOp = MCOperand::createImm(MO.getImm());
248 break;
249 case MachineOperand::MO_MachineBasicBlock:
250 MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
251 MO.getMBB()->getSymbol(), OutContext));
252 break;
253 case MachineOperand::MO_ExternalSymbol:
254 MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
255 break;
256 case MachineOperand::MO_GlobalAddress:
257 MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
258 break;
259 case MachineOperand::MO_FPImmediate: {
260 const ConstantFP *Cnt = MO.getFPImm();
261 const APFloat &Val = Cnt->getValueAPF();
263 switch (Cnt->getType()->getTypeID()) {
264 default: report_fatal_error("Unsupported FP type"); break;
265 case Type::HalfTyID:
266 MCOp = MCOperand::createExpr(
267 NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext));
268 break;
269 case Type::FloatTyID:
270 MCOp = MCOperand::createExpr(
271 NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
272 break;
273 case Type::DoubleTyID:
274 MCOp = MCOperand::createExpr(
275 NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
276 break;
278 break;
281 return true;
284 unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
285 if (Register::isVirtualRegister(Reg)) {
286 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
288 DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
289 unsigned RegNum = RegMap[Reg];
291 // Encode the register class in the upper 4 bits
292 // Must be kept in sync with NVPTXInstPrinter::printRegName
293 unsigned Ret = 0;
294 if (RC == &NVPTX::Int1RegsRegClass) {
295 Ret = (1 << 28);
296 } else if (RC == &NVPTX::Int16RegsRegClass) {
297 Ret = (2 << 28);
298 } else if (RC == &NVPTX::Int32RegsRegClass) {
299 Ret = (3 << 28);
300 } else if (RC == &NVPTX::Int64RegsRegClass) {
301 Ret = (4 << 28);
302 } else if (RC == &NVPTX::Float32RegsRegClass) {
303 Ret = (5 << 28);
304 } else if (RC == &NVPTX::Float64RegsRegClass) {
305 Ret = (6 << 28);
306 } else if (RC == &NVPTX::Float16RegsRegClass) {
307 Ret = (7 << 28);
308 } else if (RC == &NVPTX::Float16x2RegsRegClass) {
309 Ret = (8 << 28);
310 } else {
311 report_fatal_error("Bad register class");
314 // Insert the vreg number
315 Ret |= (RegNum & 0x0FFFFFFF);
316 return Ret;
317 } else {
318 // Some special-use registers are actually physical registers.
319 // Encode this as the register class ID of 0 and the real register ID.
320 return Reg & 0x0FFFFFFF;
324 MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
325 const MCExpr *Expr;
326 Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None,
327 OutContext);
328 return MCOperand::createExpr(Expr);
331 void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
332 const DataLayout &DL = getDataLayout();
333 const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
334 const TargetLowering *TLI = STI.getTargetLowering();
336 Type *Ty = F->getReturnType();
338 bool isABI = (STI.getSmVersion() >= 20);
340 if (Ty->getTypeID() == Type::VoidTyID)
341 return;
343 O << " (";
345 if (isABI) {
346 if (Ty->isFloatingPointTy() || (Ty->isIntegerTy() && !Ty->isIntegerTy(128))) {
347 unsigned size = 0;
348 if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
349 size = ITy->getBitWidth();
350 } else {
351 assert(Ty->isFloatingPointTy() && "Floating point type expected here");
352 size = Ty->getPrimitiveSizeInBits();
354 // PTX ABI requires all scalar return values to be at least 32
355 // bits in size. fp16 normally uses .b16 as its storage type in
356 // PTX, so its size must be adjusted here, too.
357 if (size < 32)
358 size = 32;
360 O << ".param .b" << size << " func_retval0";
361 } else if (isa<PointerType>(Ty)) {
362 O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
363 << " func_retval0";
364 } else if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
365 unsigned totalsz = DL.getTypeAllocSize(Ty);
366 unsigned retAlignment = 0;
367 if (!getAlign(*F, 0, retAlignment))
368 retAlignment = DL.getABITypeAlignment(Ty);
369 O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
370 << "]";
371 } else
372 llvm_unreachable("Unknown return type");
373 } else {
374 SmallVector<EVT, 16> vtparts;
375 ComputeValueVTs(*TLI, DL, Ty, vtparts);
376 unsigned idx = 0;
377 for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
378 unsigned elems = 1;
379 EVT elemtype = vtparts[i];
380 if (vtparts[i].isVector()) {
381 elems = vtparts[i].getVectorNumElements();
382 elemtype = vtparts[i].getVectorElementType();
385 for (unsigned j = 0, je = elems; j != je; ++j) {
386 unsigned sz = elemtype.getSizeInBits();
387 if (elemtype.isInteger() && (sz < 32))
388 sz = 32;
389 O << ".reg .b" << sz << " func_retval" << idx;
390 if (j < je - 1)
391 O << ", ";
392 ++idx;
394 if (i < e - 1)
395 O << ", ";
398 O << ") ";
401 void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
402 raw_ostream &O) {
403 const Function &F = MF.getFunction();
404 printReturnValStr(&F, O);
407 // Return true if MBB is the header of a loop marked with
408 // llvm.loop.unroll.disable.
409 // TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
410 bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
411 const MachineBasicBlock &MBB) const {
412 MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
413 // We insert .pragma "nounroll" only to the loop header.
414 if (!LI.isLoopHeader(&MBB))
415 return false;
417 // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
418 // we iterate through each back edge of the loop with header MBB, and check
419 // whether its metadata contains llvm.loop.unroll.disable.
420 for (auto I = MBB.pred_begin(); I != MBB.pred_end(); ++I) {
421 const MachineBasicBlock *PMBB = *I;
422 if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
423 // Edges from other loops to MBB are not back edges.
424 continue;
426 if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
427 if (MDNode *LoopID =
428 PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
429 if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
430 return true;
434 return false;
437 void NVPTXAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
438 AsmPrinter::emitBasicBlockStart(MBB);
439 if (isLoopHeaderOfNoUnroll(MBB))
440 OutStreamer->emitRawText(StringRef("\t.pragma \"nounroll\";\n"));
443 void NVPTXAsmPrinter::emitFunctionEntryLabel() {
444 SmallString<128> Str;
445 raw_svector_ostream O(Str);
447 if (!GlobalsEmitted) {
448 emitGlobals(*MF->getFunction().getParent());
449 GlobalsEmitted = true;
452 // Set up
453 MRI = &MF->getRegInfo();
454 F = &MF->getFunction();
455 emitLinkageDirective(F, O);
456 if (isKernelFunction(*F))
457 O << ".entry ";
458 else {
459 O << ".func ";
460 printReturnValStr(*MF, O);
463 CurrentFnSym->print(O, MAI);
465 emitFunctionParamList(*MF, O);
467 if (isKernelFunction(*F))
468 emitKernelFunctionDirectives(*F, O);
470 OutStreamer->emitRawText(O.str());
472 VRegMapping.clear();
473 // Emit open brace for function body.
474 OutStreamer->emitRawText(StringRef("{\n"));
475 setAndEmitFunctionVirtualRegisters(*MF);
476 // Emit initial .loc debug directive for correct relocation symbol data.
477 if (MMI && MMI->hasDebugInfo())
478 emitInitialRawDwarfLocDirective(*MF);
481 bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) {
482 bool Result = AsmPrinter::runOnMachineFunction(F);
483 // Emit closing brace for the body of function F.
484 // The closing brace must be emitted here because we need to emit additional
485 // debug labels/data after the last basic block.
486 // We need to emit the closing brace here because we don't have function that
487 // finished emission of the function body.
488 OutStreamer->emitRawText(StringRef("}\n"));
489 return Result;
492 void NVPTXAsmPrinter::emitFunctionBodyStart() {
493 SmallString<128> Str;
494 raw_svector_ostream O(Str);
495 emitDemotedVars(&MF->getFunction(), O);
496 OutStreamer->emitRawText(O.str());
499 void NVPTXAsmPrinter::emitFunctionBodyEnd() {
500 VRegMapping.clear();
503 const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const {
504 SmallString<128> Str;
505 raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber();
506 return OutContext.getOrCreateSymbol(Str);
509 void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
510 Register RegNo = MI->getOperand(0).getReg();
511 if (Register::isVirtualRegister(RegNo)) {
512 OutStreamer->AddComment(Twine("implicit-def: ") +
513 getVirtualRegisterName(RegNo));
514 } else {
515 const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
516 OutStreamer->AddComment(Twine("implicit-def: ") +
517 STI.getRegisterInfo()->getName(RegNo));
519 OutStreamer->AddBlankLine();
522 void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
523 raw_ostream &O) const {
524 // If the NVVM IR has some of reqntid* specified, then output
525 // the reqntid directive, and set the unspecified ones to 1.
526 // If none of reqntid* is specified, don't output reqntid directive.
527 unsigned reqntidx, reqntidy, reqntidz;
528 bool specified = false;
529 if (!getReqNTIDx(F, reqntidx))
530 reqntidx = 1;
531 else
532 specified = true;
533 if (!getReqNTIDy(F, reqntidy))
534 reqntidy = 1;
535 else
536 specified = true;
537 if (!getReqNTIDz(F, reqntidz))
538 reqntidz = 1;
539 else
540 specified = true;
542 if (specified)
543 O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
544 << "\n";
546 // If the NVVM IR has some of maxntid* specified, then output
547 // the maxntid directive, and set the unspecified ones to 1.
548 // If none of maxntid* is specified, don't output maxntid directive.
549 unsigned maxntidx, maxntidy, maxntidz;
550 specified = false;
551 if (!getMaxNTIDx(F, maxntidx))
552 maxntidx = 1;
553 else
554 specified = true;
555 if (!getMaxNTIDy(F, maxntidy))
556 maxntidy = 1;
557 else
558 specified = true;
559 if (!getMaxNTIDz(F, maxntidz))
560 maxntidz = 1;
561 else
562 specified = true;
564 if (specified)
565 O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
566 << "\n";
568 unsigned mincta;
569 if (getMinCTASm(F, mincta))
570 O << ".minnctapersm " << mincta << "\n";
572 unsigned maxnreg;
573 if (getMaxNReg(F, maxnreg))
574 O << ".maxnreg " << maxnreg << "\n";
577 std::string
578 NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
579 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
581 std::string Name;
582 raw_string_ostream NameStr(Name);
584 VRegRCMap::const_iterator I = VRegMapping.find(RC);
585 assert(I != VRegMapping.end() && "Bad register class");
586 const DenseMap<unsigned, unsigned> &RegMap = I->second;
588 VRegMap::const_iterator VI = RegMap.find(Reg);
589 assert(VI != RegMap.end() && "Bad virtual register");
590 unsigned MappedVR = VI->second;
592 NameStr << getNVPTXRegClassStr(RC) << MappedVR;
594 NameStr.flush();
595 return Name;
598 void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
599 raw_ostream &O) {
600 O << getVirtualRegisterName(vr);
603 void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
604 emitLinkageDirective(F, O);
605 if (isKernelFunction(*F))
606 O << ".entry ";
607 else
608 O << ".func ";
609 printReturnValStr(F, O);
610 getSymbol(F)->print(O, MAI);
611 O << "\n";
612 emitFunctionParamList(F, O);
613 O << ";\n";
616 static bool usedInGlobalVarDef(const Constant *C) {
617 if (!C)
618 return false;
620 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
621 return GV->getName() != "llvm.used";
624 for (const User *U : C->users())
625 if (const Constant *C = dyn_cast<Constant>(U))
626 if (usedInGlobalVarDef(C))
627 return true;
629 return false;
632 static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
633 if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
634 if (othergv->getName() == "llvm.used")
635 return true;
638 if (const Instruction *instr = dyn_cast<Instruction>(U)) {
639 if (instr->getParent() && instr->getParent()->getParent()) {
640 const Function *curFunc = instr->getParent()->getParent();
641 if (oneFunc && (curFunc != oneFunc))
642 return false;
643 oneFunc = curFunc;
644 return true;
645 } else
646 return false;
649 for (const User *UU : U->users())
650 if (!usedInOneFunc(UU, oneFunc))
651 return false;
653 return true;
656 /* Find out if a global variable can be demoted to local scope.
657 * Currently, this is valid for CUDA shared variables, which have local
658 * scope and global lifetime. So the conditions to check are :
659 * 1. Is the global variable in shared address space?
660 * 2. Does it have internal linkage?
661 * 3. Is the global variable referenced only in one function?
663 static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
664 if (!gv->hasInternalLinkage())
665 return false;
666 PointerType *Pty = gv->getType();
667 if (Pty->getAddressSpace() != ADDRESS_SPACE_SHARED)
668 return false;
670 const Function *oneFunc = nullptr;
672 bool flag = usedInOneFunc(gv, oneFunc);
673 if (!flag)
674 return false;
675 if (!oneFunc)
676 return false;
677 f = oneFunc;
678 return true;
681 static bool useFuncSeen(const Constant *C,
682 DenseMap<const Function *, bool> &seenMap) {
683 for (const User *U : C->users()) {
684 if (const Constant *cu = dyn_cast<Constant>(U)) {
685 if (useFuncSeen(cu, seenMap))
686 return true;
687 } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
688 const BasicBlock *bb = I->getParent();
689 if (!bb)
690 continue;
691 const Function *caller = bb->getParent();
692 if (!caller)
693 continue;
694 if (seenMap.find(caller) != seenMap.end())
695 return true;
698 return false;
701 void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
702 DenseMap<const Function *, bool> seenMap;
703 for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
704 const Function *F = &*FI;
706 if (F->getAttributes().hasFnAttr("nvptx-libcall-callee")) {
707 emitDeclaration(F, O);
708 continue;
711 if (F->isDeclaration()) {
712 if (F->use_empty())
713 continue;
714 if (F->getIntrinsicID())
715 continue;
716 emitDeclaration(F, O);
717 continue;
719 for (const User *U : F->users()) {
720 if (const Constant *C = dyn_cast<Constant>(U)) {
721 if (usedInGlobalVarDef(C)) {
722 // The use is in the initialization of a global variable
723 // that is a function pointer, so print a declaration
724 // for the original function
725 emitDeclaration(F, O);
726 break;
728 // Emit a declaration of this function if the function that
729 // uses this constant expr has already been seen.
730 if (useFuncSeen(C, seenMap)) {
731 emitDeclaration(F, O);
732 break;
736 if (!isa<Instruction>(U))
737 continue;
738 const Instruction *instr = cast<Instruction>(U);
739 const BasicBlock *bb = instr->getParent();
740 if (!bb)
741 continue;
742 const Function *caller = bb->getParent();
743 if (!caller)
744 continue;
746 // If a caller has already been seen, then the caller is
747 // appearing in the module before the callee. so print out
748 // a declaration for the callee.
749 if (seenMap.find(caller) != seenMap.end()) {
750 emitDeclaration(F, O);
751 break;
754 seenMap[F] = true;
758 static bool isEmptyXXStructor(GlobalVariable *GV) {
759 if (!GV) return true;
760 const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
761 if (!InitList) return true; // Not an array; we don't know how to parse.
762 return InitList->getNumOperands() == 0;
765 void NVPTXAsmPrinter::emitStartOfAsmFile(Module &M) {
766 // Construct a default subtarget off of the TargetMachine defaults. The
767 // rest of NVPTX isn't friendly to change subtargets per function and
768 // so the default TargetMachine will have all of the options.
769 const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
770 const auto* STI = static_cast<const NVPTXSubtarget*>(NTM.getSubtargetImpl());
771 SmallString<128> Str1;
772 raw_svector_ostream OS1(Str1);
774 // Emit header before any dwarf directives are emitted below.
775 emitHeader(M, OS1, *STI);
776 OutStreamer->emitRawText(OS1.str());
779 bool NVPTXAsmPrinter::doInitialization(Module &M) {
780 if (M.alias_size()) {
781 report_fatal_error("Module has aliases, which NVPTX does not support.");
782 return true; // error
784 if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors"))) {
785 report_fatal_error(
786 "Module has a nontrivial global ctor, which NVPTX does not support.");
787 return true; // error
789 if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors"))) {
790 report_fatal_error(
791 "Module has a nontrivial global dtor, which NVPTX does not support.");
792 return true; // error
795 // We need to call the parent's one explicitly.
796 bool Result = AsmPrinter::doInitialization(M);
798 GlobalsEmitted = false;
800 return Result;
803 void NVPTXAsmPrinter::emitGlobals(const Module &M) {
804 SmallString<128> Str2;
805 raw_svector_ostream OS2(Str2);
807 emitDeclarations(M, OS2);
809 // As ptxas does not support forward references of globals, we need to first
810 // sort the list of module-level globals in def-use order. We visit each
811 // global variable in order, and ensure that we emit it *after* its dependent
812 // globals. We use a little extra memory maintaining both a set and a list to
813 // have fast searches while maintaining a strict ordering.
814 SmallVector<const GlobalVariable *, 8> Globals;
815 DenseSet<const GlobalVariable *> GVVisited;
816 DenseSet<const GlobalVariable *> GVVisiting;
818 // Visit each global variable, in order
819 for (const GlobalVariable &I : M.globals())
820 VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
822 assert(GVVisited.size() == M.getGlobalList().size() &&
823 "Missed a global variable");
824 assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
826 // Print out module-level global variables in proper order
827 for (unsigned i = 0, e = Globals.size(); i != e; ++i)
828 printModuleLevelGV(Globals[i], OS2);
830 OS2 << '\n';
832 OutStreamer->emitRawText(OS2.str());
835 void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
836 const NVPTXSubtarget &STI) {
837 O << "//\n";
838 O << "// Generated by LLVM NVPTX Back-End\n";
839 O << "//\n";
840 O << "\n";
842 unsigned PTXVersion = STI.getPTXVersion();
843 O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
845 O << ".target ";
846 O << STI.getTargetName();
848 const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
849 if (NTM.getDrvInterface() == NVPTX::NVCL)
850 O << ", texmode_independent";
852 bool HasFullDebugInfo = false;
853 for (DICompileUnit *CU : M.debug_compile_units()) {
854 switch(CU->getEmissionKind()) {
855 case DICompileUnit::NoDebug:
856 case DICompileUnit::DebugDirectivesOnly:
857 break;
858 case DICompileUnit::LineTablesOnly:
859 case DICompileUnit::FullDebug:
860 HasFullDebugInfo = true;
861 break;
863 if (HasFullDebugInfo)
864 break;
866 if (MMI && MMI->hasDebugInfo() && HasFullDebugInfo)
867 O << ", debug";
869 O << "\n";
871 O << ".address_size ";
872 if (NTM.is64Bit())
873 O << "64";
874 else
875 O << "32";
876 O << "\n";
878 O << "\n";
881 bool NVPTXAsmPrinter::doFinalization(Module &M) {
882 bool HasDebugInfo = MMI && MMI->hasDebugInfo();
884 // If we did not emit any functions, then the global declarations have not
885 // yet been emitted.
886 if (!GlobalsEmitted) {
887 emitGlobals(M);
888 GlobalsEmitted = true;
891 // XXX Temproarily remove global variables so that doFinalization() will not
892 // emit them again (global variables are emitted at beginning).
894 Module::GlobalListType &global_list = M.getGlobalList();
895 int i, n = global_list.size();
896 GlobalVariable **gv_array = new GlobalVariable *[n];
898 // first, back-up GlobalVariable in gv_array
899 i = 0;
900 for (Module::global_iterator I = global_list.begin(), E = global_list.end();
901 I != E; ++I)
902 gv_array[i++] = &*I;
904 // second, empty global_list
905 while (!global_list.empty())
906 global_list.remove(global_list.begin());
908 // call doFinalization
909 bool ret = AsmPrinter::doFinalization(M);
911 // now we restore global variables
912 for (i = 0; i < n; i++)
913 global_list.insert(global_list.end(), gv_array[i]);
915 clearAnnotationCache(&M);
917 delete[] gv_array;
918 // Close the last emitted section
919 if (HasDebugInfo) {
920 static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer())
921 ->closeLastSection();
922 // Emit empty .debug_loc section for better support of the empty files.
923 OutStreamer->emitRawText("\t.section\t.debug_loc\t{\t}");
926 // Output last DWARF .file directives, if any.
927 static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer())
928 ->outputDwarfFileDirectives();
930 return ret;
932 //bool Result = AsmPrinter::doFinalization(M);
933 // Instead of calling the parents doFinalization, we may
934 // clone parents doFinalization and customize here.
935 // Currently, we if NVISA out the EmitGlobals() in
936 // parent's doFinalization, which is too intrusive.
938 // Same for the doInitialization.
939 //return Result;
942 // This function emits appropriate linkage directives for
943 // functions and global variables.
945 // extern function declaration -> .extern
946 // extern function definition -> .visible
947 // external global variable with init -> .visible
948 // external without init -> .extern
949 // appending -> not allowed, assert.
950 // for any linkage other than
951 // internal, private, linker_private,
952 // linker_private_weak, linker_private_weak_def_auto,
953 // we emit -> .weak.
955 void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
956 raw_ostream &O) {
957 if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
958 if (V->hasExternalLinkage()) {
959 if (isa<GlobalVariable>(V)) {
960 const GlobalVariable *GVar = cast<GlobalVariable>(V);
961 if (GVar) {
962 if (GVar->hasInitializer())
963 O << ".visible ";
964 else
965 O << ".extern ";
967 } else if (V->isDeclaration())
968 O << ".extern ";
969 else
970 O << ".visible ";
971 } else if (V->hasAppendingLinkage()) {
972 std::string msg;
973 msg.append("Error: ");
974 msg.append("Symbol ");
975 if (V->hasName())
976 msg.append(std::string(V->getName()));
977 msg.append("has unsupported appending linkage type");
978 llvm_unreachable(msg.c_str());
979 } else if (!V->hasInternalLinkage() &&
980 !V->hasPrivateLinkage()) {
981 O << ".weak ";
986 void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
987 raw_ostream &O,
988 bool processDemoted) {
989 // Skip meta data
990 if (GVar->hasSection()) {
991 if (GVar->getSection() == "llvm.metadata")
992 return;
995 // Skip LLVM intrinsic global variables
996 if (GVar->getName().startswith("llvm.") ||
997 GVar->getName().startswith("nvvm."))
998 return;
1000 const DataLayout &DL = getDataLayout();
1002 // GlobalVariables are always constant pointers themselves.
1003 PointerType *PTy = GVar->getType();
1004 Type *ETy = GVar->getValueType();
1006 if (GVar->hasExternalLinkage()) {
1007 if (GVar->hasInitializer())
1008 O << ".visible ";
1009 else
1010 O << ".extern ";
1011 } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
1012 GVar->hasAvailableExternallyLinkage() ||
1013 GVar->hasCommonLinkage()) {
1014 O << ".weak ";
1017 if (isTexture(*GVar)) {
1018 O << ".global .texref " << getTextureName(*GVar) << ";\n";
1019 return;
1022 if (isSurface(*GVar)) {
1023 O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
1024 return;
1027 if (GVar->isDeclaration()) {
1028 // (extern) declarations, no definition or initializer
1029 // Currently the only known declaration is for an automatic __local
1030 // (.shared) promoted to global.
1031 emitPTXGlobalVariable(GVar, O);
1032 O << ";\n";
1033 return;
1036 if (isSampler(*GVar)) {
1037 O << ".global .samplerref " << getSamplerName(*GVar);
1039 const Constant *Initializer = nullptr;
1040 if (GVar->hasInitializer())
1041 Initializer = GVar->getInitializer();
1042 const ConstantInt *CI = nullptr;
1043 if (Initializer)
1044 CI = dyn_cast<ConstantInt>(Initializer);
1045 if (CI) {
1046 unsigned sample = CI->getZExtValue();
1048 O << " = { ";
1050 for (int i = 0,
1051 addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
1052 i < 3; i++) {
1053 O << "addr_mode_" << i << " = ";
1054 switch (addr) {
1055 case 0:
1056 O << "wrap";
1057 break;
1058 case 1:
1059 O << "clamp_to_border";
1060 break;
1061 case 2:
1062 O << "clamp_to_edge";
1063 break;
1064 case 3:
1065 O << "wrap";
1066 break;
1067 case 4:
1068 O << "mirror";
1069 break;
1071 O << ", ";
1073 O << "filter_mode = ";
1074 switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
1075 case 0:
1076 O << "nearest";
1077 break;
1078 case 1:
1079 O << "linear";
1080 break;
1081 case 2:
1082 llvm_unreachable("Anisotropic filtering is not supported");
1083 default:
1084 O << "nearest";
1085 break;
1087 if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
1088 O << ", force_unnormalized_coords = 1";
1090 O << " }";
1093 O << ";\n";
1094 return;
1097 if (GVar->hasPrivateLinkage()) {
1098 if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0)
1099 return;
1101 // FIXME - need better way (e.g. Metadata) to avoid generating this global
1102 if (strncmp(GVar->getName().data(), "filename", 8) == 0)
1103 return;
1104 if (GVar->use_empty())
1105 return;
1108 const Function *demotedFunc = nullptr;
1109 if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1110 O << "// " << GVar->getName() << " has been demoted\n";
1111 if (localDecls.find(demotedFunc) != localDecls.end())
1112 localDecls[demotedFunc].push_back(GVar);
1113 else {
1114 std::vector<const GlobalVariable *> temp;
1115 temp.push_back(GVar);
1116 localDecls[demotedFunc] = temp;
1118 return;
1121 O << ".";
1122 emitPTXAddressSpace(PTy->getAddressSpace(), O);
1124 if (isManaged(*GVar)) {
1125 O << " .attribute(.managed)";
1128 if (GVar->getAlignment() == 0)
1129 O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1130 else
1131 O << " .align " << GVar->getAlignment();
1133 if (ETy->isFloatingPointTy() || ETy->isPointerTy() ||
1134 (ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) {
1135 O << " .";
1136 // Special case: ABI requires that we use .u8 for predicates
1137 if (ETy->isIntegerTy(1))
1138 O << "u8";
1139 else
1140 O << getPTXFundamentalTypeStr(ETy, false);
1141 O << " ";
1142 getSymbol(GVar)->print(O, MAI);
1144 // Ptx allows variable initilization only for constant and global state
1145 // spaces.
1146 if (GVar->hasInitializer()) {
1147 if ((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
1148 (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) {
1149 const Constant *Initializer = GVar->getInitializer();
1150 // 'undef' is treated as there is no value specified.
1151 if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
1152 O << " = ";
1153 printScalarConstant(Initializer, O);
1155 } else {
1156 // The frontend adds zero-initializer to device and constant variables
1157 // that don't have an initial value, and UndefValue to shared
1158 // variables, so skip warning for this case.
1159 if (!GVar->getInitializer()->isNullValue() &&
1160 !isa<UndefValue>(GVar->getInitializer())) {
1161 report_fatal_error("initial value of '" + GVar->getName() +
1162 "' is not allowed in addrspace(" +
1163 Twine(PTy->getAddressSpace()) + ")");
1167 } else {
1168 unsigned int ElementSize = 0;
1170 // Although PTX has direct support for struct type and array type and
1171 // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1172 // targets that support these high level field accesses. Structs, arrays
1173 // and vectors are lowered into arrays of bytes.
1174 switch (ETy->getTypeID()) {
1175 case Type::IntegerTyID: // Integers larger than 64 bits
1176 case Type::StructTyID:
1177 case Type::ArrayTyID:
1178 case Type::FixedVectorTyID:
1179 ElementSize = DL.getTypeStoreSize(ETy);
1180 // Ptx allows variable initilization only for constant and
1181 // global state spaces.
1182 if (((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
1183 (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
1184 GVar->hasInitializer()) {
1185 const Constant *Initializer = GVar->getInitializer();
1186 if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
1187 AggBuffer aggBuffer(ElementSize, O, *this);
1188 bufferAggregateConstant(Initializer, &aggBuffer);
1189 if (aggBuffer.numSymbols) {
1190 if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit()) {
1191 O << " .u64 ";
1192 getSymbol(GVar)->print(O, MAI);
1193 O << "[";
1194 O << ElementSize / 8;
1195 } else {
1196 O << " .u32 ";
1197 getSymbol(GVar)->print(O, MAI);
1198 O << "[";
1199 O << ElementSize / 4;
1201 O << "]";
1202 } else {
1203 O << " .b8 ";
1204 getSymbol(GVar)->print(O, MAI);
1205 O << "[";
1206 O << ElementSize;
1207 O << "]";
1209 O << " = {";
1210 aggBuffer.print();
1211 O << "}";
1212 } else {
1213 O << " .b8 ";
1214 getSymbol(GVar)->print(O, MAI);
1215 if (ElementSize) {
1216 O << "[";
1217 O << ElementSize;
1218 O << "]";
1221 } else {
1222 O << " .b8 ";
1223 getSymbol(GVar)->print(O, MAI);
1224 if (ElementSize) {
1225 O << "[";
1226 O << ElementSize;
1227 O << "]";
1230 break;
1231 default:
1232 llvm_unreachable("type not supported yet");
1235 O << ";\n";
1238 void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1239 if (localDecls.find(f) == localDecls.end())
1240 return;
1242 std::vector<const GlobalVariable *> &gvars = localDecls[f];
1244 for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
1245 O << "\t// demoted variable\n\t";
1246 printModuleLevelGV(gvars[i], O, true);
1250 void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1251 raw_ostream &O) const {
1252 switch (AddressSpace) {
1253 case ADDRESS_SPACE_LOCAL:
1254 O << "local";
1255 break;
1256 case ADDRESS_SPACE_GLOBAL:
1257 O << "global";
1258 break;
1259 case ADDRESS_SPACE_CONST:
1260 O << "const";
1261 break;
1262 case ADDRESS_SPACE_SHARED:
1263 O << "shared";
1264 break;
1265 default:
1266 report_fatal_error("Bad address space found while emitting PTX: " +
1267 llvm::Twine(AddressSpace));
1268 break;
1272 std::string
1273 NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
1274 switch (Ty->getTypeID()) {
1275 case Type::IntegerTyID: {
1276 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1277 if (NumBits == 1)
1278 return "pred";
1279 else if (NumBits <= 64) {
1280 std::string name = "u";
1281 return name + utostr(NumBits);
1282 } else {
1283 llvm_unreachable("Integer too large");
1284 break;
1286 break;
1288 case Type::HalfTyID:
1289 // fp16 is stored as .b16 for compatibility with pre-sm_53 PTX assembly.
1290 return "b16";
1291 case Type::FloatTyID:
1292 return "f32";
1293 case Type::DoubleTyID:
1294 return "f64";
1295 case Type::PointerTyID:
1296 if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit())
1297 if (useB4PTR)
1298 return "b64";
1299 else
1300 return "u64";
1301 else if (useB4PTR)
1302 return "b32";
1303 else
1304 return "u32";
1305 default:
1306 break;
1308 llvm_unreachable("unexpected type");
1311 void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
1312 raw_ostream &O) {
1313 const DataLayout &DL = getDataLayout();
1315 // GlobalVariables are always constant pointers themselves.
1316 Type *ETy = GVar->getValueType();
1318 O << ".";
1319 emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
1320 if (GVar->getAlignment() == 0)
1321 O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1322 else
1323 O << " .align " << GVar->getAlignment();
1325 // Special case for i128
1326 if (ETy->isIntegerTy(128)) {
1327 O << " .b8 ";
1328 getSymbol(GVar)->print(O, MAI);
1329 O << "[16]";
1330 return;
1333 if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
1334 O << " .";
1335 O << getPTXFundamentalTypeStr(ETy);
1336 O << " ";
1337 getSymbol(GVar)->print(O, MAI);
1338 return;
1341 int64_t ElementSize = 0;
1343 // Although PTX has direct support for struct type and array type and LLVM IR
1344 // is very similar to PTX, the LLVM CodeGen does not support for targets that
1345 // support these high level field accesses. Structs and arrays are lowered
1346 // into arrays of bytes.
1347 switch (ETy->getTypeID()) {
1348 case Type::StructTyID:
1349 case Type::ArrayTyID:
1350 case Type::FixedVectorTyID:
1351 ElementSize = DL.getTypeStoreSize(ETy);
1352 O << " .b8 ";
1353 getSymbol(GVar)->print(O, MAI);
1354 O << "[";
1355 if (ElementSize) {
1356 O << ElementSize;
1358 O << "]";
1359 break;
1360 default:
1361 llvm_unreachable("type not supported yet");
1365 static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty) {
1366 if (Ty->isSingleValueType())
1367 return DL.getPrefTypeAlignment(Ty);
1369 auto *ATy = dyn_cast<ArrayType>(Ty);
1370 if (ATy)
1371 return getOpenCLAlignment(DL, ATy->getElementType());
1373 auto *STy = dyn_cast<StructType>(Ty);
1374 if (STy) {
1375 unsigned int alignStruct = 1;
1376 // Go through each element of the struct and find the
1377 // largest alignment.
1378 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1379 Type *ETy = STy->getElementType(i);
1380 unsigned int align = getOpenCLAlignment(DL, ETy);
1381 if (align > alignStruct)
1382 alignStruct = align;
1384 return alignStruct;
1387 auto *FTy = dyn_cast<FunctionType>(Ty);
1388 if (FTy)
1389 return DL.getPointerPrefAlignment().value();
1390 return DL.getPrefTypeAlignment(Ty);
1393 void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1394 int paramIndex, raw_ostream &O) {
1395 getSymbol(I->getParent())->print(O, MAI);
1396 O << "_param_" << paramIndex;
1399 void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
1400 const DataLayout &DL = getDataLayout();
1401 const AttributeList &PAL = F->getAttributes();
1402 const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
1403 const TargetLowering *TLI = STI.getTargetLowering();
1404 Function::const_arg_iterator I, E;
1405 unsigned paramIndex = 0;
1406 bool first = true;
1407 bool isKernelFunc = isKernelFunction(*F);
1408 bool isABI = (STI.getSmVersion() >= 20);
1409 bool hasImageHandles = STI.hasImageHandles();
1410 MVT thePointerTy = TLI->getPointerTy(DL);
1412 if (F->arg_empty()) {
1413 O << "()\n";
1414 return;
1417 O << "(\n";
1419 for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1420 Type *Ty = I->getType();
1422 if (!first)
1423 O << ",\n";
1425 first = false;
1427 // Handle image/sampler parameters
1428 if (isKernelFunction(*F)) {
1429 if (isSampler(*I) || isImage(*I)) {
1430 if (isImage(*I)) {
1431 std::string sname = std::string(I->getName());
1432 if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
1433 if (hasImageHandles)
1434 O << "\t.param .u64 .ptr .surfref ";
1435 else
1436 O << "\t.param .surfref ";
1437 CurrentFnSym->print(O, MAI);
1438 O << "_param_" << paramIndex;
1440 else { // Default image is read_only
1441 if (hasImageHandles)
1442 O << "\t.param .u64 .ptr .texref ";
1443 else
1444 O << "\t.param .texref ";
1445 CurrentFnSym->print(O, MAI);
1446 O << "_param_" << paramIndex;
1448 } else {
1449 if (hasImageHandles)
1450 O << "\t.param .u64 .ptr .samplerref ";
1451 else
1452 O << "\t.param .samplerref ";
1453 CurrentFnSym->print(O, MAI);
1454 O << "_param_" << paramIndex;
1456 continue;
1460 if (!PAL.hasParamAttr(paramIndex, Attribute::ByVal)) {
1461 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1462 // Just print .param .align <a> .b8 .param[size];
1463 // <a> = PAL.getparamalignment
1464 // size = typeallocsize of element type
1465 const Align align = DL.getValueOrABITypeAlignment(
1466 PAL.getParamAlignment(paramIndex), Ty);
1468 unsigned sz = DL.getTypeAllocSize(Ty);
1469 O << "\t.param .align " << align.value() << " .b8 ";
1470 printParamName(I, paramIndex, O);
1471 O << "[" << sz << "]";
1473 continue;
1475 // Just a scalar
1476 auto *PTy = dyn_cast<PointerType>(Ty);
1477 if (isKernelFunc) {
1478 if (PTy) {
1479 // Special handling for pointer arguments to kernel
1480 O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1482 if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
1483 NVPTX::CUDA) {
1484 Type *ETy = PTy->getElementType();
1485 int addrSpace = PTy->getAddressSpace();
1486 switch (addrSpace) {
1487 default:
1488 O << ".ptr ";
1489 break;
1490 case ADDRESS_SPACE_CONST:
1491 O << ".ptr .const ";
1492 break;
1493 case ADDRESS_SPACE_SHARED:
1494 O << ".ptr .shared ";
1495 break;
1496 case ADDRESS_SPACE_GLOBAL:
1497 O << ".ptr .global ";
1498 break;
1500 O << ".align " << (int)getOpenCLAlignment(DL, ETy) << " ";
1502 printParamName(I, paramIndex, O);
1503 continue;
1506 // non-pointer scalar to kernel func
1507 O << "\t.param .";
1508 // Special case: predicate operands become .u8 types
1509 if (Ty->isIntegerTy(1))
1510 O << "u8";
1511 else
1512 O << getPTXFundamentalTypeStr(Ty);
1513 O << " ";
1514 printParamName(I, paramIndex, O);
1515 continue;
1517 // Non-kernel function, just print .param .b<size> for ABI
1518 // and .reg .b<size> for non-ABI
1519 unsigned sz = 0;
1520 if (isa<IntegerType>(Ty)) {
1521 sz = cast<IntegerType>(Ty)->getBitWidth();
1522 if (sz < 32)
1523 sz = 32;
1524 } else if (isa<PointerType>(Ty))
1525 sz = thePointerTy.getSizeInBits();
1526 else if (Ty->isHalfTy())
1527 // PTX ABI requires all scalar parameters to be at least 32
1528 // bits in size. fp16 normally uses .b16 as its storage type
1529 // in PTX, so its size must be adjusted here, too.
1530 sz = 32;
1531 else
1532 sz = Ty->getPrimitiveSizeInBits();
1533 if (isABI)
1534 O << "\t.param .b" << sz << " ";
1535 else
1536 O << "\t.reg .b" << sz << " ";
1537 printParamName(I, paramIndex, O);
1538 continue;
1541 // param has byVal attribute. So should be a pointer
1542 auto *PTy = dyn_cast<PointerType>(Ty);
1543 assert(PTy && "Param with byval attribute should be a pointer type");
1544 Type *ETy = PTy->getElementType();
1546 if (isABI || isKernelFunc) {
1547 // Just print .param .align <a> .b8 .param[size];
1548 // <a> = PAL.getparamalignment
1549 // size = typeallocsize of element type
1550 Align align =
1551 DL.getValueOrABITypeAlignment(PAL.getParamAlignment(paramIndex), ETy);
1552 // Work around a bug in ptxas. When PTX code takes address of
1553 // byval parameter with alignment < 4, ptxas generates code to
1554 // spill argument into memory. Alas on sm_50+ ptxas generates
1555 // SASS code that fails with misaligned access. To work around
1556 // the problem, make sure that we align byval parameters by at
1557 // least 4. Matching change must be made in LowerCall() where we
1558 // prepare parameters for the call.
1560 // TODO: this will need to be undone when we get to support multi-TU
1561 // device-side compilation as it breaks ABI compatibility with nvcc.
1562 // Hopefully ptxas bug is fixed by then.
1563 if (!isKernelFunc && align < Align(4))
1564 align = Align(4);
1565 unsigned sz = DL.getTypeAllocSize(ETy);
1566 O << "\t.param .align " << align.value() << " .b8 ";
1567 printParamName(I, paramIndex, O);
1568 O << "[" << sz << "]";
1569 continue;
1570 } else {
1571 // Split the ETy into constituent parts and
1572 // print .param .b<size> <name> for each part.
1573 // Further, if a part is vector, print the above for
1574 // each vector element.
1575 SmallVector<EVT, 16> vtparts;
1576 ComputeValueVTs(*TLI, DL, ETy, vtparts);
1577 for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
1578 unsigned elems = 1;
1579 EVT elemtype = vtparts[i];
1580 if (vtparts[i].isVector()) {
1581 elems = vtparts[i].getVectorNumElements();
1582 elemtype = vtparts[i].getVectorElementType();
1585 for (unsigned j = 0, je = elems; j != je; ++j) {
1586 unsigned sz = elemtype.getSizeInBits();
1587 if (elemtype.isInteger() && (sz < 32))
1588 sz = 32;
1589 O << "\t.reg .b" << sz << " ";
1590 printParamName(I, paramIndex, O);
1591 if (j < je - 1)
1592 O << ",\n";
1593 ++paramIndex;
1595 if (i < e - 1)
1596 O << ",\n";
1598 --paramIndex;
1599 continue;
1603 O << "\n)\n";
1606 void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1607 raw_ostream &O) {
1608 const Function &F = MF.getFunction();
1609 emitFunctionParamList(&F, O);
1612 void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
1613 const MachineFunction &MF) {
1614 SmallString<128> Str;
1615 raw_svector_ostream O(Str);
1617 // Map the global virtual register number to a register class specific
1618 // virtual register number starting from 1 with that class.
1619 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1620 //unsigned numRegClasses = TRI->getNumRegClasses();
1622 // Emit the Fake Stack Object
1623 const MachineFrameInfo &MFI = MF.getFrameInfo();
1624 int NumBytes = (int) MFI.getStackSize();
1625 if (NumBytes) {
1626 O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t"
1627 << DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n";
1628 if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
1629 O << "\t.reg .b64 \t%SP;\n";
1630 O << "\t.reg .b64 \t%SPL;\n";
1631 } else {
1632 O << "\t.reg .b32 \t%SP;\n";
1633 O << "\t.reg .b32 \t%SPL;\n";
1637 // Go through all virtual registers to establish the mapping between the
1638 // global virtual
1639 // register number and the per class virtual register number.
1640 // We use the per class virtual register number in the ptx output.
1641 unsigned int numVRs = MRI->getNumVirtRegs();
1642 for (unsigned i = 0; i < numVRs; i++) {
1643 unsigned int vr = Register::index2VirtReg(i);
1644 const TargetRegisterClass *RC = MRI->getRegClass(vr);
1645 DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1646 int n = regmap.size();
1647 regmap.insert(std::make_pair(vr, n + 1));
1650 // Emit register declarations
1651 // @TODO: Extract out the real register usage
1652 // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1653 // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1654 // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1655 // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1656 // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
1657 // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1658 // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
1660 // Emit declaration of the virtual registers or 'physical' registers for
1661 // each register class
1662 for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
1663 const TargetRegisterClass *RC = TRI->getRegClass(i);
1664 DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1665 std::string rcname = getNVPTXRegClassName(RC);
1666 std::string rcStr = getNVPTXRegClassStr(RC);
1667 int n = regmap.size();
1669 // Only declare those registers that may be used.
1670 if (n) {
1671 O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1672 << ">;\n";
1676 OutStreamer->emitRawText(O.str());
1679 void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1680 APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1681 bool ignored;
1682 unsigned int numHex;
1683 const char *lead;
1685 if (Fp->getType()->getTypeID() == Type::FloatTyID) {
1686 numHex = 8;
1687 lead = "0f";
1688 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
1689 } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1690 numHex = 16;
1691 lead = "0d";
1692 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
1693 } else
1694 llvm_unreachable("unsupported fp type");
1696 APInt API = APF.bitcastToAPInt();
1697 O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true);
1700 void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
1701 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1702 O << CI->getValue();
1703 return;
1705 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1706 printFPConstant(CFP, O);
1707 return;
1709 if (isa<ConstantPointerNull>(CPV)) {
1710 O << "0";
1711 return;
1713 if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1714 bool IsNonGenericPointer = false;
1715 if (GVar->getType()->getAddressSpace() != 0) {
1716 IsNonGenericPointer = true;
1718 if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
1719 O << "generic(";
1720 getSymbol(GVar)->print(O, MAI);
1721 O << ")";
1722 } else {
1723 getSymbol(GVar)->print(O, MAI);
1725 return;
1727 if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1728 const Value *v = Cexpr->stripPointerCasts();
1729 PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
1730 bool IsNonGenericPointer = false;
1731 if (PTy && PTy->getAddressSpace() != 0) {
1732 IsNonGenericPointer = true;
1734 if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1735 if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
1736 O << "generic(";
1737 getSymbol(GVar)->print(O, MAI);
1738 O << ")";
1739 } else {
1740 getSymbol(GVar)->print(O, MAI);
1742 return;
1743 } else {
1744 lowerConstant(CPV)->print(O, MAI);
1745 return;
1748 llvm_unreachable("Not scalar type found in printScalarConstant()");
1751 // These utility functions assure we get the right sequence of bytes for a given
1752 // type even for big-endian machines
1753 template <typename T> static void ConvertIntToBytes(unsigned char *p, T val) {
1754 int64_t vp = (int64_t)val;
1755 for (unsigned i = 0; i < sizeof(T); ++i) {
1756 p[i] = (unsigned char)vp;
1757 vp >>= 8;
1760 static void ConvertFloatToBytes(unsigned char *p, float val) {
1761 int32_t *vp = (int32_t *)&val;
1762 for (unsigned i = 0; i < sizeof(int32_t); ++i) {
1763 p[i] = (unsigned char)*vp;
1764 *vp >>= 8;
1767 static void ConvertDoubleToBytes(unsigned char *p, double val) {
1768 int64_t *vp = (int64_t *)&val;
1769 for (unsigned i = 0; i < sizeof(int64_t); ++i) {
1770 p[i] = (unsigned char)*vp;
1771 *vp >>= 8;
1775 void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
1776 AggBuffer *aggBuffer) {
1777 const DataLayout &DL = getDataLayout();
1779 if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1780 int s = DL.getTypeAllocSize(CPV->getType());
1781 if (s < Bytes)
1782 s = Bytes;
1783 aggBuffer->addZeros(s);
1784 return;
1787 unsigned char ptr[8];
1788 switch (CPV->getType()->getTypeID()) {
1790 case Type::IntegerTyID: {
1791 Type *ETy = CPV->getType();
1792 if (ETy == Type::getInt8Ty(CPV->getContext())) {
1793 unsigned char c = (unsigned char)cast<ConstantInt>(CPV)->getZExtValue();
1794 ConvertIntToBytes<>(ptr, c);
1795 aggBuffer->addBytes(ptr, 1, Bytes);
1796 } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
1797 short int16 = (short)cast<ConstantInt>(CPV)->getZExtValue();
1798 ConvertIntToBytes<>(ptr, int16);
1799 aggBuffer->addBytes(ptr, 2, Bytes);
1800 } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
1801 if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1802 int int32 = (int)(constInt->getZExtValue());
1803 ConvertIntToBytes<>(ptr, int32);
1804 aggBuffer->addBytes(ptr, 4, Bytes);
1805 break;
1806 } else if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1807 if (const auto *constInt = dyn_cast<ConstantInt>(
1808 ConstantFoldConstant(Cexpr, DL))) {
1809 int int32 = (int)(constInt->getZExtValue());
1810 ConvertIntToBytes<>(ptr, int32);
1811 aggBuffer->addBytes(ptr, 4, Bytes);
1812 break;
1814 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1815 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1816 aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1817 aggBuffer->addZeros(4);
1818 break;
1821 llvm_unreachable("unsupported integer const type");
1822 } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
1823 if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1824 long long int64 = (long long)(constInt->getZExtValue());
1825 ConvertIntToBytes<>(ptr, int64);
1826 aggBuffer->addBytes(ptr, 8, Bytes);
1827 break;
1828 } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1829 if (const auto *constInt = dyn_cast<ConstantInt>(
1830 ConstantFoldConstant(Cexpr, DL))) {
1831 long long int64 = (long long)(constInt->getZExtValue());
1832 ConvertIntToBytes<>(ptr, int64);
1833 aggBuffer->addBytes(ptr, 8, Bytes);
1834 break;
1836 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1837 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1838 aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1839 aggBuffer->addZeros(8);
1840 break;
1843 llvm_unreachable("unsupported integer const type");
1844 } else
1845 llvm_unreachable("unsupported integer const type");
1846 break;
1848 case Type::HalfTyID:
1849 case Type::FloatTyID:
1850 case Type::DoubleTyID: {
1851 const auto *CFP = cast<ConstantFP>(CPV);
1852 Type *Ty = CFP->getType();
1853 if (Ty == Type::getHalfTy(CPV->getContext())) {
1854 APInt API = CFP->getValueAPF().bitcastToAPInt();
1855 uint16_t float16 = API.getLoBits(16).getZExtValue();
1856 ConvertIntToBytes<>(ptr, float16);
1857 aggBuffer->addBytes(ptr, 2, Bytes);
1858 } else if (Ty == Type::getFloatTy(CPV->getContext())) {
1859 float float32 = (float) CFP->getValueAPF().convertToFloat();
1860 ConvertFloatToBytes(ptr, float32);
1861 aggBuffer->addBytes(ptr, 4, Bytes);
1862 } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1863 double float64 = CFP->getValueAPF().convertToDouble();
1864 ConvertDoubleToBytes(ptr, float64);
1865 aggBuffer->addBytes(ptr, 8, Bytes);
1866 } else {
1867 llvm_unreachable("unsupported fp const type");
1869 break;
1871 case Type::PointerTyID: {
1872 if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1873 aggBuffer->addSymbol(GVar, GVar);
1874 } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1875 const Value *v = Cexpr->stripPointerCasts();
1876 aggBuffer->addSymbol(v, Cexpr);
1878 unsigned int s = DL.getTypeAllocSize(CPV->getType());
1879 aggBuffer->addZeros(s);
1880 break;
1883 case Type::ArrayTyID:
1884 case Type::FixedVectorTyID:
1885 case Type::StructTyID: {
1886 if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
1887 int ElementSize = DL.getTypeAllocSize(CPV->getType());
1888 bufferAggregateConstant(CPV, aggBuffer);
1889 if (Bytes > ElementSize)
1890 aggBuffer->addZeros(Bytes - ElementSize);
1891 } else if (isa<ConstantAggregateZero>(CPV))
1892 aggBuffer->addZeros(Bytes);
1893 else
1894 llvm_unreachable("Unexpected Constant type");
1895 break;
1898 default:
1899 llvm_unreachable("unsupported type");
1903 void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
1904 AggBuffer *aggBuffer) {
1905 const DataLayout &DL = getDataLayout();
1906 int Bytes;
1908 // Integers of arbitrary width
1909 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1910 APInt Val = CI->getValue();
1911 for (unsigned I = 0, E = DL.getTypeAllocSize(CPV->getType()); I < E; ++I) {
1912 uint8_t Byte = Val.getLoBits(8).getZExtValue();
1913 aggBuffer->addBytes(&Byte, 1, 1);
1914 Val.lshrInPlace(8);
1916 return;
1919 // Old constants
1920 if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1921 if (CPV->getNumOperands())
1922 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1923 bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1924 return;
1927 if (const ConstantDataSequential *CDS =
1928 dyn_cast<ConstantDataSequential>(CPV)) {
1929 if (CDS->getNumElements())
1930 for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1931 bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1932 aggBuffer);
1933 return;
1936 if (isa<ConstantStruct>(CPV)) {
1937 if (CPV->getNumOperands()) {
1938 StructType *ST = cast<StructType>(CPV->getType());
1939 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1940 if (i == (e - 1))
1941 Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
1942 DL.getTypeAllocSize(ST) -
1943 DL.getStructLayout(ST)->getElementOffset(i);
1944 else
1945 Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
1946 DL.getStructLayout(ST)->getElementOffset(i);
1947 bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
1950 return;
1952 llvm_unreachable("unsupported constant type in printAggregateConstant()");
1955 /// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
1956 /// a copy from AsmPrinter::lowerConstant, except customized to only handle
1957 /// expressions that are representable in PTX and create
1958 /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
1959 const MCExpr *
1960 NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
1961 MCContext &Ctx = OutContext;
1963 if (CV->isNullValue() || isa<UndefValue>(CV))
1964 return MCConstantExpr::create(0, Ctx);
1966 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1967 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1969 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
1970 const MCSymbolRefExpr *Expr =
1971 MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1972 if (ProcessingGeneric) {
1973 return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
1974 } else {
1975 return Expr;
1979 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1980 if (!CE) {
1981 llvm_unreachable("Unknown constant value to lower!");
1984 switch (CE->getOpcode()) {
1985 default: {
1986 // If the code isn't optimized, there may be outstanding folding
1987 // opportunities. Attempt to fold the expression using DataLayout as a
1988 // last resort before giving up.
1989 Constant *C = ConstantFoldConstant(CE, getDataLayout());
1990 if (C != CE)
1991 return lowerConstantForGV(C, ProcessingGeneric);
1993 // Otherwise report the problem to the user.
1994 std::string S;
1995 raw_string_ostream OS(S);
1996 OS << "Unsupported expression in static initializer: ";
1997 CE->printAsOperand(OS, /*PrintType=*/false,
1998 !MF ? nullptr : MF->getFunction().getParent());
1999 report_fatal_error(OS.str());
2002 case Instruction::AddrSpaceCast: {
2003 // Strip the addrspacecast and pass along the operand
2004 PointerType *DstTy = cast<PointerType>(CE->getType());
2005 if (DstTy->getAddressSpace() == 0) {
2006 return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
2008 std::string S;
2009 raw_string_ostream OS(S);
2010 OS << "Unsupported expression in static initializer: ";
2011 CE->printAsOperand(OS, /*PrintType=*/ false,
2012 !MF ? nullptr : MF->getFunction().getParent());
2013 report_fatal_error(OS.str());
2016 case Instruction::GetElementPtr: {
2017 const DataLayout &DL = getDataLayout();
2019 // Generate a symbolic expression for the byte address
2020 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
2021 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
2023 const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
2024 ProcessingGeneric);
2025 if (!OffsetAI)
2026 return Base;
2028 int64_t Offset = OffsetAI.getSExtValue();
2029 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2030 Ctx);
2033 case Instruction::Trunc:
2034 // We emit the value and depend on the assembler to truncate the generated
2035 // expression properly. This is important for differences between
2036 // blockaddress labels. Since the two labels are in the same function, it
2037 // is reasonable to treat their delta as a 32-bit value.
2038 LLVM_FALLTHROUGH;
2039 case Instruction::BitCast:
2040 return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2042 case Instruction::IntToPtr: {
2043 const DataLayout &DL = getDataLayout();
2045 // Handle casts to pointers by changing them into casts to the appropriate
2046 // integer type. This promotes constant folding and simplifies this code.
2047 Constant *Op = CE->getOperand(0);
2048 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2049 false/*ZExt*/);
2050 return lowerConstantForGV(Op, ProcessingGeneric);
2053 case Instruction::PtrToInt: {
2054 const DataLayout &DL = getDataLayout();
2056 // Support only foldable casts to/from pointers that can be eliminated by
2057 // changing the pointer to the appropriately sized integer type.
2058 Constant *Op = CE->getOperand(0);
2059 Type *Ty = CE->getType();
2061 const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
2063 // We can emit the pointer value into this slot if the slot is an
2064 // integer slot equal to the size of the pointer.
2065 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2066 return OpExpr;
2068 // Otherwise the pointer is smaller than the resultant integer, mask off
2069 // the high bits so we are sure to get a proper truncation if the input is
2070 // a constant expr.
2071 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2072 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2073 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2076 // The MC library also has a right-shift operator, but it isn't consistently
2077 // signed or unsigned between different targets.
2078 case Instruction::Add: {
2079 const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2080 const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
2081 switch (CE->getOpcode()) {
2082 default: llvm_unreachable("Unknown binary operator constant cast expr");
2083 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2089 // Copy of MCExpr::print customized for NVPTX
2090 void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
2091 switch (Expr.getKind()) {
2092 case MCExpr::Target:
2093 return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
2094 case MCExpr::Constant:
2095 OS << cast<MCConstantExpr>(Expr).getValue();
2096 return;
2098 case MCExpr::SymbolRef: {
2099 const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
2100 const MCSymbol &Sym = SRE.getSymbol();
2101 Sym.print(OS, MAI);
2102 return;
2105 case MCExpr::Unary: {
2106 const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
2107 switch (UE.getOpcode()) {
2108 case MCUnaryExpr::LNot: OS << '!'; break;
2109 case MCUnaryExpr::Minus: OS << '-'; break;
2110 case MCUnaryExpr::Not: OS << '~'; break;
2111 case MCUnaryExpr::Plus: OS << '+'; break;
2113 printMCExpr(*UE.getSubExpr(), OS);
2114 return;
2117 case MCExpr::Binary: {
2118 const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
2120 // Only print parens around the LHS if it is non-trivial.
2121 if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
2122 isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
2123 printMCExpr(*BE.getLHS(), OS);
2124 } else {
2125 OS << '(';
2126 printMCExpr(*BE.getLHS(), OS);
2127 OS<< ')';
2130 switch (BE.getOpcode()) {
2131 case MCBinaryExpr::Add:
2132 // Print "X-42" instead of "X+-42".
2133 if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
2134 if (RHSC->getValue() < 0) {
2135 OS << RHSC->getValue();
2136 return;
2140 OS << '+';
2141 break;
2142 default: llvm_unreachable("Unhandled binary operator");
2145 // Only print parens around the LHS if it is non-trivial.
2146 if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
2147 printMCExpr(*BE.getRHS(), OS);
2148 } else {
2149 OS << '(';
2150 printMCExpr(*BE.getRHS(), OS);
2151 OS << ')';
2153 return;
2157 llvm_unreachable("Invalid expression kind!");
2160 /// PrintAsmOperand - Print out an operand for an inline asm expression.
2162 bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
2163 const char *ExtraCode, raw_ostream &O) {
2164 if (ExtraCode && ExtraCode[0]) {
2165 if (ExtraCode[1] != 0)
2166 return true; // Unknown modifier.
2168 switch (ExtraCode[0]) {
2169 default:
2170 // See if this is a generic print operand
2171 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
2172 case 'r':
2173 break;
2177 printOperand(MI, OpNo, O);
2179 return false;
2182 bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
2183 unsigned OpNo,
2184 const char *ExtraCode,
2185 raw_ostream &O) {
2186 if (ExtraCode && ExtraCode[0])
2187 return true; // Unknown modifier
2189 O << '[';
2190 printMemOperand(MI, OpNo, O);
2191 O << ']';
2193 return false;
2196 void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
2197 raw_ostream &O) {
2198 const MachineOperand &MO = MI->getOperand(opNum);
2199 switch (MO.getType()) {
2200 case MachineOperand::MO_Register:
2201 if (Register::isPhysicalRegister(MO.getReg())) {
2202 if (MO.getReg() == NVPTX::VRDepot)
2203 O << DEPOTNAME << getFunctionNumber();
2204 else
2205 O << NVPTXInstPrinter::getRegisterName(MO.getReg());
2206 } else {
2207 emitVirtualRegister(MO.getReg(), O);
2209 break;
2211 case MachineOperand::MO_Immediate:
2212 O << MO.getImm();
2213 break;
2215 case MachineOperand::MO_FPImmediate:
2216 printFPConstant(MO.getFPImm(), O);
2217 break;
2219 case MachineOperand::MO_GlobalAddress:
2220 PrintSymbolOperand(MO, O);
2221 break;
2223 case MachineOperand::MO_MachineBasicBlock:
2224 MO.getMBB()->getSymbol()->print(O, MAI);
2225 break;
2227 default:
2228 llvm_unreachable("Operand type not supported.");
2232 void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
2233 raw_ostream &O, const char *Modifier) {
2234 printOperand(MI, opNum, O);
2236 if (Modifier && strcmp(Modifier, "add") == 0) {
2237 O << ", ";
2238 printOperand(MI, opNum + 1, O);
2239 } else {
2240 if (MI->getOperand(opNum + 1).isImm() &&
2241 MI->getOperand(opNum + 1).getImm() == 0)
2242 return; // don't print ',0' or '+0'
2243 O << "+";
2244 printOperand(MI, opNum + 1, O);
2248 // Force static initialization.
2249 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXAsmPrinter() {
2250 RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32());
2251 RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64());