[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCCallingConv.td
blob1e81276f1de356ecb1751063371d9d57f3f5c077
1 //===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This describes the calling conventions for the PowerPC 32- and 64-bit
10 // architectures.
12 //===----------------------------------------------------------------------===//
14 /// CCIfSubtarget - Match if the current subtarget has a feature F.
15 class CCIfSubtarget<string F, CCAction A>
16     : CCIf<!strconcat("static_cast<const PPCSubtarget&>"
17                        "(State.getMachineFunction().getSubtarget()).",
18                      F),
19           A>;
20 class CCIfNotSubtarget<string F, CCAction A>
21     : CCIf<!strconcat("!static_cast<const PPCSubtarget&>"
22                        "(State.getMachineFunction().getSubtarget()).",
23                      F),
24           A>;
25 class CCIfOrigArgWasNotPPCF128<CCAction A>
26     : CCIf<"!static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
27            A>;
28 class CCIfOrigArgWasPPCF128<CCAction A>
29     : CCIf<"static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
30            A>;
32 //===----------------------------------------------------------------------===//
33 // Return Value Calling Convention
34 //===----------------------------------------------------------------------===//
36 // PPC64 AnyReg return-value convention. No explicit register is specified for
37 // the return-value. The register allocator is allowed and expected to choose
38 // any free register.
40 // This calling convention is currently only supported by the stackmap and
41 // patchpoint intrinsics. All other uses will result in an assert on Debug
42 // builds. On Release builds we fallback to the PPC C calling convention.
43 def RetCC_PPC64_AnyReg : CallingConv<[
44   CCCustom<"CC_PPC_AnyReg_Error">
45 ]>;
47 // Return-value convention for PowerPC coldcc.
48 let Entry = 1 in
49 def RetCC_PPC_Cold : CallingConv<[
50   // Use the same return registers as RetCC_PPC, but limited to only
51   // one return value. The remaining return values will be saved to
52   // the stack.
53   CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
54   CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
56   CCIfType<[i32], CCAssignToReg<[R3]>>,
57   CCIfType<[i64], CCAssignToReg<[X3]>>,
58   CCIfType<[i128], CCAssignToReg<[X3]>>,
60   CCIfType<[f32], CCAssignToReg<[F1]>>,
61   CCIfType<[f64], CCAssignToReg<[F1]>>,
62   CCIfType<[f128], CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2]>>>,
64   CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
65            CCIfSubtarget<"hasAltivec()",
66            CCAssignToReg<[V2]>>>
67 ]>;
69 // Return-value convention for PowerPC
70 let Entry = 1 in
71 def RetCC_PPC : CallingConv<[
72   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
74   // On PPC64, integer return values are always promoted to i64
75   CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
76   CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
78   CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
79   CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>,
80   CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
82   // Floating point types returned as "direct" go into F1 .. F8; note that
83   // only the ELFv2 ABI fully utilizes all these registers.
84   CCIfNotSubtarget<"hasSPE()",
85        CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
86   CCIfNotSubtarget<"hasSPE()",
87        CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
88   CCIfSubtarget<"hasSPE()",
89        CCIfType<[f32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
90   CCIfSubtarget<"hasSPE()",
91        CCIfType<[f64], CCCustom<"CC_PPC32_SPE_RetF64">>>,
93   // For P9, f128 are passed in vector registers.
94   CCIfType<[f128],
95            CCIfSubtarget<"hasAltivec()",
96            CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
98   // Vector types returned as "direct" go into V2 .. V9; note that only the
99   // ELFv2 ABI fully utilizes all these registers.
100   CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
101            CCIfSubtarget<"hasAltivec()",
102            CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
105 // No explicit register is specified for the AnyReg calling convention. The
106 // register allocator may assign the arguments to any free register.
108 // This calling convention is currently only supported by the stackmap and
109 // patchpoint intrinsics. All other uses will result in an assert on Debug
110 // builds. On Release builds we fallback to the PPC C calling convention.
111 def CC_PPC64_AnyReg : CallingConv<[
112   CCCustom<"CC_PPC_AnyReg_Error">
115 // Note that we don't currently have calling conventions for 64-bit
116 // PowerPC, but handle all the complexities of the ABI in the lowering
117 // logic.  FIXME: See if the logic can be simplified with use of CCs.
118 // This may require some extensions to current table generation.
120 // Simple calling convention for 64-bit ELF PowerPC fast isel.
121 // Only handle ints and floats.  All ints are promoted to i64.
122 // Vector types and quadword ints are not handled.
123 let Entry = 1 in
124 def CC_PPC64_ELF_FIS : CallingConv<[
125   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>,
127   CCIfType<[i1],  CCPromoteToType<i64>>,
128   CCIfType<[i8],  CCPromoteToType<i64>>,
129   CCIfType<[i16], CCPromoteToType<i64>>,
130   CCIfType<[i32], CCPromoteToType<i64>>,
131   CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>,
132   CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>
135 // Simple return-value convention for 64-bit ELF PowerPC fast isel.
136 // All small ints are promoted to i64.  Vector types, quadword ints,
137 // and multiple register returns are "supported" to avoid compile
138 // errors, but none are handled by the fast selector.
139 let Entry = 1 in
140 def RetCC_PPC64_ELF_FIS : CallingConv<[
141   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
143   CCIfType<[i1],   CCPromoteToType<i64>>,
144   CCIfType<[i8],   CCPromoteToType<i64>>,
145   CCIfType<[i16],  CCPromoteToType<i64>>,
146   CCIfType<[i32],  CCPromoteToType<i64>>,
147   CCIfType<[i64],  CCAssignToReg<[X3, X4, X5, X6]>>,
148   CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
149   CCIfType<[f32],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
150   CCIfType<[f64],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
151   CCIfType<[f128],
152            CCIfSubtarget<"hasAltivec()",
153            CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
154   CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
155            CCIfSubtarget<"hasAltivec()",
156            CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
159 //===----------------------------------------------------------------------===//
160 // PowerPC System V Release 4 32-bit ABI
161 //===----------------------------------------------------------------------===//
163 def CC_PPC32_SVR4_Common : CallingConv<[
164   CCIfType<[i1], CCPromoteToType<i32>>,
166   // The ABI requires i64 to be passed in two adjacent registers with the first
167   // register having an odd register number.
168   CCIfType<[i32],
169   CCIfSplit<CCIfSubtarget<"useSoftFloat()", 
170             CCIfOrigArgWasNotPPCF128<
171             CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>>,
172   
173   CCIfType<[i32],
174   CCIfSplit<CCIfNotSubtarget<"useSoftFloat()", 
175                             CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>,
176   CCIfType<[f64],
177   CCIfSubtarget<"hasSPE()",
178                 CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>,
179   CCIfSplit<CCIfSubtarget<"useSoftFloat()",
180                           CCIfOrigArgWasPPCF128<CCCustom<
181                           "CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128">>>>,
183   // The 'nest' parameter, if any, is passed in R11.
184   CCIfNest<CCAssignToReg<[R11]>>,
186   // The first 8 integer arguments are passed in integer registers.
187   CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
189   // Make sure the i64 words from a long double are either both passed in
190   // registers or both passed on the stack.
191   CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>,
192   
193   // FP values are passed in F1 - F8.
194   CCIfType<[f32, f64],
195            CCIfNotSubtarget<"hasSPE()",
196                             CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
197   CCIfType<[f64],
198            CCIfSubtarget<"hasSPE()",
199                          CCCustom<"CC_PPC32_SPE_CustomSplitFP64">>>,
200   CCIfType<[f32],
201            CCIfSubtarget<"hasSPE()",
202                          CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
204   // Split arguments have an alignment of 8 bytes on the stack.
205   CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>,
206   
207   CCIfType<[i32], CCAssignToStack<4, 4>>,
208   
209   // Floats are stored in double precision format, thus they have the same
210   // alignment and size as doubles.
211   // With SPE floats are stored as single precision, so have alignment and
212   // size of int.
213   CCIfType<[f32,f64], CCIfNotSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
214   CCIfType<[f32], CCIfSubtarget<"hasSPE()", CCAssignToStack<4, 4>>>,
215   CCIfType<[f64], CCIfSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
217   // Vectors and float128 get 16-byte stack slots that are 16-byte aligned.
218   CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>>,
219   CCIfType<[f128], CCIfSubtarget<"hasAltivec()", CCAssignToStack<16, 16>>>
222 // This calling convention puts vector arguments always on the stack. It is used
223 // to assign vector arguments which belong to the variable portion of the
224 // parameter list of a variable argument function.
225 let Entry = 1 in
226 def CC_PPC32_SVR4_VarArg : CallingConv<[
227   CCDelegateTo<CC_PPC32_SVR4_Common>
230 // In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to
231 // put vector arguments in vector registers before putting them on the stack.
232 let Entry = 1 in
233 def CC_PPC32_SVR4 : CallingConv<[
234   // The first 12 Vector arguments are passed in AltiVec registers.
235   CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
236            CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
237                           V8, V9, V10, V11, V12, V13]>>>,
239   // Float128 types treated as vector arguments.
240   CCIfType<[f128],
241            CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
242                           V8, V9, V10, V11, V12, V13]>>>,
243            
244   CCDelegateTo<CC_PPC32_SVR4_Common>
245 ]>;  
247 // Helper "calling convention" to handle aggregate by value arguments.
248 // Aggregate by value arguments are always placed in the local variable space
249 // of the caller. This calling convention is only used to assign those stack
250 // offsets in the callers stack frame.
252 // Still, the address of the aggregate copy in the callers stack frame is passed
253 // in a GPR (or in the parameter list area if all GPRs are allocated) from the
254 // caller to the callee. The location for the address argument is assigned by
255 // the CC_PPC32_SVR4 calling convention.
257 // The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are
258 // not passed by value.
260 let Entry = 1 in
261 def CC_PPC32_SVR4_ByVal : CallingConv<[
262   CCIfByVal<CCPassByVal<4, 4>>,
263   
264   CCCustom<"CC_PPC32_SVR4_Custom_Dummy">
267 def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27,
268                                        V28, V29, V30, V31)>;
270 // SPE does not use FPRs, so break out the common register set as base.
271 def CSR_SVR432_COMM : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20,
272                                           R21, R22, R23, R24, R25, R26, R27,
273                                           R28, R29, R30, R31, CR2, CR3, CR4
274                                       )>;
275 def CSR_SVR432 :  CalleeSavedRegs<(add CSR_SVR432_COMM, F14, F15, F16, F17, F18,
276                                         F19, F20, F21, F22, F23, F24, F25, F26,
277                                         F27, F28, F29, F30, F31
278                                    )>;
279 def CSR_SPE : CalleeSavedRegs<(add S14, S15, S16, S17, S18, S19, S20, S21, S22,
280                                    S23, S24, S25, S26, S27, S28, S29, S30, S31
281                               )>;
283 def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>;
285 def CSR_SVR432_SPE : CalleeSavedRegs<(add CSR_SVR432_COMM, CSR_SPE)>;
287 def CSR_AIX32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20,
288                                      R21, R22, R23, R24, R25, R26, R27, R28,
289                                      R29, R30, R31, F14, F15, F16, F17, F18,
290                                      F19, F20, F21, F22, F23, F24, F25, F26,
291                                      F27, F28, F29, F30, F31, CR2, CR3, CR4
292                                 )>;
294 def CSR_AIX32_Altivec : CalleeSavedRegs<(add CSR_AIX32, CSR_Altivec)>;
296 // Common CalleeSavedRegs for SVR4 and AIX.
297 def CSR_PPC64   : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20,
298                                         X21, X22, X23, X24, X25, X26, X27, X28,
299                                         X29, X30, X31, F14, F15, F16, F17, F18,
300                                         F19, F20, F21, F22, F23, F24, F25, F26,
301                                         F27, F28, F29, F30, F31, CR2, CR3, CR4
302                                    )>;
305 def CSR_PPC64_Altivec : CalleeSavedRegs<(add CSR_PPC64, CSR_Altivec)>;
307 def CSR_PPC64_R2 : CalleeSavedRegs<(add CSR_PPC64, X2)>;
309 def CSR_PPC64_R2_Altivec : CalleeSavedRegs<(add CSR_PPC64_Altivec, X2)>;
311 def CSR_NoRegs : CalleeSavedRegs<(add)>;
313 // coldcc calling convection marks most registers as non-volatile.
314 // Do not include r1 since the stack pointer is never considered a CSR.
315 // Do not include r2, since it is the TOC register and is added depending
316 // on whether or not the function uses the TOC and is a non-leaf.
317 // Do not include r0,r11,r13 as they are optional in functional linkage
318 // and value may be altered by inter-library calls.
319 // Do not include r12 as it is used as a scratch register.
320 // Do not include return registers r3, f1, v2.
321 def CSR_SVR32_ColdCC_Common : CalleeSavedRegs<(add (sequence "R%u", 4, 10),
322                                                 (sequence "R%u", 14, 31),
323                                                 (sequence "CR%u", 0, 7))>;
325 def CSR_SVR32_ColdCC : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common,
326                                           F0, (sequence "F%u", 2, 31))>;
329 def CSR_SVR32_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR32_ColdCC,
330                                             (sequence "V%u", 0, 1),
331                                             (sequence "V%u", 3, 31))>;
333 def CSR_SVR32_ColdCC_SPE : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common,
334                                             (sequence "S%u", 4, 10),
335                                             (sequence "S%u", 14, 31))>;
337 def CSR_SVR64_ColdCC : CalleeSavedRegs<(add  (sequence "X%u", 4, 10),
338                                              (sequence "X%u", 14, 31),
339                                              F0, (sequence "F%u", 2, 31),
340                                              (sequence "CR%u", 0, 7))>;
342 def CSR_SVR64_ColdCC_R2: CalleeSavedRegs<(add CSR_SVR64_ColdCC, X2)>;
344 def CSR_SVR64_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC,
345                                              (sequence "V%u", 0, 1),
346                                              (sequence "V%u", 3, 31))>;
348 def CSR_SVR64_ColdCC_R2_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC_Altivec, X2)>;
350 def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10),
351                                              (sequence "X%u", 14, 31),
352                                              (sequence "F%u", 0, 31),
353                                              (sequence "CR%u", 0, 7))>;
355 def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
356                                              (sequence "V%u", 0, 31))>;
358 def CSR_64_AllRegs_AIX_Dflt_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
359                                              (sequence "V%u", 0, 19))>;
361 def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
362                                          (sequence "VSL%u", 0, 31))>;
364 def CSR_64_AllRegs_AIX_Dflt_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
365                                          (sequence "VSL%u", 0, 19))>;