[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCFastISel.cpp
blobdfb2c1e5c0f5830d3019137512841ff0f56ede56
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
41 //===----------------------------------------------------------------------===//
43 // TBD:
44 // fastLowerArguments: Handle simple cases.
45 // PPCMaterializeGV: Handle TLS.
46 // SelectCall: Handle function pointers.
47 // SelectCall: Handle multi-register return values.
48 // SelectCall: Optimize away nops for local calls.
49 // processCallArgs: Handle bit-converted arguments.
50 // finishCall: Handle multi-register return values.
51 // PPCComputeAddress: Handle parameter references as FrameIndex's.
52 // PPCEmitCmp: Handle immediate as operand 1.
53 // SelectCall: Handle small byval arguments.
54 // SelectIntrinsicCall: Implement.
55 // SelectSelect: Implement.
56 // Consider factoring isTypeLegal into the base class.
57 // Implement switches and jump tables.
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
62 #define DEBUG_TYPE "ppcfastisel"
64 namespace {
66 struct Address {
67 enum {
68 RegBase,
69 FrameIndexBase
70 } BaseType;
72 union {
73 unsigned Reg;
74 int FI;
75 } Base;
77 long Offset;
79 // Innocuous defaults for our address.
80 Address()
81 : BaseType(RegBase), Offset(0) {
82 Base.Reg = 0;
86 class PPCFastISel final : public FastISel {
88 const TargetMachine &TM;
89 const PPCSubtarget *Subtarget;
90 PPCFunctionInfo *PPCFuncInfo;
91 const TargetInstrInfo &TII;
92 const TargetLowering &TLI;
93 LLVMContext *Context;
95 public:
96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97 const TargetLibraryInfo *LibInfo)
98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99 Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
102 Context(&FuncInfo.Fn->getContext()) {}
104 // Backend specific FastISel code.
105 private:
106 bool fastSelectInstruction(const Instruction *I) override;
107 unsigned fastMaterializeConstant(const Constant *C) override;
108 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
109 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
110 const LoadInst *LI) override;
111 bool fastLowerArguments() override;
112 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
113 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
114 const TargetRegisterClass *RC,
115 unsigned Op0, uint64_t Imm);
116 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
117 const TargetRegisterClass *RC, unsigned Op0);
118 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
119 const TargetRegisterClass *RC,
120 unsigned Op0, unsigned Op1);
122 bool fastLowerCall(CallLoweringInfo &CLI) override;
124 // Instruction selection routines.
125 private:
126 bool SelectLoad(const Instruction *I);
127 bool SelectStore(const Instruction *I);
128 bool SelectBranch(const Instruction *I);
129 bool SelectIndirectBr(const Instruction *I);
130 bool SelectFPExt(const Instruction *I);
131 bool SelectFPTrunc(const Instruction *I);
132 bool SelectIToFP(const Instruction *I, bool IsSigned);
133 bool SelectFPToI(const Instruction *I, bool IsSigned);
134 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
135 bool SelectRet(const Instruction *I);
136 bool SelectTrunc(const Instruction *I);
137 bool SelectIntExt(const Instruction *I);
139 // Utility routines.
140 private:
141 bool isTypeLegal(Type *Ty, MVT &VT);
142 bool isLoadTypeLegal(Type *Ty, MVT &VT);
143 bool isValueAvailable(const Value *V) const;
144 bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
145 return RC->getID() == PPC::VSFRCRegClassID;
147 bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
148 return RC->getID() == PPC::VSSRCRegClassID;
150 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
151 unsigned SrcReg, unsigned Flag = 0,
152 unsigned SubReg = 0) {
153 unsigned TmpReg = createResultReg(ToRC);
154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
155 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
156 return TmpReg;
158 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
159 bool isZExt, unsigned DestReg,
160 const PPC::Predicate Pred);
161 bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
162 const TargetRegisterClass *RC, bool IsZExt = true,
163 unsigned FP64LoadOpc = PPC::LFD);
164 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
165 bool PPCComputeAddress(const Value *Obj, Address &Addr);
166 void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
167 unsigned &IndexReg);
168 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
169 unsigned DestReg, bool IsZExt);
170 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
171 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
172 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
173 bool UseSExt = true);
174 unsigned PPCMaterialize32BitInt(int64_t Imm,
175 const TargetRegisterClass *RC);
176 unsigned PPCMaterialize64BitInt(int64_t Imm,
177 const TargetRegisterClass *RC);
178 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
179 unsigned SrcReg, bool IsSigned);
180 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
182 // Call handling routines.
183 private:
184 bool processCallArgs(SmallVectorImpl<Value*> &Args,
185 SmallVectorImpl<unsigned> &ArgRegs,
186 SmallVectorImpl<MVT> &ArgVTs,
187 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
188 SmallVectorImpl<unsigned> &RegArgs,
189 CallingConv::ID CC,
190 unsigned &NumBytes,
191 bool IsVarArg);
192 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
194 private:
195 #include "PPCGenFastISel.inc"
199 } // end anonymous namespace
201 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
202 switch (Pred) {
203 // These are not representable with any single compare.
204 case CmpInst::FCMP_FALSE:
205 case CmpInst::FCMP_TRUE:
206 // Major concern about the following 6 cases is NaN result. The comparison
207 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
208 // only one of which will be set. The result is generated by fcmpu
209 // instruction. However, bc instruction only inspects one of the first 3
210 // bits, so when un is set, bc instruction may jump to an undesired
211 // place.
213 // More specifically, if we expect an unordered comparison and un is set, we
214 // expect to always go to true branch; in such case UEQ, UGT and ULT still
215 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
216 // since they are tested by inspecting !eq, !lt, !gt, respectively.
218 // Similarly, for ordered comparison, when un is set, we always expect the
219 // result to be false. In such case OGT, OLT and OEQ is good, since they are
220 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
221 // and ONE are tested through !lt, !gt and !eq, and these are true.
222 case CmpInst::FCMP_UEQ:
223 case CmpInst::FCMP_UGT:
224 case CmpInst::FCMP_ULT:
225 case CmpInst::FCMP_OGE:
226 case CmpInst::FCMP_OLE:
227 case CmpInst::FCMP_ONE:
228 default:
229 return Optional<PPC::Predicate>();
231 case CmpInst::FCMP_OEQ:
232 case CmpInst::ICMP_EQ:
233 return PPC::PRED_EQ;
235 case CmpInst::FCMP_OGT:
236 case CmpInst::ICMP_UGT:
237 case CmpInst::ICMP_SGT:
238 return PPC::PRED_GT;
240 case CmpInst::FCMP_UGE:
241 case CmpInst::ICMP_UGE:
242 case CmpInst::ICMP_SGE:
243 return PPC::PRED_GE;
245 case CmpInst::FCMP_OLT:
246 case CmpInst::ICMP_ULT:
247 case CmpInst::ICMP_SLT:
248 return PPC::PRED_LT;
250 case CmpInst::FCMP_ULE:
251 case CmpInst::ICMP_ULE:
252 case CmpInst::ICMP_SLE:
253 return PPC::PRED_LE;
255 case CmpInst::FCMP_UNE:
256 case CmpInst::ICMP_NE:
257 return PPC::PRED_NE;
259 case CmpInst::FCMP_ORD:
260 return PPC::PRED_NU;
262 case CmpInst::FCMP_UNO:
263 return PPC::PRED_UN;
267 // Determine whether the type Ty is simple enough to be handled by
268 // fast-isel, and return its equivalent machine type in VT.
269 // FIXME: Copied directly from ARM -- factor into base class?
270 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
271 EVT Evt = TLI.getValueType(DL, Ty, true);
273 // Only handle simple types.
274 if (Evt == MVT::Other || !Evt.isSimple()) return false;
275 VT = Evt.getSimpleVT();
277 // Handle all legal types, i.e. a register that will directly hold this
278 // value.
279 return TLI.isTypeLegal(VT);
282 // Determine whether the type Ty is simple enough to be handled by
283 // fast-isel as a load target, and return its equivalent machine type in VT.
284 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
285 if (isTypeLegal(Ty, VT)) return true;
287 // If this is a type than can be sign or zero-extended to a basic operation
288 // go ahead and accept it now.
289 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
290 return true;
293 return false;
296 bool PPCFastISel::isValueAvailable(const Value *V) const {
297 if (!isa<Instruction>(V))
298 return true;
300 const auto *I = cast<Instruction>(V);
301 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
304 // Given a value Obj, create an Address object Addr that represents its
305 // address. Return false if we can't handle it.
306 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
307 const User *U = nullptr;
308 unsigned Opcode = Instruction::UserOp1;
309 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
310 // Don't walk into other basic blocks unless the object is an alloca from
311 // another block, otherwise it may not have a virtual register assigned.
312 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
313 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
314 Opcode = I->getOpcode();
315 U = I;
317 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
318 Opcode = C->getOpcode();
319 U = C;
322 switch (Opcode) {
323 default:
324 break;
325 case Instruction::BitCast:
326 // Look through bitcasts.
327 return PPCComputeAddress(U->getOperand(0), Addr);
328 case Instruction::IntToPtr:
329 // Look past no-op inttoptrs.
330 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
331 TLI.getPointerTy(DL))
332 return PPCComputeAddress(U->getOperand(0), Addr);
333 break;
334 case Instruction::PtrToInt:
335 // Look past no-op ptrtoints.
336 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
337 return PPCComputeAddress(U->getOperand(0), Addr);
338 break;
339 case Instruction::GetElementPtr: {
340 Address SavedAddr = Addr;
341 long TmpOffset = Addr.Offset;
343 // Iterate through the GEP folding the constants into offsets where
344 // we can.
345 gep_type_iterator GTI = gep_type_begin(U);
346 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
347 II != IE; ++II, ++GTI) {
348 const Value *Op = *II;
349 if (StructType *STy = GTI.getStructTypeOrNull()) {
350 const StructLayout *SL = DL.getStructLayout(STy);
351 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
352 TmpOffset += SL->getElementOffset(Idx);
353 } else {
354 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
355 for (;;) {
356 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
357 // Constant-offset addressing.
358 TmpOffset += CI->getSExtValue() * S;
359 break;
361 if (canFoldAddIntoGEP(U, Op)) {
362 // A compatible add with a constant operand. Fold the constant.
363 ConstantInt *CI =
364 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
365 TmpOffset += CI->getSExtValue() * S;
366 // Iterate on the other operand.
367 Op = cast<AddOperator>(Op)->getOperand(0);
368 continue;
370 // Unsupported
371 goto unsupported_gep;
376 // Try to grab the base operand now.
377 Addr.Offset = TmpOffset;
378 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
380 // We failed, restore everything and try the other options.
381 Addr = SavedAddr;
383 unsupported_gep:
384 break;
386 case Instruction::Alloca: {
387 const AllocaInst *AI = cast<AllocaInst>(Obj);
388 DenseMap<const AllocaInst*, int>::iterator SI =
389 FuncInfo.StaticAllocaMap.find(AI);
390 if (SI != FuncInfo.StaticAllocaMap.end()) {
391 Addr.BaseType = Address::FrameIndexBase;
392 Addr.Base.FI = SI->second;
393 return true;
395 break;
399 // FIXME: References to parameters fall through to the behavior
400 // below. They should be able to reference a frame index since
401 // they are stored to the stack, so we can get "ld rx, offset(r1)"
402 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
403 // just contain the parameter. Try to handle this with a FI.
405 // Try to get this in a register if nothing else has worked.
406 if (Addr.Base.Reg == 0)
407 Addr.Base.Reg = getRegForValue(Obj);
409 // Prevent assignment of base register to X0, which is inappropriate
410 // for loads and stores alike.
411 if (Addr.Base.Reg != 0)
412 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
414 return Addr.Base.Reg != 0;
417 // Fix up some addresses that can't be used directly. For example, if
418 // an offset won't fit in an instruction field, we may need to move it
419 // into an index register.
420 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
421 unsigned &IndexReg) {
423 // Check whether the offset fits in the instruction field.
424 if (!isInt<16>(Addr.Offset))
425 UseOffset = false;
427 // If this is a stack pointer and the offset needs to be simplified then
428 // put the alloca address into a register, set the base type back to
429 // register and continue. This should almost never happen.
430 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
431 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
432 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
433 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
434 Addr.Base.Reg = ResultReg;
435 Addr.BaseType = Address::RegBase;
438 if (!UseOffset) {
439 IntegerType *OffsetTy = Type::getInt64Ty(*Context);
440 const ConstantInt *Offset =
441 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
442 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
443 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
447 // Emit a load instruction if possible, returning true if we succeeded,
448 // otherwise false. See commentary below for how the register class of
449 // the load is determined.
450 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
451 const TargetRegisterClass *RC,
452 bool IsZExt, unsigned FP64LoadOpc) {
453 unsigned Opc;
454 bool UseOffset = true;
455 bool HasSPE = Subtarget->hasSPE();
457 // If ResultReg is given, it determines the register class of the load.
458 // Otherwise, RC is the register class to use. If the result of the
459 // load isn't anticipated in this block, both may be zero, in which
460 // case we must make a conservative guess. In particular, don't assign
461 // R0 or X0 to the result register, as the result may be used in a load,
462 // store, add-immediate, or isel that won't permit this. (Though
463 // perhaps the spill and reload of live-exit values would handle this?)
464 const TargetRegisterClass *UseRC =
465 (ResultReg ? MRI.getRegClass(ResultReg) :
466 (RC ? RC :
467 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
468 (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
469 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
470 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
472 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
474 switch (VT.SimpleTy) {
475 default: // e.g., vector types not handled
476 return false;
477 case MVT::i8:
478 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
479 break;
480 case MVT::i16:
481 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
482 : (Is32BitInt ? PPC::LHA : PPC::LHA8));
483 break;
484 case MVT::i32:
485 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
486 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
487 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
488 UseOffset = false;
489 break;
490 case MVT::i64:
491 Opc = PPC::LD;
492 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
493 "64-bit load with 32-bit target??");
494 UseOffset = ((Addr.Offset & 3) == 0);
495 break;
496 case MVT::f32:
497 Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
498 break;
499 case MVT::f64:
500 Opc = FP64LoadOpc;
501 break;
504 // If necessary, materialize the offset into a register and use
505 // the indexed form. Also handle stack pointers with special needs.
506 unsigned IndexReg = 0;
507 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
510 // be used.
511 bool IsVSSRC = isVSSRCRegClass(UseRC);
512 bool IsVSFRC = isVSFRCRegClass(UseRC);
513 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
514 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
515 if ((Is32VSXLoad || Is64VSXLoad) &&
516 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
517 (Addr.Offset == 0)) {
518 UseOffset = false;
521 if (ResultReg == 0)
522 ResultReg = createResultReg(UseRC);
524 // Note: If we still have a frame index here, we know the offset is
525 // in range, as otherwise PPCSimplifyAddress would have converted it
526 // into a RegBase.
527 if (Addr.BaseType == Address::FrameIndexBase) {
528 // VSX only provides an indexed load.
529 if (Is32VSXLoad || Is64VSXLoad) return false;
531 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
532 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
533 Addr.Offset),
534 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
535 MFI.getObjectAlign(Addr.Base.FI));
537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
538 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
540 // Base reg with offset in range.
541 } else if (UseOffset) {
542 // VSX only provides an indexed load.
543 if (Is32VSXLoad || Is64VSXLoad) return false;
545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
546 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
548 // Indexed form.
549 } else {
550 // Get the RR opcode corresponding to the RI one. FIXME: It would be
551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
552 // is hard to get at.
553 switch (Opc) {
554 default: llvm_unreachable("Unexpected opcode!");
555 case PPC::LBZ: Opc = PPC::LBZX; break;
556 case PPC::LBZ8: Opc = PPC::LBZX8; break;
557 case PPC::LHZ: Opc = PPC::LHZX; break;
558 case PPC::LHZ8: Opc = PPC::LHZX8; break;
559 case PPC::LHA: Opc = PPC::LHAX; break;
560 case PPC::LHA8: Opc = PPC::LHAX8; break;
561 case PPC::LWZ: Opc = PPC::LWZX; break;
562 case PPC::LWZ8: Opc = PPC::LWZX8; break;
563 case PPC::LWA: Opc = PPC::LWAX; break;
564 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
565 case PPC::LD: Opc = PPC::LDX; break;
566 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
567 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
568 case PPC::EVLDD: Opc = PPC::EVLDDX; break;
569 case PPC::SPELWZ: Opc = PPC::SPELWZX; break;
572 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
573 ResultReg);
575 // If we have an index register defined we use it in the store inst,
576 // otherwise we use X0 as base as it makes the vector instructions to
577 // use zero in the computation of the effective address regardless the
578 // content of the register.
579 if (IndexReg)
580 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
581 else
582 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
585 return true;
588 // Attempt to fast-select a load instruction.
589 bool PPCFastISel::SelectLoad(const Instruction *I) {
590 // FIXME: No atomic loads are supported.
591 if (cast<LoadInst>(I)->isAtomic())
592 return false;
594 // Verify we have a legal type before going any further.
595 MVT VT;
596 if (!isLoadTypeLegal(I->getType(), VT))
597 return false;
599 // See if we can handle this address.
600 Address Addr;
601 if (!PPCComputeAddress(I->getOperand(0), Addr))
602 return false;
604 // Look at the currently assigned register for this instruction
605 // to determine the required register class. This is necessary
606 // to constrain RA from using R0/X0 when this is not legal.
607 unsigned AssignedReg = FuncInfo.ValueMap[I];
608 const TargetRegisterClass *RC =
609 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
611 Register ResultReg = 0;
612 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
613 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
614 return false;
615 updateValueMap(I, ResultReg);
616 return true;
619 // Emit a store instruction to store SrcReg at Addr.
620 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
621 assert(SrcReg && "Nothing to store!");
622 unsigned Opc;
623 bool UseOffset = true;
625 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
626 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
628 switch (VT.SimpleTy) {
629 default: // e.g., vector types not handled
630 return false;
631 case MVT::i8:
632 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
633 break;
634 case MVT::i16:
635 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
636 break;
637 case MVT::i32:
638 assert(Is32BitInt && "Not GPRC for i32??");
639 Opc = PPC::STW;
640 break;
641 case MVT::i64:
642 Opc = PPC::STD;
643 UseOffset = ((Addr.Offset & 3) == 0);
644 break;
645 case MVT::f32:
646 Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
647 break;
648 case MVT::f64:
649 Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
650 break;
653 // If necessary, materialize the offset into a register and use
654 // the indexed form. Also handle stack pointers with special needs.
655 unsigned IndexReg = 0;
656 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
658 // If this is a potential VSX store with an offset of 0, a VSX indexed store
659 // can be used.
660 bool IsVSSRC = isVSSRCRegClass(RC);
661 bool IsVSFRC = isVSFRCRegClass(RC);
662 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
663 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
664 if ((Is32VSXStore || Is64VSXStore) &&
665 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
666 (Addr.Offset == 0)) {
667 UseOffset = false;
670 // Note: If we still have a frame index here, we know the offset is
671 // in range, as otherwise PPCSimplifyAddress would have converted it
672 // into a RegBase.
673 if (Addr.BaseType == Address::FrameIndexBase) {
674 // VSX only provides an indexed store.
675 if (Is32VSXStore || Is64VSXStore) return false;
677 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
678 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
679 Addr.Offset),
680 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
681 MFI.getObjectAlign(Addr.Base.FI));
683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
684 .addReg(SrcReg)
685 .addImm(Addr.Offset)
686 .addFrameIndex(Addr.Base.FI)
687 .addMemOperand(MMO);
689 // Base reg with offset in range.
690 } else if (UseOffset) {
691 // VSX only provides an indexed store.
692 if (Is32VSXStore || Is64VSXStore)
693 return false;
695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
696 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
698 // Indexed form.
699 } else {
700 // Get the RR opcode corresponding to the RI one. FIXME: It would be
701 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
702 // is hard to get at.
703 switch (Opc) {
704 default: llvm_unreachable("Unexpected opcode!");
705 case PPC::STB: Opc = PPC::STBX; break;
706 case PPC::STH : Opc = PPC::STHX; break;
707 case PPC::STW : Opc = PPC::STWX; break;
708 case PPC::STB8: Opc = PPC::STBX8; break;
709 case PPC::STH8: Opc = PPC::STHX8; break;
710 case PPC::STW8: Opc = PPC::STWX8; break;
711 case PPC::STD: Opc = PPC::STDX; break;
712 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
713 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
714 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
715 case PPC::SPESTW: Opc = PPC::SPESTWX; break;
718 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
719 .addReg(SrcReg);
721 // If we have an index register defined we use it in the store inst,
722 // otherwise we use X0 as base as it makes the vector instructions to
723 // use zero in the computation of the effective address regardless the
724 // content of the register.
725 if (IndexReg)
726 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
727 else
728 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
731 return true;
734 // Attempt to fast-select a store instruction.
735 bool PPCFastISel::SelectStore(const Instruction *I) {
736 Value *Op0 = I->getOperand(0);
737 unsigned SrcReg = 0;
739 // FIXME: No atomics loads are supported.
740 if (cast<StoreInst>(I)->isAtomic())
741 return false;
743 // Verify we have a legal type before going any further.
744 MVT VT;
745 if (!isLoadTypeLegal(Op0->getType(), VT))
746 return false;
748 // Get the value to be stored into a register.
749 SrcReg = getRegForValue(Op0);
750 if (SrcReg == 0)
751 return false;
753 // See if we can handle this address.
754 Address Addr;
755 if (!PPCComputeAddress(I->getOperand(1), Addr))
756 return false;
758 if (!PPCEmitStore(VT, SrcReg, Addr))
759 return false;
761 return true;
764 // Attempt to fast-select a branch instruction.
765 bool PPCFastISel::SelectBranch(const Instruction *I) {
766 const BranchInst *BI = cast<BranchInst>(I);
767 MachineBasicBlock *BrBB = FuncInfo.MBB;
768 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
769 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
771 // For now, just try the simplest case where it's fed by a compare.
772 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
773 if (isValueAvailable(CI)) {
774 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
775 if (!OptPPCPred)
776 return false;
778 PPC::Predicate PPCPred = OptPPCPred.getValue();
780 // Take advantage of fall-through opportunities.
781 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
782 std::swap(TBB, FBB);
783 PPCPred = PPC::InvertPredicate(PPCPred);
786 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
788 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
789 CondReg, PPCPred))
790 return false;
792 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
793 .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
794 .addReg(CondReg)
795 .addMBB(TBB);
796 finishCondBranch(BI->getParent(), TBB, FBB);
797 return true;
799 } else if (const ConstantInt *CI =
800 dyn_cast<ConstantInt>(BI->getCondition())) {
801 uint64_t Imm = CI->getZExtValue();
802 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
803 fastEmitBranch(Target, DbgLoc);
804 return true;
807 // FIXME: ARM looks for a case where the block containing the compare
808 // has been split from the block containing the branch. If this happens,
809 // there is a vreg available containing the result of the compare. I'm
810 // not sure we can do much, as we've lost the predicate information with
811 // the compare instruction -- we have a 4-bit CR but don't know which bit
812 // to test here.
813 return false;
816 // Attempt to emit a compare of the two source values. Signed and unsigned
817 // comparisons are supported. Return false if we can't handle it.
818 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
819 bool IsZExt, unsigned DestReg,
820 const PPC::Predicate Pred) {
821 Type *Ty = SrcValue1->getType();
822 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
823 if (!SrcEVT.isSimple())
824 return false;
825 MVT SrcVT = SrcEVT.getSimpleVT();
827 if (SrcVT == MVT::i1 && Subtarget->useCRBits())
828 return false;
830 // See if operand 2 is an immediate encodeable in the compare.
831 // FIXME: Operands are not in canonical order at -O0, so an immediate
832 // operand in position 1 is a lost opportunity for now. We are
833 // similar to ARM in this regard.
834 long Imm = 0;
835 bool UseImm = false;
836 const bool HasSPE = Subtarget->hasSPE();
838 // Only 16-bit integer constants can be represented in compares for
839 // PowerPC. Others will be materialized into a register.
840 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
841 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
842 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
843 const APInt &CIVal = ConstInt->getValue();
844 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
845 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
846 UseImm = true;
850 unsigned SrcReg1 = getRegForValue(SrcValue1);
851 if (SrcReg1 == 0)
852 return false;
854 unsigned SrcReg2 = 0;
855 if (!UseImm) {
856 SrcReg2 = getRegForValue(SrcValue2);
857 if (SrcReg2 == 0)
858 return false;
861 unsigned CmpOpc;
862 bool NeedsExt = false;
864 auto RC1 = MRI.getRegClass(SrcReg1);
865 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
867 switch (SrcVT.SimpleTy) {
868 default: return false;
869 case MVT::f32:
870 if (HasSPE) {
871 switch (Pred) {
872 default: return false;
873 case PPC::PRED_EQ:
874 CmpOpc = PPC::EFSCMPEQ;
875 break;
876 case PPC::PRED_LT:
877 CmpOpc = PPC::EFSCMPLT;
878 break;
879 case PPC::PRED_GT:
880 CmpOpc = PPC::EFSCMPGT;
881 break;
883 } else {
884 CmpOpc = PPC::FCMPUS;
885 if (isVSSRCRegClass(RC1))
886 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
887 if (RC2 && isVSSRCRegClass(RC2))
888 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
890 break;
891 case MVT::f64:
892 if (HasSPE) {
893 switch (Pred) {
894 default: return false;
895 case PPC::PRED_EQ:
896 CmpOpc = PPC::EFDCMPEQ;
897 break;
898 case PPC::PRED_LT:
899 CmpOpc = PPC::EFDCMPLT;
900 break;
901 case PPC::PRED_GT:
902 CmpOpc = PPC::EFDCMPGT;
903 break;
905 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
906 CmpOpc = PPC::XSCMPUDP;
907 } else {
908 CmpOpc = PPC::FCMPUD;
910 break;
911 case MVT::i1:
912 case MVT::i8:
913 case MVT::i16:
914 NeedsExt = true;
915 LLVM_FALLTHROUGH;
916 case MVT::i32:
917 if (!UseImm)
918 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
919 else
920 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
921 break;
922 case MVT::i64:
923 if (!UseImm)
924 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
925 else
926 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
927 break;
930 if (NeedsExt) {
931 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
932 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
933 return false;
934 SrcReg1 = ExtReg;
936 if (!UseImm) {
937 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
938 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
939 return false;
940 SrcReg2 = ExtReg;
944 if (!UseImm)
945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
946 .addReg(SrcReg1).addReg(SrcReg2);
947 else
948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
949 .addReg(SrcReg1).addImm(Imm);
951 return true;
954 // Attempt to fast-select a floating-point extend instruction.
955 bool PPCFastISel::SelectFPExt(const Instruction *I) {
956 Value *Src = I->getOperand(0);
957 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
958 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
960 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
961 return false;
963 unsigned SrcReg = getRegForValue(Src);
964 if (!SrcReg)
965 return false;
967 // No code is generated for a FP extend.
968 updateValueMap(I, SrcReg);
969 return true;
972 // Attempt to fast-select a floating-point truncate instruction.
973 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
974 Value *Src = I->getOperand(0);
975 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
976 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
978 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
979 return false;
981 unsigned SrcReg = getRegForValue(Src);
982 if (!SrcReg)
983 return false;
985 // Round the result to single precision.
986 unsigned DestReg;
987 auto RC = MRI.getRegClass(SrcReg);
988 if (Subtarget->hasSPE()) {
989 DestReg = createResultReg(&PPC::GPRCRegClass);
990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
991 TII.get(PPC::EFSCFD), DestReg)
992 .addReg(SrcReg);
993 } else if (isVSFRCRegClass(RC)) {
994 DestReg = createResultReg(&PPC::VSSRCRegClass);
995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
996 TII.get(PPC::XSRSP), DestReg)
997 .addReg(SrcReg);
998 } else {
999 DestReg = createResultReg(&PPC::F4RCRegClass);
1000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1001 TII.get(PPC::FRSP), DestReg)
1002 .addReg(SrcReg);
1005 updateValueMap(I, DestReg);
1006 return true;
1009 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1010 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1011 // those should be used instead of moving via a stack slot when the
1012 // subtarget permits.
1013 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
1014 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
1015 // case to 8 bytes which produces tighter code but wastes stack space.
1016 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1017 bool IsSigned) {
1019 // If necessary, extend 32-bit int to 64-bit.
1020 if (SrcVT == MVT::i32) {
1021 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1022 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1023 return 0;
1024 SrcReg = TmpReg;
1027 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1028 Address Addr;
1029 Addr.BaseType = Address::FrameIndexBase;
1030 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1032 // Store the value from the GPR.
1033 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1034 return 0;
1036 // Load the integer value into an FPR. The kind of load used depends
1037 // on a number of conditions.
1038 unsigned LoadOpc = PPC::LFD;
1040 if (SrcVT == MVT::i32) {
1041 if (!IsSigned) {
1042 LoadOpc = PPC::LFIWZX;
1043 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1044 } else if (Subtarget->hasLFIWAX()) {
1045 LoadOpc = PPC::LFIWAX;
1046 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1050 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1051 Register ResultReg = 0;
1052 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1053 return 0;
1055 return ResultReg;
1058 // Attempt to fast-select an integer-to-floating-point conversion.
1059 // FIXME: Once fast-isel has better support for VSX, conversions using
1060 // direct moves should be implemented.
1061 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1062 MVT DstVT;
1063 Type *DstTy = I->getType();
1064 if (!isTypeLegal(DstTy, DstVT))
1065 return false;
1067 if (DstVT != MVT::f32 && DstVT != MVT::f64)
1068 return false;
1070 Value *Src = I->getOperand(0);
1071 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1072 if (!SrcEVT.isSimple())
1073 return false;
1075 MVT SrcVT = SrcEVT.getSimpleVT();
1077 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
1078 SrcVT != MVT::i32 && SrcVT != MVT::i64)
1079 return false;
1081 unsigned SrcReg = getRegForValue(Src);
1082 if (SrcReg == 0)
1083 return false;
1085 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
1086 if (Subtarget->hasSPE()) {
1087 unsigned Opc;
1088 if (DstVT == MVT::f32)
1089 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1090 else
1091 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1093 unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1094 // Generate the convert.
1095 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1096 .addReg(SrcReg);
1097 updateValueMap(I, DestReg);
1098 return true;
1101 // We can only lower an unsigned convert if we have the newer
1102 // floating-point conversion operations.
1103 if (!IsSigned && !Subtarget->hasFPCVT())
1104 return false;
1106 // FIXME: For now we require the newer floating-point conversion operations
1107 // (which are present only on P7 and A2 server models) when converting
1108 // to single-precision float. Otherwise we have to generate a lot of
1109 // fiddly code to avoid double rounding. If necessary, the fiddly code
1110 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1111 if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1112 return false;
1114 // Extend the input if necessary.
1115 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1116 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1117 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1118 return false;
1119 SrcVT = MVT::i64;
1120 SrcReg = TmpReg;
1123 // Move the integer value to an FPR.
1124 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1125 if (FPReg == 0)
1126 return false;
1128 // Determine the opcode for the conversion.
1129 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1130 unsigned DestReg = createResultReg(RC);
1131 unsigned Opc;
1133 if (DstVT == MVT::f32)
1134 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1135 else
1136 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1138 // Generate the convert.
1139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1140 .addReg(FPReg);
1142 updateValueMap(I, DestReg);
1143 return true;
1146 // Move the floating-point value in SrcReg into an integer destination
1147 // register, and return the register (or zero if we can't handle it).
1148 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1149 // those should be used instead of moving via a stack slot when the
1150 // subtarget permits.
1151 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1152 unsigned SrcReg, bool IsSigned) {
1153 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1154 // Note that if have STFIWX available, we could use a 4-byte stack
1155 // slot for i32, but this being fast-isel we'll just go with the
1156 // easiest code gen possible.
1157 Address Addr;
1158 Addr.BaseType = Address::FrameIndexBase;
1159 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1161 // Store the value from the FPR.
1162 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1163 return 0;
1165 // Reload it into a GPR. If we want an i32 on big endian, modify the
1166 // address to have a 4-byte offset so we load from the right place.
1167 if (VT == MVT::i32)
1168 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1170 // Look at the currently assigned register for this instruction
1171 // to determine the required register class.
1172 unsigned AssignedReg = FuncInfo.ValueMap[I];
1173 const TargetRegisterClass *RC =
1174 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1176 Register ResultReg = 0;
1177 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1178 return 0;
1180 return ResultReg;
1183 // Attempt to fast-select a floating-point-to-integer conversion.
1184 // FIXME: Once fast-isel has better support for VSX, conversions using
1185 // direct moves should be implemented.
1186 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1187 MVT DstVT, SrcVT;
1188 Type *DstTy = I->getType();
1189 if (!isTypeLegal(DstTy, DstVT))
1190 return false;
1192 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1193 return false;
1195 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1196 if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1197 !Subtarget->hasSPE())
1198 return false;
1200 Value *Src = I->getOperand(0);
1201 Type *SrcTy = Src->getType();
1202 if (!isTypeLegal(SrcTy, SrcVT))
1203 return false;
1205 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1206 return false;
1208 unsigned SrcReg = getRegForValue(Src);
1209 if (SrcReg == 0)
1210 return false;
1212 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1213 // meaningless copy to get the register class right.
1214 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1215 if (InRC == &PPC::F4RCRegClass)
1216 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1217 else if (InRC == &PPC::VSSRCRegClass)
1218 SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1220 // Determine the opcode for the conversion, which takes place
1221 // entirely within FPRs or VSRs.
1222 unsigned DestReg;
1223 unsigned Opc;
1224 auto RC = MRI.getRegClass(SrcReg);
1226 if (Subtarget->hasSPE()) {
1227 DestReg = createResultReg(&PPC::GPRCRegClass);
1228 if (IsSigned)
1229 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1230 else
1231 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1232 } else if (isVSFRCRegClass(RC)) {
1233 DestReg = createResultReg(&PPC::VSFRCRegClass);
1234 if (DstVT == MVT::i32)
1235 Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1236 else
1237 Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1238 } else {
1239 DestReg = createResultReg(&PPC::F8RCRegClass);
1240 if (DstVT == MVT::i32)
1241 if (IsSigned)
1242 Opc = PPC::FCTIWZ;
1243 else
1244 Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1245 else
1246 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1249 // Generate the convert.
1250 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1251 .addReg(SrcReg);
1253 // Now move the integer value from a float register to an integer register.
1254 unsigned IntReg = Subtarget->hasSPE()
1255 ? DestReg
1256 : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1258 if (IntReg == 0)
1259 return false;
1261 updateValueMap(I, IntReg);
1262 return true;
1265 // Attempt to fast-select a binary integer operation that isn't already
1266 // handled automatically.
1267 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1268 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1270 // We can get here in the case when we have a binary operation on a non-legal
1271 // type and the target independent selector doesn't know how to handle it.
1272 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1273 return false;
1275 // Look at the currently assigned register for this instruction
1276 // to determine the required register class. If there is no register,
1277 // make a conservative choice (don't assign R0).
1278 unsigned AssignedReg = FuncInfo.ValueMap[I];
1279 const TargetRegisterClass *RC =
1280 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1281 &PPC::GPRC_and_GPRC_NOR0RegClass);
1282 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1284 unsigned Opc;
1285 switch (ISDOpcode) {
1286 default: return false;
1287 case ISD::ADD:
1288 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1289 break;
1290 case ISD::OR:
1291 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1292 break;
1293 case ISD::SUB:
1294 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1295 break;
1298 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1299 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1300 if (SrcReg1 == 0) return false;
1302 // Handle case of small immediate operand.
1303 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1304 const APInt &CIVal = ConstInt->getValue();
1305 int Imm = (int)CIVal.getSExtValue();
1306 bool UseImm = true;
1307 if (isInt<16>(Imm)) {
1308 switch (Opc) {
1309 default:
1310 llvm_unreachable("Missing case!");
1311 case PPC::ADD4:
1312 Opc = PPC::ADDI;
1313 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1314 break;
1315 case PPC::ADD8:
1316 Opc = PPC::ADDI8;
1317 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1318 break;
1319 case PPC::OR:
1320 Opc = PPC::ORI;
1321 break;
1322 case PPC::OR8:
1323 Opc = PPC::ORI8;
1324 break;
1325 case PPC::SUBF:
1326 if (Imm == -32768)
1327 UseImm = false;
1328 else {
1329 Opc = PPC::ADDI;
1330 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1331 Imm = -Imm;
1333 break;
1334 case PPC::SUBF8:
1335 if (Imm == -32768)
1336 UseImm = false;
1337 else {
1338 Opc = PPC::ADDI8;
1339 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1340 Imm = -Imm;
1342 break;
1345 if (UseImm) {
1346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1347 ResultReg)
1348 .addReg(SrcReg1)
1349 .addImm(Imm);
1350 updateValueMap(I, ResultReg);
1351 return true;
1356 // Reg-reg case.
1357 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1358 if (SrcReg2 == 0) return false;
1360 // Reverse operands for subtract-from.
1361 if (ISDOpcode == ISD::SUB)
1362 std::swap(SrcReg1, SrcReg2);
1364 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1365 .addReg(SrcReg1).addReg(SrcReg2);
1366 updateValueMap(I, ResultReg);
1367 return true;
1370 // Handle arguments to a call that we're attempting to fast-select.
1371 // Return false if the arguments are too complex for us at the moment.
1372 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1373 SmallVectorImpl<unsigned> &ArgRegs,
1374 SmallVectorImpl<MVT> &ArgVTs,
1375 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1376 SmallVectorImpl<unsigned> &RegArgs,
1377 CallingConv::ID CC,
1378 unsigned &NumBytes,
1379 bool IsVarArg) {
1380 SmallVector<CCValAssign, 16> ArgLocs;
1381 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1383 // Reserve space for the linkage area on the stack.
1384 unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1385 CCInfo.AllocateStack(LinkageSize, Align(8));
1387 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1389 // Bail out if we can't handle any of the arguments.
1390 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1391 CCValAssign &VA = ArgLocs[I];
1392 MVT ArgVT = ArgVTs[VA.getValNo()];
1394 // Skip vector arguments for now, as well as long double and
1395 // uint128_t, and anything that isn't passed in a register.
1396 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1397 !VA.isRegLoc() || VA.needsCustom())
1398 return false;
1400 // Skip bit-converted arguments for now.
1401 if (VA.getLocInfo() == CCValAssign::BCvt)
1402 return false;
1405 // Get a count of how many bytes are to be pushed onto the stack.
1406 NumBytes = CCInfo.getNextStackOffset();
1408 // The prolog code of the callee may store up to 8 GPR argument registers to
1409 // the stack, allowing va_start to index over them in memory if its varargs.
1410 // Because we cannot tell if this is needed on the caller side, we have to
1411 // conservatively assume that it is needed. As such, make sure we have at
1412 // least enough stack space for the caller to store the 8 GPRs.
1413 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1414 NumBytes = std::max(NumBytes, LinkageSize + 64);
1416 // Issue CALLSEQ_START.
1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1418 TII.get(TII.getCallFrameSetupOpcode()))
1419 .addImm(NumBytes).addImm(0);
1421 // Prepare to assign register arguments. Every argument uses up a
1422 // GPR protocol register even if it's passed in a floating-point
1423 // register (unless we're using the fast calling convention).
1424 unsigned NextGPR = PPC::X3;
1425 unsigned NextFPR = PPC::F1;
1427 // Process arguments.
1428 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1429 CCValAssign &VA = ArgLocs[I];
1430 unsigned Arg = ArgRegs[VA.getValNo()];
1431 MVT ArgVT = ArgVTs[VA.getValNo()];
1433 // Handle argument promotion and bitcasts.
1434 switch (VA.getLocInfo()) {
1435 default:
1436 llvm_unreachable("Unknown loc info!");
1437 case CCValAssign::Full:
1438 break;
1439 case CCValAssign::SExt: {
1440 MVT DestVT = VA.getLocVT();
1441 const TargetRegisterClass *RC =
1442 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1443 unsigned TmpReg = createResultReg(RC);
1444 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1445 llvm_unreachable("Failed to emit a sext!");
1446 ArgVT = DestVT;
1447 Arg = TmpReg;
1448 break;
1450 case CCValAssign::AExt:
1451 case CCValAssign::ZExt: {
1452 MVT DestVT = VA.getLocVT();
1453 const TargetRegisterClass *RC =
1454 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1455 unsigned TmpReg = createResultReg(RC);
1456 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1457 llvm_unreachable("Failed to emit a zext!");
1458 ArgVT = DestVT;
1459 Arg = TmpReg;
1460 break;
1462 case CCValAssign::BCvt: {
1463 // FIXME: Not yet handled.
1464 llvm_unreachable("Should have bailed before getting here!");
1465 break;
1469 // Copy this argument to the appropriate register.
1470 unsigned ArgReg;
1471 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1472 ArgReg = NextFPR++;
1473 if (CC != CallingConv::Fast)
1474 ++NextGPR;
1475 } else
1476 ArgReg = NextGPR++;
1478 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1479 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1480 RegArgs.push_back(ArgReg);
1483 return true;
1486 // For a call that we've determined we can fast-select, finish the
1487 // call sequence and generate a copy to obtain the return value (if any).
1488 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1489 CallingConv::ID CC = CLI.CallConv;
1491 // Issue CallSEQ_END.
1492 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1493 TII.get(TII.getCallFrameDestroyOpcode()))
1494 .addImm(NumBytes).addImm(0);
1496 // Next, generate a copy to obtain the return value.
1497 // FIXME: No multi-register return values yet, though I don't foresee
1498 // any real difficulties there.
1499 if (RetVT != MVT::isVoid) {
1500 SmallVector<CCValAssign, 16> RVLocs;
1501 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1502 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1503 CCValAssign &VA = RVLocs[0];
1504 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1505 assert(VA.isRegLoc() && "Can only return in registers!");
1507 MVT DestVT = VA.getValVT();
1508 MVT CopyVT = DestVT;
1510 // Ints smaller than a register still arrive in a full 64-bit
1511 // register, so make sure we recognize this.
1512 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1513 CopyVT = MVT::i64;
1515 unsigned SourcePhysReg = VA.getLocReg();
1516 unsigned ResultReg = 0;
1518 if (RetVT == CopyVT) {
1519 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1520 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1522 // If necessary, round the floating result to single precision.
1523 } else if (CopyVT == MVT::f64) {
1524 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1526 ResultReg).addReg(SourcePhysReg);
1528 // If only the low half of a general register is needed, generate
1529 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1530 // used along the fast-isel path (not lowered), and downstream logic
1531 // also doesn't like a direct subreg copy on a physical reg.)
1532 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1533 // Convert physical register from G8RC to GPRC.
1534 SourcePhysReg -= PPC::X0 - PPC::R0;
1535 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1538 assert(ResultReg && "ResultReg unset!");
1539 CLI.InRegs.push_back(SourcePhysReg);
1540 CLI.ResultReg = ResultReg;
1541 CLI.NumResultRegs = 1;
1544 return true;
1547 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1548 CallingConv::ID CC = CLI.CallConv;
1549 bool IsTailCall = CLI.IsTailCall;
1550 bool IsVarArg = CLI.IsVarArg;
1551 const Value *Callee = CLI.Callee;
1552 const MCSymbol *Symbol = CLI.Symbol;
1554 if (!Callee && !Symbol)
1555 return false;
1557 // Allow SelectionDAG isel to handle tail calls.
1558 if (IsTailCall)
1559 return false;
1561 // Let SDISel handle vararg functions.
1562 if (IsVarArg)
1563 return false;
1565 // If this is a PC-Rel function, let SDISel handle the call.
1566 if (Subtarget->isUsingPCRelativeCalls())
1567 return false;
1569 // Handle simple calls for now, with legal return types and
1570 // those that can be extended.
1571 Type *RetTy = CLI.RetTy;
1572 MVT RetVT;
1573 if (RetTy->isVoidTy())
1574 RetVT = MVT::isVoid;
1575 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1576 RetVT != MVT::i8)
1577 return false;
1578 else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1579 // We can't handle boolean returns when CR bits are in use.
1580 return false;
1582 // FIXME: No multi-register return values yet.
1583 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1584 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1585 RetVT != MVT::f64) {
1586 SmallVector<CCValAssign, 16> RVLocs;
1587 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1588 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1589 if (RVLocs.size() > 1)
1590 return false;
1593 // Bail early if more than 8 arguments, as we only currently
1594 // handle arguments passed in registers.
1595 unsigned NumArgs = CLI.OutVals.size();
1596 if (NumArgs > 8)
1597 return false;
1599 // Set up the argument vectors.
1600 SmallVector<Value*, 8> Args;
1601 SmallVector<unsigned, 8> ArgRegs;
1602 SmallVector<MVT, 8> ArgVTs;
1603 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1605 Args.reserve(NumArgs);
1606 ArgRegs.reserve(NumArgs);
1607 ArgVTs.reserve(NumArgs);
1608 ArgFlags.reserve(NumArgs);
1610 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1611 // Only handle easy calls for now. It would be reasonably easy
1612 // to handle <= 8-byte structures passed ByVal in registers, but we
1613 // have to ensure they are right-justified in the register.
1614 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1615 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1616 return false;
1618 Value *ArgValue = CLI.OutVals[i];
1619 Type *ArgTy = ArgValue->getType();
1620 MVT ArgVT;
1621 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1622 return false;
1624 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1625 // types, which is passed through vector register. Skip these types and
1626 // fallback to default SelectionDAG based selection.
1627 if (ArgVT.isVector() || ArgVT == MVT::f128)
1628 return false;
1630 unsigned Arg = getRegForValue(ArgValue);
1631 if (Arg == 0)
1632 return false;
1634 Args.push_back(ArgValue);
1635 ArgRegs.push_back(Arg);
1636 ArgVTs.push_back(ArgVT);
1637 ArgFlags.push_back(Flags);
1640 // Process the arguments.
1641 SmallVector<unsigned, 8> RegArgs;
1642 unsigned NumBytes;
1644 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1645 RegArgs, CC, NumBytes, IsVarArg))
1646 return false;
1648 MachineInstrBuilder MIB;
1649 // FIXME: No handling for function pointers yet. This requires
1650 // implementing the function descriptor (OPD) setup.
1651 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1652 if (!GV) {
1653 // patchpoints are a special case; they always dispatch to a pointer value.
1654 // However, we don't actually want to generate the indirect call sequence
1655 // here (that will be generated, as necessary, during asm printing), and
1656 // the call we generate here will be erased by FastISel::selectPatchpoint,
1657 // so don't try very hard...
1658 if (CLI.IsPatchPoint)
1659 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1660 else
1661 return false;
1662 } else {
1663 // Build direct call with NOP for TOC restore.
1664 // FIXME: We can and should optimize away the NOP for local calls.
1665 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1666 TII.get(PPC::BL8_NOP));
1667 // Add callee.
1668 MIB.addGlobalAddress(GV);
1671 // Add implicit physical register uses to the call.
1672 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1673 MIB.addReg(RegArgs[II], RegState::Implicit);
1675 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1676 // into the call.
1677 PPCFuncInfo->setUsesTOCBasePtr();
1678 MIB.addReg(PPC::X2, RegState::Implicit);
1680 // Add a register mask with the call-preserved registers. Proper
1681 // defs for return values will be added by setPhysRegsDeadExcept().
1682 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1684 CLI.Call = MIB;
1686 // Finish off the call including any return values.
1687 return finishCall(RetVT, CLI, NumBytes);
1690 // Attempt to fast-select a return instruction.
1691 bool PPCFastISel::SelectRet(const Instruction *I) {
1693 if (!FuncInfo.CanLowerReturn)
1694 return false;
1696 const ReturnInst *Ret = cast<ReturnInst>(I);
1697 const Function &F = *I->getParent()->getParent();
1699 // Build a list of return value registers.
1700 SmallVector<unsigned, 4> RetRegs;
1701 CallingConv::ID CC = F.getCallingConv();
1703 if (Ret->getNumOperands() > 0) {
1704 SmallVector<ISD::OutputArg, 4> Outs;
1705 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1707 // Analyze operands of the call, assigning locations to each operand.
1708 SmallVector<CCValAssign, 16> ValLocs;
1709 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1710 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1711 const Value *RV = Ret->getOperand(0);
1713 // FIXME: Only one output register for now.
1714 if (ValLocs.size() > 1)
1715 return false;
1717 // Special case for returning a constant integer of any size - materialize
1718 // the constant as an i64 and copy it to the return register.
1719 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1720 CCValAssign &VA = ValLocs[0];
1722 Register RetReg = VA.getLocReg();
1723 // We still need to worry about properly extending the sign. For example,
1724 // we could have only a single bit or a constant that needs zero
1725 // extension rather than sign extension. Make sure we pass the return
1726 // value extension property to integer materialization.
1727 unsigned SrcReg =
1728 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1730 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1731 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1733 RetRegs.push_back(RetReg);
1735 } else {
1736 unsigned Reg = getRegForValue(RV);
1738 if (Reg == 0)
1739 return false;
1741 // Copy the result values into the output registers.
1742 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1744 CCValAssign &VA = ValLocs[i];
1745 assert(VA.isRegLoc() && "Can only return in registers!");
1746 RetRegs.push_back(VA.getLocReg());
1747 unsigned SrcReg = Reg + VA.getValNo();
1749 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1750 if (!RVEVT.isSimple())
1751 return false;
1752 MVT RVVT = RVEVT.getSimpleVT();
1753 MVT DestVT = VA.getLocVT();
1755 if (RVVT != DestVT && RVVT != MVT::i8 &&
1756 RVVT != MVT::i16 && RVVT != MVT::i32)
1757 return false;
1759 if (RVVT != DestVT) {
1760 switch (VA.getLocInfo()) {
1761 default:
1762 llvm_unreachable("Unknown loc info!");
1763 case CCValAssign::Full:
1764 llvm_unreachable("Full value assign but types don't match?");
1765 case CCValAssign::AExt:
1766 case CCValAssign::ZExt: {
1767 const TargetRegisterClass *RC =
1768 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1769 unsigned TmpReg = createResultReg(RC);
1770 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1771 return false;
1772 SrcReg = TmpReg;
1773 break;
1775 case CCValAssign::SExt: {
1776 const TargetRegisterClass *RC =
1777 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1778 unsigned TmpReg = createResultReg(RC);
1779 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1780 return false;
1781 SrcReg = TmpReg;
1782 break;
1787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1788 TII.get(TargetOpcode::COPY), RetRegs[i])
1789 .addReg(SrcReg);
1794 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1795 TII.get(PPC::BLR8));
1797 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1798 MIB.addReg(RetRegs[i], RegState::Implicit);
1800 return true;
1803 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1804 // signed and zero extensions are supported. Return false if we
1805 // can't handle it.
1806 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1807 unsigned DestReg, bool IsZExt) {
1808 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1809 return false;
1810 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1811 return false;
1813 // Signed extensions use EXTSB, EXTSH, EXTSW.
1814 if (!IsZExt) {
1815 unsigned Opc;
1816 if (SrcVT == MVT::i8)
1817 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1818 else if (SrcVT == MVT::i16)
1819 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1820 else {
1821 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1822 Opc = PPC::EXTSW_32_64;
1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1825 .addReg(SrcReg);
1827 // Unsigned 32-bit extensions use RLWINM.
1828 } else if (DestVT == MVT::i32) {
1829 unsigned MB;
1830 if (SrcVT == MVT::i8)
1831 MB = 24;
1832 else {
1833 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1834 MB = 16;
1836 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1837 DestReg)
1838 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1840 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1841 } else {
1842 unsigned MB;
1843 if (SrcVT == MVT::i8)
1844 MB = 56;
1845 else if (SrcVT == MVT::i16)
1846 MB = 48;
1847 else
1848 MB = 32;
1849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1850 TII.get(PPC::RLDICL_32_64), DestReg)
1851 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1854 return true;
1857 // Attempt to fast-select an indirect branch instruction.
1858 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1859 unsigned AddrReg = getRegForValue(I->getOperand(0));
1860 if (AddrReg == 0)
1861 return false;
1863 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1864 .addReg(AddrReg);
1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1867 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1868 for (const BasicBlock *SuccBB : IB->successors())
1869 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1871 return true;
1874 // Attempt to fast-select an integer truncate instruction.
1875 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1876 Value *Src = I->getOperand(0);
1877 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1878 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1880 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1881 return false;
1883 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1884 return false;
1886 unsigned SrcReg = getRegForValue(Src);
1887 if (!SrcReg)
1888 return false;
1890 // The only interesting case is when we need to switch register classes.
1891 if (SrcVT == MVT::i64)
1892 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1894 updateValueMap(I, SrcReg);
1895 return true;
1898 // Attempt to fast-select an integer extend instruction.
1899 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1900 Type *DestTy = I->getType();
1901 Value *Src = I->getOperand(0);
1902 Type *SrcTy = Src->getType();
1904 bool IsZExt = isa<ZExtInst>(I);
1905 unsigned SrcReg = getRegForValue(Src);
1906 if (!SrcReg) return false;
1908 EVT SrcEVT, DestEVT;
1909 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1910 DestEVT = TLI.getValueType(DL, DestTy, true);
1911 if (!SrcEVT.isSimple())
1912 return false;
1913 if (!DestEVT.isSimple())
1914 return false;
1916 MVT SrcVT = SrcEVT.getSimpleVT();
1917 MVT DestVT = DestEVT.getSimpleVT();
1919 // If we know the register class needed for the result of this
1920 // instruction, use it. Otherwise pick the register class of the
1921 // correct size that does not contain X0/R0, since we don't know
1922 // whether downstream uses permit that assignment.
1923 unsigned AssignedReg = FuncInfo.ValueMap[I];
1924 const TargetRegisterClass *RC =
1925 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1926 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1927 &PPC::GPRC_and_GPRC_NOR0RegClass));
1928 unsigned ResultReg = createResultReg(RC);
1930 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1931 return false;
1933 updateValueMap(I, ResultReg);
1934 return true;
1937 // Attempt to fast-select an instruction that wasn't handled by
1938 // the table-generated machinery.
1939 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1941 switch (I->getOpcode()) {
1942 case Instruction::Load:
1943 return SelectLoad(I);
1944 case Instruction::Store:
1945 return SelectStore(I);
1946 case Instruction::Br:
1947 return SelectBranch(I);
1948 case Instruction::IndirectBr:
1949 return SelectIndirectBr(I);
1950 case Instruction::FPExt:
1951 return SelectFPExt(I);
1952 case Instruction::FPTrunc:
1953 return SelectFPTrunc(I);
1954 case Instruction::SIToFP:
1955 return SelectIToFP(I, /*IsSigned*/ true);
1956 case Instruction::UIToFP:
1957 return SelectIToFP(I, /*IsSigned*/ false);
1958 case Instruction::FPToSI:
1959 return SelectFPToI(I, /*IsSigned*/ true);
1960 case Instruction::FPToUI:
1961 return SelectFPToI(I, /*IsSigned*/ false);
1962 case Instruction::Add:
1963 return SelectBinaryIntOp(I, ISD::ADD);
1964 case Instruction::Or:
1965 return SelectBinaryIntOp(I, ISD::OR);
1966 case Instruction::Sub:
1967 return SelectBinaryIntOp(I, ISD::SUB);
1968 case Instruction::Call:
1969 // On AIX, call lowering uses the DAG-ISEL path currently so that the
1970 // callee of the direct function call instruction will be mapped to the
1971 // symbol for the function's entry point, which is distinct from the
1972 // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1973 // name is the C-linkage name of the source level function.
1974 if (TM.getTargetTriple().isOSAIX())
1975 break;
1976 return selectCall(I);
1977 case Instruction::Ret:
1978 return SelectRet(I);
1979 case Instruction::Trunc:
1980 return SelectTrunc(I);
1981 case Instruction::ZExt:
1982 case Instruction::SExt:
1983 return SelectIntExt(I);
1984 // Here add other flavors of Instruction::XXX that automated
1985 // cases don't catch. For example, switches are terminators
1986 // that aren't yet handled.
1987 default:
1988 break;
1990 return false;
1993 // Materialize a floating-point constant into a register, and return
1994 // the register number (or zero if we failed to handle it).
1995 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1996 // If this is a PC-Rel function, let SDISel handle constant pool.
1997 if (Subtarget->isUsingPCRelativeCalls())
1998 return false;
2000 // No plans to handle long double here.
2001 if (VT != MVT::f32 && VT != MVT::f64)
2002 return 0;
2004 // All FP constants are loaded from the constant pool.
2005 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
2006 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
2007 const bool HasSPE = Subtarget->hasSPE();
2008 const TargetRegisterClass *RC;
2009 if (HasSPE)
2010 RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2011 else
2012 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2014 unsigned DestReg = createResultReg(RC);
2015 CodeModel::Model CModel = TM.getCodeModel();
2017 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2018 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2019 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2021 unsigned Opc;
2023 if (HasSPE)
2024 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2025 else
2026 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2028 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2030 PPCFuncInfo->setUsesTOCBasePtr();
2031 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2032 if (CModel == CodeModel::Small) {
2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2034 TmpReg)
2035 .addConstantPoolIndex(Idx).addReg(PPC::X2);
2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2037 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2038 } else {
2039 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2041 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2042 // But for large code model, we must generate a LDtocL followed
2043 // by the LF[SD].
2044 if (CModel == CodeModel::Large) {
2045 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2047 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2049 .addImm(0)
2050 .addReg(TmpReg2);
2051 } else
2052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2053 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2054 .addReg(TmpReg)
2055 .addMemOperand(MMO);
2058 return DestReg;
2061 // Materialize the address of a global value into a register, and return
2062 // the register number (or zero if we failed to handle it).
2063 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2064 // If this is a PC-Rel function, let SDISel handle GV materialization.
2065 if (Subtarget->isUsingPCRelativeCalls())
2066 return false;
2068 assert(VT == MVT::i64 && "Non-address!");
2069 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2070 unsigned DestReg = createResultReg(RC);
2072 // Global values may be plain old object addresses, TLS object
2073 // addresses, constant pool entries, or jump tables. How we generate
2074 // code for these may depend on small, medium, or large code model.
2075 CodeModel::Model CModel = TM.getCodeModel();
2077 // FIXME: Jump tables are not yet required because fast-isel doesn't
2078 // handle switches; if that changes, we need them as well. For now,
2079 // what follows assumes everything's a generic (or TLS) global address.
2081 // FIXME: We don't yet handle the complexity of TLS.
2082 if (GV->isThreadLocal())
2083 return 0;
2085 PPCFuncInfo->setUsesTOCBasePtr();
2086 // For small code model, generate a simple TOC load.
2087 if (CModel == CodeModel::Small)
2088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2089 DestReg)
2090 .addGlobalAddress(GV)
2091 .addReg(PPC::X2);
2092 else {
2093 // If the address is an externally defined symbol, a symbol with common
2094 // or externally available linkage, a non-local function address, or a
2095 // jump table address (not yet needed), or if we are generating code
2096 // for large code model, we generate:
2097 // LDtocL(GV, ADDIStocHA8(%x2, GV))
2098 // Otherwise we generate:
2099 // ADDItocL(ADDIStocHA8(%x2, GV), GV)
2100 // Either way, start with the ADDIStocHA8:
2101 unsigned HighPartReg = createResultReg(RC);
2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2103 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2105 if (Subtarget->isGVIndirectSymbol(GV)) {
2106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2107 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2108 } else {
2109 // Otherwise generate the ADDItocL.
2110 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2111 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2115 return DestReg;
2118 // Materialize a 32-bit integer constant into a register, and return
2119 // the register number (or zero if we failed to handle it).
2120 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2121 const TargetRegisterClass *RC) {
2122 unsigned Lo = Imm & 0xFFFF;
2123 unsigned Hi = (Imm >> 16) & 0xFFFF;
2125 unsigned ResultReg = createResultReg(RC);
2126 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2128 if (isInt<16>(Imm))
2129 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2130 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2131 .addImm(Imm);
2132 else if (Lo) {
2133 // Both Lo and Hi have nonzero bits.
2134 unsigned TmpReg = createResultReg(RC);
2135 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2136 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2137 .addImm(Hi);
2138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2139 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2140 .addReg(TmpReg).addImm(Lo);
2141 } else
2142 // Just Hi bits.
2143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2144 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2145 .addImm(Hi);
2147 return ResultReg;
2150 // Materialize a 64-bit integer constant into a register, and return
2151 // the register number (or zero if we failed to handle it).
2152 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2153 const TargetRegisterClass *RC) {
2154 unsigned Remainder = 0;
2155 unsigned Shift = 0;
2157 // If the value doesn't fit in 32 bits, see if we can shift it
2158 // so that it fits in 32 bits.
2159 if (!isInt<32>(Imm)) {
2160 Shift = countTrailingZeros<uint64_t>(Imm);
2161 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2163 if (isInt<32>(ImmSh))
2164 Imm = ImmSh;
2165 else {
2166 Remainder = Imm;
2167 Shift = 32;
2168 Imm >>= 32;
2172 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2173 // (if not shifted).
2174 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2175 if (!Shift)
2176 return TmpReg1;
2178 // If upper 32 bits were not zero, we've built them and need to shift
2179 // them into place.
2180 unsigned TmpReg2;
2181 if (Imm) {
2182 TmpReg2 = createResultReg(RC);
2183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2184 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2185 } else
2186 TmpReg2 = TmpReg1;
2188 unsigned TmpReg3, Hi, Lo;
2189 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2190 TmpReg3 = createResultReg(RC);
2191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2192 TmpReg3).addReg(TmpReg2).addImm(Hi);
2193 } else
2194 TmpReg3 = TmpReg2;
2196 if ((Lo = Remainder & 0xFFFF)) {
2197 unsigned ResultReg = createResultReg(RC);
2198 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2199 ResultReg).addReg(TmpReg3).addImm(Lo);
2200 return ResultReg;
2203 return TmpReg3;
2206 // Materialize an integer constant into a register, and return
2207 // the register number (or zero if we failed to handle it).
2208 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2209 bool UseSExt) {
2210 // If we're using CR bit registers for i1 values, handle that as a special
2211 // case first.
2212 if (VT == MVT::i1 && Subtarget->useCRBits()) {
2213 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2215 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2216 return ImmReg;
2219 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2220 VT != MVT::i1)
2221 return 0;
2223 const TargetRegisterClass *RC =
2224 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2225 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2227 // If the constant is in range, use a load-immediate.
2228 // Since LI will sign extend the constant we need to make sure that for
2229 // our zeroext constants that the sign extended constant fits into 16-bits -
2230 // a range of 0..0x7fff.
2231 if (isInt<16>(Imm)) {
2232 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2233 unsigned ImmReg = createResultReg(RC);
2234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2235 .addImm(Imm);
2236 return ImmReg;
2239 // Construct the constant piecewise.
2240 if (VT == MVT::i64)
2241 return PPCMaterialize64BitInt(Imm, RC);
2242 else if (VT == MVT::i32)
2243 return PPCMaterialize32BitInt(Imm, RC);
2245 return 0;
2248 // Materialize a constant into a register, and return the register
2249 // number (or zero if we failed to handle it).
2250 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2251 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2253 // Only handle simple types.
2254 if (!CEVT.isSimple()) return 0;
2255 MVT VT = CEVT.getSimpleVT();
2257 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2258 return PPCMaterializeFP(CFP, VT);
2259 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2260 return PPCMaterializeGV(GV, VT);
2261 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2262 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2263 // assumes that constant PHI operands will be zero extended, and failure to
2264 // match that assumption will cause problems if we sign extend here but
2265 // some user of a PHI is in a block for which we fall back to full SDAG
2266 // instruction selection.
2267 return PPCMaterializeInt(CI, VT, false);
2269 return 0;
2272 // Materialize the address created by an alloca into a register, and
2273 // return the register number (or zero if we failed to handle it).
2274 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2275 // Don't handle dynamic allocas.
2276 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2278 MVT VT;
2279 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2281 DenseMap<const AllocaInst*, int>::iterator SI =
2282 FuncInfo.StaticAllocaMap.find(AI);
2284 if (SI != FuncInfo.StaticAllocaMap.end()) {
2285 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2286 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2287 ResultReg).addFrameIndex(SI->second).addImm(0);
2288 return ResultReg;
2291 return 0;
2294 // Fold loads into extends when possible.
2295 // FIXME: We can have multiple redundant extend/trunc instructions
2296 // following a load. The folding only picks up one. Extend this
2297 // to check subsequent instructions for the same pattern and remove
2298 // them. Thus ResultReg should be the def reg for the last redundant
2299 // instruction in a chain, and all intervening instructions can be
2300 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2301 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2302 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2303 const LoadInst *LI) {
2304 // Verify we have a legal type before going any further.
2305 MVT VT;
2306 if (!isLoadTypeLegal(LI->getType(), VT))
2307 return false;
2309 // Combine load followed by zero- or sign-extend.
2310 bool IsZExt = false;
2311 switch(MI->getOpcode()) {
2312 default:
2313 return false;
2315 case PPC::RLDICL:
2316 case PPC::RLDICL_32_64: {
2317 IsZExt = true;
2318 unsigned MB = MI->getOperand(3).getImm();
2319 if ((VT == MVT::i8 && MB <= 56) ||
2320 (VT == MVT::i16 && MB <= 48) ||
2321 (VT == MVT::i32 && MB <= 32))
2322 break;
2323 return false;
2326 case PPC::RLWINM:
2327 case PPC::RLWINM8: {
2328 IsZExt = true;
2329 unsigned MB = MI->getOperand(3).getImm();
2330 if ((VT == MVT::i8 && MB <= 24) ||
2331 (VT == MVT::i16 && MB <= 16))
2332 break;
2333 return false;
2336 case PPC::EXTSB:
2337 case PPC::EXTSB8:
2338 case PPC::EXTSB8_32_64:
2339 /* There is no sign-extending load-byte instruction. */
2340 return false;
2342 case PPC::EXTSH:
2343 case PPC::EXTSH8:
2344 case PPC::EXTSH8_32_64: {
2345 if (VT != MVT::i16 && VT != MVT::i8)
2346 return false;
2347 break;
2350 case PPC::EXTSW:
2351 case PPC::EXTSW_32:
2352 case PPC::EXTSW_32_64: {
2353 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2354 return false;
2355 break;
2359 // See if we can handle this address.
2360 Address Addr;
2361 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2362 return false;
2364 Register ResultReg = MI->getOperand(0).getReg();
2366 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2367 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2368 return false;
2370 MachineBasicBlock::iterator I(MI);
2371 removeDeadCode(I, std::next(I));
2372 return true;
2375 // Attempt to lower call arguments in a faster way than done by
2376 // the selection DAG code.
2377 bool PPCFastISel::fastLowerArguments() {
2378 // Defer to normal argument lowering for now. It's reasonably
2379 // efficient. Consider doing something like ARM to handle the
2380 // case where all args fit in registers, no varargs, no float
2381 // or vector args.
2382 return false;
2385 // Handle materializing integer constants into a register. This is not
2386 // automatically generated for PowerPC, so must be explicitly created here.
2387 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2389 if (Opc != ISD::Constant)
2390 return 0;
2392 // If we're using CR bit registers for i1 values, handle that as a special
2393 // case first.
2394 if (VT == MVT::i1 && Subtarget->useCRBits()) {
2395 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2396 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2397 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2398 return ImmReg;
2401 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2402 VT != MVT::i1)
2403 return 0;
2405 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2406 &PPC::GPRCRegClass);
2407 if (VT == MVT::i64)
2408 return PPCMaterialize64BitInt(Imm, RC);
2409 else
2410 return PPCMaterialize32BitInt(Imm, RC);
2413 // Override for ADDI and ADDI8 to set the correct register class
2414 // on RHS operand 0. The automatic infrastructure naively assumes
2415 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2416 // for these cases. At the moment, none of the other automatically
2417 // generated RI instructions require special treatment. However, once
2418 // SelectSelect is implemented, "isel" requires similar handling.
2420 // Also be conservative about the output register class. Avoid
2421 // assigning R0 or X0 to the output register for GPRC and G8RC
2422 // register classes, as any such result could be used in ADDI, etc.,
2423 // where those regs have another meaning.
2424 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2425 const TargetRegisterClass *RC,
2426 unsigned Op0,
2427 uint64_t Imm) {
2428 if (MachineInstOpcode == PPC::ADDI)
2429 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2430 else if (MachineInstOpcode == PPC::ADDI8)
2431 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2433 const TargetRegisterClass *UseRC =
2434 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2435 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2437 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm);
2440 // Override for instructions with one register operand to avoid use of
2441 // R0/X0. The automatic infrastructure isn't aware of the context so
2442 // we must be conservative.
2443 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2444 const TargetRegisterClass* RC,
2445 unsigned Op0) {
2446 const TargetRegisterClass *UseRC =
2447 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2448 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2450 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0);
2453 // Override for instructions with two register operands to avoid use
2454 // of R0/X0. The automatic infrastructure isn't aware of the context
2455 // so we must be conservative.
2456 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2457 const TargetRegisterClass* RC,
2458 unsigned Op0, unsigned Op1) {
2459 const TargetRegisterClass *UseRC =
2460 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2461 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2463 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1);
2466 namespace llvm {
2467 // Create the fast instruction selector for PowerPC64 ELF.
2468 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2469 const TargetLibraryInfo *LibInfo) {
2470 // Only available on 64-bit ELF for now.
2471 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2472 if (Subtarget.is64BitELFABI())
2473 return new PPCFastISel(FuncInfo, LibInfo);
2474 return nullptr;