1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
41 //===----------------------------------------------------------------------===//
44 // fastLowerArguments: Handle simple cases.
45 // PPCMaterializeGV: Handle TLS.
46 // SelectCall: Handle function pointers.
47 // SelectCall: Handle multi-register return values.
48 // SelectCall: Optimize away nops for local calls.
49 // processCallArgs: Handle bit-converted arguments.
50 // finishCall: Handle multi-register return values.
51 // PPCComputeAddress: Handle parameter references as FrameIndex's.
52 // PPCEmitCmp: Handle immediate as operand 1.
53 // SelectCall: Handle small byval arguments.
54 // SelectIntrinsicCall: Implement.
55 // SelectSelect: Implement.
56 // Consider factoring isTypeLegal into the base class.
57 // Implement switches and jump tables.
59 //===----------------------------------------------------------------------===//
62 #define DEBUG_TYPE "ppcfastisel"
79 // Innocuous defaults for our address.
81 : BaseType(RegBase
), Offset(0) {
86 class PPCFastISel final
: public FastISel
{
88 const TargetMachine
&TM
;
89 const PPCSubtarget
*Subtarget
;
90 PPCFunctionInfo
*PPCFuncInfo
;
91 const TargetInstrInfo
&TII
;
92 const TargetLowering
&TLI
;
96 explicit PPCFastISel(FunctionLoweringInfo
&FuncInfo
,
97 const TargetLibraryInfo
*LibInfo
)
98 : FastISel(FuncInfo
, LibInfo
), TM(FuncInfo
.MF
->getTarget()),
99 Subtarget(&FuncInfo
.MF
->getSubtarget
<PPCSubtarget
>()),
100 PPCFuncInfo(FuncInfo
.MF
->getInfo
<PPCFunctionInfo
>()),
101 TII(*Subtarget
->getInstrInfo()), TLI(*Subtarget
->getTargetLowering()),
102 Context(&FuncInfo
.Fn
->getContext()) {}
104 // Backend specific FastISel code.
106 bool fastSelectInstruction(const Instruction
*I
) override
;
107 unsigned fastMaterializeConstant(const Constant
*C
) override
;
108 unsigned fastMaterializeAlloca(const AllocaInst
*AI
) override
;
109 bool tryToFoldLoadIntoMI(MachineInstr
*MI
, unsigned OpNo
,
110 const LoadInst
*LI
) override
;
111 bool fastLowerArguments() override
;
112 unsigned fastEmit_i(MVT Ty
, MVT RetTy
, unsigned Opc
, uint64_t Imm
) override
;
113 unsigned fastEmitInst_ri(unsigned MachineInstOpcode
,
114 const TargetRegisterClass
*RC
,
115 unsigned Op0
, uint64_t Imm
);
116 unsigned fastEmitInst_r(unsigned MachineInstOpcode
,
117 const TargetRegisterClass
*RC
, unsigned Op0
);
118 unsigned fastEmitInst_rr(unsigned MachineInstOpcode
,
119 const TargetRegisterClass
*RC
,
120 unsigned Op0
, unsigned Op1
);
122 bool fastLowerCall(CallLoweringInfo
&CLI
) override
;
124 // Instruction selection routines.
126 bool SelectLoad(const Instruction
*I
);
127 bool SelectStore(const Instruction
*I
);
128 bool SelectBranch(const Instruction
*I
);
129 bool SelectIndirectBr(const Instruction
*I
);
130 bool SelectFPExt(const Instruction
*I
);
131 bool SelectFPTrunc(const Instruction
*I
);
132 bool SelectIToFP(const Instruction
*I
, bool IsSigned
);
133 bool SelectFPToI(const Instruction
*I
, bool IsSigned
);
134 bool SelectBinaryIntOp(const Instruction
*I
, unsigned ISDOpcode
);
135 bool SelectRet(const Instruction
*I
);
136 bool SelectTrunc(const Instruction
*I
);
137 bool SelectIntExt(const Instruction
*I
);
141 bool isTypeLegal(Type
*Ty
, MVT
&VT
);
142 bool isLoadTypeLegal(Type
*Ty
, MVT
&VT
);
143 bool isValueAvailable(const Value
*V
) const;
144 bool isVSFRCRegClass(const TargetRegisterClass
*RC
) const {
145 return RC
->getID() == PPC::VSFRCRegClassID
;
147 bool isVSSRCRegClass(const TargetRegisterClass
*RC
) const {
148 return RC
->getID() == PPC::VSSRCRegClassID
;
150 unsigned copyRegToRegClass(const TargetRegisterClass
*ToRC
,
151 unsigned SrcReg
, unsigned Flag
= 0,
152 unsigned SubReg
= 0) {
153 unsigned TmpReg
= createResultReg(ToRC
);
154 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
155 TII
.get(TargetOpcode::COPY
), TmpReg
).addReg(SrcReg
, Flag
, SubReg
);
158 bool PPCEmitCmp(const Value
*Src1Value
, const Value
*Src2Value
,
159 bool isZExt
, unsigned DestReg
,
160 const PPC::Predicate Pred
);
161 bool PPCEmitLoad(MVT VT
, Register
&ResultReg
, Address
&Addr
,
162 const TargetRegisterClass
*RC
, bool IsZExt
= true,
163 unsigned FP64LoadOpc
= PPC::LFD
);
164 bool PPCEmitStore(MVT VT
, unsigned SrcReg
, Address
&Addr
);
165 bool PPCComputeAddress(const Value
*Obj
, Address
&Addr
);
166 void PPCSimplifyAddress(Address
&Addr
, bool &UseOffset
,
168 bool PPCEmitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
169 unsigned DestReg
, bool IsZExt
);
170 unsigned PPCMaterializeFP(const ConstantFP
*CFP
, MVT VT
);
171 unsigned PPCMaterializeGV(const GlobalValue
*GV
, MVT VT
);
172 unsigned PPCMaterializeInt(const ConstantInt
*CI
, MVT VT
,
173 bool UseSExt
= true);
174 unsigned PPCMaterialize32BitInt(int64_t Imm
,
175 const TargetRegisterClass
*RC
);
176 unsigned PPCMaterialize64BitInt(int64_t Imm
,
177 const TargetRegisterClass
*RC
);
178 unsigned PPCMoveToIntReg(const Instruction
*I
, MVT VT
,
179 unsigned SrcReg
, bool IsSigned
);
180 unsigned PPCMoveToFPReg(MVT VT
, unsigned SrcReg
, bool IsSigned
);
182 // Call handling routines.
184 bool processCallArgs(SmallVectorImpl
<Value
*> &Args
,
185 SmallVectorImpl
<unsigned> &ArgRegs
,
186 SmallVectorImpl
<MVT
> &ArgVTs
,
187 SmallVectorImpl
<ISD::ArgFlagsTy
> &ArgFlags
,
188 SmallVectorImpl
<unsigned> &RegArgs
,
192 bool finishCall(MVT RetVT
, CallLoweringInfo
&CLI
, unsigned &NumBytes
);
195 #include "PPCGenFastISel.inc"
199 } // end anonymous namespace
201 static Optional
<PPC::Predicate
> getComparePred(CmpInst::Predicate Pred
) {
203 // These are not representable with any single compare.
204 case CmpInst::FCMP_FALSE
:
205 case CmpInst::FCMP_TRUE
:
206 // Major concern about the following 6 cases is NaN result. The comparison
207 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
208 // only one of which will be set. The result is generated by fcmpu
209 // instruction. However, bc instruction only inspects one of the first 3
210 // bits, so when un is set, bc instruction may jump to an undesired
213 // More specifically, if we expect an unordered comparison and un is set, we
214 // expect to always go to true branch; in such case UEQ, UGT and ULT still
215 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
216 // since they are tested by inspecting !eq, !lt, !gt, respectively.
218 // Similarly, for ordered comparison, when un is set, we always expect the
219 // result to be false. In such case OGT, OLT and OEQ is good, since they are
220 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
221 // and ONE are tested through !lt, !gt and !eq, and these are true.
222 case CmpInst::FCMP_UEQ
:
223 case CmpInst::FCMP_UGT
:
224 case CmpInst::FCMP_ULT
:
225 case CmpInst::FCMP_OGE
:
226 case CmpInst::FCMP_OLE
:
227 case CmpInst::FCMP_ONE
:
229 return Optional
<PPC::Predicate
>();
231 case CmpInst::FCMP_OEQ
:
232 case CmpInst::ICMP_EQ
:
235 case CmpInst::FCMP_OGT
:
236 case CmpInst::ICMP_UGT
:
237 case CmpInst::ICMP_SGT
:
240 case CmpInst::FCMP_UGE
:
241 case CmpInst::ICMP_UGE
:
242 case CmpInst::ICMP_SGE
:
245 case CmpInst::FCMP_OLT
:
246 case CmpInst::ICMP_ULT
:
247 case CmpInst::ICMP_SLT
:
250 case CmpInst::FCMP_ULE
:
251 case CmpInst::ICMP_ULE
:
252 case CmpInst::ICMP_SLE
:
255 case CmpInst::FCMP_UNE
:
256 case CmpInst::ICMP_NE
:
259 case CmpInst::FCMP_ORD
:
262 case CmpInst::FCMP_UNO
:
267 // Determine whether the type Ty is simple enough to be handled by
268 // fast-isel, and return its equivalent machine type in VT.
269 // FIXME: Copied directly from ARM -- factor into base class?
270 bool PPCFastISel::isTypeLegal(Type
*Ty
, MVT
&VT
) {
271 EVT Evt
= TLI
.getValueType(DL
, Ty
, true);
273 // Only handle simple types.
274 if (Evt
== MVT::Other
|| !Evt
.isSimple()) return false;
275 VT
= Evt
.getSimpleVT();
277 // Handle all legal types, i.e. a register that will directly hold this
279 return TLI
.isTypeLegal(VT
);
282 // Determine whether the type Ty is simple enough to be handled by
283 // fast-isel as a load target, and return its equivalent machine type in VT.
284 bool PPCFastISel::isLoadTypeLegal(Type
*Ty
, MVT
&VT
) {
285 if (isTypeLegal(Ty
, VT
)) return true;
287 // If this is a type than can be sign or zero-extended to a basic operation
288 // go ahead and accept it now.
289 if (VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
) {
296 bool PPCFastISel::isValueAvailable(const Value
*V
) const {
297 if (!isa
<Instruction
>(V
))
300 const auto *I
= cast
<Instruction
>(V
);
301 return FuncInfo
.MBBMap
[I
->getParent()] == FuncInfo
.MBB
;
304 // Given a value Obj, create an Address object Addr that represents its
305 // address. Return false if we can't handle it.
306 bool PPCFastISel::PPCComputeAddress(const Value
*Obj
, Address
&Addr
) {
307 const User
*U
= nullptr;
308 unsigned Opcode
= Instruction::UserOp1
;
309 if (const Instruction
*I
= dyn_cast
<Instruction
>(Obj
)) {
310 // Don't walk into other basic blocks unless the object is an alloca from
311 // another block, otherwise it may not have a virtual register assigned.
312 if (FuncInfo
.StaticAllocaMap
.count(static_cast<const AllocaInst
*>(Obj
)) ||
313 FuncInfo
.MBBMap
[I
->getParent()] == FuncInfo
.MBB
) {
314 Opcode
= I
->getOpcode();
317 } else if (const ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(Obj
)) {
318 Opcode
= C
->getOpcode();
325 case Instruction::BitCast
:
326 // Look through bitcasts.
327 return PPCComputeAddress(U
->getOperand(0), Addr
);
328 case Instruction::IntToPtr
:
329 // Look past no-op inttoptrs.
330 if (TLI
.getValueType(DL
, U
->getOperand(0)->getType()) ==
331 TLI
.getPointerTy(DL
))
332 return PPCComputeAddress(U
->getOperand(0), Addr
);
334 case Instruction::PtrToInt
:
335 // Look past no-op ptrtoints.
336 if (TLI
.getValueType(DL
, U
->getType()) == TLI
.getPointerTy(DL
))
337 return PPCComputeAddress(U
->getOperand(0), Addr
);
339 case Instruction::GetElementPtr
: {
340 Address SavedAddr
= Addr
;
341 long TmpOffset
= Addr
.Offset
;
343 // Iterate through the GEP folding the constants into offsets where
345 gep_type_iterator GTI
= gep_type_begin(U
);
346 for (User::const_op_iterator II
= U
->op_begin() + 1, IE
= U
->op_end();
347 II
!= IE
; ++II
, ++GTI
) {
348 const Value
*Op
= *II
;
349 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
350 const StructLayout
*SL
= DL
.getStructLayout(STy
);
351 unsigned Idx
= cast
<ConstantInt
>(Op
)->getZExtValue();
352 TmpOffset
+= SL
->getElementOffset(Idx
);
354 uint64_t S
= DL
.getTypeAllocSize(GTI
.getIndexedType());
356 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
357 // Constant-offset addressing.
358 TmpOffset
+= CI
->getSExtValue() * S
;
361 if (canFoldAddIntoGEP(U
, Op
)) {
362 // A compatible add with a constant operand. Fold the constant.
364 cast
<ConstantInt
>(cast
<AddOperator
>(Op
)->getOperand(1));
365 TmpOffset
+= CI
->getSExtValue() * S
;
366 // Iterate on the other operand.
367 Op
= cast
<AddOperator
>(Op
)->getOperand(0);
371 goto unsupported_gep
;
376 // Try to grab the base operand now.
377 Addr
.Offset
= TmpOffset
;
378 if (PPCComputeAddress(U
->getOperand(0), Addr
)) return true;
380 // We failed, restore everything and try the other options.
386 case Instruction::Alloca
: {
387 const AllocaInst
*AI
= cast
<AllocaInst
>(Obj
);
388 DenseMap
<const AllocaInst
*, int>::iterator SI
=
389 FuncInfo
.StaticAllocaMap
.find(AI
);
390 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
391 Addr
.BaseType
= Address::FrameIndexBase
;
392 Addr
.Base
.FI
= SI
->second
;
399 // FIXME: References to parameters fall through to the behavior
400 // below. They should be able to reference a frame index since
401 // they are stored to the stack, so we can get "ld rx, offset(r1)"
402 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
403 // just contain the parameter. Try to handle this with a FI.
405 // Try to get this in a register if nothing else has worked.
406 if (Addr
.Base
.Reg
== 0)
407 Addr
.Base
.Reg
= getRegForValue(Obj
);
409 // Prevent assignment of base register to X0, which is inappropriate
410 // for loads and stores alike.
411 if (Addr
.Base
.Reg
!= 0)
412 MRI
.setRegClass(Addr
.Base
.Reg
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
414 return Addr
.Base
.Reg
!= 0;
417 // Fix up some addresses that can't be used directly. For example, if
418 // an offset won't fit in an instruction field, we may need to move it
419 // into an index register.
420 void PPCFastISel::PPCSimplifyAddress(Address
&Addr
, bool &UseOffset
,
421 unsigned &IndexReg
) {
423 // Check whether the offset fits in the instruction field.
424 if (!isInt
<16>(Addr
.Offset
))
427 // If this is a stack pointer and the offset needs to be simplified then
428 // put the alloca address into a register, set the base type back to
429 // register and continue. This should almost never happen.
430 if (!UseOffset
&& Addr
.BaseType
== Address::FrameIndexBase
) {
431 unsigned ResultReg
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
432 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDI8
),
433 ResultReg
).addFrameIndex(Addr
.Base
.FI
).addImm(0);
434 Addr
.Base
.Reg
= ResultReg
;
435 Addr
.BaseType
= Address::RegBase
;
439 IntegerType
*OffsetTy
= Type::getInt64Ty(*Context
);
440 const ConstantInt
*Offset
=
441 ConstantInt::getSigned(OffsetTy
, (int64_t)(Addr
.Offset
));
442 IndexReg
= PPCMaterializeInt(Offset
, MVT::i64
);
443 assert(IndexReg
&& "Unexpected error in PPCMaterializeInt!");
447 // Emit a load instruction if possible, returning true if we succeeded,
448 // otherwise false. See commentary below for how the register class of
449 // the load is determined.
450 bool PPCFastISel::PPCEmitLoad(MVT VT
, Register
&ResultReg
, Address
&Addr
,
451 const TargetRegisterClass
*RC
,
452 bool IsZExt
, unsigned FP64LoadOpc
) {
454 bool UseOffset
= true;
455 bool HasSPE
= Subtarget
->hasSPE();
457 // If ResultReg is given, it determines the register class of the load.
458 // Otherwise, RC is the register class to use. If the result of the
459 // load isn't anticipated in this block, both may be zero, in which
460 // case we must make a conservative guess. In particular, don't assign
461 // R0 or X0 to the result register, as the result may be used in a load,
462 // store, add-immediate, or isel that won't permit this. (Though
463 // perhaps the spill and reload of live-exit values would handle this?)
464 const TargetRegisterClass
*UseRC
=
465 (ResultReg
? MRI
.getRegClass(ResultReg
) :
467 (VT
== MVT::f64
? (HasSPE
? &PPC::SPERCRegClass
: &PPC::F8RCRegClass
) :
468 (VT
== MVT::f32
? (HasSPE
? &PPC::GPRCRegClass
: &PPC::F4RCRegClass
) :
469 (VT
== MVT::i64
? &PPC::G8RC_and_G8RC_NOX0RegClass
:
470 &PPC::GPRC_and_GPRC_NOR0RegClass
)))));
472 bool Is32BitInt
= UseRC
->hasSuperClassEq(&PPC::GPRCRegClass
);
474 switch (VT
.SimpleTy
) {
475 default: // e.g., vector types not handled
478 Opc
= Is32BitInt
? PPC::LBZ
: PPC::LBZ8
;
481 Opc
= (IsZExt
? (Is32BitInt
? PPC::LHZ
: PPC::LHZ8
)
482 : (Is32BitInt
? PPC::LHA
: PPC::LHA8
));
485 Opc
= (IsZExt
? (Is32BitInt
? PPC::LWZ
: PPC::LWZ8
)
486 : (Is32BitInt
? PPC::LWA_32
: PPC::LWA
));
487 if ((Opc
== PPC::LWA
|| Opc
== PPC::LWA_32
) && ((Addr
.Offset
& 3) != 0))
492 assert(UseRC
->hasSuperClassEq(&PPC::G8RCRegClass
) &&
493 "64-bit load with 32-bit target??");
494 UseOffset
= ((Addr
.Offset
& 3) == 0);
497 Opc
= Subtarget
->hasSPE() ? PPC::SPELWZ
: PPC::LFS
;
504 // If necessary, materialize the offset into a register and use
505 // the indexed form. Also handle stack pointers with special needs.
506 unsigned IndexReg
= 0;
507 PPCSimplifyAddress(Addr
, UseOffset
, IndexReg
);
509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
511 bool IsVSSRC
= isVSSRCRegClass(UseRC
);
512 bool IsVSFRC
= isVSFRCRegClass(UseRC
);
513 bool Is32VSXLoad
= IsVSSRC
&& Opc
== PPC::LFS
;
514 bool Is64VSXLoad
= IsVSFRC
&& Opc
== PPC::LFD
;
515 if ((Is32VSXLoad
|| Is64VSXLoad
) &&
516 (Addr
.BaseType
!= Address::FrameIndexBase
) && UseOffset
&&
517 (Addr
.Offset
== 0)) {
522 ResultReg
= createResultReg(UseRC
);
524 // Note: If we still have a frame index here, we know the offset is
525 // in range, as otherwise PPCSimplifyAddress would have converted it
527 if (Addr
.BaseType
== Address::FrameIndexBase
) {
528 // VSX only provides an indexed load.
529 if (Is32VSXLoad
|| Is64VSXLoad
) return false;
531 MachineMemOperand
*MMO
= FuncInfo
.MF
->getMachineMemOperand(
532 MachinePointerInfo::getFixedStack(*FuncInfo
.MF
, Addr
.Base
.FI
,
534 MachineMemOperand::MOLoad
, MFI
.getObjectSize(Addr
.Base
.FI
),
535 MFI
.getObjectAlign(Addr
.Base
.FI
));
537 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ResultReg
)
538 .addImm(Addr
.Offset
).addFrameIndex(Addr
.Base
.FI
).addMemOperand(MMO
);
540 // Base reg with offset in range.
541 } else if (UseOffset
) {
542 // VSX only provides an indexed load.
543 if (Is32VSXLoad
|| Is64VSXLoad
) return false;
545 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ResultReg
)
546 .addImm(Addr
.Offset
).addReg(Addr
.Base
.Reg
);
550 // Get the RR opcode corresponding to the RI one. FIXME: It would be
551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
552 // is hard to get at.
554 default: llvm_unreachable("Unexpected opcode!");
555 case PPC::LBZ
: Opc
= PPC::LBZX
; break;
556 case PPC::LBZ8
: Opc
= PPC::LBZX8
; break;
557 case PPC::LHZ
: Opc
= PPC::LHZX
; break;
558 case PPC::LHZ8
: Opc
= PPC::LHZX8
; break;
559 case PPC::LHA
: Opc
= PPC::LHAX
; break;
560 case PPC::LHA8
: Opc
= PPC::LHAX8
; break;
561 case PPC::LWZ
: Opc
= PPC::LWZX
; break;
562 case PPC::LWZ8
: Opc
= PPC::LWZX8
; break;
563 case PPC::LWA
: Opc
= PPC::LWAX
; break;
564 case PPC::LWA_32
: Opc
= PPC::LWAX_32
; break;
565 case PPC::LD
: Opc
= PPC::LDX
; break;
566 case PPC::LFS
: Opc
= IsVSSRC
? PPC::LXSSPX
: PPC::LFSX
; break;
567 case PPC::LFD
: Opc
= IsVSFRC
? PPC::LXSDX
: PPC::LFDX
; break;
568 case PPC::EVLDD
: Opc
= PPC::EVLDDX
; break;
569 case PPC::SPELWZ
: Opc
= PPC::SPELWZX
; break;
572 auto MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
),
575 // If we have an index register defined we use it in the store inst,
576 // otherwise we use X0 as base as it makes the vector instructions to
577 // use zero in the computation of the effective address regardless the
578 // content of the register.
580 MIB
.addReg(Addr
.Base
.Reg
).addReg(IndexReg
);
582 MIB
.addReg(PPC::ZERO8
).addReg(Addr
.Base
.Reg
);
588 // Attempt to fast-select a load instruction.
589 bool PPCFastISel::SelectLoad(const Instruction
*I
) {
590 // FIXME: No atomic loads are supported.
591 if (cast
<LoadInst
>(I
)->isAtomic())
594 // Verify we have a legal type before going any further.
596 if (!isLoadTypeLegal(I
->getType(), VT
))
599 // See if we can handle this address.
601 if (!PPCComputeAddress(I
->getOperand(0), Addr
))
604 // Look at the currently assigned register for this instruction
605 // to determine the required register class. This is necessary
606 // to constrain RA from using R0/X0 when this is not legal.
607 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
608 const TargetRegisterClass
*RC
=
609 AssignedReg
? MRI
.getRegClass(AssignedReg
) : nullptr;
611 Register ResultReg
= 0;
612 if (!PPCEmitLoad(VT
, ResultReg
, Addr
, RC
, true,
613 Subtarget
->hasSPE() ? PPC::EVLDD
: PPC::LFD
))
615 updateValueMap(I
, ResultReg
);
619 // Emit a store instruction to store SrcReg at Addr.
620 bool PPCFastISel::PPCEmitStore(MVT VT
, unsigned SrcReg
, Address
&Addr
) {
621 assert(SrcReg
&& "Nothing to store!");
623 bool UseOffset
= true;
625 const TargetRegisterClass
*RC
= MRI
.getRegClass(SrcReg
);
626 bool Is32BitInt
= RC
->hasSuperClassEq(&PPC::GPRCRegClass
);
628 switch (VT
.SimpleTy
) {
629 default: // e.g., vector types not handled
632 Opc
= Is32BitInt
? PPC::STB
: PPC::STB8
;
635 Opc
= Is32BitInt
? PPC::STH
: PPC::STH8
;
638 assert(Is32BitInt
&& "Not GPRC for i32??");
643 UseOffset
= ((Addr
.Offset
& 3) == 0);
646 Opc
= Subtarget
->hasSPE() ? PPC::SPESTW
: PPC::STFS
;
649 Opc
= Subtarget
->hasSPE() ? PPC::EVSTDD
: PPC::STFD
;
653 // If necessary, materialize the offset into a register and use
654 // the indexed form. Also handle stack pointers with special needs.
655 unsigned IndexReg
= 0;
656 PPCSimplifyAddress(Addr
, UseOffset
, IndexReg
);
658 // If this is a potential VSX store with an offset of 0, a VSX indexed store
660 bool IsVSSRC
= isVSSRCRegClass(RC
);
661 bool IsVSFRC
= isVSFRCRegClass(RC
);
662 bool Is32VSXStore
= IsVSSRC
&& Opc
== PPC::STFS
;
663 bool Is64VSXStore
= IsVSFRC
&& Opc
== PPC::STFD
;
664 if ((Is32VSXStore
|| Is64VSXStore
) &&
665 (Addr
.BaseType
!= Address::FrameIndexBase
) && UseOffset
&&
666 (Addr
.Offset
== 0)) {
670 // Note: If we still have a frame index here, we know the offset is
671 // in range, as otherwise PPCSimplifyAddress would have converted it
673 if (Addr
.BaseType
== Address::FrameIndexBase
) {
674 // VSX only provides an indexed store.
675 if (Is32VSXStore
|| Is64VSXStore
) return false;
677 MachineMemOperand
*MMO
= FuncInfo
.MF
->getMachineMemOperand(
678 MachinePointerInfo::getFixedStack(*FuncInfo
.MF
, Addr
.Base
.FI
,
680 MachineMemOperand::MOStore
, MFI
.getObjectSize(Addr
.Base
.FI
),
681 MFI
.getObjectAlign(Addr
.Base
.FI
));
683 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
))
686 .addFrameIndex(Addr
.Base
.FI
)
689 // Base reg with offset in range.
690 } else if (UseOffset
) {
691 // VSX only provides an indexed store.
692 if (Is32VSXStore
|| Is64VSXStore
)
695 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
))
696 .addReg(SrcReg
).addImm(Addr
.Offset
).addReg(Addr
.Base
.Reg
);
700 // Get the RR opcode corresponding to the RI one. FIXME: It would be
701 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
702 // is hard to get at.
704 default: llvm_unreachable("Unexpected opcode!");
705 case PPC::STB
: Opc
= PPC::STBX
; break;
706 case PPC::STH
: Opc
= PPC::STHX
; break;
707 case PPC::STW
: Opc
= PPC::STWX
; break;
708 case PPC::STB8
: Opc
= PPC::STBX8
; break;
709 case PPC::STH8
: Opc
= PPC::STHX8
; break;
710 case PPC::STW8
: Opc
= PPC::STWX8
; break;
711 case PPC::STD
: Opc
= PPC::STDX
; break;
712 case PPC::STFS
: Opc
= IsVSSRC
? PPC::STXSSPX
: PPC::STFSX
; break;
713 case PPC::STFD
: Opc
= IsVSFRC
? PPC::STXSDX
: PPC::STFDX
; break;
714 case PPC::EVSTDD
: Opc
= PPC::EVSTDDX
; break;
715 case PPC::SPESTW
: Opc
= PPC::SPESTWX
; break;
718 auto MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
))
721 // If we have an index register defined we use it in the store inst,
722 // otherwise we use X0 as base as it makes the vector instructions to
723 // use zero in the computation of the effective address regardless the
724 // content of the register.
726 MIB
.addReg(Addr
.Base
.Reg
).addReg(IndexReg
);
728 MIB
.addReg(PPC::ZERO8
).addReg(Addr
.Base
.Reg
);
734 // Attempt to fast-select a store instruction.
735 bool PPCFastISel::SelectStore(const Instruction
*I
) {
736 Value
*Op0
= I
->getOperand(0);
739 // FIXME: No atomics loads are supported.
740 if (cast
<StoreInst
>(I
)->isAtomic())
743 // Verify we have a legal type before going any further.
745 if (!isLoadTypeLegal(Op0
->getType(), VT
))
748 // Get the value to be stored into a register.
749 SrcReg
= getRegForValue(Op0
);
753 // See if we can handle this address.
755 if (!PPCComputeAddress(I
->getOperand(1), Addr
))
758 if (!PPCEmitStore(VT
, SrcReg
, Addr
))
764 // Attempt to fast-select a branch instruction.
765 bool PPCFastISel::SelectBranch(const Instruction
*I
) {
766 const BranchInst
*BI
= cast
<BranchInst
>(I
);
767 MachineBasicBlock
*BrBB
= FuncInfo
.MBB
;
768 MachineBasicBlock
*TBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(0)];
769 MachineBasicBlock
*FBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(1)];
771 // For now, just try the simplest case where it's fed by a compare.
772 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition())) {
773 if (isValueAvailable(CI
)) {
774 Optional
<PPC::Predicate
> OptPPCPred
= getComparePred(CI
->getPredicate());
778 PPC::Predicate PPCPred
= OptPPCPred
.getValue();
780 // Take advantage of fall-through opportunities.
781 if (FuncInfo
.MBB
->isLayoutSuccessor(TBB
)) {
783 PPCPred
= PPC::InvertPredicate(PPCPred
);
786 unsigned CondReg
= createResultReg(&PPC::CRRCRegClass
);
788 if (!PPCEmitCmp(CI
->getOperand(0), CI
->getOperand(1), CI
->isUnsigned(),
792 BuildMI(*BrBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::BCC
))
793 .addImm(Subtarget
->hasSPE() ? PPC::PRED_SPE
: PPCPred
)
796 finishCondBranch(BI
->getParent(), TBB
, FBB
);
799 } else if (const ConstantInt
*CI
=
800 dyn_cast
<ConstantInt
>(BI
->getCondition())) {
801 uint64_t Imm
= CI
->getZExtValue();
802 MachineBasicBlock
*Target
= (Imm
== 0) ? FBB
: TBB
;
803 fastEmitBranch(Target
, DbgLoc
);
807 // FIXME: ARM looks for a case where the block containing the compare
808 // has been split from the block containing the branch. If this happens,
809 // there is a vreg available containing the result of the compare. I'm
810 // not sure we can do much, as we've lost the predicate information with
811 // the compare instruction -- we have a 4-bit CR but don't know which bit
816 // Attempt to emit a compare of the two source values. Signed and unsigned
817 // comparisons are supported. Return false if we can't handle it.
818 bool PPCFastISel::PPCEmitCmp(const Value
*SrcValue1
, const Value
*SrcValue2
,
819 bool IsZExt
, unsigned DestReg
,
820 const PPC::Predicate Pred
) {
821 Type
*Ty
= SrcValue1
->getType();
822 EVT SrcEVT
= TLI
.getValueType(DL
, Ty
, true);
823 if (!SrcEVT
.isSimple())
825 MVT SrcVT
= SrcEVT
.getSimpleVT();
827 if (SrcVT
== MVT::i1
&& Subtarget
->useCRBits())
830 // See if operand 2 is an immediate encodeable in the compare.
831 // FIXME: Operands are not in canonical order at -O0, so an immediate
832 // operand in position 1 is a lost opportunity for now. We are
833 // similar to ARM in this regard.
836 const bool HasSPE
= Subtarget
->hasSPE();
838 // Only 16-bit integer constants can be represented in compares for
839 // PowerPC. Others will be materialized into a register.
840 if (const ConstantInt
*ConstInt
= dyn_cast
<ConstantInt
>(SrcValue2
)) {
841 if (SrcVT
== MVT::i64
|| SrcVT
== MVT::i32
|| SrcVT
== MVT::i16
||
842 SrcVT
== MVT::i8
|| SrcVT
== MVT::i1
) {
843 const APInt
&CIVal
= ConstInt
->getValue();
844 Imm
= (IsZExt
) ? (long)CIVal
.getZExtValue() : (long)CIVal
.getSExtValue();
845 if ((IsZExt
&& isUInt
<16>(Imm
)) || (!IsZExt
&& isInt
<16>(Imm
)))
850 unsigned SrcReg1
= getRegForValue(SrcValue1
);
854 unsigned SrcReg2
= 0;
856 SrcReg2
= getRegForValue(SrcValue2
);
862 bool NeedsExt
= false;
864 auto RC1
= MRI
.getRegClass(SrcReg1
);
865 auto RC2
= SrcReg2
!= 0 ? MRI
.getRegClass(SrcReg2
) : nullptr;
867 switch (SrcVT
.SimpleTy
) {
868 default: return false;
872 default: return false;
874 CmpOpc
= PPC::EFSCMPEQ
;
877 CmpOpc
= PPC::EFSCMPLT
;
880 CmpOpc
= PPC::EFSCMPGT
;
884 CmpOpc
= PPC::FCMPUS
;
885 if (isVSSRCRegClass(RC1
))
886 SrcReg1
= copyRegToRegClass(&PPC::F4RCRegClass
, SrcReg1
);
887 if (RC2
&& isVSSRCRegClass(RC2
))
888 SrcReg2
= copyRegToRegClass(&PPC::F4RCRegClass
, SrcReg2
);
894 default: return false;
896 CmpOpc
= PPC::EFDCMPEQ
;
899 CmpOpc
= PPC::EFDCMPLT
;
902 CmpOpc
= PPC::EFDCMPGT
;
905 } else if (isVSFRCRegClass(RC1
) || (RC2
&& isVSFRCRegClass(RC2
))) {
906 CmpOpc
= PPC::XSCMPUDP
;
908 CmpOpc
= PPC::FCMPUD
;
918 CmpOpc
= IsZExt
? PPC::CMPLW
: PPC::CMPW
;
920 CmpOpc
= IsZExt
? PPC::CMPLWI
: PPC::CMPWI
;
924 CmpOpc
= IsZExt
? PPC::CMPLD
: PPC::CMPD
;
926 CmpOpc
= IsZExt
? PPC::CMPLDI
: PPC::CMPDI
;
931 unsigned ExtReg
= createResultReg(&PPC::GPRCRegClass
);
932 if (!PPCEmitIntExt(SrcVT
, SrcReg1
, MVT::i32
, ExtReg
, IsZExt
))
937 unsigned ExtReg
= createResultReg(&PPC::GPRCRegClass
);
938 if (!PPCEmitIntExt(SrcVT
, SrcReg2
, MVT::i32
, ExtReg
, IsZExt
))
945 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(CmpOpc
), DestReg
)
946 .addReg(SrcReg1
).addReg(SrcReg2
);
948 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(CmpOpc
), DestReg
)
949 .addReg(SrcReg1
).addImm(Imm
);
954 // Attempt to fast-select a floating-point extend instruction.
955 bool PPCFastISel::SelectFPExt(const Instruction
*I
) {
956 Value
*Src
= I
->getOperand(0);
957 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
958 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
960 if (SrcVT
!= MVT::f32
|| DestVT
!= MVT::f64
)
963 unsigned SrcReg
= getRegForValue(Src
);
967 // No code is generated for a FP extend.
968 updateValueMap(I
, SrcReg
);
972 // Attempt to fast-select a floating-point truncate instruction.
973 bool PPCFastISel::SelectFPTrunc(const Instruction
*I
) {
974 Value
*Src
= I
->getOperand(0);
975 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
976 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
978 if (SrcVT
!= MVT::f64
|| DestVT
!= MVT::f32
)
981 unsigned SrcReg
= getRegForValue(Src
);
985 // Round the result to single precision.
987 auto RC
= MRI
.getRegClass(SrcReg
);
988 if (Subtarget
->hasSPE()) {
989 DestReg
= createResultReg(&PPC::GPRCRegClass
);
990 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
991 TII
.get(PPC::EFSCFD
), DestReg
)
993 } else if (isVSFRCRegClass(RC
)) {
994 DestReg
= createResultReg(&PPC::VSSRCRegClass
);
995 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
996 TII
.get(PPC::XSRSP
), DestReg
)
999 DestReg
= createResultReg(&PPC::F4RCRegClass
);
1000 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1001 TII
.get(PPC::FRSP
), DestReg
)
1005 updateValueMap(I
, DestReg
);
1009 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1010 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1011 // those should be used instead of moving via a stack slot when the
1012 // subtarget permits.
1013 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
1014 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
1015 // case to 8 bytes which produces tighter code but wastes stack space.
1016 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT
, unsigned SrcReg
,
1019 // If necessary, extend 32-bit int to 64-bit.
1020 if (SrcVT
== MVT::i32
) {
1021 unsigned TmpReg
= createResultReg(&PPC::G8RCRegClass
);
1022 if (!PPCEmitIntExt(MVT::i32
, SrcReg
, MVT::i64
, TmpReg
, !IsSigned
))
1027 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1029 Addr
.BaseType
= Address::FrameIndexBase
;
1030 Addr
.Base
.FI
= MFI
.CreateStackObject(8, Align(8), false);
1032 // Store the value from the GPR.
1033 if (!PPCEmitStore(MVT::i64
, SrcReg
, Addr
))
1036 // Load the integer value into an FPR. The kind of load used depends
1037 // on a number of conditions.
1038 unsigned LoadOpc
= PPC::LFD
;
1040 if (SrcVT
== MVT::i32
) {
1042 LoadOpc
= PPC::LFIWZX
;
1043 Addr
.Offset
= (Subtarget
->isLittleEndian()) ? 0 : 4;
1044 } else if (Subtarget
->hasLFIWAX()) {
1045 LoadOpc
= PPC::LFIWAX
;
1046 Addr
.Offset
= (Subtarget
->isLittleEndian()) ? 0 : 4;
1050 const TargetRegisterClass
*RC
= &PPC::F8RCRegClass
;
1051 Register ResultReg
= 0;
1052 if (!PPCEmitLoad(MVT::f64
, ResultReg
, Addr
, RC
, !IsSigned
, LoadOpc
))
1058 // Attempt to fast-select an integer-to-floating-point conversion.
1059 // FIXME: Once fast-isel has better support for VSX, conversions using
1060 // direct moves should be implemented.
1061 bool PPCFastISel::SelectIToFP(const Instruction
*I
, bool IsSigned
) {
1063 Type
*DstTy
= I
->getType();
1064 if (!isTypeLegal(DstTy
, DstVT
))
1067 if (DstVT
!= MVT::f32
&& DstVT
!= MVT::f64
)
1070 Value
*Src
= I
->getOperand(0);
1071 EVT SrcEVT
= TLI
.getValueType(DL
, Src
->getType(), true);
1072 if (!SrcEVT
.isSimple())
1075 MVT SrcVT
= SrcEVT
.getSimpleVT();
1077 if (SrcVT
!= MVT::i8
&& SrcVT
!= MVT::i16
&&
1078 SrcVT
!= MVT::i32
&& SrcVT
!= MVT::i64
)
1081 unsigned SrcReg
= getRegForValue(Src
);
1085 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
1086 if (Subtarget
->hasSPE()) {
1088 if (DstVT
== MVT::f32
)
1089 Opc
= IsSigned
? PPC::EFSCFSI
: PPC::EFSCFUI
;
1091 Opc
= IsSigned
? PPC::EFDCFSI
: PPC::EFDCFUI
;
1093 unsigned DestReg
= createResultReg(&PPC::SPERCRegClass
);
1094 // Generate the convert.
1095 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1097 updateValueMap(I
, DestReg
);
1101 // We can only lower an unsigned convert if we have the newer
1102 // floating-point conversion operations.
1103 if (!IsSigned
&& !Subtarget
->hasFPCVT())
1106 // FIXME: For now we require the newer floating-point conversion operations
1107 // (which are present only on P7 and A2 server models) when converting
1108 // to single-precision float. Otherwise we have to generate a lot of
1109 // fiddly code to avoid double rounding. If necessary, the fiddly code
1110 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1111 if (DstVT
== MVT::f32
&& !Subtarget
->hasFPCVT())
1114 // Extend the input if necessary.
1115 if (SrcVT
== MVT::i8
|| SrcVT
== MVT::i16
) {
1116 unsigned TmpReg
= createResultReg(&PPC::G8RCRegClass
);
1117 if (!PPCEmitIntExt(SrcVT
, SrcReg
, MVT::i64
, TmpReg
, !IsSigned
))
1123 // Move the integer value to an FPR.
1124 unsigned FPReg
= PPCMoveToFPReg(SrcVT
, SrcReg
, IsSigned
);
1128 // Determine the opcode for the conversion.
1129 const TargetRegisterClass
*RC
= &PPC::F8RCRegClass
;
1130 unsigned DestReg
= createResultReg(RC
);
1133 if (DstVT
== MVT::f32
)
1134 Opc
= IsSigned
? PPC::FCFIDS
: PPC::FCFIDUS
;
1136 Opc
= IsSigned
? PPC::FCFID
: PPC::FCFIDU
;
1138 // Generate the convert.
1139 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1142 updateValueMap(I
, DestReg
);
1146 // Move the floating-point value in SrcReg into an integer destination
1147 // register, and return the register (or zero if we can't handle it).
1148 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1149 // those should be used instead of moving via a stack slot when the
1150 // subtarget permits.
1151 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction
*I
, MVT VT
,
1152 unsigned SrcReg
, bool IsSigned
) {
1153 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1154 // Note that if have STFIWX available, we could use a 4-byte stack
1155 // slot for i32, but this being fast-isel we'll just go with the
1156 // easiest code gen possible.
1158 Addr
.BaseType
= Address::FrameIndexBase
;
1159 Addr
.Base
.FI
= MFI
.CreateStackObject(8, Align(8), false);
1161 // Store the value from the FPR.
1162 if (!PPCEmitStore(MVT::f64
, SrcReg
, Addr
))
1165 // Reload it into a GPR. If we want an i32 on big endian, modify the
1166 // address to have a 4-byte offset so we load from the right place.
1168 Addr
.Offset
= (Subtarget
->isLittleEndian()) ? 0 : 4;
1170 // Look at the currently assigned register for this instruction
1171 // to determine the required register class.
1172 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
1173 const TargetRegisterClass
*RC
=
1174 AssignedReg
? MRI
.getRegClass(AssignedReg
) : nullptr;
1176 Register ResultReg
= 0;
1177 if (!PPCEmitLoad(VT
, ResultReg
, Addr
, RC
, !IsSigned
))
1183 // Attempt to fast-select a floating-point-to-integer conversion.
1184 // FIXME: Once fast-isel has better support for VSX, conversions using
1185 // direct moves should be implemented.
1186 bool PPCFastISel::SelectFPToI(const Instruction
*I
, bool IsSigned
) {
1188 Type
*DstTy
= I
->getType();
1189 if (!isTypeLegal(DstTy
, DstVT
))
1192 if (DstVT
!= MVT::i32
&& DstVT
!= MVT::i64
)
1195 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1196 if (DstVT
== MVT::i64
&& !IsSigned
&& !Subtarget
->hasFPCVT() &&
1197 !Subtarget
->hasSPE())
1200 Value
*Src
= I
->getOperand(0);
1201 Type
*SrcTy
= Src
->getType();
1202 if (!isTypeLegal(SrcTy
, SrcVT
))
1205 if (SrcVT
!= MVT::f32
&& SrcVT
!= MVT::f64
)
1208 unsigned SrcReg
= getRegForValue(Src
);
1212 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1213 // meaningless copy to get the register class right.
1214 const TargetRegisterClass
*InRC
= MRI
.getRegClass(SrcReg
);
1215 if (InRC
== &PPC::F4RCRegClass
)
1216 SrcReg
= copyRegToRegClass(&PPC::F8RCRegClass
, SrcReg
);
1217 else if (InRC
== &PPC::VSSRCRegClass
)
1218 SrcReg
= copyRegToRegClass(&PPC::VSFRCRegClass
, SrcReg
);
1220 // Determine the opcode for the conversion, which takes place
1221 // entirely within FPRs or VSRs.
1224 auto RC
= MRI
.getRegClass(SrcReg
);
1226 if (Subtarget
->hasSPE()) {
1227 DestReg
= createResultReg(&PPC::GPRCRegClass
);
1229 Opc
= InRC
== &PPC::GPRCRegClass
? PPC::EFSCTSIZ
: PPC::EFDCTSIZ
;
1231 Opc
= InRC
== &PPC::GPRCRegClass
? PPC::EFSCTUIZ
: PPC::EFDCTUIZ
;
1232 } else if (isVSFRCRegClass(RC
)) {
1233 DestReg
= createResultReg(&PPC::VSFRCRegClass
);
1234 if (DstVT
== MVT::i32
)
1235 Opc
= IsSigned
? PPC::XSCVDPSXWS
: PPC::XSCVDPUXWS
;
1237 Opc
= IsSigned
? PPC::XSCVDPSXDS
: PPC::XSCVDPUXDS
;
1239 DestReg
= createResultReg(&PPC::F8RCRegClass
);
1240 if (DstVT
== MVT::i32
)
1244 Opc
= Subtarget
->hasFPCVT() ? PPC::FCTIWUZ
: PPC::FCTIDZ
;
1246 Opc
= IsSigned
? PPC::FCTIDZ
: PPC::FCTIDUZ
;
1249 // Generate the convert.
1250 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1253 // Now move the integer value from a float register to an integer register.
1254 unsigned IntReg
= Subtarget
->hasSPE()
1256 : PPCMoveToIntReg(I
, DstVT
, DestReg
, IsSigned
);
1261 updateValueMap(I
, IntReg
);
1265 // Attempt to fast-select a binary integer operation that isn't already
1266 // handled automatically.
1267 bool PPCFastISel::SelectBinaryIntOp(const Instruction
*I
, unsigned ISDOpcode
) {
1268 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
1270 // We can get here in the case when we have a binary operation on a non-legal
1271 // type and the target independent selector doesn't know how to handle it.
1272 if (DestVT
!= MVT::i16
&& DestVT
!= MVT::i8
)
1275 // Look at the currently assigned register for this instruction
1276 // to determine the required register class. If there is no register,
1277 // make a conservative choice (don't assign R0).
1278 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
1279 const TargetRegisterClass
*RC
=
1280 (AssignedReg
? MRI
.getRegClass(AssignedReg
) :
1281 &PPC::GPRC_and_GPRC_NOR0RegClass
);
1282 bool IsGPRC
= RC
->hasSuperClassEq(&PPC::GPRCRegClass
);
1285 switch (ISDOpcode
) {
1286 default: return false;
1288 Opc
= IsGPRC
? PPC::ADD4
: PPC::ADD8
;
1291 Opc
= IsGPRC
? PPC::OR
: PPC::OR8
;
1294 Opc
= IsGPRC
? PPC::SUBF
: PPC::SUBF8
;
1298 unsigned ResultReg
= createResultReg(RC
? RC
: &PPC::G8RCRegClass
);
1299 unsigned SrcReg1
= getRegForValue(I
->getOperand(0));
1300 if (SrcReg1
== 0) return false;
1302 // Handle case of small immediate operand.
1303 if (const ConstantInt
*ConstInt
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1304 const APInt
&CIVal
= ConstInt
->getValue();
1305 int Imm
= (int)CIVal
.getSExtValue();
1307 if (isInt
<16>(Imm
)) {
1310 llvm_unreachable("Missing case!");
1313 MRI
.setRegClass(SrcReg1
, &PPC::GPRC_and_GPRC_NOR0RegClass
);
1317 MRI
.setRegClass(SrcReg1
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
1330 MRI
.setRegClass(SrcReg1
, &PPC::GPRC_and_GPRC_NOR0RegClass
);
1339 MRI
.setRegClass(SrcReg1
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
1346 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
),
1350 updateValueMap(I
, ResultReg
);
1357 unsigned SrcReg2
= getRegForValue(I
->getOperand(1));
1358 if (SrcReg2
== 0) return false;
1360 // Reverse operands for subtract-from.
1361 if (ISDOpcode
== ISD::SUB
)
1362 std::swap(SrcReg1
, SrcReg2
);
1364 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ResultReg
)
1365 .addReg(SrcReg1
).addReg(SrcReg2
);
1366 updateValueMap(I
, ResultReg
);
1370 // Handle arguments to a call that we're attempting to fast-select.
1371 // Return false if the arguments are too complex for us at the moment.
1372 bool PPCFastISel::processCallArgs(SmallVectorImpl
<Value
*> &Args
,
1373 SmallVectorImpl
<unsigned> &ArgRegs
,
1374 SmallVectorImpl
<MVT
> &ArgVTs
,
1375 SmallVectorImpl
<ISD::ArgFlagsTy
> &ArgFlags
,
1376 SmallVectorImpl
<unsigned> &RegArgs
,
1380 SmallVector
<CCValAssign
, 16> ArgLocs
;
1381 CCState
CCInfo(CC
, IsVarArg
, *FuncInfo
.MF
, ArgLocs
, *Context
);
1383 // Reserve space for the linkage area on the stack.
1384 unsigned LinkageSize
= Subtarget
->getFrameLowering()->getLinkageSize();
1385 CCInfo
.AllocateStack(LinkageSize
, Align(8));
1387 CCInfo
.AnalyzeCallOperands(ArgVTs
, ArgFlags
, CC_PPC64_ELF_FIS
);
1389 // Bail out if we can't handle any of the arguments.
1390 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
1391 CCValAssign
&VA
= ArgLocs
[I
];
1392 MVT ArgVT
= ArgVTs
[VA
.getValNo()];
1394 // Skip vector arguments for now, as well as long double and
1395 // uint128_t, and anything that isn't passed in a register.
1396 if (ArgVT
.isVector() || ArgVT
.getSizeInBits() > 64 || ArgVT
== MVT::i1
||
1397 !VA
.isRegLoc() || VA
.needsCustom())
1400 // Skip bit-converted arguments for now.
1401 if (VA
.getLocInfo() == CCValAssign::BCvt
)
1405 // Get a count of how many bytes are to be pushed onto the stack.
1406 NumBytes
= CCInfo
.getNextStackOffset();
1408 // The prolog code of the callee may store up to 8 GPR argument registers to
1409 // the stack, allowing va_start to index over them in memory if its varargs.
1410 // Because we cannot tell if this is needed on the caller side, we have to
1411 // conservatively assume that it is needed. As such, make sure we have at
1412 // least enough stack space for the caller to store the 8 GPRs.
1413 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1414 NumBytes
= std::max(NumBytes
, LinkageSize
+ 64);
1416 // Issue CALLSEQ_START.
1417 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1418 TII
.get(TII
.getCallFrameSetupOpcode()))
1419 .addImm(NumBytes
).addImm(0);
1421 // Prepare to assign register arguments. Every argument uses up a
1422 // GPR protocol register even if it's passed in a floating-point
1423 // register (unless we're using the fast calling convention).
1424 unsigned NextGPR
= PPC::X3
;
1425 unsigned NextFPR
= PPC::F1
;
1427 // Process arguments.
1428 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
1429 CCValAssign
&VA
= ArgLocs
[I
];
1430 unsigned Arg
= ArgRegs
[VA
.getValNo()];
1431 MVT ArgVT
= ArgVTs
[VA
.getValNo()];
1433 // Handle argument promotion and bitcasts.
1434 switch (VA
.getLocInfo()) {
1436 llvm_unreachable("Unknown loc info!");
1437 case CCValAssign::Full
:
1439 case CCValAssign::SExt
: {
1440 MVT DestVT
= VA
.getLocVT();
1441 const TargetRegisterClass
*RC
=
1442 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1443 unsigned TmpReg
= createResultReg(RC
);
1444 if (!PPCEmitIntExt(ArgVT
, Arg
, DestVT
, TmpReg
, /*IsZExt*/false))
1445 llvm_unreachable("Failed to emit a sext!");
1450 case CCValAssign::AExt
:
1451 case CCValAssign::ZExt
: {
1452 MVT DestVT
= VA
.getLocVT();
1453 const TargetRegisterClass
*RC
=
1454 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1455 unsigned TmpReg
= createResultReg(RC
);
1456 if (!PPCEmitIntExt(ArgVT
, Arg
, DestVT
, TmpReg
, /*IsZExt*/true))
1457 llvm_unreachable("Failed to emit a zext!");
1462 case CCValAssign::BCvt
: {
1463 // FIXME: Not yet handled.
1464 llvm_unreachable("Should have bailed before getting here!");
1469 // Copy this argument to the appropriate register.
1471 if (ArgVT
== MVT::f32
|| ArgVT
== MVT::f64
) {
1473 if (CC
!= CallingConv::Fast
)
1478 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1479 TII
.get(TargetOpcode::COPY
), ArgReg
).addReg(Arg
);
1480 RegArgs
.push_back(ArgReg
);
1486 // For a call that we've determined we can fast-select, finish the
1487 // call sequence and generate a copy to obtain the return value (if any).
1488 bool PPCFastISel::finishCall(MVT RetVT
, CallLoweringInfo
&CLI
, unsigned &NumBytes
) {
1489 CallingConv::ID CC
= CLI
.CallConv
;
1491 // Issue CallSEQ_END.
1492 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1493 TII
.get(TII
.getCallFrameDestroyOpcode()))
1494 .addImm(NumBytes
).addImm(0);
1496 // Next, generate a copy to obtain the return value.
1497 // FIXME: No multi-register return values yet, though I don't foresee
1498 // any real difficulties there.
1499 if (RetVT
!= MVT::isVoid
) {
1500 SmallVector
<CCValAssign
, 16> RVLocs
;
1501 CCState
CCInfo(CC
, false, *FuncInfo
.MF
, RVLocs
, *Context
);
1502 CCInfo
.AnalyzeCallResult(RetVT
, RetCC_PPC64_ELF_FIS
);
1503 CCValAssign
&VA
= RVLocs
[0];
1504 assert(RVLocs
.size() == 1 && "No support for multi-reg return values!");
1505 assert(VA
.isRegLoc() && "Can only return in registers!");
1507 MVT DestVT
= VA
.getValVT();
1508 MVT CopyVT
= DestVT
;
1510 // Ints smaller than a register still arrive in a full 64-bit
1511 // register, so make sure we recognize this.
1512 if (RetVT
== MVT::i8
|| RetVT
== MVT::i16
|| RetVT
== MVT::i32
)
1515 unsigned SourcePhysReg
= VA
.getLocReg();
1516 unsigned ResultReg
= 0;
1518 if (RetVT
== CopyVT
) {
1519 const TargetRegisterClass
*CpyRC
= TLI
.getRegClassFor(CopyVT
);
1520 ResultReg
= copyRegToRegClass(CpyRC
, SourcePhysReg
);
1522 // If necessary, round the floating result to single precision.
1523 } else if (CopyVT
== MVT::f64
) {
1524 ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
1525 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::FRSP
),
1526 ResultReg
).addReg(SourcePhysReg
);
1528 // If only the low half of a general register is needed, generate
1529 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1530 // used along the fast-isel path (not lowered), and downstream logic
1531 // also doesn't like a direct subreg copy on a physical reg.)
1532 } else if (RetVT
== MVT::i8
|| RetVT
== MVT::i16
|| RetVT
== MVT::i32
) {
1533 // Convert physical register from G8RC to GPRC.
1534 SourcePhysReg
-= PPC::X0
- PPC::R0
;
1535 ResultReg
= copyRegToRegClass(&PPC::GPRCRegClass
, SourcePhysReg
);
1538 assert(ResultReg
&& "ResultReg unset!");
1539 CLI
.InRegs
.push_back(SourcePhysReg
);
1540 CLI
.ResultReg
= ResultReg
;
1541 CLI
.NumResultRegs
= 1;
1547 bool PPCFastISel::fastLowerCall(CallLoweringInfo
&CLI
) {
1548 CallingConv::ID CC
= CLI
.CallConv
;
1549 bool IsTailCall
= CLI
.IsTailCall
;
1550 bool IsVarArg
= CLI
.IsVarArg
;
1551 const Value
*Callee
= CLI
.Callee
;
1552 const MCSymbol
*Symbol
= CLI
.Symbol
;
1554 if (!Callee
&& !Symbol
)
1557 // Allow SelectionDAG isel to handle tail calls.
1561 // Let SDISel handle vararg functions.
1565 // If this is a PC-Rel function, let SDISel handle the call.
1566 if (Subtarget
->isUsingPCRelativeCalls())
1569 // Handle simple calls for now, with legal return types and
1570 // those that can be extended.
1571 Type
*RetTy
= CLI
.RetTy
;
1573 if (RetTy
->isVoidTy())
1574 RetVT
= MVT::isVoid
;
1575 else if (!isTypeLegal(RetTy
, RetVT
) && RetVT
!= MVT::i16
&&
1578 else if (RetVT
== MVT::i1
&& Subtarget
->useCRBits())
1579 // We can't handle boolean returns when CR bits are in use.
1582 // FIXME: No multi-register return values yet.
1583 if (RetVT
!= MVT::isVoid
&& RetVT
!= MVT::i8
&& RetVT
!= MVT::i16
&&
1584 RetVT
!= MVT::i32
&& RetVT
!= MVT::i64
&& RetVT
!= MVT::f32
&&
1585 RetVT
!= MVT::f64
) {
1586 SmallVector
<CCValAssign
, 16> RVLocs
;
1587 CCState
CCInfo(CC
, IsVarArg
, *FuncInfo
.MF
, RVLocs
, *Context
);
1588 CCInfo
.AnalyzeCallResult(RetVT
, RetCC_PPC64_ELF_FIS
);
1589 if (RVLocs
.size() > 1)
1593 // Bail early if more than 8 arguments, as we only currently
1594 // handle arguments passed in registers.
1595 unsigned NumArgs
= CLI
.OutVals
.size();
1599 // Set up the argument vectors.
1600 SmallVector
<Value
*, 8> Args
;
1601 SmallVector
<unsigned, 8> ArgRegs
;
1602 SmallVector
<MVT
, 8> ArgVTs
;
1603 SmallVector
<ISD::ArgFlagsTy
, 8> ArgFlags
;
1605 Args
.reserve(NumArgs
);
1606 ArgRegs
.reserve(NumArgs
);
1607 ArgVTs
.reserve(NumArgs
);
1608 ArgFlags
.reserve(NumArgs
);
1610 for (unsigned i
= 0, ie
= NumArgs
; i
!= ie
; ++i
) {
1611 // Only handle easy calls for now. It would be reasonably easy
1612 // to handle <= 8-byte structures passed ByVal in registers, but we
1613 // have to ensure they are right-justified in the register.
1614 ISD::ArgFlagsTy Flags
= CLI
.OutFlags
[i
];
1615 if (Flags
.isInReg() || Flags
.isSRet() || Flags
.isNest() || Flags
.isByVal())
1618 Value
*ArgValue
= CLI
.OutVals
[i
];
1619 Type
*ArgTy
= ArgValue
->getType();
1621 if (!isTypeLegal(ArgTy
, ArgVT
) && ArgVT
!= MVT::i16
&& ArgVT
!= MVT::i8
)
1624 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1625 // types, which is passed through vector register. Skip these types and
1626 // fallback to default SelectionDAG based selection.
1627 if (ArgVT
.isVector() || ArgVT
== MVT::f128
)
1630 unsigned Arg
= getRegForValue(ArgValue
);
1634 Args
.push_back(ArgValue
);
1635 ArgRegs
.push_back(Arg
);
1636 ArgVTs
.push_back(ArgVT
);
1637 ArgFlags
.push_back(Flags
);
1640 // Process the arguments.
1641 SmallVector
<unsigned, 8> RegArgs
;
1644 if (!processCallArgs(Args
, ArgRegs
, ArgVTs
, ArgFlags
,
1645 RegArgs
, CC
, NumBytes
, IsVarArg
))
1648 MachineInstrBuilder MIB
;
1649 // FIXME: No handling for function pointers yet. This requires
1650 // implementing the function descriptor (OPD) setup.
1651 const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Callee
);
1653 // patchpoints are a special case; they always dispatch to a pointer value.
1654 // However, we don't actually want to generate the indirect call sequence
1655 // here (that will be generated, as necessary, during asm printing), and
1656 // the call we generate here will be erased by FastISel::selectPatchpoint,
1657 // so don't try very hard...
1658 if (CLI
.IsPatchPoint
)
1659 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::NOP
));
1663 // Build direct call with NOP for TOC restore.
1664 // FIXME: We can and should optimize away the NOP for local calls.
1665 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1666 TII
.get(PPC::BL8_NOP
));
1668 MIB
.addGlobalAddress(GV
);
1671 // Add implicit physical register uses to the call.
1672 for (unsigned II
= 0, IE
= RegArgs
.size(); II
!= IE
; ++II
)
1673 MIB
.addReg(RegArgs
[II
], RegState::Implicit
);
1675 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1677 PPCFuncInfo
->setUsesTOCBasePtr();
1678 MIB
.addReg(PPC::X2
, RegState::Implicit
);
1680 // Add a register mask with the call-preserved registers. Proper
1681 // defs for return values will be added by setPhysRegsDeadExcept().
1682 MIB
.addRegMask(TRI
.getCallPreservedMask(*FuncInfo
.MF
, CC
));
1686 // Finish off the call including any return values.
1687 return finishCall(RetVT
, CLI
, NumBytes
);
1690 // Attempt to fast-select a return instruction.
1691 bool PPCFastISel::SelectRet(const Instruction
*I
) {
1693 if (!FuncInfo
.CanLowerReturn
)
1696 const ReturnInst
*Ret
= cast
<ReturnInst
>(I
);
1697 const Function
&F
= *I
->getParent()->getParent();
1699 // Build a list of return value registers.
1700 SmallVector
<unsigned, 4> RetRegs
;
1701 CallingConv::ID CC
= F
.getCallingConv();
1703 if (Ret
->getNumOperands() > 0) {
1704 SmallVector
<ISD::OutputArg
, 4> Outs
;
1705 GetReturnInfo(CC
, F
.getReturnType(), F
.getAttributes(), Outs
, TLI
, DL
);
1707 // Analyze operands of the call, assigning locations to each operand.
1708 SmallVector
<CCValAssign
, 16> ValLocs
;
1709 CCState
CCInfo(CC
, F
.isVarArg(), *FuncInfo
.MF
, ValLocs
, *Context
);
1710 CCInfo
.AnalyzeReturn(Outs
, RetCC_PPC64_ELF_FIS
);
1711 const Value
*RV
= Ret
->getOperand(0);
1713 // FIXME: Only one output register for now.
1714 if (ValLocs
.size() > 1)
1717 // Special case for returning a constant integer of any size - materialize
1718 // the constant as an i64 and copy it to the return register.
1719 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RV
)) {
1720 CCValAssign
&VA
= ValLocs
[0];
1722 Register RetReg
= VA
.getLocReg();
1723 // We still need to worry about properly extending the sign. For example,
1724 // we could have only a single bit or a constant that needs zero
1725 // extension rather than sign extension. Make sure we pass the return
1726 // value extension property to integer materialization.
1728 PPCMaterializeInt(CI
, MVT::i64
, VA
.getLocInfo() != CCValAssign::ZExt
);
1730 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1731 TII
.get(TargetOpcode::COPY
), RetReg
).addReg(SrcReg
);
1733 RetRegs
.push_back(RetReg
);
1736 unsigned Reg
= getRegForValue(RV
);
1741 // Copy the result values into the output registers.
1742 for (unsigned i
= 0; i
< ValLocs
.size(); ++i
) {
1744 CCValAssign
&VA
= ValLocs
[i
];
1745 assert(VA
.isRegLoc() && "Can only return in registers!");
1746 RetRegs
.push_back(VA
.getLocReg());
1747 unsigned SrcReg
= Reg
+ VA
.getValNo();
1749 EVT RVEVT
= TLI
.getValueType(DL
, RV
->getType());
1750 if (!RVEVT
.isSimple())
1752 MVT RVVT
= RVEVT
.getSimpleVT();
1753 MVT DestVT
= VA
.getLocVT();
1755 if (RVVT
!= DestVT
&& RVVT
!= MVT::i8
&&
1756 RVVT
!= MVT::i16
&& RVVT
!= MVT::i32
)
1759 if (RVVT
!= DestVT
) {
1760 switch (VA
.getLocInfo()) {
1762 llvm_unreachable("Unknown loc info!");
1763 case CCValAssign::Full
:
1764 llvm_unreachable("Full value assign but types don't match?");
1765 case CCValAssign::AExt
:
1766 case CCValAssign::ZExt
: {
1767 const TargetRegisterClass
*RC
=
1768 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1769 unsigned TmpReg
= createResultReg(RC
);
1770 if (!PPCEmitIntExt(RVVT
, SrcReg
, DestVT
, TmpReg
, true))
1775 case CCValAssign::SExt
: {
1776 const TargetRegisterClass
*RC
=
1777 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1778 unsigned TmpReg
= createResultReg(RC
);
1779 if (!PPCEmitIntExt(RVVT
, SrcReg
, DestVT
, TmpReg
, false))
1787 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1788 TII
.get(TargetOpcode::COPY
), RetRegs
[i
])
1794 MachineInstrBuilder MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1795 TII
.get(PPC::BLR8
));
1797 for (unsigned i
= 0, e
= RetRegs
.size(); i
!= e
; ++i
)
1798 MIB
.addReg(RetRegs
[i
], RegState::Implicit
);
1803 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1804 // signed and zero extensions are supported. Return false if we
1806 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1807 unsigned DestReg
, bool IsZExt
) {
1808 if (DestVT
!= MVT::i32
&& DestVT
!= MVT::i64
)
1810 if (SrcVT
!= MVT::i8
&& SrcVT
!= MVT::i16
&& SrcVT
!= MVT::i32
)
1813 // Signed extensions use EXTSB, EXTSH, EXTSW.
1816 if (SrcVT
== MVT::i8
)
1817 Opc
= (DestVT
== MVT::i32
) ? PPC::EXTSB
: PPC::EXTSB8_32_64
;
1818 else if (SrcVT
== MVT::i16
)
1819 Opc
= (DestVT
== MVT::i32
) ? PPC::EXTSH
: PPC::EXTSH8_32_64
;
1821 assert(DestVT
== MVT::i64
&& "Signed extend from i32 to i32??");
1822 Opc
= PPC::EXTSW_32_64
;
1824 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1827 // Unsigned 32-bit extensions use RLWINM.
1828 } else if (DestVT
== MVT::i32
) {
1830 if (SrcVT
== MVT::i8
)
1833 assert(SrcVT
== MVT::i16
&& "Unsigned extend from i32 to i32??");
1836 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::RLWINM
),
1838 .addReg(SrcReg
).addImm(/*SH=*/0).addImm(MB
).addImm(/*ME=*/31);
1840 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1843 if (SrcVT
== MVT::i8
)
1845 else if (SrcVT
== MVT::i16
)
1849 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1850 TII
.get(PPC::RLDICL_32_64
), DestReg
)
1851 .addReg(SrcReg
).addImm(/*SH=*/0).addImm(MB
);
1857 // Attempt to fast-select an indirect branch instruction.
1858 bool PPCFastISel::SelectIndirectBr(const Instruction
*I
) {
1859 unsigned AddrReg
= getRegForValue(I
->getOperand(0));
1863 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::MTCTR8
))
1865 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::BCTR8
));
1867 const IndirectBrInst
*IB
= cast
<IndirectBrInst
>(I
);
1868 for (const BasicBlock
*SuccBB
: IB
->successors())
1869 FuncInfo
.MBB
->addSuccessor(FuncInfo
.MBBMap
[SuccBB
]);
1874 // Attempt to fast-select an integer truncate instruction.
1875 bool PPCFastISel::SelectTrunc(const Instruction
*I
) {
1876 Value
*Src
= I
->getOperand(0);
1877 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
1878 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
1880 if (SrcVT
!= MVT::i64
&& SrcVT
!= MVT::i32
&& SrcVT
!= MVT::i16
)
1883 if (DestVT
!= MVT::i32
&& DestVT
!= MVT::i16
&& DestVT
!= MVT::i8
)
1886 unsigned SrcReg
= getRegForValue(Src
);
1890 // The only interesting case is when we need to switch register classes.
1891 if (SrcVT
== MVT::i64
)
1892 SrcReg
= copyRegToRegClass(&PPC::GPRCRegClass
, SrcReg
, 0, PPC::sub_32
);
1894 updateValueMap(I
, SrcReg
);
1898 // Attempt to fast-select an integer extend instruction.
1899 bool PPCFastISel::SelectIntExt(const Instruction
*I
) {
1900 Type
*DestTy
= I
->getType();
1901 Value
*Src
= I
->getOperand(0);
1902 Type
*SrcTy
= Src
->getType();
1904 bool IsZExt
= isa
<ZExtInst
>(I
);
1905 unsigned SrcReg
= getRegForValue(Src
);
1906 if (!SrcReg
) return false;
1908 EVT SrcEVT
, DestEVT
;
1909 SrcEVT
= TLI
.getValueType(DL
, SrcTy
, true);
1910 DestEVT
= TLI
.getValueType(DL
, DestTy
, true);
1911 if (!SrcEVT
.isSimple())
1913 if (!DestEVT
.isSimple())
1916 MVT SrcVT
= SrcEVT
.getSimpleVT();
1917 MVT DestVT
= DestEVT
.getSimpleVT();
1919 // If we know the register class needed for the result of this
1920 // instruction, use it. Otherwise pick the register class of the
1921 // correct size that does not contain X0/R0, since we don't know
1922 // whether downstream uses permit that assignment.
1923 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
1924 const TargetRegisterClass
*RC
=
1925 (AssignedReg
? MRI
.getRegClass(AssignedReg
) :
1926 (DestVT
== MVT::i64
? &PPC::G8RC_and_G8RC_NOX0RegClass
:
1927 &PPC::GPRC_and_GPRC_NOR0RegClass
));
1928 unsigned ResultReg
= createResultReg(RC
);
1930 if (!PPCEmitIntExt(SrcVT
, SrcReg
, DestVT
, ResultReg
, IsZExt
))
1933 updateValueMap(I
, ResultReg
);
1937 // Attempt to fast-select an instruction that wasn't handled by
1938 // the table-generated machinery.
1939 bool PPCFastISel::fastSelectInstruction(const Instruction
*I
) {
1941 switch (I
->getOpcode()) {
1942 case Instruction::Load
:
1943 return SelectLoad(I
);
1944 case Instruction::Store
:
1945 return SelectStore(I
);
1946 case Instruction::Br
:
1947 return SelectBranch(I
);
1948 case Instruction::IndirectBr
:
1949 return SelectIndirectBr(I
);
1950 case Instruction::FPExt
:
1951 return SelectFPExt(I
);
1952 case Instruction::FPTrunc
:
1953 return SelectFPTrunc(I
);
1954 case Instruction::SIToFP
:
1955 return SelectIToFP(I
, /*IsSigned*/ true);
1956 case Instruction::UIToFP
:
1957 return SelectIToFP(I
, /*IsSigned*/ false);
1958 case Instruction::FPToSI
:
1959 return SelectFPToI(I
, /*IsSigned*/ true);
1960 case Instruction::FPToUI
:
1961 return SelectFPToI(I
, /*IsSigned*/ false);
1962 case Instruction::Add
:
1963 return SelectBinaryIntOp(I
, ISD::ADD
);
1964 case Instruction::Or
:
1965 return SelectBinaryIntOp(I
, ISD::OR
);
1966 case Instruction::Sub
:
1967 return SelectBinaryIntOp(I
, ISD::SUB
);
1968 case Instruction::Call
:
1969 // On AIX, call lowering uses the DAG-ISEL path currently so that the
1970 // callee of the direct function call instruction will be mapped to the
1971 // symbol for the function's entry point, which is distinct from the
1972 // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1973 // name is the C-linkage name of the source level function.
1974 if (TM
.getTargetTriple().isOSAIX())
1976 return selectCall(I
);
1977 case Instruction::Ret
:
1978 return SelectRet(I
);
1979 case Instruction::Trunc
:
1980 return SelectTrunc(I
);
1981 case Instruction::ZExt
:
1982 case Instruction::SExt
:
1983 return SelectIntExt(I
);
1984 // Here add other flavors of Instruction::XXX that automated
1985 // cases don't catch. For example, switches are terminators
1986 // that aren't yet handled.
1993 // Materialize a floating-point constant into a register, and return
1994 // the register number (or zero if we failed to handle it).
1995 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP
*CFP
, MVT VT
) {
1996 // If this is a PC-Rel function, let SDISel handle constant pool.
1997 if (Subtarget
->isUsingPCRelativeCalls())
2000 // No plans to handle long double here.
2001 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
2004 // All FP constants are loaded from the constant pool.
2005 Align Alignment
= DL
.getPrefTypeAlign(CFP
->getType());
2006 unsigned Idx
= MCP
.getConstantPoolIndex(cast
<Constant
>(CFP
), Alignment
);
2007 const bool HasSPE
= Subtarget
->hasSPE();
2008 const TargetRegisterClass
*RC
;
2010 RC
= ((VT
== MVT::f32
) ? &PPC::GPRCRegClass
: &PPC::SPERCRegClass
);
2012 RC
= ((VT
== MVT::f32
) ? &PPC::F4RCRegClass
: &PPC::F8RCRegClass
);
2014 unsigned DestReg
= createResultReg(RC
);
2015 CodeModel::Model CModel
= TM
.getCodeModel();
2017 MachineMemOperand
*MMO
= FuncInfo
.MF
->getMachineMemOperand(
2018 MachinePointerInfo::getConstantPool(*FuncInfo
.MF
),
2019 MachineMemOperand::MOLoad
, (VT
== MVT::f32
) ? 4 : 8, Alignment
);
2024 Opc
= ((VT
== MVT::f32
) ? PPC::SPELWZ
: PPC::EVLDD
);
2026 Opc
= ((VT
== MVT::f32
) ? PPC::LFS
: PPC::LFD
);
2028 unsigned TmpReg
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
2030 PPCFuncInfo
->setUsesTOCBasePtr();
2031 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2032 if (CModel
== CodeModel::Small
) {
2033 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtocCPT
),
2035 .addConstantPoolIndex(Idx
).addReg(PPC::X2
);
2036 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
2037 .addImm(0).addReg(TmpReg
).addMemOperand(MMO
);
2039 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2040 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDIStocHA8
),
2041 TmpReg
).addReg(PPC::X2
).addConstantPoolIndex(Idx
);
2042 // But for large code model, we must generate a LDtocL followed
2044 if (CModel
== CodeModel::Large
) {
2045 unsigned TmpReg2
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
2046 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtocL
),
2047 TmpReg2
).addConstantPoolIndex(Idx
).addReg(TmpReg
);
2048 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
2052 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
2053 .addConstantPoolIndex(Idx
, 0, PPCII::MO_TOC_LO
)
2055 .addMemOperand(MMO
);
2061 // Materialize the address of a global value into a register, and return
2062 // the register number (or zero if we failed to handle it).
2063 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue
*GV
, MVT VT
) {
2064 // If this is a PC-Rel function, let SDISel handle GV materialization.
2065 if (Subtarget
->isUsingPCRelativeCalls())
2068 assert(VT
== MVT::i64
&& "Non-address!");
2069 const TargetRegisterClass
*RC
= &PPC::G8RC_and_G8RC_NOX0RegClass
;
2070 unsigned DestReg
= createResultReg(RC
);
2072 // Global values may be plain old object addresses, TLS object
2073 // addresses, constant pool entries, or jump tables. How we generate
2074 // code for these may depend on small, medium, or large code model.
2075 CodeModel::Model CModel
= TM
.getCodeModel();
2077 // FIXME: Jump tables are not yet required because fast-isel doesn't
2078 // handle switches; if that changes, we need them as well. For now,
2079 // what follows assumes everything's a generic (or TLS) global address.
2081 // FIXME: We don't yet handle the complexity of TLS.
2082 if (GV
->isThreadLocal())
2085 PPCFuncInfo
->setUsesTOCBasePtr();
2086 // For small code model, generate a simple TOC load.
2087 if (CModel
== CodeModel::Small
)
2088 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtoc
),
2090 .addGlobalAddress(GV
)
2093 // If the address is an externally defined symbol, a symbol with common
2094 // or externally available linkage, a non-local function address, or a
2095 // jump table address (not yet needed), or if we are generating code
2096 // for large code model, we generate:
2097 // LDtocL(GV, ADDIStocHA8(%x2, GV))
2098 // Otherwise we generate:
2099 // ADDItocL(ADDIStocHA8(%x2, GV), GV)
2100 // Either way, start with the ADDIStocHA8:
2101 unsigned HighPartReg
= createResultReg(RC
);
2102 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDIStocHA8
),
2103 HighPartReg
).addReg(PPC::X2
).addGlobalAddress(GV
);
2105 if (Subtarget
->isGVIndirectSymbol(GV
)) {
2106 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtocL
),
2107 DestReg
).addGlobalAddress(GV
).addReg(HighPartReg
);
2109 // Otherwise generate the ADDItocL.
2110 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDItocL
),
2111 DestReg
).addReg(HighPartReg
).addGlobalAddress(GV
);
2118 // Materialize a 32-bit integer constant into a register, and return
2119 // the register number (or zero if we failed to handle it).
2120 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm
,
2121 const TargetRegisterClass
*RC
) {
2122 unsigned Lo
= Imm
& 0xFFFF;
2123 unsigned Hi
= (Imm
>> 16) & 0xFFFF;
2125 unsigned ResultReg
= createResultReg(RC
);
2126 bool IsGPRC
= RC
->hasSuperClassEq(&PPC::GPRCRegClass
);
2129 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2130 TII
.get(IsGPRC
? PPC::LI
: PPC::LI8
), ResultReg
)
2133 // Both Lo and Hi have nonzero bits.
2134 unsigned TmpReg
= createResultReg(RC
);
2135 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2136 TII
.get(IsGPRC
? PPC::LIS
: PPC::LIS8
), TmpReg
)
2138 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2139 TII
.get(IsGPRC
? PPC::ORI
: PPC::ORI8
), ResultReg
)
2140 .addReg(TmpReg
).addImm(Lo
);
2143 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2144 TII
.get(IsGPRC
? PPC::LIS
: PPC::LIS8
), ResultReg
)
2150 // Materialize a 64-bit integer constant into a register, and return
2151 // the register number (or zero if we failed to handle it).
2152 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm
,
2153 const TargetRegisterClass
*RC
) {
2154 unsigned Remainder
= 0;
2157 // If the value doesn't fit in 32 bits, see if we can shift it
2158 // so that it fits in 32 bits.
2159 if (!isInt
<32>(Imm
)) {
2160 Shift
= countTrailingZeros
<uint64_t>(Imm
);
2161 int64_t ImmSh
= static_cast<uint64_t>(Imm
) >> Shift
;
2163 if (isInt
<32>(ImmSh
))
2172 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2173 // (if not shifted).
2174 unsigned TmpReg1
= PPCMaterialize32BitInt(Imm
, RC
);
2178 // If upper 32 bits were not zero, we've built them and need to shift
2182 TmpReg2
= createResultReg(RC
);
2183 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::RLDICR
),
2184 TmpReg2
).addReg(TmpReg1
).addImm(Shift
).addImm(63 - Shift
);
2188 unsigned TmpReg3
, Hi
, Lo
;
2189 if ((Hi
= (Remainder
>> 16) & 0xFFFF)) {
2190 TmpReg3
= createResultReg(RC
);
2191 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ORIS8
),
2192 TmpReg3
).addReg(TmpReg2
).addImm(Hi
);
2196 if ((Lo
= Remainder
& 0xFFFF)) {
2197 unsigned ResultReg
= createResultReg(RC
);
2198 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ORI8
),
2199 ResultReg
).addReg(TmpReg3
).addImm(Lo
);
2206 // Materialize an integer constant into a register, and return
2207 // the register number (or zero if we failed to handle it).
2208 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt
*CI
, MVT VT
,
2210 // If we're using CR bit registers for i1 values, handle that as a special
2212 if (VT
== MVT::i1
&& Subtarget
->useCRBits()) {
2213 unsigned ImmReg
= createResultReg(&PPC::CRBITRCRegClass
);
2214 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2215 TII
.get(CI
->isZero() ? PPC::CRUNSET
: PPC::CRSET
), ImmReg
);
2219 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
&& VT
!= MVT::i8
&&
2223 const TargetRegisterClass
*RC
=
2224 ((VT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
);
2225 int64_t Imm
= UseSExt
? CI
->getSExtValue() : CI
->getZExtValue();
2227 // If the constant is in range, use a load-immediate.
2228 // Since LI will sign extend the constant we need to make sure that for
2229 // our zeroext constants that the sign extended constant fits into 16-bits -
2230 // a range of 0..0x7fff.
2231 if (isInt
<16>(Imm
)) {
2232 unsigned Opc
= (VT
== MVT::i64
) ? PPC::LI8
: PPC::LI
;
2233 unsigned ImmReg
= createResultReg(RC
);
2234 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ImmReg
)
2239 // Construct the constant piecewise.
2241 return PPCMaterialize64BitInt(Imm
, RC
);
2242 else if (VT
== MVT::i32
)
2243 return PPCMaterialize32BitInt(Imm
, RC
);
2248 // Materialize a constant into a register, and return the register
2249 // number (or zero if we failed to handle it).
2250 unsigned PPCFastISel::fastMaterializeConstant(const Constant
*C
) {
2251 EVT CEVT
= TLI
.getValueType(DL
, C
->getType(), true);
2253 // Only handle simple types.
2254 if (!CEVT
.isSimple()) return 0;
2255 MVT VT
= CEVT
.getSimpleVT();
2257 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
2258 return PPCMaterializeFP(CFP
, VT
);
2259 else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
2260 return PPCMaterializeGV(GV
, VT
);
2261 else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
2262 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2263 // assumes that constant PHI operands will be zero extended, and failure to
2264 // match that assumption will cause problems if we sign extend here but
2265 // some user of a PHI is in a block for which we fall back to full SDAG
2266 // instruction selection.
2267 return PPCMaterializeInt(CI
, VT
, false);
2272 // Materialize the address created by an alloca into a register, and
2273 // return the register number (or zero if we failed to handle it).
2274 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst
*AI
) {
2275 // Don't handle dynamic allocas.
2276 if (!FuncInfo
.StaticAllocaMap
.count(AI
)) return 0;
2279 if (!isLoadTypeLegal(AI
->getType(), VT
)) return 0;
2281 DenseMap
<const AllocaInst
*, int>::iterator SI
=
2282 FuncInfo
.StaticAllocaMap
.find(AI
);
2284 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
2285 unsigned ResultReg
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
2286 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDI8
),
2287 ResultReg
).addFrameIndex(SI
->second
).addImm(0);
2294 // Fold loads into extends when possible.
2295 // FIXME: We can have multiple redundant extend/trunc instructions
2296 // following a load. The folding only picks up one. Extend this
2297 // to check subsequent instructions for the same pattern and remove
2298 // them. Thus ResultReg should be the def reg for the last redundant
2299 // instruction in a chain, and all intervening instructions can be
2300 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2301 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2302 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr
*MI
, unsigned OpNo
,
2303 const LoadInst
*LI
) {
2304 // Verify we have a legal type before going any further.
2306 if (!isLoadTypeLegal(LI
->getType(), VT
))
2309 // Combine load followed by zero- or sign-extend.
2310 bool IsZExt
= false;
2311 switch(MI
->getOpcode()) {
2316 case PPC::RLDICL_32_64
: {
2318 unsigned MB
= MI
->getOperand(3).getImm();
2319 if ((VT
== MVT::i8
&& MB
<= 56) ||
2320 (VT
== MVT::i16
&& MB
<= 48) ||
2321 (VT
== MVT::i32
&& MB
<= 32))
2327 case PPC::RLWINM8
: {
2329 unsigned MB
= MI
->getOperand(3).getImm();
2330 if ((VT
== MVT::i8
&& MB
<= 24) ||
2331 (VT
== MVT::i16
&& MB
<= 16))
2338 case PPC::EXTSB8_32_64
:
2339 /* There is no sign-extending load-byte instruction. */
2344 case PPC::EXTSH8_32_64
: {
2345 if (VT
!= MVT::i16
&& VT
!= MVT::i8
)
2352 case PPC::EXTSW_32_64
: {
2353 if (VT
!= MVT::i32
&& VT
!= MVT::i16
&& VT
!= MVT::i8
)
2359 // See if we can handle this address.
2361 if (!PPCComputeAddress(LI
->getOperand(0), Addr
))
2364 Register ResultReg
= MI
->getOperand(0).getReg();
2366 if (!PPCEmitLoad(VT
, ResultReg
, Addr
, nullptr, IsZExt
,
2367 Subtarget
->hasSPE() ? PPC::EVLDD
: PPC::LFD
))
2370 MachineBasicBlock::iterator
I(MI
);
2371 removeDeadCode(I
, std::next(I
));
2375 // Attempt to lower call arguments in a faster way than done by
2376 // the selection DAG code.
2377 bool PPCFastISel::fastLowerArguments() {
2378 // Defer to normal argument lowering for now. It's reasonably
2379 // efficient. Consider doing something like ARM to handle the
2380 // case where all args fit in registers, no varargs, no float
2385 // Handle materializing integer constants into a register. This is not
2386 // automatically generated for PowerPC, so must be explicitly created here.
2387 unsigned PPCFastISel::fastEmit_i(MVT Ty
, MVT VT
, unsigned Opc
, uint64_t Imm
) {
2389 if (Opc
!= ISD::Constant
)
2392 // If we're using CR bit registers for i1 values, handle that as a special
2394 if (VT
== MVT::i1
&& Subtarget
->useCRBits()) {
2395 unsigned ImmReg
= createResultReg(&PPC::CRBITRCRegClass
);
2396 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2397 TII
.get(Imm
== 0 ? PPC::CRUNSET
: PPC::CRSET
), ImmReg
);
2401 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
&& VT
!= MVT::i8
&&
2405 const TargetRegisterClass
*RC
= ((VT
== MVT::i64
) ? &PPC::G8RCRegClass
:
2406 &PPC::GPRCRegClass
);
2408 return PPCMaterialize64BitInt(Imm
, RC
);
2410 return PPCMaterialize32BitInt(Imm
, RC
);
2413 // Override for ADDI and ADDI8 to set the correct register class
2414 // on RHS operand 0. The automatic infrastructure naively assumes
2415 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2416 // for these cases. At the moment, none of the other automatically
2417 // generated RI instructions require special treatment. However, once
2418 // SelectSelect is implemented, "isel" requires similar handling.
2420 // Also be conservative about the output register class. Avoid
2421 // assigning R0 or X0 to the output register for GPRC and G8RC
2422 // register classes, as any such result could be used in ADDI, etc.,
2423 // where those regs have another meaning.
2424 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode
,
2425 const TargetRegisterClass
*RC
,
2428 if (MachineInstOpcode
== PPC::ADDI
)
2429 MRI
.setRegClass(Op0
, &PPC::GPRC_and_GPRC_NOR0RegClass
);
2430 else if (MachineInstOpcode
== PPC::ADDI8
)
2431 MRI
.setRegClass(Op0
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
2433 const TargetRegisterClass
*UseRC
=
2434 (RC
== &PPC::GPRCRegClass
? &PPC::GPRC_and_GPRC_NOR0RegClass
:
2435 (RC
== &PPC::G8RCRegClass
? &PPC::G8RC_and_G8RC_NOX0RegClass
: RC
));
2437 return FastISel::fastEmitInst_ri(MachineInstOpcode
, UseRC
, Op0
, Imm
);
2440 // Override for instructions with one register operand to avoid use of
2441 // R0/X0. The automatic infrastructure isn't aware of the context so
2442 // we must be conservative.
2443 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode
,
2444 const TargetRegisterClass
* RC
,
2446 const TargetRegisterClass
*UseRC
=
2447 (RC
== &PPC::GPRCRegClass
? &PPC::GPRC_and_GPRC_NOR0RegClass
:
2448 (RC
== &PPC::G8RCRegClass
? &PPC::G8RC_and_G8RC_NOX0RegClass
: RC
));
2450 return FastISel::fastEmitInst_r(MachineInstOpcode
, UseRC
, Op0
);
2453 // Override for instructions with two register operands to avoid use
2454 // of R0/X0. The automatic infrastructure isn't aware of the context
2455 // so we must be conservative.
2456 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode
,
2457 const TargetRegisterClass
* RC
,
2458 unsigned Op0
, unsigned Op1
) {
2459 const TargetRegisterClass
*UseRC
=
2460 (RC
== &PPC::GPRCRegClass
? &PPC::GPRC_and_GPRC_NOR0RegClass
:
2461 (RC
== &PPC::G8RCRegClass
? &PPC::G8RC_and_G8RC_NOX0RegClass
: RC
));
2463 return FastISel::fastEmitInst_rr(MachineInstOpcode
, UseRC
, Op0
, Op1
);
2467 // Create the fast instruction selector for PowerPC64 ELF.
2468 FastISel
*PPC::createFastISel(FunctionLoweringInfo
&FuncInfo
,
2469 const TargetLibraryInfo
*LibInfo
) {
2470 // Only available on 64-bit ELF for now.
2471 const PPCSubtarget
&Subtarget
= FuncInfo
.MF
->getSubtarget
<PPCSubtarget
>();
2472 if (Subtarget
.is64BitELFABI())
2473 return new PPCFastISel(FuncInfo
, LibInfo
);