1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the PPCISelLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
102 using namespace llvm
;
104 #define DEBUG_TYPE "ppc-lowering"
106 static cl::opt
<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden
);
109 static cl::opt
<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden
);
112 static cl::opt
<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden
);
115 static cl::opt
<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden
);
118 static cl::opt
<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden
);
121 static cl::opt
<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden
);
124 static cl::opt
<bool> EnableQuadwordAtomics(
125 "ppc-quadword-atomics",
126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
129 STATISTIC(NumTailCalls
, "Number of tail calls");
130 STATISTIC(NumSiblingCalls
, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM
, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed
, "Number of dynamic stack allocation probed");
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode
*, unsigned, int);
136 static SDValue
widenVec(SelectionDAG
&DAG
, SDValue Vec
, const SDLoc
&dl
);
138 static const char AIXSSPCanaryWordName
[] = "__ssp_canary_word";
140 // FIXME: Remove this once the bug has been fixed!
141 extern cl::opt
<bool> ANDIGlueBug
;
143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine
&TM
,
144 const PPCSubtarget
&STI
)
145 : TargetLowering(TM
), Subtarget(STI
) {
146 // Initialize map that relates the PPC addressing modes to the computed flags
147 // of a load/store instruction. The map is used to determine the optimal
148 // addressing mode when selecting load and stores.
149 initializeAddrModeMap();
150 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
151 // arguments are at least 4/8 bytes aligned.
152 bool isPPC64
= Subtarget
.isPPC64();
153 setMinStackArgumentAlignment(isPPC64
? Align(8) : Align(4));
155 // Set up the register classes.
156 addRegisterClass(MVT::i32
, &PPC::GPRCRegClass
);
157 if (!useSoftFloat()) {
159 addRegisterClass(MVT::f32
, &PPC::GPRCRegClass
);
160 // EFPU2 APU only supports f32
161 if (!Subtarget
.hasEFPU2())
162 addRegisterClass(MVT::f64
, &PPC::SPERCRegClass
);
164 addRegisterClass(MVT::f32
, &PPC::F4RCRegClass
);
165 addRegisterClass(MVT::f64
, &PPC::F8RCRegClass
);
169 // Match BITREVERSE to customized fast code sequence in the td file.
170 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
171 setOperationAction(ISD::BITREVERSE
, MVT::i64
, Legal
);
173 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
174 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
176 // Custom lower inline assembly to check for special registers.
177 setOperationAction(ISD::INLINEASM
, MVT::Other
, Custom
);
178 setOperationAction(ISD::INLINEASM_BR
, MVT::Other
, Custom
);
180 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
181 for (MVT VT
: MVT::integer_valuetypes()) {
182 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
183 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Expand
);
186 if (Subtarget
.isISA3_0()) {
187 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Legal
);
188 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Legal
);
189 setTruncStoreAction(MVT::f64
, MVT::f16
, Legal
);
190 setTruncStoreAction(MVT::f32
, MVT::f16
, Legal
);
192 // No extending loads from f16 or HW conversions back and forth.
193 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
194 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
195 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
196 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
197 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
198 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
199 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
200 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
203 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
205 // PowerPC has pre-inc load and store's.
206 setIndexedLoadAction(ISD::PRE_INC
, MVT::i1
, Legal
);
207 setIndexedLoadAction(ISD::PRE_INC
, MVT::i8
, Legal
);
208 setIndexedLoadAction(ISD::PRE_INC
, MVT::i16
, Legal
);
209 setIndexedLoadAction(ISD::PRE_INC
, MVT::i32
, Legal
);
210 setIndexedLoadAction(ISD::PRE_INC
, MVT::i64
, Legal
);
211 setIndexedStoreAction(ISD::PRE_INC
, MVT::i1
, Legal
);
212 setIndexedStoreAction(ISD::PRE_INC
, MVT::i8
, Legal
);
213 setIndexedStoreAction(ISD::PRE_INC
, MVT::i16
, Legal
);
214 setIndexedStoreAction(ISD::PRE_INC
, MVT::i32
, Legal
);
215 setIndexedStoreAction(ISD::PRE_INC
, MVT::i64
, Legal
);
216 if (!Subtarget
.hasSPE()) {
217 setIndexedLoadAction(ISD::PRE_INC
, MVT::f32
, Legal
);
218 setIndexedLoadAction(ISD::PRE_INC
, MVT::f64
, Legal
);
219 setIndexedStoreAction(ISD::PRE_INC
, MVT::f32
, Legal
);
220 setIndexedStoreAction(ISD::PRE_INC
, MVT::f64
, Legal
);
223 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
224 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
225 for (MVT VT
: ScalarIntVTs
) {
226 setOperationAction(ISD::ADDC
, VT
, Legal
);
227 setOperationAction(ISD::ADDE
, VT
, Legal
);
228 setOperationAction(ISD::SUBC
, VT
, Legal
);
229 setOperationAction(ISD::SUBE
, VT
, Legal
);
232 if (Subtarget
.useCRBits()) {
233 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
235 if (isPPC64
|| Subtarget
.hasFPCVT()) {
236 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i1
, Promote
);
237 AddPromotedToType(ISD::STRICT_SINT_TO_FP
, MVT::i1
,
238 isPPC64
? MVT::i64
: MVT::i32
);
239 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::i1
, Promote
);
240 AddPromotedToType(ISD::STRICT_UINT_TO_FP
, MVT::i1
,
241 isPPC64
? MVT::i64
: MVT::i32
);
243 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
244 AddPromotedToType (ISD::SINT_TO_FP
, MVT::i1
,
245 isPPC64
? MVT::i64
: MVT::i32
);
246 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
247 AddPromotedToType(ISD::UINT_TO_FP
, MVT::i1
,
248 isPPC64
? MVT::i64
: MVT::i32
);
250 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i1
, Promote
);
251 AddPromotedToType(ISD::STRICT_FP_TO_SINT
, MVT::i1
,
252 isPPC64
? MVT::i64
: MVT::i32
);
253 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i1
, Promote
);
254 AddPromotedToType(ISD::STRICT_FP_TO_UINT
, MVT::i1
,
255 isPPC64
? MVT::i64
: MVT::i32
);
257 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
258 AddPromotedToType(ISD::FP_TO_SINT
, MVT::i1
,
259 isPPC64
? MVT::i64
: MVT::i32
);
260 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
261 AddPromotedToType(ISD::FP_TO_UINT
, MVT::i1
,
262 isPPC64
? MVT::i64
: MVT::i32
);
264 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i1
, Custom
);
265 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::i1
, Custom
);
266 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Custom
);
267 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Custom
);
270 // PowerPC does not support direct load/store of condition registers.
271 setOperationAction(ISD::LOAD
, MVT::i1
, Custom
);
272 setOperationAction(ISD::STORE
, MVT::i1
, Custom
);
274 // FIXME: Remove this once the ANDI glue bug is fixed:
276 setOperationAction(ISD::TRUNCATE
, MVT::i1
, Custom
);
278 for (MVT VT
: MVT::integer_valuetypes()) {
279 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
280 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
281 setTruncStoreAction(VT
, MVT::i1
, Expand
);
284 addRegisterClass(MVT::i1
, &PPC::CRBITRCRegClass
);
287 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
288 // PPC (the libcall is not available).
289 setOperationAction(ISD::FP_TO_SINT
, MVT::ppcf128
, Custom
);
290 setOperationAction(ISD::FP_TO_UINT
, MVT::ppcf128
, Custom
);
291 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::ppcf128
, Custom
);
292 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::ppcf128
, Custom
);
294 // We do not currently implement these libm ops for PowerPC.
295 setOperationAction(ISD::FFLOOR
, MVT::ppcf128
, Expand
);
296 setOperationAction(ISD::FCEIL
, MVT::ppcf128
, Expand
);
297 setOperationAction(ISD::FTRUNC
, MVT::ppcf128
, Expand
);
298 setOperationAction(ISD::FRINT
, MVT::ppcf128
, Expand
);
299 setOperationAction(ISD::FNEARBYINT
, MVT::ppcf128
, Expand
);
300 setOperationAction(ISD::FREM
, MVT::ppcf128
, Expand
);
302 // PowerPC has no SREM/UREM instructions unless we are on P9
303 // On P9 we may use a hardware instruction to compute the remainder.
304 // When the result of both the remainder and the division is required it is
305 // more efficient to compute the remainder from the result of the division
306 // rather than use the remainder instruction. The instructions are legalized
307 // directly because the DivRemPairsPass performs the transformation at the IR
309 if (Subtarget
.isISA3_0()) {
310 setOperationAction(ISD::SREM
, MVT::i32
, Legal
);
311 setOperationAction(ISD::UREM
, MVT::i32
, Legal
);
312 setOperationAction(ISD::SREM
, MVT::i64
, Legal
);
313 setOperationAction(ISD::UREM
, MVT::i64
, Legal
);
315 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
316 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
317 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
318 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
321 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
322 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
323 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
324 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
325 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
326 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
327 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
328 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
329 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
331 // Handle constrained floating-point operations of scalar.
332 // TODO: Handle SPE specific operation.
333 setOperationAction(ISD::STRICT_FADD
, MVT::f32
, Legal
);
334 setOperationAction(ISD::STRICT_FSUB
, MVT::f32
, Legal
);
335 setOperationAction(ISD::STRICT_FMUL
, MVT::f32
, Legal
);
336 setOperationAction(ISD::STRICT_FDIV
, MVT::f32
, Legal
);
337 setOperationAction(ISD::STRICT_FP_ROUND
, MVT::f32
, Legal
);
339 setOperationAction(ISD::STRICT_FADD
, MVT::f64
, Legal
);
340 setOperationAction(ISD::STRICT_FSUB
, MVT::f64
, Legal
);
341 setOperationAction(ISD::STRICT_FMUL
, MVT::f64
, Legal
);
342 setOperationAction(ISD::STRICT_FDIV
, MVT::f64
, Legal
);
344 if (!Subtarget
.hasSPE()) {
345 setOperationAction(ISD::STRICT_FMA
, MVT::f32
, Legal
);
346 setOperationAction(ISD::STRICT_FMA
, MVT::f64
, Legal
);
349 if (Subtarget
.hasVSX()) {
350 setOperationAction(ISD::STRICT_FRINT
, MVT::f32
, Legal
);
351 setOperationAction(ISD::STRICT_FRINT
, MVT::f64
, Legal
);
354 if (Subtarget
.hasFSQRT()) {
355 setOperationAction(ISD::STRICT_FSQRT
, MVT::f32
, Legal
);
356 setOperationAction(ISD::STRICT_FSQRT
, MVT::f64
, Legal
);
359 if (Subtarget
.hasFPRND()) {
360 setOperationAction(ISD::STRICT_FFLOOR
, MVT::f32
, Legal
);
361 setOperationAction(ISD::STRICT_FCEIL
, MVT::f32
, Legal
);
362 setOperationAction(ISD::STRICT_FTRUNC
, MVT::f32
, Legal
);
363 setOperationAction(ISD::STRICT_FROUND
, MVT::f32
, Legal
);
365 setOperationAction(ISD::STRICT_FFLOOR
, MVT::f64
, Legal
);
366 setOperationAction(ISD::STRICT_FCEIL
, MVT::f64
, Legal
);
367 setOperationAction(ISD::STRICT_FTRUNC
, MVT::f64
, Legal
);
368 setOperationAction(ISD::STRICT_FROUND
, MVT::f64
, Legal
);
371 // We don't support sin/cos/sqrt/fmod/pow
372 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
373 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
374 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
375 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
376 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
377 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
378 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
379 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
380 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
381 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
382 if (Subtarget
.hasSPE()) {
383 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
384 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
386 setOperationAction(ISD::FMA
, MVT::f64
, Legal
);
387 setOperationAction(ISD::FMA
, MVT::f32
, Legal
);
390 if (Subtarget
.hasSPE())
391 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
393 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
395 // If we're enabling GP optimizations, use hardware square root
396 if (!Subtarget
.hasFSQRT() &&
397 !(TM
.Options
.UnsafeFPMath
&& Subtarget
.hasFRSQRTE() &&
399 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
401 if (!Subtarget
.hasFSQRT() &&
402 !(TM
.Options
.UnsafeFPMath
&& Subtarget
.hasFRSQRTES() &&
403 Subtarget
.hasFRES()))
404 setOperationAction(ISD::FSQRT
, MVT::f32
, Expand
);
406 if (Subtarget
.hasFCPSGN()) {
407 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Legal
);
408 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Legal
);
410 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
411 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
414 if (Subtarget
.hasFPRND()) {
415 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
416 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
417 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
418 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
420 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
421 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
422 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
423 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
426 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
427 // to speed up scalar BSWAP64.
428 // CTPOP or CTTZ were introduced in P8/P9 respectively
429 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
430 if (Subtarget
.hasP9Vector() && Subtarget
.isPPC64())
431 setOperationAction(ISD::BSWAP
, MVT::i64
, Custom
);
433 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
434 if (Subtarget
.isISA3_0()) {
435 setOperationAction(ISD::CTTZ
, MVT::i32
, Legal
);
436 setOperationAction(ISD::CTTZ
, MVT::i64
, Legal
);
438 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
439 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
442 if (Subtarget
.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast
) {
443 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
444 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
446 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
447 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
450 // PowerPC does not have ROTR
451 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
452 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
454 if (!Subtarget
.useCRBits()) {
455 // PowerPC does not have Select
456 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
457 setOperationAction(ISD::SELECT
, MVT::i64
, Expand
);
458 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
459 setOperationAction(ISD::SELECT
, MVT::f64
, Expand
);
462 // PowerPC wants to turn select_cc of FP into fsel when possible.
463 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
464 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
466 // PowerPC wants to optimize integer setcc a bit
467 if (!Subtarget
.useCRBits())
468 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
470 if (Subtarget
.hasFPU()) {
471 setOperationAction(ISD::STRICT_FSETCC
, MVT::f32
, Legal
);
472 setOperationAction(ISD::STRICT_FSETCC
, MVT::f64
, Legal
);
473 setOperationAction(ISD::STRICT_FSETCC
, MVT::f128
, Legal
);
475 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f32
, Legal
);
476 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f64
, Legal
);
477 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f128
, Legal
);
480 // PowerPC does not have BRCOND which requires SetCC
481 if (!Subtarget
.useCRBits())
482 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
484 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
486 if (Subtarget
.hasSPE()) {
487 // SPE has built-in conversions
488 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i32
, Legal
);
489 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i32
, Legal
);
490 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::i32
, Legal
);
491 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Legal
);
492 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Legal
);
493 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Legal
);
495 // SPE supports signaling compare of f32/f64.
496 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f32
, Legal
);
497 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f64
, Legal
);
499 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
500 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i32
, Custom
);
501 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
503 // PowerPC does not have [U|S]INT_TO_FP
504 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i32
, Expand
);
505 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::i32
, Expand
);
506 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Expand
);
507 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
510 if (Subtarget
.hasDirectMove() && isPPC64
) {
511 setOperationAction(ISD::BITCAST
, MVT::f32
, Legal
);
512 setOperationAction(ISD::BITCAST
, MVT::i32
, Legal
);
513 setOperationAction(ISD::BITCAST
, MVT::i64
, Legal
);
514 setOperationAction(ISD::BITCAST
, MVT::f64
, Legal
);
515 if (TM
.Options
.UnsafeFPMath
) {
516 setOperationAction(ISD::LRINT
, MVT::f64
, Legal
);
517 setOperationAction(ISD::LRINT
, MVT::f32
, Legal
);
518 setOperationAction(ISD::LLRINT
, MVT::f64
, Legal
);
519 setOperationAction(ISD::LLRINT
, MVT::f32
, Legal
);
520 setOperationAction(ISD::LROUND
, MVT::f64
, Legal
);
521 setOperationAction(ISD::LROUND
, MVT::f32
, Legal
);
522 setOperationAction(ISD::LLROUND
, MVT::f64
, Legal
);
523 setOperationAction(ISD::LLROUND
, MVT::f32
, Legal
);
526 setOperationAction(ISD::BITCAST
, MVT::f32
, Expand
);
527 setOperationAction(ISD::BITCAST
, MVT::i32
, Expand
);
528 setOperationAction(ISD::BITCAST
, MVT::i64
, Expand
);
529 setOperationAction(ISD::BITCAST
, MVT::f64
, Expand
);
532 // We cannot sextinreg(i1). Expand to shifts.
533 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
535 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
536 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
537 // support continuation, user-level threading, and etc.. As a result, no
538 // other SjLj exception interfaces are implemented and please don't build
539 // your own exception handling based on them.
540 // LLVM/Clang supports zero-cost DWARF exception handling.
541 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
542 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
544 // We want to legalize GlobalAddress and ConstantPool nodes into the
545 // appropriate instructions to materialize the address.
546 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
547 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
548 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
549 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
550 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
551 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
552 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
553 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
554 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
555 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
558 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
560 // TRAMPOLINE is custom lowered.
561 setOperationAction(ISD::INIT_TRAMPOLINE
, MVT::Other
, Custom
);
562 setOperationAction(ISD::ADJUST_TRAMPOLINE
, MVT::Other
, Custom
);
564 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
565 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
567 if (Subtarget
.is64BitELFABI()) {
568 // VAARG always uses double-word chunks, so promote anything smaller.
569 setOperationAction(ISD::VAARG
, MVT::i1
, Promote
);
570 AddPromotedToType(ISD::VAARG
, MVT::i1
, MVT::i64
);
571 setOperationAction(ISD::VAARG
, MVT::i8
, Promote
);
572 AddPromotedToType(ISD::VAARG
, MVT::i8
, MVT::i64
);
573 setOperationAction(ISD::VAARG
, MVT::i16
, Promote
);
574 AddPromotedToType(ISD::VAARG
, MVT::i16
, MVT::i64
);
575 setOperationAction(ISD::VAARG
, MVT::i32
, Promote
);
576 AddPromotedToType(ISD::VAARG
, MVT::i32
, MVT::i64
);
577 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
578 } else if (Subtarget
.is32BitELFABI()) {
579 // VAARG is custom lowered with the 32-bit SVR4 ABI.
580 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
581 setOperationAction(ISD::VAARG
, MVT::i64
, Custom
);
583 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
585 // VACOPY is custom lowered with the 32-bit SVR4 ABI.
586 if (Subtarget
.is32BitELFABI())
587 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
589 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
591 // Use the default implementation.
592 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
593 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
594 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Custom
);
595 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
596 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
597 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET
, MVT::i32
, Custom
);
598 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET
, MVT::i64
, Custom
);
599 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
600 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
602 // We want to custom lower some of our intrinsics.
603 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
605 // To handle counter-based loop conditions.
606 setOperationAction(ISD::INTRINSIC_W_CHAIN
, MVT::i1
, Custom
);
608 setOperationAction(ISD::INTRINSIC_VOID
, MVT::i8
, Custom
);
609 setOperationAction(ISD::INTRINSIC_VOID
, MVT::i16
, Custom
);
610 setOperationAction(ISD::INTRINSIC_VOID
, MVT::i32
, Custom
);
611 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
613 // Comparisons that require checking two conditions.
614 if (Subtarget
.hasSPE()) {
615 setCondCodeAction(ISD::SETO
, MVT::f32
, Expand
);
616 setCondCodeAction(ISD::SETO
, MVT::f64
, Expand
);
617 setCondCodeAction(ISD::SETUO
, MVT::f32
, Expand
);
618 setCondCodeAction(ISD::SETUO
, MVT::f64
, Expand
);
620 setCondCodeAction(ISD::SETULT
, MVT::f32
, Expand
);
621 setCondCodeAction(ISD::SETULT
, MVT::f64
, Expand
);
622 setCondCodeAction(ISD::SETUGT
, MVT::f32
, Expand
);
623 setCondCodeAction(ISD::SETUGT
, MVT::f64
, Expand
);
624 setCondCodeAction(ISD::SETUEQ
, MVT::f32
, Expand
);
625 setCondCodeAction(ISD::SETUEQ
, MVT::f64
, Expand
);
626 setCondCodeAction(ISD::SETOGE
, MVT::f32
, Expand
);
627 setCondCodeAction(ISD::SETOGE
, MVT::f64
, Expand
);
628 setCondCodeAction(ISD::SETOLE
, MVT::f32
, Expand
);
629 setCondCodeAction(ISD::SETOLE
, MVT::f64
, Expand
);
630 setCondCodeAction(ISD::SETONE
, MVT::f32
, Expand
);
631 setCondCodeAction(ISD::SETONE
, MVT::f64
, Expand
);
633 setOperationAction(ISD::STRICT_FP_EXTEND
, MVT::f32
, Legal
);
634 setOperationAction(ISD::STRICT_FP_EXTEND
, MVT::f64
, Legal
);
636 if (Subtarget
.has64BitSupport()) {
637 // They also have instructions for converting between i64 and fp.
638 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i64
, Custom
);
639 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i64
, Expand
);
640 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i64
, Custom
);
641 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::i64
, Expand
);
642 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
643 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
644 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
645 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
646 // This is just the low 32 bits of a (signed) fp->i64 conversion.
647 // We cannot do this with Promote because i64 is not a legal type.
648 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i32
, Custom
);
649 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
651 if (Subtarget
.hasLFIWAX() || Subtarget
.isPPC64()) {
652 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
653 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i32
, Custom
);
656 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
657 if (Subtarget
.hasSPE()) {
658 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i32
, Legal
);
659 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Legal
);
661 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i32
, Expand
);
662 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
666 // With the instructions enabled under FPCVT, we can do everything.
667 if (Subtarget
.hasFPCVT()) {
668 if (Subtarget
.has64BitSupport()) {
669 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i64
, Custom
);
670 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i64
, Custom
);
671 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i64
, Custom
);
672 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::i64
, Custom
);
673 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
674 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
675 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
676 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
679 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i32
, Custom
);
680 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i32
, Custom
);
681 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::i32
, Custom
);
682 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::i32
, Custom
);
683 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
684 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
685 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
686 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
689 if (Subtarget
.use64BitRegs()) {
690 // 64-bit PowerPC implementations can support i64 types directly
691 addRegisterClass(MVT::i64
, &PPC::G8RCRegClass
);
692 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
693 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
694 // 64-bit PowerPC wants to expand i128 shifts itself.
695 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
696 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
697 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
699 // 32-bit PowerPC wants to expand i64 shifts itself.
700 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
701 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
702 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
705 // PowerPC has better expansions for funnel shifts than the generic
706 // TargetLowering::expandFunnelShift.
707 if (Subtarget
.has64BitSupport()) {
708 setOperationAction(ISD::FSHL
, MVT::i64
, Custom
);
709 setOperationAction(ISD::FSHR
, MVT::i64
, Custom
);
711 setOperationAction(ISD::FSHL
, MVT::i32
, Custom
);
712 setOperationAction(ISD::FSHR
, MVT::i32
, Custom
);
714 if (Subtarget
.hasVSX()) {
715 setOperationAction(ISD::FMAXNUM_IEEE
, MVT::f64
, Legal
);
716 setOperationAction(ISD::FMAXNUM_IEEE
, MVT::f32
, Legal
);
717 setOperationAction(ISD::FMINNUM_IEEE
, MVT::f64
, Legal
);
718 setOperationAction(ISD::FMINNUM_IEEE
, MVT::f32
, Legal
);
721 if (Subtarget
.hasAltivec()) {
722 for (MVT VT
: { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
}) {
723 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
724 setOperationAction(ISD::SSUBSAT
, VT
, Legal
);
725 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
726 setOperationAction(ISD::USUBSAT
, VT
, Legal
);
728 // First set operation action for all vector types to expand. Then we
729 // will selectively turn on ones that can be effectively codegen'd.
730 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
731 // add/sub are legal for all supported vector VT's.
732 setOperationAction(ISD::ADD
, VT
, Legal
);
733 setOperationAction(ISD::SUB
, VT
, Legal
);
735 // For v2i64, these are only valid with P8Vector. This is corrected after
737 if (VT
.getSizeInBits() <= 128 && VT
.getScalarSizeInBits() <= 64) {
738 setOperationAction(ISD::SMAX
, VT
, Legal
);
739 setOperationAction(ISD::SMIN
, VT
, Legal
);
740 setOperationAction(ISD::UMAX
, VT
, Legal
);
741 setOperationAction(ISD::UMIN
, VT
, Legal
);
744 setOperationAction(ISD::SMAX
, VT
, Expand
);
745 setOperationAction(ISD::SMIN
, VT
, Expand
);
746 setOperationAction(ISD::UMAX
, VT
, Expand
);
747 setOperationAction(ISD::UMIN
, VT
, Expand
);
750 if (Subtarget
.hasVSX()) {
751 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
752 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
755 // Vector instructions introduced in P8
756 if (Subtarget
.hasP8Altivec() && (VT
.SimpleTy
!= MVT::v1i128
)) {
757 setOperationAction(ISD::CTPOP
, VT
, Legal
);
758 setOperationAction(ISD::CTLZ
, VT
, Legal
);
761 setOperationAction(ISD::CTPOP
, VT
, Expand
);
762 setOperationAction(ISD::CTLZ
, VT
, Expand
);
765 // Vector instructions introduced in P9
766 if (Subtarget
.hasP9Altivec() && (VT
.SimpleTy
!= MVT::v1i128
))
767 setOperationAction(ISD::CTTZ
, VT
, Legal
);
769 setOperationAction(ISD::CTTZ
, VT
, Expand
);
771 // We promote all shuffles to v16i8.
772 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Promote
);
773 AddPromotedToType (ISD::VECTOR_SHUFFLE
, VT
, MVT::v16i8
);
775 // We promote all non-typed operations to v4i32.
776 setOperationAction(ISD::AND
, VT
, Promote
);
777 AddPromotedToType (ISD::AND
, VT
, MVT::v4i32
);
778 setOperationAction(ISD::OR
, VT
, Promote
);
779 AddPromotedToType (ISD::OR
, VT
, MVT::v4i32
);
780 setOperationAction(ISD::XOR
, VT
, Promote
);
781 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i32
);
782 setOperationAction(ISD::LOAD
, VT
, Promote
);
783 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i32
);
784 setOperationAction(ISD::SELECT
, VT
, Promote
);
785 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i32
);
786 setOperationAction(ISD::VSELECT
, VT
, Legal
);
787 setOperationAction(ISD::SELECT_CC
, VT
, Promote
);
788 AddPromotedToType (ISD::SELECT_CC
, VT
, MVT::v4i32
);
789 setOperationAction(ISD::STORE
, VT
, Promote
);
790 AddPromotedToType (ISD::STORE
, VT
, MVT::v4i32
);
792 // No other operations are legal.
793 setOperationAction(ISD::MUL
, VT
, Expand
);
794 setOperationAction(ISD::SDIV
, VT
, Expand
);
795 setOperationAction(ISD::SREM
, VT
, Expand
);
796 setOperationAction(ISD::UDIV
, VT
, Expand
);
797 setOperationAction(ISD::UREM
, VT
, Expand
);
798 setOperationAction(ISD::FDIV
, VT
, Expand
);
799 setOperationAction(ISD::FREM
, VT
, Expand
);
800 setOperationAction(ISD::FNEG
, VT
, Expand
);
801 setOperationAction(ISD::FSQRT
, VT
, Expand
);
802 setOperationAction(ISD::FLOG
, VT
, Expand
);
803 setOperationAction(ISD::FLOG10
, VT
, Expand
);
804 setOperationAction(ISD::FLOG2
, VT
, Expand
);
805 setOperationAction(ISD::FEXP
, VT
, Expand
);
806 setOperationAction(ISD::FEXP2
, VT
, Expand
);
807 setOperationAction(ISD::FSIN
, VT
, Expand
);
808 setOperationAction(ISD::FCOS
, VT
, Expand
);
809 setOperationAction(ISD::FABS
, VT
, Expand
);
810 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
811 setOperationAction(ISD::FCEIL
, VT
, Expand
);
812 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
813 setOperationAction(ISD::FRINT
, VT
, Expand
);
814 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
815 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Expand
);
816 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Expand
);
817 setOperationAction(ISD::BUILD_VECTOR
, VT
, Expand
);
818 setOperationAction(ISD::MULHU
, VT
, Expand
);
819 setOperationAction(ISD::MULHS
, VT
, Expand
);
820 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
821 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
822 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
823 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
824 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
825 setOperationAction(ISD::FPOW
, VT
, Expand
);
826 setOperationAction(ISD::BSWAP
, VT
, Expand
);
827 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
828 setOperationAction(ISD::ROTL
, VT
, Expand
);
829 setOperationAction(ISD::ROTR
, VT
, Expand
);
831 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
832 setTruncStoreAction(VT
, InnerVT
, Expand
);
833 setLoadExtAction(ISD::SEXTLOAD
, VT
, InnerVT
, Expand
);
834 setLoadExtAction(ISD::ZEXTLOAD
, VT
, InnerVT
, Expand
);
835 setLoadExtAction(ISD::EXTLOAD
, VT
, InnerVT
, Expand
);
838 setOperationAction(ISD::SELECT_CC
, MVT::v4i32
, Expand
);
839 if (!Subtarget
.hasP8Vector()) {
840 setOperationAction(ISD::SMAX
, MVT::v2i64
, Expand
);
841 setOperationAction(ISD::SMIN
, MVT::v2i64
, Expand
);
842 setOperationAction(ISD::UMAX
, MVT::v2i64
, Expand
);
843 setOperationAction(ISD::UMIN
, MVT::v2i64
, Expand
);
846 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
847 // with merges, splats, etc.
848 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, Custom
);
850 // Vector truncates to sub-word integer that fit in an Altivec/VSX register
851 // are cheap, so handle them before they get expanded to scalar.
852 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Custom
);
853 setOperationAction(ISD::TRUNCATE
, MVT::v4i8
, Custom
);
854 setOperationAction(ISD::TRUNCATE
, MVT::v2i8
, Custom
);
855 setOperationAction(ISD::TRUNCATE
, MVT::v4i16
, Custom
);
856 setOperationAction(ISD::TRUNCATE
, MVT::v2i16
, Custom
);
858 setOperationAction(ISD::AND
, MVT::v4i32
, Legal
);
859 setOperationAction(ISD::OR
, MVT::v4i32
, Legal
);
860 setOperationAction(ISD::XOR
, MVT::v4i32
, Legal
);
861 setOperationAction(ISD::LOAD
, MVT::v4i32
, Legal
);
862 setOperationAction(ISD::SELECT
, MVT::v4i32
,
863 Subtarget
.useCRBits() ? Legal
: Expand
);
864 setOperationAction(ISD::STORE
, MVT::v4i32
, Legal
);
865 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::v4i32
, Legal
);
866 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::v4i32
, Legal
);
867 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::v4i32
, Legal
);
868 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::v4i32
, Legal
);
869 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i32
, Legal
);
870 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i32
, Legal
);
871 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Legal
);
872 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i32
, Legal
);
873 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Legal
);
874 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Legal
);
875 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Legal
);
876 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Legal
);
878 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
879 setOperationAction(ISD::ROTL
, MVT::v1i128
, Custom
);
880 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
881 if (Subtarget
.hasAltivec())
882 for (auto VT
: {MVT::v4i32
, MVT::v8i16
, MVT::v16i8
})
883 setOperationAction(ISD::ROTL
, VT
, Legal
);
884 // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
885 if (Subtarget
.hasP8Altivec())
886 setOperationAction(ISD::ROTL
, MVT::v2i64
, Legal
);
888 addRegisterClass(MVT::v4f32
, &PPC::VRRCRegClass
);
889 addRegisterClass(MVT::v4i32
, &PPC::VRRCRegClass
);
890 addRegisterClass(MVT::v8i16
, &PPC::VRRCRegClass
);
891 addRegisterClass(MVT::v16i8
, &PPC::VRRCRegClass
);
893 setOperationAction(ISD::MUL
, MVT::v4f32
, Legal
);
894 setOperationAction(ISD::FMA
, MVT::v4f32
, Legal
);
896 if (Subtarget
.hasVSX()) {
897 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
898 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
899 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
902 if (Subtarget
.hasP8Altivec())
903 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
905 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
907 if (Subtarget
.isISA3_1()) {
908 setOperationAction(ISD::MUL
, MVT::v2i64
, Legal
);
909 setOperationAction(ISD::MULHS
, MVT::v2i64
, Legal
);
910 setOperationAction(ISD::MULHU
, MVT::v2i64
, Legal
);
911 setOperationAction(ISD::MULHS
, MVT::v4i32
, Legal
);
912 setOperationAction(ISD::MULHU
, MVT::v4i32
, Legal
);
913 setOperationAction(ISD::UDIV
, MVT::v2i64
, Legal
);
914 setOperationAction(ISD::SDIV
, MVT::v2i64
, Legal
);
915 setOperationAction(ISD::UDIV
, MVT::v4i32
, Legal
);
916 setOperationAction(ISD::SDIV
, MVT::v4i32
, Legal
);
917 setOperationAction(ISD::UREM
, MVT::v2i64
, Legal
);
918 setOperationAction(ISD::SREM
, MVT::v2i64
, Legal
);
919 setOperationAction(ISD::UREM
, MVT::v4i32
, Legal
);
920 setOperationAction(ISD::SREM
, MVT::v4i32
, Legal
);
921 setOperationAction(ISD::UREM
, MVT::v1i128
, Legal
);
922 setOperationAction(ISD::SREM
, MVT::v1i128
, Legal
);
923 setOperationAction(ISD::UDIV
, MVT::v1i128
, Legal
);
924 setOperationAction(ISD::SDIV
, MVT::v1i128
, Legal
);
925 setOperationAction(ISD::ROTL
, MVT::v1i128
, Legal
);
928 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
929 setOperationAction(ISD::MUL
, MVT::v16i8
, Custom
);
931 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Custom
);
932 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Custom
);
934 setOperationAction(ISD::BUILD_VECTOR
, MVT::v16i8
, Custom
);
935 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i16
, Custom
);
936 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i32
, Custom
);
937 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
939 // Altivec does not contain unordered floating-point compare instructions
940 setCondCodeAction(ISD::SETUO
, MVT::v4f32
, Expand
);
941 setCondCodeAction(ISD::SETUEQ
, MVT::v4f32
, Expand
);
942 setCondCodeAction(ISD::SETO
, MVT::v4f32
, Expand
);
943 setCondCodeAction(ISD::SETONE
, MVT::v4f32
, Expand
);
945 if (Subtarget
.hasVSX()) {
946 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f64
, Legal
);
947 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Legal
);
948 if (Subtarget
.hasP8Vector()) {
949 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Legal
);
950 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Legal
);
952 if (Subtarget
.hasDirectMove() && isPPC64
) {
953 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Legal
);
954 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Legal
);
955 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Legal
);
956 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2i64
, Legal
);
957 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Legal
);
958 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Legal
);
959 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Legal
);
960 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
962 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Legal
);
964 // The nearbyint variants are not allowed to raise the inexact exception
965 // so we can only code-gen them with unsafe math.
966 if (TM
.Options
.UnsafeFPMath
) {
967 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
968 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
971 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Legal
);
972 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Legal
);
973 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Legal
);
974 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Legal
);
975 setOperationAction(ISD::FRINT
, MVT::v2f64
, Legal
);
976 setOperationAction(ISD::FROUND
, MVT::v2f64
, Legal
);
977 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
978 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
980 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Legal
);
981 setOperationAction(ISD::FRINT
, MVT::v4f32
, Legal
);
982 setOperationAction(ISD::FROUND
, MVT::v4f32
, Legal
);
983 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
984 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
986 setOperationAction(ISD::MUL
, MVT::v2f64
, Legal
);
987 setOperationAction(ISD::FMA
, MVT::v2f64
, Legal
);
989 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
990 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
992 // Share the Altivec comparison restrictions.
993 setCondCodeAction(ISD::SETUO
, MVT::v2f64
, Expand
);
994 setCondCodeAction(ISD::SETUEQ
, MVT::v2f64
, Expand
);
995 setCondCodeAction(ISD::SETO
, MVT::v2f64
, Expand
);
996 setCondCodeAction(ISD::SETONE
, MVT::v2f64
, Expand
);
998 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
999 setOperationAction(ISD::STORE
, MVT::v2f64
, Legal
);
1001 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Legal
);
1003 if (Subtarget
.hasP8Vector())
1004 addRegisterClass(MVT::f32
, &PPC::VSSRCRegClass
);
1006 addRegisterClass(MVT::f64
, &PPC::VSFRCRegClass
);
1008 addRegisterClass(MVT::v4i32
, &PPC::VSRCRegClass
);
1009 addRegisterClass(MVT::v4f32
, &PPC::VSRCRegClass
);
1010 addRegisterClass(MVT::v2f64
, &PPC::VSRCRegClass
);
1012 if (Subtarget
.hasP8Altivec()) {
1013 setOperationAction(ISD::SHL
, MVT::v2i64
, Legal
);
1014 setOperationAction(ISD::SRA
, MVT::v2i64
, Legal
);
1015 setOperationAction(ISD::SRL
, MVT::v2i64
, Legal
);
1017 // 128 bit shifts can be accomplished via 3 instructions for SHL and
1018 // SRL, but not for SRA because of the instructions available:
1019 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1021 setOperationAction(ISD::SHL
, MVT::v1i128
, Expand
);
1022 setOperationAction(ISD::SRL
, MVT::v1i128
, Expand
);
1023 setOperationAction(ISD::SRA
, MVT::v1i128
, Expand
);
1025 setOperationAction(ISD::SETCC
, MVT::v2i64
, Legal
);
1028 setOperationAction(ISD::SHL
, MVT::v2i64
, Expand
);
1029 setOperationAction(ISD::SRA
, MVT::v2i64
, Expand
);
1030 setOperationAction(ISD::SRL
, MVT::v2i64
, Expand
);
1032 setOperationAction(ISD::SETCC
, MVT::v2i64
, Custom
);
1034 // VSX v2i64 only supports non-arithmetic operations.
1035 setOperationAction(ISD::ADD
, MVT::v2i64
, Expand
);
1036 setOperationAction(ISD::SUB
, MVT::v2i64
, Expand
);
1039 if (Subtarget
.isISA3_1())
1040 setOperationAction(ISD::SETCC
, MVT::v1i128
, Legal
);
1042 setOperationAction(ISD::SETCC
, MVT::v1i128
, Expand
);
1044 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
1045 AddPromotedToType (ISD::LOAD
, MVT::v2i64
, MVT::v2f64
);
1046 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
1047 AddPromotedToType (ISD::STORE
, MVT::v2i64
, MVT::v2f64
);
1049 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Legal
);
1051 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::v2i64
, Legal
);
1052 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::v2i64
, Legal
);
1053 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::v2i64
, Legal
);
1054 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::v2i64
, Legal
);
1055 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i64
, Legal
);
1056 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i64
, Legal
);
1057 setOperationAction(ISD::FP_TO_SINT
, MVT::v2i64
, Legal
);
1058 setOperationAction(ISD::FP_TO_UINT
, MVT::v2i64
, Legal
);
1060 // Custom handling for partial vectors of integers converted to
1061 // floating point. We already have optimal handling for v2i32 through
1062 // the DAG combine, so those aren't necessary.
1063 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::v2i8
, Custom
);
1064 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::v4i8
, Custom
);
1065 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::v2i16
, Custom
);
1066 setOperationAction(ISD::STRICT_UINT_TO_FP
, MVT::v4i16
, Custom
);
1067 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::v2i8
, Custom
);
1068 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::v4i8
, Custom
);
1069 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::v2i16
, Custom
);
1070 setOperationAction(ISD::STRICT_SINT_TO_FP
, MVT::v4i16
, Custom
);
1071 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i8
, Custom
);
1072 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i8
, Custom
);
1073 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i16
, Custom
);
1074 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
1075 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i8
, Custom
);
1076 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i8
, Custom
);
1077 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i16
, Custom
);
1078 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
1080 setOperationAction(ISD::FNEG
, MVT::v4f32
, Legal
);
1081 setOperationAction(ISD::FNEG
, MVT::v2f64
, Legal
);
1082 setOperationAction(ISD::FABS
, MVT::v4f32
, Legal
);
1083 setOperationAction(ISD::FABS
, MVT::v2f64
, Legal
);
1084 setOperationAction(ISD::FCOPYSIGN
, MVT::v4f32
, Legal
);
1085 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Legal
);
1087 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
1088 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
1090 // Handle constrained floating-point operations of vector.
1091 // The predictor is `hasVSX` because altivec instruction has
1092 // no exception but VSX vector instruction has.
1093 setOperationAction(ISD::STRICT_FADD
, MVT::v4f32
, Legal
);
1094 setOperationAction(ISD::STRICT_FSUB
, MVT::v4f32
, Legal
);
1095 setOperationAction(ISD::STRICT_FMUL
, MVT::v4f32
, Legal
);
1096 setOperationAction(ISD::STRICT_FDIV
, MVT::v4f32
, Legal
);
1097 setOperationAction(ISD::STRICT_FMA
, MVT::v4f32
, Legal
);
1098 setOperationAction(ISD::STRICT_FSQRT
, MVT::v4f32
, Legal
);
1099 setOperationAction(ISD::STRICT_FMAXNUM
, MVT::v4f32
, Legal
);
1100 setOperationAction(ISD::STRICT_FMINNUM
, MVT::v4f32
, Legal
);
1101 setOperationAction(ISD::STRICT_FRINT
, MVT::v4f32
, Legal
);
1102 setOperationAction(ISD::STRICT_FFLOOR
, MVT::v4f32
, Legal
);
1103 setOperationAction(ISD::STRICT_FCEIL
, MVT::v4f32
, Legal
);
1104 setOperationAction(ISD::STRICT_FTRUNC
, MVT::v4f32
, Legal
);
1105 setOperationAction(ISD::STRICT_FROUND
, MVT::v4f32
, Legal
);
1107 setOperationAction(ISD::STRICT_FADD
, MVT::v2f64
, Legal
);
1108 setOperationAction(ISD::STRICT_FSUB
, MVT::v2f64
, Legal
);
1109 setOperationAction(ISD::STRICT_FMUL
, MVT::v2f64
, Legal
);
1110 setOperationAction(ISD::STRICT_FDIV
, MVT::v2f64
, Legal
);
1111 setOperationAction(ISD::STRICT_FMA
, MVT::v2f64
, Legal
);
1112 setOperationAction(ISD::STRICT_FSQRT
, MVT::v2f64
, Legal
);
1113 setOperationAction(ISD::STRICT_FMAXNUM
, MVT::v2f64
, Legal
);
1114 setOperationAction(ISD::STRICT_FMINNUM
, MVT::v2f64
, Legal
);
1115 setOperationAction(ISD::STRICT_FRINT
, MVT::v2f64
, Legal
);
1116 setOperationAction(ISD::STRICT_FFLOOR
, MVT::v2f64
, Legal
);
1117 setOperationAction(ISD::STRICT_FCEIL
, MVT::v2f64
, Legal
);
1118 setOperationAction(ISD::STRICT_FTRUNC
, MVT::v2f64
, Legal
);
1119 setOperationAction(ISD::STRICT_FROUND
, MVT::v2f64
, Legal
);
1121 addRegisterClass(MVT::v2i64
, &PPC::VSRCRegClass
);
1122 addRegisterClass(MVT::f128
, &PPC::VRRCRegClass
);
1124 for (MVT FPT
: MVT::fp_valuetypes())
1125 setLoadExtAction(ISD::EXTLOAD
, MVT::f128
, FPT
, Expand
);
1127 // Expand the SELECT to SELECT_CC
1128 setOperationAction(ISD::SELECT
, MVT::f128
, Expand
);
1130 setTruncStoreAction(MVT::f128
, MVT::f64
, Expand
);
1131 setTruncStoreAction(MVT::f128
, MVT::f32
, Expand
);
1133 // No implementation for these ops for PowerPC.
1134 setOperationAction(ISD::FSIN
, MVT::f128
, Expand
);
1135 setOperationAction(ISD::FCOS
, MVT::f128
, Expand
);
1136 setOperationAction(ISD::FPOW
, MVT::f128
, Expand
);
1137 setOperationAction(ISD::FPOWI
, MVT::f128
, Expand
);
1138 setOperationAction(ISD::FREM
, MVT::f128
, Expand
);
1141 if (Subtarget
.hasP8Altivec()) {
1142 addRegisterClass(MVT::v2i64
, &PPC::VRRCRegClass
);
1143 addRegisterClass(MVT::v1i128
, &PPC::VRRCRegClass
);
1146 if (Subtarget
.hasP9Vector()) {
1147 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
1148 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
1150 // 128 bit shifts can be accomplished via 3 instructions for SHL and
1151 // SRL, but not for SRA because of the instructions available:
1152 // VS{RL} and VS{RL}O.
1153 setOperationAction(ISD::SHL
, MVT::v1i128
, Legal
);
1154 setOperationAction(ISD::SRL
, MVT::v1i128
, Legal
);
1155 setOperationAction(ISD::SRA
, MVT::v1i128
, Expand
);
1157 setOperationAction(ISD::FADD
, MVT::f128
, Legal
);
1158 setOperationAction(ISD::FSUB
, MVT::f128
, Legal
);
1159 setOperationAction(ISD::FDIV
, MVT::f128
, Legal
);
1160 setOperationAction(ISD::FMUL
, MVT::f128
, Legal
);
1161 setOperationAction(ISD::FP_EXTEND
, MVT::f128
, Legal
);
1163 setOperationAction(ISD::FMA
, MVT::f128
, Legal
);
1164 setCondCodeAction(ISD::SETULT
, MVT::f128
, Expand
);
1165 setCondCodeAction(ISD::SETUGT
, MVT::f128
, Expand
);
1166 setCondCodeAction(ISD::SETUEQ
, MVT::f128
, Expand
);
1167 setCondCodeAction(ISD::SETOGE
, MVT::f128
, Expand
);
1168 setCondCodeAction(ISD::SETOLE
, MVT::f128
, Expand
);
1169 setCondCodeAction(ISD::SETONE
, MVT::f128
, Expand
);
1171 setOperationAction(ISD::FTRUNC
, MVT::f128
, Legal
);
1172 setOperationAction(ISD::FRINT
, MVT::f128
, Legal
);
1173 setOperationAction(ISD::FFLOOR
, MVT::f128
, Legal
);
1174 setOperationAction(ISD::FCEIL
, MVT::f128
, Legal
);
1175 setOperationAction(ISD::FNEARBYINT
, MVT::f128
, Legal
);
1176 setOperationAction(ISD::FROUND
, MVT::f128
, Legal
);
1178 setOperationAction(ISD::FP_ROUND
, MVT::f64
, Legal
);
1179 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Legal
);
1180 setOperationAction(ISD::BITCAST
, MVT::i128
, Custom
);
1182 // Handle constrained floating-point operations of fp128
1183 setOperationAction(ISD::STRICT_FADD
, MVT::f128
, Legal
);
1184 setOperationAction(ISD::STRICT_FSUB
, MVT::f128
, Legal
);
1185 setOperationAction(ISD::STRICT_FMUL
, MVT::f128
, Legal
);
1186 setOperationAction(ISD::STRICT_FDIV
, MVT::f128
, Legal
);
1187 setOperationAction(ISD::STRICT_FMA
, MVT::f128
, Legal
);
1188 setOperationAction(ISD::STRICT_FSQRT
, MVT::f128
, Legal
);
1189 setOperationAction(ISD::STRICT_FP_EXTEND
, MVT::f128
, Legal
);
1190 setOperationAction(ISD::STRICT_FP_ROUND
, MVT::f64
, Legal
);
1191 setOperationAction(ISD::STRICT_FP_ROUND
, MVT::f32
, Legal
);
1192 setOperationAction(ISD::STRICT_FRINT
, MVT::f128
, Legal
);
1193 setOperationAction(ISD::STRICT_FNEARBYINT
, MVT::f128
, Legal
);
1194 setOperationAction(ISD::STRICT_FFLOOR
, MVT::f128
, Legal
);
1195 setOperationAction(ISD::STRICT_FCEIL
, MVT::f128
, Legal
);
1196 setOperationAction(ISD::STRICT_FTRUNC
, MVT::f128
, Legal
);
1197 setOperationAction(ISD::STRICT_FROUND
, MVT::f128
, Legal
);
1198 setOperationAction(ISD::FP_EXTEND
, MVT::v2f32
, Custom
);
1199 setOperationAction(ISD::BSWAP
, MVT::v8i16
, Legal
);
1200 setOperationAction(ISD::BSWAP
, MVT::v4i32
, Legal
);
1201 setOperationAction(ISD::BSWAP
, MVT::v2i64
, Legal
);
1202 setOperationAction(ISD::BSWAP
, MVT::v1i128
, Legal
);
1203 } else if (Subtarget
.hasVSX()) {
1204 setOperationAction(ISD::LOAD
, MVT::f128
, Promote
);
1205 setOperationAction(ISD::STORE
, MVT::f128
, Promote
);
1207 AddPromotedToType(ISD::LOAD
, MVT::f128
, MVT::v4i32
);
1208 AddPromotedToType(ISD::STORE
, MVT::f128
, MVT::v4i32
);
1210 // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1211 // fp_to_uint and int_to_fp.
1212 setOperationAction(ISD::FADD
, MVT::f128
, LibCall
);
1213 setOperationAction(ISD::FSUB
, MVT::f128
, LibCall
);
1215 setOperationAction(ISD::FMUL
, MVT::f128
, Expand
);
1216 setOperationAction(ISD::FDIV
, MVT::f128
, Expand
);
1217 setOperationAction(ISD::FNEG
, MVT::f128
, Expand
);
1218 setOperationAction(ISD::FABS
, MVT::f128
, Expand
);
1219 setOperationAction(ISD::FSQRT
, MVT::f128
, Expand
);
1220 setOperationAction(ISD::FMA
, MVT::f128
, Expand
);
1221 setOperationAction(ISD::FCOPYSIGN
, MVT::f128
, Expand
);
1223 // Expand the fp_extend if the target type is fp128.
1224 setOperationAction(ISD::FP_EXTEND
, MVT::f128
, Expand
);
1225 setOperationAction(ISD::STRICT_FP_EXTEND
, MVT::f128
, Expand
);
1227 // Expand the fp_round if the source type is fp128.
1228 for (MVT VT
: {MVT::f32
, MVT::f64
}) {
1229 setOperationAction(ISD::FP_ROUND
, VT
, Custom
);
1230 setOperationAction(ISD::STRICT_FP_ROUND
, VT
, Custom
);
1233 setOperationAction(ISD::SETCC
, MVT::f128
, Custom
);
1234 setOperationAction(ISD::STRICT_FSETCC
, MVT::f128
, Custom
);
1235 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f128
, Custom
);
1236 setOperationAction(ISD::BR_CC
, MVT::f128
, Expand
);
1238 // Lower following f128 select_cc pattern:
1239 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1240 setOperationAction(ISD::SELECT_CC
, MVT::f128
, Custom
);
1242 // We need to handle f128 SELECT_CC with integer result type.
1243 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1244 setOperationAction(ISD::SELECT_CC
, MVT::i64
, isPPC64
? Custom
: Expand
);
1247 if (Subtarget
.hasP9Altivec()) {
1248 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
1249 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
1251 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i8
, Legal
);
1252 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i16
, Legal
);
1253 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i32
, Legal
);
1254 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i8
, Legal
);
1255 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i16
, Legal
);
1256 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i32
, Legal
);
1257 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i64
, Legal
);
1260 if (Subtarget
.isISA3_1())
1261 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
1264 if (Subtarget
.pairedVectorMemops()) {
1265 addRegisterClass(MVT::v256i1
, &PPC::VSRpRCRegClass
);
1266 setOperationAction(ISD::LOAD
, MVT::v256i1
, Custom
);
1267 setOperationAction(ISD::STORE
, MVT::v256i1
, Custom
);
1269 if (Subtarget
.hasMMA()) {
1270 addRegisterClass(MVT::v512i1
, &PPC::UACCRCRegClass
);
1271 setOperationAction(ISD::LOAD
, MVT::v512i1
, Custom
);
1272 setOperationAction(ISD::STORE
, MVT::v512i1
, Custom
);
1273 setOperationAction(ISD::BUILD_VECTOR
, MVT::v512i1
, Custom
);
1276 if (Subtarget
.has64BitSupport())
1277 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
1279 if (Subtarget
.isISA3_1())
1280 setOperationAction(ISD::SRA
, MVT::v1i128
, Legal
);
1282 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, isPPC64
? Legal
: Custom
);
1285 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
1286 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
1289 if (EnableQuadwordAtomics
&& Subtarget
.hasQuadwordAtomics())
1290 setMaxAtomicSizeInBitsSupported(128);
1292 setBooleanContents(ZeroOrOneBooleanContent
);
1294 if (Subtarget
.hasAltivec()) {
1295 // Altivec instructions set fields to all zeros or all ones.
1296 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
1300 // These libcalls are not available in 32-bit.
1301 setLibcallName(RTLIB::SHL_I128
, nullptr);
1302 setLibcallName(RTLIB::SRL_I128
, nullptr);
1303 setLibcallName(RTLIB::SRA_I128
, nullptr);
1307 setMaxAtomicSizeInBitsSupported(32);
1309 setStackPointerRegisterToSaveRestore(isPPC64
? PPC::X1
: PPC::R1
);
1311 // We have target-specific dag combine patterns for the following nodes:
1312 setTargetDAGCombine(ISD::ADD
);
1313 setTargetDAGCombine(ISD::SHL
);
1314 setTargetDAGCombine(ISD::SRA
);
1315 setTargetDAGCombine(ISD::SRL
);
1316 setTargetDAGCombine(ISD::MUL
);
1317 setTargetDAGCombine(ISD::FMA
);
1318 setTargetDAGCombine(ISD::SINT_TO_FP
);
1319 setTargetDAGCombine(ISD::BUILD_VECTOR
);
1320 if (Subtarget
.hasFPCVT())
1321 setTargetDAGCombine(ISD::UINT_TO_FP
);
1322 setTargetDAGCombine(ISD::LOAD
);
1323 setTargetDAGCombine(ISD::STORE
);
1324 setTargetDAGCombine(ISD::BR_CC
);
1325 if (Subtarget
.useCRBits())
1326 setTargetDAGCombine(ISD::BRCOND
);
1327 setTargetDAGCombine(ISD::BSWAP
);
1328 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
1329 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
1330 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
1332 setTargetDAGCombine(ISD::SIGN_EXTEND
);
1333 setTargetDAGCombine(ISD::ZERO_EXTEND
);
1334 setTargetDAGCombine(ISD::ANY_EXTEND
);
1336 setTargetDAGCombine(ISD::TRUNCATE
);
1337 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
1340 if (Subtarget
.useCRBits()) {
1341 setTargetDAGCombine(ISD::TRUNCATE
);
1342 setTargetDAGCombine(ISD::SETCC
);
1343 setTargetDAGCombine(ISD::SELECT_CC
);
1346 if (Subtarget
.hasP9Altivec()) {
1347 setTargetDAGCombine(ISD::ABS
);
1348 setTargetDAGCombine(ISD::VSELECT
);
1351 setLibcallName(RTLIB::LOG_F128
, "logf128");
1352 setLibcallName(RTLIB::LOG2_F128
, "log2f128");
1353 setLibcallName(RTLIB::LOG10_F128
, "log10f128");
1354 setLibcallName(RTLIB::EXP_F128
, "expf128");
1355 setLibcallName(RTLIB::EXP2_F128
, "exp2f128");
1356 setLibcallName(RTLIB::SIN_F128
, "sinf128");
1357 setLibcallName(RTLIB::COS_F128
, "cosf128");
1358 setLibcallName(RTLIB::POW_F128
, "powf128");
1359 setLibcallName(RTLIB::FMIN_F128
, "fminf128");
1360 setLibcallName(RTLIB::FMAX_F128
, "fmaxf128");
1361 setLibcallName(RTLIB::REM_F128
, "fmodf128");
1362 setLibcallName(RTLIB::SQRT_F128
, "sqrtf128");
1363 setLibcallName(RTLIB::CEIL_F128
, "ceilf128");
1364 setLibcallName(RTLIB::FLOOR_F128
, "floorf128");
1365 setLibcallName(RTLIB::TRUNC_F128
, "truncf128");
1366 setLibcallName(RTLIB::ROUND_F128
, "roundf128");
1367 setLibcallName(RTLIB::LROUND_F128
, "lroundf128");
1368 setLibcallName(RTLIB::LLROUND_F128
, "llroundf128");
1369 setLibcallName(RTLIB::RINT_F128
, "rintf128");
1370 setLibcallName(RTLIB::LRINT_F128
, "lrintf128");
1371 setLibcallName(RTLIB::LLRINT_F128
, "llrintf128");
1372 setLibcallName(RTLIB::NEARBYINT_F128
, "nearbyintf128");
1373 setLibcallName(RTLIB::FMA_F128
, "fmaf128");
1375 // With 32 condition bits, we don't need to sink (and duplicate) compares
1376 // aggressively in CodeGenPrep.
1377 if (Subtarget
.useCRBits()) {
1378 setHasMultipleConditionRegisters();
1379 setJumpIsExpensive();
1382 setMinFunctionAlignment(Align(4));
1384 switch (Subtarget
.getCPUDirective()) {
1389 case PPC::DIR_E500mc
:
1390 case PPC::DIR_E5500
:
1393 case PPC::DIR_PWR5X
:
1395 case PPC::DIR_PWR6X
:
1399 case PPC::DIR_PWR10
:
1400 case PPC::DIR_PWR_FUTURE
:
1401 setPrefLoopAlignment(Align(16));
1402 setPrefFunctionAlignment(Align(16));
1406 if (Subtarget
.enableMachineScheduler())
1407 setSchedulingPreference(Sched::Source
);
1409 setSchedulingPreference(Sched::Hybrid
);
1411 computeRegisterProperties(STI
.getRegisterInfo());
1413 // The Freescale cores do better with aggressive inlining of memcpy and
1414 // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1415 if (Subtarget
.getCPUDirective() == PPC::DIR_E500mc
||
1416 Subtarget
.getCPUDirective() == PPC::DIR_E5500
) {
1417 MaxStoresPerMemset
= 32;
1418 MaxStoresPerMemsetOptSize
= 16;
1419 MaxStoresPerMemcpy
= 32;
1420 MaxStoresPerMemcpyOptSize
= 8;
1421 MaxStoresPerMemmove
= 32;
1422 MaxStoresPerMemmoveOptSize
= 8;
1423 } else if (Subtarget
.getCPUDirective() == PPC::DIR_A2
) {
1424 // The A2 also benefits from (very) aggressive inlining of memcpy and
1425 // friends. The overhead of a the function call, even when warm, can be
1426 // over one hundred cycles.
1427 MaxStoresPerMemset
= 128;
1428 MaxStoresPerMemcpy
= 128;
1429 MaxStoresPerMemmove
= 128;
1430 MaxLoadsPerMemcmp
= 128;
1432 MaxLoadsPerMemcmp
= 8;
1433 MaxLoadsPerMemcmpOptSize
= 4;
1436 IsStrictFPEnabled
= true;
1438 // Let the subtarget (CPU) decide if a predictable select is more expensive
1439 // than the corresponding branch. This information is used in CGP to decide
1440 // when to convert selects into branches.
1441 PredictableSelectIsExpensive
= Subtarget
.isPredictableSelectIsExpensive();
1444 // *********************************** NOTE ************************************
1445 // For selecting load and store instructions, the addressing modes are defined
1446 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1447 // patterns to match the load the store instructions.
1449 // The TD definitions for the addressing modes correspond to their respective
1450 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1451 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1452 // address mode flags of a particular node. Afterwards, the computed address
1453 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1454 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1455 // accordingly, based on the preferred addressing mode.
1457 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1458 // MemOpFlags contains all the possible flags that can be used to compute the
1459 // optimal addressing mode for load and store instructions.
1460 // AddrMode contains all the possible load and store addressing modes available
1461 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1463 // When adding new load and store instructions, it is possible that new address
1464 // flags may need to be added into MemOpFlags, and a new addressing mode will
1465 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1466 // of the minimal and main distinguishing address flags for the new load/store
1467 // instructions) will need to be added into initializeAddrModeMap() below.
1468 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1469 // need to be updated to account for selecting the optimal addressing mode.
1470 // *****************************************************************************
1471 /// Initialize the map that relates the different addressing modes of the load
1472 /// and store instructions to a set of flags. This ensures the load/store
1473 /// instruction is correctly matched during instruction selection.
1474 void PPCTargetLowering::initializeAddrModeMap() {
1475 AddrModesMap
[PPC::AM_DForm
] = {
1477 PPC::MOF_ZExt
| PPC::MOF_RPlusSImm16
| PPC::MOF_WordInt
,
1478 PPC::MOF_ZExt
| PPC::MOF_RPlusLo
| PPC::MOF_WordInt
,
1479 PPC::MOF_ZExt
| PPC::MOF_NotAddNorCst
| PPC::MOF_WordInt
,
1480 PPC::MOF_ZExt
| PPC::MOF_AddrIsSImm32
| PPC::MOF_WordInt
,
1481 // LBZ, LHZ, STB, STH
1482 PPC::MOF_ZExt
| PPC::MOF_RPlusSImm16
| PPC::MOF_SubWordInt
,
1483 PPC::MOF_ZExt
| PPC::MOF_RPlusLo
| PPC::MOF_SubWordInt
,
1484 PPC::MOF_ZExt
| PPC::MOF_NotAddNorCst
| PPC::MOF_SubWordInt
,
1485 PPC::MOF_ZExt
| PPC::MOF_AddrIsSImm32
| PPC::MOF_SubWordInt
,
1487 PPC::MOF_SExt
| PPC::MOF_RPlusSImm16
| PPC::MOF_SubWordInt
,
1488 PPC::MOF_SExt
| PPC::MOF_RPlusLo
| PPC::MOF_SubWordInt
,
1489 PPC::MOF_SExt
| PPC::MOF_NotAddNorCst
| PPC::MOF_SubWordInt
,
1490 PPC::MOF_SExt
| PPC::MOF_AddrIsSImm32
| PPC::MOF_SubWordInt
,
1491 // LFS, LFD, STFS, STFD
1492 PPC::MOF_RPlusSImm16
| PPC::MOF_ScalarFloat
| PPC::MOF_SubtargetBeforeP9
,
1493 PPC::MOF_RPlusLo
| PPC::MOF_ScalarFloat
| PPC::MOF_SubtargetBeforeP9
,
1494 PPC::MOF_NotAddNorCst
| PPC::MOF_ScalarFloat
| PPC::MOF_SubtargetBeforeP9
,
1495 PPC::MOF_AddrIsSImm32
| PPC::MOF_ScalarFloat
| PPC::MOF_SubtargetBeforeP9
,
1497 AddrModesMap
[PPC::AM_DSForm
] = {
1499 PPC::MOF_SExt
| PPC::MOF_RPlusSImm16Mult4
| PPC::MOF_WordInt
,
1500 PPC::MOF_SExt
| PPC::MOF_NotAddNorCst
| PPC::MOF_WordInt
,
1501 PPC::MOF_SExt
| PPC::MOF_AddrIsSImm32
| PPC::MOF_WordInt
,
1503 PPC::MOF_RPlusSImm16Mult4
| PPC::MOF_DoubleWordInt
,
1504 PPC::MOF_NotAddNorCst
| PPC::MOF_DoubleWordInt
,
1505 PPC::MOF_AddrIsSImm32
| PPC::MOF_DoubleWordInt
,
1506 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1507 PPC::MOF_RPlusSImm16Mult4
| PPC::MOF_ScalarFloat
| PPC::MOF_SubtargetP9
,
1508 PPC::MOF_NotAddNorCst
| PPC::MOF_ScalarFloat
| PPC::MOF_SubtargetP9
,
1509 PPC::MOF_AddrIsSImm32
| PPC::MOF_ScalarFloat
| PPC::MOF_SubtargetP9
,
1511 AddrModesMap
[PPC::AM_DQForm
] = {
1513 PPC::MOF_RPlusSImm16Mult16
| PPC::MOF_Vector
| PPC::MOF_SubtargetP9
,
1514 PPC::MOF_NotAddNorCst
| PPC::MOF_Vector
| PPC::MOF_SubtargetP9
,
1515 PPC::MOF_AddrIsSImm32
| PPC::MOF_Vector
| PPC::MOF_SubtargetP9
,
1516 PPC::MOF_RPlusSImm16Mult16
| PPC::MOF_Vector256
| PPC::MOF_SubtargetP10
,
1517 PPC::MOF_NotAddNorCst
| PPC::MOF_Vector256
| PPC::MOF_SubtargetP10
,
1518 PPC::MOF_AddrIsSImm32
| PPC::MOF_Vector256
| PPC::MOF_SubtargetP10
,
1522 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1523 /// the desired ByVal argument alignment.
1524 static void getMaxByValAlign(Type
*Ty
, Align
&MaxAlign
, Align MaxMaxAlign
) {
1525 if (MaxAlign
== MaxMaxAlign
)
1527 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
1528 if (MaxMaxAlign
>= 32 &&
1529 VTy
->getPrimitiveSizeInBits().getFixedSize() >= 256)
1530 MaxAlign
= Align(32);
1531 else if (VTy
->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1533 MaxAlign
= Align(16);
1534 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1536 getMaxByValAlign(ATy
->getElementType(), EltAlign
, MaxMaxAlign
);
1537 if (EltAlign
> MaxAlign
)
1538 MaxAlign
= EltAlign
;
1539 } else if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1540 for (auto *EltTy
: STy
->elements()) {
1542 getMaxByValAlign(EltTy
, EltAlign
, MaxMaxAlign
);
1543 if (EltAlign
> MaxAlign
)
1544 MaxAlign
= EltAlign
;
1545 if (MaxAlign
== MaxMaxAlign
)
1551 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1552 /// function arguments in the caller parameter area.
1553 unsigned PPCTargetLowering::getByValTypeAlignment(Type
*Ty
,
1554 const DataLayout
&DL
) const {
1555 // 16byte and wider vectors are passed on 16byte boundary.
1556 // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1557 Align Alignment
= Subtarget
.isPPC64() ? Align(8) : Align(4);
1558 if (Subtarget
.hasAltivec())
1559 getMaxByValAlign(Ty
, Alignment
, Align(16));
1560 return Alignment
.value();
1563 bool PPCTargetLowering::useSoftFloat() const {
1564 return Subtarget
.useSoftFloat();
1567 bool PPCTargetLowering::hasSPE() const {
1568 return Subtarget
.hasSPE();
1571 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
1572 return VT
.isScalarInteger();
1575 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1576 switch ((PPCISD::NodeType
)Opcode
) {
1577 case PPCISD::FIRST_NUMBER
: break;
1578 case PPCISD::FSEL
: return "PPCISD::FSEL";
1579 case PPCISD::XSMAXCDP
: return "PPCISD::XSMAXCDP";
1580 case PPCISD::XSMINCDP
: return "PPCISD::XSMINCDP";
1581 case PPCISD::FCFID
: return "PPCISD::FCFID";
1582 case PPCISD::FCFIDU
: return "PPCISD::FCFIDU";
1583 case PPCISD::FCFIDS
: return "PPCISD::FCFIDS";
1584 case PPCISD::FCFIDUS
: return "PPCISD::FCFIDUS";
1585 case PPCISD::FCTIDZ
: return "PPCISD::FCTIDZ";
1586 case PPCISD::FCTIWZ
: return "PPCISD::FCTIWZ";
1587 case PPCISD::FCTIDUZ
: return "PPCISD::FCTIDUZ";
1588 case PPCISD::FCTIWUZ
: return "PPCISD::FCTIWUZ";
1589 case PPCISD::FP_TO_UINT_IN_VSR
:
1590 return "PPCISD::FP_TO_UINT_IN_VSR,";
1591 case PPCISD::FP_TO_SINT_IN_VSR
:
1592 return "PPCISD::FP_TO_SINT_IN_VSR";
1593 case PPCISD::FRE
: return "PPCISD::FRE";
1594 case PPCISD::FRSQRTE
: return "PPCISD::FRSQRTE";
1595 case PPCISD::FTSQRT
:
1596 return "PPCISD::FTSQRT";
1598 return "PPCISD::FSQRT";
1599 case PPCISD::STFIWX
: return "PPCISD::STFIWX";
1600 case PPCISD::VPERM
: return "PPCISD::VPERM";
1601 case PPCISD::XXSPLT
: return "PPCISD::XXSPLT";
1602 case PPCISD::XXSPLTI_SP_TO_DP
:
1603 return "PPCISD::XXSPLTI_SP_TO_DP";
1604 case PPCISD::XXSPLTI32DX
:
1605 return "PPCISD::XXSPLTI32DX";
1606 case PPCISD::VECINSERT
: return "PPCISD::VECINSERT";
1607 case PPCISD::XXPERMDI
: return "PPCISD::XXPERMDI";
1608 case PPCISD::VECSHL
: return "PPCISD::VECSHL";
1609 case PPCISD::CMPB
: return "PPCISD::CMPB";
1610 case PPCISD::Hi
: return "PPCISD::Hi";
1611 case PPCISD::Lo
: return "PPCISD::Lo";
1612 case PPCISD::TOC_ENTRY
: return "PPCISD::TOC_ENTRY";
1613 case PPCISD::ATOMIC_CMP_SWAP_8
: return "PPCISD::ATOMIC_CMP_SWAP_8";
1614 case PPCISD::ATOMIC_CMP_SWAP_16
: return "PPCISD::ATOMIC_CMP_SWAP_16";
1615 case PPCISD::DYNALLOC
: return "PPCISD::DYNALLOC";
1616 case PPCISD::DYNAREAOFFSET
: return "PPCISD::DYNAREAOFFSET";
1617 case PPCISD::PROBED_ALLOCA
: return "PPCISD::PROBED_ALLOCA";
1618 case PPCISD::GlobalBaseReg
: return "PPCISD::GlobalBaseReg";
1619 case PPCISD::SRL
: return "PPCISD::SRL";
1620 case PPCISD::SRA
: return "PPCISD::SRA";
1621 case PPCISD::SHL
: return "PPCISD::SHL";
1622 case PPCISD::SRA_ADDZE
: return "PPCISD::SRA_ADDZE";
1623 case PPCISD::CALL
: return "PPCISD::CALL";
1624 case PPCISD::CALL_NOP
: return "PPCISD::CALL_NOP";
1625 case PPCISD::CALL_NOTOC
: return "PPCISD::CALL_NOTOC";
1626 case PPCISD::MTCTR
: return "PPCISD::MTCTR";
1627 case PPCISD::BCTRL
: return "PPCISD::BCTRL";
1628 case PPCISD::BCTRL_LOAD_TOC
: return "PPCISD::BCTRL_LOAD_TOC";
1629 case PPCISD::RET_FLAG
: return "PPCISD::RET_FLAG";
1630 case PPCISD::READ_TIME_BASE
: return "PPCISD::READ_TIME_BASE";
1631 case PPCISD::EH_SJLJ_SETJMP
: return "PPCISD::EH_SJLJ_SETJMP";
1632 case PPCISD::EH_SJLJ_LONGJMP
: return "PPCISD::EH_SJLJ_LONGJMP";
1633 case PPCISD::MFOCRF
: return "PPCISD::MFOCRF";
1634 case PPCISD::MFVSR
: return "PPCISD::MFVSR";
1635 case PPCISD::MTVSRA
: return "PPCISD::MTVSRA";
1636 case PPCISD::MTVSRZ
: return "PPCISD::MTVSRZ";
1637 case PPCISD::SINT_VEC_TO_FP
: return "PPCISD::SINT_VEC_TO_FP";
1638 case PPCISD::UINT_VEC_TO_FP
: return "PPCISD::UINT_VEC_TO_FP";
1639 case PPCISD::SCALAR_TO_VECTOR_PERMUTED
:
1640 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1641 case PPCISD::ANDI_rec_1_EQ_BIT
:
1642 return "PPCISD::ANDI_rec_1_EQ_BIT";
1643 case PPCISD::ANDI_rec_1_GT_BIT
:
1644 return "PPCISD::ANDI_rec_1_GT_BIT";
1645 case PPCISD::VCMP
: return "PPCISD::VCMP";
1646 case PPCISD::VCMP_rec
: return "PPCISD::VCMP_rec";
1647 case PPCISD::LBRX
: return "PPCISD::LBRX";
1648 case PPCISD::STBRX
: return "PPCISD::STBRX";
1649 case PPCISD::LFIWAX
: return "PPCISD::LFIWAX";
1650 case PPCISD::LFIWZX
: return "PPCISD::LFIWZX";
1651 case PPCISD::LXSIZX
: return "PPCISD::LXSIZX";
1652 case PPCISD::STXSIX
: return "PPCISD::STXSIX";
1653 case PPCISD::VEXTS
: return "PPCISD::VEXTS";
1654 case PPCISD::LXVD2X
: return "PPCISD::LXVD2X";
1655 case PPCISD::STXVD2X
: return "PPCISD::STXVD2X";
1656 case PPCISD::LOAD_VEC_BE
: return "PPCISD::LOAD_VEC_BE";
1657 case PPCISD::STORE_VEC_BE
: return "PPCISD::STORE_VEC_BE";
1658 case PPCISD::ST_VSR_SCAL_INT
:
1659 return "PPCISD::ST_VSR_SCAL_INT";
1660 case PPCISD::COND_BRANCH
: return "PPCISD::COND_BRANCH";
1661 case PPCISD::BDNZ
: return "PPCISD::BDNZ";
1662 case PPCISD::BDZ
: return "PPCISD::BDZ";
1663 case PPCISD::MFFS
: return "PPCISD::MFFS";
1664 case PPCISD::FADDRTZ
: return "PPCISD::FADDRTZ";
1665 case PPCISD::TC_RETURN
: return "PPCISD::TC_RETURN";
1666 case PPCISD::CR6SET
: return "PPCISD::CR6SET";
1667 case PPCISD::CR6UNSET
: return "PPCISD::CR6UNSET";
1668 case PPCISD::PPC32_GOT
: return "PPCISD::PPC32_GOT";
1669 case PPCISD::PPC32_PICGOT
: return "PPCISD::PPC32_PICGOT";
1670 case PPCISD::ADDIS_GOT_TPREL_HA
: return "PPCISD::ADDIS_GOT_TPREL_HA";
1671 case PPCISD::LD_GOT_TPREL_L
: return "PPCISD::LD_GOT_TPREL_L";
1672 case PPCISD::ADD_TLS
: return "PPCISD::ADD_TLS";
1673 case PPCISD::ADDIS_TLSGD_HA
: return "PPCISD::ADDIS_TLSGD_HA";
1674 case PPCISD::ADDI_TLSGD_L
: return "PPCISD::ADDI_TLSGD_L";
1675 case PPCISD::GET_TLS_ADDR
: return "PPCISD::GET_TLS_ADDR";
1676 case PPCISD::ADDI_TLSGD_L_ADDR
: return "PPCISD::ADDI_TLSGD_L_ADDR";
1677 case PPCISD::TLSGD_AIX
: return "PPCISD::TLSGD_AIX";
1678 case PPCISD::ADDIS_TLSLD_HA
: return "PPCISD::ADDIS_TLSLD_HA";
1679 case PPCISD::ADDI_TLSLD_L
: return "PPCISD::ADDI_TLSLD_L";
1680 case PPCISD::GET_TLSLD_ADDR
: return "PPCISD::GET_TLSLD_ADDR";
1681 case PPCISD::ADDI_TLSLD_L_ADDR
: return "PPCISD::ADDI_TLSLD_L_ADDR";
1682 case PPCISD::ADDIS_DTPREL_HA
: return "PPCISD::ADDIS_DTPREL_HA";
1683 case PPCISD::ADDI_DTPREL_L
: return "PPCISD::ADDI_DTPREL_L";
1684 case PPCISD::PADDI_DTPREL
:
1685 return "PPCISD::PADDI_DTPREL";
1686 case PPCISD::VADD_SPLAT
: return "PPCISD::VADD_SPLAT";
1687 case PPCISD::SC
: return "PPCISD::SC";
1688 case PPCISD::CLRBHRB
: return "PPCISD::CLRBHRB";
1689 case PPCISD::MFBHRBE
: return "PPCISD::MFBHRBE";
1690 case PPCISD::RFEBB
: return "PPCISD::RFEBB";
1691 case PPCISD::XXSWAPD
: return "PPCISD::XXSWAPD";
1692 case PPCISD::SWAP_NO_CHAIN
: return "PPCISD::SWAP_NO_CHAIN";
1693 case PPCISD::VABSD
: return "PPCISD::VABSD";
1694 case PPCISD::BUILD_FP128
: return "PPCISD::BUILD_FP128";
1695 case PPCISD::BUILD_SPE64
: return "PPCISD::BUILD_SPE64";
1696 case PPCISD::EXTRACT_SPE
: return "PPCISD::EXTRACT_SPE";
1697 case PPCISD::EXTSWSLI
: return "PPCISD::EXTSWSLI";
1698 case PPCISD::LD_VSX_LH
: return "PPCISD::LD_VSX_LH";
1699 case PPCISD::FP_EXTEND_HALF
: return "PPCISD::FP_EXTEND_HALF";
1700 case PPCISD::MAT_PCREL_ADDR
: return "PPCISD::MAT_PCREL_ADDR";
1701 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR
:
1702 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1703 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR
:
1704 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1705 case PPCISD::ACC_BUILD
: return "PPCISD::ACC_BUILD";
1706 case PPCISD::PAIR_BUILD
: return "PPCISD::PAIR_BUILD";
1707 case PPCISD::EXTRACT_VSX_REG
: return "PPCISD::EXTRACT_VSX_REG";
1708 case PPCISD::XXMFACC
: return "PPCISD::XXMFACC";
1709 case PPCISD::LD_SPLAT
: return "PPCISD::LD_SPLAT";
1710 case PPCISD::FNMSUB
: return "PPCISD::FNMSUB";
1711 case PPCISD::STRICT_FADDRTZ
:
1712 return "PPCISD::STRICT_FADDRTZ";
1713 case PPCISD::STRICT_FCTIDZ
:
1714 return "PPCISD::STRICT_FCTIDZ";
1715 case PPCISD::STRICT_FCTIWZ
:
1716 return "PPCISD::STRICT_FCTIWZ";
1717 case PPCISD::STRICT_FCTIDUZ
:
1718 return "PPCISD::STRICT_FCTIDUZ";
1719 case PPCISD::STRICT_FCTIWUZ
:
1720 return "PPCISD::STRICT_FCTIWUZ";
1721 case PPCISD::STRICT_FCFID
:
1722 return "PPCISD::STRICT_FCFID";
1723 case PPCISD::STRICT_FCFIDU
:
1724 return "PPCISD::STRICT_FCFIDU";
1725 case PPCISD::STRICT_FCFIDS
:
1726 return "PPCISD::STRICT_FCFIDS";
1727 case PPCISD::STRICT_FCFIDUS
:
1728 return "PPCISD::STRICT_FCFIDUS";
1729 case PPCISD::LXVRZX
: return "PPCISD::LXVRZX";
1734 EVT
PPCTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&C
,
1737 return Subtarget
.useCRBits() ? MVT::i1
: MVT::i32
;
1739 return VT
.changeVectorElementTypeToInteger();
1742 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT
) const {
1743 assert(VT
.isFloatingPoint() && "Non-floating-point FMA?");
1747 //===----------------------------------------------------------------------===//
1748 // Node matching predicates, for use by the tblgen matching code.
1749 //===----------------------------------------------------------------------===//
1751 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1752 static bool isFloatingPointZero(SDValue Op
) {
1753 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
1754 return CFP
->getValueAPF().isZero();
1755 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
1756 // Maybe this has already been legalized into the constant pool?
1757 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
.getOperand(1)))
1758 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
1759 return CFP
->getValueAPF().isZero();
1764 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
1765 /// true if Op is undef or if it matches the specified value.
1766 static bool isConstantOrUndef(int Op
, int Val
) {
1767 return Op
< 0 || Op
== Val
;
1770 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1771 /// VPKUHUM instruction.
1772 /// The ShuffleKind distinguishes between big-endian operations with
1773 /// two different inputs (0), either-endian operations with two identical
1774 /// inputs (1), and little-endian operations with two different inputs (2).
1775 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1776 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
1777 SelectionDAG
&DAG
) {
1778 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
1779 if (ShuffleKind
== 0) {
1782 for (unsigned i
= 0; i
!= 16; ++i
)
1783 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1))
1785 } else if (ShuffleKind
== 2) {
1788 for (unsigned i
= 0; i
!= 16; ++i
)
1789 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2))
1791 } else if (ShuffleKind
== 1) {
1792 unsigned j
= IsLE
? 0 : 1;
1793 for (unsigned i
= 0; i
!= 8; ++i
)
1794 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+j
) ||
1795 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+j
))
1801 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1802 /// VPKUWUM instruction.
1803 /// The ShuffleKind distinguishes between big-endian operations with
1804 /// two different inputs (0), either-endian operations with two identical
1805 /// inputs (1), and little-endian operations with two different inputs (2).
1806 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1807 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
1808 SelectionDAG
&DAG
) {
1809 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
1810 if (ShuffleKind
== 0) {
1813 for (unsigned i
= 0; i
!= 16; i
+= 2)
1814 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
1815 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3))
1817 } else if (ShuffleKind
== 2) {
1820 for (unsigned i
= 0; i
!= 16; i
+= 2)
1821 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2) ||
1822 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+1))
1824 } else if (ShuffleKind
== 1) {
1825 unsigned j
= IsLE
? 0 : 2;
1826 for (unsigned i
= 0; i
!= 8; i
+= 2)
1827 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+j
) ||
1828 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+j
+1) ||
1829 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+j
) ||
1830 !isConstantOrUndef(N
->getMaskElt(i
+9), i
*2+j
+1))
1836 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1837 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1838 /// current subtarget.
1840 /// The ShuffleKind distinguishes between big-endian operations with
1841 /// two different inputs (0), either-endian operations with two identical
1842 /// inputs (1), and little-endian operations with two different inputs (2).
1843 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1844 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
1845 SelectionDAG
&DAG
) {
1846 const PPCSubtarget
& Subtarget
=
1847 static_cast<const PPCSubtarget
&>(DAG
.getSubtarget());
1848 if (!Subtarget
.hasP8Vector())
1851 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
1852 if (ShuffleKind
== 0) {
1855 for (unsigned i
= 0; i
!= 16; i
+= 4)
1856 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+4) ||
1857 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+5) ||
1858 !isConstantOrUndef(N
->getMaskElt(i
+2), i
*2+6) ||
1859 !isConstantOrUndef(N
->getMaskElt(i
+3), i
*2+7))
1861 } else if (ShuffleKind
== 2) {
1864 for (unsigned i
= 0; i
!= 16; i
+= 4)
1865 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2) ||
1866 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+1) ||
1867 !isConstantOrUndef(N
->getMaskElt(i
+2), i
*2+2) ||
1868 !isConstantOrUndef(N
->getMaskElt(i
+3), i
*2+3))
1870 } else if (ShuffleKind
== 1) {
1871 unsigned j
= IsLE
? 0 : 4;
1872 for (unsigned i
= 0; i
!= 8; i
+= 4)
1873 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+j
) ||
1874 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+j
+1) ||
1875 !isConstantOrUndef(N
->getMaskElt(i
+2), i
*2+j
+2) ||
1876 !isConstantOrUndef(N
->getMaskElt(i
+3), i
*2+j
+3) ||
1877 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+j
) ||
1878 !isConstantOrUndef(N
->getMaskElt(i
+9), i
*2+j
+1) ||
1879 !isConstantOrUndef(N
->getMaskElt(i
+10), i
*2+j
+2) ||
1880 !isConstantOrUndef(N
->getMaskElt(i
+11), i
*2+j
+3))
1886 /// isVMerge - Common function, used to match vmrg* shuffles.
1888 static bool isVMerge(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
1889 unsigned LHSStart
, unsigned RHSStart
) {
1890 if (N
->getValueType(0) != MVT::v16i8
)
1892 assert((UnitSize
== 1 || UnitSize
== 2 || UnitSize
== 4) &&
1893 "Unsupported merge size!");
1895 for (unsigned i
= 0; i
!= 8/UnitSize
; ++i
) // Step over units
1896 for (unsigned j
= 0; j
!= UnitSize
; ++j
) { // Step over bytes within unit
1897 if (!isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+j
),
1898 LHSStart
+j
+i
*UnitSize
) ||
1899 !isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+UnitSize
+j
),
1900 RHSStart
+j
+i
*UnitSize
))
1906 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1907 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1908 /// The ShuffleKind distinguishes between big-endian merges with two
1909 /// different inputs (0), either-endian merges with two identical inputs (1),
1910 /// and little-endian merges with two different inputs (2). For the latter,
1911 /// the input operands are swapped (see PPCInstrAltivec.td).
1912 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
1913 unsigned ShuffleKind
, SelectionDAG
&DAG
) {
1914 if (DAG
.getDataLayout().isLittleEndian()) {
1915 if (ShuffleKind
== 1) // unary
1916 return isVMerge(N
, UnitSize
, 0, 0);
1917 else if (ShuffleKind
== 2) // swapped
1918 return isVMerge(N
, UnitSize
, 0, 16);
1922 if (ShuffleKind
== 1) // unary
1923 return isVMerge(N
, UnitSize
, 8, 8);
1924 else if (ShuffleKind
== 0) // normal
1925 return isVMerge(N
, UnitSize
, 8, 24);
1931 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1932 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1933 /// The ShuffleKind distinguishes between big-endian merges with two
1934 /// different inputs (0), either-endian merges with two identical inputs (1),
1935 /// and little-endian merges with two different inputs (2). For the latter,
1936 /// the input operands are swapped (see PPCInstrAltivec.td).
1937 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
1938 unsigned ShuffleKind
, SelectionDAG
&DAG
) {
1939 if (DAG
.getDataLayout().isLittleEndian()) {
1940 if (ShuffleKind
== 1) // unary
1941 return isVMerge(N
, UnitSize
, 8, 8);
1942 else if (ShuffleKind
== 2) // swapped
1943 return isVMerge(N
, UnitSize
, 8, 24);
1947 if (ShuffleKind
== 1) // unary
1948 return isVMerge(N
, UnitSize
, 0, 0);
1949 else if (ShuffleKind
== 0) // normal
1950 return isVMerge(N
, UnitSize
, 0, 16);
1957 * Common function used to match vmrgew and vmrgow shuffles
1959 * The indexOffset determines whether to look for even or odd words in
1960 * the shuffle mask. This is based on the of the endianness of the target
1963 * - Use offset of 0 to check for odd elements
1964 * - Use offset of 4 to check for even elements
1966 * - Use offset of 0 to check for even elements
1967 * - Use offset of 4 to check for odd elements
1968 * A detailed description of the vector element ordering for little endian and
1969 * big endian can be found at
1970 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1971 * Targeting your applications - what little endian and big endian IBM XL C/C++
1972 * compiler differences mean to you
1974 * The mask to the shuffle vector instruction specifies the indices of the
1975 * elements from the two input vectors to place in the result. The elements are
1976 * numbered in array-access order, starting with the first vector. These vectors
1977 * are always of type v16i8, thus each vector will contain 16 elements of size
1978 * 8. More info on the shuffle vector can be found in the
1979 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1980 * Language Reference.
1982 * The RHSStartValue indicates whether the same input vectors are used (unary)
1983 * or two different input vectors are used, based on the following:
1984 * - If the instruction uses the same vector for both inputs, the range of the
1985 * indices will be 0 to 15. In this case, the RHSStart value passed should
1987 * - If the instruction has two different vectors then the range of the
1988 * indices will be 0 to 31. In this case, the RHSStart value passed should
1989 * be 16 (indices 0-15 specify elements in the first vector while indices 16
1990 * to 31 specify elements in the second vector).
1992 * \param[in] N The shuffle vector SD Node to analyze
1993 * \param[in] IndexOffset Specifies whether to look for even or odd elements
1994 * \param[in] RHSStartValue Specifies the starting index for the righthand input
1995 * vector to the shuffle_vector instruction
1996 * \return true iff this shuffle vector represents an even or odd word merge
1998 static bool isVMerge(ShuffleVectorSDNode
*N
, unsigned IndexOffset
,
1999 unsigned RHSStartValue
) {
2000 if (N
->getValueType(0) != MVT::v16i8
)
2003 for (unsigned i
= 0; i
< 2; ++i
)
2004 for (unsigned j
= 0; j
< 4; ++j
)
2005 if (!isConstantOrUndef(N
->getMaskElt(i
*4+j
),
2006 i
*RHSStartValue
+j
+IndexOffset
) ||
2007 !isConstantOrUndef(N
->getMaskElt(i
*4+j
+8),
2008 i
*RHSStartValue
+j
+IndexOffset
+8))
2014 * Determine if the specified shuffle mask is suitable for the vmrgew or
2015 * vmrgow instructions.
2017 * \param[in] N The shuffle vector SD Node to analyze
2018 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2019 * \param[in] ShuffleKind Identify the type of merge:
2020 * - 0 = big-endian merge with two different inputs;
2021 * - 1 = either-endian merge with two identical inputs;
2022 * - 2 = little-endian merge with two different inputs (inputs are swapped for
2023 * little-endian merges).
2024 * \param[in] DAG The current SelectionDAG
2025 * \return true iff this shuffle mask
2027 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode
*N
, bool CheckEven
,
2028 unsigned ShuffleKind
, SelectionDAG
&DAG
) {
2029 if (DAG
.getDataLayout().isLittleEndian()) {
2030 unsigned indexOffset
= CheckEven
? 4 : 0;
2031 if (ShuffleKind
== 1) // Unary
2032 return isVMerge(N
, indexOffset
, 0);
2033 else if (ShuffleKind
== 2) // swapped
2034 return isVMerge(N
, indexOffset
, 16);
2039 unsigned indexOffset
= CheckEven
? 0 : 4;
2040 if (ShuffleKind
== 1) // Unary
2041 return isVMerge(N
, indexOffset
, 0);
2042 else if (ShuffleKind
== 0) // Normal
2043 return isVMerge(N
, indexOffset
, 16);
2050 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2051 /// amount, otherwise return -1.
2052 /// The ShuffleKind distinguishes between big-endian operations with two
2053 /// different inputs (0), either-endian operations with two identical inputs
2054 /// (1), and little-endian operations with two different inputs (2). For the
2055 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2056 int PPC::isVSLDOIShuffleMask(SDNode
*N
, unsigned ShuffleKind
,
2057 SelectionDAG
&DAG
) {
2058 if (N
->getValueType(0) != MVT::v16i8
)
2061 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2063 // Find the first non-undef value in the shuffle mask.
2065 for (i
= 0; i
!= 16 && SVOp
->getMaskElt(i
) < 0; ++i
)
2068 if (i
== 16) return -1; // all undef.
2070 // Otherwise, check to see if the rest of the elements are consecutively
2071 // numbered from this value.
2072 unsigned ShiftAmt
= SVOp
->getMaskElt(i
);
2073 if (ShiftAmt
< i
) return -1;
2076 bool isLE
= DAG
.getDataLayout().isLittleEndian();
2078 if ((ShuffleKind
== 0 && !isLE
) || (ShuffleKind
== 2 && isLE
)) {
2079 // Check the rest of the elements to see if they are consecutive.
2080 for (++i
; i
!= 16; ++i
)
2081 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), ShiftAmt
+i
))
2083 } else if (ShuffleKind
== 1) {
2084 // Check the rest of the elements to see if they are consecutive.
2085 for (++i
; i
!= 16; ++i
)
2086 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), (ShiftAmt
+i
) & 15))
2092 ShiftAmt
= 16 - ShiftAmt
;
2097 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2098 /// specifies a splat of a single element that is suitable for input to
2099 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2100 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
) {
2101 assert(N
->getValueType(0) == MVT::v16i8
&& isPowerOf2_32(EltSize
) &&
2102 EltSize
<= 8 && "Can only handle 1,2,4,8 byte element sizes");
2104 // The consecutive indices need to specify an element, not part of two
2105 // different elements. So abandon ship early if this isn't the case.
2106 if (N
->getMaskElt(0) % EltSize
!= 0)
2109 // This is a splat operation if each element of the permute is the same, and
2110 // if the value doesn't reference the second vector.
2111 unsigned ElementBase
= N
->getMaskElt(0);
2113 // FIXME: Handle UNDEF elements too!
2114 if (ElementBase
>= 16)
2117 // Check that the indices are consecutive, in the case of a multi-byte element
2118 // splatted with a v16i8 mask.
2119 for (unsigned i
= 1; i
!= EltSize
; ++i
)
2120 if (N
->getMaskElt(i
) < 0 || N
->getMaskElt(i
) != (int)(i
+ElementBase
))
2123 for (unsigned i
= EltSize
, e
= 16; i
!= e
; i
+= EltSize
) {
2124 if (N
->getMaskElt(i
) < 0) continue;
2125 for (unsigned j
= 0; j
!= EltSize
; ++j
)
2126 if (N
->getMaskElt(i
+j
) != N
->getMaskElt(j
))
2132 /// Check that the mask is shuffling N byte elements. Within each N byte
2133 /// element of the mask, the indices could be either in increasing or
2134 /// decreasing order as long as they are consecutive.
2135 /// \param[in] N the shuffle vector SD Node to analyze
2136 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2137 /// Word/DoubleWord/QuadWord).
2138 /// \param[in] StepLen the delta indices number among the N byte element, if
2139 /// the mask is in increasing/decreasing order then it is 1/-1.
2140 /// \return true iff the mask is shuffling N byte elements.
2141 static bool isNByteElemShuffleMask(ShuffleVectorSDNode
*N
, unsigned Width
,
2143 assert((Width
== 2 || Width
== 4 || Width
== 8 || Width
== 16) &&
2144 "Unexpected element width.");
2145 assert((StepLen
== 1 || StepLen
== -1) && "Unexpected element width.");
2147 unsigned NumOfElem
= 16 / Width
;
2148 unsigned MaskVal
[16]; // Width is never greater than 16
2149 for (unsigned i
= 0; i
< NumOfElem
; ++i
) {
2150 MaskVal
[0] = N
->getMaskElt(i
* Width
);
2151 if ((StepLen
== 1) && (MaskVal
[0] % Width
)) {
2153 } else if ((StepLen
== -1) && ((MaskVal
[0] + 1) % Width
)) {
2157 for (unsigned int j
= 1; j
< Width
; ++j
) {
2158 MaskVal
[j
] = N
->getMaskElt(i
* Width
+ j
);
2159 if (MaskVal
[j
] != MaskVal
[j
-1] + StepLen
) {
2168 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
2169 unsigned &InsertAtByte
, bool &Swap
, bool IsLE
) {
2170 if (!isNByteElemShuffleMask(N
, 4, 1))
2173 // Now we look at mask elements 0,4,8,12
2174 unsigned M0
= N
->getMaskElt(0) / 4;
2175 unsigned M1
= N
->getMaskElt(4) / 4;
2176 unsigned M2
= N
->getMaskElt(8) / 4;
2177 unsigned M3
= N
->getMaskElt(12) / 4;
2178 unsigned LittleEndianShifts
[] = { 2, 1, 0, 3 };
2179 unsigned BigEndianShifts
[] = { 3, 0, 1, 2 };
2181 // Below, let H and L be arbitrary elements of the shuffle mask
2182 // where H is in the range [4,7] and L is in the range [0,3].
2183 // H, 1, 2, 3 or L, 5, 6, 7
2184 if ((M0
> 3 && M1
== 1 && M2
== 2 && M3
== 3) ||
2185 (M0
< 4 && M1
== 5 && M2
== 6 && M3
== 7)) {
2186 ShiftElts
= IsLE
? LittleEndianShifts
[M0
& 0x3] : BigEndianShifts
[M0
& 0x3];
2187 InsertAtByte
= IsLE
? 12 : 0;
2191 // 0, H, 2, 3 or 4, L, 6, 7
2192 if ((M1
> 3 && M0
== 0 && M2
== 2 && M3
== 3) ||
2193 (M1
< 4 && M0
== 4 && M2
== 6 && M3
== 7)) {
2194 ShiftElts
= IsLE
? LittleEndianShifts
[M1
& 0x3] : BigEndianShifts
[M1
& 0x3];
2195 InsertAtByte
= IsLE
? 8 : 4;
2199 // 0, 1, H, 3 or 4, 5, L, 7
2200 if ((M2
> 3 && M0
== 0 && M1
== 1 && M3
== 3) ||
2201 (M2
< 4 && M0
== 4 && M1
== 5 && M3
== 7)) {
2202 ShiftElts
= IsLE
? LittleEndianShifts
[M2
& 0x3] : BigEndianShifts
[M2
& 0x3];
2203 InsertAtByte
= IsLE
? 4 : 8;
2207 // 0, 1, 2, H or 4, 5, 6, L
2208 if ((M3
> 3 && M0
== 0 && M1
== 1 && M2
== 2) ||
2209 (M3
< 4 && M0
== 4 && M1
== 5 && M2
== 6)) {
2210 ShiftElts
= IsLE
? LittleEndianShifts
[M3
& 0x3] : BigEndianShifts
[M3
& 0x3];
2211 InsertAtByte
= IsLE
? 0 : 12;
2216 // If both vector operands for the shuffle are the same vector, the mask will
2217 // contain only elements from the first one and the second one will be undef.
2218 if (N
->getOperand(1).isUndef()) {
2221 unsigned XXINSERTWSrcElem
= IsLE
? 2 : 1;
2222 if (M0
== XXINSERTWSrcElem
&& M1
== 1 && M2
== 2 && M3
== 3) {
2223 InsertAtByte
= IsLE
? 12 : 0;
2226 if (M0
== 0 && M1
== XXINSERTWSrcElem
&& M2
== 2 && M3
== 3) {
2227 InsertAtByte
= IsLE
? 8 : 4;
2230 if (M0
== 0 && M1
== 1 && M2
== XXINSERTWSrcElem
&& M3
== 3) {
2231 InsertAtByte
= IsLE
? 4 : 8;
2234 if (M0
== 0 && M1
== 1 && M2
== 2 && M3
== XXINSERTWSrcElem
) {
2235 InsertAtByte
= IsLE
? 0 : 12;
2243 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
2244 bool &Swap
, bool IsLE
) {
2245 assert(N
->getValueType(0) == MVT::v16i8
&& "Shuffle vector expects v16i8");
2246 // Ensure each byte index of the word is consecutive.
2247 if (!isNByteElemShuffleMask(N
, 4, 1))
2250 // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2251 unsigned M0
= N
->getMaskElt(0) / 4;
2252 unsigned M1
= N
->getMaskElt(4) / 4;
2253 unsigned M2
= N
->getMaskElt(8) / 4;
2254 unsigned M3
= N
->getMaskElt(12) / 4;
2256 // If both vector operands for the shuffle are the same vector, the mask will
2257 // contain only elements from the first one and the second one will be undef.
2258 if (N
->getOperand(1).isUndef()) {
2259 assert(M0
< 4 && "Indexing into an undef vector?");
2260 if (M1
!= (M0
+ 1) % 4 || M2
!= (M1
+ 1) % 4 || M3
!= (M2
+ 1) % 4)
2263 ShiftElts
= IsLE
? (4 - M0
) % 4 : M0
;
2268 // Ensure each word index of the ShuffleVector Mask is consecutive.
2269 if (M1
!= (M0
+ 1) % 8 || M2
!= (M1
+ 1) % 8 || M3
!= (M2
+ 1) % 8)
2273 if (M0
== 0 || M0
== 7 || M0
== 6 || M0
== 5) {
2274 // Input vectors don't need to be swapped if the leading element
2275 // of the result is one of the 3 left elements of the second vector
2276 // (or if there is no shift to be done at all).
2278 ShiftElts
= (8 - M0
) % 8;
2279 } else if (M0
== 4 || M0
== 3 || M0
== 2 || M0
== 1) {
2280 // Input vectors need to be swapped if the leading element
2281 // of the result is one of the 3 left elements of the first vector
2282 // (or if we're shifting by 4 - thereby simply swapping the vectors).
2284 ShiftElts
= (4 - M0
) % 4;
2289 if (M0
== 0 || M0
== 1 || M0
== 2 || M0
== 3) {
2290 // Input vectors don't need to be swapped if the leading element
2291 // of the result is one of the 4 elements of the first vector.
2294 } else if (M0
== 4 || M0
== 5 || M0
== 6 || M0
== 7) {
2295 // Input vectors need to be swapped if the leading element
2296 // of the result is one of the 4 elements of the right vector.
2305 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode
*N
, int Width
) {
2306 assert(N
->getValueType(0) == MVT::v16i8
&& "Shuffle vector expects v16i8");
2308 if (!isNByteElemShuffleMask(N
, Width
, -1))
2311 for (int i
= 0; i
< 16; i
+= Width
)
2312 if (N
->getMaskElt(i
) != i
+ Width
- 1)
2318 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode
*N
) {
2319 return isXXBRShuffleMaskHelper(N
, 2);
2322 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode
*N
) {
2323 return isXXBRShuffleMaskHelper(N
, 4);
2326 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode
*N
) {
2327 return isXXBRShuffleMaskHelper(N
, 8);
2330 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode
*N
) {
2331 return isXXBRShuffleMaskHelper(N
, 16);
2334 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2335 /// if the inputs to the instruction should be swapped and set \p DM to the
2336 /// value for the immediate.
2337 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2338 /// AND element 0 of the result comes from the first input (LE) or second input
2339 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2340 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2342 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &DM
,
2343 bool &Swap
, bool IsLE
) {
2344 assert(N
->getValueType(0) == MVT::v16i8
&& "Shuffle vector expects v16i8");
2346 // Ensure each byte index of the double word is consecutive.
2347 if (!isNByteElemShuffleMask(N
, 8, 1))
2350 unsigned M0
= N
->getMaskElt(0) / 8;
2351 unsigned M1
= N
->getMaskElt(8) / 8;
2352 assert(((M0
| M1
) < 4) && "A mask element out of bounds?");
2354 // If both vector operands for the shuffle are the same vector, the mask will
2355 // contain only elements from the first one and the second one will be undef.
2356 if (N
->getOperand(1).isUndef()) {
2357 if ((M0
| M1
) < 2) {
2358 DM
= IsLE
? (((~M1
) & 1) << 1) + ((~M0
) & 1) : (M0
<< 1) + (M1
& 1);
2366 if (M0
> 1 && M1
< 2) {
2368 } else if (M0
< 2 && M1
> 1) {
2375 // Note: if control flow comes here that means Swap is already set above
2376 DM
= (((~M1
) & 1) << 1) + ((~M0
) & 1);
2379 if (M0
< 2 && M1
> 1) {
2381 } else if (M0
> 1 && M1
< 2) {
2388 // Note: if control flow comes here that means Swap is already set above
2389 DM
= (M0
<< 1) + (M1
& 1);
2395 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2396 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2397 /// elements are counted from the left of the vector register).
2398 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode
*N
, unsigned EltSize
,
2399 SelectionDAG
&DAG
) {
2400 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2401 assert(isSplatShuffleMask(SVOp
, EltSize
));
2402 if (DAG
.getDataLayout().isLittleEndian())
2403 return (16 / EltSize
) - 1 - (SVOp
->getMaskElt(0) / EltSize
);
2405 return SVOp
->getMaskElt(0) / EltSize
;
2408 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2409 /// by using a vspltis[bhw] instruction of the specified element size, return
2410 /// the constant being splatted. The ByteSize field indicates the number of
2411 /// bytes of each element [124] -> [bhw].
2412 SDValue
PPC::get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
) {
2413 SDValue
OpVal(nullptr, 0);
2415 // If ByteSize of the splat is bigger than the element size of the
2416 // build_vector, then we have a case where we are checking for a splat where
2417 // multiple elements of the buildvector are folded together into a single
2418 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2419 unsigned EltSize
= 16/N
->getNumOperands();
2420 if (EltSize
< ByteSize
) {
2421 unsigned Multiple
= ByteSize
/EltSize
; // Number of BV entries per spltval.
2422 SDValue UniquedVals
[4];
2423 assert(Multiple
> 1 && Multiple
<= 4 && "How can this happen?");
2425 // See if all of the elements in the buildvector agree across.
2426 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
2427 if (N
->getOperand(i
).isUndef()) continue;
2428 // If the element isn't a constant, bail fully out.
2429 if (!isa
<ConstantSDNode
>(N
->getOperand(i
))) return SDValue();
2431 if (!UniquedVals
[i
&(Multiple
-1)].getNode())
2432 UniquedVals
[i
&(Multiple
-1)] = N
->getOperand(i
);
2433 else if (UniquedVals
[i
&(Multiple
-1)] != N
->getOperand(i
))
2434 return SDValue(); // no match.
2437 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2438 // either constant or undef values that are identical for each chunk. See
2439 // if these chunks can form into a larger vspltis*.
2441 // Check to see if all of the leading entries are either 0 or -1. If
2442 // neither, then this won't fit into the immediate field.
2443 bool LeadingZero
= true;
2444 bool LeadingOnes
= true;
2445 for (unsigned i
= 0; i
!= Multiple
-1; ++i
) {
2446 if (!UniquedVals
[i
].getNode()) continue; // Must have been undefs.
2448 LeadingZero
&= isNullConstant(UniquedVals
[i
]);
2449 LeadingOnes
&= isAllOnesConstant(UniquedVals
[i
]);
2451 // Finally, check the least significant entry.
2453 if (!UniquedVals
[Multiple
-1].getNode())
2454 return DAG
.getTargetConstant(0, SDLoc(N
), MVT::i32
); // 0,0,0,undef
2455 int Val
= cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getZExtValue();
2456 if (Val
< 16) // 0,0,0,4 -> vspltisw(4)
2457 return DAG
.getTargetConstant(Val
, SDLoc(N
), MVT::i32
);
2460 if (!UniquedVals
[Multiple
-1].getNode())
2461 return DAG
.getTargetConstant(~0U, SDLoc(N
), MVT::i32
); // -1,-1,-1,undef
2462 int Val
=cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getSExtValue();
2463 if (Val
>= -16) // -1,-1,-1,-2 -> vspltisw(-2)
2464 return DAG
.getTargetConstant(Val
, SDLoc(N
), MVT::i32
);
2470 // Check to see if this buildvec has a single non-undef value in its elements.
2471 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
2472 if (N
->getOperand(i
).isUndef()) continue;
2473 if (!OpVal
.getNode())
2474 OpVal
= N
->getOperand(i
);
2475 else if (OpVal
!= N
->getOperand(i
))
2479 if (!OpVal
.getNode()) return SDValue(); // All UNDEF: use implicit def.
2481 unsigned ValSizeInBytes
= EltSize
;
2483 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
2484 Value
= CN
->getZExtValue();
2485 } else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
)) {
2486 assert(CN
->getValueType(0) == MVT::f32
&& "Only one legal FP vector type!");
2487 Value
= FloatToBits(CN
->getValueAPF().convertToFloat());
2490 // If the splat value is larger than the element value, then we can never do
2491 // this splat. The only case that we could fit the replicated bits into our
2492 // immediate field for would be zero, and we prefer to use vxor for it.
2493 if (ValSizeInBytes
< ByteSize
) return SDValue();
2495 // If the element value is larger than the splat value, check if it consists
2496 // of a repeated bit pattern of size ByteSize.
2497 if (!APInt(ValSizeInBytes
* 8, Value
).isSplat(ByteSize
* 8))
2500 // Properly sign extend the value.
2501 int MaskVal
= SignExtend32(Value
, ByteSize
* 8);
2503 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2504 if (MaskVal
== 0) return SDValue();
2506 // Finally, if this value fits in a 5 bit sext field, return it
2507 if (SignExtend32
<5>(MaskVal
) == MaskVal
)
2508 return DAG
.getTargetConstant(MaskVal
, SDLoc(N
), MVT::i32
);
2512 //===----------------------------------------------------------------------===//
2513 // Addressing Mode Selection
2514 //===----------------------------------------------------------------------===//
2516 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2517 /// or 64-bit immediate, and if the value can be accurately represented as a
2518 /// sign extension from a 16-bit value. If so, this returns true and the
2520 bool llvm::isIntS16Immediate(SDNode
*N
, int16_t &Imm
) {
2521 if (!isa
<ConstantSDNode
>(N
))
2524 Imm
= (int16_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
2525 if (N
->getValueType(0) == MVT::i32
)
2526 return Imm
== (int32_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
2528 return Imm
== (int64_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
2530 bool llvm::isIntS16Immediate(SDValue Op
, int16_t &Imm
) {
2531 return isIntS16Immediate(Op
.getNode(), Imm
);
2534 /// Used when computing address flags for selecting loads and stores.
2535 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2536 /// An OR of two provably disjoint values is equivalent to an ADD.
2537 /// Most PPC load/store instructions compute the effective address as a sum,
2538 /// so doing this conversion is useful.
2539 static bool provablyDisjointOr(SelectionDAG
&DAG
, const SDValue
&N
) {
2540 if (N
.getOpcode() != ISD::OR
)
2542 KnownBits LHSKnown
= DAG
.computeKnownBits(N
.getOperand(0));
2543 if (!LHSKnown
.Zero
.getBoolValue())
2545 KnownBits RHSKnown
= DAG
.computeKnownBits(N
.getOperand(1));
2546 return (~(LHSKnown
.Zero
| RHSKnown
.Zero
) == 0);
2549 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2550 /// be represented as an indexed [r+r] operation.
2551 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N
, SDValue
&Base
,
2553 SelectionDAG
&DAG
) const {
2554 for (SDNode::use_iterator UI
= N
->use_begin(), E
= N
->use_end();
2556 if (MemSDNode
*Memop
= dyn_cast
<MemSDNode
>(*UI
)) {
2557 if (Memop
->getMemoryVT() == MVT::f64
) {
2558 Base
= N
.getOperand(0);
2559 Index
= N
.getOperand(1);
2567 /// isIntS34Immediate - This method tests if value of node given can be
2568 /// accurately represented as a sign extension from a 34-bit value. If so,
2569 /// this returns true and the immediate.
2570 bool llvm::isIntS34Immediate(SDNode
*N
, int64_t &Imm
) {
2571 if (!isa
<ConstantSDNode
>(N
))
2574 Imm
= (int64_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
2575 return isInt
<34>(Imm
);
2577 bool llvm::isIntS34Immediate(SDValue Op
, int64_t &Imm
) {
2578 return isIntS34Immediate(Op
.getNode(), Imm
);
2581 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2582 /// can be represented as an indexed [r+r] operation. Returns false if it
2583 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2584 /// non-zero and N can be represented by a base register plus a signed 16-bit
2585 /// displacement, make a more precise judgement by checking (displacement % \p
2586 /// EncodingAlignment).
2587 bool PPCTargetLowering::SelectAddressRegReg(
2588 SDValue N
, SDValue
&Base
, SDValue
&Index
, SelectionDAG
&DAG
,
2589 MaybeAlign EncodingAlignment
) const {
2590 // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2592 if (SelectAddressPCRel(N
, Base
))
2596 if (N
.getOpcode() == ISD::ADD
) {
2597 // Is there any SPE load/store (f64), which can't handle 16bit offset?
2598 // SPE load/store can only handle 8-bit offsets.
2599 if (hasSPE() && SelectAddressEVXRegReg(N
, Base
, Index
, DAG
))
2601 if (isIntS16Immediate(N
.getOperand(1), Imm
) &&
2602 (!EncodingAlignment
|| isAligned(*EncodingAlignment
, Imm
)))
2603 return false; // r+i
2604 if (N
.getOperand(1).getOpcode() == PPCISD::Lo
)
2605 return false; // r+i
2607 Base
= N
.getOperand(0);
2608 Index
= N
.getOperand(1);
2610 } else if (N
.getOpcode() == ISD::OR
) {
2611 if (isIntS16Immediate(N
.getOperand(1), Imm
) &&
2612 (!EncodingAlignment
|| isAligned(*EncodingAlignment
, Imm
)))
2613 return false; // r+i can fold it if we can.
2615 // If this is an or of disjoint bitfields, we can codegen this as an add
2616 // (for better address arithmetic) if the LHS and RHS of the OR are provably
2618 KnownBits LHSKnown
= DAG
.computeKnownBits(N
.getOperand(0));
2620 if (LHSKnown
.Zero
.getBoolValue()) {
2621 KnownBits RHSKnown
= DAG
.computeKnownBits(N
.getOperand(1));
2622 // If all of the bits are known zero on the LHS or RHS, the add won't
2624 if (~(LHSKnown
.Zero
| RHSKnown
.Zero
) == 0) {
2625 Base
= N
.getOperand(0);
2626 Index
= N
.getOperand(1);
2635 // If we happen to be doing an i64 load or store into a stack slot that has
2636 // less than a 4-byte alignment, then the frame-index elimination may need to
2637 // use an indexed load or store instruction (because the offset may not be a
2638 // multiple of 4). The extra register needed to hold the offset comes from the
2639 // register scavenger, and it is possible that the scavenger will need to use
2640 // an emergency spill slot. As a result, we need to make sure that a spill slot
2641 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2643 static void fixupFuncForFI(SelectionDAG
&DAG
, int FrameIdx
, EVT VT
) {
2644 // FIXME: This does not handle the LWA case.
2648 // NOTE: We'll exclude negative FIs here, which come from argument
2649 // lowering, because there are no known test cases triggering this problem
2650 // using packed structures (or similar). We can remove this exclusion if
2651 // we find such a test case. The reason why this is so test-case driven is
2652 // because this entire 'fixup' is only to prevent crashes (from the
2653 // register scavenger) on not-really-valid inputs. For example, if we have:
2655 // %b = bitcast i1* %a to i64*
2656 // store i64* a, i64 b
2657 // then the store should really be marked as 'align 1', but is not. If it
2658 // were marked as 'align 1' then the indexed form would have been
2659 // instruction-selected initially, and the problem this 'fixup' is preventing
2660 // won't happen regardless.
2664 MachineFunction
&MF
= DAG
.getMachineFunction();
2665 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2667 if (MFI
.getObjectAlign(FrameIdx
) >= Align(4))
2670 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
2671 FuncInfo
->setHasNonRISpills();
2674 /// Returns true if the address N can be represented by a base register plus
2675 /// a signed 16-bit displacement [r+imm], and if it is not better
2676 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept
2677 /// displacements that are multiples of that value.
2678 bool PPCTargetLowering::SelectAddressRegImm(
2679 SDValue N
, SDValue
&Disp
, SDValue
&Base
, SelectionDAG
&DAG
,
2680 MaybeAlign EncodingAlignment
) const {
2681 // FIXME dl should come from parent load or store, not from address
2684 // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2686 if (SelectAddressPCRel(N
, Base
))
2689 // If this can be more profitably realized as r+r, fail.
2690 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
, EncodingAlignment
))
2693 if (N
.getOpcode() == ISD::ADD
) {
2695 if (isIntS16Immediate(N
.getOperand(1), imm
) &&
2696 (!EncodingAlignment
|| isAligned(*EncodingAlignment
, imm
))) {
2697 Disp
= DAG
.getTargetConstant(imm
, dl
, N
.getValueType());
2698 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
2699 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2700 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
2702 Base
= N
.getOperand(0);
2704 return true; // [r+i]
2705 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
2706 // Match LOAD (ADD (X, Lo(G))).
2707 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
2708 && "Cannot handle constant offsets yet!");
2709 Disp
= N
.getOperand(1).getOperand(0); // The global address.
2710 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
2711 Disp
.getOpcode() == ISD::TargetGlobalTLSAddress
||
2712 Disp
.getOpcode() == ISD::TargetConstantPool
||
2713 Disp
.getOpcode() == ISD::TargetJumpTable
);
2714 Base
= N
.getOperand(0);
2715 return true; // [&g+r]
2717 } else if (N
.getOpcode() == ISD::OR
) {
2719 if (isIntS16Immediate(N
.getOperand(1), imm
) &&
2720 (!EncodingAlignment
|| isAligned(*EncodingAlignment
, imm
))) {
2721 // If this is an or of disjoint bitfields, we can codegen this as an add
2722 // (for better address arithmetic) if the LHS and RHS of the OR are
2723 // provably disjoint.
2724 KnownBits LHSKnown
= DAG
.computeKnownBits(N
.getOperand(0));
2726 if ((LHSKnown
.Zero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
2727 // If all of the bits are known zero on the LHS or RHS, the add won't
2729 if (FrameIndexSDNode
*FI
=
2730 dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
2731 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2732 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
2734 Base
= N
.getOperand(0);
2736 Disp
= DAG
.getTargetConstant(imm
, dl
, N
.getValueType());
2740 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
2741 // Loading from a constant address.
2743 // If this address fits entirely in a 16-bit sext immediate field, codegen
2746 if (isIntS16Immediate(CN
, Imm
) &&
2747 (!EncodingAlignment
|| isAligned(*EncodingAlignment
, Imm
))) {
2748 Disp
= DAG
.getTargetConstant(Imm
, dl
, CN
->getValueType(0));
2749 Base
= DAG
.getRegister(Subtarget
.isPPC64() ? PPC::ZERO8
: PPC::ZERO
,
2750 CN
->getValueType(0));
2754 // Handle 32-bit sext immediates with LIS + addr mode.
2755 if ((CN
->getValueType(0) == MVT::i32
||
2756 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) &&
2757 (!EncodingAlignment
||
2758 isAligned(*EncodingAlignment
, CN
->getZExtValue()))) {
2759 int Addr
= (int)CN
->getZExtValue();
2761 // Otherwise, break this down into an LIS + disp.
2762 Disp
= DAG
.getTargetConstant((short)Addr
, dl
, MVT::i32
);
2764 Base
= DAG
.getTargetConstant((Addr
- (signed short)Addr
) >> 16, dl
,
2766 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
2767 Base
= SDValue(DAG
.getMachineNode(Opc
, dl
, CN
->getValueType(0), Base
), 0);
2772 Disp
= DAG
.getTargetConstant(0, dl
, getPointerTy(DAG
.getDataLayout()));
2773 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
)) {
2774 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2775 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
2778 return true; // [r+0]
2781 /// Similar to the 16-bit case but for instructions that take a 34-bit
2782 /// displacement field (prefixed loads/stores).
2783 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N
, SDValue
&Disp
,
2785 SelectionDAG
&DAG
) const {
2786 // Only on 64-bit targets.
2787 if (N
.getValueType() != MVT::i64
)
2793 if (N
.getOpcode() == ISD::ADD
) {
2794 if (!isIntS34Immediate(N
.getOperand(1), Imm
))
2796 Disp
= DAG
.getTargetConstant(Imm
, dl
, N
.getValueType());
2797 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0)))
2798 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2800 Base
= N
.getOperand(0);
2804 if (N
.getOpcode() == ISD::OR
) {
2805 if (!isIntS34Immediate(N
.getOperand(1), Imm
))
2807 // If this is an or of disjoint bitfields, we can codegen this as an add
2808 // (for better address arithmetic) if the LHS and RHS of the OR are
2809 // provably disjoint.
2810 KnownBits LHSKnown
= DAG
.computeKnownBits(N
.getOperand(0));
2811 if ((LHSKnown
.Zero
.getZExtValue() | ~(uint64_t)Imm
) != ~0ULL)
2813 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0)))
2814 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2816 Base
= N
.getOperand(0);
2817 Disp
= DAG
.getTargetConstant(Imm
, dl
, N
.getValueType());
2821 if (isIntS34Immediate(N
, Imm
)) { // If the address is a 34-bit const.
2822 Disp
= DAG
.getTargetConstant(Imm
, dl
, N
.getValueType());
2823 Base
= DAG
.getRegister(PPC::ZERO8
, N
.getValueType());
2830 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2831 /// represented as an indexed [r+r] operation.
2832 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
,
2834 SelectionDAG
&DAG
) const {
2835 // Check to see if we can easily represent this as an [r+r] address. This
2836 // will fail if it thinks that the address is more profitably represented as
2837 // reg+imm, e.g. where imm = 0.
2838 if (SelectAddressRegReg(N
, Base
, Index
, DAG
))
2841 // If the address is the result of an add, we will utilize the fact that the
2842 // address calculation includes an implicit add. However, we can reduce
2843 // register pressure if we do not materialize a constant just for use as the
2844 // index register. We only get rid of the add if it is not an add of a
2845 // value and a 16-bit signed constant and both have a single use.
2847 if (N
.getOpcode() == ISD::ADD
&&
2848 (!isIntS16Immediate(N
.getOperand(1), imm
) ||
2849 !N
.getOperand(1).hasOneUse() || !N
.getOperand(0).hasOneUse())) {
2850 Base
= N
.getOperand(0);
2851 Index
= N
.getOperand(1);
2855 // Otherwise, do it the hard way, using R0 as the base register.
2856 Base
= DAG
.getRegister(Subtarget
.isPPC64() ? PPC::ZERO8
: PPC::ZERO
,
2862 template <typename Ty
> static bool isValidPCRelNode(SDValue N
) {
2863 Ty
*PCRelCand
= dyn_cast
<Ty
>(N
);
2864 return PCRelCand
&& (PCRelCand
->getTargetFlags() & PPCII::MO_PCREL_FLAG
);
2867 /// Returns true if this address is a PC Relative address.
2868 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2869 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2870 bool PPCTargetLowering::SelectAddressPCRel(SDValue N
, SDValue
&Base
) const {
2871 // This is a materialize PC Relative node. Always select this as PC Relative.
2873 if (N
.getOpcode() == PPCISD::MAT_PCREL_ADDR
)
2875 if (isValidPCRelNode
<ConstantPoolSDNode
>(N
) ||
2876 isValidPCRelNode
<GlobalAddressSDNode
>(N
) ||
2877 isValidPCRelNode
<JumpTableSDNode
>(N
) ||
2878 isValidPCRelNode
<BlockAddressSDNode
>(N
))
2883 /// Returns true if we should use a direct load into vector instruction
2884 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2885 static bool usePartialVectorLoads(SDNode
*N
, const PPCSubtarget
& ST
) {
2887 // If there are any other uses other than scalar to vector, then we should
2888 // keep it as a scalar load -> direct move pattern to prevent multiple
2890 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
);
2894 EVT MemVT
= LD
->getMemoryVT();
2895 if (!MemVT
.isSimple())
2897 switch(MemVT
.getSimpleVT().SimpleTy
) {
2901 if (!ST
.hasP8Vector())
2906 if (!ST
.hasP9Vector())
2913 SDValue
LoadedVal(N
, 0);
2914 if (!LoadedVal
.hasOneUse())
2917 for (SDNode::use_iterator UI
= LD
->use_begin(), UE
= LD
->use_end();
2919 if (UI
.getUse().get().getResNo() == 0 &&
2920 UI
->getOpcode() != ISD::SCALAR_TO_VECTOR
&&
2921 UI
->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED
)
2927 /// getPreIndexedAddressParts - returns true by value, base pointer and
2928 /// offset pointer and addressing mode by reference if the node's address
2929 /// can be legally represented as pre-indexed load / store address.
2930 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
2932 ISD::MemIndexedMode
&AM
,
2933 SelectionDAG
&DAG
) const {
2934 if (DisablePPCPreinc
) return false;
2940 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
2941 Ptr
= LD
->getBasePtr();
2942 VT
= LD
->getMemoryVT();
2943 Alignment
= LD
->getAlignment();
2944 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
2945 Ptr
= ST
->getBasePtr();
2946 VT
= ST
->getMemoryVT();
2947 Alignment
= ST
->getAlignment();
2952 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2953 // instructions because we can fold these into a more efficient instruction
2954 // instead, (such as LXSD).
2955 if (isLoad
&& usePartialVectorLoads(N
, Subtarget
)) {
2959 // PowerPC doesn't have preinc load/store instructions for vectors
2963 if (SelectAddressRegReg(Ptr
, Base
, Offset
, DAG
)) {
2964 // Common code will reject creating a pre-inc form if the base pointer
2965 // is a frame index, or if N is a store and the base pointer is either
2966 // the same as or a predecessor of the value being stored. Check for
2967 // those situations here, and try with swapped Base/Offset instead.
2970 if (isa
<FrameIndexSDNode
>(Base
) || isa
<RegisterSDNode
>(Base
))
2973 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
2974 if (Val
== Base
|| Base
.getNode()->isPredecessorOf(Val
.getNode()))
2979 std::swap(Base
, Offset
);
2985 // LDU/STU can only handle immediates that are a multiple of 4.
2986 if (VT
!= MVT::i64
) {
2987 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
, None
))
2990 // LDU/STU need an address with at least 4-byte alignment.
2994 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
, Align(4)))
2998 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
2999 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
3000 // sext i32 to i64 when addr mode is r+i.
3001 if (LD
->getValueType(0) == MVT::i64
&& LD
->getMemoryVT() == MVT::i32
&&
3002 LD
->getExtensionType() == ISD::SEXTLOAD
&&
3003 isa
<ConstantSDNode
>(Offset
))
3011 //===----------------------------------------------------------------------===//
3012 // LowerOperation implementation
3013 //===----------------------------------------------------------------------===//
3015 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3016 /// and LoOpFlags to the target MO flags.
3017 static void getLabelAccessInfo(bool IsPIC
, const PPCSubtarget
&Subtarget
,
3018 unsigned &HiOpFlags
, unsigned &LoOpFlags
,
3019 const GlobalValue
*GV
= nullptr) {
3020 HiOpFlags
= PPCII::MO_HA
;
3021 LoOpFlags
= PPCII::MO_LO
;
3023 // Don't use the pic base if not in PIC relocation model.
3025 HiOpFlags
|= PPCII::MO_PIC_FLAG
;
3026 LoOpFlags
|= PPCII::MO_PIC_FLAG
;
3030 static SDValue
LowerLabelRef(SDValue HiPart
, SDValue LoPart
, bool isPIC
,
3031 SelectionDAG
&DAG
) {
3033 EVT PtrVT
= HiPart
.getValueType();
3034 SDValue Zero
= DAG
.getConstant(0, DL
, PtrVT
);
3036 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, DL
, PtrVT
, HiPart
, Zero
);
3037 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, DL
, PtrVT
, LoPart
, Zero
);
3039 // With PIC, the first instruction is actually "GR+hi(&G)".
3041 Hi
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
3042 DAG
.getNode(PPCISD::GlobalBaseReg
, DL
, PtrVT
), Hi
);
3044 // Generate non-pic code that has direct accesses to the constant pool.
3045 // The address of the global is just (hi(&g)+lo(&g)).
3046 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
3049 static void setUsesTOCBasePtr(MachineFunction
&MF
) {
3050 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
3051 FuncInfo
->setUsesTOCBasePtr();
3054 static void setUsesTOCBasePtr(SelectionDAG
&DAG
) {
3055 setUsesTOCBasePtr(DAG
.getMachineFunction());
3058 SDValue
PPCTargetLowering::getTOCEntry(SelectionDAG
&DAG
, const SDLoc
&dl
,
3060 const bool Is64Bit
= Subtarget
.isPPC64();
3061 EVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
3062 SDValue Reg
= Is64Bit
? DAG
.getRegister(PPC::X2
, VT
)
3063 : Subtarget
.isAIXABI()
3064 ? DAG
.getRegister(PPC::R2
, VT
)
3065 : DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, VT
);
3066 SDValue Ops
[] = { GA
, Reg
};
3067 return DAG
.getMemIntrinsicNode(
3068 PPCISD::TOC_ENTRY
, dl
, DAG
.getVTList(VT
, MVT::Other
), Ops
, VT
,
3069 MachinePointerInfo::getGOT(DAG
.getMachineFunction()), None
,
3070 MachineMemOperand::MOLoad
);
3073 SDValue
PPCTargetLowering::LowerConstantPool(SDValue Op
,
3074 SelectionDAG
&DAG
) const {
3075 EVT PtrVT
= Op
.getValueType();
3076 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
3077 const Constant
*C
= CP
->getConstVal();
3079 // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3080 // The actual address of the GlobalValue is stored in the TOC.
3081 if (Subtarget
.is64BitELFABI() || Subtarget
.isAIXABI()) {
3082 if (Subtarget
.isUsingPCRelativeCalls()) {
3084 EVT Ty
= getPointerTy(DAG
.getDataLayout());
3085 SDValue ConstPool
= DAG
.getTargetConstantPool(
3086 C
, Ty
, CP
->getAlign(), CP
->getOffset(), PPCII::MO_PCREL_FLAG
);
3087 return DAG
.getNode(PPCISD::MAT_PCREL_ADDR
, DL
, Ty
, ConstPool
);
3089 setUsesTOCBasePtr(DAG
);
3090 SDValue GA
= DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlign(), 0);
3091 return getTOCEntry(DAG
, SDLoc(CP
), GA
);
3094 unsigned MOHiFlag
, MOLoFlag
;
3095 bool IsPIC
= isPositionIndependent();
3096 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
);
3098 if (IsPIC
&& Subtarget
.isSVR4ABI()) {
3100 DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlign(), PPCII::MO_PIC_FLAG
);
3101 return getTOCEntry(DAG
, SDLoc(CP
), GA
);
3105 DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlign(), 0, MOHiFlag
);
3107 DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlign(), 0, MOLoFlag
);
3108 return LowerLabelRef(CPIHi
, CPILo
, IsPIC
, DAG
);
3111 // For 64-bit PowerPC, prefer the more compact relative encodings.
3112 // This trades 32 bits per jump table entry for one or two instructions
3113 // on the jump site.
3114 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3115 if (isJumpTableRelative())
3116 return MachineJumpTableInfo::EK_LabelDifference32
;
3118 return TargetLowering::getJumpTableEncoding();
3121 bool PPCTargetLowering::isJumpTableRelative() const {
3122 if (UseAbsoluteJumpTables
)
3124 if (Subtarget
.isPPC64() || Subtarget
.isAIXABI())
3126 return TargetLowering::isJumpTableRelative();
3129 SDValue
PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table
,
3130 SelectionDAG
&DAG
) const {
3131 if (!Subtarget
.isPPC64() || Subtarget
.isAIXABI())
3132 return TargetLowering::getPICJumpTableRelocBase(Table
, DAG
);
3134 switch (getTargetMachine().getCodeModel()) {
3135 case CodeModel::Small
:
3136 case CodeModel::Medium
:
3137 return TargetLowering::getPICJumpTableRelocBase(Table
, DAG
);
3139 return DAG
.getNode(PPCISD::GlobalBaseReg
, SDLoc(),
3140 getPointerTy(DAG
.getDataLayout()));
3145 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
3147 MCContext
&Ctx
) const {
3148 if (!Subtarget
.isPPC64() || Subtarget
.isAIXABI())
3149 return TargetLowering::getPICJumpTableRelocBaseExpr(MF
, JTI
, Ctx
);
3151 switch (getTargetMachine().getCodeModel()) {
3152 case CodeModel::Small
:
3153 case CodeModel::Medium
:
3154 return TargetLowering::getPICJumpTableRelocBaseExpr(MF
, JTI
, Ctx
);
3156 return MCSymbolRefExpr::create(MF
->getPICBaseSymbol(), Ctx
);
3160 SDValue
PPCTargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const {
3161 EVT PtrVT
= Op
.getValueType();
3162 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
3164 // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3165 if (Subtarget
.isUsingPCRelativeCalls()) {
3167 EVT Ty
= getPointerTy(DAG
.getDataLayout());
3169 DAG
.getTargetJumpTable(JT
->getIndex(), Ty
, PPCII::MO_PCREL_FLAG
);
3170 SDValue MatAddr
= DAG
.getNode(PPCISD::MAT_PCREL_ADDR
, DL
, Ty
, GA
);
3174 // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3175 // The actual address of the GlobalValue is stored in the TOC.
3176 if (Subtarget
.is64BitELFABI() || Subtarget
.isAIXABI()) {
3177 setUsesTOCBasePtr(DAG
);
3178 SDValue GA
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
);
3179 return getTOCEntry(DAG
, SDLoc(JT
), GA
);
3182 unsigned MOHiFlag
, MOLoFlag
;
3183 bool IsPIC
= isPositionIndependent();
3184 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
);
3186 if (IsPIC
&& Subtarget
.isSVR4ABI()) {
3187 SDValue GA
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
,
3188 PPCII::MO_PIC_FLAG
);
3189 return getTOCEntry(DAG
, SDLoc(GA
), GA
);
3192 SDValue JTIHi
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
, MOHiFlag
);
3193 SDValue JTILo
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
, MOLoFlag
);
3194 return LowerLabelRef(JTIHi
, JTILo
, IsPIC
, DAG
);
3197 SDValue
PPCTargetLowering::LowerBlockAddress(SDValue Op
,
3198 SelectionDAG
&DAG
) const {
3199 EVT PtrVT
= Op
.getValueType();
3200 BlockAddressSDNode
*BASDN
= cast
<BlockAddressSDNode
>(Op
);
3201 const BlockAddress
*BA
= BASDN
->getBlockAddress();
3203 // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3204 if (Subtarget
.isUsingPCRelativeCalls()) {
3206 EVT Ty
= getPointerTy(DAG
.getDataLayout());
3207 SDValue GA
= DAG
.getTargetBlockAddress(BA
, Ty
, BASDN
->getOffset(),
3208 PPCII::MO_PCREL_FLAG
);
3209 SDValue MatAddr
= DAG
.getNode(PPCISD::MAT_PCREL_ADDR
, DL
, Ty
, GA
);
3213 // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3214 // The actual BlockAddress is stored in the TOC.
3215 if (Subtarget
.is64BitELFABI() || Subtarget
.isAIXABI()) {
3216 setUsesTOCBasePtr(DAG
);
3217 SDValue GA
= DAG
.getTargetBlockAddress(BA
, PtrVT
, BASDN
->getOffset());
3218 return getTOCEntry(DAG
, SDLoc(BASDN
), GA
);
3221 // 32-bit position-independent ELF stores the BlockAddress in the .got.
3222 if (Subtarget
.is32BitELFABI() && isPositionIndependent())
3225 DAG
.getTargetBlockAddress(BA
, PtrVT
, BASDN
->getOffset()));
3227 unsigned MOHiFlag
, MOLoFlag
;
3228 bool IsPIC
= isPositionIndependent();
3229 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
);
3230 SDValue TgtBAHi
= DAG
.getTargetBlockAddress(BA
, PtrVT
, 0, MOHiFlag
);
3231 SDValue TgtBALo
= DAG
.getTargetBlockAddress(BA
, PtrVT
, 0, MOLoFlag
);
3232 return LowerLabelRef(TgtBAHi
, TgtBALo
, IsPIC
, DAG
);
3235 SDValue
PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op
,
3236 SelectionDAG
&DAG
) const {
3237 if (Subtarget
.isAIXABI())
3238 return LowerGlobalTLSAddressAIX(Op
, DAG
);
3240 return LowerGlobalTLSAddressLinux(Op
, DAG
);
3243 SDValue
PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op
,
3244 SelectionDAG
&DAG
) const {
3245 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3247 if (DAG
.getTarget().useEmulatedTLS())
3248 report_fatal_error("Emulated TLS is not yet supported on AIX");
3251 const GlobalValue
*GV
= GA
->getGlobal();
3252 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3254 // The general-dynamic model is the only access model supported for now, so
3255 // all the GlobalTLSAddress nodes are lowered with this model.
3256 // We need to generate two TOC entries, one for the variable offset, one for
3257 // the region handle. The global address for the TOC entry of the region
3258 // handle is created with the MO_TLSGDM_FLAG flag and the global address
3259 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3260 SDValue VariableOffsetTGA
=
3261 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, PPCII::MO_TLSGD_FLAG
);
3262 SDValue RegionHandleTGA
=
3263 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, PPCII::MO_TLSGDM_FLAG
);
3264 SDValue VariableOffset
= getTOCEntry(DAG
, dl
, VariableOffsetTGA
);
3265 SDValue RegionHandle
= getTOCEntry(DAG
, dl
, RegionHandleTGA
);
3266 return DAG
.getNode(PPCISD::TLSGD_AIX
, dl
, PtrVT
, VariableOffset
,
3270 SDValue
PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op
,
3271 SelectionDAG
&DAG
) const {
3272 // FIXME: TLS addresses currently use medium model code sequences,
3273 // which is the most useful form. Eventually support for small and
3274 // large models could be added if users need it, at the cost of
3275 // additional complexity.
3276 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3277 if (DAG
.getTarget().useEmulatedTLS())
3278 return LowerToTLSEmulatedModel(GA
, DAG
);
3281 const GlobalValue
*GV
= GA
->getGlobal();
3282 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3283 bool is64bit
= Subtarget
.isPPC64();
3284 const Module
*M
= DAG
.getMachineFunction().getFunction().getParent();
3285 PICLevel::Level picLevel
= M
->getPICLevel();
3287 const TargetMachine
&TM
= getTargetMachine();
3288 TLSModel::Model Model
= TM
.getTLSModel(GV
);
3290 if (Model
== TLSModel::LocalExec
) {
3291 if (Subtarget
.isUsingPCRelativeCalls()) {
3292 SDValue TLSReg
= DAG
.getRegister(PPC::X13
, MVT::i64
);
3293 SDValue TGA
= DAG
.getTargetGlobalAddress(
3294 GV
, dl
, PtrVT
, 0, (PPCII::MO_PCREL_FLAG
| PPCII::MO_TPREL_FLAG
));
3296 DAG
.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR
, dl
, PtrVT
, TGA
);
3297 return DAG
.getNode(PPCISD::ADD_TLS
, dl
, PtrVT
, TLSReg
, MatAddr
);
3300 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3301 PPCII::MO_TPREL_HA
);
3302 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3303 PPCII::MO_TPREL_LO
);
3304 SDValue TLSReg
= is64bit
? DAG
.getRegister(PPC::X13
, MVT::i64
)
3305 : DAG
.getRegister(PPC::R2
, MVT::i32
);
3307 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, TGAHi
, TLSReg
);
3308 return DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, TGALo
, Hi
);
3311 if (Model
== TLSModel::InitialExec
) {
3312 bool IsPCRel
= Subtarget
.isUsingPCRelativeCalls();
3313 SDValue TGA
= DAG
.getTargetGlobalAddress(
3314 GV
, dl
, PtrVT
, 0, IsPCRel
? PPCII::MO_GOT_TPREL_PCREL_FLAG
: 0);
3315 SDValue TGATLS
= DAG
.getTargetGlobalAddress(
3317 IsPCRel
? (PPCII::MO_TLS
| PPCII::MO_PCREL_FLAG
) : PPCII::MO_TLS
);
3320 SDValue MatPCRel
= DAG
.getNode(PPCISD::MAT_PCREL_ADDR
, dl
, PtrVT
, TGA
);
3321 TPOffset
= DAG
.getLoad(MVT::i64
, dl
, DAG
.getEntryNode(), MatPCRel
,
3322 MachinePointerInfo());
3326 setUsesTOCBasePtr(DAG
);
3327 SDValue GOTReg
= DAG
.getRegister(PPC::X2
, MVT::i64
);
3329 DAG
.getNode(PPCISD::ADDIS_GOT_TPREL_HA
, dl
, PtrVT
, GOTReg
, TGA
);
3331 if (!TM
.isPositionIndependent())
3332 GOTPtr
= DAG
.getNode(PPCISD::PPC32_GOT
, dl
, PtrVT
);
3333 else if (picLevel
== PICLevel::SmallPIC
)
3334 GOTPtr
= DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, PtrVT
);
3336 GOTPtr
= DAG
.getNode(PPCISD::PPC32_PICGOT
, dl
, PtrVT
);
3338 TPOffset
= DAG
.getNode(PPCISD::LD_GOT_TPREL_L
, dl
, PtrVT
, TGA
, GOTPtr
);
3340 return DAG
.getNode(PPCISD::ADD_TLS
, dl
, PtrVT
, TPOffset
, TGATLS
);
3343 if (Model
== TLSModel::GeneralDynamic
) {
3344 if (Subtarget
.isUsingPCRelativeCalls()) {
3345 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3346 PPCII::MO_GOT_TLSGD_PCREL_FLAG
);
3347 return DAG
.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR
, dl
, PtrVT
, TGA
);
3350 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, 0);
3353 setUsesTOCBasePtr(DAG
);
3354 SDValue GOTReg
= DAG
.getRegister(PPC::X2
, MVT::i64
);
3355 GOTPtr
= DAG
.getNode(PPCISD::ADDIS_TLSGD_HA
, dl
, PtrVT
,
3358 if (picLevel
== PICLevel::SmallPIC
)
3359 GOTPtr
= DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, PtrVT
);
3361 GOTPtr
= DAG
.getNode(PPCISD::PPC32_PICGOT
, dl
, PtrVT
);
3363 return DAG
.getNode(PPCISD::ADDI_TLSGD_L_ADDR
, dl
, PtrVT
,
3367 if (Model
== TLSModel::LocalDynamic
) {
3368 if (Subtarget
.isUsingPCRelativeCalls()) {
3369 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3370 PPCII::MO_GOT_TLSLD_PCREL_FLAG
);
3372 DAG
.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR
, dl
, PtrVT
, TGA
);
3373 return DAG
.getNode(PPCISD::PADDI_DTPREL
, dl
, PtrVT
, MatPCRel
, TGA
);
3376 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, 0);
3379 setUsesTOCBasePtr(DAG
);
3380 SDValue GOTReg
= DAG
.getRegister(PPC::X2
, MVT::i64
);
3381 GOTPtr
= DAG
.getNode(PPCISD::ADDIS_TLSLD_HA
, dl
, PtrVT
,
3384 if (picLevel
== PICLevel::SmallPIC
)
3385 GOTPtr
= DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, PtrVT
);
3387 GOTPtr
= DAG
.getNode(PPCISD::PPC32_PICGOT
, dl
, PtrVT
);
3389 SDValue TLSAddr
= DAG
.getNode(PPCISD::ADDI_TLSLD_L_ADDR
, dl
,
3390 PtrVT
, GOTPtr
, TGA
, TGA
);
3391 SDValue DtvOffsetHi
= DAG
.getNode(PPCISD::ADDIS_DTPREL_HA
, dl
,
3392 PtrVT
, TLSAddr
, TGA
);
3393 return DAG
.getNode(PPCISD::ADDI_DTPREL_L
, dl
, PtrVT
, DtvOffsetHi
, TGA
);
3396 llvm_unreachable("Unknown TLS model!");
3399 SDValue
PPCTargetLowering::LowerGlobalAddress(SDValue Op
,
3400 SelectionDAG
&DAG
) const {
3401 EVT PtrVT
= Op
.getValueType();
3402 GlobalAddressSDNode
*GSDN
= cast
<GlobalAddressSDNode
>(Op
);
3404 const GlobalValue
*GV
= GSDN
->getGlobal();
3406 // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3407 // The actual address of the GlobalValue is stored in the TOC.
3408 if (Subtarget
.is64BitELFABI() || Subtarget
.isAIXABI()) {
3409 if (Subtarget
.isUsingPCRelativeCalls()) {
3410 EVT Ty
= getPointerTy(DAG
.getDataLayout());
3411 if (isAccessedAsGotIndirect(Op
)) {
3412 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, Ty
, GSDN
->getOffset(),
3413 PPCII::MO_PCREL_FLAG
|
3414 PPCII::MO_GOT_FLAG
);
3415 SDValue MatPCRel
= DAG
.getNode(PPCISD::MAT_PCREL_ADDR
, DL
, Ty
, GA
);
3416 SDValue Load
= DAG
.getLoad(MVT::i64
, DL
, DAG
.getEntryNode(), MatPCRel
,
3417 MachinePointerInfo());
3420 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, Ty
, GSDN
->getOffset(),
3421 PPCII::MO_PCREL_FLAG
);
3422 return DAG
.getNode(PPCISD::MAT_PCREL_ADDR
, DL
, Ty
, GA
);
3425 setUsesTOCBasePtr(DAG
);
3426 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset());
3427 return getTOCEntry(DAG
, DL
, GA
);
3430 unsigned MOHiFlag
, MOLoFlag
;
3431 bool IsPIC
= isPositionIndependent();
3432 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
, GV
);
3434 if (IsPIC
&& Subtarget
.isSVR4ABI()) {
3435 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
,
3437 PPCII::MO_PIC_FLAG
);
3438 return getTOCEntry(DAG
, DL
, GA
);
3442 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset(), MOHiFlag
);
3444 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset(), MOLoFlag
);
3446 return LowerLabelRef(GAHi
, GALo
, IsPIC
, DAG
);
3449 SDValue
PPCTargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
3450 bool IsStrict
= Op
->isStrictFPOpcode();
3452 cast
<CondCodeSDNode
>(Op
.getOperand(IsStrict
? 3 : 2))->get();
3453 SDValue LHS
= Op
.getOperand(IsStrict
? 1 : 0);
3454 SDValue RHS
= Op
.getOperand(IsStrict
? 2 : 1);
3455 SDValue Chain
= IsStrict
? Op
.getOperand(0) : SDValue();
3456 EVT LHSVT
= LHS
.getValueType();
3459 // Soften the setcc with libcall if it is fp128.
3460 if (LHSVT
== MVT::f128
) {
3461 assert(!Subtarget
.hasP9Vector() &&
3462 "SETCC for f128 is already legal under Power9!");
3463 softenSetCCOperands(DAG
, LHSVT
, LHS
, RHS
, CC
, dl
, LHS
, RHS
, Chain
,
3464 Op
->getOpcode() == ISD::STRICT_FSETCCS
);
3466 LHS
= DAG
.getNode(ISD::SETCC
, dl
, Op
.getValueType(), LHS
, RHS
,
3467 DAG
.getCondCode(CC
));
3469 return DAG
.getMergeValues({LHS
, Chain
}, dl
);
3473 assert(!IsStrict
&& "Don't know how to handle STRICT_FSETCC!");
3475 if (Op
.getValueType() == MVT::v2i64
) {
3476 // When the operands themselves are v2i64 values, we need to do something
3477 // special because VSX has no underlying comparison operations for these.
3478 if (LHS
.getValueType() == MVT::v2i64
) {
3479 // Equality can be handled by casting to the legal type for Altivec
3480 // comparisons, everything else needs to be expanded.
3481 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) {
3483 ISD::BITCAST
, dl
, MVT::v2i64
,
3484 DAG
.getSetCC(dl
, MVT::v4i32
,
3485 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, LHS
),
3486 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, RHS
), CC
));
3492 // We handle most of these in the usual way.
3496 // If we're comparing for equality to zero, expose the fact that this is
3497 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3498 // fold the new nodes.
3499 if (SDValue V
= lowerCmpEqZeroToCtlzSrl(Op
, DAG
))
3502 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
3503 // Leave comparisons against 0 and -1 alone for now, since they're usually
3504 // optimized. FIXME: revisit this when we can custom lower all setcc
3506 if (C
->isAllOnesValue() || C
->isNullValue())
3510 // If we have an integer seteq/setne, turn it into a compare against zero
3511 // by xor'ing the rhs with the lhs, which is faster than setting a
3512 // condition register, reading it back out, and masking the correct bit. The
3513 // normal approach here uses sub to do this instead of xor. Using xor exposes
3514 // the result to other bit-twiddling opportunities.
3515 if (LHSVT
.isInteger() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
3516 EVT VT
= Op
.getValueType();
3517 SDValue Sub
= DAG
.getNode(ISD::XOR
, dl
, LHSVT
, LHS
, RHS
);
3518 return DAG
.getSetCC(dl
, VT
, Sub
, DAG
.getConstant(0, dl
, LHSVT
), CC
);
3523 SDValue
PPCTargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
3524 SDNode
*Node
= Op
.getNode();
3525 EVT VT
= Node
->getValueType(0);
3526 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3527 SDValue InChain
= Node
->getOperand(0);
3528 SDValue VAListPtr
= Node
->getOperand(1);
3529 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
3532 assert(!Subtarget
.isPPC64() && "LowerVAARG is PPC32 only");
3535 SDValue GprIndex
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, MVT::i32
, InChain
,
3536 VAListPtr
, MachinePointerInfo(SV
), MVT::i8
);
3537 InChain
= GprIndex
.getValue(1);
3539 if (VT
== MVT::i64
) {
3540 // Check if GprIndex is even
3541 SDValue GprAnd
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, GprIndex
,
3542 DAG
.getConstant(1, dl
, MVT::i32
));
3543 SDValue CC64
= DAG
.getSetCC(dl
, MVT::i32
, GprAnd
,
3544 DAG
.getConstant(0, dl
, MVT::i32
), ISD::SETNE
);
3545 SDValue GprIndexPlusOne
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, GprIndex
,
3546 DAG
.getConstant(1, dl
, MVT::i32
));
3547 // Align GprIndex to be even if it isn't
3548 GprIndex
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i32
, CC64
, GprIndexPlusOne
,
3552 // fpr index is 1 byte after gpr
3553 SDValue FprPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
3554 DAG
.getConstant(1, dl
, MVT::i32
));
3557 SDValue FprIndex
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, MVT::i32
, InChain
,
3558 FprPtr
, MachinePointerInfo(SV
), MVT::i8
);
3559 InChain
= FprIndex
.getValue(1);
3561 SDValue RegSaveAreaPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
3562 DAG
.getConstant(8, dl
, MVT::i32
));
3564 SDValue OverflowAreaPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
3565 DAG
.getConstant(4, dl
, MVT::i32
));
3568 SDValue OverflowArea
=
3569 DAG
.getLoad(MVT::i32
, dl
, InChain
, OverflowAreaPtr
, MachinePointerInfo());
3570 InChain
= OverflowArea
.getValue(1);
3572 SDValue RegSaveArea
=
3573 DAG
.getLoad(MVT::i32
, dl
, InChain
, RegSaveAreaPtr
, MachinePointerInfo());
3574 InChain
= RegSaveArea
.getValue(1);
3576 // select overflow_area if index > 8
3577 SDValue CC
= DAG
.getSetCC(dl
, MVT::i32
, VT
.isInteger() ? GprIndex
: FprIndex
,
3578 DAG
.getConstant(8, dl
, MVT::i32
), ISD::SETLT
);
3580 // adjustment constant gpr_index * 4/8
3581 SDValue RegConstant
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
,
3582 VT
.isInteger() ? GprIndex
: FprIndex
,
3583 DAG
.getConstant(VT
.isInteger() ? 4 : 8, dl
,
3586 // OurReg = RegSaveArea + RegConstant
3587 SDValue OurReg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, RegSaveArea
,
3590 // Floating types are 32 bytes into RegSaveArea
3591 if (VT
.isFloatingPoint())
3592 OurReg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, OurReg
,
3593 DAG
.getConstant(32, dl
, MVT::i32
));
3595 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3596 SDValue IndexPlus1
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3597 VT
.isInteger() ? GprIndex
: FprIndex
,
3598 DAG
.getConstant(VT
== MVT::i64
? 2 : 1, dl
,
3601 InChain
= DAG
.getTruncStore(InChain
, dl
, IndexPlus1
,
3602 VT
.isInteger() ? VAListPtr
: FprPtr
,
3603 MachinePointerInfo(SV
), MVT::i8
);
3605 // determine if we should load from reg_save_area or overflow_area
3606 SDValue Result
= DAG
.getNode(ISD::SELECT
, dl
, PtrVT
, CC
, OurReg
, OverflowArea
);
3608 // increase overflow_area by 4/8 if gpr/fpr > 8
3609 SDValue OverflowAreaPlusN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, OverflowArea
,
3610 DAG
.getConstant(VT
.isInteger() ? 4 : 8,
3613 OverflowArea
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i32
, CC
, OverflowArea
,
3616 InChain
= DAG
.getTruncStore(InChain
, dl
, OverflowArea
, OverflowAreaPtr
,
3617 MachinePointerInfo(), MVT::i32
);
3619 return DAG
.getLoad(VT
, dl
, InChain
, Result
, MachinePointerInfo());
3622 SDValue
PPCTargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const {
3623 assert(!Subtarget
.isPPC64() && "LowerVACOPY is PPC32 only");
3625 // We have to copy the entire va_list struct:
3626 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3627 return DAG
.getMemcpy(Op
.getOperand(0), Op
, Op
.getOperand(1), Op
.getOperand(2),
3628 DAG
.getConstant(12, SDLoc(Op
), MVT::i32
), Align(8),
3629 false, true, false, MachinePointerInfo(),
3630 MachinePointerInfo());
3633 SDValue
PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op
,
3634 SelectionDAG
&DAG
) const {
3635 if (Subtarget
.isAIXABI())
3636 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3638 return Op
.getOperand(0);
3641 SDValue
PPCTargetLowering::LowerINLINEASM(SDValue Op
, SelectionDAG
&DAG
) const {
3642 MachineFunction
&MF
= DAG
.getMachineFunction();
3643 PPCFunctionInfo
&MFI
= *MF
.getInfo
<PPCFunctionInfo
>();
3645 assert((Op
.getOpcode() == ISD::INLINEASM
||
3646 Op
.getOpcode() == ISD::INLINEASM_BR
) &&
3647 "Expecting Inline ASM node.");
3649 // If an LR store is already known to be required then there is not point in
3650 // checking this ASM as well.
3651 if (MFI
.isLRStoreRequired())
3654 // Inline ASM nodes have an optional last operand that is an incoming Flag of
3655 // type MVT::Glue. We want to ignore this last operand if that is the case.
3656 unsigned NumOps
= Op
.getNumOperands();
3657 if (Op
.getOperand(NumOps
- 1).getValueType() == MVT::Glue
)
3660 // Check all operands that may contain the LR.
3661 for (unsigned i
= InlineAsm::Op_FirstOperand
; i
!= NumOps
;) {
3662 unsigned Flags
= cast
<ConstantSDNode
>(Op
.getOperand(i
))->getZExtValue();
3663 unsigned NumVals
= InlineAsm::getNumOperandRegisters(Flags
);
3664 ++i
; // Skip the ID value.
3666 switch (InlineAsm::getKind(Flags
)) {
3668 llvm_unreachable("Bad flags!");
3669 case InlineAsm::Kind_RegUse
:
3670 case InlineAsm::Kind_Imm
:
3671 case InlineAsm::Kind_Mem
:
3674 case InlineAsm::Kind_Clobber
:
3675 case InlineAsm::Kind_RegDef
:
3676 case InlineAsm::Kind_RegDefEarlyClobber
: {
3677 for (; NumVals
; --NumVals
, ++i
) {
3678 Register Reg
= cast
<RegisterSDNode
>(Op
.getOperand(i
))->getReg();
3679 if (Reg
!= PPC::LR
&& Reg
!= PPC::LR8
)
3681 MFI
.setLRStoreRequired();
3692 SDValue
PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op
,
3693 SelectionDAG
&DAG
) const {
3694 if (Subtarget
.isAIXABI())
3695 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3697 SDValue Chain
= Op
.getOperand(0);
3698 SDValue Trmp
= Op
.getOperand(1); // trampoline
3699 SDValue FPtr
= Op
.getOperand(2); // nested function
3700 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
3703 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3704 bool isPPC64
= (PtrVT
== MVT::i64
);
3705 Type
*IntPtrTy
= DAG
.getDataLayout().getIntPtrType(*DAG
.getContext());
3707 TargetLowering::ArgListTy Args
;
3708 TargetLowering::ArgListEntry Entry
;
3710 Entry
.Ty
= IntPtrTy
;
3711 Entry
.Node
= Trmp
; Args
.push_back(Entry
);
3713 // TrampSize == (isPPC64 ? 48 : 40);
3714 Entry
.Node
= DAG
.getConstant(isPPC64
? 48 : 40, dl
,
3715 isPPC64
? MVT::i64
: MVT::i32
);
3716 Args
.push_back(Entry
);
3718 Entry
.Node
= FPtr
; Args
.push_back(Entry
);
3719 Entry
.Node
= Nest
; Args
.push_back(Entry
);
3721 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3722 TargetLowering::CallLoweringInfo
CLI(DAG
);
3723 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3724 CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3725 DAG
.getExternalSymbol("__trampoline_setup", PtrVT
), std::move(Args
));
3727 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3728 return CallResult
.second
;
3731 SDValue
PPCTargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
3732 MachineFunction
&MF
= DAG
.getMachineFunction();
3733 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
3734 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
3738 if (Subtarget
.isPPC64() || Subtarget
.isAIXABI()) {
3739 // vastart just stores the address of the VarArgsFrameIndex slot into the
3740 // memory location argument.
3741 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3742 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3743 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3744 MachinePointerInfo(SV
));
3747 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3748 // We suppose the given va_list is already allocated.
3751 // char gpr; /* index into the array of 8 GPRs
3752 // * stored in the register save area
3753 // * gpr=0 corresponds to r3,
3754 // * gpr=1 to r4, etc.
3756 // char fpr; /* index into the array of 8 FPRs
3757 // * stored in the register save area
3758 // * fpr=0 corresponds to f1,
3759 // * fpr=1 to f2, etc.
3761 // char *overflow_arg_area;
3762 // /* location on stack that holds
3763 // * the next overflow argument
3765 // char *reg_save_area;
3766 // /* where r3:r10 and f1:f8 (if saved)
3771 SDValue ArgGPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumGPR(), dl
, MVT::i32
);
3772 SDValue ArgFPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumFPR(), dl
, MVT::i32
);
3773 SDValue StackOffsetFI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackOffset(),
3775 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
3778 uint64_t FrameOffset
= PtrVT
.getSizeInBits()/8;
3779 SDValue ConstFrameOffset
= DAG
.getConstant(FrameOffset
, dl
, PtrVT
);
3781 uint64_t StackOffset
= PtrVT
.getSizeInBits()/8 - 1;
3782 SDValue ConstStackOffset
= DAG
.getConstant(StackOffset
, dl
, PtrVT
);
3784 uint64_t FPROffset
= 1;
3785 SDValue ConstFPROffset
= DAG
.getConstant(FPROffset
, dl
, PtrVT
);
3787 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3789 // Store first byte : number of int regs
3790 SDValue firstStore
=
3791 DAG
.getTruncStore(Op
.getOperand(0), dl
, ArgGPR
, Op
.getOperand(1),
3792 MachinePointerInfo(SV
), MVT::i8
);
3793 uint64_t nextOffset
= FPROffset
;
3794 SDValue nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Op
.getOperand(1),
3797 // Store second byte : number of float regs
3798 SDValue secondStore
=
3799 DAG
.getTruncStore(firstStore
, dl
, ArgFPR
, nextPtr
,
3800 MachinePointerInfo(SV
, nextOffset
), MVT::i8
);
3801 nextOffset
+= StackOffset
;
3802 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstStackOffset
);
3804 // Store second word : arguments given on stack
3805 SDValue thirdStore
= DAG
.getStore(secondStore
, dl
, StackOffsetFI
, nextPtr
,
3806 MachinePointerInfo(SV
, nextOffset
));
3807 nextOffset
+= FrameOffset
;
3808 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstFrameOffset
);
3810 // Store third word : arguments given in registers
3811 return DAG
.getStore(thirdStore
, dl
, FR
, nextPtr
,
3812 MachinePointerInfo(SV
, nextOffset
));
3815 /// FPR - The set of FP registers that should be allocated for arguments
3816 /// on Darwin and AIX.
3817 static const MCPhysReg FPR
[] = {PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
,
3818 PPC::F6
, PPC::F7
, PPC::F8
, PPC::F9
, PPC::F10
,
3819 PPC::F11
, PPC::F12
, PPC::F13
};
3821 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3823 static unsigned CalculateStackSlotSize(EVT ArgVT
, ISD::ArgFlagsTy Flags
,
3824 unsigned PtrByteSize
) {
3825 unsigned ArgSize
= ArgVT
.getStoreSize();
3826 if (Flags
.isByVal())
3827 ArgSize
= Flags
.getByValSize();
3829 // Round up to multiples of the pointer size, except for array members,
3830 // which are always packed.
3831 if (!Flags
.isInConsecutiveRegs())
3832 ArgSize
= ((ArgSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
3837 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3839 static Align
CalculateStackSlotAlignment(EVT ArgVT
, EVT OrigVT
,
3840 ISD::ArgFlagsTy Flags
,
3841 unsigned PtrByteSize
) {
3842 Align
Alignment(PtrByteSize
);
3844 // Altivec parameters are padded to a 16 byte boundary.
3845 if (ArgVT
== MVT::v4f32
|| ArgVT
== MVT::v4i32
||
3846 ArgVT
== MVT::v8i16
|| ArgVT
== MVT::v16i8
||
3847 ArgVT
== MVT::v2f64
|| ArgVT
== MVT::v2i64
||
3848 ArgVT
== MVT::v1i128
|| ArgVT
== MVT::f128
)
3849 Alignment
= Align(16);
3851 // ByVal parameters are aligned as requested.
3852 if (Flags
.isByVal()) {
3853 auto BVAlign
= Flags
.getNonZeroByValAlign();
3854 if (BVAlign
> PtrByteSize
) {
3855 if (BVAlign
.value() % PtrByteSize
!= 0)
3857 "ByVal alignment is not a multiple of the pointer size");
3859 Alignment
= BVAlign
;
3863 // Array members are always packed to their original alignment.
3864 if (Flags
.isInConsecutiveRegs()) {
3865 // If the array member was split into multiple registers, the first
3866 // needs to be aligned to the size of the full type. (Except for
3867 // ppcf128, which is only aligned as its f64 components.)
3868 if (Flags
.isSplit() && OrigVT
!= MVT::ppcf128
)
3869 Alignment
= Align(OrigVT
.getStoreSize());
3871 Alignment
= Align(ArgVT
.getStoreSize());
3877 /// CalculateStackSlotUsed - Return whether this argument will use its
3878 /// stack slot (instead of being passed in registers). ArgOffset,
3879 /// AvailableFPRs, and AvailableVRs must hold the current argument
3880 /// position, and will be updated to account for this argument.
3881 static bool CalculateStackSlotUsed(EVT ArgVT
, EVT OrigVT
, ISD::ArgFlagsTy Flags
,
3882 unsigned PtrByteSize
, unsigned LinkageSize
,
3883 unsigned ParamAreaSize
, unsigned &ArgOffset
,
3884 unsigned &AvailableFPRs
,
3885 unsigned &AvailableVRs
) {
3886 bool UseMemory
= false;
3888 // Respect alignment of argument on the stack.
3890 CalculateStackSlotAlignment(ArgVT
, OrigVT
, Flags
, PtrByteSize
);
3891 ArgOffset
= alignTo(ArgOffset
, Alignment
);
3892 // If there's no space left in the argument save area, we must
3893 // use memory (this check also catches zero-sized arguments).
3894 if (ArgOffset
>= LinkageSize
+ ParamAreaSize
)
3897 // Allocate argument on the stack.
3898 ArgOffset
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
3899 if (Flags
.isInConsecutiveRegsLast())
3900 ArgOffset
= ((ArgOffset
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
3901 // If we overran the argument save area, we must use memory
3902 // (this check catches arguments passed partially in memory)
3903 if (ArgOffset
> LinkageSize
+ ParamAreaSize
)
3906 // However, if the argument is actually passed in an FPR or a VR,
3907 // we don't use memory after all.
3908 if (!Flags
.isByVal()) {
3909 if (ArgVT
== MVT::f32
|| ArgVT
== MVT::f64
)
3910 if (AvailableFPRs
> 0) {
3914 if (ArgVT
== MVT::v4f32
|| ArgVT
== MVT::v4i32
||
3915 ArgVT
== MVT::v8i16
|| ArgVT
== MVT::v16i8
||
3916 ArgVT
== MVT::v2f64
|| ArgVT
== MVT::v2i64
||
3917 ArgVT
== MVT::v1i128
|| ArgVT
== MVT::f128
)
3918 if (AvailableVRs
> 0) {
3927 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3928 /// ensure minimum alignment required for target.
3929 static unsigned EnsureStackAlignment(const PPCFrameLowering
*Lowering
,
3930 unsigned NumBytes
) {
3931 return alignTo(NumBytes
, Lowering
->getStackAlign());
3934 SDValue
PPCTargetLowering::LowerFormalArguments(
3935 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3936 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3937 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3938 if (Subtarget
.isAIXABI())
3939 return LowerFormalArguments_AIX(Chain
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
3941 if (Subtarget
.is64BitELFABI())
3942 return LowerFormalArguments_64SVR4(Chain
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
3944 assert(Subtarget
.is32BitELFABI());
3945 return LowerFormalArguments_32SVR4(Chain
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
3949 SDValue
PPCTargetLowering::LowerFormalArguments_32SVR4(
3950 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3951 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3952 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3954 // 32-bit SVR4 ABI Stack Frame Layout:
3955 // +-----------------------------------+
3956 // +--> | Back chain |
3957 // | +-----------------------------------+
3958 // | | Floating-point register save area |
3959 // | +-----------------------------------+
3960 // | | General register save area |
3961 // | +-----------------------------------+
3962 // | | CR save word |
3963 // | +-----------------------------------+
3964 // | | VRSAVE save word |
3965 // | +-----------------------------------+
3966 // | | Alignment padding |
3967 // | +-----------------------------------+
3968 // | | Vector register save area |
3969 // | +-----------------------------------+
3970 // | | Local variable space |
3971 // | +-----------------------------------+
3972 // | | Parameter list area |
3973 // | +-----------------------------------+
3974 // | | LR save word |
3975 // | +-----------------------------------+
3976 // SP--> +--- | Back chain |
3977 // +-----------------------------------+
3980 // System V Application Binary Interface PowerPC Processor Supplement
3981 // AltiVec Technology Programming Interface Manual
3983 MachineFunction
&MF
= DAG
.getMachineFunction();
3984 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3985 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
3987 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
3988 // Potential tail calls could cause overwriting of argument stack slots.
3989 bool isImmutable
= !(getTargetMachine().Options
.GuaranteedTailCallOpt
&&
3990 (CallConv
== CallingConv::Fast
));
3991 const Align
PtrAlign(4);
3993 // Assign locations to all of the incoming arguments.
3994 SmallVector
<CCValAssign
, 16> ArgLocs
;
3995 PPCCCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3998 // Reserve space for the linkage area on the stack.
3999 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
4000 CCInfo
.AllocateStack(LinkageSize
, PtrAlign
);
4002 CCInfo
.PreAnalyzeFormalArguments(Ins
);
4004 CCInfo
.AnalyzeFormalArguments(Ins
, CC_PPC32_SVR4
);
4005 CCInfo
.clearWasPPCF128();
4007 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
4008 CCValAssign
&VA
= ArgLocs
[i
];
4010 // Arguments stored in registers.
4011 if (VA
.isRegLoc()) {
4012 const TargetRegisterClass
*RC
;
4013 EVT ValVT
= VA
.getValVT();
4015 switch (ValVT
.getSimpleVT().SimpleTy
) {
4017 llvm_unreachable("ValVT not supported by formal arguments Lowering");
4020 RC
= &PPC::GPRCRegClass
;
4023 if (Subtarget
.hasP8Vector())
4024 RC
= &PPC::VSSRCRegClass
;
4025 else if (Subtarget
.hasSPE())
4026 RC
= &PPC::GPRCRegClass
;
4028 RC
= &PPC::F4RCRegClass
;
4031 if (Subtarget
.hasVSX())
4032 RC
= &PPC::VSFRCRegClass
;
4033 else if (Subtarget
.hasSPE())
4034 // SPE passes doubles in GPR pairs.
4035 RC
= &PPC::GPRCRegClass
;
4037 RC
= &PPC::F8RCRegClass
;
4042 RC
= &PPC::VRRCRegClass
;
4045 RC
= &PPC::VRRCRegClass
;
4049 RC
= &PPC::VRRCRegClass
;
4054 // Transform the arguments stored in physical registers into
4056 if (VA
.getLocVT() == MVT::f64
&& Subtarget
.hasSPE()) {
4057 assert(i
+ 1 < e
&& "No second half of double precision argument");
4058 unsigned RegLo
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4059 unsigned RegHi
= MF
.addLiveIn(ArgLocs
[++i
].getLocReg(), RC
);
4060 SDValue ArgValueLo
= DAG
.getCopyFromReg(Chain
, dl
, RegLo
, MVT::i32
);
4061 SDValue ArgValueHi
= DAG
.getCopyFromReg(Chain
, dl
, RegHi
, MVT::i32
);
4062 if (!Subtarget
.isLittleEndian())
4063 std::swap (ArgValueLo
, ArgValueHi
);
4064 ArgValue
= DAG
.getNode(PPCISD::BUILD_SPE64
, dl
, MVT::f64
, ArgValueLo
,
4067 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4068 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
,
4069 ValVT
== MVT::i1
? MVT::i32
: ValVT
);
4070 if (ValVT
== MVT::i1
)
4071 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, ArgValue
);
4074 InVals
.push_back(ArgValue
);
4076 // Argument stored in memory.
4077 assert(VA
.isMemLoc());
4079 // Get the extended size of the argument type in stack
4080 unsigned ArgSize
= VA
.getLocVT().getStoreSize();
4081 // Get the actual size of the argument type
4082 unsigned ObjSize
= VA
.getValVT().getStoreSize();
4083 unsigned ArgOffset
= VA
.getLocMemOffset();
4084 // Stack objects in PPC32 are right justified.
4085 ArgOffset
+= ArgSize
- ObjSize
;
4086 int FI
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, isImmutable
);
4088 // Create load nodes to retrieve arguments from the stack.
4089 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4091 DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
, MachinePointerInfo()));
4095 // Assign locations to all of the incoming aggregate by value arguments.
4096 // Aggregates passed by value are stored in the local variable space of the
4097 // caller's stack frame, right above the parameter list area.
4098 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
4099 CCState
CCByValInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
4100 ByValArgLocs
, *DAG
.getContext());
4102 // Reserve stack space for the allocations in CCInfo.
4103 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrAlign
);
4105 CCByValInfo
.AnalyzeFormalArguments(Ins
, CC_PPC32_SVR4_ByVal
);
4107 // Area that is at least reserved in the caller of this function.
4108 unsigned MinReservedArea
= CCByValInfo
.getNextStackOffset();
4109 MinReservedArea
= std::max(MinReservedArea
, LinkageSize
);
4111 // Set the size that is at least reserved in caller of this function. Tail
4112 // call optimized function's reserved stack space needs to be aligned so that
4113 // taking the difference between two stack areas will result in an aligned
4116 EnsureStackAlignment(Subtarget
.getFrameLowering(), MinReservedArea
);
4117 FuncInfo
->setMinReservedArea(MinReservedArea
);
4119 SmallVector
<SDValue
, 8> MemOps
;
4121 // If the function takes variable number of arguments, make a frame index for
4122 // the start of the first vararg value... for expansion of llvm.va_start.
4124 static const MCPhysReg GPArgRegs
[] = {
4125 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
4126 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
4128 const unsigned NumGPArgRegs
= array_lengthof(GPArgRegs
);
4130 static const MCPhysReg FPArgRegs
[] = {
4131 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
4134 unsigned NumFPArgRegs
= array_lengthof(FPArgRegs
);
4136 if (useSoftFloat() || hasSPE())
4139 FuncInfo
->setVarArgsNumGPR(CCInfo
.getFirstUnallocated(GPArgRegs
));
4140 FuncInfo
->setVarArgsNumFPR(CCInfo
.getFirstUnallocated(FPArgRegs
));
4142 // Make room for NumGPArgRegs and NumFPArgRegs.
4143 int Depth
= NumGPArgRegs
* PtrVT
.getSizeInBits()/8 +
4144 NumFPArgRegs
* MVT(MVT::f64
).getSizeInBits()/8;
4146 FuncInfo
->setVarArgsStackOffset(
4147 MFI
.CreateFixedObject(PtrVT
.getSizeInBits()/8,
4148 CCInfo
.getNextStackOffset(), true));
4150 FuncInfo
->setVarArgsFrameIndex(
4151 MFI
.CreateStackObject(Depth
, Align(8), false));
4152 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
4154 // The fixed integer arguments of a variadic function are stored to the
4155 // VarArgsFrameIndex on the stack so that they may be loaded by
4156 // dereferencing the result of va_next.
4157 for (unsigned GPRIndex
= 0; GPRIndex
!= NumGPArgRegs
; ++GPRIndex
) {
4158 // Get an existing live-in vreg, or add a new one.
4159 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(GPArgRegs
[GPRIndex
]);
4161 VReg
= MF
.addLiveIn(GPArgRegs
[GPRIndex
], &PPC::GPRCRegClass
);
4163 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4165 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
4166 MemOps
.push_back(Store
);
4167 // Increment the address by four for the next argument to store
4168 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, dl
, PtrVT
);
4169 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
4172 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4174 // The double arguments are stored to the VarArgsFrameIndex
4176 for (unsigned FPRIndex
= 0; FPRIndex
!= NumFPArgRegs
; ++FPRIndex
) {
4177 // Get an existing live-in vreg, or add a new one.
4178 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(FPArgRegs
[FPRIndex
]);
4180 VReg
= MF
.addLiveIn(FPArgRegs
[FPRIndex
], &PPC::F8RCRegClass
);
4182 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::f64
);
4184 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
4185 MemOps
.push_back(Store
);
4186 // Increment the address by eight for the next argument to store
4187 SDValue PtrOff
= DAG
.getConstant(MVT(MVT::f64
).getSizeInBits()/8, dl
,
4189 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
4193 if (!MemOps
.empty())
4194 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
4199 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4200 // value to MVT::i64 and then truncate to the correct register size.
4201 SDValue
PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags
,
4202 EVT ObjectVT
, SelectionDAG
&DAG
,
4204 const SDLoc
&dl
) const {
4206 ArgVal
= DAG
.getNode(ISD::AssertSext
, dl
, MVT::i64
, ArgVal
,
4207 DAG
.getValueType(ObjectVT
));
4208 else if (Flags
.isZExt())
4209 ArgVal
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i64
, ArgVal
,
4210 DAG
.getValueType(ObjectVT
));
4212 return DAG
.getNode(ISD::TRUNCATE
, dl
, ObjectVT
, ArgVal
);
4215 SDValue
PPCTargetLowering::LowerFormalArguments_64SVR4(
4216 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
4217 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
4218 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
4219 // TODO: add description of PPC stack frame format, or at least some docs.
4221 bool isELFv2ABI
= Subtarget
.isELFv2ABI();
4222 bool isLittleEndian
= Subtarget
.isLittleEndian();
4223 MachineFunction
&MF
= DAG
.getMachineFunction();
4224 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4225 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
4227 assert(!(CallConv
== CallingConv::Fast
&& isVarArg
) &&
4228 "fastcc not supported on varargs functions");
4230 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
4231 // Potential tail calls could cause overwriting of argument stack slots.
4232 bool isImmutable
= !(getTargetMachine().Options
.GuaranteedTailCallOpt
&&
4233 (CallConv
== CallingConv::Fast
));
4234 unsigned PtrByteSize
= 8;
4235 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
4237 static const MCPhysReg GPR
[] = {
4238 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
4239 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
4241 static const MCPhysReg VR
[] = {
4242 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
4243 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
4246 const unsigned Num_GPR_Regs
= array_lengthof(GPR
);
4247 const unsigned Num_FPR_Regs
= useSoftFloat() ? 0 : 13;
4248 const unsigned Num_VR_Regs
= array_lengthof(VR
);
4250 // Do a first pass over the arguments to determine whether the ABI
4251 // guarantees that our caller has allocated the parameter save area
4252 // on its stack frame. In the ELFv1 ABI, this is always the case;
4253 // in the ELFv2 ABI, it is true if this is a vararg function or if
4254 // any parameter is located in a stack slot.
4256 bool HasParameterArea
= !isELFv2ABI
|| isVarArg
;
4257 unsigned ParamAreaSize
= Num_GPR_Regs
* PtrByteSize
;
4258 unsigned NumBytes
= LinkageSize
;
4259 unsigned AvailableFPRs
= Num_FPR_Regs
;
4260 unsigned AvailableVRs
= Num_VR_Regs
;
4261 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
4262 if (Ins
[i
].Flags
.isNest())
4265 if (CalculateStackSlotUsed(Ins
[i
].VT
, Ins
[i
].ArgVT
, Ins
[i
].Flags
,
4266 PtrByteSize
, LinkageSize
, ParamAreaSize
,
4267 NumBytes
, AvailableFPRs
, AvailableVRs
))
4268 HasParameterArea
= true;
4271 // Add DAG nodes to load the arguments or copy them out of registers. On
4272 // entry to a function on PPC, the arguments start after the linkage area,
4273 // although the first ones are often in registers.
4275 unsigned ArgOffset
= LinkageSize
;
4276 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
4277 SmallVector
<SDValue
, 8> MemOps
;
4278 Function::const_arg_iterator FuncArg
= MF
.getFunction().arg_begin();
4279 unsigned CurArgIdx
= 0;
4280 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
; ++ArgNo
) {
4282 bool needsLoad
= false;
4283 EVT ObjectVT
= Ins
[ArgNo
].VT
;
4284 EVT OrigVT
= Ins
[ArgNo
].ArgVT
;
4285 unsigned ObjSize
= ObjectVT
.getStoreSize();
4286 unsigned ArgSize
= ObjSize
;
4287 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
4288 if (Ins
[ArgNo
].isOrigArg()) {
4289 std::advance(FuncArg
, Ins
[ArgNo
].getOrigArgIndex() - CurArgIdx
);
4290 CurArgIdx
= Ins
[ArgNo
].getOrigArgIndex();
4292 // We re-align the argument offset for each argument, except when using the
4293 // fast calling convention, when we need to make sure we do that only when
4294 // we'll actually use a stack slot.
4295 unsigned CurArgOffset
;
4297 auto ComputeArgOffset
= [&]() {
4298 /* Respect alignment of argument on the stack. */
4300 CalculateStackSlotAlignment(ObjectVT
, OrigVT
, Flags
, PtrByteSize
);
4301 ArgOffset
= alignTo(ArgOffset
, Alignment
);
4302 CurArgOffset
= ArgOffset
;
4305 if (CallConv
!= CallingConv::Fast
) {
4308 /* Compute GPR index associated with argument offset. */
4309 GPR_idx
= (ArgOffset
- LinkageSize
) / PtrByteSize
;
4310 GPR_idx
= std::min(GPR_idx
, Num_GPR_Regs
);
4313 // FIXME the codegen can be much improved in some cases.
4314 // We do not have to keep everything in memory.
4315 if (Flags
.isByVal()) {
4316 assert(Ins
[ArgNo
].isOrigArg() && "Byval arguments cannot be implicit");
4318 if (CallConv
== CallingConv::Fast
)
4321 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4322 ObjSize
= Flags
.getByValSize();
4323 ArgSize
= ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
4324 // Empty aggregate parameters do not take up registers. Examples:
4328 // etc. However, we have to provide a place-holder in InVals, so
4329 // pretend we have an 8-byte item at the current address for that
4332 int FI
= MFI
.CreateFixedObject(PtrByteSize
, ArgOffset
, true);
4333 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4334 InVals
.push_back(FIN
);
4338 // Create a stack object covering all stack doublewords occupied
4339 // by the argument. If the argument is (fully or partially) on
4340 // the stack, or if the argument is fully in registers but the
4341 // caller has allocated the parameter save anyway, we can refer
4342 // directly to the caller's stack frame. Otherwise, create a
4343 // local copy in our own frame.
4345 if (HasParameterArea
||
4346 ArgSize
+ ArgOffset
> LinkageSize
+ Num_GPR_Regs
* PtrByteSize
)
4347 FI
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false, true);
4349 FI
= MFI
.CreateStackObject(ArgSize
, Alignment
, false);
4350 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4352 // Handle aggregates smaller than 8 bytes.
4353 if (ObjSize
< PtrByteSize
) {
4354 // The value of the object is its address, which differs from the
4355 // address of the enclosing doubleword on big-endian systems.
4357 if (!isLittleEndian
) {
4358 SDValue ArgOff
= DAG
.getConstant(PtrByteSize
- ObjSize
, dl
, PtrVT
);
4359 Arg
= DAG
.getNode(ISD::ADD
, dl
, ArgOff
.getValueType(), Arg
, ArgOff
);
4361 InVals
.push_back(Arg
);
4363 if (GPR_idx
!= Num_GPR_Regs
) {
4364 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
++], &PPC::G8RCRegClass
);
4365 FuncInfo
->addLiveInAttr(VReg
, Flags
);
4366 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4369 if (ObjSize
==1 || ObjSize
==2 || ObjSize
==4) {
4370 EVT ObjType
= (ObjSize
== 1 ? MVT::i8
:
4371 (ObjSize
== 2 ? MVT::i16
: MVT::i32
));
4372 Store
= DAG
.getTruncStore(Val
.getValue(1), dl
, Val
, Arg
,
4373 MachinePointerInfo(&*FuncArg
), ObjType
);
4375 // For sizes that don't fit a truncating store (3, 5, 6, 7),
4376 // store the whole register as-is to the parameter save area
4378 Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
4379 MachinePointerInfo(&*FuncArg
));
4382 MemOps
.push_back(Store
);
4384 // Whether we copied from a register or not, advance the offset
4385 // into the parameter save area by a full doubleword.
4386 ArgOffset
+= PtrByteSize
;
4390 // The value of the object is its address, which is the address of
4391 // its first stack doubleword.
4392 InVals
.push_back(FIN
);
4394 // Store whatever pieces of the object are in registers to memory.
4395 for (unsigned j
= 0; j
< ArgSize
; j
+= PtrByteSize
) {
4396 if (GPR_idx
== Num_GPR_Regs
)
4399 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
4400 FuncInfo
->addLiveInAttr(VReg
, Flags
);
4401 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4404 SDValue Off
= DAG
.getConstant(j
, dl
, PtrVT
);
4405 Addr
= DAG
.getNode(ISD::ADD
, dl
, Off
.getValueType(), Addr
, Off
);
4407 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, Addr
,
4408 MachinePointerInfo(&*FuncArg
, j
));
4409 MemOps
.push_back(Store
);
4412 ArgOffset
+= ArgSize
;
4416 switch (ObjectVT
.getSimpleVT().SimpleTy
) {
4417 default: llvm_unreachable("Unhandled argument type!");
4421 if (Flags
.isNest()) {
4422 // The 'nest' parameter, if any, is passed in R11.
4423 unsigned VReg
= MF
.addLiveIn(PPC::X11
, &PPC::G8RCRegClass
);
4424 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
4426 if (ObjectVT
== MVT::i32
|| ObjectVT
== MVT::i1
)
4427 ArgVal
= extendArgForPPC64(Flags
, ObjectVT
, DAG
, ArgVal
, dl
);
4432 // These can be scalar arguments or elements of an integer array type
4433 // passed directly. Clang may use those instead of "byval" aggregate
4434 // types to avoid forcing arguments to memory unnecessarily.
4435 if (GPR_idx
!= Num_GPR_Regs
) {
4436 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
++], &PPC::G8RCRegClass
);
4437 FuncInfo
->addLiveInAttr(VReg
, Flags
);
4438 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
4440 if (ObjectVT
== MVT::i32
|| ObjectVT
== MVT::i1
)
4441 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4442 // value to MVT::i64 and then truncate to the correct register size.
4443 ArgVal
= extendArgForPPC64(Flags
, ObjectVT
, DAG
, ArgVal
, dl
);
4445 if (CallConv
== CallingConv::Fast
)
4449 ArgSize
= PtrByteSize
;
4451 if (CallConv
!= CallingConv::Fast
|| needsLoad
)
4457 // These can be scalar arguments or elements of a float array type
4458 // passed directly. The latter are used to implement ELFv2 homogenous
4459 // float aggregates.
4460 if (FPR_idx
!= Num_FPR_Regs
) {
4463 if (ObjectVT
== MVT::f32
)
4464 VReg
= MF
.addLiveIn(FPR
[FPR_idx
],
4465 Subtarget
.hasP8Vector()
4466 ? &PPC::VSSRCRegClass
4467 : &PPC::F4RCRegClass
);
4469 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], Subtarget
.hasVSX()
4470 ? &PPC::VSFRCRegClass
4471 : &PPC::F8RCRegClass
);
4473 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
4475 } else if (GPR_idx
!= Num_GPR_Regs
&& CallConv
!= CallingConv::Fast
) {
4476 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4477 // once we support fp <-> gpr moves.
4479 // This can only ever happen in the presence of f32 array types,
4480 // since otherwise we never run out of FPRs before running out
4482 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
++], &PPC::G8RCRegClass
);
4483 FuncInfo
->addLiveInAttr(VReg
, Flags
);
4484 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
4486 if (ObjectVT
== MVT::f32
) {
4487 if ((ArgOffset
% PtrByteSize
) == (isLittleEndian
? 4 : 0))
4488 ArgVal
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, ArgVal
,
4489 DAG
.getConstant(32, dl
, MVT::i32
));
4490 ArgVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, ArgVal
);
4493 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, ObjectVT
, ArgVal
);
4495 if (CallConv
== CallingConv::Fast
)
4501 // When passing an array of floats, the array occupies consecutive
4502 // space in the argument area; only round up to the next doubleword
4503 // at the end of the array. Otherwise, each float takes 8 bytes.
4504 if (CallConv
!= CallingConv::Fast
|| needsLoad
) {
4505 ArgSize
= Flags
.isInConsecutiveRegs() ? ObjSize
: PtrByteSize
;
4506 ArgOffset
+= ArgSize
;
4507 if (Flags
.isInConsecutiveRegsLast())
4508 ArgOffset
= ((ArgOffset
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
4519 // These can be scalar arguments or elements of a vector array type
4520 // passed directly. The latter are used to implement ELFv2 homogenous
4521 // vector aggregates.
4522 if (VR_idx
!= Num_VR_Regs
) {
4523 unsigned VReg
= MF
.addLiveIn(VR
[VR_idx
], &PPC::VRRCRegClass
);
4524 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
4527 if (CallConv
== CallingConv::Fast
)
4531 if (CallConv
!= CallingConv::Fast
|| needsLoad
)
4536 // We need to load the argument to a virtual register if we determined
4537 // above that we ran out of physical registers of the appropriate type.
4539 if (ObjSize
< ArgSize
&& !isLittleEndian
)
4540 CurArgOffset
+= ArgSize
- ObjSize
;
4541 int FI
= MFI
.CreateFixedObject(ObjSize
, CurArgOffset
, isImmutable
);
4542 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4543 ArgVal
= DAG
.getLoad(ObjectVT
, dl
, Chain
, FIN
, MachinePointerInfo());
4546 InVals
.push_back(ArgVal
);
4549 // Area that is at least reserved in the caller of this function.
4550 unsigned MinReservedArea
;
4551 if (HasParameterArea
)
4552 MinReservedArea
= std::max(ArgOffset
, LinkageSize
+ 8 * PtrByteSize
);
4554 MinReservedArea
= LinkageSize
;
4556 // Set the size that is at least reserved in caller of this function. Tail
4557 // call optimized functions' reserved stack space needs to be aligned so that
4558 // taking the difference between two stack areas will result in an aligned
4561 EnsureStackAlignment(Subtarget
.getFrameLowering(), MinReservedArea
);
4562 FuncInfo
->setMinReservedArea(MinReservedArea
);
4564 // If the function takes variable number of arguments, make a frame index for
4565 // the start of the first vararg value... for expansion of llvm.va_start.
4566 // On ELFv2ABI spec, it writes:
4567 // C programs that are intended to be *portable* across different compilers
4568 // and architectures must use the header file <stdarg.h> to deal with variable
4570 if (isVarArg
&& MFI
.hasVAStart()) {
4571 int Depth
= ArgOffset
;
4573 FuncInfo
->setVarArgsFrameIndex(
4574 MFI
.CreateFixedObject(PtrByteSize
, Depth
, true));
4575 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
4577 // If this function is vararg, store any remaining integer argument regs
4578 // to their spots on the stack so that they may be loaded by dereferencing
4579 // the result of va_next.
4580 for (GPR_idx
= (ArgOffset
- LinkageSize
) / PtrByteSize
;
4581 GPR_idx
< Num_GPR_Regs
; ++GPR_idx
) {
4582 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
4583 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4585 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
4586 MemOps
.push_back(Store
);
4587 // Increment the address by four for the next argument to store
4588 SDValue PtrOff
= DAG
.getConstant(PtrByteSize
, dl
, PtrVT
);
4589 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
4593 if (!MemOps
.empty())
4594 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
4599 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4600 /// adjusted to accommodate the arguments for the tailcall.
4601 static int CalculateTailCallSPDiff(SelectionDAG
& DAG
, bool isTailCall
,
4602 unsigned ParamSize
) {
4604 if (!isTailCall
) return 0;
4606 PPCFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<PPCFunctionInfo
>();
4607 unsigned CallerMinReservedArea
= FI
->getMinReservedArea();
4608 int SPDiff
= (int)CallerMinReservedArea
- (int)ParamSize
;
4609 // Remember only if the new adjustment is bigger.
4610 if (SPDiff
< FI
->getTailCallSPDelta())
4611 FI
->setTailCallSPDelta(SPDiff
);
4616 static bool isFunctionGlobalAddress(SDValue Callee
);
4618 static bool callsShareTOCBase(const Function
*Caller
, SDValue Callee
,
4619 const TargetMachine
&TM
) {
4620 // It does not make sense to call callsShareTOCBase() with a caller that
4621 // is PC Relative since PC Relative callers do not have a TOC.
4623 const PPCSubtarget
*STICaller
= &TM
.getSubtarget
<PPCSubtarget
>(*Caller
);
4624 assert(!STICaller
->isUsingPCRelativeCalls() &&
4625 "PC Relative callers do not have a TOC and cannot share a TOC Base");
4628 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4629 // don't have enough information to determine if the caller and callee share
4630 // the same TOC base, so we have to pessimistically assume they don't for
4632 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
4636 const GlobalValue
*GV
= G
->getGlobal();
4638 // If the callee is preemptable, then the static linker will use a plt-stub
4639 // which saves the toc to the stack, and needs a nop after the call
4640 // instruction to convert to a toc-restore.
4641 if (!TM
.shouldAssumeDSOLocal(*Caller
->getParent(), GV
))
4644 // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4645 // We may need a TOC restore in the situation where the caller requires a
4646 // valid TOC but the callee is PC Relative and does not.
4647 const Function
*F
= dyn_cast
<Function
>(GV
);
4648 const GlobalAlias
*Alias
= dyn_cast
<GlobalAlias
>(GV
);
4650 // If we have an Alias we can try to get the function from there.
4652 const GlobalObject
*GlobalObj
= Alias
->getBaseObject();
4653 F
= dyn_cast
<Function
>(GlobalObj
);
4656 // If we still have no valid function pointer we do not have enough
4657 // information to determine if the callee uses PC Relative calls so we must
4658 // assume that it does.
4662 // If the callee uses PC Relative we cannot guarantee that the callee won't
4663 // clobber the TOC of the caller and so we must assume that the two
4664 // functions do not share a TOC base.
4665 const PPCSubtarget
*STICallee
= &TM
.getSubtarget
<PPCSubtarget
>(*F
);
4666 if (STICallee
->isUsingPCRelativeCalls())
4669 // If the GV is not a strong definition then we need to assume it can be
4670 // replaced by another function at link time. The function that replaces
4671 // it may not share the same TOC as the caller since the callee may be
4672 // replaced by a PC Relative version of the same function.
4673 if (!GV
->isStrongDefinitionForLinker())
4676 // The medium and large code models are expected to provide a sufficiently
4677 // large TOC to provide all data addressing needs of a module with a
4679 if (CodeModel::Medium
== TM
.getCodeModel() ||
4680 CodeModel::Large
== TM
.getCodeModel())
4683 // Any explicitly-specified sections and section prefixes must also match.
4684 // Also, if we're using -ffunction-sections, then each function is always in
4685 // a different section (the same is true for COMDAT functions).
4686 if (TM
.getFunctionSections() || GV
->hasComdat() || Caller
->hasComdat() ||
4687 GV
->getSection() != Caller
->getSection())
4689 if (const auto *F
= dyn_cast
<Function
>(GV
)) {
4690 if (F
->getSectionPrefix() != Caller
->getSectionPrefix())
4698 needStackSlotPassParameters(const PPCSubtarget
&Subtarget
,
4699 const SmallVectorImpl
<ISD::OutputArg
> &Outs
) {
4700 assert(Subtarget
.is64BitELFABI());
4702 const unsigned PtrByteSize
= 8;
4703 const unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
4705 static const MCPhysReg GPR
[] = {
4706 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
4707 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
4709 static const MCPhysReg VR
[] = {
4710 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
4711 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
4714 const unsigned NumGPRs
= array_lengthof(GPR
);
4715 const unsigned NumFPRs
= 13;
4716 const unsigned NumVRs
= array_lengthof(VR
);
4717 const unsigned ParamAreaSize
= NumGPRs
* PtrByteSize
;
4719 unsigned NumBytes
= LinkageSize
;
4720 unsigned AvailableFPRs
= NumFPRs
;
4721 unsigned AvailableVRs
= NumVRs
;
4723 for (const ISD::OutputArg
& Param
: Outs
) {
4724 if (Param
.Flags
.isNest()) continue;
4726 if (CalculateStackSlotUsed(Param
.VT
, Param
.ArgVT
, Param
.Flags
, PtrByteSize
,
4727 LinkageSize
, ParamAreaSize
, NumBytes
,
4728 AvailableFPRs
, AvailableVRs
))
4734 static bool hasSameArgumentList(const Function
*CallerFn
, const CallBase
&CB
) {
4735 if (CB
.arg_size() != CallerFn
->arg_size())
4738 auto CalleeArgIter
= CB
.arg_begin();
4739 auto CalleeArgEnd
= CB
.arg_end();
4740 Function::const_arg_iterator CallerArgIter
= CallerFn
->arg_begin();
4742 for (; CalleeArgIter
!= CalleeArgEnd
; ++CalleeArgIter
, ++CallerArgIter
) {
4743 const Value
* CalleeArg
= *CalleeArgIter
;
4744 const Value
* CallerArg
= &(*CallerArgIter
);
4745 if (CalleeArg
== CallerArg
)
4748 // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4749 // tail call @callee([4 x i64] undef, [4 x i64] %b)
4751 // 1st argument of callee is undef and has the same type as caller.
4752 if (CalleeArg
->getType() == CallerArg
->getType() &&
4753 isa
<UndefValue
>(CalleeArg
))
4762 // Returns true if TCO is possible between the callers and callees
4763 // calling conventions.
4765 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC
,
4766 CallingConv::ID CalleeCC
) {
4767 // Tail calls are possible with fastcc and ccc.
4768 auto isTailCallableCC
= [] (CallingConv::ID CC
){
4769 return CC
== CallingConv::C
|| CC
== CallingConv::Fast
;
4771 if (!isTailCallableCC(CallerCC
) || !isTailCallableCC(CalleeCC
))
4774 // We can safely tail call both fastcc and ccc callees from a c calling
4775 // convention caller. If the caller is fastcc, we may have less stack space
4776 // than a non-fastcc caller with the same signature so disable tail-calls in
4778 return CallerCC
== CallingConv::C
|| CallerCC
== CalleeCC
;
4781 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4782 SDValue Callee
, CallingConv::ID CalleeCC
, const CallBase
*CB
, bool isVarArg
,
4783 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
4784 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
) const {
4785 bool TailCallOpt
= getTargetMachine().Options
.GuaranteedTailCallOpt
;
4787 if (DisableSCO
&& !TailCallOpt
) return false;
4789 // Variadic argument functions are not supported.
4790 if (isVarArg
) return false;
4792 auto &Caller
= DAG
.getMachineFunction().getFunction();
4793 // Check that the calling conventions are compatible for tco.
4794 if (!areCallingConvEligibleForTCO_64SVR4(Caller
.getCallingConv(), CalleeCC
))
4797 // Caller contains any byval parameter is not supported.
4798 if (any_of(Ins
, [](const ISD::InputArg
&IA
) { return IA
.Flags
.isByVal(); }))
4801 // Callee contains any byval parameter is not supported, too.
4802 // Note: This is a quick work around, because in some cases, e.g.
4803 // caller's stack size > callee's stack size, we are still able to apply
4804 // sibling call optimization. For example, gcc is able to do SCO for caller1
4805 // in the following example, but not for caller2.
4810 // __attribute__((noinline)) int callee(struct test v, struct test *b) {
4814 // void caller1(struct test a, struct test c, struct test *b) {
4815 // callee(gTest, b); }
4816 // void caller2(struct test *b) { callee(gTest, b); }
4817 if (any_of(Outs
, [](const ISD::OutputArg
& OA
) { return OA
.Flags
.isByVal(); }))
4820 // If callee and caller use different calling conventions, we cannot pass
4821 // parameters on stack since offsets for the parameter area may be different.
4822 if (Caller
.getCallingConv() != CalleeCC
&&
4823 needStackSlotPassParameters(Subtarget
, Outs
))
4826 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4827 // the caller and callee share the same TOC for TCO/SCO. If the caller and
4828 // callee potentially have different TOC bases then we cannot tail call since
4829 // we need to restore the TOC pointer after the call.
4830 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4831 // We cannot guarantee this for indirect calls or calls to external functions.
4832 // When PC-Relative addressing is used, the concept of the TOC is no longer
4833 // applicable so this check is not required.
4834 // Check first for indirect calls.
4835 if (!Subtarget
.isUsingPCRelativeCalls() &&
4836 !isFunctionGlobalAddress(Callee
) && !isa
<ExternalSymbolSDNode
>(Callee
))
4839 // Check if we share the TOC base.
4840 if (!Subtarget
.isUsingPCRelativeCalls() &&
4841 !callsShareTOCBase(&Caller
, Callee
, getTargetMachine()))
4844 // TCO allows altering callee ABI, so we don't have to check further.
4845 if (CalleeCC
== CallingConv::Fast
&& TailCallOpt
)
4848 if (DisableSCO
) return false;
4850 // If callee use the same argument list that caller is using, then we can
4851 // apply SCO on this case. If it is not, then we need to check if callee needs
4852 // stack for passing arguments.
4853 // PC Relative tail calls may not have a CallBase.
4854 // If there is no CallBase we cannot verify if we have the same argument
4855 // list so assume that we don't have the same argument list.
4856 if (CB
&& !hasSameArgumentList(&Caller
, *CB
) &&
4857 needStackSlotPassParameters(Subtarget
, Outs
))
4859 else if (!CB
&& needStackSlotPassParameters(Subtarget
, Outs
))
4865 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4866 /// for tail call optimization. Targets which want to do tail call
4867 /// optimization should implement this function.
4869 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee
,
4870 CallingConv::ID CalleeCC
,
4872 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
4873 SelectionDAG
& DAG
) const {
4874 if (!getTargetMachine().Options
.GuaranteedTailCallOpt
)
4877 // Variable argument functions are not supported.
4881 MachineFunction
&MF
= DAG
.getMachineFunction();
4882 CallingConv::ID CallerCC
= MF
.getFunction().getCallingConv();
4883 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
) {
4884 // Functions containing by val parameters are not supported.
4885 for (unsigned i
= 0; i
!= Ins
.size(); i
++) {
4886 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
4887 if (Flags
.isByVal()) return false;
4890 // Non-PIC/GOT tail calls are supported.
4891 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
4894 // At the moment we can only do local tail calls (in same module, hidden
4895 // or protected) if we are generating PIC.
4896 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
4897 return G
->getGlobal()->hasHiddenVisibility()
4898 || G
->getGlobal()->hasProtectedVisibility();
4904 /// isCallCompatibleAddress - Return the immediate to use if the specified
4905 /// 32-bit value is representable in the immediate field of a BxA instruction.
4906 static SDNode
*isBLACompatibleAddress(SDValue Op
, SelectionDAG
&DAG
) {
4907 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
4908 if (!C
) return nullptr;
4910 int Addr
= C
->getZExtValue();
4911 if ((Addr
& 3) != 0 || // Low 2 bits are implicitly zero.
4912 SignExtend32
<26>(Addr
) != Addr
)
4913 return nullptr; // Top 6 bits have to be sext of immediate.
4917 (int)C
->getZExtValue() >> 2, SDLoc(Op
),
4918 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()))
4924 struct TailCallArgumentInfo
{
4929 TailCallArgumentInfo() = default;
4932 } // end anonymous namespace
4934 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4935 static void StoreTailCallArgumentsToStackSlot(
4936 SelectionDAG
&DAG
, SDValue Chain
,
4937 const SmallVectorImpl
<TailCallArgumentInfo
> &TailCallArgs
,
4938 SmallVectorImpl
<SDValue
> &MemOpChains
, const SDLoc
&dl
) {
4939 for (unsigned i
= 0, e
= TailCallArgs
.size(); i
!= e
; ++i
) {
4940 SDValue Arg
= TailCallArgs
[i
].Arg
;
4941 SDValue FIN
= TailCallArgs
[i
].FrameIdxOp
;
4942 int FI
= TailCallArgs
[i
].FrameIdx
;
4943 // Store relative to framepointer.
4944 MemOpChains
.push_back(DAG
.getStore(
4945 Chain
, dl
, Arg
, FIN
,
4946 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
)));
4950 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4951 /// the appropriate stack slot for the tail call optimized function call.
4952 static SDValue
EmitTailCallStoreFPAndRetAddr(SelectionDAG
&DAG
, SDValue Chain
,
4953 SDValue OldRetAddr
, SDValue OldFP
,
4954 int SPDiff
, const SDLoc
&dl
) {
4956 // Calculate the new stack slot for the return address.
4957 MachineFunction
&MF
= DAG
.getMachineFunction();
4958 const PPCSubtarget
&Subtarget
= MF
.getSubtarget
<PPCSubtarget
>();
4959 const PPCFrameLowering
*FL
= Subtarget
.getFrameLowering();
4960 bool isPPC64
= Subtarget
.isPPC64();
4961 int SlotSize
= isPPC64
? 8 : 4;
4962 int NewRetAddrLoc
= SPDiff
+ FL
->getReturnSaveOffset();
4963 int NewRetAddr
= MF
.getFrameInfo().CreateFixedObject(SlotSize
,
4964 NewRetAddrLoc
, true);
4965 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
4966 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewRetAddr
, VT
);
4967 Chain
= DAG
.getStore(Chain
, dl
, OldRetAddr
, NewRetAddrFrIdx
,
4968 MachinePointerInfo::getFixedStack(MF
, NewRetAddr
));
4973 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4974 /// the position of the argument.
4976 CalculateTailCallArgDest(SelectionDAG
&DAG
, MachineFunction
&MF
, bool isPPC64
,
4977 SDValue Arg
, int SPDiff
, unsigned ArgOffset
,
4978 SmallVectorImpl
<TailCallArgumentInfo
>& TailCallArguments
) {
4979 int Offset
= ArgOffset
+ SPDiff
;
4980 uint32_t OpSize
= (Arg
.getValueSizeInBits() + 7) / 8;
4981 int FI
= MF
.getFrameInfo().CreateFixedObject(OpSize
, Offset
, true);
4982 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
4983 SDValue FIN
= DAG
.getFrameIndex(FI
, VT
);
4984 TailCallArgumentInfo Info
;
4986 Info
.FrameIdxOp
= FIN
;
4988 TailCallArguments
.push_back(Info
);
4991 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4992 /// stack slot. Returns the chain as result and the loaded frame pointers in
4993 /// LROpOut/FPOpout. Used when tail calling.
4994 SDValue
PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4995 SelectionDAG
&DAG
, int SPDiff
, SDValue Chain
, SDValue
&LROpOut
,
4996 SDValue
&FPOpOut
, const SDLoc
&dl
) const {
4998 // Load the LR and FP stack slot for later adjusting.
4999 EVT VT
= Subtarget
.isPPC64() ? MVT::i64
: MVT::i32
;
5000 LROpOut
= getReturnAddrFrameIndex(DAG
);
5001 LROpOut
= DAG
.getLoad(VT
, dl
, Chain
, LROpOut
, MachinePointerInfo());
5002 Chain
= SDValue(LROpOut
.getNode(), 1);
5007 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5008 /// by "Src" to address "Dst" of size "Size". Alignment information is
5009 /// specified by the specific parameter attribute. The copy will be passed as
5010 /// a byval function parameter.
5011 /// Sometimes what we are copying is the end of a larger object, the part that
5012 /// does not fit in registers.
5013 static SDValue
CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
,
5014 SDValue Chain
, ISD::ArgFlagsTy Flags
,
5015 SelectionDAG
&DAG
, const SDLoc
&dl
) {
5016 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), dl
, MVT::i32
);
5017 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
,
5018 Flags
.getNonZeroByValAlign(), false, false, false,
5019 MachinePointerInfo(), MachinePointerInfo());
5022 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5024 static void LowerMemOpCallTo(
5025 SelectionDAG
&DAG
, MachineFunction
&MF
, SDValue Chain
, SDValue Arg
,
5026 SDValue PtrOff
, int SPDiff
, unsigned ArgOffset
, bool isPPC64
,
5027 bool isTailCall
, bool isVector
, SmallVectorImpl
<SDValue
> &MemOpChains
,
5028 SmallVectorImpl
<TailCallArgumentInfo
> &TailCallArguments
, const SDLoc
&dl
) {
5029 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
5034 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
5036 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
5037 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
5038 DAG
.getConstant(ArgOffset
, dl
, PtrVT
));
5040 MemOpChains
.push_back(
5041 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo()));
5042 // Calculate and remember argument location.
5043 } else CalculateTailCallArgDest(DAG
, MF
, isPPC64
, Arg
, SPDiff
, ArgOffset
,
5048 PrepareTailCall(SelectionDAG
&DAG
, SDValue
&InFlag
, SDValue
&Chain
,
5049 const SDLoc
&dl
, int SPDiff
, unsigned NumBytes
, SDValue LROp
,
5051 SmallVectorImpl
<TailCallArgumentInfo
> &TailCallArguments
) {
5052 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5053 // might overwrite each other in case of tail call optimization.
5054 SmallVector
<SDValue
, 8> MemOpChains2
;
5055 // Do not flag preceding copytoreg stuff together with the following stuff.
5057 StoreTailCallArgumentsToStackSlot(DAG
, Chain
, TailCallArguments
,
5059 if (!MemOpChains2
.empty())
5060 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains2
);
5062 // Store the return address to the appropriate stack slot.
5063 Chain
= EmitTailCallStoreFPAndRetAddr(DAG
, Chain
, LROp
, FPOp
, SPDiff
, dl
);
5065 // Emit callseq_end just before tailcall node.
5066 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
5067 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
5068 InFlag
= Chain
.getValue(1);
5071 // Is this global address that of a function that can be called by name? (as
5072 // opposed to something that must hold a descriptor for an indirect call).
5073 static bool isFunctionGlobalAddress(SDValue Callee
) {
5074 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
5075 if (Callee
.getOpcode() == ISD::GlobalTLSAddress
||
5076 Callee
.getOpcode() == ISD::TargetGlobalTLSAddress
)
5079 return G
->getGlobal()->getValueType()->isFunctionTy();
5085 SDValue
PPCTargetLowering::LowerCallResult(
5086 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
5087 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
5088 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
5089 SmallVector
<CCValAssign
, 16> RVLocs
;
5090 CCState
CCRetInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
5093 CCRetInfo
.AnalyzeCallResult(
5094 Ins
, (Subtarget
.isSVR4ABI() && CallConv
== CallingConv::Cold
)
5098 // Copy all of the result registers out of their specified physreg.
5099 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
5100 CCValAssign
&VA
= RVLocs
[i
];
5101 assert(VA
.isRegLoc() && "Can only return in registers!");
5105 if (Subtarget
.hasSPE() && VA
.getLocVT() == MVT::f64
) {
5106 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
5108 Chain
= Lo
.getValue(1);
5109 InFlag
= Lo
.getValue(2);
5110 VA
= RVLocs
[++i
]; // skip ahead to next loc
5111 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
5113 Chain
= Hi
.getValue(1);
5114 InFlag
= Hi
.getValue(2);
5115 if (!Subtarget
.isLittleEndian())
5117 Val
= DAG
.getNode(PPCISD::BUILD_SPE64
, dl
, MVT::f64
, Lo
, Hi
);
5119 Val
= DAG
.getCopyFromReg(Chain
, dl
,
5120 VA
.getLocReg(), VA
.getLocVT(), InFlag
);
5121 Chain
= Val
.getValue(1);
5122 InFlag
= Val
.getValue(2);
5125 switch (VA
.getLocInfo()) {
5126 default: llvm_unreachable("Unknown loc info!");
5127 case CCValAssign::Full
: break;
5128 case CCValAssign::AExt
:
5129 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), Val
);
5131 case CCValAssign::ZExt
:
5132 Val
= DAG
.getNode(ISD::AssertZext
, dl
, VA
.getLocVT(), Val
,
5133 DAG
.getValueType(VA
.getValVT()));
5134 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), Val
);
5136 case CCValAssign::SExt
:
5137 Val
= DAG
.getNode(ISD::AssertSext
, dl
, VA
.getLocVT(), Val
,
5138 DAG
.getValueType(VA
.getValVT()));
5139 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), Val
);
5143 InVals
.push_back(Val
);
5149 static bool isIndirectCall(const SDValue
&Callee
, SelectionDAG
&DAG
,
5150 const PPCSubtarget
&Subtarget
, bool isPatchPoint
) {
5151 // PatchPoint calls are not indirect.
5155 if (isFunctionGlobalAddress(Callee
) || isa
<ExternalSymbolSDNode
>(Callee
))
5158 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5159 // becuase the immediate function pointer points to a descriptor instead of
5160 // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5161 // pointer immediate points to the global entry point, while the BLA would
5162 // need to jump to the local entry point (see rL211174).
5163 if (!Subtarget
.usesFunctionDescriptors() && !Subtarget
.isELFv2ABI() &&
5164 isBLACompatibleAddress(Callee
, DAG
))
5170 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5171 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget
&Subtarget
) {
5172 return Subtarget
.isAIXABI() ||
5173 (Subtarget
.is64BitELFABI() && !Subtarget
.isUsingPCRelativeCalls());
5176 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags
,
5177 const Function
&Caller
,
5178 const SDValue
&Callee
,
5179 const PPCSubtarget
&Subtarget
,
5180 const TargetMachine
&TM
) {
5181 if (CFlags
.IsTailCall
)
5182 return PPCISD::TC_RETURN
;
5184 // This is a call through a function pointer.
5185 if (CFlags
.IsIndirect
) {
5186 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5187 // indirect calls. The save of the caller's TOC pointer to the stack will be
5188 // inserted into the DAG as part of call lowering. The restore of the TOC
5189 // pointer is modeled by using a pseudo instruction for the call opcode that
5190 // represents the 2 instruction sequence of an indirect branch and link,
5191 // immediately followed by a load of the TOC pointer from the the stack save
5192 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5193 // as it is not saved or used.
5194 return isTOCSaveRestoreRequired(Subtarget
) ? PPCISD::BCTRL_LOAD_TOC
5198 if (Subtarget
.isUsingPCRelativeCalls()) {
5199 assert(Subtarget
.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5200 return PPCISD::CALL_NOTOC
;
5203 // The ABIs that maintain a TOC pointer accross calls need to have a nop
5204 // immediately following the call instruction if the caller and callee may
5205 // have different TOC bases. At link time if the linker determines the calls
5206 // may not share a TOC base, the call is redirected to a trampoline inserted
5207 // by the linker. The trampoline will (among other things) save the callers
5208 // TOC pointer at an ABI designated offset in the linkage area and the linker
5209 // will rewrite the nop to be a load of the TOC pointer from the linkage area
5211 if (Subtarget
.isAIXABI() || Subtarget
.is64BitELFABI())
5212 return callsShareTOCBase(&Caller
, Callee
, TM
) ? PPCISD::CALL
5215 return PPCISD::CALL
;
5218 static SDValue
transformCallee(const SDValue
&Callee
, SelectionDAG
&DAG
,
5219 const SDLoc
&dl
, const PPCSubtarget
&Subtarget
) {
5220 if (!Subtarget
.usesFunctionDescriptors() && !Subtarget
.isELFv2ABI())
5221 if (SDNode
*Dest
= isBLACompatibleAddress(Callee
, DAG
))
5222 return SDValue(Dest
, 0);
5224 // Returns true if the callee is local, and false otherwise.
5225 auto isLocalCallee
= [&]() {
5226 const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
5227 const Module
*Mod
= DAG
.getMachineFunction().getFunction().getParent();
5228 const GlobalValue
*GV
= G
? G
->getGlobal() : nullptr;
5230 return DAG
.getTarget().shouldAssumeDSOLocal(*Mod
, GV
) &&
5231 !dyn_cast_or_null
<GlobalIFunc
>(GV
);
5234 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in
5235 // a static relocation model causes some versions of GNU LD (2.17.50, at
5236 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5237 // built with secure-PLT.
5239 Subtarget
.is32BitELFABI() && !isLocalCallee() &&
5240 Subtarget
.getTargetMachine().getRelocationModel() == Reloc::PIC_
;
5242 const auto getAIXFuncEntryPointSymbolSDNode
= [&](const GlobalValue
*GV
) {
5243 const TargetMachine
&TM
= Subtarget
.getTargetMachine();
5244 const TargetLoweringObjectFile
*TLOF
= TM
.getObjFileLowering();
5246 cast
<MCSymbolXCOFF
>(TLOF
->getFunctionEntryPointSymbol(GV
, TM
));
5248 MVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
5249 return DAG
.getMCSymbol(S
, PtrVT
);
5252 if (isFunctionGlobalAddress(Callee
)) {
5253 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
5255 if (Subtarget
.isAIXABI()) {
5256 assert(!isa
<GlobalIFunc
>(GV
) && "IFunc is not supported on AIX.");
5257 return getAIXFuncEntryPointSymbolSDNode(GV
);
5259 return DAG
.getTargetGlobalAddress(GV
, dl
, Callee
.getValueType(), 0,
5260 UsePlt
? PPCII::MO_PLT
: 0);
5263 if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
5264 const char *SymName
= S
->getSymbol();
5265 if (Subtarget
.isAIXABI()) {
5266 // If there exists a user-declared function whose name is the same as the
5267 // ExternalSymbol's, then we pick up the user-declared version.
5268 const Module
*Mod
= DAG
.getMachineFunction().getFunction().getParent();
5269 if (const Function
*F
=
5270 dyn_cast_or_null
<Function
>(Mod
->getNamedValue(SymName
)))
5271 return getAIXFuncEntryPointSymbolSDNode(F
);
5273 // On AIX, direct function calls reference the symbol for the function's
5274 // entry point, which is named by prepending a "." before the function's
5275 // C-linkage name. A Qualname is returned here because an external
5276 // function entry point is a csect with XTY_ER property.
5277 const auto getExternalFunctionEntryPointSymbol
= [&](StringRef SymName
) {
5278 auto &Context
= DAG
.getMachineFunction().getMMI().getContext();
5279 MCSectionXCOFF
*Sec
= Context
.getXCOFFSection(
5280 (Twine(".") + Twine(SymName
)).str(), SectionKind::getMetadata(),
5281 XCOFF::CsectProperties(XCOFF::XMC_PR
, XCOFF::XTY_ER
));
5282 return Sec
->getQualNameSymbol();
5285 SymName
= getExternalFunctionEntryPointSymbol(SymName
)->getName().data();
5287 return DAG
.getTargetExternalSymbol(SymName
, Callee
.getValueType(),
5288 UsePlt
? PPCII::MO_PLT
: 0);
5291 // No transformation needed.
5292 assert(Callee
.getNode() && "What no callee?");
5296 static SDValue
getOutputChainFromCallSeq(SDValue CallSeqStart
) {
5297 assert(CallSeqStart
.getOpcode() == ISD::CALLSEQ_START
&&
5298 "Expected a CALLSEQ_STARTSDNode.");
5300 // The last operand is the chain, except when the node has glue. If the node
5301 // has glue, then the last operand is the glue, and the chain is the second
5303 SDValue LastValue
= CallSeqStart
.getValue(CallSeqStart
->getNumValues() - 1);
5304 if (LastValue
.getValueType() != MVT::Glue
)
5307 return CallSeqStart
.getValue(CallSeqStart
->getNumValues() - 2);
5310 // Creates the node that moves a functions address into the count register
5311 // to prepare for an indirect call instruction.
5312 static void prepareIndirectCall(SelectionDAG
&DAG
, SDValue
&Callee
,
5313 SDValue
&Glue
, SDValue
&Chain
,
5315 SDValue MTCTROps
[] = {Chain
, Callee
, Glue
};
5316 EVT ReturnTypes
[] = {MVT::Other
, MVT::Glue
};
5317 Chain
= DAG
.getNode(PPCISD::MTCTR
, dl
, makeArrayRef(ReturnTypes
, 2),
5318 makeArrayRef(MTCTROps
, Glue
.getNode() ? 3 : 2));
5319 // The glue is the second value produced.
5320 Glue
= Chain
.getValue(1);
5323 static void prepareDescriptorIndirectCall(SelectionDAG
&DAG
, SDValue
&Callee
,
5324 SDValue
&Glue
, SDValue
&Chain
,
5325 SDValue CallSeqStart
,
5326 const CallBase
*CB
, const SDLoc
&dl
,
5328 const PPCSubtarget
&Subtarget
) {
5329 // Function pointers in the 64-bit SVR4 ABI do not point to the function
5330 // entry point, but to the function descriptor (the function entry point
5331 // address is part of the function descriptor though).
5332 // The function descriptor is a three doubleword structure with the
5333 // following fields: function entry point, TOC base address and
5334 // environment pointer.
5335 // Thus for a call through a function pointer, the following actions need
5337 // 1. Save the TOC of the caller in the TOC save area of its stack
5338 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5339 // 2. Load the address of the function entry point from the function
5341 // 3. Load the TOC of the callee from the function descriptor into r2.
5342 // 4. Load the environment pointer from the function descriptor into
5344 // 5. Branch to the function entry point address.
5345 // 6. On return of the callee, the TOC of the caller needs to be
5346 // restored (this is done in FinishCall()).
5348 // The loads are scheduled at the beginning of the call sequence, and the
5349 // register copies are flagged together to ensure that no other
5350 // operations can be scheduled in between. E.g. without flagging the
5351 // copies together, a TOC access in the caller could be scheduled between
5352 // the assignment of the callee TOC and the branch to the callee, which leads
5353 // to incorrect code.
5355 // Start by loading the function address from the descriptor.
5356 SDValue LDChain
= getOutputChainFromCallSeq(CallSeqStart
);
5357 auto MMOFlags
= Subtarget
.hasInvariantFunctionDescriptors()
5358 ? (MachineMemOperand::MODereferenceable
|
5359 MachineMemOperand::MOInvariant
)
5360 : MachineMemOperand::MONone
;
5362 MachinePointerInfo
MPI(CB
? CB
->getCalledOperand() : nullptr);
5364 // Registers used in building the DAG.
5365 const MCRegister EnvPtrReg
= Subtarget
.getEnvironmentPointerRegister();
5366 const MCRegister TOCReg
= Subtarget
.getTOCPointerRegister();
5368 // Offsets of descriptor members.
5369 const unsigned TOCAnchorOffset
= Subtarget
.descriptorTOCAnchorOffset();
5370 const unsigned EnvPtrOffset
= Subtarget
.descriptorEnvironmentPointerOffset();
5372 const MVT RegVT
= Subtarget
.isPPC64() ? MVT::i64
: MVT::i32
;
5373 const unsigned Alignment
= Subtarget
.isPPC64() ? 8 : 4;
5375 // One load for the functions entry point address.
5376 SDValue LoadFuncPtr
= DAG
.getLoad(RegVT
, dl
, LDChain
, Callee
, MPI
,
5377 Alignment
, MMOFlags
);
5379 // One for loading the TOC anchor for the module that contains the called
5381 SDValue TOCOff
= DAG
.getIntPtrConstant(TOCAnchorOffset
, dl
);
5382 SDValue AddTOC
= DAG
.getNode(ISD::ADD
, dl
, RegVT
, Callee
, TOCOff
);
5384 DAG
.getLoad(RegVT
, dl
, LDChain
, AddTOC
,
5385 MPI
.getWithOffset(TOCAnchorOffset
), Alignment
, MMOFlags
);
5387 // One for loading the environment pointer.
5388 SDValue PtrOff
= DAG
.getIntPtrConstant(EnvPtrOffset
, dl
);
5389 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, RegVT
, Callee
, PtrOff
);
5390 SDValue LoadEnvPtr
=
5391 DAG
.getLoad(RegVT
, dl
, LDChain
, AddPtr
,
5392 MPI
.getWithOffset(EnvPtrOffset
), Alignment
, MMOFlags
);
5395 // Then copy the newly loaded TOC anchor to the TOC pointer.
5396 SDValue TOCVal
= DAG
.getCopyToReg(Chain
, dl
, TOCReg
, TOCPtr
, Glue
);
5397 Chain
= TOCVal
.getValue(0);
5398 Glue
= TOCVal
.getValue(1);
5400 // If the function call has an explicit 'nest' parameter, it takes the
5401 // place of the environment pointer.
5402 assert((!hasNest
|| !Subtarget
.isAIXABI()) &&
5403 "Nest parameter is not supported on AIX.");
5405 SDValue EnvVal
= DAG
.getCopyToReg(Chain
, dl
, EnvPtrReg
, LoadEnvPtr
, Glue
);
5406 Chain
= EnvVal
.getValue(0);
5407 Glue
= EnvVal
.getValue(1);
5410 // The rest of the indirect call sequence is the same as the non-descriptor
5412 prepareIndirectCall(DAG
, LoadFuncPtr
, Glue
, Chain
, dl
);
5416 buildCallOperands(SmallVectorImpl
<SDValue
> &Ops
,
5417 PPCTargetLowering::CallFlags CFlags
, const SDLoc
&dl
,
5419 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
5420 SDValue Glue
, SDValue Chain
, SDValue
&Callee
, int SPDiff
,
5421 const PPCSubtarget
&Subtarget
) {
5422 const bool IsPPC64
= Subtarget
.isPPC64();
5423 // MVT for a general purpose register.
5424 const MVT RegVT
= IsPPC64
? MVT::i64
: MVT::i32
;
5426 // First operand is always the chain.
5427 Ops
.push_back(Chain
);
5429 // If it's a direct call pass the callee as the second operand.
5430 if (!CFlags
.IsIndirect
)
5431 Ops
.push_back(Callee
);
5433 assert(!CFlags
.IsPatchPoint
&& "Patch point calls are not indirect.");
5435 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5436 // on the stack (this would have been done in `LowerCall_64SVR4` or
5437 // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5438 // represents both the indirect branch and a load that restores the TOC
5439 // pointer from the linkage area. The operand for the TOC restore is an add
5440 // of the TOC save offset to the stack pointer. This must be the second
5441 // operand: after the chain input but before any other variadic arguments.
5442 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5444 if (isTOCSaveRestoreRequired(Subtarget
)) {
5445 const MCRegister StackPtrReg
= Subtarget
.getStackPointerRegister();
5447 SDValue StackPtr
= DAG
.getRegister(StackPtrReg
, RegVT
);
5448 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
5449 SDValue TOCOff
= DAG
.getIntPtrConstant(TOCSaveOffset
, dl
);
5450 SDValue AddTOC
= DAG
.getNode(ISD::ADD
, dl
, RegVT
, StackPtr
, TOCOff
);
5451 Ops
.push_back(AddTOC
);
5454 // Add the register used for the environment pointer.
5455 if (Subtarget
.usesFunctionDescriptors() && !CFlags
.HasNest
)
5456 Ops
.push_back(DAG
.getRegister(Subtarget
.getEnvironmentPointerRegister(),
5460 // Add CTR register as callee so a bctr can be emitted later.
5461 if (CFlags
.IsTailCall
)
5462 Ops
.push_back(DAG
.getRegister(IsPPC64
? PPC::CTR8
: PPC::CTR
, RegVT
));
5465 // If this is a tail call add stack pointer delta.
5466 if (CFlags
.IsTailCall
)
5467 Ops
.push_back(DAG
.getConstant(SPDiff
, dl
, MVT::i32
));
5469 // Add argument registers to the end of the list so that they are known live
5471 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
5472 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
5473 RegsToPass
[i
].second
.getValueType()));
5475 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5476 // no way to mark dependencies as implicit here.
5477 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5478 if ((Subtarget
.is64BitELFABI() || Subtarget
.isAIXABI()) &&
5479 !CFlags
.IsPatchPoint
&& !Subtarget
.isUsingPCRelativeCalls())
5480 Ops
.push_back(DAG
.getRegister(Subtarget
.getTOCPointerRegister(), RegVT
));
5482 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5483 if (CFlags
.IsVarArg
&& Subtarget
.is32BitELFABI())
5484 Ops
.push_back(DAG
.getRegister(PPC::CR1EQ
, MVT::i32
));
5486 // Add a register mask operand representing the call-preserved registers.
5487 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
5488 const uint32_t *Mask
=
5489 TRI
->getCallPreservedMask(DAG
.getMachineFunction(), CFlags
.CallConv
);
5490 assert(Mask
&& "Missing call preserved mask for calling convention");
5491 Ops
.push_back(DAG
.getRegisterMask(Mask
));
5493 // If the glue is valid, it is the last operand.
5495 Ops
.push_back(Glue
);
5498 SDValue
PPCTargetLowering::FinishCall(
5499 CallFlags CFlags
, const SDLoc
&dl
, SelectionDAG
&DAG
,
5500 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
, SDValue Glue
,
5501 SDValue Chain
, SDValue CallSeqStart
, SDValue
&Callee
, int SPDiff
,
5502 unsigned NumBytes
, const SmallVectorImpl
<ISD::InputArg
> &Ins
,
5503 SmallVectorImpl
<SDValue
> &InVals
, const CallBase
*CB
) const {
5505 if ((Subtarget
.is64BitELFABI() && !Subtarget
.isUsingPCRelativeCalls()) ||
5506 Subtarget
.isAIXABI())
5507 setUsesTOCBasePtr(DAG
);
5510 getCallOpcode(CFlags
, DAG
.getMachineFunction().getFunction(), Callee
,
5511 Subtarget
, DAG
.getTarget());
5513 if (!CFlags
.IsIndirect
)
5514 Callee
= transformCallee(Callee
, DAG
, dl
, Subtarget
);
5515 else if (Subtarget
.usesFunctionDescriptors())
5516 prepareDescriptorIndirectCall(DAG
, Callee
, Glue
, Chain
, CallSeqStart
, CB
,
5517 dl
, CFlags
.HasNest
, Subtarget
);
5519 prepareIndirectCall(DAG
, Callee
, Glue
, Chain
, dl
);
5521 // Build the operand list for the call instruction.
5522 SmallVector
<SDValue
, 8> Ops
;
5523 buildCallOperands(Ops
, CFlags
, dl
, DAG
, RegsToPass
, Glue
, Chain
, Callee
,
5527 if (CFlags
.IsTailCall
) {
5528 // Indirect tail call when using PC Relative calls do not have the same
5530 assert(((Callee
.getOpcode() == ISD::Register
&&
5531 cast
<RegisterSDNode
>(Callee
)->getReg() == PPC::CTR
) ||
5532 Callee
.getOpcode() == ISD::TargetExternalSymbol
||
5533 Callee
.getOpcode() == ISD::TargetGlobalAddress
||
5534 isa
<ConstantSDNode
>(Callee
) ||
5535 (CFlags
.IsIndirect
&& Subtarget
.isUsingPCRelativeCalls())) &&
5536 "Expecting a global address, external symbol, absolute value, "
5537 "register or an indirect tail call when PC Relative calls are "
5539 // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5540 assert(CallOpc
== PPCISD::TC_RETURN
&&
5541 "Unexpected call opcode for a tail call.");
5542 DAG
.getMachineFunction().getFrameInfo().setHasTailCall();
5543 return DAG
.getNode(CallOpc
, dl
, MVT::Other
, Ops
);
5546 std::array
<EVT
, 2> ReturnTypes
= {{MVT::Other
, MVT::Glue
}};
5547 Chain
= DAG
.getNode(CallOpc
, dl
, ReturnTypes
, Ops
);
5548 DAG
.addNoMergeSiteInfo(Chain
.getNode(), CFlags
.NoMerge
);
5549 Glue
= Chain
.getValue(1);
5551 // When performing tail call optimization the callee pops its arguments off
5552 // the stack. Account for this here so these bytes can be pushed back on in
5553 // PPCFrameLowering::eliminateCallFramePseudoInstr.
5554 int BytesCalleePops
= (CFlags
.CallConv
== CallingConv::Fast
&&
5555 getTargetMachine().Options
.GuaranteedTailCallOpt
)
5559 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
5560 DAG
.getIntPtrConstant(BytesCalleePops
, dl
, true),
5562 Glue
= Chain
.getValue(1);
5564 return LowerCallResult(Chain
, Glue
, CFlags
.CallConv
, CFlags
.IsVarArg
, Ins
, dl
,
5569 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
5570 SmallVectorImpl
<SDValue
> &InVals
) const {
5571 SelectionDAG
&DAG
= CLI
.DAG
;
5573 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
5574 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
5575 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
5576 SDValue Chain
= CLI
.Chain
;
5577 SDValue Callee
= CLI
.Callee
;
5578 bool &isTailCall
= CLI
.IsTailCall
;
5579 CallingConv::ID CallConv
= CLI
.CallConv
;
5580 bool isVarArg
= CLI
.IsVarArg
;
5581 bool isPatchPoint
= CLI
.IsPatchPoint
;
5582 const CallBase
*CB
= CLI
.CB
;
5585 if (Subtarget
.useLongCalls() && !(CB
&& CB
->isMustTailCall()))
5587 else if (Subtarget
.isSVR4ABI() && Subtarget
.isPPC64())
5588 isTailCall
= IsEligibleForTailCallOptimization_64SVR4(
5589 Callee
, CallConv
, CB
, isVarArg
, Outs
, Ins
, DAG
);
5591 isTailCall
= IsEligibleForTailCallOptimization(Callee
, CallConv
, isVarArg
,
5595 if (!getTargetMachine().Options
.GuaranteedTailCallOpt
)
5598 // PC Relative calls no longer guarantee that the callee is a Global
5599 // Address Node. The callee could be an indirect tail call in which
5600 // case the SDValue for the callee could be a load (to load the address
5601 // of a function pointer) or it may be a register copy (to move the
5602 // address of the callee from a function parameter into a virtual
5603 // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5604 assert((Subtarget
.isUsingPCRelativeCalls() ||
5605 isa
<GlobalAddressSDNode
>(Callee
)) &&
5606 "Callee should be an llvm::Function object.");
5608 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG
.getMachineFunction().getName()
5609 << "\nTCO callee: ");
5610 LLVM_DEBUG(Callee
.dump());
5614 if (!isTailCall
&& CB
&& CB
->isMustTailCall())
5615 report_fatal_error("failed to perform tail call elimination on a call "
5616 "site marked musttail");
5618 // When long calls (i.e. indirect calls) are always used, calls are always
5619 // made via function pointer. If we have a function name, first translate it
5621 if (Subtarget
.useLongCalls() && isa
<GlobalAddressSDNode
>(Callee
) &&
5623 Callee
= LowerGlobalAddress(Callee
, DAG
);
5626 CallConv
, isTailCall
, isVarArg
, isPatchPoint
,
5627 isIndirectCall(Callee
, DAG
, Subtarget
, isPatchPoint
),
5629 Subtarget
.is64BitELFABI() &&
5630 any_of(Outs
, [](ISD::OutputArg Arg
) { return Arg
.Flags
.isNest(); }),
5633 if (Subtarget
.isAIXABI())
5634 return LowerCall_AIX(Chain
, Callee
, CFlags
, Outs
, OutVals
, Ins
, dl
, DAG
,
5637 assert(Subtarget
.isSVR4ABI());
5638 if (Subtarget
.isPPC64())
5639 return LowerCall_64SVR4(Chain
, Callee
, CFlags
, Outs
, OutVals
, Ins
, dl
, DAG
,
5641 return LowerCall_32SVR4(Chain
, Callee
, CFlags
, Outs
, OutVals
, Ins
, dl
, DAG
,
5645 SDValue
PPCTargetLowering::LowerCall_32SVR4(
5646 SDValue Chain
, SDValue Callee
, CallFlags CFlags
,
5647 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
5648 const SmallVectorImpl
<SDValue
> &OutVals
,
5649 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
5650 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
5651 const CallBase
*CB
) const {
5652 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5653 // of the 32-bit SVR4 ABI stack frame layout.
5655 const CallingConv::ID CallConv
= CFlags
.CallConv
;
5656 const bool IsVarArg
= CFlags
.IsVarArg
;
5657 const bool IsTailCall
= CFlags
.IsTailCall
;
5659 assert((CallConv
== CallingConv::C
||
5660 CallConv
== CallingConv::Cold
||
5661 CallConv
== CallingConv::Fast
) && "Unknown calling convention!");
5663 const Align
PtrAlign(4);
5665 MachineFunction
&MF
= DAG
.getMachineFunction();
5667 // Mark this function as potentially containing a function that contains a
5668 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5669 // and restoring the callers stack pointer in this functions epilog. This is
5670 // done because by tail calling the called function might overwrite the value
5671 // in this function's (MF) stack pointer stack slot 0(SP).
5672 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&&
5673 CallConv
== CallingConv::Fast
)
5674 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
5676 // Count how many bytes are to be pushed on the stack, including the linkage
5677 // area, parameter list area and the part of the local variable space which
5678 // contains copies of aggregates which are passed by value.
5680 // Assign locations to all of the outgoing arguments.
5681 SmallVector
<CCValAssign
, 16> ArgLocs
;
5682 PPCCCState
CCInfo(CallConv
, IsVarArg
, MF
, ArgLocs
, *DAG
.getContext());
5684 // Reserve space for the linkage area on the stack.
5685 CCInfo
.AllocateStack(Subtarget
.getFrameLowering()->getLinkageSize(),
5688 CCInfo
.PreAnalyzeCallOperands(Outs
);
5691 // Handle fixed and variable vector arguments differently.
5692 // Fixed vector arguments go into registers as long as registers are
5693 // available. Variable vector arguments always go into memory.
5694 unsigned NumArgs
= Outs
.size();
5696 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
5697 MVT ArgVT
= Outs
[i
].VT
;
5698 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
5701 if (Outs
[i
].IsFixed
) {
5702 Result
= CC_PPC32_SVR4(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
,
5705 Result
= CC_PPC32_SVR4_VarArg(i
, ArgVT
, ArgVT
, CCValAssign::Full
,
5711 errs() << "Call operand #" << i
<< " has unhandled type "
5712 << EVT(ArgVT
).getEVTString() << "\n";
5714 llvm_unreachable(nullptr);
5718 // All arguments are treated the same.
5719 CCInfo
.AnalyzeCallOperands(Outs
, CC_PPC32_SVR4
);
5721 CCInfo
.clearWasPPCF128();
5723 // Assign locations to all of the outgoing aggregate by value arguments.
5724 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
5725 CCState
CCByValInfo(CallConv
, IsVarArg
, MF
, ByValArgLocs
, *DAG
.getContext());
5727 // Reserve stack space for the allocations in CCInfo.
5728 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrAlign
);
5730 CCByValInfo
.AnalyzeCallOperands(Outs
, CC_PPC32_SVR4_ByVal
);
5732 // Size of the linkage area, parameter list area and the part of the local
5733 // space variable where copies of aggregates which are passed by value are
5735 unsigned NumBytes
= CCByValInfo
.getNextStackOffset();
5737 // Calculate by how many bytes the stack has to be adjusted in case of tail
5738 // call optimization.
5739 int SPDiff
= CalculateTailCallSPDiff(DAG
, IsTailCall
, NumBytes
);
5741 // Adjust the stack pointer for the new arguments...
5742 // These operations are automatically eliminated by the prolog/epilog pass
5743 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
5744 SDValue CallSeqStart
= Chain
;
5746 // Load the return address and frame pointer so it can be moved somewhere else
5749 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, dl
);
5751 // Set up a copy of the stack pointer for use loading and storing any
5752 // arguments that may not fit in the registers available for argument
5754 SDValue StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
5756 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
5757 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
5758 SmallVector
<SDValue
, 8> MemOpChains
;
5760 bool seenFloatArg
= false;
5761 // Walk the register/memloc assignments, inserting copies/loads.
5762 // i - Tracks the index into the list of registers allocated for the call
5763 // RealArgIdx - Tracks the index into the list of actual function arguments
5764 // j - Tracks the index into the list of byval arguments
5765 for (unsigned i
= 0, RealArgIdx
= 0, j
= 0, e
= ArgLocs
.size();
5767 ++i
, ++RealArgIdx
) {
5768 CCValAssign
&VA
= ArgLocs
[i
];
5769 SDValue Arg
= OutVals
[RealArgIdx
];
5770 ISD::ArgFlagsTy Flags
= Outs
[RealArgIdx
].Flags
;
5772 if (Flags
.isByVal()) {
5773 // Argument is an aggregate which is passed by value, thus we need to
5774 // create a copy of it in the local variable space of the current stack
5775 // frame (which is the stack frame of the caller) and pass the address of
5776 // this copy to the callee.
5777 assert((j
< ByValArgLocs
.size()) && "Index out of bounds!");
5778 CCValAssign
&ByValVA
= ByValArgLocs
[j
++];
5779 assert((VA
.getValNo() == ByValVA
.getValNo()) && "ValNo mismatch!");
5781 // Memory reserved in the local variable space of the callers stack frame.
5782 unsigned LocMemOffset
= ByValVA
.getLocMemOffset();
5784 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
5785 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(MF
.getDataLayout()),
5788 // Create a copy of the argument in the local area of the current
5790 SDValue MemcpyCall
=
5791 CreateCopyOfByValArgument(Arg
, PtrOff
,
5792 CallSeqStart
.getNode()->getOperand(0),
5795 // This must go outside the CALLSEQ_START..END.
5796 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
, NumBytes
, 0,
5798 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
5799 NewCallSeqStart
.getNode());
5800 Chain
= CallSeqStart
= NewCallSeqStart
;
5802 // Pass the address of the aggregate copy on the stack either in a
5803 // physical register or in the parameter list area of the current stack
5804 // frame to the callee.
5808 // When useCRBits() is true, there can be i1 arguments.
5809 // It is because getRegisterType(MVT::i1) => MVT::i1,
5810 // and for other integer types getRegisterType() => MVT::i32.
5811 // Extend i1 and ensure callee will get i32.
5812 if (Arg
.getValueType() == MVT::i1
)
5813 Arg
= DAG
.getNode(Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
5816 if (VA
.isRegLoc()) {
5817 seenFloatArg
|= VA
.getLocVT().isFloatingPoint();
5818 // Put argument in a physical register.
5819 if (Subtarget
.hasSPE() && Arg
.getValueType() == MVT::f64
) {
5820 bool IsLE
= Subtarget
.isLittleEndian();
5821 SDValue SVal
= DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
5822 DAG
.getIntPtrConstant(IsLE
? 0 : 1, dl
));
5823 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), SVal
.getValue(0)));
5824 SVal
= DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
5825 DAG
.getIntPtrConstant(IsLE
? 1 : 0, dl
));
5826 RegsToPass
.push_back(std::make_pair(ArgLocs
[++i
].getLocReg(),
5829 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
5831 // Put argument in the parameter list area of the current stack frame.
5832 assert(VA
.isMemLoc());
5833 unsigned LocMemOffset
= VA
.getLocMemOffset();
5836 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
5837 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(MF
.getDataLayout()),
5840 MemOpChains
.push_back(
5841 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo()));
5843 // Calculate and remember argument location.
5844 CalculateTailCallArgDest(DAG
, MF
, false, Arg
, SPDiff
, LocMemOffset
,
5850 if (!MemOpChains
.empty())
5851 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
5853 // Build a sequence of copy-to-reg nodes chained together with token chain
5854 // and flag operands which copy the outgoing args into the appropriate regs.
5856 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
5857 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
5858 RegsToPass
[i
].second
, InFlag
);
5859 InFlag
= Chain
.getValue(1);
5862 // Set CR bit 6 to true if this is a vararg call with floating args passed in
5865 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5866 SDValue Ops
[] = { Chain
, InFlag
};
5868 Chain
= DAG
.getNode(seenFloatArg
? PPCISD::CR6SET
: PPCISD::CR6UNSET
,
5869 dl
, VTs
, makeArrayRef(Ops
, InFlag
.getNode() ? 2 : 1));
5871 InFlag
= Chain
.getValue(1);
5875 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, SPDiff
, NumBytes
, LROp
, FPOp
,
5878 return FinishCall(CFlags
, dl
, DAG
, RegsToPass
, InFlag
, Chain
, CallSeqStart
,
5879 Callee
, SPDiff
, NumBytes
, Ins
, InVals
, CB
);
5882 // Copy an argument into memory, being careful to do this outside the
5883 // call sequence for the call to which the argument belongs.
5884 SDValue
PPCTargetLowering::createMemcpyOutsideCallSeq(
5885 SDValue Arg
, SDValue PtrOff
, SDValue CallSeqStart
, ISD::ArgFlagsTy Flags
,
5886 SelectionDAG
&DAG
, const SDLoc
&dl
) const {
5887 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, PtrOff
,
5888 CallSeqStart
.getNode()->getOperand(0),
5890 // The MEMCPY must go outside the CALLSEQ_START..END.
5891 int64_t FrameSize
= CallSeqStart
.getConstantOperandVal(1);
5892 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
, FrameSize
, 0,
5894 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
5895 NewCallSeqStart
.getNode());
5896 return NewCallSeqStart
;
5899 SDValue
PPCTargetLowering::LowerCall_64SVR4(
5900 SDValue Chain
, SDValue Callee
, CallFlags CFlags
,
5901 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
5902 const SmallVectorImpl
<SDValue
> &OutVals
,
5903 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
5904 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
5905 const CallBase
*CB
) const {
5906 bool isELFv2ABI
= Subtarget
.isELFv2ABI();
5907 bool isLittleEndian
= Subtarget
.isLittleEndian();
5908 unsigned NumOps
= Outs
.size();
5909 bool IsSibCall
= false;
5910 bool IsFastCall
= CFlags
.CallConv
== CallingConv::Fast
;
5912 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
5913 unsigned PtrByteSize
= 8;
5915 MachineFunction
&MF
= DAG
.getMachineFunction();
5917 if (CFlags
.IsTailCall
&& !getTargetMachine().Options
.GuaranteedTailCallOpt
)
5920 // Mark this function as potentially containing a function that contains a
5921 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5922 // and restoring the callers stack pointer in this functions epilog. This is
5923 // done because by tail calling the called function might overwrite the value
5924 // in this function's (MF) stack pointer stack slot 0(SP).
5925 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&& IsFastCall
)
5926 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
5928 assert(!(IsFastCall
&& CFlags
.IsVarArg
) &&
5929 "fastcc not supported on varargs functions");
5931 // Count how many bytes are to be pushed on the stack, including the linkage
5932 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
5933 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5934 // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5935 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
5936 unsigned NumBytes
= LinkageSize
;
5937 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
5939 static const MCPhysReg GPR
[] = {
5940 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
5941 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
5943 static const MCPhysReg VR
[] = {
5944 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
5945 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
5948 const unsigned NumGPRs
= array_lengthof(GPR
);
5949 const unsigned NumFPRs
= useSoftFloat() ? 0 : 13;
5950 const unsigned NumVRs
= array_lengthof(VR
);
5952 // On ELFv2, we can avoid allocating the parameter area if all the arguments
5953 // can be passed to the callee in registers.
5954 // For the fast calling convention, there is another check below.
5955 // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5956 bool HasParameterArea
= !isELFv2ABI
|| CFlags
.IsVarArg
|| IsFastCall
;
5957 if (!HasParameterArea
) {
5958 unsigned ParamAreaSize
= NumGPRs
* PtrByteSize
;
5959 unsigned AvailableFPRs
= NumFPRs
;
5960 unsigned AvailableVRs
= NumVRs
;
5961 unsigned NumBytesTmp
= NumBytes
;
5962 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
5963 if (Outs
[i
].Flags
.isNest()) continue;
5964 if (CalculateStackSlotUsed(Outs
[i
].VT
, Outs
[i
].ArgVT
, Outs
[i
].Flags
,
5965 PtrByteSize
, LinkageSize
, ParamAreaSize
,
5966 NumBytesTmp
, AvailableFPRs
, AvailableVRs
))
5967 HasParameterArea
= true;
5971 // When using the fast calling convention, we don't provide backing for
5972 // arguments that will be in registers.
5973 unsigned NumGPRsUsed
= 0, NumFPRsUsed
= 0, NumVRsUsed
= 0;
5975 // Avoid allocating parameter area for fastcc functions if all the arguments
5976 // can be passed in the registers.
5978 HasParameterArea
= false;
5980 // Add up all the space actually used.
5981 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
5982 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
5983 EVT ArgVT
= Outs
[i
].VT
;
5984 EVT OrigVT
= Outs
[i
].ArgVT
;
5990 if (Flags
.isByVal()) {
5991 NumGPRsUsed
+= (Flags
.getByValSize()+7)/8;
5992 if (NumGPRsUsed
> NumGPRs
)
5993 HasParameterArea
= true;
5995 switch (ArgVT
.getSimpleVT().SimpleTy
) {
5996 default: llvm_unreachable("Unexpected ValueType for argument!");
6000 if (++NumGPRsUsed
<= NumGPRs
)
6010 if (++NumVRsUsed
<= NumVRs
)
6014 if (++NumVRsUsed
<= NumVRs
)
6019 if (++NumFPRsUsed
<= NumFPRs
)
6023 HasParameterArea
= true;
6027 /* Respect alignment of argument on the stack. */
6029 CalculateStackSlotAlignment(ArgVT
, OrigVT
, Flags
, PtrByteSize
);
6030 NumBytes
= alignTo(NumBytes
, Alignement
);
6032 NumBytes
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
6033 if (Flags
.isInConsecutiveRegsLast())
6034 NumBytes
= ((NumBytes
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
6037 unsigned NumBytesActuallyUsed
= NumBytes
;
6039 // In the old ELFv1 ABI,
6040 // the prolog code of the callee may store up to 8 GPR argument registers to
6041 // the stack, allowing va_start to index over them in memory if its varargs.
6042 // Because we cannot tell if this is needed on the caller side, we have to
6043 // conservatively assume that it is needed. As such, make sure we have at
6044 // least enough stack space for the caller to store the 8 GPRs.
6045 // In the ELFv2 ABI, we allocate the parameter area iff a callee
6046 // really requires memory operands, e.g. a vararg function.
6047 if (HasParameterArea
)
6048 NumBytes
= std::max(NumBytes
, LinkageSize
+ 8 * PtrByteSize
);
6050 NumBytes
= LinkageSize
;
6052 // Tail call needs the stack to be aligned.
6053 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&& IsFastCall
)
6054 NumBytes
= EnsureStackAlignment(Subtarget
.getFrameLowering(), NumBytes
);
6058 // Calculate by how many bytes the stack has to be adjusted in case of tail
6059 // call optimization.
6061 SPDiff
= CalculateTailCallSPDiff(DAG
, CFlags
.IsTailCall
, NumBytes
);
6063 // To protect arguments on the stack from being clobbered in a tail call,
6064 // force all the loads to happen before doing any other lowering.
6065 if (CFlags
.IsTailCall
)
6066 Chain
= DAG
.getStackArgumentTokenFactor(Chain
);
6068 // Adjust the stack pointer for the new arguments...
6069 // These operations are automatically eliminated by the prolog/epilog pass
6071 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
6072 SDValue CallSeqStart
= Chain
;
6074 // Load the return address and frame pointer so it can be move somewhere else
6077 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, dl
);
6079 // Set up a copy of the stack pointer for use loading and storing any
6080 // arguments that may not fit in the registers available for argument
6082 SDValue StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
6084 // Figure out which arguments are going to go in registers, and which in
6085 // memory. Also, if this is a vararg function, floating point operations
6086 // must be stored to our stack, and loaded into integer regs as well, if
6087 // any integer regs are available for argument passing.
6088 unsigned ArgOffset
= LinkageSize
;
6090 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
6091 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
6093 SmallVector
<SDValue
, 8> MemOpChains
;
6094 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
6095 SDValue Arg
= OutVals
[i
];
6096 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
6097 EVT ArgVT
= Outs
[i
].VT
;
6098 EVT OrigVT
= Outs
[i
].ArgVT
;
6100 // PtrOff will be used to store the current argument to the stack if a
6101 // register cannot be found for it.
6104 // We re-align the argument offset for each argument, except when using the
6105 // fast calling convention, when we need to make sure we do that only when
6106 // we'll actually use a stack slot.
6107 auto ComputePtrOff
= [&]() {
6108 /* Respect alignment of argument on the stack. */
6110 CalculateStackSlotAlignment(ArgVT
, OrigVT
, Flags
, PtrByteSize
);
6111 ArgOffset
= alignTo(ArgOffset
, Alignment
);
6113 PtrOff
= DAG
.getConstant(ArgOffset
, dl
, StackPtr
.getValueType());
6115 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
6121 /* Compute GPR index associated with argument offset. */
6122 GPR_idx
= (ArgOffset
- LinkageSize
) / PtrByteSize
;
6123 GPR_idx
= std::min(GPR_idx
, NumGPRs
);
6126 // Promote integers to 64-bit values.
6127 if (Arg
.getValueType() == MVT::i32
|| Arg
.getValueType() == MVT::i1
) {
6128 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6129 unsigned ExtOp
= Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
6130 Arg
= DAG
.getNode(ExtOp
, dl
, MVT::i64
, Arg
);
6133 // FIXME memcpy is used way more than necessary. Correctness first.
6134 // Note: "by value" is code for passing a structure by value, not
6136 if (Flags
.isByVal()) {
6137 // Note: Size includes alignment padding, so
6138 // struct x { short a; char b; }
6139 // will have Size = 4. With #pragma pack(1), it will have Size = 3.
6140 // These are the proper values we need for right-justifying the
6141 // aggregate in a parameter register.
6142 unsigned Size
= Flags
.getByValSize();
6144 // An empty aggregate parameter takes up no storage and no
6152 // All aggregates smaller than 8 bytes must be passed right-justified.
6153 if (Size
==1 || Size
==2 || Size
==4) {
6154 EVT VT
= (Size
==1) ? MVT::i8
: ((Size
==2) ? MVT::i16
: MVT::i32
);
6155 if (GPR_idx
!= NumGPRs
) {
6156 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, PtrVT
, Chain
, Arg
,
6157 MachinePointerInfo(), VT
);
6158 MemOpChains
.push_back(Load
.getValue(1));
6159 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6161 ArgOffset
+= PtrByteSize
;
6166 if (GPR_idx
== NumGPRs
&& Size
< 8) {
6167 SDValue AddPtr
= PtrOff
;
6168 if (!isLittleEndian
) {
6169 SDValue Const
= DAG
.getConstant(PtrByteSize
- Size
, dl
,
6170 PtrOff
.getValueType());
6171 AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
6173 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, AddPtr
,
6176 ArgOffset
+= PtrByteSize
;
6179 // Copy entire object into memory. There are cases where gcc-generated
6180 // code assumes it is there, even if it could be put entirely into
6181 // registers. (This is not what the doc says.)
6183 // FIXME: The above statement is likely due to a misunderstanding of the
6184 // documents. All arguments must be copied into the parameter area BY
6185 // THE CALLEE in the event that the callee takes the address of any
6186 // formal argument. That has not yet been implemented. However, it is
6187 // reasonable to use the stack area as a staging area for the register
6190 // Skip this for small aggregates, as we will use the same slot for a
6191 // right-justified copy, below.
6193 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, PtrOff
,
6197 // When a register is available, pass a small aggregate right-justified.
6198 if (Size
< 8 && GPR_idx
!= NumGPRs
) {
6199 // The easiest way to get this right-justified in a register
6200 // is to copy the structure into the rightmost portion of a
6201 // local variable slot, then load the whole slot into the
6203 // FIXME: The memcpy seems to produce pretty awful code for
6204 // small aggregates, particularly for packed ones.
6205 // FIXME: It would be preferable to use the slot in the
6206 // parameter save area instead of a new local variable.
6207 SDValue AddPtr
= PtrOff
;
6208 if (!isLittleEndian
) {
6209 SDValue Const
= DAG
.getConstant(8 - Size
, dl
, PtrOff
.getValueType());
6210 AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
6212 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, AddPtr
,
6216 // Load the slot into the register.
6218 DAG
.getLoad(PtrVT
, dl
, Chain
, PtrOff
, MachinePointerInfo());
6219 MemOpChains
.push_back(Load
.getValue(1));
6220 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6222 // Done with this argument.
6223 ArgOffset
+= PtrByteSize
;
6227 // For aggregates larger than PtrByteSize, copy the pieces of the
6228 // object that fit into registers from the parameter save area.
6229 for (unsigned j
=0; j
<Size
; j
+=PtrByteSize
) {
6230 SDValue Const
= DAG
.getConstant(j
, dl
, PtrOff
.getValueType());
6231 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
6232 if (GPR_idx
!= NumGPRs
) {
6234 DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
, MachinePointerInfo());
6235 MemOpChains
.push_back(Load
.getValue(1));
6236 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6237 ArgOffset
+= PtrByteSize
;
6239 ArgOffset
+= ((Size
- j
+ PtrByteSize
-1)/PtrByteSize
)*PtrByteSize
;
6246 switch (Arg
.getSimpleValueType().SimpleTy
) {
6247 default: llvm_unreachable("Unexpected ValueType for argument!");
6251 if (Flags
.isNest()) {
6252 // The 'nest' parameter, if any, is passed in R11.
6253 RegsToPass
.push_back(std::make_pair(PPC::X11
, Arg
));
6257 // These can be scalar arguments or elements of an integer array type
6258 // passed directly. Clang may use those instead of "byval" aggregate
6259 // types to avoid forcing arguments to memory unnecessarily.
6260 if (GPR_idx
!= NumGPRs
) {
6261 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
6266 assert(HasParameterArea
&&
6267 "Parameter area must exist to pass an argument in memory.");
6268 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6269 true, CFlags
.IsTailCall
, false, MemOpChains
,
6270 TailCallArguments
, dl
);
6272 ArgOffset
+= PtrByteSize
;
6275 ArgOffset
+= PtrByteSize
;
6279 // These can be scalar arguments or elements of a float array type
6280 // passed directly. The latter are used to implement ELFv2 homogenous
6281 // float aggregates.
6283 // Named arguments go into FPRs first, and once they overflow, the
6284 // remaining arguments go into GPRs and then the parameter save area.
6285 // Unnamed arguments for vararg functions always go to GPRs and
6286 // then the parameter save area. For now, put all arguments to vararg
6287 // routines always in both locations (FPR *and* GPR or stack slot).
6288 bool NeedGPROrStack
= CFlags
.IsVarArg
|| FPR_idx
== NumFPRs
;
6289 bool NeededLoad
= false;
6291 // First load the argument into the next available FPR.
6292 if (FPR_idx
!= NumFPRs
)
6293 RegsToPass
.push_back(std::make_pair(FPR
[FPR_idx
++], Arg
));
6295 // Next, load the argument into GPR or stack slot if needed.
6296 if (!NeedGPROrStack
)
6298 else if (GPR_idx
!= NumGPRs
&& !IsFastCall
) {
6299 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6300 // once we support fp <-> gpr moves.
6302 // In the non-vararg case, this can only ever happen in the
6303 // presence of f32 array types, since otherwise we never run
6304 // out of FPRs before running out of GPRs.
6307 // Double values are always passed in a single GPR.
6308 if (Arg
.getValueType() != MVT::f32
) {
6309 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, Arg
);
6311 // Non-array float values are extended and passed in a GPR.
6312 } else if (!Flags
.isInConsecutiveRegs()) {
6313 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Arg
);
6314 ArgVal
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i64
, ArgVal
);
6316 // If we have an array of floats, we collect every odd element
6317 // together with its predecessor into one GPR.
6318 } else if (ArgOffset
% PtrByteSize
!= 0) {
6320 Lo
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, OutVals
[i
- 1]);
6321 Hi
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Arg
);
6322 if (!isLittleEndian
)
6324 ArgVal
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6326 // The final element, if even, goes into the first half of a GPR.
6327 } else if (Flags
.isInConsecutiveRegsLast()) {
6328 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Arg
);
6329 ArgVal
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i64
, ArgVal
);
6330 if (!isLittleEndian
)
6331 ArgVal
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, ArgVal
,
6332 DAG
.getConstant(32, dl
, MVT::i32
));
6334 // Non-final even elements are skipped; they will be handled
6335 // together the with subsequent argument on the next go-around.
6339 if (ArgVal
.getNode())
6340 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], ArgVal
));
6345 // Single-precision floating-point values are mapped to the
6346 // second (rightmost) word of the stack doubleword.
6347 if (Arg
.getValueType() == MVT::f32
&&
6348 !isLittleEndian
&& !Flags
.isInConsecutiveRegs()) {
6349 SDValue ConstFour
= DAG
.getConstant(4, dl
, PtrOff
.getValueType());
6350 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, ConstFour
);
6353 assert(HasParameterArea
&&
6354 "Parameter area must exist to pass an argument in memory.");
6355 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6356 true, CFlags
.IsTailCall
, false, MemOpChains
,
6357 TailCallArguments
, dl
);
6361 // When passing an array of floats, the array occupies consecutive
6362 // space in the argument area; only round up to the next doubleword
6363 // at the end of the array. Otherwise, each float takes 8 bytes.
6364 if (!IsFastCall
|| NeededLoad
) {
6365 ArgOffset
+= (Arg
.getValueType() == MVT::f32
&&
6366 Flags
.isInConsecutiveRegs()) ? 4 : 8;
6367 if (Flags
.isInConsecutiveRegsLast())
6368 ArgOffset
= ((ArgOffset
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
6380 // These can be scalar arguments or elements of a vector array type
6381 // passed directly. The latter are used to implement ELFv2 homogenous
6382 // vector aggregates.
6384 // For a varargs call, named arguments go into VRs or on the stack as
6385 // usual; unnamed arguments always go to the stack or the corresponding
6386 // GPRs when within range. For now, we always put the value in both
6387 // locations (or even all three).
6388 if (CFlags
.IsVarArg
) {
6389 assert(HasParameterArea
&&
6390 "Parameter area must exist if we have a varargs call.");
6391 // We could elide this store in the case where the object fits
6392 // entirely in R registers. Maybe later.
6394 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo());
6395 MemOpChains
.push_back(Store
);
6396 if (VR_idx
!= NumVRs
) {
6398 DAG
.getLoad(MVT::v4f32
, dl
, Store
, PtrOff
, MachinePointerInfo());
6399 MemOpChains
.push_back(Load
.getValue(1));
6400 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Load
));
6403 for (unsigned i
=0; i
<16; i
+=PtrByteSize
) {
6404 if (GPR_idx
== NumGPRs
)
6406 SDValue Ix
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
6407 DAG
.getConstant(i
, dl
, PtrVT
));
6409 DAG
.getLoad(PtrVT
, dl
, Store
, Ix
, MachinePointerInfo());
6410 MemOpChains
.push_back(Load
.getValue(1));
6411 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6416 // Non-varargs Altivec params go into VRs or on the stack.
6417 if (VR_idx
!= NumVRs
) {
6418 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Arg
));
6423 assert(HasParameterArea
&&
6424 "Parameter area must exist to pass an argument in memory.");
6425 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6426 true, CFlags
.IsTailCall
, true, MemOpChains
,
6427 TailCallArguments
, dl
);
6438 assert((!HasParameterArea
|| NumBytesActuallyUsed
== ArgOffset
) &&
6439 "mismatch in size of parameter area");
6440 (void)NumBytesActuallyUsed
;
6442 if (!MemOpChains
.empty())
6443 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
6445 // Check if this is an indirect call (MTCTR/BCTRL).
6446 // See prepareDescriptorIndirectCall and buildCallOperands for more
6447 // information about calls through function pointers in the 64-bit SVR4 ABI.
6448 if (CFlags
.IsIndirect
) {
6449 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6450 // caller in the TOC save area.
6451 if (isTOCSaveRestoreRequired(Subtarget
)) {
6452 assert(!CFlags
.IsTailCall
&& "Indirect tails calls not supported");
6453 // Load r2 into a virtual register and store it to the TOC save area.
6454 setUsesTOCBasePtr(DAG
);
6455 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, PPC::X2
, MVT::i64
);
6456 // TOC save area offset.
6457 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
6458 SDValue PtrOff
= DAG
.getIntPtrConstant(TOCSaveOffset
, dl
);
6459 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
6460 Chain
= DAG
.getStore(Val
.getValue(1), dl
, Val
, AddPtr
,
6461 MachinePointerInfo::getStack(
6462 DAG
.getMachineFunction(), TOCSaveOffset
));
6464 // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6465 // This does not mean the MTCTR instruction must use R12; it's easier
6466 // to model this as an extra parameter, so do that.
6467 if (isELFv2ABI
&& !CFlags
.IsPatchPoint
)
6468 RegsToPass
.push_back(std::make_pair((unsigned)PPC::X12
, Callee
));
6471 // Build a sequence of copy-to-reg nodes chained together with token chain
6472 // and flag operands which copy the outgoing args into the appropriate regs.
6474 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
6475 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
6476 RegsToPass
[i
].second
, InFlag
);
6477 InFlag
= Chain
.getValue(1);
6480 if (CFlags
.IsTailCall
&& !IsSibCall
)
6481 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, SPDiff
, NumBytes
, LROp
, FPOp
,
6484 return FinishCall(CFlags
, dl
, DAG
, RegsToPass
, InFlag
, Chain
, CallSeqStart
,
6485 Callee
, SPDiff
, NumBytes
, Ins
, InVals
, CB
);
6488 // Returns true when the shadow of a general purpose argument register
6489 // in the parameter save area is aligned to at least 'RequiredAlign'.
6490 static bool isGPRShadowAligned(MCPhysReg Reg
, Align RequiredAlign
) {
6491 assert(RequiredAlign
.value() <= 16 &&
6492 "Required alignment greater than stack alignment.");
6495 report_fatal_error("called on invalid register.");
6502 // These registers are 16 byte aligned which is the most strict aligment
6511 // The shadow of these registers in the PSA is 8 byte aligned.
6512 return RequiredAlign
<= 8;
6517 return RequiredAlign
<= 4;
6521 static bool CC_AIX(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
6522 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
6524 AIXCCState
&State
= static_cast<AIXCCState
&>(S
);
6525 const PPCSubtarget
&Subtarget
= static_cast<const PPCSubtarget
&>(
6526 State
.getMachineFunction().getSubtarget());
6527 const bool IsPPC64
= Subtarget
.isPPC64();
6528 const Align PtrAlign
= IsPPC64
? Align(8) : Align(4);
6529 const MVT RegVT
= IsPPC64
? MVT::i64
: MVT::i32
;
6531 if (ValVT
== MVT::f128
)
6532 report_fatal_error("f128 is unimplemented on AIX.");
6534 if (ArgFlags
.isNest())
6535 report_fatal_error("Nest arguments are unimplemented.");
6537 static const MCPhysReg GPR_32
[] = {// 32-bit registers.
6538 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
6539 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
};
6540 static const MCPhysReg GPR_64
[] = {// 64-bit registers.
6541 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
6542 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
};
6544 static const MCPhysReg VR
[] = {// Vector registers.
6545 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
,
6546 PPC::V6
, PPC::V7
, PPC::V8
, PPC::V9
,
6547 PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
};
6549 if (ArgFlags
.isByVal()) {
6550 if (ArgFlags
.getNonZeroByValAlign() > PtrAlign
)
6551 report_fatal_error("Pass-by-value arguments with alignment greater than "
6552 "register width are not supported.");
6554 const unsigned ByValSize
= ArgFlags
.getByValSize();
6556 // An empty aggregate parameter takes up no storage and no registers,
6557 // but needs a MemLoc for a stack slot for the formal arguments side.
6558 if (ByValSize
== 0) {
6559 State
.addLoc(CCValAssign::getMem(ValNo
, MVT::INVALID_SIMPLE_VALUE_TYPE
,
6560 State
.getNextStackOffset(), RegVT
,
6565 const unsigned StackSize
= alignTo(ByValSize
, PtrAlign
);
6566 unsigned Offset
= State
.AllocateStack(StackSize
, PtrAlign
);
6567 for (const unsigned E
= Offset
+ StackSize
; Offset
< E
;
6568 Offset
+= PtrAlign
.value()) {
6569 if (unsigned Reg
= State
.AllocateReg(IsPPC64
? GPR_64
: GPR_32
))
6570 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, RegVT
, LocInfo
));
6572 State
.addLoc(CCValAssign::getMem(ValNo
, MVT::INVALID_SIMPLE_VALUE_TYPE
,
6573 Offset
, MVT::INVALID_SIMPLE_VALUE_TYPE
,
6581 // Arguments always reserve parameter save area.
6582 switch (ValVT
.SimpleTy
) {
6584 report_fatal_error("Unhandled value type for argument.");
6586 // i64 arguments should have been split to i32 for PPC32.
6587 assert(IsPPC64
&& "PPC32 should have split i64 values.");
6591 const unsigned Offset
= State
.AllocateStack(PtrAlign
.value(), PtrAlign
);
6592 // AIX integer arguments are always passed in register width.
6593 if (ValVT
.getFixedSizeInBits() < RegVT
.getFixedSizeInBits())
6594 LocInfo
= ArgFlags
.isSExt() ? CCValAssign::LocInfo::SExt
6595 : CCValAssign::LocInfo::ZExt
;
6596 if (unsigned Reg
= State
.AllocateReg(IsPPC64
? GPR_64
: GPR_32
))
6597 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, RegVT
, LocInfo
));
6599 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, RegVT
, LocInfo
));
6605 // Parameter save area (PSA) is reserved even if the float passes in fpr.
6606 const unsigned StoreSize
= LocVT
.getStoreSize();
6607 // Floats are always 4-byte aligned in the PSA on AIX.
6608 // This includes f64 in 64-bit mode for ABI compatibility.
6609 const unsigned Offset
=
6610 State
.AllocateStack(IsPPC64
? 8 : StoreSize
, Align(4));
6611 unsigned FReg
= State
.AllocateReg(FPR
);
6613 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, FReg
, LocVT
, LocInfo
));
6615 // Reserve and initialize GPRs or initialize the PSA as required.
6616 for (unsigned I
= 0; I
< StoreSize
; I
+= PtrAlign
.value()) {
6617 if (unsigned Reg
= State
.AllocateReg(IsPPC64
? GPR_64
: GPR_32
)) {
6618 assert(FReg
&& "An FPR should be available when a GPR is reserved.");
6619 if (State
.isVarArg()) {
6620 // Successfully reserved GPRs are only initialized for vararg calls.
6621 // Custom handling is required for:
6622 // f64 in PPC32 needs to be split into 2 GPRs.
6623 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6625 CCValAssign::getCustomReg(ValNo
, ValVT
, Reg
, RegVT
, LocInfo
));
6628 // If there are insufficient GPRs, the PSA needs to be initialized.
6629 // Initialization occurs even if an FPR was initialized for
6630 // compatibility with the AIX XL compiler. The full memory for the
6631 // argument will be initialized even if a prior word is saved in GPR.
6632 // A custom memLoc is used when the argument also passes in FPR so
6633 // that the callee handling can skip over it easily.
6635 FReg
? CCValAssign::getCustomMem(ValNo
, ValVT
, Offset
, LocVT
,
6637 : CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
6651 const unsigned VecSize
= 16;
6652 const Align
VecAlign(VecSize
);
6654 if (!State
.isVarArg()) {
6655 // If there are vector registers remaining we don't consume any stack
6657 if (unsigned VReg
= State
.AllocateReg(VR
)) {
6658 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, VReg
, LocVT
, LocInfo
));
6661 // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6662 // might be allocated in the portion of the PSA that is shadowed by the
6664 const unsigned Offset
= State
.AllocateStack(VecSize
, VecAlign
);
6665 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
6669 const unsigned PtrSize
= IsPPC64
? 8 : 4;
6670 ArrayRef
<MCPhysReg
> GPRs
= IsPPC64
? GPR_64
: GPR_32
;
6672 unsigned NextRegIndex
= State
.getFirstUnallocated(GPRs
);
6673 // Burn any underaligned registers and their shadowed stack space until
6674 // we reach the required alignment.
6675 while (NextRegIndex
!= GPRs
.size() &&
6676 !isGPRShadowAligned(GPRs
[NextRegIndex
], VecAlign
)) {
6677 // Shadow allocate register and its stack shadow.
6678 unsigned Reg
= State
.AllocateReg(GPRs
);
6679 State
.AllocateStack(PtrSize
, PtrAlign
);
6680 assert(Reg
&& "Allocating register unexpectedly failed.");
6682 NextRegIndex
= State
.getFirstUnallocated(GPRs
);
6685 // Vectors that are passed as fixed arguments are handled differently.
6686 // They are passed in VRs if any are available (unlike arguments passed
6687 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6689 if (State
.isFixed(ValNo
)) {
6690 if (unsigned VReg
= State
.AllocateReg(VR
)) {
6691 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, VReg
, LocVT
, LocInfo
));
6692 // Shadow allocate GPRs and stack space even though we pass in a VR.
6693 for (unsigned I
= 0; I
!= VecSize
; I
+= PtrSize
)
6694 State
.AllocateReg(GPRs
);
6695 State
.AllocateStack(VecSize
, VecAlign
);
6698 // No vector registers remain so pass on the stack.
6699 const unsigned Offset
= State
.AllocateStack(VecSize
, VecAlign
);
6700 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
6704 // If all GPRS are consumed then we pass the argument fully on the stack.
6705 if (NextRegIndex
== GPRs
.size()) {
6706 const unsigned Offset
= State
.AllocateStack(VecSize
, VecAlign
);
6707 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
6711 // Corner case for 32-bit codegen. We have 2 registers to pass the first
6712 // half of the argument, and then need to pass the remaining half on the
6714 if (GPRs
[NextRegIndex
] == PPC::R9
) {
6715 const unsigned Offset
= State
.AllocateStack(VecSize
, VecAlign
);
6717 CCValAssign::getCustomMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
6719 const unsigned FirstReg
= State
.AllocateReg(PPC::R9
);
6720 const unsigned SecondReg
= State
.AllocateReg(PPC::R10
);
6721 assert(FirstReg
&& SecondReg
&&
6722 "Allocating R9 or R10 unexpectedly failed.");
6724 CCValAssign::getCustomReg(ValNo
, ValVT
, FirstReg
, RegVT
, LocInfo
));
6726 CCValAssign::getCustomReg(ValNo
, ValVT
, SecondReg
, RegVT
, LocInfo
));
6730 // We have enough GPRs to fully pass the vector argument, and we have
6731 // already consumed any underaligned registers. Start with the custom
6732 // MemLoc and then the custom RegLocs.
6733 const unsigned Offset
= State
.AllocateStack(VecSize
, VecAlign
);
6735 CCValAssign::getCustomMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
6736 for (unsigned I
= 0; I
!= VecSize
; I
+= PtrSize
) {
6737 const unsigned Reg
= State
.AllocateReg(GPRs
);
6738 assert(Reg
&& "Failed to allocated register for vararg vector argument");
6740 CCValAssign::getCustomReg(ValNo
, ValVT
, Reg
, RegVT
, LocInfo
));
6748 // So far, this function is only used by LowerFormalArguments_AIX()
6749 static const TargetRegisterClass
*getRegClassForSVT(MVT::SimpleValueType SVT
,
6753 assert((IsPPC64
|| SVT
!= MVT::i64
) &&
6754 "i64 should have been split for 32-bit codegen.");
6758 report_fatal_error("Unexpected value type for formal argument");
6762 return IsPPC64
? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
6764 return HasP8Vector
? &PPC::VSSRCRegClass
: &PPC::F4RCRegClass
;
6766 return HasVSX
? &PPC::VSFRCRegClass
: &PPC::F8RCRegClass
;
6774 return &PPC::VRRCRegClass
;
6778 static SDValue
truncateScalarIntegerArg(ISD::ArgFlagsTy Flags
, EVT ValVT
,
6779 SelectionDAG
&DAG
, SDValue ArgValue
,
6780 MVT LocVT
, const SDLoc
&dl
) {
6781 assert(ValVT
.isScalarInteger() && LocVT
.isScalarInteger());
6782 assert(ValVT
.getFixedSizeInBits() < LocVT
.getFixedSizeInBits());
6785 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, LocVT
, ArgValue
,
6786 DAG
.getValueType(ValVT
));
6787 else if (Flags
.isZExt())
6788 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, LocVT
, ArgValue
,
6789 DAG
.getValueType(ValVT
));
6791 return DAG
.getNode(ISD::TRUNCATE
, dl
, ValVT
, ArgValue
);
6794 static unsigned mapArgRegToOffsetAIX(unsigned Reg
, const PPCFrameLowering
*FL
) {
6795 const unsigned LASize
= FL
->getLinkageSize();
6797 if (PPC::GPRCRegClass
.contains(Reg
)) {
6798 assert(Reg
>= PPC::R3
&& Reg
<= PPC::R10
&&
6799 "Reg must be a valid argument register!");
6800 return LASize
+ 4 * (Reg
- PPC::R3
);
6803 if (PPC::G8RCRegClass
.contains(Reg
)) {
6804 assert(Reg
>= PPC::X3
&& Reg
<= PPC::X10
&&
6805 "Reg must be a valid argument register!");
6806 return LASize
+ 8 * (Reg
- PPC::X3
);
6809 llvm_unreachable("Only general purpose registers expected.");
6812 // AIX ABI Stack Frame Layout:
6814 // Low Memory +--------------------------------------------+
6815 // SP +---> | Back chain | ---+
6816 // | +--------------------------------------------+ |
6817 // | | Saved Condition Register | |
6818 // | +--------------------------------------------+ |
6819 // | | Saved Linkage Register | |
6820 // | +--------------------------------------------+ | Linkage Area
6821 // | | Reserved for compilers | |
6822 // | +--------------------------------------------+ |
6823 // | | Reserved for binders | |
6824 // | +--------------------------------------------+ |
6825 // | | Saved TOC pointer | ---+
6826 // | +--------------------------------------------+
6827 // | | Parameter save area |
6828 // | +--------------------------------------------+
6829 // | | Alloca space |
6830 // | +--------------------------------------------+
6831 // | | Local variable space |
6832 // | +--------------------------------------------+
6833 // | | Float/int conversion temporary |
6834 // | +--------------------------------------------+
6835 // | | Save area for AltiVec registers |
6836 // | +--------------------------------------------+
6837 // | | AltiVec alignment padding |
6838 // | +--------------------------------------------+
6839 // | | Save area for VRSAVE register |
6840 // | +--------------------------------------------+
6841 // | | Save area for General Purpose registers |
6842 // | +--------------------------------------------+
6843 // | | Save area for Floating Point registers |
6844 // | +--------------------------------------------+
6845 // +---- | Back chain |
6846 // High Memory +--------------------------------------------+
6849 // AIX 7.2 Assembler Language Reference
6850 // Subroutine linkage convention
6852 SDValue
PPCTargetLowering::LowerFormalArguments_AIX(
6853 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
6854 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
6855 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
6857 assert((CallConv
== CallingConv::C
|| CallConv
== CallingConv::Cold
||
6858 CallConv
== CallingConv::Fast
) &&
6859 "Unexpected calling convention!");
6861 if (getTargetMachine().Options
.GuaranteedTailCallOpt
)
6862 report_fatal_error("Tail call support is unimplemented on AIX.");
6865 report_fatal_error("Soft float support is unimplemented on AIX.");
6867 const PPCSubtarget
&Subtarget
=
6868 static_cast<const PPCSubtarget
&>(DAG
.getSubtarget());
6870 const bool IsPPC64
= Subtarget
.isPPC64();
6871 const unsigned PtrByteSize
= IsPPC64
? 8 : 4;
6873 // Assign locations to all of the incoming arguments.
6874 SmallVector
<CCValAssign
, 16> ArgLocs
;
6875 MachineFunction
&MF
= DAG
.getMachineFunction();
6876 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6877 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
6878 AIXCCState
CCInfo(CallConv
, isVarArg
, MF
, ArgLocs
, *DAG
.getContext());
6880 const EVT PtrVT
= getPointerTy(MF
.getDataLayout());
6881 // Reserve space for the linkage area on the stack.
6882 const unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
6883 CCInfo
.AllocateStack(LinkageSize
, Align(PtrByteSize
));
6884 CCInfo
.AnalyzeFormalArguments(Ins
, CC_AIX
);
6886 SmallVector
<SDValue
, 8> MemOps
;
6888 for (size_t I
= 0, End
= ArgLocs
.size(); I
!= End
; /* No increment here */) {
6889 CCValAssign
&VA
= ArgLocs
[I
++];
6890 MVT LocVT
= VA
.getLocVT();
6891 MVT ValVT
= VA
.getValVT();
6892 ISD::ArgFlagsTy Flags
= Ins
[VA
.getValNo()].Flags
;
6893 // For compatibility with the AIX XL compiler, the float args in the
6894 // parameter save area are initialized even if the argument is available
6895 // in register. The caller is required to initialize both the register
6896 // and memory, however, the callee can choose to expect it in either.
6897 // The memloc is dismissed here because the argument is retrieved from
6899 if (VA
.isMemLoc() && VA
.needsCustom() && ValVT
.isFloatingPoint())
6902 auto HandleMemLoc
= [&]() {
6903 const unsigned LocSize
= LocVT
.getStoreSize();
6904 const unsigned ValSize
= ValVT
.getStoreSize();
6905 assert((ValSize
<= LocSize
) &&
6906 "Object size is larger than size of MemLoc");
6907 int CurArgOffset
= VA
.getLocMemOffset();
6908 // Objects are right-justified because AIX is big-endian.
6909 if (LocSize
> ValSize
)
6910 CurArgOffset
+= LocSize
- ValSize
;
6911 // Potential tail calls could cause overwriting of argument stack slots.
6912 const bool IsImmutable
=
6913 !(getTargetMachine().Options
.GuaranteedTailCallOpt
&&
6914 (CallConv
== CallingConv::Fast
));
6915 int FI
= MFI
.CreateFixedObject(ValSize
, CurArgOffset
, IsImmutable
);
6916 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
6918 DAG
.getLoad(ValVT
, dl
, Chain
, FIN
, MachinePointerInfo());
6919 InVals
.push_back(ArgValue
);
6922 // Vector arguments to VaArg functions are passed both on the stack, and
6923 // in any available GPRs. Load the value from the stack and add the GPRs
6925 if (VA
.isMemLoc() && VA
.needsCustom()) {
6926 assert(ValVT
.isVector() && "Unexpected Custom MemLoc type.");
6927 assert(isVarArg
&& "Only use custom memloc for vararg.");
6928 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6929 // matching custom RegLocs.
6930 const unsigned OriginalValNo
= VA
.getValNo();
6931 (void)OriginalValNo
;
6933 auto HandleCustomVecRegLoc
= [&]() {
6934 assert(I
!= End
&& ArgLocs
[I
].isRegLoc() && ArgLocs
[I
].needsCustom() &&
6935 "Missing custom RegLoc.");
6937 assert(VA
.getValVT().isVector() &&
6938 "Unexpected Val type for custom RegLoc.");
6939 assert(VA
.getValNo() == OriginalValNo
&&
6940 "ValNo mismatch between custom MemLoc and RegLoc.");
6941 MVT::SimpleValueType SVT
= VA
.getLocVT().SimpleTy
;
6942 MF
.addLiveIn(VA
.getLocReg(),
6943 getRegClassForSVT(SVT
, IsPPC64
, Subtarget
.hasP8Vector(),
6944 Subtarget
.hasVSX()));
6948 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6949 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6951 HandleCustomVecRegLoc();
6952 HandleCustomVecRegLoc();
6954 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6955 // we passed the vector in R5, R6, R7 and R8.
6956 if (I
!= End
&& ArgLocs
[I
].isRegLoc() && ArgLocs
[I
].needsCustom()) {
6958 "Only 2 custom RegLocs expected for 64-bit codegen.");
6959 HandleCustomVecRegLoc();
6960 HandleCustomVecRegLoc();
6966 if (VA
.isRegLoc()) {
6967 if (VA
.getValVT().isScalarInteger())
6968 FuncInfo
->appendParameterType(PPCFunctionInfo::FixedType
);
6969 else if (VA
.getValVT().isFloatingPoint() && !VA
.getValVT().isVector()) {
6970 switch (VA
.getValVT().SimpleTy
) {
6972 report_fatal_error("Unhandled value type for argument.");
6974 FuncInfo
->appendParameterType(PPCFunctionInfo::ShortFloatingPoint
);
6977 FuncInfo
->appendParameterType(PPCFunctionInfo::LongFloatingPoint
);
6980 } else if (VA
.getValVT().isVector()) {
6981 switch (VA
.getValVT().SimpleTy
) {
6983 report_fatal_error("Unhandled value type for argument.");
6985 FuncInfo
->appendParameterType(PPCFunctionInfo::VectorChar
);
6988 FuncInfo
->appendParameterType(PPCFunctionInfo::VectorShort
);
6993 FuncInfo
->appendParameterType(PPCFunctionInfo::VectorInt
);
6997 FuncInfo
->appendParameterType(PPCFunctionInfo::VectorFloat
);
7003 if (Flags
.isByVal() && VA
.isMemLoc()) {
7004 const unsigned Size
=
7005 alignTo(Flags
.getByValSize() ? Flags
.getByValSize() : PtrByteSize
,
7007 const int FI
= MF
.getFrameInfo().CreateFixedObject(
7008 Size
, VA
.getLocMemOffset(), /* IsImmutable */ false,
7009 /* IsAliased */ true);
7010 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
7011 InVals
.push_back(FIN
);
7016 if (Flags
.isByVal()) {
7017 assert(VA
.isRegLoc() && "MemLocs should already be handled.");
7019 const MCPhysReg ArgReg
= VA
.getLocReg();
7020 const PPCFrameLowering
*FL
= Subtarget
.getFrameLowering();
7022 if (Flags
.getNonZeroByValAlign() > PtrByteSize
)
7023 report_fatal_error("Over aligned byvals not supported yet.");
7025 const unsigned StackSize
= alignTo(Flags
.getByValSize(), PtrByteSize
);
7026 const int FI
= MF
.getFrameInfo().CreateFixedObject(
7027 StackSize
, mapArgRegToOffsetAIX(ArgReg
, FL
), /* IsImmutable */ false,
7028 /* IsAliased */ true);
7029 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
7030 InVals
.push_back(FIN
);
7032 // Add live ins for all the RegLocs for the same ByVal.
7033 const TargetRegisterClass
*RegClass
=
7034 IsPPC64
? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
7036 auto HandleRegLoc
= [&, RegClass
, LocVT
](const MCPhysReg PhysReg
,
7038 const unsigned VReg
= MF
.addLiveIn(PhysReg
, RegClass
);
7039 // Since the callers side has left justified the aggregate in the
7040 // register, we can simply store the entire register into the stack
7042 SDValue CopyFrom
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, LocVT
);
7043 // The store to the fixedstack object is needed becuase accessing a
7044 // field of the ByVal will use a gep and load. Ideally we will optimize
7045 // to extracting the value from the register directly, and elide the
7046 // stores when the arguments address is not taken, but that will need to
7048 SDValue Store
= DAG
.getStore(
7049 CopyFrom
.getValue(1), dl
, CopyFrom
,
7050 DAG
.getObjectPtrOffset(dl
, FIN
, TypeSize::Fixed(Offset
)),
7051 MachinePointerInfo::getFixedStack(MF
, FI
, Offset
));
7053 MemOps
.push_back(Store
);
7056 unsigned Offset
= 0;
7057 HandleRegLoc(VA
.getLocReg(), Offset
);
7058 Offset
+= PtrByteSize
;
7059 for (; Offset
!= StackSize
&& ArgLocs
[I
].isRegLoc();
7060 Offset
+= PtrByteSize
) {
7061 assert(ArgLocs
[I
].getValNo() == VA
.getValNo() &&
7062 "RegLocs should be for ByVal argument.");
7064 const CCValAssign RL
= ArgLocs
[I
++];
7065 HandleRegLoc(RL
.getLocReg(), Offset
);
7066 FuncInfo
->appendParameterType(PPCFunctionInfo::FixedType
);
7069 if (Offset
!= StackSize
) {
7070 assert(ArgLocs
[I
].getValNo() == VA
.getValNo() &&
7071 "Expected MemLoc for remaining bytes.");
7072 assert(ArgLocs
[I
].isMemLoc() && "Expected MemLoc for remaining bytes.");
7073 // Consume the MemLoc.The InVal has already been emitted, so nothing
7074 // more needs to be done.
7081 if (VA
.isRegLoc() && !VA
.needsCustom()) {
7082 MVT::SimpleValueType SVT
= ValVT
.SimpleTy
;
7084 MF
.addLiveIn(VA
.getLocReg(),
7085 getRegClassForSVT(SVT
, IsPPC64
, Subtarget
.hasP8Vector(),
7086 Subtarget
.hasVSX()));
7087 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, LocVT
);
7088 if (ValVT
.isScalarInteger() &&
7089 (ValVT
.getFixedSizeInBits() < LocVT
.getFixedSizeInBits())) {
7091 truncateScalarIntegerArg(Flags
, ValVT
, DAG
, ArgValue
, LocVT
, dl
);
7093 InVals
.push_back(ArgValue
);
7096 if (VA
.isMemLoc()) {
7102 // On AIX a minimum of 8 words is saved to the parameter save area.
7103 const unsigned MinParameterSaveArea
= 8 * PtrByteSize
;
7104 // Area that is at least reserved in the caller of this function.
7105 unsigned CallerReservedArea
=
7106 std::max(CCInfo
.getNextStackOffset(), LinkageSize
+ MinParameterSaveArea
);
7108 // Set the size that is at least reserved in caller of this function. Tail
7109 // call optimized function's reserved stack space needs to be aligned so
7110 // that taking the difference between two stack areas will result in an
7112 CallerReservedArea
=
7113 EnsureStackAlignment(Subtarget
.getFrameLowering(), CallerReservedArea
);
7114 FuncInfo
->setMinReservedArea(CallerReservedArea
);
7117 FuncInfo
->setVarArgsFrameIndex(
7118 MFI
.CreateFixedObject(PtrByteSize
, CCInfo
.getNextStackOffset(), true));
7119 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
7121 static const MCPhysReg GPR_32
[] = {PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
7122 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
};
7124 static const MCPhysReg GPR_64
[] = {PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
7125 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
};
7126 const unsigned NumGPArgRegs
= array_lengthof(IsPPC64
? GPR_64
: GPR_32
);
7128 // The fixed integer arguments of a variadic function are stored to the
7129 // VarArgsFrameIndex on the stack so that they may be loaded by
7130 // dereferencing the result of va_next.
7131 for (unsigned GPRIndex
=
7132 (CCInfo
.getNextStackOffset() - LinkageSize
) / PtrByteSize
;
7133 GPRIndex
< NumGPArgRegs
; ++GPRIndex
) {
7135 const unsigned VReg
=
7136 IsPPC64
? MF
.addLiveIn(GPR_64
[GPRIndex
], &PPC::G8RCRegClass
)
7137 : MF
.addLiveIn(GPR_32
[GPRIndex
], &PPC::GPRCRegClass
);
7139 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
7141 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
7142 MemOps
.push_back(Store
);
7143 // Increment the address for the next argument to store.
7144 SDValue PtrOff
= DAG
.getConstant(PtrByteSize
, dl
, PtrVT
);
7145 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
7149 if (!MemOps
.empty())
7150 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
7155 SDValue
PPCTargetLowering::LowerCall_AIX(
7156 SDValue Chain
, SDValue Callee
, CallFlags CFlags
,
7157 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
7158 const SmallVectorImpl
<SDValue
> &OutVals
,
7159 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
7160 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
7161 const CallBase
*CB
) const {
7162 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7163 // AIX ABI stack frame layout.
7165 assert((CFlags
.CallConv
== CallingConv::C
||
7166 CFlags
.CallConv
== CallingConv::Cold
||
7167 CFlags
.CallConv
== CallingConv::Fast
) &&
7168 "Unexpected calling convention!");
7170 if (CFlags
.IsPatchPoint
)
7171 report_fatal_error("This call type is unimplemented on AIX.");
7173 const PPCSubtarget
& Subtarget
=
7174 static_cast<const PPCSubtarget
&>(DAG
.getSubtarget());
7176 MachineFunction
&MF
= DAG
.getMachineFunction();
7177 SmallVector
<CCValAssign
, 16> ArgLocs
;
7178 AIXCCState
CCInfo(CFlags
.CallConv
, CFlags
.IsVarArg
, MF
, ArgLocs
,
7181 // Reserve space for the linkage save area (LSA) on the stack.
7182 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7183 // [SP][CR][LR][2 x reserved][TOC].
7184 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7185 const unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
7186 const bool IsPPC64
= Subtarget
.isPPC64();
7187 const EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
7188 const unsigned PtrByteSize
= IsPPC64
? 8 : 4;
7189 CCInfo
.AllocateStack(LinkageSize
, Align(PtrByteSize
));
7190 CCInfo
.AnalyzeCallOperands(Outs
, CC_AIX
);
7192 // The prolog code of the callee may store up to 8 GPR argument registers to
7193 // the stack, allowing va_start to index over them in memory if the callee
7195 // Because we cannot tell if this is needed on the caller side, we have to
7196 // conservatively assume that it is needed. As such, make sure we have at
7197 // least enough stack space for the caller to store the 8 GPRs.
7198 const unsigned MinParameterSaveAreaSize
= 8 * PtrByteSize
;
7199 const unsigned NumBytes
= std::max(LinkageSize
+ MinParameterSaveAreaSize
,
7200 CCInfo
.getNextStackOffset());
7202 // Adjust the stack pointer for the new arguments...
7203 // These operations are automatically eliminated by the prolog/epilog pass.
7204 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
7205 SDValue CallSeqStart
= Chain
;
7207 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
7208 SmallVector
<SDValue
, 8> MemOpChains
;
7210 // Set up a copy of the stack pointer for loading and storing any
7211 // arguments that may not fit in the registers available for argument
7213 const SDValue StackPtr
= IsPPC64
? DAG
.getRegister(PPC::X1
, MVT::i64
)
7214 : DAG
.getRegister(PPC::R1
, MVT::i32
);
7216 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
;) {
7217 const unsigned ValNo
= ArgLocs
[I
].getValNo();
7218 SDValue Arg
= OutVals
[ValNo
];
7219 ISD::ArgFlagsTy Flags
= Outs
[ValNo
].Flags
;
7221 if (Flags
.isByVal()) {
7222 const unsigned ByValSize
= Flags
.getByValSize();
7224 // Nothing to do for zero-sized ByVals on the caller side.
7230 auto GetLoad
= [&](EVT VT
, unsigned LoadOffset
) {
7231 return DAG
.getExtLoad(
7232 ISD::ZEXTLOAD
, dl
, PtrVT
, Chain
,
7234 ? DAG
.getObjectPtrOffset(dl
, Arg
, TypeSize::Fixed(LoadOffset
))
7236 MachinePointerInfo(), VT
);
7239 unsigned LoadOffset
= 0;
7241 // Initialize registers, which are fully occupied by the by-val argument.
7242 while (LoadOffset
+ PtrByteSize
<= ByValSize
&& ArgLocs
[I
].isRegLoc()) {
7243 SDValue Load
= GetLoad(PtrVT
, LoadOffset
);
7244 MemOpChains
.push_back(Load
.getValue(1));
7245 LoadOffset
+= PtrByteSize
;
7246 const CCValAssign
&ByValVA
= ArgLocs
[I
++];
7247 assert(ByValVA
.getValNo() == ValNo
&&
7248 "Unexpected location for pass-by-value argument.");
7249 RegsToPass
.push_back(std::make_pair(ByValVA
.getLocReg(), Load
));
7252 if (LoadOffset
== ByValSize
)
7255 // There must be one more loc to handle the remainder.
7256 assert(ArgLocs
[I
].getValNo() == ValNo
&&
7257 "Expected additional location for by-value argument.");
7259 if (ArgLocs
[I
].isMemLoc()) {
7260 assert(LoadOffset
< ByValSize
&& "Unexpected memloc for by-val arg.");
7261 const CCValAssign
&ByValVA
= ArgLocs
[I
++];
7262 ISD::ArgFlagsTy MemcpyFlags
= Flags
;
7263 // Only memcpy the bytes that don't pass in register.
7264 MemcpyFlags
.setByValSize(ByValSize
- LoadOffset
);
7265 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(
7267 ? DAG
.getObjectPtrOffset(dl
, Arg
, TypeSize::Fixed(LoadOffset
))
7269 DAG
.getObjectPtrOffset(dl
, StackPtr
,
7270 TypeSize::Fixed(ByValVA
.getLocMemOffset())),
7271 CallSeqStart
, MemcpyFlags
, DAG
, dl
);
7275 // Initialize the final register residue.
7276 // Any residue that occupies the final by-val arg register must be
7277 // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7278 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7279 // 2 and 1 byte loads.
7280 const unsigned ResidueBytes
= ByValSize
% PtrByteSize
;
7281 assert(ResidueBytes
!= 0 && LoadOffset
+ PtrByteSize
> ByValSize
&&
7282 "Unexpected register residue for by-value argument.");
7284 for (unsigned Bytes
= 0; Bytes
!= ResidueBytes
;) {
7285 const unsigned N
= PowerOf2Floor(ResidueBytes
- Bytes
);
7288 : ((N
== 2) ? MVT::i16
: (N
== 4 ? MVT::i32
: MVT::i64
));
7289 SDValue Load
= GetLoad(VT
, LoadOffset
);
7290 MemOpChains
.push_back(Load
.getValue(1));
7294 // By-val arguments are passed left-justfied in register.
7295 // Every load here needs to be shifted, otherwise a full register load
7296 // should have been used.
7297 assert(PtrVT
.getSimpleVT().getSizeInBits() > (Bytes
* 8) &&
7298 "Unexpected load emitted during handling of pass-by-value "
7300 unsigned NumSHLBits
= PtrVT
.getSimpleVT().getSizeInBits() - (Bytes
* 8);
7302 getShiftAmountTy(Load
->getValueType(0), DAG
.getDataLayout());
7303 SDValue SHLAmt
= DAG
.getConstant(NumSHLBits
, dl
, ShiftAmountTy
);
7304 SDValue ShiftedLoad
=
7305 DAG
.getNode(ISD::SHL
, dl
, Load
.getValueType(), Load
, SHLAmt
);
7306 ResidueVal
= ResidueVal
? DAG
.getNode(ISD::OR
, dl
, PtrVT
, ResidueVal
,
7311 const CCValAssign
&ByValVA
= ArgLocs
[I
++];
7312 RegsToPass
.push_back(std::make_pair(ByValVA
.getLocReg(), ResidueVal
));
7316 CCValAssign
&VA
= ArgLocs
[I
++];
7317 const MVT LocVT
= VA
.getLocVT();
7318 const MVT ValVT
= VA
.getValVT();
7320 switch (VA
.getLocInfo()) {
7322 report_fatal_error("Unexpected argument extension type.");
7323 case CCValAssign::Full
:
7325 case CCValAssign::ZExt
:
7326 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
7328 case CCValAssign::SExt
:
7329 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
7333 if (VA
.isRegLoc() && !VA
.needsCustom()) {
7334 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
7338 // Vector arguments passed to VarArg functions need custom handling when
7339 // they are passed (at least partially) in GPRs.
7340 if (VA
.isMemLoc() && VA
.needsCustom() && ValVT
.isVector()) {
7341 assert(CFlags
.IsVarArg
&& "Custom MemLocs only used for Vector args.");
7342 // Store value to its stack slot.
7344 DAG
.getConstant(VA
.getLocMemOffset(), dl
, StackPtr
.getValueType());
7345 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
7347 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo());
7348 MemOpChains
.push_back(Store
);
7349 const unsigned OriginalValNo
= VA
.getValNo();
7350 // Then load the GPRs from the stack
7351 unsigned LoadOffset
= 0;
7352 auto HandleCustomVecRegLoc
= [&]() {
7353 assert(I
!= E
&& "Unexpected end of CCvalAssigns.");
7354 assert(ArgLocs
[I
].isRegLoc() && ArgLocs
[I
].needsCustom() &&
7355 "Expected custom RegLoc.");
7356 CCValAssign RegVA
= ArgLocs
[I
++];
7357 assert(RegVA
.getValNo() == OriginalValNo
&&
7358 "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7359 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
7360 DAG
.getConstant(LoadOffset
, dl
, PtrVT
));
7361 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, Add
, MachinePointerInfo());
7362 MemOpChains
.push_back(Load
.getValue(1));
7363 RegsToPass
.push_back(std::make_pair(RegVA
.getLocReg(), Load
));
7364 LoadOffset
+= PtrByteSize
;
7367 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7368 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7370 HandleCustomVecRegLoc();
7371 HandleCustomVecRegLoc();
7373 if (I
!= E
&& ArgLocs
[I
].isRegLoc() && ArgLocs
[I
].needsCustom() &&
7374 ArgLocs
[I
].getValNo() == OriginalValNo
) {
7376 "Only 2 custom RegLocs expected for 64-bit codegen.");
7377 HandleCustomVecRegLoc();
7378 HandleCustomVecRegLoc();
7384 if (VA
.isMemLoc()) {
7386 DAG
.getConstant(VA
.getLocMemOffset(), dl
, StackPtr
.getValueType());
7387 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
7388 MemOpChains
.push_back(
7389 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo()));
7394 if (!ValVT
.isFloatingPoint())
7396 "Unexpected register handling for calling convention.");
7398 // Custom handling is used for GPR initializations for vararg float
7400 assert(VA
.isRegLoc() && VA
.needsCustom() && CFlags
.IsVarArg
&&
7401 LocVT
.isInteger() &&
7402 "Custom register handling only expected for VarArg.");
7405 DAG
.getBitcast(MVT::getIntegerVT(ValVT
.getSizeInBits()), Arg
);
7407 if (Arg
.getValueType().getStoreSize() == LocVT
.getStoreSize())
7408 // f32 in 32-bit GPR
7409 // f64 in 64-bit GPR
7410 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), ArgAsInt
));
7411 else if (Arg
.getValueType().getFixedSizeInBits() <
7412 LocVT
.getFixedSizeInBits())
7413 // f32 in 64-bit GPR.
7414 RegsToPass
.push_back(std::make_pair(
7415 VA
.getLocReg(), DAG
.getZExtOrTrunc(ArgAsInt
, dl
, LocVT
)));
7417 // f64 in two 32-bit GPRs
7418 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7419 assert(Arg
.getValueType() == MVT::f64
&& CFlags
.IsVarArg
&& !IsPPC64
&&
7420 "Unexpected custom register for argument!");
7421 CCValAssign
&GPR1
= VA
;
7422 SDValue MSWAsI64
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, ArgAsInt
,
7423 DAG
.getConstant(32, dl
, MVT::i8
));
7424 RegsToPass
.push_back(std::make_pair(
7425 GPR1
.getLocReg(), DAG
.getZExtOrTrunc(MSWAsI64
, dl
, MVT::i32
)));
7428 // If only 1 GPR was available, there will only be one custom GPR and
7429 // the argument will also pass in memory.
7430 CCValAssign
&PeekArg
= ArgLocs
[I
];
7431 if (PeekArg
.isRegLoc() && PeekArg
.getValNo() == PeekArg
.getValNo()) {
7432 assert(PeekArg
.needsCustom() && "A second custom GPR is expected.");
7433 CCValAssign
&GPR2
= ArgLocs
[I
++];
7434 RegsToPass
.push_back(std::make_pair(
7435 GPR2
.getLocReg(), DAG
.getZExtOrTrunc(ArgAsInt
, dl
, MVT::i32
)));
7441 if (!MemOpChains
.empty())
7442 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
7444 // For indirect calls, we need to save the TOC base to the stack for
7445 // restoration after the call.
7446 if (CFlags
.IsIndirect
) {
7447 assert(!CFlags
.IsTailCall
&& "Indirect tail-calls not supported.");
7448 const MCRegister TOCBaseReg
= Subtarget
.getTOCPointerRegister();
7449 const MCRegister StackPtrReg
= Subtarget
.getStackPointerRegister();
7450 const MVT PtrVT
= Subtarget
.isPPC64() ? MVT::i64
: MVT::i32
;
7451 const unsigned TOCSaveOffset
=
7452 Subtarget
.getFrameLowering()->getTOCSaveOffset();
7454 setUsesTOCBasePtr(DAG
);
7455 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, TOCBaseReg
, PtrVT
);
7456 SDValue PtrOff
= DAG
.getIntPtrConstant(TOCSaveOffset
, dl
);
7457 SDValue StackPtr
= DAG
.getRegister(StackPtrReg
, PtrVT
);
7458 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
7459 Chain
= DAG
.getStore(
7460 Val
.getValue(1), dl
, Val
, AddPtr
,
7461 MachinePointerInfo::getStack(DAG
.getMachineFunction(), TOCSaveOffset
));
7464 // Build a sequence of copy-to-reg nodes chained together with token chain
7465 // and flag operands which copy the outgoing args into the appropriate regs.
7467 for (auto Reg
: RegsToPass
) {
7468 Chain
= DAG
.getCopyToReg(Chain
, dl
, Reg
.first
, Reg
.second
, InFlag
);
7469 InFlag
= Chain
.getValue(1);
7472 const int SPDiff
= 0;
7473 return FinishCall(CFlags
, dl
, DAG
, RegsToPass
, InFlag
, Chain
, CallSeqStart
,
7474 Callee
, SPDiff
, NumBytes
, Ins
, InVals
, CB
);
7478 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
7479 MachineFunction
&MF
, bool isVarArg
,
7480 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
7481 LLVMContext
&Context
) const {
7482 SmallVector
<CCValAssign
, 16> RVLocs
;
7483 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
7484 return CCInfo
.CheckReturn(
7485 Outs
, (Subtarget
.isSVR4ABI() && CallConv
== CallingConv::Cold
)
7491 PPCTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
7493 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
7494 const SmallVectorImpl
<SDValue
> &OutVals
,
7495 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
7496 SmallVector
<CCValAssign
, 16> RVLocs
;
7497 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
7499 CCInfo
.AnalyzeReturn(Outs
,
7500 (Subtarget
.isSVR4ABI() && CallConv
== CallingConv::Cold
)
7505 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
7507 // Copy the result values into the output registers.
7508 for (unsigned i
= 0, RealResIdx
= 0; i
!= RVLocs
.size(); ++i
, ++RealResIdx
) {
7509 CCValAssign
&VA
= RVLocs
[i
];
7510 assert(VA
.isRegLoc() && "Can only return in registers!");
7512 SDValue Arg
= OutVals
[RealResIdx
];
7514 switch (VA
.getLocInfo()) {
7515 default: llvm_unreachable("Unknown loc info!");
7516 case CCValAssign::Full
: break;
7517 case CCValAssign::AExt
:
7518 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
7520 case CCValAssign::ZExt
:
7521 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
7523 case CCValAssign::SExt
:
7524 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
7527 if (Subtarget
.hasSPE() && VA
.getLocVT() == MVT::f64
) {
7528 bool isLittleEndian
= Subtarget
.isLittleEndian();
7529 // Legalize ret f64 -> ret 2 x i32.
7531 DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
7532 DAG
.getIntPtrConstant(isLittleEndian
? 0 : 1, dl
));
7533 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), SVal
, Flag
);
7534 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
7535 SVal
= DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
7536 DAG
.getIntPtrConstant(isLittleEndian
? 1 : 0, dl
));
7537 Flag
= Chain
.getValue(1);
7538 VA
= RVLocs
[++i
]; // skip ahead to next loc
7539 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), SVal
, Flag
);
7541 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
7542 Flag
= Chain
.getValue(1);
7543 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
7546 RetOps
[0] = Chain
; // Update chain.
7548 // Add the flag if we have it.
7550 RetOps
.push_back(Flag
);
7552 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
7556 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
,
7557 SelectionDAG
&DAG
) const {
7560 // Get the correct type for integers.
7561 EVT IntVT
= Op
.getValueType();
7564 SDValue Chain
= Op
.getOperand(0);
7565 SDValue FPSIdx
= getFramePointerFrameIndex(DAG
);
7566 // Build a DYNAREAOFFSET node.
7567 SDValue Ops
[2] = {Chain
, FPSIdx
};
7568 SDVTList VTs
= DAG
.getVTList(IntVT
);
7569 return DAG
.getNode(PPCISD::DYNAREAOFFSET
, dl
, VTs
, Ops
);
7572 SDValue
PPCTargetLowering::LowerSTACKRESTORE(SDValue Op
,
7573 SelectionDAG
&DAG
) const {
7574 // When we pop the dynamic allocation we need to restore the SP link.
7577 // Get the correct type for pointers.
7578 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
7580 // Construct the stack pointer operand.
7581 bool isPPC64
= Subtarget
.isPPC64();
7582 unsigned SP
= isPPC64
? PPC::X1
: PPC::R1
;
7583 SDValue StackPtr
= DAG
.getRegister(SP
, PtrVT
);
7585 // Get the operands for the STACKRESTORE.
7586 SDValue Chain
= Op
.getOperand(0);
7587 SDValue SaveSP
= Op
.getOperand(1);
7589 // Load the old link SP.
7590 SDValue LoadLinkSP
=
7591 DAG
.getLoad(PtrVT
, dl
, Chain
, StackPtr
, MachinePointerInfo());
7593 // Restore the stack pointer.
7594 Chain
= DAG
.getCopyToReg(LoadLinkSP
.getValue(1), dl
, SP
, SaveSP
);
7596 // Store the old link SP.
7597 return DAG
.getStore(Chain
, dl
, LoadLinkSP
, StackPtr
, MachinePointerInfo());
7600 SDValue
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG
&DAG
) const {
7601 MachineFunction
&MF
= DAG
.getMachineFunction();
7602 bool isPPC64
= Subtarget
.isPPC64();
7603 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
7605 // Get current frame pointer save index. The users of this index will be
7606 // primarily DYNALLOC instructions.
7607 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
7608 int RASI
= FI
->getReturnAddrSaveIndex();
7610 // If the frame pointer save index hasn't been defined yet.
7612 // Find out what the fix offset of the frame pointer save area.
7613 int LROffset
= Subtarget
.getFrameLowering()->getReturnSaveOffset();
7614 // Allocate the frame index for frame pointer save area.
7615 RASI
= MF
.getFrameInfo().CreateFixedObject(isPPC64
? 8 : 4, LROffset
, false);
7617 FI
->setReturnAddrSaveIndex(RASI
);
7619 return DAG
.getFrameIndex(RASI
, PtrVT
);
7623 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG
& DAG
) const {
7624 MachineFunction
&MF
= DAG
.getMachineFunction();
7625 bool isPPC64
= Subtarget
.isPPC64();
7626 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
7628 // Get current frame pointer save index. The users of this index will be
7629 // primarily DYNALLOC instructions.
7630 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
7631 int FPSI
= FI
->getFramePointerSaveIndex();
7633 // If the frame pointer save index hasn't been defined yet.
7635 // Find out what the fix offset of the frame pointer save area.
7636 int FPOffset
= Subtarget
.getFrameLowering()->getFramePointerSaveOffset();
7637 // Allocate the frame index for frame pointer save area.
7638 FPSI
= MF
.getFrameInfo().CreateFixedObject(isPPC64
? 8 : 4, FPOffset
, true);
7640 FI
->setFramePointerSaveIndex(FPSI
);
7642 return DAG
.getFrameIndex(FPSI
, PtrVT
);
7645 SDValue
PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
7646 SelectionDAG
&DAG
) const {
7647 MachineFunction
&MF
= DAG
.getMachineFunction();
7649 SDValue Chain
= Op
.getOperand(0);
7650 SDValue Size
= Op
.getOperand(1);
7653 // Get the correct type for pointers.
7654 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
7656 SDValue NegSize
= DAG
.getNode(ISD::SUB
, dl
, PtrVT
,
7657 DAG
.getConstant(0, dl
, PtrVT
), Size
);
7658 // Construct a node for the frame pointer save index.
7659 SDValue FPSIdx
= getFramePointerFrameIndex(DAG
);
7660 SDValue Ops
[3] = { Chain
, NegSize
, FPSIdx
};
7661 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::Other
);
7662 if (hasInlineStackProbe(MF
))
7663 return DAG
.getNode(PPCISD::PROBED_ALLOCA
, dl
, VTs
, Ops
);
7664 return DAG
.getNode(PPCISD::DYNALLOC
, dl
, VTs
, Ops
);
7667 SDValue
PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op
,
7668 SelectionDAG
&DAG
) const {
7669 MachineFunction
&MF
= DAG
.getMachineFunction();
7671 bool isPPC64
= Subtarget
.isPPC64();
7672 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
7674 int FI
= MF
.getFrameInfo().CreateFixedObject(isPPC64
? 8 : 4, 0, false);
7675 return DAG
.getFrameIndex(FI
, PtrVT
);
7678 SDValue
PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op
,
7679 SelectionDAG
&DAG
) const {
7681 return DAG
.getNode(PPCISD::EH_SJLJ_SETJMP
, DL
,
7682 DAG
.getVTList(MVT::i32
, MVT::Other
),
7683 Op
.getOperand(0), Op
.getOperand(1));
7686 SDValue
PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op
,
7687 SelectionDAG
&DAG
) const {
7689 return DAG
.getNode(PPCISD::EH_SJLJ_LONGJMP
, DL
, MVT::Other
,
7690 Op
.getOperand(0), Op
.getOperand(1));
7693 SDValue
PPCTargetLowering::LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
7694 if (Op
.getValueType().isVector())
7695 return LowerVectorLoad(Op
, DAG
);
7697 assert(Op
.getValueType() == MVT::i1
&&
7698 "Custom lowering only for i1 loads");
7700 // First, load 8 bits into 32 bits, then truncate to 1 bit.
7703 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
7705 SDValue Chain
= LD
->getChain();
7706 SDValue BasePtr
= LD
->getBasePtr();
7707 MachineMemOperand
*MMO
= LD
->getMemOperand();
7710 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, getPointerTy(DAG
.getDataLayout()), Chain
,
7711 BasePtr
, MVT::i8
, MMO
);
7712 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, NewLD
);
7714 SDValue Ops
[] = { Result
, SDValue(NewLD
.getNode(), 1) };
7715 return DAG
.getMergeValues(Ops
, dl
);
7718 SDValue
PPCTargetLowering::LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
7719 if (Op
.getOperand(1).getValueType().isVector())
7720 return LowerVectorStore(Op
, DAG
);
7722 assert(Op
.getOperand(1).getValueType() == MVT::i1
&&
7723 "Custom lowering only for i1 stores");
7725 // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7728 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
);
7730 SDValue Chain
= ST
->getChain();
7731 SDValue BasePtr
= ST
->getBasePtr();
7732 SDValue Value
= ST
->getValue();
7733 MachineMemOperand
*MMO
= ST
->getMemOperand();
7735 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, getPointerTy(DAG
.getDataLayout()),
7737 return DAG
.getTruncStore(Chain
, dl
, Value
, BasePtr
, MVT::i8
, MMO
);
7740 // FIXME: Remove this once the ANDI glue bug is fixed:
7741 SDValue
PPCTargetLowering::LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const {
7742 assert(Op
.getValueType() == MVT::i1
&&
7743 "Custom lowering only for i1 results");
7746 return DAG
.getNode(PPCISD::ANDI_rec_1_GT_BIT
, DL
, MVT::i1
, Op
.getOperand(0));
7749 SDValue
PPCTargetLowering::LowerTRUNCATEVector(SDValue Op
,
7750 SelectionDAG
&DAG
) const {
7752 // Implements a vector truncate that fits in a vector register as a shuffle.
7753 // We want to legalize vector truncates down to where the source fits in
7754 // a vector register (and target is therefore smaller than vector register
7755 // size). At that point legalization will try to custom lower the sub-legal
7756 // result and get here - where we can contain the truncate as a single target
7759 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7760 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7762 // We will implement it for big-endian ordering as this (where x denotes
7764 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7765 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7767 // The same operation in little-endian ordering will be:
7768 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7769 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7771 EVT TrgVT
= Op
.getValueType();
7772 assert(TrgVT
.isVector() && "Vector type expected.");
7773 unsigned TrgNumElts
= TrgVT
.getVectorNumElements();
7774 EVT EltVT
= TrgVT
.getVectorElementType();
7775 if (!isOperationCustom(Op
.getOpcode(), TrgVT
) ||
7776 TrgVT
.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts
) ||
7777 !isPowerOf2_32(EltVT
.getSizeInBits()))
7780 SDValue N1
= Op
.getOperand(0);
7781 EVT SrcVT
= N1
.getValueType();
7782 unsigned SrcSize
= SrcVT
.getSizeInBits();
7783 if (SrcSize
> 256 ||
7784 !isPowerOf2_32(SrcVT
.getVectorNumElements()) ||
7785 !isPowerOf2_32(SrcVT
.getVectorElementType().getSizeInBits()))
7787 if (SrcSize
== 256 && SrcVT
.getVectorNumElements() < 2)
7790 unsigned WideNumElts
= 128 / EltVT
.getSizeInBits();
7791 EVT WideVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, WideNumElts
);
7795 if (SrcSize
== 256) {
7796 EVT VecIdxTy
= getVectorIdxTy(DAG
.getDataLayout());
7798 N1
.getValueType().getHalfNumVectorElementsVT(*DAG
.getContext());
7799 unsigned SplitNumElts
= SplitVT
.getVectorNumElements();
7800 Op1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, N1
,
7801 DAG
.getConstant(0, DL
, VecIdxTy
));
7802 Op2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, N1
,
7803 DAG
.getConstant(SplitNumElts
, DL
, VecIdxTy
));
7806 Op1
= SrcSize
== 128 ? N1
: widenVec(DAG
, N1
, DL
);
7807 Op2
= DAG
.getUNDEF(WideVT
);
7810 // First list the elements we want to keep.
7811 unsigned SizeMult
= SrcSize
/ TrgVT
.getSizeInBits();
7812 SmallVector
<int, 16> ShuffV
;
7813 if (Subtarget
.isLittleEndian())
7814 for (unsigned i
= 0; i
< TrgNumElts
; ++i
)
7815 ShuffV
.push_back(i
* SizeMult
);
7817 for (unsigned i
= 1; i
<= TrgNumElts
; ++i
)
7818 ShuffV
.push_back(i
* SizeMult
- 1);
7820 // Populate the remaining elements with undefs.
7821 for (unsigned i
= TrgNumElts
; i
< WideNumElts
; ++i
)
7822 // ShuffV.push_back(i + WideNumElts);
7823 ShuffV
.push_back(WideNumElts
+ 1);
7825 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, WideVT
, Op1
);
7826 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, WideVT
, Op2
);
7827 return DAG
.getVectorShuffle(WideVT
, DL
, Op1
, Op2
, ShuffV
);
7830 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7832 SDValue
PPCTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
7833 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
7834 EVT ResVT
= Op
.getValueType();
7835 EVT CmpVT
= Op
.getOperand(0).getValueType();
7836 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
7837 SDValue TV
= Op
.getOperand(2), FV
= Op
.getOperand(3);
7840 // Without power9-vector, we don't have native instruction for f128 comparison.
7841 // Following transformation to libcall is needed for setcc:
7842 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7843 if (!Subtarget
.hasP9Vector() && CmpVT
== MVT::f128
) {
7844 SDValue Z
= DAG
.getSetCC(
7845 dl
, getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), CmpVT
),
7847 SDValue Zero
= DAG
.getConstant(0, dl
, Z
.getValueType());
7848 return DAG
.getSelectCC(dl
, Z
, Zero
, TV
, FV
, ISD::SETNE
);
7851 // Not FP, or using SPE? Not a fsel.
7852 if (!CmpVT
.isFloatingPoint() || !TV
.getValueType().isFloatingPoint() ||
7856 SDNodeFlags Flags
= Op
.getNode()->getFlags();
7858 // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7859 // presence of infinities.
7860 if (Subtarget
.hasP9Vector() && LHS
== TV
&& RHS
== FV
) {
7866 return DAG
.getNode(PPCISD::XSMAXCDP
, dl
, Op
.getValueType(), LHS
, RHS
);
7869 return DAG
.getNode(PPCISD::XSMINCDP
, dl
, Op
.getValueType(), LHS
, RHS
);
7873 // We might be able to do better than this under some circumstances, but in
7874 // general, fsel-based lowering of select is a finite-math-only optimization.
7875 // For more information, see section F.3 of the 2.06 ISA specification.
7877 if ((!DAG
.getTarget().Options
.NoInfsFPMath
&& !Flags
.hasNoInfs()) ||
7878 (!DAG
.getTarget().Options
.NoNaNsFPMath
&& !Flags
.hasNoNaNs()))
7881 // If the RHS of the comparison is a 0.0, we don't need to do the
7882 // subtraction at all.
7884 if (isFloatingPointZero(RHS
))
7886 default: break; // SETUO etc aren't handled by fsel.
7891 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7892 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
7893 Sel1
= DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, LHS
, TV
, FV
);
7894 if (Sel1
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7895 Sel1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Sel1
);
7896 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
7897 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, LHS
), Sel1
, FV
);
7900 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
7904 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7905 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
7906 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, LHS
, TV
, FV
);
7909 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
7913 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7914 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
7915 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
7916 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, LHS
), TV
, FV
);
7921 default: break; // SETUO etc aren't handled by fsel.
7926 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
, Flags
);
7927 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7928 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7929 Sel1
= DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
7930 if (Sel1
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7931 Sel1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Sel1
);
7932 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
7933 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, Cmp
), Sel1
, FV
);
7936 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
, Flags
);
7937 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7938 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7939 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
7942 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
, Flags
);
7943 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7944 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7945 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
7948 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
, Flags
);
7949 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7950 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7951 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
7954 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
, Flags
);
7955 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7956 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7957 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
7962 static unsigned getPPCStrictOpcode(unsigned Opc
) {
7965 llvm_unreachable("No strict version of this opcode!");
7966 case PPCISD::FCTIDZ
:
7967 return PPCISD::STRICT_FCTIDZ
;
7968 case PPCISD::FCTIWZ
:
7969 return PPCISD::STRICT_FCTIWZ
;
7970 case PPCISD::FCTIDUZ
:
7971 return PPCISD::STRICT_FCTIDUZ
;
7972 case PPCISD::FCTIWUZ
:
7973 return PPCISD::STRICT_FCTIWUZ
;
7975 return PPCISD::STRICT_FCFID
;
7976 case PPCISD::FCFIDU
:
7977 return PPCISD::STRICT_FCFIDU
;
7978 case PPCISD::FCFIDS
:
7979 return PPCISD::STRICT_FCFIDS
;
7980 case PPCISD::FCFIDUS
:
7981 return PPCISD::STRICT_FCFIDUS
;
7985 static SDValue
convertFPToInt(SDValue Op
, SelectionDAG
&DAG
,
7986 const PPCSubtarget
&Subtarget
) {
7988 bool IsStrict
= Op
->isStrictFPOpcode();
7989 bool IsSigned
= Op
.getOpcode() == ISD::FP_TO_SINT
||
7990 Op
.getOpcode() == ISD::STRICT_FP_TO_SINT
;
7992 // TODO: Any other flags to propagate?
7994 Flags
.setNoFPExcept(Op
->getFlags().hasNoFPExcept());
7996 // For strict nodes, source is the second operand.
7997 SDValue Src
= Op
.getOperand(IsStrict
? 1 : 0);
7998 SDValue Chain
= IsStrict
? Op
.getOperand(0) : SDValue();
7999 assert(Src
.getValueType().isFloatingPoint());
8000 if (Src
.getValueType() == MVT::f32
) {
8003 DAG
.getNode(ISD::STRICT_FP_EXTEND
, dl
,
8004 DAG
.getVTList(MVT::f64
, MVT::Other
), {Chain
, Src
}, Flags
);
8005 Chain
= Src
.getValue(1);
8007 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
8010 unsigned Opc
= ISD::DELETED_NODE
;
8011 switch (Op
.getSimpleValueType().SimpleTy
) {
8012 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8014 Opc
= IsSigned
? PPCISD::FCTIWZ
8015 : (Subtarget
.hasFPCVT() ? PPCISD::FCTIWUZ
: PPCISD::FCTIDZ
);
8018 assert((IsSigned
|| Subtarget
.hasFPCVT()) &&
8019 "i64 FP_TO_UINT is supported only with FPCVT");
8020 Opc
= IsSigned
? PPCISD::FCTIDZ
: PPCISD::FCTIDUZ
;
8023 Opc
= getPPCStrictOpcode(Opc
);
8024 Conv
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::f64
, MVT::Other
),
8025 {Chain
, Src
}, Flags
);
8027 Conv
= DAG
.getNode(Opc
, dl
, MVT::f64
, Src
);
8032 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op
, ReuseLoadInfo
&RLI
,
8034 const SDLoc
&dl
) const {
8035 SDValue Tmp
= convertFPToInt(Op
, DAG
, Subtarget
);
8036 bool IsSigned
= Op
.getOpcode() == ISD::FP_TO_SINT
||
8037 Op
.getOpcode() == ISD::STRICT_FP_TO_SINT
;
8038 bool IsStrict
= Op
->isStrictFPOpcode();
8040 // Convert the FP value to an int value through memory.
8041 bool i32Stack
= Op
.getValueType() == MVT::i32
&& Subtarget
.hasSTFIWX() &&
8042 (IsSigned
|| Subtarget
.hasFPCVT());
8043 SDValue FIPtr
= DAG
.CreateStackTemporary(i32Stack
? MVT::i32
: MVT::f64
);
8044 int FI
= cast
<FrameIndexSDNode
>(FIPtr
)->getIndex();
8045 MachinePointerInfo MPI
=
8046 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
8048 // Emit a store to the stack slot.
8049 SDValue Chain
= IsStrict
? Tmp
.getValue(1) : DAG
.getEntryNode();
8050 Align
Alignment(DAG
.getEVTAlign(Tmp
.getValueType()));
8052 MachineFunction
&MF
= DAG
.getMachineFunction();
8053 Alignment
= Align(4);
8054 MachineMemOperand
*MMO
=
8055 MF
.getMachineMemOperand(MPI
, MachineMemOperand::MOStore
, 4, Alignment
);
8056 SDValue Ops
[] = { Chain
, Tmp
, FIPtr
};
8057 Chain
= DAG
.getMemIntrinsicNode(PPCISD::STFIWX
, dl
,
8058 DAG
.getVTList(MVT::Other
), Ops
, MVT::i32
, MMO
);
8060 Chain
= DAG
.getStore(Chain
, dl
, Tmp
, FIPtr
, MPI
, Alignment
);
8062 // Result is a load from the stack slot. If loading 4 bytes, make sure to
8063 // add in a bias on big endian.
8064 if (Op
.getValueType() == MVT::i32
&& !i32Stack
) {
8065 FIPtr
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
,
8066 DAG
.getConstant(4, dl
, FIPtr
.getValueType()));
8067 MPI
= MPI
.getWithOffset(Subtarget
.isLittleEndian() ? 0 : 4);
8073 RLI
.Alignment
= Alignment
;
8076 /// Custom lowers floating point to integer conversions to use
8077 /// the direct move instructions available in ISA 2.07 to avoid the
8078 /// need for load/store combinations.
8079 SDValue
PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op
,
8081 const SDLoc
&dl
) const {
8082 SDValue Conv
= convertFPToInt(Op
, DAG
, Subtarget
);
8083 SDValue Mov
= DAG
.getNode(PPCISD::MFVSR
, dl
, Op
.getValueType(), Conv
);
8084 if (Op
->isStrictFPOpcode())
8085 return DAG
.getMergeValues({Mov
, Conv
.getValue(1)}, dl
);
8090 SDValue
PPCTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
8091 const SDLoc
&dl
) const {
8092 bool IsStrict
= Op
->isStrictFPOpcode();
8093 bool IsSigned
= Op
.getOpcode() == ISD::FP_TO_SINT
||
8094 Op
.getOpcode() == ISD::STRICT_FP_TO_SINT
;
8095 SDValue Src
= Op
.getOperand(IsStrict
? 1 : 0);
8096 EVT SrcVT
= Src
.getValueType();
8097 EVT DstVT
= Op
.getValueType();
8099 // FP to INT conversions are legal for f128.
8100 if (SrcVT
== MVT::f128
)
8101 return Subtarget
.hasP9Vector() ? Op
: SDValue();
8103 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8104 // PPC (the libcall is not available).
8105 if (SrcVT
== MVT::ppcf128
) {
8106 if (DstVT
== MVT::i32
) {
8107 // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8108 // set other fast-math flags to FP operations in both strict and
8109 // non-strict cases. (FP_TO_SINT, FSUB)
8111 Flags
.setNoFPExcept(Op
->getFlags().hasNoFPExcept());
8114 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::f64
, Src
,
8115 DAG
.getIntPtrConstant(0, dl
));
8116 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::f64
, Src
,
8117 DAG
.getIntPtrConstant(1, dl
));
8119 // Add the two halves of the long double in round-to-zero mode, and use
8120 // a smaller FP_TO_SINT.
8122 SDValue Res
= DAG
.getNode(PPCISD::STRICT_FADDRTZ
, dl
,
8123 DAG
.getVTList(MVT::f64
, MVT::Other
),
8124 {Op
.getOperand(0), Lo
, Hi
}, Flags
);
8125 return DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
,
8126 DAG
.getVTList(MVT::i32
, MVT::Other
),
8127 {Res
.getValue(1), Res
}, Flags
);
8129 SDValue Res
= DAG
.getNode(PPCISD::FADDRTZ
, dl
, MVT::f64
, Lo
, Hi
);
8130 return DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Res
);
8133 const uint64_t TwoE31
[] = {0x41e0000000000000LL
, 0};
8134 APFloat APF
= APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31
));
8135 SDValue Cst
= DAG
.getConstantFP(APF
, dl
, SrcVT
);
8136 SDValue SignMask
= DAG
.getConstant(0x80000000, dl
, DstVT
);
8138 // Sel = Src < 0x80000000
8139 // FltOfs = select Sel, 0.0, 0x80000000
8140 // IntOfs = select Sel, 0, 0x80000000
8141 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8142 SDValue Chain
= Op
.getOperand(0);
8144 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
8146 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), DstVT
);
8147 SDValue Sel
= DAG
.getSetCC(dl
, SetCCVT
, Src
, Cst
, ISD::SETLT
,
8149 Chain
= Sel
.getValue(1);
8151 SDValue FltOfs
= DAG
.getSelect(
8152 dl
, SrcVT
, Sel
, DAG
.getConstantFP(0.0, dl
, SrcVT
), Cst
);
8153 Sel
= DAG
.getBoolExtOrTrunc(Sel
, dl
, DstSetCCVT
, DstVT
);
8155 SDValue Val
= DAG
.getNode(ISD::STRICT_FSUB
, dl
,
8156 DAG
.getVTList(SrcVT
, MVT::Other
),
8157 {Chain
, Src
, FltOfs
}, Flags
);
8158 Chain
= Val
.getValue(1);
8159 SDValue SInt
= DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
,
8160 DAG
.getVTList(DstVT
, MVT::Other
),
8161 {Chain
, Val
}, Flags
);
8162 Chain
= SInt
.getValue(1);
8163 SDValue IntOfs
= DAG
.getSelect(
8164 dl
, DstVT
, Sel
, DAG
.getConstant(0, dl
, DstVT
), SignMask
);
8165 SDValue Result
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, SInt
, IntOfs
);
8166 return DAG
.getMergeValues({Result
, Chain
}, dl
);
8168 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8169 // FIXME: generated code sucks.
8170 SDValue True
= DAG
.getNode(ISD::FSUB
, dl
, MVT::ppcf128
, Src
, Cst
);
8171 True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, True
);
8172 True
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, True
, SignMask
);
8173 SDValue False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Src
);
8174 return DAG
.getSelectCC(dl
, Src
, Cst
, True
, False
, ISD::SETGE
);
8182 if (Subtarget
.hasDirectMove() && Subtarget
.isPPC64())
8183 return LowerFP_TO_INTDirectMove(Op
, DAG
, dl
);
8186 LowerFP_TO_INTForReuse(Op
, RLI
, DAG
, dl
);
8188 return DAG
.getLoad(Op
.getValueType(), dl
, RLI
.Chain
, RLI
.Ptr
, RLI
.MPI
,
8189 RLI
.Alignment
, RLI
.MMOFlags(), RLI
.AAInfo
, RLI
.Ranges
);
8192 // We're trying to insert a regular store, S, and then a load, L. If the
8193 // incoming value, O, is a load, we might just be able to have our load use the
8194 // address used by O. However, we don't know if anything else will store to
8195 // that address before we can load from it. To prevent this situation, we need
8196 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8197 // the same chain operand as O, we create a token factor from the chain results
8198 // of O and L, and we replace all uses of O's chain result with that token
8199 // factor (see spliceIntoChain below for this last part).
8200 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op
, EVT MemVT
,
8203 ISD::LoadExtType ET
) const {
8204 // Conservatively skip reusing for constrained FP nodes.
8205 if (Op
->isStrictFPOpcode())
8209 bool ValidFPToUint
= Op
.getOpcode() == ISD::FP_TO_UINT
&&
8210 (Subtarget
.hasFPCVT() || Op
.getValueType() == MVT::i32
);
8211 if (ET
== ISD::NON_EXTLOAD
&&
8212 (ValidFPToUint
|| Op
.getOpcode() == ISD::FP_TO_SINT
) &&
8213 isOperationLegalOrCustom(Op
.getOpcode(),
8214 Op
.getOperand(0).getValueType())) {
8216 LowerFP_TO_INTForReuse(Op
, RLI
, DAG
, dl
);
8220 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
);
8221 if (!LD
|| LD
->getExtensionType() != ET
|| LD
->isVolatile() ||
8222 LD
->isNonTemporal())
8224 if (LD
->getMemoryVT() != MemVT
)
8227 // If the result of the load is an illegal type, then we can't build a
8228 // valid chain for reuse since the legalised loads and token factor node that
8229 // ties the legalised loads together uses a different output chain then the
8231 if (!isTypeLegal(LD
->getValueType(0)))
8234 RLI
.Ptr
= LD
->getBasePtr();
8235 if (LD
->isIndexed() && !LD
->getOffset().isUndef()) {
8236 assert(LD
->getAddressingMode() == ISD::PRE_INC
&&
8237 "Non-pre-inc AM on PPC?");
8238 RLI
.Ptr
= DAG
.getNode(ISD::ADD
, dl
, RLI
.Ptr
.getValueType(), RLI
.Ptr
,
8242 RLI
.Chain
= LD
->getChain();
8243 RLI
.MPI
= LD
->getPointerInfo();
8244 RLI
.IsDereferenceable
= LD
->isDereferenceable();
8245 RLI
.IsInvariant
= LD
->isInvariant();
8246 RLI
.Alignment
= LD
->getAlign();
8247 RLI
.AAInfo
= LD
->getAAInfo();
8248 RLI
.Ranges
= LD
->getRanges();
8250 RLI
.ResChain
= SDValue(LD
, LD
->isIndexed() ? 2 : 1);
8254 // Given the head of the old chain, ResChain, insert a token factor containing
8255 // it and NewResChain, and make users of ResChain now be users of that token
8257 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8258 void PPCTargetLowering::spliceIntoChain(SDValue ResChain
,
8259 SDValue NewResChain
,
8260 SelectionDAG
&DAG
) const {
8264 SDLoc
dl(NewResChain
);
8266 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
8267 NewResChain
, DAG
.getUNDEF(MVT::Other
));
8268 assert(TF
.getNode() != NewResChain
.getNode() &&
8269 "A new TF really is required here");
8271 DAG
.ReplaceAllUsesOfValueWith(ResChain
, TF
);
8272 DAG
.UpdateNodeOperands(TF
.getNode(), ResChain
, NewResChain
);
8275 /// Analyze profitability of direct move
8276 /// prefer float load to int load plus direct move
8277 /// when there is no integer use of int load
8278 bool PPCTargetLowering::directMoveIsProfitable(const SDValue
&Op
) const {
8279 SDNode
*Origin
= Op
.getOperand(0).getNode();
8280 if (Origin
->getOpcode() != ISD::LOAD
)
8283 // If there is no LXSIBZX/LXSIHZX, like Power8,
8284 // prefer direct move if the memory size is 1 or 2 bytes.
8285 MachineMemOperand
*MMO
= cast
<LoadSDNode
>(Origin
)->getMemOperand();
8286 if (!Subtarget
.hasP9Vector() && MMO
->getSize() <= 2)
8289 for (SDNode::use_iterator UI
= Origin
->use_begin(),
8290 UE
= Origin
->use_end();
8293 // Only look at the users of the loaded value.
8294 if (UI
.getUse().get().getResNo() != 0)
8297 if (UI
->getOpcode() != ISD::SINT_TO_FP
&&
8298 UI
->getOpcode() != ISD::UINT_TO_FP
&&
8299 UI
->getOpcode() != ISD::STRICT_SINT_TO_FP
&&
8300 UI
->getOpcode() != ISD::STRICT_UINT_TO_FP
)
8307 static SDValue
convertIntToFP(SDValue Op
, SDValue Src
, SelectionDAG
&DAG
,
8308 const PPCSubtarget
&Subtarget
,
8309 SDValue Chain
= SDValue()) {
8310 bool IsSigned
= Op
.getOpcode() == ISD::SINT_TO_FP
||
8311 Op
.getOpcode() == ISD::STRICT_SINT_TO_FP
;
8314 // TODO: Any other flags to propagate?
8316 Flags
.setNoFPExcept(Op
->getFlags().hasNoFPExcept());
8318 // If we have FCFIDS, then use it when converting to single-precision.
8319 // Otherwise, convert to double-precision and then round.
8320 bool IsSingle
= Op
.getValueType() == MVT::f32
&& Subtarget
.hasFPCVT();
8321 unsigned ConvOpc
= IsSingle
? (IsSigned
? PPCISD::FCFIDS
: PPCISD::FCFIDUS
)
8322 : (IsSigned
? PPCISD::FCFID
: PPCISD::FCFIDU
);
8323 EVT ConvTy
= IsSingle
? MVT::f32
: MVT::f64
;
8324 if (Op
->isStrictFPOpcode()) {
8326 Chain
= Op
.getOperand(0);
8327 return DAG
.getNode(getPPCStrictOpcode(ConvOpc
), dl
,
8328 DAG
.getVTList(ConvTy
, MVT::Other
), {Chain
, Src
}, Flags
);
8330 return DAG
.getNode(ConvOpc
, dl
, ConvTy
, Src
);
8333 /// Custom lowers integer to floating point conversions to use
8334 /// the direct move instructions available in ISA 2.07 to avoid the
8335 /// need for load/store combinations.
8336 SDValue
PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op
,
8338 const SDLoc
&dl
) const {
8339 assert((Op
.getValueType() == MVT::f32
||
8340 Op
.getValueType() == MVT::f64
) &&
8341 "Invalid floating point type as target of conversion");
8342 assert(Subtarget
.hasFPCVT() &&
8343 "Int to FP conversions with direct moves require FPCVT");
8344 SDValue Src
= Op
.getOperand(Op
->isStrictFPOpcode() ? 1 : 0);
8345 bool WordInt
= Src
.getSimpleValueType().SimpleTy
== MVT::i32
;
8346 bool Signed
= Op
.getOpcode() == ISD::SINT_TO_FP
||
8347 Op
.getOpcode() == ISD::STRICT_SINT_TO_FP
;
8348 unsigned MovOpc
= (WordInt
&& !Signed
) ? PPCISD::MTVSRZ
: PPCISD::MTVSRA
;
8349 SDValue Mov
= DAG
.getNode(MovOpc
, dl
, MVT::f64
, Src
);
8350 return convertIntToFP(Op
, Mov
, DAG
, Subtarget
);
8353 static SDValue
widenVec(SelectionDAG
&DAG
, SDValue Vec
, const SDLoc
&dl
) {
8355 EVT VecVT
= Vec
.getValueType();
8356 assert(VecVT
.isVector() && "Expected a vector type.");
8357 assert(VecVT
.getSizeInBits() < 128 && "Vector is already full width.");
8359 EVT EltVT
= VecVT
.getVectorElementType();
8360 unsigned WideNumElts
= 128 / EltVT
.getSizeInBits();
8361 EVT WideVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, WideNumElts
);
8363 unsigned NumConcat
= WideNumElts
/ VecVT
.getVectorNumElements();
8364 SmallVector
<SDValue
, 16> Ops(NumConcat
);
8366 SDValue UndefVec
= DAG
.getUNDEF(VecVT
);
8367 for (unsigned i
= 1; i
< NumConcat
; ++i
)
8370 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, WideVT
, Ops
);
8373 SDValue
PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op
, SelectionDAG
&DAG
,
8374 const SDLoc
&dl
) const {
8375 bool IsStrict
= Op
->isStrictFPOpcode();
8376 unsigned Opc
= Op
.getOpcode();
8377 SDValue Src
= Op
.getOperand(IsStrict
? 1 : 0);
8378 assert((Opc
== ISD::UINT_TO_FP
|| Opc
== ISD::SINT_TO_FP
||
8379 Opc
== ISD::STRICT_UINT_TO_FP
|| Opc
== ISD::STRICT_SINT_TO_FP
) &&
8380 "Unexpected conversion type");
8381 assert((Op
.getValueType() == MVT::v2f64
|| Op
.getValueType() == MVT::v4f32
) &&
8382 "Supports conversions to v2f64/v4f32 only.");
8384 // TODO: Any other flags to propagate?
8386 Flags
.setNoFPExcept(Op
->getFlags().hasNoFPExcept());
8388 bool SignedConv
= Opc
== ISD::SINT_TO_FP
|| Opc
== ISD::STRICT_SINT_TO_FP
;
8389 bool FourEltRes
= Op
.getValueType() == MVT::v4f32
;
8391 SDValue Wide
= widenVec(DAG
, Src
, dl
);
8392 EVT WideVT
= Wide
.getValueType();
8393 unsigned WideNumElts
= WideVT
.getVectorNumElements();
8394 MVT IntermediateVT
= FourEltRes
? MVT::v4i32
: MVT::v2i64
;
8396 SmallVector
<int, 16> ShuffV
;
8397 for (unsigned i
= 0; i
< WideNumElts
; ++i
)
8398 ShuffV
.push_back(i
+ WideNumElts
);
8400 int Stride
= FourEltRes
? WideNumElts
/ 4 : WideNumElts
/ 2;
8401 int SaveElts
= FourEltRes
? 4 : 2;
8402 if (Subtarget
.isLittleEndian())
8403 for (int i
= 0; i
< SaveElts
; i
++)
8404 ShuffV
[i
* Stride
] = i
;
8406 for (int i
= 1; i
<= SaveElts
; i
++)
8407 ShuffV
[i
* Stride
- 1] = i
- 1;
8409 SDValue ShuffleSrc2
=
8410 SignedConv
? DAG
.getUNDEF(WideVT
) : DAG
.getConstant(0, dl
, WideVT
);
8411 SDValue Arrange
= DAG
.getVectorShuffle(WideVT
, dl
, Wide
, ShuffleSrc2
, ShuffV
);
8415 Arrange
= DAG
.getBitcast(IntermediateVT
, Arrange
);
8416 EVT ExtVT
= Src
.getValueType();
8417 if (Subtarget
.hasP9Altivec())
8418 ExtVT
= EVT::getVectorVT(*DAG
.getContext(), WideVT
.getVectorElementType(),
8419 IntermediateVT
.getVectorNumElements());
8421 Extend
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, IntermediateVT
, Arrange
,
8422 DAG
.getValueType(ExtVT
));
8424 Extend
= DAG
.getNode(ISD::BITCAST
, dl
, IntermediateVT
, Arrange
);
8427 return DAG
.getNode(Opc
, dl
, DAG
.getVTList(Op
.getValueType(), MVT::Other
),
8428 {Op
.getOperand(0), Extend
}, Flags
);
8430 return DAG
.getNode(Opc
, dl
, Op
.getValueType(), Extend
);
8433 SDValue
PPCTargetLowering::LowerINT_TO_FP(SDValue Op
,
8434 SelectionDAG
&DAG
) const {
8436 bool IsSigned
= Op
.getOpcode() == ISD::SINT_TO_FP
||
8437 Op
.getOpcode() == ISD::STRICT_SINT_TO_FP
;
8438 bool IsStrict
= Op
->isStrictFPOpcode();
8439 SDValue Src
= Op
.getOperand(IsStrict
? 1 : 0);
8440 SDValue Chain
= IsStrict
? Op
.getOperand(0) : DAG
.getEntryNode();
8442 // TODO: Any other flags to propagate?
8444 Flags
.setNoFPExcept(Op
->getFlags().hasNoFPExcept());
8446 EVT InVT
= Src
.getValueType();
8447 EVT OutVT
= Op
.getValueType();
8448 if (OutVT
.isVector() && OutVT
.isFloatingPoint() &&
8449 isOperationCustom(Op
.getOpcode(), InVT
))
8450 return LowerINT_TO_FPVector(Op
, DAG
, dl
);
8452 // Conversions to f128 are legal.
8453 if (Op
.getValueType() == MVT::f128
)
8454 return Subtarget
.hasP9Vector() ? Op
: SDValue();
8456 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8457 if (Op
.getValueType() != MVT::f32
&& Op
.getValueType() != MVT::f64
)
8460 if (Src
.getValueType() == MVT::i1
) {
8461 SDValue Sel
= DAG
.getNode(ISD::SELECT
, dl
, Op
.getValueType(), Src
,
8462 DAG
.getConstantFP(1.0, dl
, Op
.getValueType()),
8463 DAG
.getConstantFP(0.0, dl
, Op
.getValueType()));
8465 return DAG
.getMergeValues({Sel
, Chain
}, dl
);
8470 // If we have direct moves, we can do all the conversion, skip the store/load
8471 // however, without FPCVT we can't do most conversions.
8472 if (Subtarget
.hasDirectMove() && directMoveIsProfitable(Op
) &&
8473 Subtarget
.isPPC64() && Subtarget
.hasFPCVT())
8474 return LowerINT_TO_FPDirectMove(Op
, DAG
, dl
);
8476 assert((IsSigned
|| Subtarget
.hasFPCVT()) &&
8477 "UINT_TO_FP is supported only with FPCVT");
8479 if (Src
.getValueType() == MVT::i64
) {
8481 // When converting to single-precision, we actually need to convert
8482 // to double-precision first and then round to single-precision.
8483 // To avoid double-rounding effects during that operation, we have
8484 // to prepare the input operand. Bits that might be truncated when
8485 // converting to double-precision are replaced by a bit that won't
8486 // be lost at this stage, but is below the single-precision rounding
8489 // However, if -enable-unsafe-fp-math is in effect, accept double
8490 // rounding to avoid the extra overhead.
8491 if (Op
.getValueType() == MVT::f32
&&
8492 !Subtarget
.hasFPCVT() &&
8493 !DAG
.getTarget().Options
.UnsafeFPMath
) {
8495 // Twiddle input to make sure the low 11 bits are zero. (If this
8496 // is the case, we are guaranteed the value will fit into the 53 bit
8497 // mantissa of an IEEE double-precision value without rounding.)
8498 // If any of those low 11 bits were not zero originally, make sure
8499 // bit 12 (value 2048) is set instead, so that the final rounding
8500 // to single-precision gets the correct result.
8501 SDValue Round
= DAG
.getNode(ISD::AND
, dl
, MVT::i64
,
8502 SINT
, DAG
.getConstant(2047, dl
, MVT::i64
));
8503 Round
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
,
8504 Round
, DAG
.getConstant(2047, dl
, MVT::i64
));
8505 Round
= DAG
.getNode(ISD::OR
, dl
, MVT::i64
, Round
, SINT
);
8506 Round
= DAG
.getNode(ISD::AND
, dl
, MVT::i64
,
8507 Round
, DAG
.getConstant(-2048, dl
, MVT::i64
));
8509 // However, we cannot use that value unconditionally: if the magnitude
8510 // of the input value is small, the bit-twiddling we did above might
8511 // end up visibly changing the output. Fortunately, in that case, we
8512 // don't need to twiddle bits since the original input will convert
8513 // exactly to double-precision floating-point already. Therefore,
8514 // construct a conditional to use the original value if the top 11
8515 // bits are all sign-bit copies, and use the rounded value computed
8517 SDValue Cond
= DAG
.getNode(ISD::SRA
, dl
, MVT::i64
,
8518 SINT
, DAG
.getConstant(53, dl
, MVT::i32
));
8519 Cond
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
,
8520 Cond
, DAG
.getConstant(1, dl
, MVT::i64
));
8521 Cond
= DAG
.getSetCC(
8523 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i64
),
8524 Cond
, DAG
.getConstant(1, dl
, MVT::i64
), ISD::SETUGT
);
8526 SINT
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i64
, Cond
, Round
, SINT
);
8532 MachineFunction
&MF
= DAG
.getMachineFunction();
8533 if (canReuseLoadAddress(SINT
, MVT::i64
, RLI
, DAG
)) {
8534 Bits
= DAG
.getLoad(MVT::f64
, dl
, RLI
.Chain
, RLI
.Ptr
, RLI
.MPI
,
8535 RLI
.Alignment
, RLI
.MMOFlags(), RLI
.AAInfo
, RLI
.Ranges
);
8536 spliceIntoChain(RLI
.ResChain
, Bits
.getValue(1), DAG
);
8537 } else if (Subtarget
.hasLFIWAX() &&
8538 canReuseLoadAddress(SINT
, MVT::i32
, RLI
, DAG
, ISD::SEXTLOAD
)) {
8539 MachineMemOperand
*MMO
=
8540 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
8541 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
8542 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
8543 Bits
= DAG
.getMemIntrinsicNode(PPCISD::LFIWAX
, dl
,
8544 DAG
.getVTList(MVT::f64
, MVT::Other
),
8545 Ops
, MVT::i32
, MMO
);
8546 spliceIntoChain(RLI
.ResChain
, Bits
.getValue(1), DAG
);
8547 } else if (Subtarget
.hasFPCVT() &&
8548 canReuseLoadAddress(SINT
, MVT::i32
, RLI
, DAG
, ISD::ZEXTLOAD
)) {
8549 MachineMemOperand
*MMO
=
8550 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
8551 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
8552 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
8553 Bits
= DAG
.getMemIntrinsicNode(PPCISD::LFIWZX
, dl
,
8554 DAG
.getVTList(MVT::f64
, MVT::Other
),
8555 Ops
, MVT::i32
, MMO
);
8556 spliceIntoChain(RLI
.ResChain
, Bits
.getValue(1), DAG
);
8557 } else if (((Subtarget
.hasLFIWAX() &&
8558 SINT
.getOpcode() == ISD::SIGN_EXTEND
) ||
8559 (Subtarget
.hasFPCVT() &&
8560 SINT
.getOpcode() == ISD::ZERO_EXTEND
)) &&
8561 SINT
.getOperand(0).getValueType() == MVT::i32
) {
8562 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
8563 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
8565 int FrameIdx
= MFI
.CreateStackObject(4, Align(4), false);
8566 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
8568 SDValue Store
= DAG
.getStore(Chain
, dl
, SINT
.getOperand(0), FIdx
,
8569 MachinePointerInfo::getFixedStack(
8570 DAG
.getMachineFunction(), FrameIdx
));
8573 assert(cast
<StoreSDNode
>(Store
)->getMemoryVT() == MVT::i32
&&
8574 "Expected an i32 store");
8579 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
);
8580 RLI
.Alignment
= Align(4);
8582 MachineMemOperand
*MMO
=
8583 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
8584 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
8585 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
8586 Bits
= DAG
.getMemIntrinsicNode(SINT
.getOpcode() == ISD::ZERO_EXTEND
?
8587 PPCISD::LFIWZX
: PPCISD::LFIWAX
,
8588 dl
, DAG
.getVTList(MVT::f64
, MVT::Other
),
8589 Ops
, MVT::i32
, MMO
);
8590 Chain
= Bits
.getValue(1);
8592 Bits
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, SINT
);
8594 SDValue FP
= convertIntToFP(Op
, Bits
, DAG
, Subtarget
, Chain
);
8596 Chain
= FP
.getValue(1);
8598 if (Op
.getValueType() == MVT::f32
&& !Subtarget
.hasFPCVT()) {
8600 FP
= DAG
.getNode(ISD::STRICT_FP_ROUND
, dl
,
8601 DAG
.getVTList(MVT::f32
, MVT::Other
),
8602 {Chain
, FP
, DAG
.getIntPtrConstant(0, dl
)}, Flags
);
8604 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, FP
,
8605 DAG
.getIntPtrConstant(0, dl
));
8610 assert(Src
.getValueType() == MVT::i32
&&
8611 "Unhandled INT_TO_FP type in custom expander!");
8612 // Since we only generate this in 64-bit mode, we can take advantage of
8613 // 64-bit registers. In particular, sign extend the input value into the
8614 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8615 // then lfd it and fcfid it.
8616 MachineFunction
&MF
= DAG
.getMachineFunction();
8617 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
8618 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
8621 if (Subtarget
.hasLFIWAX() || Subtarget
.hasFPCVT()) {
8624 if (!(ReusingLoad
= canReuseLoadAddress(Src
, MVT::i32
, RLI
, DAG
))) {
8625 int FrameIdx
= MFI
.CreateStackObject(4, Align(4), false);
8626 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
8628 SDValue Store
= DAG
.getStore(Chain
, dl
, Src
, FIdx
,
8629 MachinePointerInfo::getFixedStack(
8630 DAG
.getMachineFunction(), FrameIdx
));
8633 assert(cast
<StoreSDNode
>(Store
)->getMemoryVT() == MVT::i32
&&
8634 "Expected an i32 store");
8639 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
);
8640 RLI
.Alignment
= Align(4);
8643 MachineMemOperand
*MMO
=
8644 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
8645 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
8646 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
8647 Ld
= DAG
.getMemIntrinsicNode(IsSigned
? PPCISD::LFIWAX
: PPCISD::LFIWZX
, dl
,
8648 DAG
.getVTList(MVT::f64
, MVT::Other
), Ops
,
8650 Chain
= Ld
.getValue(1);
8652 spliceIntoChain(RLI
.ResChain
, Ld
.getValue(1), DAG
);
8654 assert(Subtarget
.isPPC64() &&
8655 "i32->FP without LFIWAX supported only on PPC64");
8657 int FrameIdx
= MFI
.CreateStackObject(8, Align(8), false);
8658 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
8660 SDValue Ext64
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::i64
, Src
);
8662 // STD the extended value into the stack slot.
8663 SDValue Store
= DAG
.getStore(
8664 Chain
, dl
, Ext64
, FIdx
,
8665 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
));
8668 // Load the value as a double.
8670 MVT::f64
, dl
, Chain
, FIdx
,
8671 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
));
8672 Chain
= Ld
.getValue(1);
8675 // FCFID it and return it.
8676 SDValue FP
= convertIntToFP(Op
, Ld
, DAG
, Subtarget
, Chain
);
8678 Chain
= FP
.getValue(1);
8679 if (Op
.getValueType() == MVT::f32
&& !Subtarget
.hasFPCVT()) {
8681 FP
= DAG
.getNode(ISD::STRICT_FP_ROUND
, dl
,
8682 DAG
.getVTList(MVT::f32
, MVT::Other
),
8683 {Chain
, FP
, DAG
.getIntPtrConstant(0, dl
)}, Flags
);
8685 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, FP
,
8686 DAG
.getIntPtrConstant(0, dl
));
8691 SDValue
PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
8692 SelectionDAG
&DAG
) const {
8695 The rounding mode is in bits 30:31 of FPSR, and has the following
8702 FLT_ROUNDS, on the other hand, expects the following:
8709 To perform the conversion, we do:
8710 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8713 MachineFunction
&MF
= DAG
.getMachineFunction();
8714 EVT VT
= Op
.getValueType();
8715 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
8717 // Save FP Control Word to register
8718 SDValue Chain
= Op
.getOperand(0);
8719 SDValue MFFS
= DAG
.getNode(PPCISD::MFFS
, dl
, {MVT::f64
, MVT::Other
}, Chain
);
8720 Chain
= MFFS
.getValue(1);
8723 if (isTypeLegal(MVT::i64
)) {
8724 CWD
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
,
8725 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, MFFS
));
8727 // Save FP register to stack slot
8728 int SSFI
= MF
.getFrameInfo().CreateStackObject(8, Align(8), false);
8729 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, PtrVT
);
8730 Chain
= DAG
.getStore(Chain
, dl
, MFFS
, StackSlot
, MachinePointerInfo());
8732 // Load FP Control Word from low 32 bits of stack slot.
8733 assert(hasBigEndianPartOrdering(MVT::i64
, MF
.getDataLayout()) &&
8734 "Stack slot adjustment is valid only on big endian subtargets!");
8735 SDValue Four
= DAG
.getConstant(4, dl
, PtrVT
);
8736 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackSlot
, Four
);
8737 CWD
= DAG
.getLoad(MVT::i32
, dl
, Chain
, Addr
, MachinePointerInfo());
8738 Chain
= CWD
.getValue(1);
8741 // Transform as necessary
8743 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
8744 CWD
, DAG
.getConstant(3, dl
, MVT::i32
));
8746 DAG
.getNode(ISD::SRL
, dl
, MVT::i32
,
8747 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
8748 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
,
8749 CWD
, DAG
.getConstant(3, dl
, MVT::i32
)),
8750 DAG
.getConstant(3, dl
, MVT::i32
)),
8751 DAG
.getConstant(1, dl
, MVT::i32
));
8754 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, CWD1
, CWD2
);
8757 DAG
.getNode((VT
.getSizeInBits() < 16 ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
),
8760 return DAG
.getMergeValues({RetVal
, Chain
}, dl
);
8763 SDValue
PPCTargetLowering::LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
8764 EVT VT
= Op
.getValueType();
8765 unsigned BitWidth
= VT
.getSizeInBits();
8767 assert(Op
.getNumOperands() == 3 &&
8768 VT
== Op
.getOperand(1).getValueType() &&
8771 // Expand into a bunch of logical ops. Note that these ops
8772 // depend on the PPC behavior for oversized shift amounts.
8773 SDValue Lo
= Op
.getOperand(0);
8774 SDValue Hi
= Op
.getOperand(1);
8775 SDValue Amt
= Op
.getOperand(2);
8776 EVT AmtVT
= Amt
.getValueType();
8778 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
8779 DAG
.getConstant(BitWidth
, dl
, AmtVT
), Amt
);
8780 SDValue Tmp2
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Amt
);
8781 SDValue Tmp3
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Tmp1
);
8782 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
8783 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
8784 DAG
.getConstant(-BitWidth
, dl
, AmtVT
));
8785 SDValue Tmp6
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Tmp5
);
8786 SDValue OutHi
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
8787 SDValue OutLo
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Amt
);
8788 SDValue OutOps
[] = { OutLo
, OutHi
};
8789 return DAG
.getMergeValues(OutOps
, dl
);
8792 SDValue
PPCTargetLowering::LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
8793 EVT VT
= Op
.getValueType();
8795 unsigned BitWidth
= VT
.getSizeInBits();
8796 assert(Op
.getNumOperands() == 3 &&
8797 VT
== Op
.getOperand(1).getValueType() &&
8800 // Expand into a bunch of logical ops. Note that these ops
8801 // depend on the PPC behavior for oversized shift amounts.
8802 SDValue Lo
= Op
.getOperand(0);
8803 SDValue Hi
= Op
.getOperand(1);
8804 SDValue Amt
= Op
.getOperand(2);
8805 EVT AmtVT
= Amt
.getValueType();
8807 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
8808 DAG
.getConstant(BitWidth
, dl
, AmtVT
), Amt
);
8809 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
8810 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
8811 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
8812 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
8813 DAG
.getConstant(-BitWidth
, dl
, AmtVT
));
8814 SDValue Tmp6
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Tmp5
);
8815 SDValue OutLo
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
8816 SDValue OutHi
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Amt
);
8817 SDValue OutOps
[] = { OutLo
, OutHi
};
8818 return DAG
.getMergeValues(OutOps
, dl
);
8821 SDValue
PPCTargetLowering::LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
8823 EVT VT
= Op
.getValueType();
8824 unsigned BitWidth
= VT
.getSizeInBits();
8825 assert(Op
.getNumOperands() == 3 &&
8826 VT
== Op
.getOperand(1).getValueType() &&
8829 // Expand into a bunch of logical ops, followed by a select_cc.
8830 SDValue Lo
= Op
.getOperand(0);
8831 SDValue Hi
= Op
.getOperand(1);
8832 SDValue Amt
= Op
.getOperand(2);
8833 EVT AmtVT
= Amt
.getValueType();
8835 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
8836 DAG
.getConstant(BitWidth
, dl
, AmtVT
), Amt
);
8837 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
8838 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
8839 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
8840 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
8841 DAG
.getConstant(-BitWidth
, dl
, AmtVT
));
8842 SDValue Tmp6
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Tmp5
);
8843 SDValue OutHi
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Amt
);
8844 SDValue OutLo
= DAG
.getSelectCC(dl
, Tmp5
, DAG
.getConstant(0, dl
, AmtVT
),
8845 Tmp4
, Tmp6
, ISD::SETLE
);
8846 SDValue OutOps
[] = { OutLo
, OutHi
};
8847 return DAG
.getMergeValues(OutOps
, dl
);
8850 SDValue
PPCTargetLowering::LowerFunnelShift(SDValue Op
,
8851 SelectionDAG
&DAG
) const {
8853 EVT VT
= Op
.getValueType();
8854 unsigned BitWidth
= VT
.getSizeInBits();
8856 bool IsFSHL
= Op
.getOpcode() == ISD::FSHL
;
8857 SDValue X
= Op
.getOperand(0);
8858 SDValue Y
= Op
.getOperand(1);
8859 SDValue Z
= Op
.getOperand(2);
8860 EVT AmtVT
= Z
.getValueType();
8862 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8863 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8864 // This is simpler than TargetLowering::expandFunnelShift because we can rely
8865 // on PowerPC shift by BW being well defined.
8866 Z
= DAG
.getNode(ISD::AND
, dl
, AmtVT
, Z
,
8867 DAG
.getConstant(BitWidth
- 1, dl
, AmtVT
));
8869 DAG
.getNode(ISD::SUB
, dl
, AmtVT
, DAG
.getConstant(BitWidth
, dl
, AmtVT
), Z
);
8870 X
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, X
, IsFSHL
? Z
: SubZ
);
8871 Y
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Y
, IsFSHL
? SubZ
: Z
);
8872 return DAG
.getNode(ISD::OR
, dl
, VT
, X
, Y
);
8875 //===----------------------------------------------------------------------===//
8876 // Vector related lowering.
8879 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8880 /// element size of SplatSize. Cast the result to VT.
8881 static SDValue
getCanonicalConstSplat(uint64_t Val
, unsigned SplatSize
, EVT VT
,
8882 SelectionDAG
&DAG
, const SDLoc
&dl
) {
8883 static const MVT VTys
[] = { // canonical VT to use for each size.
8884 MVT::v16i8
, MVT::v8i16
, MVT::Other
, MVT::v4i32
8887 EVT ReqVT
= VT
!= MVT::Other
? VT
: VTys
[SplatSize
-1];
8889 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8890 if (Val
== ((1LLU << (SplatSize
* 8)) - 1)) {
8895 EVT CanonicalVT
= VTys
[SplatSize
-1];
8897 // Build a canonical splat for this value.
8898 return DAG
.getBitcast(ReqVT
, DAG
.getConstant(Val
, dl
, CanonicalVT
));
8901 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8902 /// specified intrinsic ID.
8903 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue Op
, SelectionDAG
&DAG
,
8904 const SDLoc
&dl
, EVT DestVT
= MVT::Other
) {
8905 if (DestVT
== MVT::Other
) DestVT
= Op
.getValueType();
8906 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
8907 DAG
.getConstant(IID
, dl
, MVT::i32
), Op
);
8910 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8911 /// specified intrinsic ID.
8912 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue LHS
, SDValue RHS
,
8913 SelectionDAG
&DAG
, const SDLoc
&dl
,
8914 EVT DestVT
= MVT::Other
) {
8915 if (DestVT
== MVT::Other
) DestVT
= LHS
.getValueType();
8916 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
8917 DAG
.getConstant(IID
, dl
, MVT::i32
), LHS
, RHS
);
8920 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8921 /// specified intrinsic ID.
8922 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue Op0
, SDValue Op1
,
8923 SDValue Op2
, SelectionDAG
&DAG
, const SDLoc
&dl
,
8924 EVT DestVT
= MVT::Other
) {
8925 if (DestVT
== MVT::Other
) DestVT
= Op0
.getValueType();
8926 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
8927 DAG
.getConstant(IID
, dl
, MVT::i32
), Op0
, Op1
, Op2
);
8930 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8931 /// amount. The result has the specified value type.
8932 static SDValue
BuildVSLDOI(SDValue LHS
, SDValue RHS
, unsigned Amt
, EVT VT
,
8933 SelectionDAG
&DAG
, const SDLoc
&dl
) {
8934 // Force LHS/RHS to be the right type.
8935 LHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, LHS
);
8936 RHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, RHS
);
8939 for (unsigned i
= 0; i
!= 16; ++i
)
8941 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, LHS
, RHS
, Ops
);
8942 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, T
);
8945 /// Do we have an efficient pattern in a .td file for this node?
8947 /// \param V - pointer to the BuildVectorSDNode being matched
8948 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8950 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8951 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8952 /// the opposite is true (expansion is beneficial) are:
8953 /// - The node builds a vector out of integers that are not 32 or 64-bits
8954 /// - The node builds a vector out of constants
8955 /// - The node is a "load-and-splat"
8956 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8957 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode
*V
,
8960 EVT VecVT
= V
->getValueType(0);
8961 bool RightType
= VecVT
== MVT::v2f64
||
8962 (HasP8Vector
&& VecVT
== MVT::v4f32
) ||
8963 (HasDirectMove
&& (VecVT
== MVT::v2i64
|| VecVT
== MVT::v4i32
));
8967 bool IsSplat
= true;
8968 bool IsLoad
= false;
8969 SDValue Op0
= V
->getOperand(0);
8971 // This function is called in a block that confirms the node is not a constant
8972 // splat. So a constant BUILD_VECTOR here means the vector is built out of
8973 // different constants.
8974 if (V
->isConstant())
8976 for (int i
= 0, e
= V
->getNumOperands(); i
< e
; ++i
) {
8977 if (V
->getOperand(i
).isUndef())
8979 // We want to expand nodes that represent load-and-splat even if the
8980 // loaded value is a floating point truncation or conversion to int.
8981 if (V
->getOperand(i
).getOpcode() == ISD::LOAD
||
8982 (V
->getOperand(i
).getOpcode() == ISD::FP_ROUND
&&
8983 V
->getOperand(i
).getOperand(0).getOpcode() == ISD::LOAD
) ||
8984 (V
->getOperand(i
).getOpcode() == ISD::FP_TO_SINT
&&
8985 V
->getOperand(i
).getOperand(0).getOpcode() == ISD::LOAD
) ||
8986 (V
->getOperand(i
).getOpcode() == ISD::FP_TO_UINT
&&
8987 V
->getOperand(i
).getOperand(0).getOpcode() == ISD::LOAD
))
8989 // If the operands are different or the input is not a load and has more
8990 // uses than just this BV node, then it isn't a splat.
8991 if (V
->getOperand(i
) != Op0
||
8992 (!IsLoad
&& !V
->isOnlyUserOf(V
->getOperand(i
).getNode())))
8995 return !(IsSplat
&& IsLoad
);
8998 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8999 SDValue
PPCTargetLowering::LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const {
9002 SDValue Op0
= Op
->getOperand(0);
9004 if ((Op
.getValueType() != MVT::f128
) ||
9005 (Op0
.getOpcode() != ISD::BUILD_PAIR
) ||
9006 (Op0
.getOperand(0).getValueType() != MVT::i64
) ||
9007 (Op0
.getOperand(1).getValueType() != MVT::i64
))
9010 return DAG
.getNode(PPCISD::BUILD_FP128
, dl
, MVT::f128
, Op0
.getOperand(0),
9014 static const SDValue
*getNormalLoadInput(const SDValue
&Op
, bool &IsPermuted
) {
9015 const SDValue
*InputLoad
= &Op
;
9016 if (InputLoad
->getOpcode() == ISD::BITCAST
)
9017 InputLoad
= &InputLoad
->getOperand(0);
9018 if (InputLoad
->getOpcode() == ISD::SCALAR_TO_VECTOR
||
9019 InputLoad
->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED
) {
9020 IsPermuted
= InputLoad
->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED
;
9021 InputLoad
= &InputLoad
->getOperand(0);
9023 if (InputLoad
->getOpcode() != ISD::LOAD
)
9025 LoadSDNode
*LD
= cast
<LoadSDNode
>(*InputLoad
);
9026 return ISD::isNormalLoad(LD
) ? InputLoad
: nullptr;
9029 // Convert the argument APFloat to a single precision APFloat if there is no
9030 // loss in information during the conversion to single precision APFloat and the
9031 // resulting number is not a denormal number. Return true if successful.
9032 bool llvm::convertToNonDenormSingle(APFloat
&ArgAPFloat
) {
9033 APFloat APFloatToConvert
= ArgAPFloat
;
9034 bool LosesInfo
= true;
9035 APFloatToConvert
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
,
9037 bool Success
= (!LosesInfo
&& !APFloatToConvert
.isDenormal());
9039 ArgAPFloat
= APFloatToConvert
;
9043 // Bitcast the argument APInt to a double and convert it to a single precision
9044 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9045 // argument if there is no loss in information during the conversion from
9046 // double to single precision APFloat and the resulting number is not a denormal
9047 // number. Return true if successful.
9048 bool llvm::convertToNonDenormSingle(APInt
&ArgAPInt
) {
9049 double DpValue
= ArgAPInt
.bitsToDouble();
9050 APFloat
APFloatDp(DpValue
);
9051 bool Success
= convertToNonDenormSingle(APFloatDp
);
9053 ArgAPInt
= APFloatDp
.bitcastToAPInt();
9057 // Nondestructive check for convertTonNonDenormSingle.
9058 bool llvm::checkConvertToNonDenormSingle(APFloat
&ArgAPFloat
) {
9059 // Only convert if it loses info, since XXSPLTIDP should
9060 // handle the other case.
9061 APFloat APFloatToConvert
= ArgAPFloat
;
9062 bool LosesInfo
= true;
9063 APFloatToConvert
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
,
9066 return (!LosesInfo
&& !APFloatToConvert
.isDenormal());
9069 // If this is a case we can't handle, return null and let the default
9070 // expansion code take care of it. If we CAN select this case, and if it
9071 // selects to a single instruction, return Op. Otherwise, if we can codegen
9072 // this case more efficiently than a constant pool load, lower it to the
9073 // sequence of ops that should be used.
9074 SDValue
PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op
,
9075 SelectionDAG
&DAG
) const {
9077 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
9078 assert(BVN
&& "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9080 // Check if this is a splat of a constant value.
9081 APInt APSplatBits
, APSplatUndef
;
9082 unsigned SplatBitSize
;
9084 bool BVNIsConstantSplat
=
9085 BVN
->isConstantSplat(APSplatBits
, APSplatUndef
, SplatBitSize
,
9086 HasAnyUndefs
, 0, !Subtarget
.isLittleEndian());
9088 // If it is a splat of a double, check if we can shrink it to a 32 bit
9089 // non-denormal float which when converted back to double gives us the same
9090 // double. This is to exploit the XXSPLTIDP instruction.
9091 // If we lose precision, we use XXSPLTI32DX.
9092 if (BVNIsConstantSplat
&& (SplatBitSize
== 64) &&
9093 Subtarget
.hasPrefixInstrs()) {
9094 // Check the type first to short-circuit so we don't modify APSplatBits if
9095 // this block isn't executed.
9096 if ((Op
->getValueType(0) == MVT::v2f64
) &&
9097 convertToNonDenormSingle(APSplatBits
)) {
9098 SDValue SplatNode
= DAG
.getNode(
9099 PPCISD::XXSPLTI_SP_TO_DP
, dl
, MVT::v2f64
,
9100 DAG
.getTargetConstant(APSplatBits
.getZExtValue(), dl
, MVT::i32
));
9101 return DAG
.getBitcast(Op
.getValueType(), SplatNode
);
9103 // We may lose precision, so we have to use XXSPLTI32DX.
9106 (uint32_t)((APSplatBits
.getZExtValue() & 0xFFFFFFFF00000000LL
) >> 32);
9108 (uint32_t)(APSplatBits
.getZExtValue() & 0xFFFFFFFF);
9109 SDValue SplatNode
= DAG
.getUNDEF(MVT::v2i64
);
9112 // If either load is 0, then we should generate XXLXOR to set to 0.
9113 SplatNode
= DAG
.getTargetConstant(0, dl
, MVT::v2i64
);
9116 SplatNode
= DAG
.getNode(
9117 PPCISD::XXSPLTI32DX
, dl
, MVT::v2i64
, SplatNode
,
9118 DAG
.getTargetConstant(0, dl
, MVT::i32
),
9119 DAG
.getTargetConstant(Hi
, dl
, MVT::i32
));
9123 DAG
.getNode(PPCISD::XXSPLTI32DX
, dl
, MVT::v2i64
, SplatNode
,
9124 DAG
.getTargetConstant(1, dl
, MVT::i32
),
9125 DAG
.getTargetConstant(Lo
, dl
, MVT::i32
));
9127 return DAG
.getBitcast(Op
.getValueType(), SplatNode
);
9131 if (!BVNIsConstantSplat
|| SplatBitSize
> 32) {
9133 bool IsPermutedLoad
= false;
9134 const SDValue
*InputLoad
=
9135 getNormalLoadInput(Op
.getOperand(0), IsPermutedLoad
);
9136 // Handle load-and-splat patterns as we have instructions that will do this
9138 if (InputLoad
&& DAG
.isSplatValue(Op
, true)) {
9139 LoadSDNode
*LD
= cast
<LoadSDNode
>(*InputLoad
);
9141 // We have handling for 4 and 8 byte elements.
9142 unsigned ElementSize
= LD
->getMemoryVT().getScalarSizeInBits();
9144 // Checking for a single use of this load, we have to check for vector
9145 // width (128 bits) / ElementSize uses (since each operand of the
9146 // BUILD_VECTOR is a separate use of the value.
9147 unsigned NumUsesOfInputLD
= 128 / ElementSize
;
9148 for (SDValue BVInOp
: Op
->ops())
9149 if (BVInOp
.isUndef())
9151 assert(NumUsesOfInputLD
> 0 && "No uses of input LD of a build_vector?");
9152 if (InputLoad
->getNode()->hasNUsesOfValue(NumUsesOfInputLD
, 0) &&
9153 ((Subtarget
.hasVSX() && ElementSize
== 64) ||
9154 (Subtarget
.hasP9Vector() && ElementSize
== 32))) {
9156 LD
->getChain(), // Chain
9157 LD
->getBasePtr(), // Ptr
9158 DAG
.getValueType(Op
.getValueType()) // VT
9160 SDValue LdSplt
= DAG
.getMemIntrinsicNode(
9161 PPCISD::LD_SPLAT
, dl
, DAG
.getVTList(Op
.getValueType(), MVT::Other
),
9162 Ops
, LD
->getMemoryVT(), LD
->getMemOperand());
9163 // Replace all uses of the output chain of the original load with the
9164 // output chain of the new load.
9165 DAG
.ReplaceAllUsesOfValueWith(InputLoad
->getValue(1),
9166 LdSplt
.getValue(1));
9171 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9172 // 32-bits can be lowered to VSX instructions under certain conditions.
9173 // Without VSX, there is no pattern more efficient than expanding the node.
9174 if (Subtarget
.hasVSX() && Subtarget
.isPPC64() &&
9175 haveEfficientBuildVectorPattern(BVN
, Subtarget
.hasDirectMove(),
9176 Subtarget
.hasP8Vector()))
9181 uint64_t SplatBits
= APSplatBits
.getZExtValue();
9182 uint64_t SplatUndef
= APSplatUndef
.getZExtValue();
9183 unsigned SplatSize
= SplatBitSize
/ 8;
9185 // First, handle single instruction cases.
9188 if (SplatBits
== 0) {
9189 // Canonicalize all zero vectors to be v4i32.
9190 if (Op
.getValueType() != MVT::v4i32
|| HasAnyUndefs
) {
9191 SDValue Z
= DAG
.getConstant(0, dl
, MVT::v4i32
);
9192 Op
= DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Z
);
9197 // We have XXSPLTIW for constant splats four bytes wide.
9198 // Given vector length is a multiple of 4, 2-byte splats can be replaced
9199 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9200 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9201 // turned into a 4-byte splat of 0xABABABAB.
9202 if (Subtarget
.hasPrefixInstrs() && SplatSize
== 2)
9203 return getCanonicalConstSplat(SplatBits
| (SplatBits
<< 16), SplatSize
* 2,
9204 Op
.getValueType(), DAG
, dl
);
9206 if (Subtarget
.hasPrefixInstrs() && SplatSize
== 4)
9207 return getCanonicalConstSplat(SplatBits
, SplatSize
, Op
.getValueType(), DAG
,
9210 // We have XXSPLTIB for constant splats one byte wide.
9211 if (Subtarget
.hasP9Vector() && SplatSize
== 1)
9212 return getCanonicalConstSplat(SplatBits
, SplatSize
, Op
.getValueType(), DAG
,
9215 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9216 int32_t SextVal
= (int32_t(SplatBits
<< (32-SplatBitSize
)) >>
9218 if (SextVal
>= -16 && SextVal
<= 15)
9219 return getCanonicalConstSplat(SextVal
, SplatSize
, Op
.getValueType(), DAG
,
9222 // Two instruction sequences.
9224 // If this value is in the range [-32,30] and is even, use:
9225 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9226 // If this value is in the range [17,31] and is odd, use:
9227 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9228 // If this value is in the range [-31,-17] and is odd, use:
9229 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9230 // Note the last two are three-instruction sequences.
9231 if (SextVal
>= -32 && SextVal
<= 31) {
9232 // To avoid having these optimizations undone by constant folding,
9233 // we convert to a pseudo that will be expanded later into one of
9235 SDValue Elt
= DAG
.getConstant(SextVal
, dl
, MVT::i32
);
9236 EVT VT
= (SplatSize
== 1 ? MVT::v16i8
:
9237 (SplatSize
== 2 ? MVT::v8i16
: MVT::v4i32
));
9238 SDValue EltSize
= DAG
.getConstant(SplatSize
, dl
, MVT::i32
);
9239 SDValue RetVal
= DAG
.getNode(PPCISD::VADD_SPLAT
, dl
, VT
, Elt
, EltSize
);
9240 if (VT
== Op
.getValueType())
9243 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), RetVal
);
9246 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
9247 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
9249 if (SplatSize
== 4 && SplatBits
== (0x7FFFFFFF&~SplatUndef
)) {
9250 // Make -1 and vspltisw -1:
9251 SDValue OnesV
= getCanonicalConstSplat(-1, 4, MVT::v4i32
, DAG
, dl
);
9253 // Make the VSLW intrinsic, computing 0x8000_0000.
9254 SDValue Res
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, OnesV
,
9257 // xor by OnesV to invert it.
9258 Res
= DAG
.getNode(ISD::XOR
, dl
, MVT::v4i32
, Res
, OnesV
);
9259 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
9262 // Check to see if this is a wide variety of vsplti*, binop self cases.
9263 static const signed char SplatCsts
[] = {
9264 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9265 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9268 for (unsigned idx
= 0; idx
< array_lengthof(SplatCsts
); ++idx
) {
9269 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9270 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
9271 int i
= SplatCsts
[idx
];
9273 // Figure out what shift amount will be used by altivec if shifted by i in
9275 unsigned TypeShiftAmt
= i
& (SplatBitSize
-1);
9277 // vsplti + shl self.
9278 if (SextVal
== (int)((unsigned)i
<< TypeShiftAmt
)) {
9279 SDValue Res
= getCanonicalConstSplat(i
, SplatSize
, MVT::Other
, DAG
, dl
);
9280 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
9281 Intrinsic::ppc_altivec_vslb
, Intrinsic::ppc_altivec_vslh
, 0,
9282 Intrinsic::ppc_altivec_vslw
9284 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
9285 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
9288 // vsplti + srl self.
9289 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
9290 SDValue Res
= getCanonicalConstSplat(i
, SplatSize
, MVT::Other
, DAG
, dl
);
9291 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
9292 Intrinsic::ppc_altivec_vsrb
, Intrinsic::ppc_altivec_vsrh
, 0,
9293 Intrinsic::ppc_altivec_vsrw
9295 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
9296 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
9299 // vsplti + rol self.
9300 if (SextVal
== (int)(((unsigned)i
<< TypeShiftAmt
) |
9301 ((unsigned)i
>> (SplatBitSize
-TypeShiftAmt
)))) {
9302 SDValue Res
= getCanonicalConstSplat(i
, SplatSize
, MVT::Other
, DAG
, dl
);
9303 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
9304 Intrinsic::ppc_altivec_vrlb
, Intrinsic::ppc_altivec_vrlh
, 0,
9305 Intrinsic::ppc_altivec_vrlw
9307 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
9308 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
9311 // t = vsplti c, result = vsldoi t, t, 1
9312 if (SextVal
== (int)(((unsigned)i
<< 8) | (i
< 0 ? 0xFF : 0))) {
9313 SDValue T
= getCanonicalConstSplat(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
9314 unsigned Amt
= Subtarget
.isLittleEndian() ? 15 : 1;
9315 return BuildVSLDOI(T
, T
, Amt
, Op
.getValueType(), DAG
, dl
);
9317 // t = vsplti c, result = vsldoi t, t, 2
9318 if (SextVal
== (int)(((unsigned)i
<< 16) | (i
< 0 ? 0xFFFF : 0))) {
9319 SDValue T
= getCanonicalConstSplat(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
9320 unsigned Amt
= Subtarget
.isLittleEndian() ? 14 : 2;
9321 return BuildVSLDOI(T
, T
, Amt
, Op
.getValueType(), DAG
, dl
);
9323 // t = vsplti c, result = vsldoi t, t, 3
9324 if (SextVal
== (int)(((unsigned)i
<< 24) | (i
< 0 ? 0xFFFFFF : 0))) {
9325 SDValue T
= getCanonicalConstSplat(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
9326 unsigned Amt
= Subtarget
.isLittleEndian() ? 13 : 3;
9327 return BuildVSLDOI(T
, T
, Amt
, Op
.getValueType(), DAG
, dl
);
9334 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9335 /// the specified operations to build the shuffle.
9336 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
9337 SDValue RHS
, SelectionDAG
&DAG
,
9339 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
9340 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
9341 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
9344 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9356 if (OpNum
== OP_COPY
) {
9357 if (LHSID
== (1*9+2)*9+3) return LHS
;
9358 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9362 SDValue OpLHS
, OpRHS
;
9363 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
9364 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
9368 default: llvm_unreachable("Unknown i32 permute!");
9370 ShufIdxs
[ 0] = 0; ShufIdxs
[ 1] = 1; ShufIdxs
[ 2] = 2; ShufIdxs
[ 3] = 3;
9371 ShufIdxs
[ 4] = 16; ShufIdxs
[ 5] = 17; ShufIdxs
[ 6] = 18; ShufIdxs
[ 7] = 19;
9372 ShufIdxs
[ 8] = 4; ShufIdxs
[ 9] = 5; ShufIdxs
[10] = 6; ShufIdxs
[11] = 7;
9373 ShufIdxs
[12] = 20; ShufIdxs
[13] = 21; ShufIdxs
[14] = 22; ShufIdxs
[15] = 23;
9376 ShufIdxs
[ 0] = 8; ShufIdxs
[ 1] = 9; ShufIdxs
[ 2] = 10; ShufIdxs
[ 3] = 11;
9377 ShufIdxs
[ 4] = 24; ShufIdxs
[ 5] = 25; ShufIdxs
[ 6] = 26; ShufIdxs
[ 7] = 27;
9378 ShufIdxs
[ 8] = 12; ShufIdxs
[ 9] = 13; ShufIdxs
[10] = 14; ShufIdxs
[11] = 15;
9379 ShufIdxs
[12] = 28; ShufIdxs
[13] = 29; ShufIdxs
[14] = 30; ShufIdxs
[15] = 31;
9382 for (unsigned i
= 0; i
!= 16; ++i
)
9383 ShufIdxs
[i
] = (i
&3)+0;
9386 for (unsigned i
= 0; i
!= 16; ++i
)
9387 ShufIdxs
[i
] = (i
&3)+4;
9390 for (unsigned i
= 0; i
!= 16; ++i
)
9391 ShufIdxs
[i
] = (i
&3)+8;
9394 for (unsigned i
= 0; i
!= 16; ++i
)
9395 ShufIdxs
[i
] = (i
&3)+12;
9398 return BuildVSLDOI(OpLHS
, OpRHS
, 4, OpLHS
.getValueType(), DAG
, dl
);
9400 return BuildVSLDOI(OpLHS
, OpRHS
, 8, OpLHS
.getValueType(), DAG
, dl
);
9402 return BuildVSLDOI(OpLHS
, OpRHS
, 12, OpLHS
.getValueType(), DAG
, dl
);
9404 EVT VT
= OpLHS
.getValueType();
9405 OpLHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OpLHS
);
9406 OpRHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OpRHS
);
9407 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, OpLHS
, OpRHS
, ShufIdxs
);
9408 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, T
);
9411 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9412 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9414 SDValue
PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode
*N
,
9415 SelectionDAG
&DAG
) const {
9416 const unsigned BytesInVector
= 16;
9417 bool IsLE
= Subtarget
.isLittleEndian();
9419 SDValue V1
= N
->getOperand(0);
9420 SDValue V2
= N
->getOperand(1);
9421 unsigned ShiftElts
= 0, InsertAtByte
= 0;
9424 // Shifts required to get the byte we want at element 7.
9425 unsigned LittleEndianShifts
[] = {8, 7, 6, 5, 4, 3, 2, 1,
9426 0, 15, 14, 13, 12, 11, 10, 9};
9427 unsigned BigEndianShifts
[] = {9, 10, 11, 12, 13, 14, 15, 0,
9428 1, 2, 3, 4, 5, 6, 7, 8};
9430 ArrayRef
<int> Mask
= N
->getMask();
9431 int OriginalOrder
[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9433 // For each mask element, find out if we're just inserting something
9434 // from V2 into V1 or vice versa.
9435 // Possible permutations inserting an element from V2 into V1:
9436 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9437 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9439 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9440 // Inserting from V1 into V2 will be similar, except mask range will be
9443 bool FoundCandidate
= false;
9444 // If both vector operands for the shuffle are the same vector, the mask
9445 // will contain only elements from the first one and the second one will be
9447 unsigned VINSERTBSrcElem
= IsLE
? 8 : 7;
9448 // Go through the mask of half-words to find an element that's being moved
9449 // from one vector to the other.
9450 for (unsigned i
= 0; i
< BytesInVector
; ++i
) {
9451 unsigned CurrentElement
= Mask
[i
];
9452 // If 2nd operand is undefined, we should only look for element 7 in the
9454 if (V2
.isUndef() && CurrentElement
!= VINSERTBSrcElem
)
9457 bool OtherElementsInOrder
= true;
9458 // Examine the other elements in the Mask to see if they're in original
9460 for (unsigned j
= 0; j
< BytesInVector
; ++j
) {
9463 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9464 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined,
9465 // in which we always assume we're always picking from the 1st operand.
9467 (!V2
.isUndef() && CurrentElement
< BytesInVector
) ? BytesInVector
: 0;
9468 if (Mask
[j
] != OriginalOrder
[j
] + MaskOffset
) {
9469 OtherElementsInOrder
= false;
9473 // If other elements are in original order, we record the number of shifts
9474 // we need to get the element we want into element 7. Also record which byte
9475 // in the vector we should insert into.
9476 if (OtherElementsInOrder
) {
9477 // If 2nd operand is undefined, we assume no shifts and no swapping.
9482 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9483 ShiftElts
= IsLE
? LittleEndianShifts
[CurrentElement
& 0xF]
9484 : BigEndianShifts
[CurrentElement
& 0xF];
9485 Swap
= CurrentElement
< BytesInVector
;
9487 InsertAtByte
= IsLE
? BytesInVector
- (i
+ 1) : i
;
9488 FoundCandidate
= true;
9493 if (!FoundCandidate
)
9496 // Candidate found, construct the proper SDAG sequence with VINSERTB,
9497 // optionally with VECSHL if shift is required.
9503 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v16i8
, V2
, V2
,
9504 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
9505 return DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v16i8
, V1
, Shl
,
9506 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
9508 return DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v16i8
, V1
, V2
,
9509 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
9512 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9513 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9515 SDValue
PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode
*N
,
9516 SelectionDAG
&DAG
) const {
9517 const unsigned NumHalfWords
= 8;
9518 const unsigned BytesInVector
= NumHalfWords
* 2;
9519 // Check that the shuffle is on half-words.
9520 if (!isNByteElemShuffleMask(N
, 2, 1))
9523 bool IsLE
= Subtarget
.isLittleEndian();
9525 SDValue V1
= N
->getOperand(0);
9526 SDValue V2
= N
->getOperand(1);
9527 unsigned ShiftElts
= 0, InsertAtByte
= 0;
9530 // Shifts required to get the half-word we want at element 3.
9531 unsigned LittleEndianShifts
[] = {4, 3, 2, 1, 0, 7, 6, 5};
9532 unsigned BigEndianShifts
[] = {5, 6, 7, 0, 1, 2, 3, 4};
9535 uint32_t OriginalOrderLow
= 0x1234567;
9536 uint32_t OriginalOrderHigh
= 0x89ABCDEF;
9537 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a
9538 // 32-bit space, only need 4-bit nibbles per element.
9539 for (unsigned i
= 0; i
< NumHalfWords
; ++i
) {
9540 unsigned MaskShift
= (NumHalfWords
- 1 - i
) * 4;
9541 Mask
|= ((uint32_t)(N
->getMaskElt(i
* 2) / 2) << MaskShift
);
9544 // For each mask element, find out if we're just inserting something
9545 // from V2 into V1 or vice versa. Possible permutations inserting an element
9547 // X, 1, 2, 3, 4, 5, 6, 7
9548 // 0, X, 2, 3, 4, 5, 6, 7
9549 // 0, 1, X, 3, 4, 5, 6, 7
9550 // 0, 1, 2, X, 4, 5, 6, 7
9551 // 0, 1, 2, 3, X, 5, 6, 7
9552 // 0, 1, 2, 3, 4, X, 6, 7
9553 // 0, 1, 2, 3, 4, 5, X, 7
9554 // 0, 1, 2, 3, 4, 5, 6, X
9555 // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9557 bool FoundCandidate
= false;
9558 // Go through the mask of half-words to find an element that's being moved
9559 // from one vector to the other.
9560 for (unsigned i
= 0; i
< NumHalfWords
; ++i
) {
9561 unsigned MaskShift
= (NumHalfWords
- 1 - i
) * 4;
9562 uint32_t MaskOneElt
= (Mask
>> MaskShift
) & 0xF;
9563 uint32_t MaskOtherElts
= ~(0xF << MaskShift
);
9564 uint32_t TargetOrder
= 0x0;
9566 // If both vector operands for the shuffle are the same vector, the mask
9567 // will contain only elements from the first one and the second one will be
9571 unsigned VINSERTHSrcElem
= IsLE
? 4 : 3;
9572 TargetOrder
= OriginalOrderLow
;
9574 // Skip if not the correct element or mask of other elements don't equal
9575 // to our expected order.
9576 if (MaskOneElt
== VINSERTHSrcElem
&&
9577 (Mask
& MaskOtherElts
) == (TargetOrder
& MaskOtherElts
)) {
9578 InsertAtByte
= IsLE
? BytesInVector
- (i
+ 1) * 2 : i
* 2;
9579 FoundCandidate
= true;
9582 } else { // If both operands are defined.
9583 // Target order is [8,15] if the current mask is between [0,7].
9585 (MaskOneElt
< NumHalfWords
) ? OriginalOrderHigh
: OriginalOrderLow
;
9586 // Skip if mask of other elements don't equal our expected order.
9587 if ((Mask
& MaskOtherElts
) == (TargetOrder
& MaskOtherElts
)) {
9588 // We only need the last 3 bits for the number of shifts.
9589 ShiftElts
= IsLE
? LittleEndianShifts
[MaskOneElt
& 0x7]
9590 : BigEndianShifts
[MaskOneElt
& 0x7];
9591 InsertAtByte
= IsLE
? BytesInVector
- (i
+ 1) * 2 : i
* 2;
9592 Swap
= MaskOneElt
< NumHalfWords
;
9593 FoundCandidate
= true;
9599 if (!FoundCandidate
)
9602 // Candidate found, construct the proper SDAG sequence with VINSERTH,
9603 // optionally with VECSHL if shift is required.
9608 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, V1
);
9610 // Double ShiftElts because we're left shifting on v16i8 type.
9611 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v16i8
, V2
, V2
,
9612 DAG
.getConstant(2 * ShiftElts
, dl
, MVT::i32
));
9613 SDValue Conv2
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, Shl
);
9614 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v8i16
, Conv1
, Conv2
,
9615 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
9616 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
9618 SDValue Conv2
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, V2
);
9619 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v8i16
, Conv1
, Conv2
,
9620 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
9621 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
9624 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9625 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9626 /// return the default SDValue.
9627 SDValue
PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode
*SVN
,
9628 SelectionDAG
&DAG
) const {
9629 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9630 // to v16i8. Peek through the bitcasts to get the actual operands.
9631 SDValue LHS
= peekThroughBitcasts(SVN
->getOperand(0));
9632 SDValue RHS
= peekThroughBitcasts(SVN
->getOperand(1));
9634 auto ShuffleMask
= SVN
->getMask();
9635 SDValue
VecShuffle(SVN
, 0);
9638 // Check that we have a four byte shuffle.
9639 if (!isNByteElemShuffleMask(SVN
, 4, 1))
9642 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9643 if (RHS
->getOpcode() != ISD::BUILD_VECTOR
) {
9644 std::swap(LHS
, RHS
);
9645 VecShuffle
= DAG
.getCommutedVectorShuffle(*SVN
);
9646 ShuffleMask
= cast
<ShuffleVectorSDNode
>(VecShuffle
)->getMask();
9649 // Ensure that the RHS is a vector of constants.
9650 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(RHS
.getNode());
9654 // Check if RHS is a splat of 4-bytes (or smaller).
9655 APInt APSplatValue
, APSplatUndef
;
9656 unsigned SplatBitSize
;
9658 if (!BVN
->isConstantSplat(APSplatValue
, APSplatUndef
, SplatBitSize
,
9659 HasAnyUndefs
, 0, !Subtarget
.isLittleEndian()) ||
9663 // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9664 // The instruction splats a constant C into two words of the source vector
9665 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9666 // Thus we check that the shuffle mask is the equivalent of
9667 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9668 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9669 // within each word are consecutive, so we only need to check the first byte.
9671 bool IsLE
= Subtarget
.isLittleEndian();
9672 if ((ShuffleMask
[0] == 0 && ShuffleMask
[8] == 8) &&
9673 (ShuffleMask
[4] % 4 == 0 && ShuffleMask
[12] % 4 == 0 &&
9674 ShuffleMask
[4] > 15 && ShuffleMask
[12] > 15))
9675 Index
= DAG
.getTargetConstant(IsLE
? 0 : 1, DL
, MVT::i32
);
9676 else if ((ShuffleMask
[4] == 4 && ShuffleMask
[12] == 12) &&
9677 (ShuffleMask
[0] % 4 == 0 && ShuffleMask
[8] % 4 == 0 &&
9678 ShuffleMask
[0] > 15 && ShuffleMask
[8] > 15))
9679 Index
= DAG
.getTargetConstant(IsLE
? 1 : 0, DL
, MVT::i32
);
9683 // If the splat is narrower than 32-bits, we need to get the 32-bit value
9685 unsigned SplatVal
= APSplatValue
.getZExtValue();
9686 for (; SplatBitSize
< 32; SplatBitSize
<<= 1)
9687 SplatVal
|= (SplatVal
<< SplatBitSize
);
9689 SDValue SplatNode
= DAG
.getNode(
9690 PPCISD::XXSPLTI32DX
, DL
, MVT::v2i64
, DAG
.getBitcast(MVT::v2i64
, LHS
),
9691 Index
, DAG
.getTargetConstant(SplatVal
, DL
, MVT::i32
));
9692 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::v16i8
, SplatNode
);
9695 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9696 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9697 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9698 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9699 SDValue
PPCTargetLowering::LowerROTL(SDValue Op
, SelectionDAG
&DAG
) const {
9700 assert(Op
.getOpcode() == ISD::ROTL
&& "Should only be called for ISD::ROTL");
9701 assert(Op
.getValueType() == MVT::v1i128
&&
9702 "Only set v1i128 as custom, other type shouldn't reach here!");
9704 SDValue N0
= peekThroughBitcasts(Op
.getOperand(0));
9705 SDValue N1
= peekThroughBitcasts(Op
.getOperand(1));
9706 unsigned SHLAmt
= N1
.getConstantOperandVal(0);
9707 if (SHLAmt
% 8 == 0) {
9708 SmallVector
<int, 16> Mask(16, 0);
9709 std::iota(Mask
.begin(), Mask
.end(), 0);
9710 std::rotate(Mask
.begin(), Mask
.begin() + SHLAmt
/ 8, Mask
.end());
9711 if (SDValue Shuffle
=
9712 DAG
.getVectorShuffle(MVT::v16i8
, dl
, DAG
.getBitcast(MVT::v16i8
, N0
),
9713 DAG
.getUNDEF(MVT::v16i8
), Mask
))
9714 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i128
, Shuffle
);
9716 SDValue ArgVal
= DAG
.getBitcast(MVT::i128
, N0
);
9717 SDValue SHLOp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i128
, ArgVal
,
9718 DAG
.getConstant(SHLAmt
, dl
, MVT::i32
));
9719 SDValue SRLOp
= DAG
.getNode(ISD::SRL
, dl
, MVT::i128
, ArgVal
,
9720 DAG
.getConstant(128 - SHLAmt
, dl
, MVT::i32
));
9721 SDValue OROp
= DAG
.getNode(ISD::OR
, dl
, MVT::i128
, SHLOp
, SRLOp
);
9722 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i128
, OROp
);
9725 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
9726 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
9727 /// return the code it can be lowered into. Worst case, it can always be
9728 /// lowered into a vperm.
9729 SDValue
PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
9730 SelectionDAG
&DAG
) const {
9732 SDValue V1
= Op
.getOperand(0);
9733 SDValue V2
= Op
.getOperand(1);
9734 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
9736 // Any nodes that were combined in the target-independent combiner prior
9737 // to vector legalization will not be sent to the target combine. Try to
9739 if (SDValue NewShuffle
= combineVectorShuffle(SVOp
, DAG
)) {
9740 if (!isa
<ShuffleVectorSDNode
>(NewShuffle
))
9743 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
9744 V1
= Op
.getOperand(0);
9745 V2
= Op
.getOperand(1);
9747 EVT VT
= Op
.getValueType();
9748 bool isLittleEndian
= Subtarget
.isLittleEndian();
9750 unsigned ShiftElts
, InsertAtByte
;
9753 // If this is a load-and-splat, we can do that with a single instruction
9754 // in some cases. However if the load has multiple uses, we don't want to
9755 // combine it because that will just produce multiple loads.
9756 bool IsPermutedLoad
= false;
9757 const SDValue
*InputLoad
= getNormalLoadInput(V1
, IsPermutedLoad
);
9758 if (InputLoad
&& Subtarget
.hasVSX() && V2
.isUndef() &&
9759 (PPC::isSplatShuffleMask(SVOp
, 4) || PPC::isSplatShuffleMask(SVOp
, 8)) &&
9760 InputLoad
->hasOneUse()) {
9761 bool IsFourByte
= PPC::isSplatShuffleMask(SVOp
, 4);
9763 PPC::getSplatIdxForPPCMnemonics(SVOp
, IsFourByte
? 4 : 8, DAG
);
9765 // The splat index for permuted loads will be in the left half of the vector
9766 // which is strictly wider than the loaded value by 8 bytes. So we need to
9767 // adjust the splat index to point to the correct address in memory.
9768 if (IsPermutedLoad
) {
9769 assert((isLittleEndian
|| IsFourByte
) &&
9770 "Unexpected size for permuted load on big endian target");
9771 SplatIdx
+= IsFourByte
? 2 : 1;
9772 assert((SplatIdx
< (IsFourByte
? 4 : 2)) &&
9773 "Splat of a value outside of the loaded memory");
9776 LoadSDNode
*LD
= cast
<LoadSDNode
>(*InputLoad
);
9777 // For 4-byte load-and-splat, we need Power9.
9778 if ((IsFourByte
&& Subtarget
.hasP9Vector()) || !IsFourByte
) {
9779 uint64_t Offset
= 0;
9781 Offset
= isLittleEndian
? (3 - SplatIdx
) * 4 : SplatIdx
* 4;
9783 Offset
= isLittleEndian
? (1 - SplatIdx
) * 8 : SplatIdx
* 8;
9785 // If the width of the load is the same as the width of the splat,
9786 // loading with an offset would load the wrong memory.
9787 if (LD
->getValueType(0).getSizeInBits() == (IsFourByte
? 32 : 64))
9790 SDValue BasePtr
= LD
->getBasePtr();
9792 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
9793 BasePtr
, DAG
.getIntPtrConstant(Offset
, dl
));
9795 LD
->getChain(), // Chain
9797 DAG
.getValueType(Op
.getValueType()) // VT
9800 DAG
.getVTList(IsFourByte
? MVT::v4i32
: MVT::v2i64
, MVT::Other
);
9802 DAG
.getMemIntrinsicNode(PPCISD::LD_SPLAT
, dl
, VTL
,
9803 Ops
, LD
->getMemoryVT(), LD
->getMemOperand());
9804 DAG
.ReplaceAllUsesOfValueWith(InputLoad
->getValue(1), LdSplt
.getValue(1));
9805 if (LdSplt
.getValueType() != SVOp
->getValueType(0))
9806 LdSplt
= DAG
.getBitcast(SVOp
->getValueType(0), LdSplt
);
9810 if (Subtarget
.hasP9Vector() &&
9811 PPC::isXXINSERTWMask(SVOp
, ShiftElts
, InsertAtByte
, Swap
,
9815 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
9816 SDValue Conv2
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V2
);
9818 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v4i32
, Conv2
, Conv2
,
9819 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
9820 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v4i32
, Conv1
, Shl
,
9821 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
9822 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
9824 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v4i32
, Conv1
, Conv2
,
9825 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
9826 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
9829 if (Subtarget
.hasPrefixInstrs()) {
9830 SDValue SplatInsertNode
;
9831 if ((SplatInsertNode
= lowerToXXSPLTI32DX(SVOp
, DAG
)))
9832 return SplatInsertNode
;
9835 if (Subtarget
.hasP9Altivec()) {
9837 if ((NewISDNode
= lowerToVINSERTH(SVOp
, DAG
)))
9840 if ((NewISDNode
= lowerToVINSERTB(SVOp
, DAG
)))
9844 if (Subtarget
.hasVSX() &&
9845 PPC::isXXSLDWIShuffleMask(SVOp
, ShiftElts
, Swap
, isLittleEndian
)) {
9848 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
9850 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V2
.isUndef() ? V1
: V2
);
9852 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v4i32
, Conv1
, Conv2
,
9853 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
9854 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Shl
);
9857 if (Subtarget
.hasVSX() &&
9858 PPC::isXXPERMDIShuffleMask(SVOp
, ShiftElts
, Swap
, isLittleEndian
)) {
9861 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2i64
, V1
);
9863 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2i64
, V2
.isUndef() ? V1
: V2
);
9865 SDValue PermDI
= DAG
.getNode(PPCISD::XXPERMDI
, dl
, MVT::v2i64
, Conv1
, Conv2
,
9866 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
9867 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, PermDI
);
9870 if (Subtarget
.hasP9Vector()) {
9871 if (PPC::isXXBRHShuffleMask(SVOp
)) {
9872 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, V1
);
9873 SDValue ReveHWord
= DAG
.getNode(ISD::BSWAP
, dl
, MVT::v8i16
, Conv
);
9874 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveHWord
);
9875 } else if (PPC::isXXBRWShuffleMask(SVOp
)) {
9876 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
9877 SDValue ReveWord
= DAG
.getNode(ISD::BSWAP
, dl
, MVT::v4i32
, Conv
);
9878 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveWord
);
9879 } else if (PPC::isXXBRDShuffleMask(SVOp
)) {
9880 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2i64
, V1
);
9881 SDValue ReveDWord
= DAG
.getNode(ISD::BSWAP
, dl
, MVT::v2i64
, Conv
);
9882 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveDWord
);
9883 } else if (PPC::isXXBRQShuffleMask(SVOp
)) {
9884 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i128
, V1
);
9885 SDValue ReveQWord
= DAG
.getNode(ISD::BSWAP
, dl
, MVT::v1i128
, Conv
);
9886 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveQWord
);
9890 if (Subtarget
.hasVSX()) {
9891 if (V2
.isUndef() && PPC::isSplatShuffleMask(SVOp
, 4)) {
9892 int SplatIdx
= PPC::getSplatIdxForPPCMnemonics(SVOp
, 4, DAG
);
9894 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
9895 SDValue Splat
= DAG
.getNode(PPCISD::XXSPLT
, dl
, MVT::v4i32
, Conv
,
9896 DAG
.getConstant(SplatIdx
, dl
, MVT::i32
));
9897 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Splat
);
9900 // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9901 if (V2
.isUndef() && PPC::isVSLDOIShuffleMask(SVOp
, 1, DAG
) == 8) {
9902 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f64
, V1
);
9903 SDValue Swap
= DAG
.getNode(PPCISD::SWAP_NO_CHAIN
, dl
, MVT::v2f64
, Conv
);
9904 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Swap
);
9908 // Cases that are handled by instructions that take permute immediates
9909 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9910 // selected by the instruction selector.
9912 if (PPC::isSplatShuffleMask(SVOp
, 1) ||
9913 PPC::isSplatShuffleMask(SVOp
, 2) ||
9914 PPC::isSplatShuffleMask(SVOp
, 4) ||
9915 PPC::isVPKUWUMShuffleMask(SVOp
, 1, DAG
) ||
9916 PPC::isVPKUHUMShuffleMask(SVOp
, 1, DAG
) ||
9917 PPC::isVSLDOIShuffleMask(SVOp
, 1, DAG
) != -1 ||
9918 PPC::isVMRGLShuffleMask(SVOp
, 1, 1, DAG
) ||
9919 PPC::isVMRGLShuffleMask(SVOp
, 2, 1, DAG
) ||
9920 PPC::isVMRGLShuffleMask(SVOp
, 4, 1, DAG
) ||
9921 PPC::isVMRGHShuffleMask(SVOp
, 1, 1, DAG
) ||
9922 PPC::isVMRGHShuffleMask(SVOp
, 2, 1, DAG
) ||
9923 PPC::isVMRGHShuffleMask(SVOp
, 4, 1, DAG
) ||
9924 (Subtarget
.hasP8Altivec() && (
9925 PPC::isVPKUDUMShuffleMask(SVOp
, 1, DAG
) ||
9926 PPC::isVMRGEOShuffleMask(SVOp
, true, 1, DAG
) ||
9927 PPC::isVMRGEOShuffleMask(SVOp
, false, 1, DAG
)))) {
9932 // Altivec has a variety of "shuffle immediates" that take two vector inputs
9933 // and produce a fixed permutation. If any of these match, do not lower to
9935 unsigned int ShuffleKind
= isLittleEndian
? 2 : 0;
9936 if (PPC::isVPKUWUMShuffleMask(SVOp
, ShuffleKind
, DAG
) ||
9937 PPC::isVPKUHUMShuffleMask(SVOp
, ShuffleKind
, DAG
) ||
9938 PPC::isVSLDOIShuffleMask(SVOp
, ShuffleKind
, DAG
) != -1 ||
9939 PPC::isVMRGLShuffleMask(SVOp
, 1, ShuffleKind
, DAG
) ||
9940 PPC::isVMRGLShuffleMask(SVOp
, 2, ShuffleKind
, DAG
) ||
9941 PPC::isVMRGLShuffleMask(SVOp
, 4, ShuffleKind
, DAG
) ||
9942 PPC::isVMRGHShuffleMask(SVOp
, 1, ShuffleKind
, DAG
) ||
9943 PPC::isVMRGHShuffleMask(SVOp
, 2, ShuffleKind
, DAG
) ||
9944 PPC::isVMRGHShuffleMask(SVOp
, 4, ShuffleKind
, DAG
) ||
9945 (Subtarget
.hasP8Altivec() && (
9946 PPC::isVPKUDUMShuffleMask(SVOp
, ShuffleKind
, DAG
) ||
9947 PPC::isVMRGEOShuffleMask(SVOp
, true, ShuffleKind
, DAG
) ||
9948 PPC::isVMRGEOShuffleMask(SVOp
, false, ShuffleKind
, DAG
))))
9951 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
9952 // perfect shuffle table to emit an optimal matching sequence.
9953 ArrayRef
<int> PermMask
= SVOp
->getMask();
9955 unsigned PFIndexes
[4];
9956 bool isFourElementShuffle
= true;
9957 for (unsigned i
= 0; i
!= 4 && isFourElementShuffle
; ++i
) { // Element number
9958 unsigned EltNo
= 8; // Start out undef.
9959 for (unsigned j
= 0; j
!= 4; ++j
) { // Intra-element byte.
9960 if (PermMask
[i
*4+j
] < 0)
9961 continue; // Undef, ignore it.
9963 unsigned ByteSource
= PermMask
[i
*4+j
];
9964 if ((ByteSource
& 3) != j
) {
9965 isFourElementShuffle
= false;
9970 EltNo
= ByteSource
/4;
9971 } else if (EltNo
!= ByteSource
/4) {
9972 isFourElementShuffle
= false;
9976 PFIndexes
[i
] = EltNo
;
9979 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9980 // perfect shuffle vector to determine if it is cost effective to do this as
9981 // discrete instructions, or whether we should use a vperm.
9982 // For now, we skip this for little endian until such time as we have a
9983 // little-endian perfect shuffle table.
9984 if (isFourElementShuffle
&& !isLittleEndian
) {
9985 // Compute the index in the perfect shuffle table.
9986 unsigned PFTableIndex
=
9987 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
9989 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
9990 unsigned Cost
= (PFEntry
>> 30);
9992 // Determining when to avoid vperm is tricky. Many things affect the cost
9993 // of vperm, particularly how many times the perm mask needs to be computed.
9994 // For example, if the perm mask can be hoisted out of a loop or is already
9995 // used (perhaps because there are multiple permutes with the same shuffle
9996 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
9997 // the loop requires an extra register.
9999 // As a compromise, we only emit discrete instructions if the shuffle can be
10000 // generated in 3 or fewer operations. When we have loop information
10001 // available, if this block is within a loop, we should avoid using vperm
10002 // for 3-operation perms and use a constant pool load instead.
10004 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
10007 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10008 // vector that will get spilled to the constant pool.
10009 if (V2
.isUndef()) V2
= V1
;
10011 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10012 // that it is in input element units, not in bytes. Convert now.
10014 // For little endian, the order of the input vectors is reversed, and
10015 // the permutation mask is complemented with respect to 31. This is
10016 // necessary to produce proper semantics with the big-endian-biased vperm
10018 EVT EltVT
= V1
.getValueType().getVectorElementType();
10019 unsigned BytesPerElement
= EltVT
.getSizeInBits()/8;
10021 SmallVector
<SDValue
, 16> ResultMask
;
10022 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
10023 unsigned SrcElt
= PermMask
[i
] < 0 ? 0 : PermMask
[i
];
10025 for (unsigned j
= 0; j
!= BytesPerElement
; ++j
)
10026 if (isLittleEndian
)
10027 ResultMask
.push_back(DAG
.getConstant(31 - (SrcElt
*BytesPerElement
+ j
),
10030 ResultMask
.push_back(DAG
.getConstant(SrcElt
*BytesPerElement
+ j
, dl
,
10034 ShufflesHandledWithVPERM
++;
10035 SDValue VPermMask
= DAG
.getBuildVector(MVT::v16i8
, dl
, ResultMask
);
10036 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10037 LLVM_DEBUG(SVOp
->dump());
10038 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10039 LLVM_DEBUG(VPermMask
.dump());
10041 if (isLittleEndian
)
10042 return DAG
.getNode(PPCISD::VPERM
, dl
, V1
.getValueType(),
10043 V2
, V1
, VPermMask
);
10045 return DAG
.getNode(PPCISD::VPERM
, dl
, V1
.getValueType(),
10046 V1
, V2
, VPermMask
);
10049 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10050 /// vector comparison. If it is, return true and fill in Opc/isDot with
10051 /// information about the intrinsic.
10052 static bool getVectorCompareInfo(SDValue Intrin
, int &CompareOpc
,
10053 bool &isDot
, const PPCSubtarget
&Subtarget
) {
10054 unsigned IntrinsicID
=
10055 cast
<ConstantSDNode
>(Intrin
.getOperand(0))->getZExtValue();
10058 switch (IntrinsicID
) {
10061 // Comparison predicates.
10062 case Intrinsic::ppc_altivec_vcmpbfp_p
:
10066 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
10070 case Intrinsic::ppc_altivec_vcmpequb_p
:
10074 case Intrinsic::ppc_altivec_vcmpequh_p
:
10078 case Intrinsic::ppc_altivec_vcmpequw_p
:
10082 case Intrinsic::ppc_altivec_vcmpequd_p
:
10083 if (Subtarget
.hasVSX() || Subtarget
.hasP8Altivec()) {
10089 case Intrinsic::ppc_altivec_vcmpneb_p
:
10090 case Intrinsic::ppc_altivec_vcmpneh_p
:
10091 case Intrinsic::ppc_altivec_vcmpnew_p
:
10092 case Intrinsic::ppc_altivec_vcmpnezb_p
:
10093 case Intrinsic::ppc_altivec_vcmpnezh_p
:
10094 case Intrinsic::ppc_altivec_vcmpnezw_p
:
10095 if (Subtarget
.hasP9Altivec()) {
10096 switch (IntrinsicID
) {
10098 llvm_unreachable("Unknown comparison intrinsic.");
10099 case Intrinsic::ppc_altivec_vcmpneb_p
:
10102 case Intrinsic::ppc_altivec_vcmpneh_p
:
10105 case Intrinsic::ppc_altivec_vcmpnew_p
:
10108 case Intrinsic::ppc_altivec_vcmpnezb_p
:
10111 case Intrinsic::ppc_altivec_vcmpnezh_p
:
10114 case Intrinsic::ppc_altivec_vcmpnezw_p
:
10122 case Intrinsic::ppc_altivec_vcmpgefp_p
:
10126 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
10130 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
10134 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
10138 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
10142 case Intrinsic::ppc_altivec_vcmpgtsd_p
:
10143 if (Subtarget
.hasVSX() || Subtarget
.hasP8Altivec()) {
10149 case Intrinsic::ppc_altivec_vcmpgtub_p
:
10153 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
10157 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
10161 case Intrinsic::ppc_altivec_vcmpgtud_p
:
10162 if (Subtarget
.hasVSX() || Subtarget
.hasP8Altivec()) {
10169 case Intrinsic::ppc_altivec_vcmpequq
:
10170 case Intrinsic::ppc_altivec_vcmpgtsq
:
10171 case Intrinsic::ppc_altivec_vcmpgtuq
:
10172 if (!Subtarget
.isISA3_1())
10174 switch (IntrinsicID
) {
10176 llvm_unreachable("Unknown comparison intrinsic.");
10177 case Intrinsic::ppc_altivec_vcmpequq
:
10180 case Intrinsic::ppc_altivec_vcmpgtsq
:
10183 case Intrinsic::ppc_altivec_vcmpgtuq
:
10189 // VSX predicate comparisons use the same infrastructure
10190 case Intrinsic::ppc_vsx_xvcmpeqdp_p
:
10191 case Intrinsic::ppc_vsx_xvcmpgedp_p
:
10192 case Intrinsic::ppc_vsx_xvcmpgtdp_p
:
10193 case Intrinsic::ppc_vsx_xvcmpeqsp_p
:
10194 case Intrinsic::ppc_vsx_xvcmpgesp_p
:
10195 case Intrinsic::ppc_vsx_xvcmpgtsp_p
:
10196 if (Subtarget
.hasVSX()) {
10197 switch (IntrinsicID
) {
10198 case Intrinsic::ppc_vsx_xvcmpeqdp_p
:
10201 case Intrinsic::ppc_vsx_xvcmpgedp_p
:
10204 case Intrinsic::ppc_vsx_xvcmpgtdp_p
:
10207 case Intrinsic::ppc_vsx_xvcmpeqsp_p
:
10210 case Intrinsic::ppc_vsx_xvcmpgesp_p
:
10213 case Intrinsic::ppc_vsx_xvcmpgtsp_p
:
10222 // Normal Comparisons.
10223 case Intrinsic::ppc_altivec_vcmpbfp
:
10226 case Intrinsic::ppc_altivec_vcmpeqfp
:
10229 case Intrinsic::ppc_altivec_vcmpequb
:
10232 case Intrinsic::ppc_altivec_vcmpequh
:
10235 case Intrinsic::ppc_altivec_vcmpequw
:
10238 case Intrinsic::ppc_altivec_vcmpequd
:
10239 if (Subtarget
.hasP8Altivec())
10244 case Intrinsic::ppc_altivec_vcmpneb
:
10245 case Intrinsic::ppc_altivec_vcmpneh
:
10246 case Intrinsic::ppc_altivec_vcmpnew
:
10247 case Intrinsic::ppc_altivec_vcmpnezb
:
10248 case Intrinsic::ppc_altivec_vcmpnezh
:
10249 case Intrinsic::ppc_altivec_vcmpnezw
:
10250 if (Subtarget
.hasP9Altivec())
10251 switch (IntrinsicID
) {
10253 llvm_unreachable("Unknown comparison intrinsic.");
10254 case Intrinsic::ppc_altivec_vcmpneb
:
10257 case Intrinsic::ppc_altivec_vcmpneh
:
10260 case Intrinsic::ppc_altivec_vcmpnew
:
10263 case Intrinsic::ppc_altivec_vcmpnezb
:
10266 case Intrinsic::ppc_altivec_vcmpnezh
:
10269 case Intrinsic::ppc_altivec_vcmpnezw
:
10276 case Intrinsic::ppc_altivec_vcmpgefp
:
10279 case Intrinsic::ppc_altivec_vcmpgtfp
:
10282 case Intrinsic::ppc_altivec_vcmpgtsb
:
10285 case Intrinsic::ppc_altivec_vcmpgtsh
:
10288 case Intrinsic::ppc_altivec_vcmpgtsw
:
10291 case Intrinsic::ppc_altivec_vcmpgtsd
:
10292 if (Subtarget
.hasP8Altivec())
10297 case Intrinsic::ppc_altivec_vcmpgtub
:
10300 case Intrinsic::ppc_altivec_vcmpgtuh
:
10303 case Intrinsic::ppc_altivec_vcmpgtuw
:
10306 case Intrinsic::ppc_altivec_vcmpgtud
:
10307 if (Subtarget
.hasP8Altivec())
10312 case Intrinsic::ppc_altivec_vcmpequq_p
:
10313 case Intrinsic::ppc_altivec_vcmpgtsq_p
:
10314 case Intrinsic::ppc_altivec_vcmpgtuq_p
:
10315 if (!Subtarget
.isISA3_1())
10317 switch (IntrinsicID
) {
10319 llvm_unreachable("Unknown comparison intrinsic.");
10320 case Intrinsic::ppc_altivec_vcmpequq_p
:
10323 case Intrinsic::ppc_altivec_vcmpgtsq_p
:
10326 case Intrinsic::ppc_altivec_vcmpgtuq_p
:
10336 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10337 /// lower, do it, otherwise return null.
10338 SDValue
PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
10339 SelectionDAG
&DAG
) const {
10340 unsigned IntrinsicID
=
10341 cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
10345 switch (IntrinsicID
) {
10346 case Intrinsic::thread_pointer
:
10347 // Reads the thread pointer register, used for __builtin_thread_pointer.
10348 if (Subtarget
.isPPC64())
10349 return DAG
.getRegister(PPC::X13
, MVT::i64
);
10350 return DAG
.getRegister(PPC::R2
, MVT::i32
);
10352 case Intrinsic::ppc_mma_disassemble_acc
:
10353 case Intrinsic::ppc_vsx_disassemble_pair
: {
10355 SDValue WideVec
= Op
.getOperand(1);
10356 if (IntrinsicID
== Intrinsic::ppc_mma_disassemble_acc
) {
10358 WideVec
= DAG
.getNode(PPCISD::XXMFACC
, dl
, MVT::v512i1
, WideVec
);
10360 SmallVector
<SDValue
, 4> RetOps
;
10361 for (int VecNo
= 0; VecNo
< NumVecs
; VecNo
++) {
10362 SDValue Extract
= DAG
.getNode(
10363 PPCISD::EXTRACT_VSX_REG
, dl
, MVT::v16i8
, WideVec
,
10364 DAG
.getConstant(Subtarget
.isLittleEndian() ? NumVecs
- 1 - VecNo
10366 dl
, getPointerTy(DAG
.getDataLayout())));
10367 RetOps
.push_back(Extract
);
10369 return DAG
.getMergeValues(RetOps
, dl
);
10373 // If this is a lowered altivec predicate compare, CompareOpc is set to the
10374 // opcode number of the comparison.
10377 if (!getVectorCompareInfo(Op
, CompareOpc
, isDot
, Subtarget
))
10378 return SDValue(); // Don't custom lower most intrinsics.
10380 // If this is a non-dot comparison, make the VCMP node and we are done.
10382 SDValue Tmp
= DAG
.getNode(PPCISD::VCMP
, dl
, Op
.getOperand(2).getValueType(),
10383 Op
.getOperand(1), Op
.getOperand(2),
10384 DAG
.getConstant(CompareOpc
, dl
, MVT::i32
));
10385 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Tmp
);
10388 // Create the PPCISD altivec 'dot' comparison node.
10390 Op
.getOperand(2), // LHS
10391 Op
.getOperand(3), // RHS
10392 DAG
.getConstant(CompareOpc
, dl
, MVT::i32
)
10394 EVT VTs
[] = { Op
.getOperand(2).getValueType(), MVT::Glue
};
10395 SDValue CompNode
= DAG
.getNode(PPCISD::VCMP_rec
, dl
, VTs
, Ops
);
10397 // Now that we have the comparison, emit a copy from the CR to a GPR.
10398 // This is flagged to the above dot comparison.
10399 SDValue Flags
= DAG
.getNode(PPCISD::MFOCRF
, dl
, MVT::i32
,
10400 DAG
.getRegister(PPC::CR6
, MVT::i32
),
10401 CompNode
.getValue(1));
10403 // Unpack the result based on how the target uses it.
10404 unsigned BitNo
; // Bit # of CR6.
10405 bool InvertBit
; // Invert result?
10406 switch (cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue()) {
10407 default: // Can't happen, don't crash on invalid number though.
10408 case 0: // Return the value of the EQ bit of CR6.
10409 BitNo
= 0; InvertBit
= false;
10411 case 1: // Return the inverted value of the EQ bit of CR6.
10412 BitNo
= 0; InvertBit
= true;
10414 case 2: // Return the value of the LT bit of CR6.
10415 BitNo
= 2; InvertBit
= false;
10417 case 3: // Return the inverted value of the LT bit of CR6.
10418 BitNo
= 2; InvertBit
= true;
10422 // Shift the bit into the low position.
10423 Flags
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Flags
,
10424 DAG
.getConstant(8 - (3 - BitNo
), dl
, MVT::i32
));
10425 // Isolate the bit.
10426 Flags
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Flags
,
10427 DAG
.getConstant(1, dl
, MVT::i32
));
10429 // If we are supposed to, toggle the bit.
10431 Flags
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Flags
,
10432 DAG
.getConstant(1, dl
, MVT::i32
));
10436 SDValue
PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op
,
10437 SelectionDAG
&DAG
) const {
10438 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10439 // the beginning of the argument list.
10440 int ArgStart
= isa
<ConstantSDNode
>(Op
.getOperand(0)) ? 0 : 1;
10442 switch (cast
<ConstantSDNode
>(Op
.getOperand(ArgStart
))->getZExtValue()) {
10443 case Intrinsic::ppc_cfence
: {
10444 assert(ArgStart
== 1 && "llvm.ppc.cfence must carry a chain argument.");
10445 assert(Subtarget
.isPPC64() && "Only 64-bit is supported for now.");
10446 return SDValue(DAG
.getMachineNode(PPC::CFENCE8
, DL
, MVT::Other
,
10447 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
,
10448 Op
.getOperand(ArgStart
+ 1)),
10458 // Lower scalar BSWAP64 to xxbrd.
10459 SDValue
PPCTargetLowering::LowerBSWAP(SDValue Op
, SelectionDAG
&DAG
) const {
10461 if (!Subtarget
.isPPC64())
10464 Op
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i64
, Op
.getOperand(0),
10467 Op
= DAG
.getNode(ISD::BSWAP
, dl
, MVT::v2i64
, Op
);
10469 int VectorIndex
= 0;
10470 if (Subtarget
.isLittleEndian())
10472 Op
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
, Op
,
10473 DAG
.getTargetConstant(VectorIndex
, dl
, MVT::i32
));
10477 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10478 // compared to a value that is atomically loaded (atomic loads zero-extend).
10479 SDValue
PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op
,
10480 SelectionDAG
&DAG
) const {
10481 assert(Op
.getOpcode() == ISD::ATOMIC_CMP_SWAP
&&
10482 "Expecting an atomic compare-and-swap here.");
10484 auto *AtomicNode
= cast
<AtomicSDNode
>(Op
.getNode());
10485 EVT MemVT
= AtomicNode
->getMemoryVT();
10486 if (MemVT
.getSizeInBits() >= 32)
10489 SDValue CmpOp
= Op
.getOperand(2);
10490 // If this is already correctly zero-extended, leave it alone.
10491 auto HighBits
= APInt::getHighBitsSet(32, 32 - MemVT
.getSizeInBits());
10492 if (DAG
.MaskedValueIsZero(CmpOp
, HighBits
))
10495 // Clear the high bits of the compare operand.
10496 unsigned MaskVal
= (1 << MemVT
.getSizeInBits()) - 1;
10498 DAG
.getNode(ISD::AND
, dl
, MVT::i32
, CmpOp
,
10499 DAG
.getConstant(MaskVal
, dl
, MVT::i32
));
10501 // Replace the existing compare operand with the properly zero-extended one.
10502 SmallVector
<SDValue
, 4> Ops
;
10503 for (int i
= 0, e
= AtomicNode
->getNumOperands(); i
< e
; i
++)
10504 Ops
.push_back(AtomicNode
->getOperand(i
));
10506 MachineMemOperand
*MMO
= AtomicNode
->getMemOperand();
10507 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::Other
);
10509 (MemVT
== MVT::i8
) ? PPCISD::ATOMIC_CMP_SWAP_8
: PPCISD::ATOMIC_CMP_SWAP_16
;
10510 return DAG
.getMemIntrinsicNode(NodeTy
, dl
, Tys
, Ops
, MemVT
, MMO
);
10513 SDValue
PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
,
10514 SelectionDAG
&DAG
) const {
10516 // Create a stack slot that is 16-byte aligned.
10517 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
10518 int FrameIdx
= MFI
.CreateStackObject(16, Align(16), false);
10519 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
10520 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
10522 // Store the input value into Value#0 of the stack slot.
10523 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0), FIdx
,
10524 MachinePointerInfo());
10526 return DAG
.getLoad(Op
.getValueType(), dl
, Store
, FIdx
, MachinePointerInfo());
10529 SDValue
PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
10530 SelectionDAG
&DAG
) const {
10531 assert(Op
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
10532 "Should only be called for ISD::INSERT_VECTOR_ELT");
10534 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
10536 EVT VT
= Op
.getValueType();
10538 SDValue V1
= Op
.getOperand(0);
10539 SDValue V2
= Op
.getOperand(1);
10540 SDValue V3
= Op
.getOperand(2);
10542 if (VT
== MVT::v2f64
&& C
)
10545 if (Subtarget
.isISA3_1()) {
10546 if ((VT
== MVT::v2i64
|| VT
== MVT::v2f64
) && !Subtarget
.isPPC64())
10548 // On P10, we have legal lowering for constant and variable indices for
10549 // integer vectors.
10550 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
10552 return DAG
.getNode(PPCISD::VECINSERT
, dl
, VT
, V1
, V2
, V3
);
10553 // For f32 and f64 vectors, we have legal lowering for variable indices.
10554 // For f32 we also have legal lowering when the element is loaded from
10556 if (VT
== MVT::v4f32
|| VT
== MVT::v2f64
) {
10557 if (!C
|| (VT
== MVT::v4f32
&& dyn_cast
<LoadSDNode
>(V2
)))
10558 return DAG
.getNode(PPCISD::VECINSERT
, dl
, VT
, V1
, V2
, V3
);
10563 // Before P10, we have legal lowering for constant indices but not for
10568 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10569 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
10570 SDValue Mtvsrz
= DAG
.getNode(PPCISD::MTVSRZ
, dl
, VT
, V2
);
10571 unsigned BytesInEachElement
= VT
.getVectorElementType().getSizeInBits() / 8;
10572 unsigned InsertAtElement
= C
->getZExtValue();
10573 unsigned InsertAtByte
= InsertAtElement
* BytesInEachElement
;
10574 if (Subtarget
.isLittleEndian()) {
10575 InsertAtByte
= (16 - BytesInEachElement
) - InsertAtByte
;
10577 return DAG
.getNode(PPCISD::VECINSERT
, dl
, VT
, V1
, Mtvsrz
,
10578 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
10583 SDValue
PPCTargetLowering::LowerVectorLoad(SDValue Op
,
10584 SelectionDAG
&DAG
) const {
10586 LoadSDNode
*LN
= cast
<LoadSDNode
>(Op
.getNode());
10587 SDValue LoadChain
= LN
->getChain();
10588 SDValue BasePtr
= LN
->getBasePtr();
10589 EVT VT
= Op
.getValueType();
10591 if (VT
!= MVT::v256i1
&& VT
!= MVT::v512i1
)
10594 // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10595 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10596 // 2 or 4 vsx registers.
10597 assert((VT
!= MVT::v512i1
|| Subtarget
.hasMMA()) &&
10598 "Type unsupported without MMA");
10599 assert((VT
!= MVT::v256i1
|| Subtarget
.pairedVectorMemops()) &&
10600 "Type unsupported without paired vector support");
10601 Align Alignment
= LN
->getAlign();
10602 SmallVector
<SDValue
, 4> Loads
;
10603 SmallVector
<SDValue
, 4> LoadChains
;
10604 unsigned NumVecs
= VT
.getSizeInBits() / 128;
10605 for (unsigned Idx
= 0; Idx
< NumVecs
; ++Idx
) {
10607 DAG
.getLoad(MVT::v16i8
, dl
, LoadChain
, BasePtr
,
10608 LN
->getPointerInfo().getWithOffset(Idx
* 16),
10609 commonAlignment(Alignment
, Idx
* 16),
10610 LN
->getMemOperand()->getFlags(), LN
->getAAInfo());
10611 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
10612 DAG
.getConstant(16, dl
, BasePtr
.getValueType()));
10613 Loads
.push_back(Load
);
10614 LoadChains
.push_back(Load
.getValue(1));
10616 if (Subtarget
.isLittleEndian()) {
10617 std::reverse(Loads
.begin(), Loads
.end());
10618 std::reverse(LoadChains
.begin(), LoadChains
.end());
10620 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
10622 DAG
.getNode(VT
== MVT::v512i1
? PPCISD::ACC_BUILD
: PPCISD::PAIR_BUILD
,
10624 SDValue RetOps
[] = {Value
, TF
};
10625 return DAG
.getMergeValues(RetOps
, dl
);
10628 SDValue
PPCTargetLowering::LowerVectorStore(SDValue Op
,
10629 SelectionDAG
&DAG
) const {
10631 StoreSDNode
*SN
= cast
<StoreSDNode
>(Op
.getNode());
10632 SDValue StoreChain
= SN
->getChain();
10633 SDValue BasePtr
= SN
->getBasePtr();
10634 SDValue Value
= SN
->getValue();
10635 EVT StoreVT
= Value
.getValueType();
10637 if (StoreVT
!= MVT::v256i1
&& StoreVT
!= MVT::v512i1
)
10640 // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10641 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10642 // underlying registers individually.
10643 assert((StoreVT
!= MVT::v512i1
|| Subtarget
.hasMMA()) &&
10644 "Type unsupported without MMA");
10645 assert((StoreVT
!= MVT::v256i1
|| Subtarget
.pairedVectorMemops()) &&
10646 "Type unsupported without paired vector support");
10647 Align Alignment
= SN
->getAlign();
10648 SmallVector
<SDValue
, 4> Stores
;
10649 unsigned NumVecs
= 2;
10650 if (StoreVT
== MVT::v512i1
) {
10651 Value
= DAG
.getNode(PPCISD::XXMFACC
, dl
, MVT::v512i1
, Value
);
10654 for (unsigned Idx
= 0; Idx
< NumVecs
; ++Idx
) {
10655 unsigned VecNum
= Subtarget
.isLittleEndian() ? NumVecs
- 1 - Idx
: Idx
;
10656 SDValue Elt
= DAG
.getNode(PPCISD::EXTRACT_VSX_REG
, dl
, MVT::v16i8
, Value
,
10657 DAG
.getConstant(VecNum
, dl
, getPointerTy(DAG
.getDataLayout())));
10659 DAG
.getStore(StoreChain
, dl
, Elt
, BasePtr
,
10660 SN
->getPointerInfo().getWithOffset(Idx
* 16),
10661 commonAlignment(Alignment
, Idx
* 16),
10662 SN
->getMemOperand()->getFlags(), SN
->getAAInfo());
10663 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
10664 DAG
.getConstant(16, dl
, BasePtr
.getValueType()));
10665 Stores
.push_back(Store
);
10667 SDValue TF
= DAG
.getTokenFactor(dl
, Stores
);
10671 SDValue
PPCTargetLowering::LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const {
10673 if (Op
.getValueType() == MVT::v4i32
) {
10674 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
10676 SDValue Zero
= getCanonicalConstSplat(0, 1, MVT::v4i32
, DAG
, dl
);
10677 // +16 as shift amt.
10678 SDValue Neg16
= getCanonicalConstSplat(-16, 4, MVT::v4i32
, DAG
, dl
);
10679 SDValue RHSSwap
= // = vrlw RHS, 16
10680 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw
, RHS
, Neg16
, DAG
, dl
);
10682 // Shrinkify inputs to v8i16.
10683 LHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, LHS
);
10684 RHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, RHS
);
10685 RHSSwap
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, RHSSwap
);
10687 // Low parts multiplied together, generating 32-bit results (we ignore the
10689 SDValue LoProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh
,
10690 LHS
, RHS
, DAG
, dl
, MVT::v4i32
);
10692 SDValue HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm
,
10693 LHS
, RHSSwap
, Zero
, DAG
, dl
, MVT::v4i32
);
10694 // Shift the high parts up 16 bits.
10695 HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, HiProd
,
10697 return DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, LoProd
, HiProd
);
10698 } else if (Op
.getValueType() == MVT::v16i8
) {
10699 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
10700 bool isLittleEndian
= Subtarget
.isLittleEndian();
10702 // Multiply the even 8-bit parts, producing 16-bit sums.
10703 SDValue EvenParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub
,
10704 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
10705 EvenParts
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, EvenParts
);
10707 // Multiply the odd 8-bit parts, producing 16-bit sums.
10708 SDValue OddParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub
,
10709 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
10710 OddParts
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OddParts
);
10712 // Merge the results together. Because vmuleub and vmuloub are
10713 // instructions with a big-endian bias, we must reverse the
10714 // element numbering and reverse the meaning of "odd" and "even"
10715 // when generating little endian code.
10717 for (unsigned i
= 0; i
!= 8; ++i
) {
10718 if (isLittleEndian
) {
10720 Ops
[i
*2+1] = 2*i
+16;
10723 Ops
[i
*2+1] = 2*i
+1+16;
10726 if (isLittleEndian
)
10727 return DAG
.getVectorShuffle(MVT::v16i8
, dl
, OddParts
, EvenParts
, Ops
);
10729 return DAG
.getVectorShuffle(MVT::v16i8
, dl
, EvenParts
, OddParts
, Ops
);
10731 llvm_unreachable("Unknown mul to lower!");
10735 SDValue
PPCTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
10736 bool IsStrict
= Op
->isStrictFPOpcode();
10737 if (Op
.getOperand(IsStrict
? 1 : 0).getValueType() == MVT::f128
&&
10738 !Subtarget
.hasP9Vector())
10744 // Custom lowering for fpext vf32 to v2f64
10745 SDValue
PPCTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
10747 assert(Op
.getOpcode() == ISD::FP_EXTEND
&&
10748 "Should only be called for ISD::FP_EXTEND");
10750 // FIXME: handle extends from half precision float vectors on P9.
10751 // We only want to custom lower an extend from v2f32 to v2f64.
10752 if (Op
.getValueType() != MVT::v2f64
||
10753 Op
.getOperand(0).getValueType() != MVT::v2f32
)
10757 SDValue Op0
= Op
.getOperand(0);
10759 switch (Op0
.getOpcode()) {
10762 case ISD::EXTRACT_SUBVECTOR
: {
10763 assert(Op0
.getNumOperands() == 2 &&
10764 isa
<ConstantSDNode
>(Op0
->getOperand(1)) &&
10765 "Node should have 2 operands with second one being a constant!");
10767 if (Op0
.getOperand(0).getValueType() != MVT::v4f32
)
10770 // Custom lower is only done for high or low doubleword.
10771 int Idx
= cast
<ConstantSDNode
>(Op0
.getOperand(1))->getZExtValue();
10775 // Since input is v4f32, at this point Idx is either 0 or 2.
10776 // Shift to get the doubleword position we want.
10777 int DWord
= Idx
>> 1;
10779 // High and low word positions are different on little endian.
10780 if (Subtarget
.isLittleEndian())
10783 return DAG
.getNode(PPCISD::FP_EXTEND_HALF
, dl
, MVT::v2f64
,
10784 Op0
.getOperand(0), DAG
.getConstant(DWord
, dl
, MVT::i32
));
10789 SDValue NewLoad
[2];
10790 for (unsigned i
= 0, ie
= Op0
.getNumOperands(); i
!= ie
; ++i
) {
10791 // Ensure both input are loads.
10792 SDValue LdOp
= Op0
.getOperand(i
);
10793 if (LdOp
.getOpcode() != ISD::LOAD
)
10795 // Generate new load node.
10796 LoadSDNode
*LD
= cast
<LoadSDNode
>(LdOp
);
10797 SDValue LoadOps
[] = {LD
->getChain(), LD
->getBasePtr()};
10798 NewLoad
[i
] = DAG
.getMemIntrinsicNode(
10799 PPCISD::LD_VSX_LH
, dl
, DAG
.getVTList(MVT::v4f32
, MVT::Other
), LoadOps
,
10800 LD
->getMemoryVT(), LD
->getMemOperand());
10803 DAG
.getNode(Op0
.getOpcode(), SDLoc(Op0
), MVT::v4f32
, NewLoad
[0],
10804 NewLoad
[1], Op0
.getNode()->getFlags());
10805 return DAG
.getNode(PPCISD::FP_EXTEND_HALF
, dl
, MVT::v2f64
, NewOp
,
10806 DAG
.getConstant(0, dl
, MVT::i32
));
10809 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op0
);
10810 SDValue LoadOps
[] = {LD
->getChain(), LD
->getBasePtr()};
10811 SDValue NewLd
= DAG
.getMemIntrinsicNode(
10812 PPCISD::LD_VSX_LH
, dl
, DAG
.getVTList(MVT::v4f32
, MVT::Other
), LoadOps
,
10813 LD
->getMemoryVT(), LD
->getMemOperand());
10814 return DAG
.getNode(PPCISD::FP_EXTEND_HALF
, dl
, MVT::v2f64
, NewLd
,
10815 DAG
.getConstant(0, dl
, MVT::i32
));
10818 llvm_unreachable("ERROR:Should return for all cases within swtich.");
10821 /// LowerOperation - Provide custom lowering hooks for some operations.
10823 SDValue
PPCTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
10824 switch (Op
.getOpcode()) {
10825 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10826 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
10827 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
10828 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
10829 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
10830 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
10831 case ISD::STRICT_FSETCC
:
10832 case ISD::STRICT_FSETCCS
:
10833 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
10834 case ISD::INIT_TRAMPOLINE
: return LowerINIT_TRAMPOLINE(Op
, DAG
);
10835 case ISD::ADJUST_TRAMPOLINE
: return LowerADJUST_TRAMPOLINE(Op
, DAG
);
10837 case ISD::INLINEASM
:
10838 case ISD::INLINEASM_BR
: return LowerINLINEASM(Op
, DAG
);
10839 // Variable argument lowering.
10840 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
10841 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
10842 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
10844 case ISD::STACKRESTORE
: return LowerSTACKRESTORE(Op
, DAG
);
10845 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
10846 case ISD::GET_DYNAMIC_AREA_OFFSET
:
10847 return LowerGET_DYNAMIC_AREA_OFFSET(Op
, DAG
);
10849 // Exception handling lowering.
10850 case ISD::EH_DWARF_CFA
: return LowerEH_DWARF_CFA(Op
, DAG
);
10851 case ISD::EH_SJLJ_SETJMP
: return lowerEH_SJLJ_SETJMP(Op
, DAG
);
10852 case ISD::EH_SJLJ_LONGJMP
: return lowerEH_SJLJ_LONGJMP(Op
, DAG
);
10854 case ISD::LOAD
: return LowerLOAD(Op
, DAG
);
10855 case ISD::STORE
: return LowerSTORE(Op
, DAG
);
10856 case ISD::TRUNCATE
: return LowerTRUNCATE(Op
, DAG
);
10857 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
10858 case ISD::STRICT_FP_TO_UINT
:
10859 case ISD::STRICT_FP_TO_SINT
:
10860 case ISD::FP_TO_UINT
:
10861 case ISD::FP_TO_SINT
: return LowerFP_TO_INT(Op
, DAG
, SDLoc(Op
));
10862 case ISD::STRICT_UINT_TO_FP
:
10863 case ISD::STRICT_SINT_TO_FP
:
10864 case ISD::UINT_TO_FP
:
10865 case ISD::SINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
10866 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
10868 // Lower 64-bit shifts.
10869 case ISD::SHL_PARTS
: return LowerSHL_PARTS(Op
, DAG
);
10870 case ISD::SRL_PARTS
: return LowerSRL_PARTS(Op
, DAG
);
10871 case ISD::SRA_PARTS
: return LowerSRA_PARTS(Op
, DAG
);
10873 case ISD::FSHL
: return LowerFunnelShift(Op
, DAG
);
10874 case ISD::FSHR
: return LowerFunnelShift(Op
, DAG
);
10876 // Vector-related lowering.
10877 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
10878 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
10879 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
10880 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
10881 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
10882 case ISD::MUL
: return LowerMUL(Op
, DAG
);
10883 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
10884 case ISD::STRICT_FP_ROUND
:
10885 case ISD::FP_ROUND
:
10886 return LowerFP_ROUND(Op
, DAG
);
10887 case ISD::ROTL
: return LowerROTL(Op
, DAG
);
10889 // For counter-based loop handling.
10890 case ISD::INTRINSIC_W_CHAIN
: return SDValue();
10892 case ISD::BITCAST
: return LowerBITCAST(Op
, DAG
);
10894 // Frame & Return address.
10895 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
10896 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
10898 case ISD::INTRINSIC_VOID
:
10899 return LowerINTRINSIC_VOID(Op
, DAG
);
10901 return LowerBSWAP(Op
, DAG
);
10902 case ISD::ATOMIC_CMP_SWAP
:
10903 return LowerATOMIC_CMP_SWAP(Op
, DAG
);
10907 void PPCTargetLowering::ReplaceNodeResults(SDNode
*N
,
10908 SmallVectorImpl
<SDValue
>&Results
,
10909 SelectionDAG
&DAG
) const {
10911 switch (N
->getOpcode()) {
10913 llvm_unreachable("Do not know how to custom type legalize this operation!");
10914 case ISD::READCYCLECOUNTER
: {
10915 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
10916 SDValue RTB
= DAG
.getNode(PPCISD::READ_TIME_BASE
, dl
, VTs
, N
->getOperand(0));
10919 DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, RTB
, RTB
.getValue(1)));
10920 Results
.push_back(RTB
.getValue(2));
10923 case ISD::INTRINSIC_W_CHAIN
: {
10924 if (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue() !=
10925 Intrinsic::loop_decrement
)
10928 assert(N
->getValueType(0) == MVT::i1
&&
10929 "Unexpected result type for CTR decrement intrinsic");
10930 EVT SVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
10931 N
->getValueType(0));
10932 SDVTList VTs
= DAG
.getVTList(SVT
, MVT::Other
);
10933 SDValue NewInt
= DAG
.getNode(N
->getOpcode(), dl
, VTs
, N
->getOperand(0),
10936 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, NewInt
));
10937 Results
.push_back(NewInt
.getValue(1));
10941 if (!Subtarget
.isSVR4ABI() || Subtarget
.isPPC64())
10944 EVT VT
= N
->getValueType(0);
10946 if (VT
== MVT::i64
) {
10947 SDValue NewNode
= LowerVAARG(SDValue(N
, 1), DAG
);
10949 Results
.push_back(NewNode
);
10950 Results
.push_back(NewNode
.getValue(1));
10954 case ISD::STRICT_FP_TO_SINT
:
10955 case ISD::STRICT_FP_TO_UINT
:
10956 case ISD::FP_TO_SINT
:
10957 case ISD::FP_TO_UINT
:
10958 // LowerFP_TO_INT() can only handle f32 and f64.
10959 if (N
->getOperand(N
->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10962 Results
.push_back(LowerFP_TO_INT(SDValue(N
, 0), DAG
, dl
));
10964 case ISD::TRUNCATE
: {
10965 if (!N
->getValueType(0).isVector())
10967 SDValue Lowered
= LowerTRUNCATEVector(SDValue(N
, 0), DAG
);
10969 Results
.push_back(Lowered
);
10974 // Don't handle funnel shifts here.
10977 // Don't handle bitcast here.
10979 case ISD::FP_EXTEND
:
10980 SDValue Lowered
= LowerFP_EXTEND(SDValue(N
, 0), DAG
);
10982 Results
.push_back(Lowered
);
10987 //===----------------------------------------------------------------------===//
10988 // Other Lowering Code
10989 //===----------------------------------------------------------------------===//
10991 static Instruction
*callIntrinsic(IRBuilderBase
&Builder
, Intrinsic::ID Id
) {
10992 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
10993 Function
*Func
= Intrinsic::getDeclaration(M
, Id
);
10994 return Builder
.CreateCall(Func
, {});
10997 // The mappings for emitLeading/TrailingFence is taken from
10998 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10999 Instruction
*PPCTargetLowering::emitLeadingFence(IRBuilderBase
&Builder
,
11001 AtomicOrdering Ord
) const {
11002 if (Ord
== AtomicOrdering::SequentiallyConsistent
)
11003 return callIntrinsic(Builder
, Intrinsic::ppc_sync
);
11004 if (isReleaseOrStronger(Ord
))
11005 return callIntrinsic(Builder
, Intrinsic::ppc_lwsync
);
11009 Instruction
*PPCTargetLowering::emitTrailingFence(IRBuilderBase
&Builder
,
11011 AtomicOrdering Ord
) const {
11012 if (Inst
->hasAtomicLoad() && isAcquireOrStronger(Ord
)) {
11013 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11014 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11015 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11016 if (isa
<LoadInst
>(Inst
) && Subtarget
.isPPC64())
11017 return Builder
.CreateCall(
11018 Intrinsic::getDeclaration(
11019 Builder
.GetInsertBlock()->getParent()->getParent(),
11020 Intrinsic::ppc_cfence
, {Inst
->getType()}),
11022 // FIXME: Can use isync for rmw operation.
11023 return callIntrinsic(Builder
, Intrinsic::ppc_lwsync
);
11028 MachineBasicBlock
*
11029 PPCTargetLowering::EmitAtomicBinary(MachineInstr
&MI
, MachineBasicBlock
*BB
,
11030 unsigned AtomicSize
,
11031 unsigned BinOpcode
,
11032 unsigned CmpOpcode
,
11033 unsigned CmpPred
) const {
11034 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11035 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
11037 auto LoadMnemonic
= PPC::LDARX
;
11038 auto StoreMnemonic
= PPC::STDCX
;
11039 switch (AtomicSize
) {
11041 llvm_unreachable("Unexpected size of atomic entity");
11043 LoadMnemonic
= PPC::LBARX
;
11044 StoreMnemonic
= PPC::STBCX
;
11045 assert(Subtarget
.hasPartwordAtomics() && "Call this only with size >=4");
11048 LoadMnemonic
= PPC::LHARX
;
11049 StoreMnemonic
= PPC::STHCX
;
11050 assert(Subtarget
.hasPartwordAtomics() && "Call this only with size >=4");
11053 LoadMnemonic
= PPC::LWARX
;
11054 StoreMnemonic
= PPC::STWCX
;
11057 LoadMnemonic
= PPC::LDARX
;
11058 StoreMnemonic
= PPC::STDCX
;
11062 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
11063 MachineFunction
*F
= BB
->getParent();
11064 MachineFunction::iterator It
= ++BB
->getIterator();
11066 Register dest
= MI
.getOperand(0).getReg();
11067 Register ptrA
= MI
.getOperand(1).getReg();
11068 Register ptrB
= MI
.getOperand(2).getReg();
11069 Register incr
= MI
.getOperand(3).getReg();
11070 DebugLoc dl
= MI
.getDebugLoc();
11072 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11073 MachineBasicBlock
*loop2MBB
=
11074 CmpOpcode
? F
->CreateMachineBasicBlock(LLVM_BB
) : nullptr;
11075 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11076 F
->insert(It
, loopMBB
);
11078 F
->insert(It
, loop2MBB
);
11079 F
->insert(It
, exitMBB
);
11080 exitMBB
->splice(exitMBB
->begin(), BB
,
11081 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
11082 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
11084 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11085 Register TmpReg
= (!BinOpcode
) ? incr
:
11086 RegInfo
.createVirtualRegister( AtomicSize
== 8 ? &PPC::G8RCRegClass
11087 : &PPC::GPRCRegClass
);
11091 // fallthrough --> loopMBB
11092 BB
->addSuccessor(loopMBB
);
11095 // l[wd]arx dest, ptr
11096 // add r0, dest, incr
11097 // st[wd]cx. r0, ptr
11099 // fallthrough --> exitMBB
11103 // l[wd]arx dest, ptr
11104 // cmpl?[wd] incr, dest
11107 // st[wd]cx. dest, ptr
11109 // fallthrough --> exitMBB
11112 BuildMI(BB
, dl
, TII
->get(LoadMnemonic
), dest
)
11113 .addReg(ptrA
).addReg(ptrB
);
11115 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
).addReg(incr
).addReg(dest
);
11117 // Signed comparisons of byte or halfword values must be sign-extended.
11118 if (CmpOpcode
== PPC::CMPW
&& AtomicSize
< 4) {
11119 Register ExtReg
= RegInfo
.createVirtualRegister(&PPC::GPRCRegClass
);
11120 BuildMI(BB
, dl
, TII
->get(AtomicSize
== 1 ? PPC::EXTSB
: PPC::EXTSH
),
11121 ExtReg
).addReg(dest
);
11122 BuildMI(BB
, dl
, TII
->get(CmpOpcode
), PPC::CR0
)
11123 .addReg(incr
).addReg(ExtReg
);
11125 BuildMI(BB
, dl
, TII
->get(CmpOpcode
), PPC::CR0
)
11126 .addReg(incr
).addReg(dest
);
11128 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11129 .addImm(CmpPred
).addReg(PPC::CR0
).addMBB(exitMBB
);
11130 BB
->addSuccessor(loop2MBB
);
11131 BB
->addSuccessor(exitMBB
);
11134 BuildMI(BB
, dl
, TII
->get(StoreMnemonic
))
11135 .addReg(TmpReg
).addReg(ptrA
).addReg(ptrB
);
11136 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11137 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
11138 BB
->addSuccessor(loopMBB
);
11139 BB
->addSuccessor(exitMBB
);
11147 static bool isSignExtended(MachineInstr
&MI
, const PPCInstrInfo
*TII
) {
11148 switch(MI
.getOpcode()) {
11152 return TII
->isSignExtended(MI
);
11176 case PPC::EXTSB8_32_64
:
11177 case PPC::EXTSB8_rec
:
11178 case PPC::EXTSB_rec
:
11181 case PPC::EXTSH8_32_64
:
11182 case PPC::EXTSH8_rec
:
11183 case PPC::EXTSH_rec
:
11185 case PPC::EXTSWSLI
:
11186 case PPC::EXTSWSLI_32_64
:
11187 case PPC::EXTSWSLI_32_64_rec
:
11188 case PPC::EXTSWSLI_rec
:
11189 case PPC::EXTSW_32
:
11190 case PPC::EXTSW_32_64
:
11191 case PPC::EXTSW_32_64_rec
:
11192 case PPC::EXTSW_rec
:
11195 case PPC::SRAWI_rec
:
11196 case PPC::SRAW_rec
:
11202 MachineBasicBlock
*PPCTargetLowering::EmitPartwordAtomicBinary(
11203 MachineInstr
&MI
, MachineBasicBlock
*BB
,
11204 bool is8bit
, // operation
11205 unsigned BinOpcode
, unsigned CmpOpcode
, unsigned CmpPred
) const {
11206 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11207 const PPCInstrInfo
*TII
= Subtarget
.getInstrInfo();
11209 // If this is a signed comparison and the value being compared is not known
11210 // to be sign extended, sign extend it here.
11211 DebugLoc dl
= MI
.getDebugLoc();
11212 MachineFunction
*F
= BB
->getParent();
11213 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11214 Register incr
= MI
.getOperand(3).getReg();
11215 bool IsSignExtended
= Register::isVirtualRegister(incr
) &&
11216 isSignExtended(*RegInfo
.getVRegDef(incr
), TII
);
11218 if (CmpOpcode
== PPC::CMPW
&& !IsSignExtended
) {
11219 Register ValueReg
= RegInfo
.createVirtualRegister(&PPC::GPRCRegClass
);
11220 BuildMI(*BB
, MI
, dl
, TII
->get(is8bit
? PPC::EXTSB
: PPC::EXTSH
), ValueReg
)
11221 .addReg(MI
.getOperand(3).getReg());
11222 MI
.getOperand(3).setReg(ValueReg
);
11224 // If we support part-word atomic mnemonics, just use them
11225 if (Subtarget
.hasPartwordAtomics())
11226 return EmitAtomicBinary(MI
, BB
, is8bit
? 1 : 2, BinOpcode
, CmpOpcode
,
11229 // In 64 bit mode we have to use 64 bits for addresses, even though the
11230 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
11231 // registers without caring whether they're 32 or 64, but here we're
11232 // doing actual arithmetic on the addresses.
11233 bool is64bit
= Subtarget
.isPPC64();
11234 bool isLittleEndian
= Subtarget
.isLittleEndian();
11235 unsigned ZeroReg
= is64bit
? PPC::ZERO8
: PPC::ZERO
;
11237 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
11238 MachineFunction::iterator It
= ++BB
->getIterator();
11240 Register dest
= MI
.getOperand(0).getReg();
11241 Register ptrA
= MI
.getOperand(1).getReg();
11242 Register ptrB
= MI
.getOperand(2).getReg();
11244 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11245 MachineBasicBlock
*loop2MBB
=
11246 CmpOpcode
? F
->CreateMachineBasicBlock(LLVM_BB
) : nullptr;
11247 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11248 F
->insert(It
, loopMBB
);
11250 F
->insert(It
, loop2MBB
);
11251 F
->insert(It
, exitMBB
);
11252 exitMBB
->splice(exitMBB
->begin(), BB
,
11253 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
11254 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
11256 const TargetRegisterClass
*RC
=
11257 is64bit
? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
11258 const TargetRegisterClass
*GPRC
= &PPC::GPRCRegClass
;
11260 Register PtrReg
= RegInfo
.createVirtualRegister(RC
);
11261 Register Shift1Reg
= RegInfo
.createVirtualRegister(GPRC
);
11262 Register ShiftReg
=
11263 isLittleEndian
? Shift1Reg
: RegInfo
.createVirtualRegister(GPRC
);
11264 Register Incr2Reg
= RegInfo
.createVirtualRegister(GPRC
);
11265 Register MaskReg
= RegInfo
.createVirtualRegister(GPRC
);
11266 Register Mask2Reg
= RegInfo
.createVirtualRegister(GPRC
);
11267 Register Mask3Reg
= RegInfo
.createVirtualRegister(GPRC
);
11268 Register Tmp2Reg
= RegInfo
.createVirtualRegister(GPRC
);
11269 Register Tmp3Reg
= RegInfo
.createVirtualRegister(GPRC
);
11270 Register Tmp4Reg
= RegInfo
.createVirtualRegister(GPRC
);
11271 Register TmpDestReg
= RegInfo
.createVirtualRegister(GPRC
);
11272 Register SrwDestReg
= RegInfo
.createVirtualRegister(GPRC
);
11275 (!BinOpcode
) ? Incr2Reg
: RegInfo
.createVirtualRegister(GPRC
);
11279 // fallthrough --> loopMBB
11280 BB
->addSuccessor(loopMBB
);
11282 // The 4-byte load must be aligned, while a char or short may be
11283 // anywhere in the word. Hence all this nasty bookkeeping code.
11284 // add ptr1, ptrA, ptrB [copy if ptrA==0]
11285 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11286 // xori shift, shift1, 24 [16]
11287 // rlwinm ptr, ptr1, 0, 0, 29
11288 // slw incr2, incr, shift
11289 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11290 // slw mask, mask2, shift
11292 // lwarx tmpDest, ptr
11293 // add tmp, tmpDest, incr2
11294 // andc tmp2, tmpDest, mask
11295 // and tmp3, tmp, mask
11296 // or tmp4, tmp3, tmp2
11297 // stwcx. tmp4, ptr
11299 // fallthrough --> exitMBB
11300 // srw SrwDest, tmpDest, shift
11301 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11302 if (ptrA
!= ZeroReg
) {
11303 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
11304 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
11310 // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11312 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
)
11313 .addReg(Ptr1Reg
, 0, is64bit
? PPC::sub_32
: 0)
11316 .addImm(is8bit
? 28 : 27);
11317 if (!isLittleEndian
)
11318 BuildMI(BB
, dl
, TII
->get(PPC::XORI
), ShiftReg
)
11320 .addImm(is8bit
? 24 : 16);
11322 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
11327 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
11332 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), Incr2Reg
).addReg(incr
).addReg(ShiftReg
);
11334 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
11336 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
11337 BuildMI(BB
, dl
, TII
->get(PPC::ORI
), Mask2Reg
)
11341 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
11346 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
11350 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
)
11352 .addReg(TmpDestReg
);
11353 BuildMI(BB
, dl
, TII
->get(PPC::ANDC
), Tmp2Reg
)
11354 .addReg(TmpDestReg
)
11356 BuildMI(BB
, dl
, TII
->get(PPC::AND
), Tmp3Reg
).addReg(TmpReg
).addReg(MaskReg
);
11358 // For unsigned comparisons, we can directly compare the shifted values.
11359 // For signed comparisons we shift and sign extend.
11360 Register SReg
= RegInfo
.createVirtualRegister(GPRC
);
11361 BuildMI(BB
, dl
, TII
->get(PPC::AND
), SReg
)
11362 .addReg(TmpDestReg
)
11364 unsigned ValueReg
= SReg
;
11365 unsigned CmpReg
= Incr2Reg
;
11366 if (CmpOpcode
== PPC::CMPW
) {
11367 ValueReg
= RegInfo
.createVirtualRegister(GPRC
);
11368 BuildMI(BB
, dl
, TII
->get(PPC::SRW
), ValueReg
)
11371 Register ValueSReg
= RegInfo
.createVirtualRegister(GPRC
);
11372 BuildMI(BB
, dl
, TII
->get(is8bit
? PPC::EXTSB
: PPC::EXTSH
), ValueSReg
)
11374 ValueReg
= ValueSReg
;
11377 BuildMI(BB
, dl
, TII
->get(CmpOpcode
), PPC::CR0
)
11380 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11384 BB
->addSuccessor(loop2MBB
);
11385 BB
->addSuccessor(exitMBB
);
11388 BuildMI(BB
, dl
, TII
->get(PPC::OR
), Tmp4Reg
).addReg(Tmp3Reg
).addReg(Tmp2Reg
);
11389 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
11393 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11394 .addImm(PPC::PRED_NE
)
11397 BB
->addSuccessor(loopMBB
);
11398 BB
->addSuccessor(exitMBB
);
11403 // Since the shift amount is not a constant, we need to clear
11404 // the upper bits with a separate RLWINM.
11405 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::RLWINM
), dest
)
11406 .addReg(SrwDestReg
)
11408 .addImm(is8bit
? 24 : 16)
11410 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::SRW
), SrwDestReg
)
11411 .addReg(TmpDestReg
)
11416 llvm::MachineBasicBlock
*
11417 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr
&MI
,
11418 MachineBasicBlock
*MBB
) const {
11419 DebugLoc DL
= MI
.getDebugLoc();
11420 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
11421 const PPCRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
11423 MachineFunction
*MF
= MBB
->getParent();
11424 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
11426 const BasicBlock
*BB
= MBB
->getBasicBlock();
11427 MachineFunction::iterator I
= ++MBB
->getIterator();
11429 Register DstReg
= MI
.getOperand(0).getReg();
11430 const TargetRegisterClass
*RC
= MRI
.getRegClass(DstReg
);
11431 assert(TRI
->isTypeLegalForClass(*RC
, MVT::i32
) && "Invalid destination!");
11432 Register mainDstReg
= MRI
.createVirtualRegister(RC
);
11433 Register restoreDstReg
= MRI
.createVirtualRegister(RC
);
11435 MVT PVT
= getPointerTy(MF
->getDataLayout());
11436 assert((PVT
== MVT::i64
|| PVT
== MVT::i32
) &&
11437 "Invalid Pointer Size!");
11438 // For v = setjmp(buf), we generate
11441 // SjLjSetup mainMBB
11447 // buf[LabelOffset] = LR
11451 // v = phi(main, restore)
11454 MachineBasicBlock
*thisMBB
= MBB
;
11455 MachineBasicBlock
*mainMBB
= MF
->CreateMachineBasicBlock(BB
);
11456 MachineBasicBlock
*sinkMBB
= MF
->CreateMachineBasicBlock(BB
);
11457 MF
->insert(I
, mainMBB
);
11458 MF
->insert(I
, sinkMBB
);
11460 MachineInstrBuilder MIB
;
11462 // Transfer the remainder of BB and its successor edges to sinkMBB.
11463 sinkMBB
->splice(sinkMBB
->begin(), MBB
,
11464 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
11465 sinkMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
11467 // Note that the structure of the jmp_buf used here is not compatible
11468 // with that used by libc, and is not designed to be. Specifically, it
11469 // stores only those 'reserved' registers that LLVM does not otherwise
11470 // understand how to spill. Also, by convention, by the time this
11471 // intrinsic is called, Clang has already stored the frame address in the
11472 // first slot of the buffer and stack address in the third. Following the
11473 // X86 target code, we'll store the jump address in the second slot. We also
11474 // need to save the TOC pointer (R2) to handle jumps between shared
11475 // libraries, and that will be stored in the fourth slot. The thread
11476 // identifier (R13) is not affected.
11479 const int64_t LabelOffset
= 1 * PVT
.getStoreSize();
11480 const int64_t TOCOffset
= 3 * PVT
.getStoreSize();
11481 const int64_t BPOffset
= 4 * PVT
.getStoreSize();
11483 // Prepare IP either in reg.
11484 const TargetRegisterClass
*PtrRC
= getRegClassFor(PVT
);
11485 Register LabelReg
= MRI
.createVirtualRegister(PtrRC
);
11486 Register BufReg
= MI
.getOperand(1).getReg();
11488 if (Subtarget
.is64BitELFABI()) {
11489 setUsesTOCBasePtr(*MBB
->getParent());
11490 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::STD
))
11497 // Naked functions never have a base pointer, and so we use r1. For all
11498 // other functions, this decision must be delayed until during PEI.
11500 if (MF
->getFunction().hasFnAttribute(Attribute::Naked
))
11501 BaseReg
= Subtarget
.isPPC64() ? PPC::X1
: PPC::R1
;
11503 BaseReg
= Subtarget
.isPPC64() ? PPC::BP8
: PPC::BP
;
11505 MIB
= BuildMI(*thisMBB
, MI
, DL
,
11506 TII
->get(Subtarget
.isPPC64() ? PPC::STD
: PPC::STW
))
11513 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::BCLalways
)).addMBB(mainMBB
);
11514 MIB
.addRegMask(TRI
->getNoPreservedMask());
11516 BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::LI
), restoreDstReg
).addImm(1);
11518 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::EH_SjLj_Setup
))
11520 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::B
)).addMBB(sinkMBB
);
11522 thisMBB
->addSuccessor(mainMBB
, BranchProbability::getZero());
11523 thisMBB
->addSuccessor(sinkMBB
, BranchProbability::getOne());
11528 BuildMI(mainMBB
, DL
,
11529 TII
->get(Subtarget
.isPPC64() ? PPC::MFLR8
: PPC::MFLR
), LabelReg
);
11532 if (Subtarget
.isPPC64()) {
11533 MIB
= BuildMI(mainMBB
, DL
, TII
->get(PPC::STD
))
11535 .addImm(LabelOffset
)
11538 MIB
= BuildMI(mainMBB
, DL
, TII
->get(PPC::STW
))
11540 .addImm(LabelOffset
)
11543 MIB
.cloneMemRefs(MI
);
11545 BuildMI(mainMBB
, DL
, TII
->get(PPC::LI
), mainDstReg
).addImm(0);
11546 mainMBB
->addSuccessor(sinkMBB
);
11549 BuildMI(*sinkMBB
, sinkMBB
->begin(), DL
,
11550 TII
->get(PPC::PHI
), DstReg
)
11551 .addReg(mainDstReg
).addMBB(mainMBB
)
11552 .addReg(restoreDstReg
).addMBB(thisMBB
);
11554 MI
.eraseFromParent();
11558 MachineBasicBlock
*
11559 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr
&MI
,
11560 MachineBasicBlock
*MBB
) const {
11561 DebugLoc DL
= MI
.getDebugLoc();
11562 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
11564 MachineFunction
*MF
= MBB
->getParent();
11565 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
11567 MVT PVT
= getPointerTy(MF
->getDataLayout());
11568 assert((PVT
== MVT::i64
|| PVT
== MVT::i32
) &&
11569 "Invalid Pointer Size!");
11571 const TargetRegisterClass
*RC
=
11572 (PVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
11573 Register Tmp
= MRI
.createVirtualRegister(RC
);
11574 // Since FP is only updated here but NOT referenced, it's treated as GPR.
11575 unsigned FP
= (PVT
== MVT::i64
) ? PPC::X31
: PPC::R31
;
11576 unsigned SP
= (PVT
== MVT::i64
) ? PPC::X1
: PPC::R1
;
11580 : (Subtarget
.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11583 MachineInstrBuilder MIB
;
11585 const int64_t LabelOffset
= 1 * PVT
.getStoreSize();
11586 const int64_t SPOffset
= 2 * PVT
.getStoreSize();
11587 const int64_t TOCOffset
= 3 * PVT
.getStoreSize();
11588 const int64_t BPOffset
= 4 * PVT
.getStoreSize();
11590 Register BufReg
= MI
.getOperand(0).getReg();
11592 // Reload FP (the jumped-to function may not have had a
11593 // frame pointer, and if so, then its r31 will be restored
11595 if (PVT
== MVT::i64
) {
11596 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), FP
)
11600 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), FP
)
11604 MIB
.cloneMemRefs(MI
);
11607 if (PVT
== MVT::i64
) {
11608 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), Tmp
)
11609 .addImm(LabelOffset
)
11612 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), Tmp
)
11613 .addImm(LabelOffset
)
11616 MIB
.cloneMemRefs(MI
);
11619 if (PVT
== MVT::i64
) {
11620 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), SP
)
11624 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), SP
)
11628 MIB
.cloneMemRefs(MI
);
11631 if (PVT
== MVT::i64
) {
11632 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), BP
)
11636 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), BP
)
11640 MIB
.cloneMemRefs(MI
);
11643 if (PVT
== MVT::i64
&& Subtarget
.isSVR4ABI()) {
11644 setUsesTOCBasePtr(*MBB
->getParent());
11645 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), PPC::X2
)
11652 BuildMI(*MBB
, MI
, DL
,
11653 TII
->get(PVT
== MVT::i64
? PPC::MTCTR8
: PPC::MTCTR
)).addReg(Tmp
);
11654 BuildMI(*MBB
, MI
, DL
, TII
->get(PVT
== MVT::i64
? PPC::BCTR8
: PPC::BCTR
));
11656 MI
.eraseFromParent();
11660 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction
&MF
) const {
11661 // If the function specifically requests inline stack probes, emit them.
11662 if (MF
.getFunction().hasFnAttribute("probe-stack"))
11663 return MF
.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11668 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction
&MF
) const {
11669 const TargetFrameLowering
*TFI
= Subtarget
.getFrameLowering();
11670 unsigned StackAlign
= TFI
->getStackAlignment();
11671 assert(StackAlign
>= 1 && isPowerOf2_32(StackAlign
) &&
11672 "Unexpected stack alignment");
11673 // The default stack probe size is 4096 if the function has no
11674 // stack-probe-size attribute.
11675 unsigned StackProbeSize
= 4096;
11676 const Function
&Fn
= MF
.getFunction();
11677 if (Fn
.hasFnAttribute("stack-probe-size"))
11678 Fn
.getFnAttribute("stack-probe-size")
11679 .getValueAsString()
11680 .getAsInteger(0, StackProbeSize
);
11681 // Round down to the stack alignment.
11682 StackProbeSize
&= ~(StackAlign
- 1);
11683 return StackProbeSize
? StackProbeSize
: StackAlign
;
11686 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11687 // into three phases. In the first phase, it uses pseudo instruction
11688 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11689 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11690 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11691 // MaxCallFrameSize so that it can calculate correct data area pointer.
11692 MachineBasicBlock
*
11693 PPCTargetLowering::emitProbedAlloca(MachineInstr
&MI
,
11694 MachineBasicBlock
*MBB
) const {
11695 const bool isPPC64
= Subtarget
.isPPC64();
11696 MachineFunction
*MF
= MBB
->getParent();
11697 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
11698 DebugLoc DL
= MI
.getDebugLoc();
11699 const unsigned ProbeSize
= getStackProbeSize(*MF
);
11700 const BasicBlock
*ProbedBB
= MBB
->getBasicBlock();
11701 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
11702 // The CFG of probing stack looks as
11708 // +--->+ TestMBB +---+
11711 // | +-----v----+ |
11712 // +---+ BlockMBB | |
11718 // In MBB, calculate previous frame pointer and final stack pointer.
11719 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11720 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11721 // TailMBB is spliced via \p MI.
11722 MachineBasicBlock
*TestMBB
= MF
->CreateMachineBasicBlock(ProbedBB
);
11723 MachineBasicBlock
*TailMBB
= MF
->CreateMachineBasicBlock(ProbedBB
);
11724 MachineBasicBlock
*BlockMBB
= MF
->CreateMachineBasicBlock(ProbedBB
);
11726 MachineFunction::iterator MBBIter
= ++MBB
->getIterator();
11727 MF
->insert(MBBIter
, TestMBB
);
11728 MF
->insert(MBBIter
, BlockMBB
);
11729 MF
->insert(MBBIter
, TailMBB
);
11731 const TargetRegisterClass
*G8RC
= &PPC::G8RCRegClass
;
11732 const TargetRegisterClass
*GPRC
= &PPC::GPRCRegClass
;
11734 Register DstReg
= MI
.getOperand(0).getReg();
11735 Register NegSizeReg
= MI
.getOperand(1).getReg();
11736 Register SPReg
= isPPC64
? PPC::X1
: PPC::R1
;
11737 Register FinalStackPtr
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11738 Register FramePointer
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11739 Register ActualNegSizeReg
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11741 // Since value of NegSizeReg might be realigned in prologepilog, insert a
11742 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11745 if (!MRI
.hasOneNonDBGUse(NegSizeReg
))
11747 isPPC64
? PPC::PREPARE_PROBED_ALLOCA_64
: PPC::PREPARE_PROBED_ALLOCA_32
;
11749 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11750 // and NegSizeReg will be allocated in the same phyreg to avoid
11751 // redundant copy when NegSizeReg has only one use which is current MI and
11752 // will be replaced by PREPARE_PROBED_ALLOCA then.
11753 ProbeOpc
= isPPC64
? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11754 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32
;
11755 BuildMI(*MBB
, {MI
}, DL
, TII
->get(ProbeOpc
), FramePointer
)
11756 .addDef(ActualNegSizeReg
)
11757 .addReg(NegSizeReg
)
11758 .add(MI
.getOperand(2))
11759 .add(MI
.getOperand(3));
11761 // Calculate final stack pointer, which equals to SP + ActualNegSize.
11762 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::ADD8
: PPC::ADD4
),
11765 .addReg(ActualNegSizeReg
);
11767 // Materialize a scratch register for update.
11768 int64_t NegProbeSize
= -(int64_t)ProbeSize
;
11769 assert(isInt
<32>(NegProbeSize
) && "Unhandled probe size!");
11770 Register ScratchReg
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11771 if (!isInt
<16>(NegProbeSize
)) {
11772 Register TempReg
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11773 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::LIS8
: PPC::LIS
), TempReg
)
11774 .addImm(NegProbeSize
>> 16);
11775 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::ORI8
: PPC::ORI
),
11778 .addImm(NegProbeSize
& 0xFFFF);
11780 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::LI8
: PPC::LI
), ScratchReg
)
11781 .addImm(NegProbeSize
);
11784 // Probing leading residual part.
11785 Register Div
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11786 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::DIVD
: PPC::DIVW
), Div
)
11787 .addReg(ActualNegSizeReg
)
11788 .addReg(ScratchReg
);
11789 Register Mul
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11790 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::MULLD
: PPC::MULLW
), Mul
)
11792 .addReg(ScratchReg
);
11793 Register NegMod
= MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11794 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::SUBF8
: PPC::SUBF
), NegMod
)
11796 .addReg(ActualNegSizeReg
);
11797 BuildMI(*MBB
, {MI
}, DL
, TII
->get(isPPC64
? PPC::STDUX
: PPC::STWUX
), SPReg
)
11798 .addReg(FramePointer
)
11804 // Remaining part should be multiple of ProbeSize.
11805 Register CmpResult
= MRI
.createVirtualRegister(&PPC::CRRCRegClass
);
11806 BuildMI(TestMBB
, DL
, TII
->get(isPPC64
? PPC::CMPD
: PPC::CMPW
), CmpResult
)
11808 .addReg(FinalStackPtr
);
11809 BuildMI(TestMBB
, DL
, TII
->get(PPC::BCC
))
11810 .addImm(PPC::PRED_EQ
)
11813 TestMBB
->addSuccessor(BlockMBB
);
11814 TestMBB
->addSuccessor(TailMBB
);
11818 // Touch the block.
11820 BuildMI(BlockMBB
, DL
, TII
->get(isPPC64
? PPC::STDUX
: PPC::STWUX
), SPReg
)
11821 .addReg(FramePointer
)
11823 .addReg(ScratchReg
);
11824 BuildMI(BlockMBB
, DL
, TII
->get(PPC::B
)).addMBB(TestMBB
);
11825 BlockMBB
->addSuccessor(TestMBB
);
11828 // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11829 // DYNAREAOFFSET pseudo instruction to get the future result.
11830 Register MaxCallFrameSizeReg
=
11831 MRI
.createVirtualRegister(isPPC64
? G8RC
: GPRC
);
11832 BuildMI(TailMBB
, DL
,
11833 TII
->get(isPPC64
? PPC::DYNAREAOFFSET8
: PPC::DYNAREAOFFSET
),
11834 MaxCallFrameSizeReg
)
11835 .add(MI
.getOperand(2))
11836 .add(MI
.getOperand(3));
11837 BuildMI(TailMBB
, DL
, TII
->get(isPPC64
? PPC::ADD8
: PPC::ADD4
), DstReg
)
11839 .addReg(MaxCallFrameSizeReg
);
11841 // Splice instructions after MI to TailMBB.
11842 TailMBB
->splice(TailMBB
->end(), MBB
,
11843 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
11844 TailMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
11845 MBB
->addSuccessor(TestMBB
);
11847 // Delete the pseudo instruction.
11848 MI
.eraseFromParent();
11850 ++NumDynamicAllocaProbed
;
11854 MachineBasicBlock
*
11855 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
11856 MachineBasicBlock
*BB
) const {
11857 if (MI
.getOpcode() == TargetOpcode::STACKMAP
||
11858 MI
.getOpcode() == TargetOpcode::PATCHPOINT
) {
11859 if (Subtarget
.is64BitELFABI() &&
11860 MI
.getOpcode() == TargetOpcode::PATCHPOINT
&&
11861 !Subtarget
.isUsingPCRelativeCalls()) {
11862 // Call lowering should have added an r2 operand to indicate a dependence
11863 // on the TOC base pointer value. It can't however, because there is no
11864 // way to mark the dependence as implicit there, and so the stackmap code
11865 // will confuse it with a regular operand. Instead, add the dependence
11867 MI
.addOperand(MachineOperand::CreateReg(PPC::X2
, false, true));
11870 return emitPatchPoint(MI
, BB
);
11873 if (MI
.getOpcode() == PPC::EH_SjLj_SetJmp32
||
11874 MI
.getOpcode() == PPC::EH_SjLj_SetJmp64
) {
11875 return emitEHSjLjSetJmp(MI
, BB
);
11876 } else if (MI
.getOpcode() == PPC::EH_SjLj_LongJmp32
||
11877 MI
.getOpcode() == PPC::EH_SjLj_LongJmp64
) {
11878 return emitEHSjLjLongJmp(MI
, BB
);
11881 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
11883 // To "insert" these instructions we actually have to insert their
11884 // control-flow patterns.
11885 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
11886 MachineFunction::iterator It
= ++BB
->getIterator();
11888 MachineFunction
*F
= BB
->getParent();
11890 if (MI
.getOpcode() == PPC::SELECT_CC_I4
||
11891 MI
.getOpcode() == PPC::SELECT_CC_I8
|| MI
.getOpcode() == PPC::SELECT_I4
||
11892 MI
.getOpcode() == PPC::SELECT_I8
) {
11893 SmallVector
<MachineOperand
, 2> Cond
;
11894 if (MI
.getOpcode() == PPC::SELECT_CC_I4
||
11895 MI
.getOpcode() == PPC::SELECT_CC_I8
)
11896 Cond
.push_back(MI
.getOperand(4));
11898 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
11899 Cond
.push_back(MI
.getOperand(1));
11901 DebugLoc dl
= MI
.getDebugLoc();
11902 TII
->insertSelect(*BB
, MI
, dl
, MI
.getOperand(0).getReg(), Cond
,
11903 MI
.getOperand(2).getReg(), MI
.getOperand(3).getReg());
11904 } else if (MI
.getOpcode() == PPC::SELECT_CC_F4
||
11905 MI
.getOpcode() == PPC::SELECT_CC_F8
||
11906 MI
.getOpcode() == PPC::SELECT_CC_F16
||
11907 MI
.getOpcode() == PPC::SELECT_CC_VRRC
||
11908 MI
.getOpcode() == PPC::SELECT_CC_VSFRC
||
11909 MI
.getOpcode() == PPC::SELECT_CC_VSSRC
||
11910 MI
.getOpcode() == PPC::SELECT_CC_VSRC
||
11911 MI
.getOpcode() == PPC::SELECT_CC_SPE4
||
11912 MI
.getOpcode() == PPC::SELECT_CC_SPE
||
11913 MI
.getOpcode() == PPC::SELECT_F4
||
11914 MI
.getOpcode() == PPC::SELECT_F8
||
11915 MI
.getOpcode() == PPC::SELECT_F16
||
11916 MI
.getOpcode() == PPC::SELECT_SPE
||
11917 MI
.getOpcode() == PPC::SELECT_SPE4
||
11918 MI
.getOpcode() == PPC::SELECT_VRRC
||
11919 MI
.getOpcode() == PPC::SELECT_VSFRC
||
11920 MI
.getOpcode() == PPC::SELECT_VSSRC
||
11921 MI
.getOpcode() == PPC::SELECT_VSRC
) {
11922 // The incoming instruction knows the destination vreg to set, the
11923 // condition code register to branch on, the true/false values to
11924 // select between, and a branch opcode to use.
11929 // cmpTY ccX, r1, r2
11931 // fallthrough --> copy0MBB
11932 MachineBasicBlock
*thisMBB
= BB
;
11933 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11934 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11935 DebugLoc dl
= MI
.getDebugLoc();
11936 F
->insert(It
, copy0MBB
);
11937 F
->insert(It
, sinkMBB
);
11939 // Transfer the remainder of BB and its successor edges to sinkMBB.
11940 sinkMBB
->splice(sinkMBB
->begin(), BB
,
11941 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
11942 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
11944 // Next, add the true and fallthrough blocks as its successors.
11945 BB
->addSuccessor(copy0MBB
);
11946 BB
->addSuccessor(sinkMBB
);
11948 if (MI
.getOpcode() == PPC::SELECT_I4
|| MI
.getOpcode() == PPC::SELECT_I8
||
11949 MI
.getOpcode() == PPC::SELECT_F4
|| MI
.getOpcode() == PPC::SELECT_F8
||
11950 MI
.getOpcode() == PPC::SELECT_F16
||
11951 MI
.getOpcode() == PPC::SELECT_SPE4
||
11952 MI
.getOpcode() == PPC::SELECT_SPE
||
11953 MI
.getOpcode() == PPC::SELECT_VRRC
||
11954 MI
.getOpcode() == PPC::SELECT_VSFRC
||
11955 MI
.getOpcode() == PPC::SELECT_VSSRC
||
11956 MI
.getOpcode() == PPC::SELECT_VSRC
) {
11957 BuildMI(BB
, dl
, TII
->get(PPC::BC
))
11958 .addReg(MI
.getOperand(1).getReg())
11961 unsigned SelectPred
= MI
.getOperand(4).getImm();
11962 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11963 .addImm(SelectPred
)
11964 .addReg(MI
.getOperand(1).getReg())
11969 // %FalseValue = ...
11970 // # fallthrough to sinkMBB
11973 // Update machine-CFG edges
11974 BB
->addSuccessor(sinkMBB
);
11977 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11980 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::PHI
), MI
.getOperand(0).getReg())
11981 .addReg(MI
.getOperand(3).getReg())
11983 .addReg(MI
.getOperand(2).getReg())
11985 } else if (MI
.getOpcode() == PPC::ReadTB
) {
11986 // To read the 64-bit time-base register on a 32-bit target, we read the
11987 // two halves. Should the counter have wrapped while it was being read, we
11988 // need to try again.
11991 // mfspr Rx,TBU # load from TBU
11992 // mfspr Ry,TB # load from TB
11993 // mfspr Rz,TBU # load from TBU
11994 // cmpw crX,Rx,Rz # check if 'old'='new'
11995 // bne readLoop # branch if they're not equal
11998 MachineBasicBlock
*readMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11999 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12000 DebugLoc dl
= MI
.getDebugLoc();
12001 F
->insert(It
, readMBB
);
12002 F
->insert(It
, sinkMBB
);
12004 // Transfer the remainder of BB and its successor edges to sinkMBB.
12005 sinkMBB
->splice(sinkMBB
->begin(), BB
,
12006 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
12007 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
12009 BB
->addSuccessor(readMBB
);
12012 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
12013 Register ReadAgainReg
= RegInfo
.createVirtualRegister(&PPC::GPRCRegClass
);
12014 Register LoReg
= MI
.getOperand(0).getReg();
12015 Register HiReg
= MI
.getOperand(1).getReg();
12017 BuildMI(BB
, dl
, TII
->get(PPC::MFSPR
), HiReg
).addImm(269);
12018 BuildMI(BB
, dl
, TII
->get(PPC::MFSPR
), LoReg
).addImm(268);
12019 BuildMI(BB
, dl
, TII
->get(PPC::MFSPR
), ReadAgainReg
).addImm(269);
12021 Register CmpReg
= RegInfo
.createVirtualRegister(&PPC::CRRCRegClass
);
12023 BuildMI(BB
, dl
, TII
->get(PPC::CMPW
), CmpReg
)
12025 .addReg(ReadAgainReg
);
12026 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
12027 .addImm(PPC::PRED_NE
)
12031 BB
->addSuccessor(readMBB
);
12032 BB
->addSuccessor(sinkMBB
);
12033 } else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8
)
12034 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ADD4
);
12035 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16
)
12036 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ADD4
);
12037 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32
)
12038 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::ADD4
);
12039 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64
)
12040 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::ADD8
);
12042 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I8
)
12043 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::AND
);
12044 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I16
)
12045 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::AND
);
12046 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I32
)
12047 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::AND
);
12048 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I64
)
12049 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::AND8
);
12051 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I8
)
12052 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::OR
);
12053 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I16
)
12054 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::OR
);
12055 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I32
)
12056 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::OR
);
12057 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I64
)
12058 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::OR8
);
12060 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8
)
12061 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::XOR
);
12062 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16
)
12063 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::XOR
);
12064 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32
)
12065 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::XOR
);
12066 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64
)
12067 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::XOR8
);
12069 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8
)
12070 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::NAND
);
12071 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16
)
12072 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::NAND
);
12073 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32
)
12074 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::NAND
);
12075 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64
)
12076 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::NAND8
);
12078 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8
)
12079 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::SUBF
);
12080 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16
)
12081 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::SUBF
);
12082 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32
)
12083 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::SUBF
);
12084 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64
)
12085 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::SUBF8
);
12087 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8
)
12088 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPW
, PPC::PRED_GE
);
12089 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16
)
12090 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPW
, PPC::PRED_GE
);
12091 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32
)
12092 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPW
, PPC::PRED_GE
);
12093 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64
)
12094 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPD
, PPC::PRED_GE
);
12096 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8
)
12097 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPW
, PPC::PRED_LE
);
12098 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16
)
12099 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPW
, PPC::PRED_LE
);
12100 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32
)
12101 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPW
, PPC::PRED_LE
);
12102 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64
)
12103 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPD
, PPC::PRED_LE
);
12105 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8
)
12106 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPLW
, PPC::PRED_GE
);
12107 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16
)
12108 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPLW
, PPC::PRED_GE
);
12109 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32
)
12110 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPLW
, PPC::PRED_GE
);
12111 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64
)
12112 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPLD
, PPC::PRED_GE
);
12114 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8
)
12115 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPLW
, PPC::PRED_LE
);
12116 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16
)
12117 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPLW
, PPC::PRED_LE
);
12118 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32
)
12119 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPLW
, PPC::PRED_LE
);
12120 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64
)
12121 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPLD
, PPC::PRED_LE
);
12123 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I8
)
12124 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0);
12125 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I16
)
12126 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0);
12127 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I32
)
12128 BB
= EmitAtomicBinary(MI
, BB
, 4, 0);
12129 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I64
)
12130 BB
= EmitAtomicBinary(MI
, BB
, 8, 0);
12131 else if (MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32
||
12132 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
||
12133 (Subtarget
.hasPartwordAtomics() &&
12134 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
) ||
12135 (Subtarget
.hasPartwordAtomics() &&
12136 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16
)) {
12137 bool is64bit
= MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
;
12139 auto LoadMnemonic
= PPC::LDARX
;
12140 auto StoreMnemonic
= PPC::STDCX
;
12141 switch (MI
.getOpcode()) {
12143 llvm_unreachable("Compare and swap of unknown size");
12144 case PPC::ATOMIC_CMP_SWAP_I8
:
12145 LoadMnemonic
= PPC::LBARX
;
12146 StoreMnemonic
= PPC::STBCX
;
12147 assert(Subtarget
.hasPartwordAtomics() && "No support partword atomics.");
12149 case PPC::ATOMIC_CMP_SWAP_I16
:
12150 LoadMnemonic
= PPC::LHARX
;
12151 StoreMnemonic
= PPC::STHCX
;
12152 assert(Subtarget
.hasPartwordAtomics() && "No support partword atomics.");
12154 case PPC::ATOMIC_CMP_SWAP_I32
:
12155 LoadMnemonic
= PPC::LWARX
;
12156 StoreMnemonic
= PPC::STWCX
;
12158 case PPC::ATOMIC_CMP_SWAP_I64
:
12159 LoadMnemonic
= PPC::LDARX
;
12160 StoreMnemonic
= PPC::STDCX
;
12163 Register dest
= MI
.getOperand(0).getReg();
12164 Register ptrA
= MI
.getOperand(1).getReg();
12165 Register ptrB
= MI
.getOperand(2).getReg();
12166 Register oldval
= MI
.getOperand(3).getReg();
12167 Register newval
= MI
.getOperand(4).getReg();
12168 DebugLoc dl
= MI
.getDebugLoc();
12170 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12171 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12172 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12173 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12174 F
->insert(It
, loop1MBB
);
12175 F
->insert(It
, loop2MBB
);
12176 F
->insert(It
, midMBB
);
12177 F
->insert(It
, exitMBB
);
12178 exitMBB
->splice(exitMBB
->begin(), BB
,
12179 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
12180 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
12184 // fallthrough --> loopMBB
12185 BB
->addSuccessor(loop1MBB
);
12188 // l[bhwd]arx dest, ptr
12189 // cmp[wd] dest, oldval
12192 // st[bhwd]cx. newval, ptr
12196 // st[bhwd]cx. dest, ptr
12199 BuildMI(BB
, dl
, TII
->get(LoadMnemonic
), dest
).addReg(ptrA
).addReg(ptrB
);
12200 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::CMPD
: PPC::CMPW
), PPC::CR0
)
12203 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
12204 .addImm(PPC::PRED_NE
)
12207 BB
->addSuccessor(loop2MBB
);
12208 BB
->addSuccessor(midMBB
);
12211 BuildMI(BB
, dl
, TII
->get(StoreMnemonic
))
12215 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
12216 .addImm(PPC::PRED_NE
)
12219 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
12220 BB
->addSuccessor(loop1MBB
);
12221 BB
->addSuccessor(exitMBB
);
12224 BuildMI(BB
, dl
, TII
->get(StoreMnemonic
))
12228 BB
->addSuccessor(exitMBB
);
12233 } else if (MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
||
12234 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16
) {
12235 // We must use 64-bit registers for addresses when targeting 64-bit,
12236 // since we're actually doing arithmetic on them. Other registers
12238 bool is64bit
= Subtarget
.isPPC64();
12239 bool isLittleEndian
= Subtarget
.isLittleEndian();
12240 bool is8bit
= MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
;
12242 Register dest
= MI
.getOperand(0).getReg();
12243 Register ptrA
= MI
.getOperand(1).getReg();
12244 Register ptrB
= MI
.getOperand(2).getReg();
12245 Register oldval
= MI
.getOperand(3).getReg();
12246 Register newval
= MI
.getOperand(4).getReg();
12247 DebugLoc dl
= MI
.getDebugLoc();
12249 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12250 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12251 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12252 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12253 F
->insert(It
, loop1MBB
);
12254 F
->insert(It
, loop2MBB
);
12255 F
->insert(It
, midMBB
);
12256 F
->insert(It
, exitMBB
);
12257 exitMBB
->splice(exitMBB
->begin(), BB
,
12258 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
12259 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
12261 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
12262 const TargetRegisterClass
*RC
=
12263 is64bit
? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
12264 const TargetRegisterClass
*GPRC
= &PPC::GPRCRegClass
;
12266 Register PtrReg
= RegInfo
.createVirtualRegister(RC
);
12267 Register Shift1Reg
= RegInfo
.createVirtualRegister(GPRC
);
12268 Register ShiftReg
=
12269 isLittleEndian
? Shift1Reg
: RegInfo
.createVirtualRegister(GPRC
);
12270 Register NewVal2Reg
= RegInfo
.createVirtualRegister(GPRC
);
12271 Register NewVal3Reg
= RegInfo
.createVirtualRegister(GPRC
);
12272 Register OldVal2Reg
= RegInfo
.createVirtualRegister(GPRC
);
12273 Register OldVal3Reg
= RegInfo
.createVirtualRegister(GPRC
);
12274 Register MaskReg
= RegInfo
.createVirtualRegister(GPRC
);
12275 Register Mask2Reg
= RegInfo
.createVirtualRegister(GPRC
);
12276 Register Mask3Reg
= RegInfo
.createVirtualRegister(GPRC
);
12277 Register Tmp2Reg
= RegInfo
.createVirtualRegister(GPRC
);
12278 Register Tmp4Reg
= RegInfo
.createVirtualRegister(GPRC
);
12279 Register TmpDestReg
= RegInfo
.createVirtualRegister(GPRC
);
12281 Register TmpReg
= RegInfo
.createVirtualRegister(GPRC
);
12282 Register ZeroReg
= is64bit
? PPC::ZERO8
: PPC::ZERO
;
12285 // fallthrough --> loopMBB
12286 BB
->addSuccessor(loop1MBB
);
12288 // The 4-byte load must be aligned, while a char or short may be
12289 // anywhere in the word. Hence all this nasty bookkeeping code.
12290 // add ptr1, ptrA, ptrB [copy if ptrA==0]
12291 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12292 // xori shift, shift1, 24 [16]
12293 // rlwinm ptr, ptr1, 0, 0, 29
12294 // slw newval2, newval, shift
12295 // slw oldval2, oldval,shift
12296 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12297 // slw mask, mask2, shift
12298 // and newval3, newval2, mask
12299 // and oldval3, oldval2, mask
12301 // lwarx tmpDest, ptr
12302 // and tmp, tmpDest, mask
12303 // cmpw tmp, oldval3
12306 // andc tmp2, tmpDest, mask
12307 // or tmp4, tmp2, newval3
12308 // stwcx. tmp4, ptr
12312 // stwcx. tmpDest, ptr
12314 // srw dest, tmpDest, shift
12315 if (ptrA
!= ZeroReg
) {
12316 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
12317 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
12324 // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12326 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
)
12327 .addReg(Ptr1Reg
, 0, is64bit
? PPC::sub_32
: 0)
12330 .addImm(is8bit
? 28 : 27);
12331 if (!isLittleEndian
)
12332 BuildMI(BB
, dl
, TII
->get(PPC::XORI
), ShiftReg
)
12334 .addImm(is8bit
? 24 : 16);
12336 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
12341 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
12346 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), NewVal2Reg
)
12349 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), OldVal2Reg
)
12353 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
12355 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
12356 BuildMI(BB
, dl
, TII
->get(PPC::ORI
), Mask2Reg
)
12360 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
12363 BuildMI(BB
, dl
, TII
->get(PPC::AND
), NewVal3Reg
)
12364 .addReg(NewVal2Reg
)
12366 BuildMI(BB
, dl
, TII
->get(PPC::AND
), OldVal3Reg
)
12367 .addReg(OldVal2Reg
)
12371 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
12374 BuildMI(BB
, dl
, TII
->get(PPC::AND
), TmpReg
)
12375 .addReg(TmpDestReg
)
12377 BuildMI(BB
, dl
, TII
->get(PPC::CMPW
), PPC::CR0
)
12379 .addReg(OldVal3Reg
);
12380 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
12381 .addImm(PPC::PRED_NE
)
12384 BB
->addSuccessor(loop2MBB
);
12385 BB
->addSuccessor(midMBB
);
12388 BuildMI(BB
, dl
, TII
->get(PPC::ANDC
), Tmp2Reg
)
12389 .addReg(TmpDestReg
)
12391 BuildMI(BB
, dl
, TII
->get(PPC::OR
), Tmp4Reg
)
12393 .addReg(NewVal3Reg
);
12394 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
12398 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
12399 .addImm(PPC::PRED_NE
)
12402 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
12403 BB
->addSuccessor(loop1MBB
);
12404 BB
->addSuccessor(exitMBB
);
12407 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
12408 .addReg(TmpDestReg
)
12411 BB
->addSuccessor(exitMBB
);
12416 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::SRW
), dest
)
12419 } else if (MI
.getOpcode() == PPC::FADDrtz
) {
12420 // This pseudo performs an FADD with rounding mode temporarily forced
12421 // to round-to-zero. We emit this via custom inserter since the FPSCR
12422 // is not modeled at the SelectionDAG level.
12423 Register Dest
= MI
.getOperand(0).getReg();
12424 Register Src1
= MI
.getOperand(1).getReg();
12425 Register Src2
= MI
.getOperand(2).getReg();
12426 DebugLoc dl
= MI
.getDebugLoc();
12428 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
12429 Register MFFSReg
= RegInfo
.createVirtualRegister(&PPC::F8RCRegClass
);
12431 // Save FPSCR value.
12432 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MFFS
), MFFSReg
);
12434 // Set rounding mode to round-to-zero.
12435 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSB1
))
12437 .addReg(PPC::RM
, RegState::ImplicitDefine
);
12439 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSB0
))
12441 .addReg(PPC::RM
, RegState::ImplicitDefine
);
12443 // Perform addition.
12444 auto MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(PPC::FADD
), Dest
)
12447 if (MI
.getFlag(MachineInstr::NoFPExcept
))
12448 MIB
.setMIFlag(MachineInstr::NoFPExcept
);
12450 // Restore FPSCR value.
12451 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSFb
)).addImm(1).addReg(MFFSReg
);
12452 } else if (MI
.getOpcode() == PPC::ANDI_rec_1_EQ_BIT
||
12453 MI
.getOpcode() == PPC::ANDI_rec_1_GT_BIT
||
12454 MI
.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8
||
12455 MI
.getOpcode() == PPC::ANDI_rec_1_GT_BIT8
) {
12456 unsigned Opcode
= (MI
.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8
||
12457 MI
.getOpcode() == PPC::ANDI_rec_1_GT_BIT8
)
12460 bool IsEQ
= (MI
.getOpcode() == PPC::ANDI_rec_1_EQ_BIT
||
12461 MI
.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8
);
12463 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
12464 Register Dest
= RegInfo
.createVirtualRegister(
12465 Opcode
== PPC::ANDI_rec
? &PPC::GPRCRegClass
: &PPC::G8RCRegClass
);
12467 DebugLoc Dl
= MI
.getDebugLoc();
12468 BuildMI(*BB
, MI
, Dl
, TII
->get(Opcode
), Dest
)
12469 .addReg(MI
.getOperand(1).getReg())
12471 BuildMI(*BB
, MI
, Dl
, TII
->get(TargetOpcode::COPY
),
12472 MI
.getOperand(0).getReg())
12473 .addReg(IsEQ
? PPC::CR0EQ
: PPC::CR0GT
);
12474 } else if (MI
.getOpcode() == PPC::TCHECK_RET
) {
12475 DebugLoc Dl
= MI
.getDebugLoc();
12476 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
12477 Register CRReg
= RegInfo
.createVirtualRegister(&PPC::CRRCRegClass
);
12478 BuildMI(*BB
, MI
, Dl
, TII
->get(PPC::TCHECK
), CRReg
);
12479 BuildMI(*BB
, MI
, Dl
, TII
->get(TargetOpcode::COPY
),
12480 MI
.getOperand(0).getReg())
12482 } else if (MI
.getOpcode() == PPC::TBEGIN_RET
) {
12483 DebugLoc Dl
= MI
.getDebugLoc();
12484 unsigned Imm
= MI
.getOperand(1).getImm();
12485 BuildMI(*BB
, MI
, Dl
, TII
->get(PPC::TBEGIN
)).addImm(Imm
);
12486 BuildMI(*BB
, MI
, Dl
, TII
->get(TargetOpcode::COPY
),
12487 MI
.getOperand(0).getReg())
12488 .addReg(PPC::CR0EQ
);
12489 } else if (MI
.getOpcode() == PPC::SETRNDi
) {
12490 DebugLoc dl
= MI
.getDebugLoc();
12491 Register OldFPSCRReg
= MI
.getOperand(0).getReg();
12493 // Save FPSCR value.
12494 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MFFS
), OldFPSCRReg
);
12496 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12497 // the following settings:
12498 // 00 Round to nearest
12500 // 10 Round to +inf
12501 // 11 Round to -inf
12503 // When the operand is immediate, using the two least significant bits of
12504 // the immediate to set the bits 62:63 of FPSCR.
12505 unsigned Mode
= MI
.getOperand(1).getImm();
12506 BuildMI(*BB
, MI
, dl
, TII
->get((Mode
& 1) ? PPC::MTFSB1
: PPC::MTFSB0
))
12508 .addReg(PPC::RM
, RegState::ImplicitDefine
);
12510 BuildMI(*BB
, MI
, dl
, TII
->get((Mode
& 2) ? PPC::MTFSB1
: PPC::MTFSB0
))
12512 .addReg(PPC::RM
, RegState::ImplicitDefine
);
12513 } else if (MI
.getOpcode() == PPC::SETRND
) {
12514 DebugLoc dl
= MI
.getDebugLoc();
12516 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12517 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12518 // If the target doesn't have DirectMove, we should use stack to do the
12519 // conversion, because the target doesn't have the instructions like mtvsrd
12520 // or mfvsrd to do this conversion directly.
12521 auto copyRegFromG8RCOrF8RC
= [&] (unsigned DestReg
, unsigned SrcReg
) {
12522 if (Subtarget
.hasDirectMove()) {
12523 BuildMI(*BB
, MI
, dl
, TII
->get(TargetOpcode::COPY
), DestReg
)
12526 // Use stack to do the register copy.
12527 unsigned StoreOp
= PPC::STD
, LoadOp
= PPC::LFD
;
12528 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
12529 const TargetRegisterClass
*RC
= RegInfo
.getRegClass(SrcReg
);
12530 if (RC
== &PPC::F8RCRegClass
) {
12531 // Copy register from F8RCRegClass to G8RCRegclass.
12532 assert((RegInfo
.getRegClass(DestReg
) == &PPC::G8RCRegClass
) &&
12533 "Unsupported RegClass.");
12535 StoreOp
= PPC::STFD
;
12538 // Copy register from G8RCRegClass to F8RCRegclass.
12539 assert((RegInfo
.getRegClass(SrcReg
) == &PPC::G8RCRegClass
) &&
12540 (RegInfo
.getRegClass(DestReg
) == &PPC::F8RCRegClass
) &&
12541 "Unsupported RegClass.");
12544 MachineFrameInfo
&MFI
= F
->getFrameInfo();
12545 int FrameIdx
= MFI
.CreateStackObject(8, Align(8), false);
12547 MachineMemOperand
*MMOStore
= F
->getMachineMemOperand(
12548 MachinePointerInfo::getFixedStack(*F
, FrameIdx
, 0),
12549 MachineMemOperand::MOStore
, MFI
.getObjectSize(FrameIdx
),
12550 MFI
.getObjectAlign(FrameIdx
));
12552 // Store the SrcReg into the stack.
12553 BuildMI(*BB
, MI
, dl
, TII
->get(StoreOp
))
12556 .addFrameIndex(FrameIdx
)
12557 .addMemOperand(MMOStore
);
12559 MachineMemOperand
*MMOLoad
= F
->getMachineMemOperand(
12560 MachinePointerInfo::getFixedStack(*F
, FrameIdx
, 0),
12561 MachineMemOperand::MOLoad
, MFI
.getObjectSize(FrameIdx
),
12562 MFI
.getObjectAlign(FrameIdx
));
12564 // Load from the stack where SrcReg is stored, and save to DestReg,
12565 // so we have done the RegClass conversion from RegClass::SrcReg to
12566 // RegClass::DestReg.
12567 BuildMI(*BB
, MI
, dl
, TII
->get(LoadOp
), DestReg
)
12569 .addFrameIndex(FrameIdx
)
12570 .addMemOperand(MMOLoad
);
12574 Register OldFPSCRReg
= MI
.getOperand(0).getReg();
12576 // Save FPSCR value.
12577 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MFFS
), OldFPSCRReg
);
12579 // When the operand is gprc register, use two least significant bits of the
12580 // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12582 // copy OldFPSCRTmpReg, OldFPSCRReg
12583 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12584 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12585 // copy NewFPSCRReg, NewFPSCRTmpReg
12586 // mtfsf 255, NewFPSCRReg
12587 MachineOperand SrcOp
= MI
.getOperand(1);
12588 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
12589 Register OldFPSCRTmpReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
12591 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg
, OldFPSCRReg
);
12593 Register ImDefReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
12594 Register ExtSrcReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
12596 // The first operand of INSERT_SUBREG should be a register which has
12597 // subregisters, we only care about its RegClass, so we should use an
12598 // IMPLICIT_DEF register.
12599 BuildMI(*BB
, MI
, dl
, TII
->get(TargetOpcode::IMPLICIT_DEF
), ImDefReg
);
12600 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::INSERT_SUBREG
), ExtSrcReg
)
12605 Register NewFPSCRTmpReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
12606 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::RLDIMI
), NewFPSCRTmpReg
)
12607 .addReg(OldFPSCRTmpReg
)
12612 Register NewFPSCRReg
= RegInfo
.createVirtualRegister(&PPC::F8RCRegClass
);
12613 copyRegFromG8RCOrF8RC(NewFPSCRReg
, NewFPSCRTmpReg
);
12615 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12617 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSF
))
12619 .addReg(NewFPSCRReg
)
12622 } else if (MI
.getOpcode() == PPC::SETFLM
) {
12623 DebugLoc Dl
= MI
.getDebugLoc();
12625 // Result of setflm is previous FPSCR content, so we need to save it first.
12626 Register OldFPSCRReg
= MI
.getOperand(0).getReg();
12627 BuildMI(*BB
, MI
, Dl
, TII
->get(PPC::MFFS
), OldFPSCRReg
);
12629 // Put bits in 32:63 to FPSCR.
12630 Register NewFPSCRReg
= MI
.getOperand(1).getReg();
12631 BuildMI(*BB
, MI
, Dl
, TII
->get(PPC::MTFSF
))
12633 .addReg(NewFPSCRReg
)
12636 } else if (MI
.getOpcode() == PPC::PROBED_ALLOCA_32
||
12637 MI
.getOpcode() == PPC::PROBED_ALLOCA_64
) {
12638 return emitProbedAlloca(MI
, BB
);
12639 } else if (MI
.getOpcode() == PPC::SPLIT_QUADWORD
) {
12640 DebugLoc DL
= MI
.getDebugLoc();
12641 Register Src
= MI
.getOperand(2).getReg();
12642 Register Lo
= MI
.getOperand(0).getReg();
12643 Register Hi
= MI
.getOperand(1).getReg();
12644 BuildMI(*BB
, MI
, DL
, TII
->get(TargetOpcode::COPY
))
12646 .addUse(Src
, 0, PPC::sub_gp8_x1
);
12647 BuildMI(*BB
, MI
, DL
, TII
->get(TargetOpcode::COPY
))
12649 .addUse(Src
, 0, PPC::sub_gp8_x0
);
12651 llvm_unreachable("Unexpected instr type to insert");
12654 MI
.eraseFromParent(); // The pseudo instruction is gone now.
12658 //===----------------------------------------------------------------------===//
12659 // Target Optimization Hooks
12660 //===----------------------------------------------------------------------===//
12662 static int getEstimateRefinementSteps(EVT VT
, const PPCSubtarget
&Subtarget
) {
12663 // For the estimates, convergence is quadratic, so we essentially double the
12664 // number of digits correct after every iteration. For both FRE and FRSQRTE,
12665 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12666 // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12667 int RefinementSteps
= Subtarget
.hasRecipPrec() ? 1 : 3;
12668 if (VT
.getScalarType() == MVT::f64
)
12670 return RefinementSteps
;
12673 SDValue
PPCTargetLowering::getSqrtInputTest(SDValue Op
, SelectionDAG
&DAG
,
12674 const DenormalMode
&Mode
) const {
12675 // We only have VSX Vector Test for software Square Root.
12676 EVT VT
= Op
.getValueType();
12677 if (!isTypeLegal(MVT::i1
) ||
12679 ((VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) || !Subtarget
.hasVSX())))
12680 return TargetLowering::getSqrtInputTest(Op
, DAG
, Mode
);
12683 // The output register of FTSQRT is CR field.
12684 SDValue FTSQRT
= DAG
.getNode(PPCISD::FTSQRT
, DL
, MVT::i32
, Op
);
12686 // Let e_b be the unbiased exponent of the double-precision
12687 // floating-point operand in register FRB.
12688 // fe_flag is set to 1 if either of the following conditions occurs.
12689 // - The double-precision floating-point operand in register FRB is a zero,
12690 // a NaN, or an infinity, or a negative value.
12691 // - e_b is less than or equal to -970.
12692 // Otherwise fe_flag is set to 0.
12693 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12694 // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12695 // exponent is less than -970)
12696 SDValue SRIdxVal
= DAG
.getTargetConstant(PPC::sub_eq
, DL
, MVT::i32
);
12697 return SDValue(DAG
.getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
, MVT::i1
,
12703 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op
,
12704 SelectionDAG
&DAG
) const {
12705 // We only have VSX Vector Square Root.
12706 EVT VT
= Op
.getValueType();
12707 if (VT
!= MVT::f64
&&
12708 ((VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) || !Subtarget
.hasVSX()))
12709 return TargetLowering::getSqrtResultForDenormInput(Op
, DAG
);
12711 return DAG
.getNode(PPCISD::FSQRT
, SDLoc(Op
), VT
, Op
);
12714 SDValue
PPCTargetLowering::getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
,
12715 int Enabled
, int &RefinementSteps
,
12716 bool &UseOneConstNR
,
12717 bool Reciprocal
) const {
12718 EVT VT
= Operand
.getValueType();
12719 if ((VT
== MVT::f32
&& Subtarget
.hasFRSQRTES()) ||
12720 (VT
== MVT::f64
&& Subtarget
.hasFRSQRTE()) ||
12721 (VT
== MVT::v4f32
&& Subtarget
.hasAltivec()) ||
12722 (VT
== MVT::v2f64
&& Subtarget
.hasVSX())) {
12723 if (RefinementSteps
== ReciprocalEstimate::Unspecified
)
12724 RefinementSteps
= getEstimateRefinementSteps(VT
, Subtarget
);
12726 // The Newton-Raphson computation with a single constant does not provide
12727 // enough accuracy on some CPUs.
12728 UseOneConstNR
= !Subtarget
.needsTwoConstNR();
12729 return DAG
.getNode(PPCISD::FRSQRTE
, SDLoc(Operand
), VT
, Operand
);
12734 SDValue
PPCTargetLowering::getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
,
12736 int &RefinementSteps
) const {
12737 EVT VT
= Operand
.getValueType();
12738 if ((VT
== MVT::f32
&& Subtarget
.hasFRES()) ||
12739 (VT
== MVT::f64
&& Subtarget
.hasFRE()) ||
12740 (VT
== MVT::v4f32
&& Subtarget
.hasAltivec()) ||
12741 (VT
== MVT::v2f64
&& Subtarget
.hasVSX())) {
12742 if (RefinementSteps
== ReciprocalEstimate::Unspecified
)
12743 RefinementSteps
= getEstimateRefinementSteps(VT
, Subtarget
);
12744 return DAG
.getNode(PPCISD::FRE
, SDLoc(Operand
), VT
, Operand
);
12749 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12750 // Note: This functionality is used only when unsafe-fp-math is enabled, and
12751 // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12752 // enabled for division), this functionality is redundant with the default
12753 // combiner logic (once the division -> reciprocal/multiply transformation
12754 // has taken place). As a result, this matters more for older cores than for
12757 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12758 // reciprocal if there are two or more FDIVs (for embedded cores with only
12759 // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12760 switch (Subtarget
.getCPUDirective()) {
12765 case PPC::DIR_E500
:
12766 case PPC::DIR_E500mc
:
12767 case PPC::DIR_E5500
:
12772 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12773 // collapsed, and so we need to look through chains of them.
12774 static void getBaseWithConstantOffset(SDValue Loc
, SDValue
&Base
,
12775 int64_t& Offset
, SelectionDAG
&DAG
) {
12776 if (DAG
.isBaseWithConstantOffset(Loc
)) {
12777 Base
= Loc
.getOperand(0);
12778 Offset
+= cast
<ConstantSDNode
>(Loc
.getOperand(1))->getSExtValue();
12780 // The base might itself be a base plus an offset, and if so, accumulate
12782 getBaseWithConstantOffset(Loc
.getOperand(0), Base
, Offset
, DAG
);
12786 static bool isConsecutiveLSLoc(SDValue Loc
, EVT VT
, LSBaseSDNode
*Base
,
12787 unsigned Bytes
, int Dist
,
12788 SelectionDAG
&DAG
) {
12789 if (VT
.getSizeInBits() / 8 != Bytes
)
12792 SDValue BaseLoc
= Base
->getBasePtr();
12793 if (Loc
.getOpcode() == ISD::FrameIndex
) {
12794 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
12796 const MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
12797 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
12798 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
12799 int FS
= MFI
.getObjectSize(FI
);
12800 int BFS
= MFI
.getObjectSize(BFI
);
12801 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
12802 return MFI
.getObjectOffset(FI
) == (MFI
.getObjectOffset(BFI
) + Dist
*Bytes
);
12805 SDValue Base1
= Loc
, Base2
= BaseLoc
;
12806 int64_t Offset1
= 0, Offset2
= 0;
12807 getBaseWithConstantOffset(Loc
, Base1
, Offset1
, DAG
);
12808 getBaseWithConstantOffset(BaseLoc
, Base2
, Offset2
, DAG
);
12809 if (Base1
== Base2
&& Offset1
== (Offset2
+ Dist
* Bytes
))
12812 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12813 const GlobalValue
*GV1
= nullptr;
12814 const GlobalValue
*GV2
= nullptr;
12817 bool isGA1
= TLI
.isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
12818 bool isGA2
= TLI
.isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
12819 if (isGA1
&& isGA2
&& GV1
== GV2
)
12820 return Offset1
== (Offset2
+ Dist
*Bytes
);
12824 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12825 // not enforce equality of the chain operands.
12826 static bool isConsecutiveLS(SDNode
*N
, LSBaseSDNode
*Base
,
12827 unsigned Bytes
, int Dist
,
12828 SelectionDAG
&DAG
) {
12829 if (LSBaseSDNode
*LS
= dyn_cast
<LSBaseSDNode
>(N
)) {
12830 EVT VT
= LS
->getMemoryVT();
12831 SDValue Loc
= LS
->getBasePtr();
12832 return isConsecutiveLSLoc(Loc
, VT
, Base
, Bytes
, Dist
, DAG
);
12835 if (N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
) {
12837 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
12838 default: return false;
12839 case Intrinsic::ppc_altivec_lvx
:
12840 case Intrinsic::ppc_altivec_lvxl
:
12841 case Intrinsic::ppc_vsx_lxvw4x
:
12842 case Intrinsic::ppc_vsx_lxvw4x_be
:
12845 case Intrinsic::ppc_vsx_lxvd2x
:
12846 case Intrinsic::ppc_vsx_lxvd2x_be
:
12849 case Intrinsic::ppc_altivec_lvebx
:
12852 case Intrinsic::ppc_altivec_lvehx
:
12855 case Intrinsic::ppc_altivec_lvewx
:
12860 return isConsecutiveLSLoc(N
->getOperand(2), VT
, Base
, Bytes
, Dist
, DAG
);
12863 if (N
->getOpcode() == ISD::INTRINSIC_VOID
) {
12865 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
12866 default: return false;
12867 case Intrinsic::ppc_altivec_stvx
:
12868 case Intrinsic::ppc_altivec_stvxl
:
12869 case Intrinsic::ppc_vsx_stxvw4x
:
12872 case Intrinsic::ppc_vsx_stxvd2x
:
12875 case Intrinsic::ppc_vsx_stxvw4x_be
:
12878 case Intrinsic::ppc_vsx_stxvd2x_be
:
12881 case Intrinsic::ppc_altivec_stvebx
:
12884 case Intrinsic::ppc_altivec_stvehx
:
12887 case Intrinsic::ppc_altivec_stvewx
:
12892 return isConsecutiveLSLoc(N
->getOperand(3), VT
, Base
, Bytes
, Dist
, DAG
);
12898 // Return true is there is a nearyby consecutive load to the one provided
12899 // (regardless of alignment). We search up and down the chain, looking though
12900 // token factors and other loads (but nothing else). As a result, a true result
12901 // indicates that it is safe to create a new consecutive load adjacent to the
12903 static bool findConsecutiveLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
) {
12904 SDValue Chain
= LD
->getChain();
12905 EVT VT
= LD
->getMemoryVT();
12907 SmallSet
<SDNode
*, 16> LoadRoots
;
12908 SmallVector
<SDNode
*, 8> Queue(1, Chain
.getNode());
12909 SmallSet
<SDNode
*, 16> Visited
;
12911 // First, search up the chain, branching to follow all token-factor operands.
12912 // If we find a consecutive load, then we're done, otherwise, record all
12913 // nodes just above the top-level loads and token factors.
12914 while (!Queue
.empty()) {
12915 SDNode
*ChainNext
= Queue
.pop_back_val();
12916 if (!Visited
.insert(ChainNext
).second
)
12919 if (MemSDNode
*ChainLD
= dyn_cast
<MemSDNode
>(ChainNext
)) {
12920 if (isConsecutiveLS(ChainLD
, LD
, VT
.getStoreSize(), 1, DAG
))
12923 if (!Visited
.count(ChainLD
->getChain().getNode()))
12924 Queue
.push_back(ChainLD
->getChain().getNode());
12925 } else if (ChainNext
->getOpcode() == ISD::TokenFactor
) {
12926 for (const SDUse
&O
: ChainNext
->ops())
12927 if (!Visited
.count(O
.getNode()))
12928 Queue
.push_back(O
.getNode());
12930 LoadRoots
.insert(ChainNext
);
12933 // Second, search down the chain, starting from the top-level nodes recorded
12934 // in the first phase. These top-level nodes are the nodes just above all
12935 // loads and token factors. Starting with their uses, recursively look though
12936 // all loads (just the chain uses) and token factors to find a consecutive
12941 for (SmallSet
<SDNode
*, 16>::iterator I
= LoadRoots
.begin(),
12942 IE
= LoadRoots
.end(); I
!= IE
; ++I
) {
12943 Queue
.push_back(*I
);
12945 while (!Queue
.empty()) {
12946 SDNode
*LoadRoot
= Queue
.pop_back_val();
12947 if (!Visited
.insert(LoadRoot
).second
)
12950 if (MemSDNode
*ChainLD
= dyn_cast
<MemSDNode
>(LoadRoot
))
12951 if (isConsecutiveLS(ChainLD
, LD
, VT
.getStoreSize(), 1, DAG
))
12954 for (SDNode::use_iterator UI
= LoadRoot
->use_begin(),
12955 UE
= LoadRoot
->use_end(); UI
!= UE
; ++UI
)
12956 if (((isa
<MemSDNode
>(*UI
) &&
12957 cast
<MemSDNode
>(*UI
)->getChain().getNode() == LoadRoot
) ||
12958 UI
->getOpcode() == ISD::TokenFactor
) && !Visited
.count(*UI
))
12959 Queue
.push_back(*UI
);
12966 /// This function is called when we have proved that a SETCC node can be replaced
12967 /// by subtraction (and other supporting instructions) so that the result of
12968 /// comparison is kept in a GPR instead of CR. This function is purely for
12969 /// codegen purposes and has some flags to guide the codegen process.
12970 static SDValue
generateEquivalentSub(SDNode
*N
, int Size
, bool Complement
,
12971 bool Swap
, SDLoc
&DL
, SelectionDAG
&DAG
) {
12972 assert(N
->getOpcode() == ISD::SETCC
&& "ISD::SETCC Expected.");
12974 // Zero extend the operands to the largest legal integer. Originally, they
12975 // must be of a strictly smaller size.
12976 auto Op0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, N
->getOperand(0),
12977 DAG
.getConstant(Size
, DL
, MVT::i32
));
12978 auto Op1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, N
->getOperand(1),
12979 DAG
.getConstant(Size
, DL
, MVT::i32
));
12981 // Swap if needed. Depends on the condition code.
12983 std::swap(Op0
, Op1
);
12985 // Subtract extended integers.
12986 auto SubNode
= DAG
.getNode(ISD::SUB
, DL
, MVT::i64
, Op0
, Op1
);
12988 // Move the sign bit to the least significant position and zero out the rest.
12989 // Now the least significant bit carries the result of original comparison.
12990 auto Shifted
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SubNode
,
12991 DAG
.getConstant(Size
- 1, DL
, MVT::i32
));
12992 auto Final
= Shifted
;
12994 // Complement the result if needed. Based on the condition code.
12996 Final
= DAG
.getNode(ISD::XOR
, DL
, MVT::i64
, Shifted
,
12997 DAG
.getConstant(1, DL
, MVT::i64
));
12999 return DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Final
);
13002 SDValue
PPCTargetLowering::ConvertSETCCToSubtract(SDNode
*N
,
13003 DAGCombinerInfo
&DCI
) const {
13004 assert(N
->getOpcode() == ISD::SETCC
&& "ISD::SETCC Expected.");
13006 SelectionDAG
&DAG
= DCI
.DAG
;
13009 // Size of integers being compared has a critical role in the following
13010 // analysis, so we prefer to do this when all types are legal.
13011 if (!DCI
.isAfterLegalizeDAG())
13014 // If all users of SETCC extend its value to a legal integer type
13015 // then we replace SETCC with a subtraction
13016 for (SDNode::use_iterator UI
= N
->use_begin(),
13017 UE
= N
->use_end(); UI
!= UE
; ++UI
) {
13018 if (UI
->getOpcode() != ISD::ZERO_EXTEND
)
13022 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
13023 auto OpSize
= N
->getOperand(0).getValueSizeInBits();
13025 unsigned Size
= DAG
.getDataLayout().getLargestLegalIntTypeSizeInBits();
13027 if (OpSize
< Size
) {
13031 return generateEquivalentSub(N
, Size
, false, false, DL
, DAG
);
13033 return generateEquivalentSub(N
, Size
, true, true, DL
, DAG
);
13035 return generateEquivalentSub(N
, Size
, false, true, DL
, DAG
);
13037 return generateEquivalentSub(N
, Size
, true, false, DL
, DAG
);
13044 SDValue
PPCTargetLowering::DAGCombineTruncBoolExt(SDNode
*N
,
13045 DAGCombinerInfo
&DCI
) const {
13046 SelectionDAG
&DAG
= DCI
.DAG
;
13049 assert(Subtarget
.useCRBits() && "Expecting to be tracking CR bits");
13050 // If we're tracking CR bits, we need to be careful that we don't have:
13051 // trunc(binary-ops(zext(x), zext(y)))
13053 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13054 // such that we're unnecessarily moving things into GPRs when it would be
13055 // better to keep them in CR bits.
13057 // Note that trunc here can be an actual i1 trunc, or can be the effective
13058 // truncation that comes from a setcc or select_cc.
13059 if (N
->getOpcode() == ISD::TRUNCATE
&&
13060 N
->getValueType(0) != MVT::i1
)
13063 if (N
->getOperand(0).getValueType() != MVT::i32
&&
13064 N
->getOperand(0).getValueType() != MVT::i64
)
13067 if (N
->getOpcode() == ISD::SETCC
||
13068 N
->getOpcode() == ISD::SELECT_CC
) {
13069 // If we're looking at a comparison, then we need to make sure that the
13070 // high bits (all except for the first) don't matter the result.
13072 cast
<CondCodeSDNode
>(N
->getOperand(
13073 N
->getOpcode() == ISD::SETCC
? 2 : 4))->get();
13074 unsigned OpBits
= N
->getOperand(0).getValueSizeInBits();
13076 if (ISD::isSignedIntSetCC(CC
)) {
13077 if (DAG
.ComputeNumSignBits(N
->getOperand(0)) != OpBits
||
13078 DAG
.ComputeNumSignBits(N
->getOperand(1)) != OpBits
)
13080 } else if (ISD::isUnsignedIntSetCC(CC
)) {
13081 if (!DAG
.MaskedValueIsZero(N
->getOperand(0),
13082 APInt::getHighBitsSet(OpBits
, OpBits
-1)) ||
13083 !DAG
.MaskedValueIsZero(N
->getOperand(1),
13084 APInt::getHighBitsSet(OpBits
, OpBits
-1)))
13085 return (N
->getOpcode() == ISD::SETCC
? ConvertSETCCToSubtract(N
, DCI
)
13088 // This is neither a signed nor an unsigned comparison, just make sure
13089 // that the high bits are equal.
13090 KnownBits Op1Known
= DAG
.computeKnownBits(N
->getOperand(0));
13091 KnownBits Op2Known
= DAG
.computeKnownBits(N
->getOperand(1));
13093 // We don't really care about what is known about the first bit (if
13094 // anything), so pretend that it is known zero for both to ensure they can
13095 // be compared as constants.
13096 Op1Known
.Zero
.setBit(0); Op1Known
.One
.clearBit(0);
13097 Op2Known
.Zero
.setBit(0); Op2Known
.One
.clearBit(0);
13099 if (!Op1Known
.isConstant() || !Op2Known
.isConstant() ||
13100 Op1Known
.getConstant() != Op2Known
.getConstant())
13105 // We now know that the higher-order bits are irrelevant, we just need to
13106 // make sure that all of the intermediate operations are bit operations, and
13107 // all inputs are extensions.
13108 if (N
->getOperand(0).getOpcode() != ISD::AND
&&
13109 N
->getOperand(0).getOpcode() != ISD::OR
&&
13110 N
->getOperand(0).getOpcode() != ISD::XOR
&&
13111 N
->getOperand(0).getOpcode() != ISD::SELECT
&&
13112 N
->getOperand(0).getOpcode() != ISD::SELECT_CC
&&
13113 N
->getOperand(0).getOpcode() != ISD::TRUNCATE
&&
13114 N
->getOperand(0).getOpcode() != ISD::SIGN_EXTEND
&&
13115 N
->getOperand(0).getOpcode() != ISD::ZERO_EXTEND
&&
13116 N
->getOperand(0).getOpcode() != ISD::ANY_EXTEND
)
13119 if ((N
->getOpcode() == ISD::SETCC
|| N
->getOpcode() == ISD::SELECT_CC
) &&
13120 N
->getOperand(1).getOpcode() != ISD::AND
&&
13121 N
->getOperand(1).getOpcode() != ISD::OR
&&
13122 N
->getOperand(1).getOpcode() != ISD::XOR
&&
13123 N
->getOperand(1).getOpcode() != ISD::SELECT
&&
13124 N
->getOperand(1).getOpcode() != ISD::SELECT_CC
&&
13125 N
->getOperand(1).getOpcode() != ISD::TRUNCATE
&&
13126 N
->getOperand(1).getOpcode() != ISD::SIGN_EXTEND
&&
13127 N
->getOperand(1).getOpcode() != ISD::ZERO_EXTEND
&&
13128 N
->getOperand(1).getOpcode() != ISD::ANY_EXTEND
)
13131 SmallVector
<SDValue
, 4> Inputs
;
13132 SmallVector
<SDValue
, 8> BinOps
, PromOps
;
13133 SmallPtrSet
<SDNode
*, 16> Visited
;
13135 for (unsigned i
= 0; i
< 2; ++i
) {
13136 if (((N
->getOperand(i
).getOpcode() == ISD::SIGN_EXTEND
||
13137 N
->getOperand(i
).getOpcode() == ISD::ZERO_EXTEND
||
13138 N
->getOperand(i
).getOpcode() == ISD::ANY_EXTEND
) &&
13139 N
->getOperand(i
).getOperand(0).getValueType() == MVT::i1
) ||
13140 isa
<ConstantSDNode
>(N
->getOperand(i
)))
13141 Inputs
.push_back(N
->getOperand(i
));
13143 BinOps
.push_back(N
->getOperand(i
));
13145 if (N
->getOpcode() == ISD::TRUNCATE
)
13149 // Visit all inputs, collect all binary operations (and, or, xor and
13150 // select) that are all fed by extensions.
13151 while (!BinOps
.empty()) {
13152 SDValue BinOp
= BinOps
.pop_back_val();
13154 if (!Visited
.insert(BinOp
.getNode()).second
)
13157 PromOps
.push_back(BinOp
);
13159 for (unsigned i
= 0, ie
= BinOp
.getNumOperands(); i
!= ie
; ++i
) {
13160 // The condition of the select is not promoted.
13161 if (BinOp
.getOpcode() == ISD::SELECT
&& i
== 0)
13163 if (BinOp
.getOpcode() == ISD::SELECT_CC
&& i
!= 2 && i
!= 3)
13166 if (((BinOp
.getOperand(i
).getOpcode() == ISD::SIGN_EXTEND
||
13167 BinOp
.getOperand(i
).getOpcode() == ISD::ZERO_EXTEND
||
13168 BinOp
.getOperand(i
).getOpcode() == ISD::ANY_EXTEND
) &&
13169 BinOp
.getOperand(i
).getOperand(0).getValueType() == MVT::i1
) ||
13170 isa
<ConstantSDNode
>(BinOp
.getOperand(i
))) {
13171 Inputs
.push_back(BinOp
.getOperand(i
));
13172 } else if (BinOp
.getOperand(i
).getOpcode() == ISD::AND
||
13173 BinOp
.getOperand(i
).getOpcode() == ISD::OR
||
13174 BinOp
.getOperand(i
).getOpcode() == ISD::XOR
||
13175 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT
||
13176 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT_CC
||
13177 BinOp
.getOperand(i
).getOpcode() == ISD::TRUNCATE
||
13178 BinOp
.getOperand(i
).getOpcode() == ISD::SIGN_EXTEND
||
13179 BinOp
.getOperand(i
).getOpcode() == ISD::ZERO_EXTEND
||
13180 BinOp
.getOperand(i
).getOpcode() == ISD::ANY_EXTEND
) {
13181 BinOps
.push_back(BinOp
.getOperand(i
));
13183 // We have an input that is not an extension or another binary
13184 // operation; we'll abort this transformation.
13190 // Make sure that this is a self-contained cluster of operations (which
13191 // is not quite the same thing as saying that everything has only one
13193 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
13194 if (isa
<ConstantSDNode
>(Inputs
[i
]))
13197 for (SDNode::use_iterator UI
= Inputs
[i
].getNode()->use_begin(),
13198 UE
= Inputs
[i
].getNode()->use_end();
13200 SDNode
*User
= *UI
;
13201 if (User
!= N
&& !Visited
.count(User
))
13204 // Make sure that we're not going to promote the non-output-value
13205 // operand(s) or SELECT or SELECT_CC.
13206 // FIXME: Although we could sometimes handle this, and it does occur in
13207 // practice that one of the condition inputs to the select is also one of
13208 // the outputs, we currently can't deal with this.
13209 if (User
->getOpcode() == ISD::SELECT
) {
13210 if (User
->getOperand(0) == Inputs
[i
])
13212 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
13213 if (User
->getOperand(0) == Inputs
[i
] ||
13214 User
->getOperand(1) == Inputs
[i
])
13220 for (unsigned i
= 0, ie
= PromOps
.size(); i
!= ie
; ++i
) {
13221 for (SDNode::use_iterator UI
= PromOps
[i
].getNode()->use_begin(),
13222 UE
= PromOps
[i
].getNode()->use_end();
13224 SDNode
*User
= *UI
;
13225 if (User
!= N
&& !Visited
.count(User
))
13228 // Make sure that we're not going to promote the non-output-value
13229 // operand(s) or SELECT or SELECT_CC.
13230 // FIXME: Although we could sometimes handle this, and it does occur in
13231 // practice that one of the condition inputs to the select is also one of
13232 // the outputs, we currently can't deal with this.
13233 if (User
->getOpcode() == ISD::SELECT
) {
13234 if (User
->getOperand(0) == PromOps
[i
])
13236 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
13237 if (User
->getOperand(0) == PromOps
[i
] ||
13238 User
->getOperand(1) == PromOps
[i
])
13244 // Replace all inputs with the extension operand.
13245 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
13246 // Constants may have users outside the cluster of to-be-promoted nodes,
13247 // and so we need to replace those as we do the promotions.
13248 if (isa
<ConstantSDNode
>(Inputs
[i
]))
13251 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
], Inputs
[i
].getOperand(0));
13254 std::list
<HandleSDNode
> PromOpHandles
;
13255 for (auto &PromOp
: PromOps
)
13256 PromOpHandles
.emplace_back(PromOp
);
13258 // Replace all operations (these are all the same, but have a different
13259 // (i1) return type). DAG.getNode will validate that the types of
13260 // a binary operator match, so go through the list in reverse so that
13261 // we've likely promoted both operands first. Any intermediate truncations or
13262 // extensions disappear.
13263 while (!PromOpHandles
.empty()) {
13264 SDValue PromOp
= PromOpHandles
.back().getValue();
13265 PromOpHandles
.pop_back();
13267 if (PromOp
.getOpcode() == ISD::TRUNCATE
||
13268 PromOp
.getOpcode() == ISD::SIGN_EXTEND
||
13269 PromOp
.getOpcode() == ISD::ZERO_EXTEND
||
13270 PromOp
.getOpcode() == ISD::ANY_EXTEND
) {
13271 if (!isa
<ConstantSDNode
>(PromOp
.getOperand(0)) &&
13272 PromOp
.getOperand(0).getValueType() != MVT::i1
) {
13273 // The operand is not yet ready (see comment below).
13274 PromOpHandles
.emplace_front(PromOp
);
13278 SDValue RepValue
= PromOp
.getOperand(0);
13279 if (isa
<ConstantSDNode
>(RepValue
))
13280 RepValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, RepValue
);
13282 DAG
.ReplaceAllUsesOfValueWith(PromOp
, RepValue
);
13287 switch (PromOp
.getOpcode()) {
13288 default: C
= 0; break;
13289 case ISD::SELECT
: C
= 1; break;
13290 case ISD::SELECT_CC
: C
= 2; break;
13293 if ((!isa
<ConstantSDNode
>(PromOp
.getOperand(C
)) &&
13294 PromOp
.getOperand(C
).getValueType() != MVT::i1
) ||
13295 (!isa
<ConstantSDNode
>(PromOp
.getOperand(C
+1)) &&
13296 PromOp
.getOperand(C
+1).getValueType() != MVT::i1
)) {
13297 // The to-be-promoted operands of this node have not yet been
13298 // promoted (this should be rare because we're going through the
13299 // list backward, but if one of the operands has several users in
13300 // this cluster of to-be-promoted nodes, it is possible).
13301 PromOpHandles
.emplace_front(PromOp
);
13305 SmallVector
<SDValue
, 3> Ops(PromOp
.getNode()->op_begin(),
13306 PromOp
.getNode()->op_end());
13308 // If there are any constant inputs, make sure they're replaced now.
13309 for (unsigned i
= 0; i
< 2; ++i
)
13310 if (isa
<ConstantSDNode
>(Ops
[C
+i
]))
13311 Ops
[C
+i
] = DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, Ops
[C
+i
]);
13313 DAG
.ReplaceAllUsesOfValueWith(PromOp
,
13314 DAG
.getNode(PromOp
.getOpcode(), dl
, MVT::i1
, Ops
));
13317 // Now we're left with the initial truncation itself.
13318 if (N
->getOpcode() == ISD::TRUNCATE
)
13319 return N
->getOperand(0);
13321 // Otherwise, this is a comparison. The operands to be compared have just
13322 // changed type (to i1), but everything else is the same.
13323 return SDValue(N
, 0);
13326 SDValue
PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode
*N
,
13327 DAGCombinerInfo
&DCI
) const {
13328 SelectionDAG
&DAG
= DCI
.DAG
;
13331 // If we're tracking CR bits, we need to be careful that we don't have:
13332 // zext(binary-ops(trunc(x), trunc(y)))
13334 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13335 // such that we're unnecessarily moving things into CR bits that can more
13336 // efficiently stay in GPRs. Note that if we're not certain that the high
13337 // bits are set as required by the final extension, we still may need to do
13338 // some masking to get the proper behavior.
13340 // This same functionality is important on PPC64 when dealing with
13341 // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13342 // the return values of functions. Because it is so similar, it is handled
13345 if (N
->getValueType(0) != MVT::i32
&&
13346 N
->getValueType(0) != MVT::i64
)
13349 if (!((N
->getOperand(0).getValueType() == MVT::i1
&& Subtarget
.useCRBits()) ||
13350 (N
->getOperand(0).getValueType() == MVT::i32
&& Subtarget
.isPPC64())))
13353 if (N
->getOperand(0).getOpcode() != ISD::AND
&&
13354 N
->getOperand(0).getOpcode() != ISD::OR
&&
13355 N
->getOperand(0).getOpcode() != ISD::XOR
&&
13356 N
->getOperand(0).getOpcode() != ISD::SELECT
&&
13357 N
->getOperand(0).getOpcode() != ISD::SELECT_CC
)
13360 SmallVector
<SDValue
, 4> Inputs
;
13361 SmallVector
<SDValue
, 8> BinOps(1, N
->getOperand(0)), PromOps
;
13362 SmallPtrSet
<SDNode
*, 16> Visited
;
13364 // Visit all inputs, collect all binary operations (and, or, xor and
13365 // select) that are all fed by truncations.
13366 while (!BinOps
.empty()) {
13367 SDValue BinOp
= BinOps
.pop_back_val();
13369 if (!Visited
.insert(BinOp
.getNode()).second
)
13372 PromOps
.push_back(BinOp
);
13374 for (unsigned i
= 0, ie
= BinOp
.getNumOperands(); i
!= ie
; ++i
) {
13375 // The condition of the select is not promoted.
13376 if (BinOp
.getOpcode() == ISD::SELECT
&& i
== 0)
13378 if (BinOp
.getOpcode() == ISD::SELECT_CC
&& i
!= 2 && i
!= 3)
13381 if (BinOp
.getOperand(i
).getOpcode() == ISD::TRUNCATE
||
13382 isa
<ConstantSDNode
>(BinOp
.getOperand(i
))) {
13383 Inputs
.push_back(BinOp
.getOperand(i
));
13384 } else if (BinOp
.getOperand(i
).getOpcode() == ISD::AND
||
13385 BinOp
.getOperand(i
).getOpcode() == ISD::OR
||
13386 BinOp
.getOperand(i
).getOpcode() == ISD::XOR
||
13387 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT
||
13388 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT_CC
) {
13389 BinOps
.push_back(BinOp
.getOperand(i
));
13391 // We have an input that is not a truncation or another binary
13392 // operation; we'll abort this transformation.
13398 // The operands of a select that must be truncated when the select is
13399 // promoted because the operand is actually part of the to-be-promoted set.
13400 DenseMap
<SDNode
*, EVT
> SelectTruncOp
[2];
13402 // Make sure that this is a self-contained cluster of operations (which
13403 // is not quite the same thing as saying that everything has only one
13405 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
13406 if (isa
<ConstantSDNode
>(Inputs
[i
]))
13409 for (SDNode::use_iterator UI
= Inputs
[i
].getNode()->use_begin(),
13410 UE
= Inputs
[i
].getNode()->use_end();
13412 SDNode
*User
= *UI
;
13413 if (User
!= N
&& !Visited
.count(User
))
13416 // If we're going to promote the non-output-value operand(s) or SELECT or
13417 // SELECT_CC, record them for truncation.
13418 if (User
->getOpcode() == ISD::SELECT
) {
13419 if (User
->getOperand(0) == Inputs
[i
])
13420 SelectTruncOp
[0].insert(std::make_pair(User
,
13421 User
->getOperand(0).getValueType()));
13422 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
13423 if (User
->getOperand(0) == Inputs
[i
])
13424 SelectTruncOp
[0].insert(std::make_pair(User
,
13425 User
->getOperand(0).getValueType()));
13426 if (User
->getOperand(1) == Inputs
[i
])
13427 SelectTruncOp
[1].insert(std::make_pair(User
,
13428 User
->getOperand(1).getValueType()));
13433 for (unsigned i
= 0, ie
= PromOps
.size(); i
!= ie
; ++i
) {
13434 for (SDNode::use_iterator UI
= PromOps
[i
].getNode()->use_begin(),
13435 UE
= PromOps
[i
].getNode()->use_end();
13437 SDNode
*User
= *UI
;
13438 if (User
!= N
&& !Visited
.count(User
))
13441 // If we're going to promote the non-output-value operand(s) or SELECT or
13442 // SELECT_CC, record them for truncation.
13443 if (User
->getOpcode() == ISD::SELECT
) {
13444 if (User
->getOperand(0) == PromOps
[i
])
13445 SelectTruncOp
[0].insert(std::make_pair(User
,
13446 User
->getOperand(0).getValueType()));
13447 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
13448 if (User
->getOperand(0) == PromOps
[i
])
13449 SelectTruncOp
[0].insert(std::make_pair(User
,
13450 User
->getOperand(0).getValueType()));
13451 if (User
->getOperand(1) == PromOps
[i
])
13452 SelectTruncOp
[1].insert(std::make_pair(User
,
13453 User
->getOperand(1).getValueType()));
13458 unsigned PromBits
= N
->getOperand(0).getValueSizeInBits();
13459 bool ReallyNeedsExt
= false;
13460 if (N
->getOpcode() != ISD::ANY_EXTEND
) {
13461 // If all of the inputs are not already sign/zero extended, then
13462 // we'll still need to do that at the end.
13463 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
13464 if (isa
<ConstantSDNode
>(Inputs
[i
]))
13468 Inputs
[i
].getOperand(0).getValueSizeInBits();
13469 assert(PromBits
< OpBits
&& "Truncation not to a smaller bit count?");
13471 if ((N
->getOpcode() == ISD::ZERO_EXTEND
&&
13472 !DAG
.MaskedValueIsZero(Inputs
[i
].getOperand(0),
13473 APInt::getHighBitsSet(OpBits
,
13474 OpBits
-PromBits
))) ||
13475 (N
->getOpcode() == ISD::SIGN_EXTEND
&&
13476 DAG
.ComputeNumSignBits(Inputs
[i
].getOperand(0)) <
13477 (OpBits
-(PromBits
-1)))) {
13478 ReallyNeedsExt
= true;
13484 // Replace all inputs, either with the truncation operand, or a
13485 // truncation or extension to the final output type.
13486 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
13487 // Constant inputs need to be replaced with the to-be-promoted nodes that
13488 // use them because they might have users outside of the cluster of
13490 if (isa
<ConstantSDNode
>(Inputs
[i
]))
13493 SDValue InSrc
= Inputs
[i
].getOperand(0);
13494 if (Inputs
[i
].getValueType() == N
->getValueType(0))
13495 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
], InSrc
);
13496 else if (N
->getOpcode() == ISD::SIGN_EXTEND
)
13497 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
],
13498 DAG
.getSExtOrTrunc(InSrc
, dl
, N
->getValueType(0)));
13499 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
13500 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
],
13501 DAG
.getZExtOrTrunc(InSrc
, dl
, N
->getValueType(0)));
13503 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
],
13504 DAG
.getAnyExtOrTrunc(InSrc
, dl
, N
->getValueType(0)));
13507 std::list
<HandleSDNode
> PromOpHandles
;
13508 for (auto &PromOp
: PromOps
)
13509 PromOpHandles
.emplace_back(PromOp
);
13511 // Replace all operations (these are all the same, but have a different
13512 // (promoted) return type). DAG.getNode will validate that the types of
13513 // a binary operator match, so go through the list in reverse so that
13514 // we've likely promoted both operands first.
13515 while (!PromOpHandles
.empty()) {
13516 SDValue PromOp
= PromOpHandles
.back().getValue();
13517 PromOpHandles
.pop_back();
13520 switch (PromOp
.getOpcode()) {
13521 default: C
= 0; break;
13522 case ISD::SELECT
: C
= 1; break;
13523 case ISD::SELECT_CC
: C
= 2; break;
13526 if ((!isa
<ConstantSDNode
>(PromOp
.getOperand(C
)) &&
13527 PromOp
.getOperand(C
).getValueType() != N
->getValueType(0)) ||
13528 (!isa
<ConstantSDNode
>(PromOp
.getOperand(C
+1)) &&
13529 PromOp
.getOperand(C
+1).getValueType() != N
->getValueType(0))) {
13530 // The to-be-promoted operands of this node have not yet been
13531 // promoted (this should be rare because we're going through the
13532 // list backward, but if one of the operands has several users in
13533 // this cluster of to-be-promoted nodes, it is possible).
13534 PromOpHandles
.emplace_front(PromOp
);
13538 // For SELECT and SELECT_CC nodes, we do a similar check for any
13539 // to-be-promoted comparison inputs.
13540 if (PromOp
.getOpcode() == ISD::SELECT
||
13541 PromOp
.getOpcode() == ISD::SELECT_CC
) {
13542 if ((SelectTruncOp
[0].count(PromOp
.getNode()) &&
13543 PromOp
.getOperand(0).getValueType() != N
->getValueType(0)) ||
13544 (SelectTruncOp
[1].count(PromOp
.getNode()) &&
13545 PromOp
.getOperand(1).getValueType() != N
->getValueType(0))) {
13546 PromOpHandles
.emplace_front(PromOp
);
13551 SmallVector
<SDValue
, 3> Ops(PromOp
.getNode()->op_begin(),
13552 PromOp
.getNode()->op_end());
13554 // If this node has constant inputs, then they'll need to be promoted here.
13555 for (unsigned i
= 0; i
< 2; ++i
) {
13556 if (!isa
<ConstantSDNode
>(Ops
[C
+i
]))
13558 if (Ops
[C
+i
].getValueType() == N
->getValueType(0))
13561 if (N
->getOpcode() == ISD::SIGN_EXTEND
)
13562 Ops
[C
+i
] = DAG
.getSExtOrTrunc(Ops
[C
+i
], dl
, N
->getValueType(0));
13563 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
13564 Ops
[C
+i
] = DAG
.getZExtOrTrunc(Ops
[C
+i
], dl
, N
->getValueType(0));
13566 Ops
[C
+i
] = DAG
.getAnyExtOrTrunc(Ops
[C
+i
], dl
, N
->getValueType(0));
13569 // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13570 // truncate them again to the original value type.
13571 if (PromOp
.getOpcode() == ISD::SELECT
||
13572 PromOp
.getOpcode() == ISD::SELECT_CC
) {
13573 auto SI0
= SelectTruncOp
[0].find(PromOp
.getNode());
13574 if (SI0
!= SelectTruncOp
[0].end())
13575 Ops
[0] = DAG
.getNode(ISD::TRUNCATE
, dl
, SI0
->second
, Ops
[0]);
13576 auto SI1
= SelectTruncOp
[1].find(PromOp
.getNode());
13577 if (SI1
!= SelectTruncOp
[1].end())
13578 Ops
[1] = DAG
.getNode(ISD::TRUNCATE
, dl
, SI1
->second
, Ops
[1]);
13581 DAG
.ReplaceAllUsesOfValueWith(PromOp
,
13582 DAG
.getNode(PromOp
.getOpcode(), dl
, N
->getValueType(0), Ops
));
13585 // Now we're left with the initial extension itself.
13586 if (!ReallyNeedsExt
)
13587 return N
->getOperand(0);
13589 // To zero extend, just mask off everything except for the first bit (in the
13591 if (N
->getOpcode() == ISD::ZERO_EXTEND
)
13592 return DAG
.getNode(ISD::AND
, dl
, N
->getValueType(0), N
->getOperand(0),
13593 DAG
.getConstant(APInt::getLowBitsSet(
13594 N
->getValueSizeInBits(0), PromBits
),
13595 dl
, N
->getValueType(0)));
13597 assert(N
->getOpcode() == ISD::SIGN_EXTEND
&&
13598 "Invalid extension type");
13599 EVT ShiftAmountTy
= getShiftAmountTy(N
->getValueType(0), DAG
.getDataLayout());
13601 DAG
.getConstant(N
->getValueSizeInBits(0) - PromBits
, dl
, ShiftAmountTy
);
13602 return DAG
.getNode(
13603 ISD::SRA
, dl
, N
->getValueType(0),
13604 DAG
.getNode(ISD::SHL
, dl
, N
->getValueType(0), N
->getOperand(0), ShiftCst
),
13608 SDValue
PPCTargetLowering::combineSetCC(SDNode
*N
,
13609 DAGCombinerInfo
&DCI
) const {
13610 assert(N
->getOpcode() == ISD::SETCC
&&
13611 "Should be called with a SETCC node");
13613 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
13614 if (CC
== ISD::SETNE
|| CC
== ISD::SETEQ
) {
13615 SDValue LHS
= N
->getOperand(0);
13616 SDValue RHS
= N
->getOperand(1);
13618 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13619 if (LHS
.getOpcode() == ISD::SUB
&& isNullConstant(LHS
.getOperand(0)) &&
13621 std::swap(LHS
, RHS
);
13623 // x == 0-y --> x+y == 0
13624 // x != 0-y --> x+y != 0
13625 if (RHS
.getOpcode() == ISD::SUB
&& isNullConstant(RHS
.getOperand(0)) &&
13628 SelectionDAG
&DAG
= DCI
.DAG
;
13629 EVT VT
= N
->getValueType(0);
13630 EVT OpVT
= LHS
.getValueType();
13631 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, OpVT
, LHS
, RHS
.getOperand(1));
13632 return DAG
.getSetCC(DL
, VT
, Add
, DAG
.getConstant(0, DL
, OpVT
), CC
);
13636 return DAGCombineTruncBoolExt(N
, DCI
);
13639 // Is this an extending load from an f32 to an f64?
13640 static bool isFPExtLoad(SDValue Op
) {
13641 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode()))
13642 return LD
->getExtensionType() == ISD::EXTLOAD
&&
13643 Op
.getValueType() == MVT::f64
;
13647 /// Reduces the number of fp-to-int conversion when building a vector.
13649 /// If this vector is built out of floating to integer conversions,
13650 /// transform it to a vector built out of floating point values followed by a
13651 /// single floating to integer conversion of the vector.
13652 /// Namely (build_vector (fptosi $A), (fptosi $B), ...)
13653 /// becomes (fptosi (build_vector ($A, $B, ...)))
13654 SDValue
PPCTargetLowering::
13655 combineElementTruncationToVectorTruncation(SDNode
*N
,
13656 DAGCombinerInfo
&DCI
) const {
13657 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
13658 "Should be called with a BUILD_VECTOR node");
13660 SelectionDAG
&DAG
= DCI
.DAG
;
13663 SDValue FirstInput
= N
->getOperand(0);
13664 assert(FirstInput
.getOpcode() == PPCISD::MFVSR
&&
13665 "The input operand must be an fp-to-int conversion.");
13667 // This combine happens after legalization so the fp_to_[su]i nodes are
13668 // already converted to PPCSISD nodes.
13669 unsigned FirstConversion
= FirstInput
.getOperand(0).getOpcode();
13670 if (FirstConversion
== PPCISD::FCTIDZ
||
13671 FirstConversion
== PPCISD::FCTIDUZ
||
13672 FirstConversion
== PPCISD::FCTIWZ
||
13673 FirstConversion
== PPCISD::FCTIWUZ
) {
13674 bool IsSplat
= true;
13675 bool Is32Bit
= FirstConversion
== PPCISD::FCTIWZ
||
13676 FirstConversion
== PPCISD::FCTIWUZ
;
13677 EVT SrcVT
= FirstInput
.getOperand(0).getValueType();
13678 SmallVector
<SDValue
, 4> Ops
;
13679 EVT TargetVT
= N
->getValueType(0);
13680 for (int i
= 0, e
= N
->getNumOperands(); i
< e
; ++i
) {
13681 SDValue NextOp
= N
->getOperand(i
);
13682 if (NextOp
.getOpcode() != PPCISD::MFVSR
)
13684 unsigned NextConversion
= NextOp
.getOperand(0).getOpcode();
13685 if (NextConversion
!= FirstConversion
)
13687 // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13688 // This is not valid if the input was originally double precision. It is
13689 // also not profitable to do unless this is an extending load in which
13690 // case doing this combine will allow us to combine consecutive loads.
13691 if (Is32Bit
&& !isFPExtLoad(NextOp
.getOperand(0).getOperand(0)))
13693 if (N
->getOperand(i
) != FirstInput
)
13697 // If this is a splat, we leave it as-is since there will be only a single
13698 // fp-to-int conversion followed by a splat of the integer. This is better
13699 // for 32-bit and smaller ints and neutral for 64-bit ints.
13703 // Now that we know we have the right type of node, get its operands
13704 for (int i
= 0, e
= N
->getNumOperands(); i
< e
; ++i
) {
13705 SDValue In
= N
->getOperand(i
).getOperand(0);
13707 // For 32-bit values, we need to add an FP_ROUND node (if we made it
13708 // here, we know that all inputs are extending loads so this is safe).
13710 Ops
.push_back(DAG
.getUNDEF(SrcVT
));
13712 SDValue Trunc
= DAG
.getNode(ISD::FP_ROUND
, dl
,
13713 MVT::f32
, In
.getOperand(0),
13714 DAG
.getIntPtrConstant(1, dl
));
13715 Ops
.push_back(Trunc
);
13718 Ops
.push_back(In
.isUndef() ? DAG
.getUNDEF(SrcVT
) : In
.getOperand(0));
13722 if (FirstConversion
== PPCISD::FCTIDZ
||
13723 FirstConversion
== PPCISD::FCTIWZ
)
13724 Opcode
= ISD::FP_TO_SINT
;
13726 Opcode
= ISD::FP_TO_UINT
;
13728 EVT NewVT
= TargetVT
== MVT::v2i64
? MVT::v2f64
: MVT::v4f32
;
13729 SDValue BV
= DAG
.getBuildVector(NewVT
, dl
, Ops
);
13730 return DAG
.getNode(Opcode
, dl
, TargetVT
, BV
);
13735 /// Reduce the number of loads when building a vector.
13737 /// Building a vector out of multiple loads can be converted to a load
13738 /// of the vector type if the loads are consecutive. If the loads are
13739 /// consecutive but in descending order, a shuffle is added at the end
13740 /// to reorder the vector.
13741 static SDValue
combineBVOfConsecutiveLoads(SDNode
*N
, SelectionDAG
&DAG
) {
13742 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
13743 "Should be called with a BUILD_VECTOR node");
13747 // Return early for non byte-sized type, as they can't be consecutive.
13748 if (!N
->getValueType(0).getVectorElementType().isByteSized())
13751 bool InputsAreConsecutiveLoads
= true;
13752 bool InputsAreReverseConsecutive
= true;
13753 unsigned ElemSize
= N
->getValueType(0).getScalarType().getStoreSize();
13754 SDValue FirstInput
= N
->getOperand(0);
13755 bool IsRoundOfExtLoad
= false;
13757 if (FirstInput
.getOpcode() == ISD::FP_ROUND
&&
13758 FirstInput
.getOperand(0).getOpcode() == ISD::LOAD
) {
13759 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(FirstInput
.getOperand(0));
13760 IsRoundOfExtLoad
= LD
->getExtensionType() == ISD::EXTLOAD
;
13762 // Not a build vector of (possibly fp_rounded) loads.
13763 if ((!IsRoundOfExtLoad
&& FirstInput
.getOpcode() != ISD::LOAD
) ||
13764 N
->getNumOperands() == 1)
13767 for (int i
= 1, e
= N
->getNumOperands(); i
< e
; ++i
) {
13768 // If any inputs are fp_round(extload), they all must be.
13769 if (IsRoundOfExtLoad
&& N
->getOperand(i
).getOpcode() != ISD::FP_ROUND
)
13772 SDValue NextInput
= IsRoundOfExtLoad
? N
->getOperand(i
).getOperand(0) :
13774 if (NextInput
.getOpcode() != ISD::LOAD
)
13777 SDValue PreviousInput
=
13778 IsRoundOfExtLoad
? N
->getOperand(i
-1).getOperand(0) : N
->getOperand(i
-1);
13779 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(PreviousInput
);
13780 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(NextInput
);
13782 // If any inputs are fp_round(extload), they all must be.
13783 if (IsRoundOfExtLoad
&& LD2
->getExtensionType() != ISD::EXTLOAD
)
13786 if (!isConsecutiveLS(LD2
, LD1
, ElemSize
, 1, DAG
))
13787 InputsAreConsecutiveLoads
= false;
13788 if (!isConsecutiveLS(LD1
, LD2
, ElemSize
, 1, DAG
))
13789 InputsAreReverseConsecutive
= false;
13791 // Exit early if the loads are neither consecutive nor reverse consecutive.
13792 if (!InputsAreConsecutiveLoads
&& !InputsAreReverseConsecutive
)
13796 assert(!(InputsAreConsecutiveLoads
&& InputsAreReverseConsecutive
) &&
13797 "The loads cannot be both consecutive and reverse consecutive.");
13799 SDValue FirstLoadOp
=
13800 IsRoundOfExtLoad
? FirstInput
.getOperand(0) : FirstInput
;
13801 SDValue LastLoadOp
=
13802 IsRoundOfExtLoad
? N
->getOperand(N
->getNumOperands()-1).getOperand(0) :
13803 N
->getOperand(N
->getNumOperands()-1);
13805 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(FirstLoadOp
);
13806 LoadSDNode
*LDL
= dyn_cast
<LoadSDNode
>(LastLoadOp
);
13807 if (InputsAreConsecutiveLoads
) {
13808 assert(LD1
&& "Input needs to be a LoadSDNode.");
13809 return DAG
.getLoad(N
->getValueType(0), dl
, LD1
->getChain(),
13810 LD1
->getBasePtr(), LD1
->getPointerInfo(),
13811 LD1
->getAlignment());
13813 if (InputsAreReverseConsecutive
) {
13814 assert(LDL
&& "Input needs to be a LoadSDNode.");
13815 SDValue Load
= DAG
.getLoad(N
->getValueType(0), dl
, LDL
->getChain(),
13816 LDL
->getBasePtr(), LDL
->getPointerInfo(),
13817 LDL
->getAlignment());
13818 SmallVector
<int, 16> Ops
;
13819 for (int i
= N
->getNumOperands() - 1; i
>= 0; i
--)
13822 return DAG
.getVectorShuffle(N
->getValueType(0), dl
, Load
,
13823 DAG
.getUNDEF(N
->getValueType(0)), Ops
);
13828 // This function adds the required vector_shuffle needed to get
13829 // the elements of the vector extract in the correct position
13830 // as specified by the CorrectElems encoding.
13831 static SDValue
addShuffleForVecExtend(SDNode
*N
, SelectionDAG
&DAG
,
13832 SDValue Input
, uint64_t Elems
,
13833 uint64_t CorrectElems
) {
13836 unsigned NumElems
= Input
.getValueType().getVectorNumElements();
13837 SmallVector
<int, 16> ShuffleMask(NumElems
, -1);
13839 // Knowing the element indices being extracted from the original
13840 // vector and the order in which they're being inserted, just put
13841 // them at element indices required for the instruction.
13842 for (unsigned i
= 0; i
< N
->getNumOperands(); i
++) {
13843 if (DAG
.getDataLayout().isLittleEndian())
13844 ShuffleMask
[CorrectElems
& 0xF] = Elems
& 0xF;
13846 ShuffleMask
[(CorrectElems
& 0xF0) >> 4] = (Elems
& 0xF0) >> 4;
13847 CorrectElems
= CorrectElems
>> 8;
13848 Elems
= Elems
>> 8;
13852 DAG
.getVectorShuffle(Input
.getValueType(), dl
, Input
,
13853 DAG
.getUNDEF(Input
.getValueType()), ShuffleMask
);
13855 EVT VT
= N
->getValueType(0);
13856 SDValue Conv
= DAG
.getBitcast(VT
, Shuffle
);
13858 EVT ExtVT
= EVT::getVectorVT(*DAG
.getContext(),
13859 Input
.getValueType().getVectorElementType(),
13860 VT
.getVectorNumElements());
13861 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, VT
, Conv
,
13862 DAG
.getValueType(ExtVT
));
13865 // Look for build vector patterns where input operands come from sign
13866 // extended vector_extract elements of specific indices. If the correct indices
13867 // aren't used, add a vector shuffle to fix up the indices and create
13868 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13869 // during instruction selection.
13870 static SDValue
combineBVOfVecSExt(SDNode
*N
, SelectionDAG
&DAG
) {
13871 // This array encodes the indices that the vector sign extend instructions
13872 // extract from when extending from one type to another for both BE and LE.
13873 // The right nibble of each byte corresponds to the LE incides.
13874 // and the left nibble of each byte corresponds to the BE incides.
13875 // For example: 0x3074B8FC byte->word
13876 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13877 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13878 // For example: 0x000070F8 byte->double word
13879 // For LE: the allowed indices are: 0x0,0x8
13880 // For BE: the allowed indices are: 0x7,0xF
13881 uint64_t TargetElems
[] = {
13882 0x3074B8FC, // b->w
13883 0x000070F8, // b->d
13884 0x10325476, // h->w
13885 0x00003074, // h->d
13886 0x00001032, // w->d
13889 uint64_t Elems
= 0;
13893 auto isSExtOfVecExtract
= [&](SDValue Op
) -> bool {
13896 if (Op
.getOpcode() != ISD::SIGN_EXTEND
&&
13897 Op
.getOpcode() != ISD::SIGN_EXTEND_INREG
)
13900 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13901 // of the right width.
13902 SDValue Extract
= Op
.getOperand(0);
13903 if (Extract
.getOpcode() == ISD::ANY_EXTEND
)
13904 Extract
= Extract
.getOperand(0);
13905 if (Extract
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
13908 ConstantSDNode
*ExtOp
= dyn_cast
<ConstantSDNode
>(Extract
.getOperand(1));
13912 Index
= ExtOp
->getZExtValue();
13913 if (Input
&& Input
!= Extract
.getOperand(0))
13917 Input
= Extract
.getOperand(0);
13919 Elems
= Elems
<< 8;
13920 Index
= DAG
.getDataLayout().isLittleEndian() ? Index
: Index
<< 4;
13926 // If the build vector operands aren't sign extended vector extracts,
13927 // of the same input vector, then return.
13928 for (unsigned i
= 0; i
< N
->getNumOperands(); i
++) {
13929 if (!isSExtOfVecExtract(N
->getOperand(i
))) {
13934 // If the vector extract indicies are not correct, add the appropriate
13936 int TgtElemArrayIdx
;
13937 int InputSize
= Input
.getValueType().getScalarSizeInBits();
13938 int OutputSize
= N
->getValueType(0).getScalarSizeInBits();
13939 if (InputSize
+ OutputSize
== 40)
13940 TgtElemArrayIdx
= 0;
13941 else if (InputSize
+ OutputSize
== 72)
13942 TgtElemArrayIdx
= 1;
13943 else if (InputSize
+ OutputSize
== 48)
13944 TgtElemArrayIdx
= 2;
13945 else if (InputSize
+ OutputSize
== 80)
13946 TgtElemArrayIdx
= 3;
13947 else if (InputSize
+ OutputSize
== 96)
13948 TgtElemArrayIdx
= 4;
13952 uint64_t CorrectElems
= TargetElems
[TgtElemArrayIdx
];
13953 CorrectElems
= DAG
.getDataLayout().isLittleEndian()
13954 ? CorrectElems
& 0x0F0F0F0F0F0F0F0F
13955 : CorrectElems
& 0xF0F0F0F0F0F0F0F0;
13956 if (Elems
!= CorrectElems
) {
13957 return addShuffleForVecExtend(N
, DAG
, Input
, Elems
, CorrectElems
);
13960 // Regular lowering will catch cases where a shuffle is not needed.
13964 // Look for the pattern of a load from a narrow width to i128, feeding
13965 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13966 // (LXVRZX). This node represents a zero extending load that will be matched
13967 // to the Load VSX Vector Rightmost instructions.
13968 static SDValue
combineBVZEXTLOAD(SDNode
*N
, SelectionDAG
&DAG
) {
13971 // This combine is only eligible for a BUILD_VECTOR of v1i128.
13972 if (N
->getValueType(0) != MVT::v1i128
)
13975 SDValue Operand
= N
->getOperand(0);
13976 // Proceed with the transformation if the operand to the BUILD_VECTOR
13977 // is a load instruction.
13978 if (Operand
.getOpcode() != ISD::LOAD
)
13981 auto *LD
= cast
<LoadSDNode
>(Operand
);
13982 EVT MemoryType
= LD
->getMemoryVT();
13984 // This transformation is only valid if the we are loading either a byte,
13985 // halfword, word, or doubleword.
13986 bool ValidLDType
= MemoryType
== MVT::i8
|| MemoryType
== MVT::i16
||
13987 MemoryType
== MVT::i32
|| MemoryType
== MVT::i64
;
13989 // Ensure that the load from the narrow width is being zero extended to i128.
13990 if (!ValidLDType
||
13991 (LD
->getExtensionType() != ISD::ZEXTLOAD
&&
13992 LD
->getExtensionType() != ISD::EXTLOAD
))
13995 SDValue LoadOps
[] = {
13996 LD
->getChain(), LD
->getBasePtr(),
13997 DAG
.getIntPtrConstant(MemoryType
.getScalarSizeInBits(), DL
)};
13999 return DAG
.getMemIntrinsicNode(PPCISD::LXVRZX
, DL
,
14000 DAG
.getVTList(MVT::v1i128
, MVT::Other
),
14001 LoadOps
, MemoryType
, LD
->getMemOperand());
14004 SDValue
PPCTargetLowering::DAGCombineBuildVector(SDNode
*N
,
14005 DAGCombinerInfo
&DCI
) const {
14006 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
14007 "Should be called with a BUILD_VECTOR node");
14009 SelectionDAG
&DAG
= DCI
.DAG
;
14012 if (!Subtarget
.hasVSX())
14015 // The target independent DAG combiner will leave a build_vector of
14016 // float-to-int conversions intact. We can generate MUCH better code for
14017 // a float-to-int conversion of a vector of floats.
14018 SDValue FirstInput
= N
->getOperand(0);
14019 if (FirstInput
.getOpcode() == PPCISD::MFVSR
) {
14020 SDValue Reduced
= combineElementTruncationToVectorTruncation(N
, DCI
);
14025 // If we're building a vector out of consecutive loads, just load that
14027 SDValue Reduced
= combineBVOfConsecutiveLoads(N
, DAG
);
14031 // If we're building a vector out of extended elements from another vector
14032 // we have P9 vector integer extend instructions. The code assumes legal
14033 // input types (i.e. it can't handle things like v4i16) so do not run before
14035 if (Subtarget
.hasP9Altivec() && !DCI
.isBeforeLegalize()) {
14036 Reduced
= combineBVOfVecSExt(N
, DAG
);
14041 // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14042 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14043 // is a load from <valid narrow width> to i128.
14044 if (Subtarget
.isISA3_1()) {
14045 SDValue BVOfZLoad
= combineBVZEXTLOAD(N
, DAG
);
14050 if (N
->getValueType(0) != MVT::v2f64
)
14054 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14055 if (FirstInput
.getOpcode() != ISD::SINT_TO_FP
&&
14056 FirstInput
.getOpcode() != ISD::UINT_TO_FP
)
14058 if (N
->getOperand(1).getOpcode() != ISD::SINT_TO_FP
&&
14059 N
->getOperand(1).getOpcode() != ISD::UINT_TO_FP
)
14061 if (FirstInput
.getOpcode() != N
->getOperand(1).getOpcode())
14064 SDValue Ext1
= FirstInput
.getOperand(0);
14065 SDValue Ext2
= N
->getOperand(1).getOperand(0);
14066 if(Ext1
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
14067 Ext2
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
14070 ConstantSDNode
*Ext1Op
= dyn_cast
<ConstantSDNode
>(Ext1
.getOperand(1));
14071 ConstantSDNode
*Ext2Op
= dyn_cast
<ConstantSDNode
>(Ext2
.getOperand(1));
14072 if (!Ext1Op
|| !Ext2Op
)
14074 if (Ext1
.getOperand(0).getValueType() != MVT::v4i32
||
14075 Ext1
.getOperand(0) != Ext2
.getOperand(0))
14078 int FirstElem
= Ext1Op
->getZExtValue();
14079 int SecondElem
= Ext2Op
->getZExtValue();
14081 if (FirstElem
== 0 && SecondElem
== 1)
14082 SubvecIdx
= Subtarget
.isLittleEndian() ? 1 : 0;
14083 else if (FirstElem
== 2 && SecondElem
== 3)
14084 SubvecIdx
= Subtarget
.isLittleEndian() ? 0 : 1;
14088 SDValue SrcVec
= Ext1
.getOperand(0);
14089 auto NodeType
= (N
->getOperand(1).getOpcode() == ISD::SINT_TO_FP
) ?
14090 PPCISD::SINT_VEC_TO_FP
: PPCISD::UINT_VEC_TO_FP
;
14091 return DAG
.getNode(NodeType
, dl
, MVT::v2f64
,
14092 SrcVec
, DAG
.getIntPtrConstant(SubvecIdx
, dl
));
14095 SDValue
PPCTargetLowering::combineFPToIntToFP(SDNode
*N
,
14096 DAGCombinerInfo
&DCI
) const {
14097 assert((N
->getOpcode() == ISD::SINT_TO_FP
||
14098 N
->getOpcode() == ISD::UINT_TO_FP
) &&
14099 "Need an int -> FP conversion node here");
14101 if (useSoftFloat() || !Subtarget
.has64BitSupport())
14104 SelectionDAG
&DAG
= DCI
.DAG
;
14108 // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14109 // from the hardware.
14110 if (Op
.getValueType() != MVT::f32
&& Op
.getValueType() != MVT::f64
)
14112 if (!Op
.getOperand(0).getValueType().isSimple())
14114 if (Op
.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1
) ||
14115 Op
.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64
))
14118 SDValue
FirstOperand(Op
.getOperand(0));
14119 bool SubWordLoad
= FirstOperand
.getOpcode() == ISD::LOAD
&&
14120 (FirstOperand
.getValueType() == MVT::i8
||
14121 FirstOperand
.getValueType() == MVT::i16
);
14122 if (Subtarget
.hasP9Vector() && Subtarget
.hasP9Altivec() && SubWordLoad
) {
14123 bool Signed
= N
->getOpcode() == ISD::SINT_TO_FP
;
14124 bool DstDouble
= Op
.getValueType() == MVT::f64
;
14125 unsigned ConvOp
= Signed
?
14126 (DstDouble
? PPCISD::FCFID
: PPCISD::FCFIDS
) :
14127 (DstDouble
? PPCISD::FCFIDU
: PPCISD::FCFIDUS
);
14128 SDValue WidthConst
=
14129 DAG
.getIntPtrConstant(FirstOperand
.getValueType() == MVT::i8
? 1 : 2,
14131 LoadSDNode
*LDN
= cast
<LoadSDNode
>(FirstOperand
.getNode());
14132 SDValue Ops
[] = { LDN
->getChain(), LDN
->getBasePtr(), WidthConst
};
14133 SDValue Ld
= DAG
.getMemIntrinsicNode(PPCISD::LXSIZX
, dl
,
14134 DAG
.getVTList(MVT::f64
, MVT::Other
),
14135 Ops
, MVT::i8
, LDN
->getMemOperand());
14137 // For signed conversion, we need to sign-extend the value in the VSR
14139 SDValue ExtOps
[] = { Ld
, WidthConst
};
14140 SDValue Ext
= DAG
.getNode(PPCISD::VEXTS
, dl
, MVT::f64
, ExtOps
);
14141 return DAG
.getNode(ConvOp
, dl
, DstDouble
? MVT::f64
: MVT::f32
, Ext
);
14143 return DAG
.getNode(ConvOp
, dl
, DstDouble
? MVT::f64
: MVT::f32
, Ld
);
14147 // For i32 intermediate values, unfortunately, the conversion functions
14148 // leave the upper 32 bits of the value are undefined. Within the set of
14149 // scalar instructions, we have no method for zero- or sign-extending the
14150 // value. Thus, we cannot handle i32 intermediate values here.
14151 if (Op
.getOperand(0).getValueType() == MVT::i32
)
14154 assert((Op
.getOpcode() == ISD::SINT_TO_FP
|| Subtarget
.hasFPCVT()) &&
14155 "UINT_TO_FP is supported only with FPCVT");
14157 // If we have FCFIDS, then use it when converting to single-precision.
14158 // Otherwise, convert to double-precision and then round.
14159 unsigned FCFOp
= (Subtarget
.hasFPCVT() && Op
.getValueType() == MVT::f32
)
14160 ? (Op
.getOpcode() == ISD::UINT_TO_FP
? PPCISD::FCFIDUS
14162 : (Op
.getOpcode() == ISD::UINT_TO_FP
? PPCISD::FCFIDU
14164 MVT FCFTy
= (Subtarget
.hasFPCVT() && Op
.getValueType() == MVT::f32
)
14168 // If we're converting from a float, to an int, and back to a float again,
14169 // then we don't need the store/load pair at all.
14170 if ((Op
.getOperand(0).getOpcode() == ISD::FP_TO_UINT
&&
14171 Subtarget
.hasFPCVT()) ||
14172 (Op
.getOperand(0).getOpcode() == ISD::FP_TO_SINT
)) {
14173 SDValue Src
= Op
.getOperand(0).getOperand(0);
14174 if (Src
.getValueType() == MVT::f32
) {
14175 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
14176 DCI
.AddToWorklist(Src
.getNode());
14177 } else if (Src
.getValueType() != MVT::f64
) {
14178 // Make sure that we don't pick up a ppc_fp128 source value.
14183 Op
.getOperand(0).getOpcode() == ISD::FP_TO_SINT
? PPCISD::FCTIDZ
:
14186 SDValue Tmp
= DAG
.getNode(FCTOp
, dl
, MVT::f64
, Src
);
14187 SDValue FP
= DAG
.getNode(FCFOp
, dl
, FCFTy
, Tmp
);
14189 if (Op
.getValueType() == MVT::f32
&& !Subtarget
.hasFPCVT()) {
14190 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
,
14191 MVT::f32
, FP
, DAG
.getIntPtrConstant(0, dl
));
14192 DCI
.AddToWorklist(FP
.getNode());
14201 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14202 // builtins) into loads with swaps.
14203 SDValue
PPCTargetLowering::expandVSXLoadForLE(SDNode
*N
,
14204 DAGCombinerInfo
&DCI
) const {
14205 SelectionDAG
&DAG
= DCI
.DAG
;
14209 MachineMemOperand
*MMO
;
14211 switch (N
->getOpcode()) {
14213 llvm_unreachable("Unexpected opcode for little endian VSX load");
14215 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
14216 Chain
= LD
->getChain();
14217 Base
= LD
->getBasePtr();
14218 MMO
= LD
->getMemOperand();
14219 // If the MMO suggests this isn't a load of a full vector, leave
14220 // things alone. For a built-in, we have to make the change for
14221 // correctness, so if there is a size problem that will be a bug.
14222 if (MMO
->getSize() < 16)
14226 case ISD::INTRINSIC_W_CHAIN
: {
14227 MemIntrinsicSDNode
*Intrin
= cast
<MemIntrinsicSDNode
>(N
);
14228 Chain
= Intrin
->getChain();
14229 // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14230 // us what we want. Get operand 2 instead.
14231 Base
= Intrin
->getOperand(2);
14232 MMO
= Intrin
->getMemOperand();
14237 MVT VecTy
= N
->getValueType(0).getSimpleVT();
14239 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14240 // aligned and the type is a vector with elements up to 4 bytes
14241 if (Subtarget
.needsSwapsForVSXMemOps() && MMO
->getAlign() >= Align(16) &&
14242 VecTy
.getScalarSizeInBits() <= 32) {
14246 SDValue LoadOps
[] = { Chain
, Base
};
14247 SDValue Load
= DAG
.getMemIntrinsicNode(PPCISD::LXVD2X
, dl
,
14248 DAG
.getVTList(MVT::v2f64
, MVT::Other
),
14249 LoadOps
, MVT::v2f64
, MMO
);
14251 DCI
.AddToWorklist(Load
.getNode());
14252 Chain
= Load
.getValue(1);
14253 SDValue Swap
= DAG
.getNode(
14254 PPCISD::XXSWAPD
, dl
, DAG
.getVTList(MVT::v2f64
, MVT::Other
), Chain
, Load
);
14255 DCI
.AddToWorklist(Swap
.getNode());
14257 // Add a bitcast if the resulting load type doesn't match v2f64.
14258 if (VecTy
!= MVT::v2f64
) {
14259 SDValue N
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, Swap
);
14260 DCI
.AddToWorklist(N
.getNode());
14261 // Package {bitcast value, swap's chain} to match Load's shape.
14262 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VecTy
, MVT::Other
),
14263 N
, Swap
.getValue(1));
14269 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14270 // builtins) into stores with swaps.
14271 SDValue
PPCTargetLowering::expandVSXStoreForLE(SDNode
*N
,
14272 DAGCombinerInfo
&DCI
) const {
14273 SelectionDAG
&DAG
= DCI
.DAG
;
14278 MachineMemOperand
*MMO
;
14280 switch (N
->getOpcode()) {
14282 llvm_unreachable("Unexpected opcode for little endian VSX store");
14284 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
14285 Chain
= ST
->getChain();
14286 Base
= ST
->getBasePtr();
14287 MMO
= ST
->getMemOperand();
14289 // If the MMO suggests this isn't a store of a full vector, leave
14290 // things alone. For a built-in, we have to make the change for
14291 // correctness, so if there is a size problem that will be a bug.
14292 if (MMO
->getSize() < 16)
14296 case ISD::INTRINSIC_VOID
: {
14297 MemIntrinsicSDNode
*Intrin
= cast
<MemIntrinsicSDNode
>(N
);
14298 Chain
= Intrin
->getChain();
14299 // Intrin->getBasePtr() oddly does not get what we want.
14300 Base
= Intrin
->getOperand(3);
14301 MMO
= Intrin
->getMemOperand();
14307 SDValue Src
= N
->getOperand(SrcOpnd
);
14308 MVT VecTy
= Src
.getValueType().getSimpleVT();
14310 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14311 // aligned and the type is a vector with elements up to 4 bytes
14312 if (Subtarget
.needsSwapsForVSXMemOps() && MMO
->getAlign() >= Align(16) &&
14313 VecTy
.getScalarSizeInBits() <= 32) {
14317 // All stores are done as v2f64 and possible bit cast.
14318 if (VecTy
!= MVT::v2f64
) {
14319 Src
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f64
, Src
);
14320 DCI
.AddToWorklist(Src
.getNode());
14323 SDValue Swap
= DAG
.getNode(PPCISD::XXSWAPD
, dl
,
14324 DAG
.getVTList(MVT::v2f64
, MVT::Other
), Chain
, Src
);
14325 DCI
.AddToWorklist(Swap
.getNode());
14326 Chain
= Swap
.getValue(1);
14327 SDValue StoreOps
[] = { Chain
, Swap
, Base
};
14328 SDValue Store
= DAG
.getMemIntrinsicNode(PPCISD::STXVD2X
, dl
,
14329 DAG
.getVTList(MVT::Other
),
14330 StoreOps
, VecTy
, MMO
);
14331 DCI
.AddToWorklist(Store
.getNode());
14335 // Handle DAG combine for STORE (FP_TO_INT F).
14336 SDValue
PPCTargetLowering::combineStoreFPToInt(SDNode
*N
,
14337 DAGCombinerInfo
&DCI
) const {
14339 SelectionDAG
&DAG
= DCI
.DAG
;
14341 unsigned Opcode
= N
->getOperand(1).getOpcode();
14343 assert((Opcode
== ISD::FP_TO_SINT
|| Opcode
== ISD::FP_TO_UINT
)
14344 && "Not a FP_TO_INT Instruction!");
14346 SDValue Val
= N
->getOperand(1).getOperand(0);
14347 EVT Op1VT
= N
->getOperand(1).getValueType();
14348 EVT ResVT
= Val
.getValueType();
14350 if (!isTypeLegal(ResVT
))
14353 // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14354 bool ValidTypeForStoreFltAsInt
=
14355 (Op1VT
== MVT::i32
|| Op1VT
== MVT::i64
||
14356 (Subtarget
.hasP9Vector() && (Op1VT
== MVT::i16
|| Op1VT
== MVT::i8
)));
14358 if (ResVT
== MVT::f128
&& !Subtarget
.hasP9Vector())
14361 if (ResVT
== MVT::ppcf128
|| !Subtarget
.hasP8Vector() ||
14362 cast
<StoreSDNode
>(N
)->isTruncatingStore() || !ValidTypeForStoreFltAsInt
)
14365 // Extend f32 values to f64
14366 if (ResVT
.getScalarSizeInBits() == 32) {
14367 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
14368 DCI
.AddToWorklist(Val
.getNode());
14371 // Set signed or unsigned conversion opcode.
14372 unsigned ConvOpcode
= (Opcode
== ISD::FP_TO_SINT
) ?
14373 PPCISD::FP_TO_SINT_IN_VSR
:
14374 PPCISD::FP_TO_UINT_IN_VSR
;
14376 Val
= DAG
.getNode(ConvOpcode
,
14377 dl
, ResVT
== MVT::f128
? MVT::f128
: MVT::f64
, Val
);
14378 DCI
.AddToWorklist(Val
.getNode());
14380 // Set number of bytes being converted.
14381 unsigned ByteSize
= Op1VT
.getScalarSizeInBits() / 8;
14382 SDValue Ops
[] = { N
->getOperand(0), Val
, N
->getOperand(2),
14383 DAG
.getIntPtrConstant(ByteSize
, dl
, false),
14384 DAG
.getValueType(Op1VT
) };
14386 Val
= DAG
.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT
, dl
,
14387 DAG
.getVTList(MVT::Other
), Ops
,
14388 cast
<StoreSDNode
>(N
)->getMemoryVT(),
14389 cast
<StoreSDNode
>(N
)->getMemOperand());
14391 DCI
.AddToWorklist(Val
.getNode());
14395 static bool isAlternatingShuffMask(const ArrayRef
<int> &Mask
, int NumElts
) {
14396 // Check that the source of the element keeps flipping
14397 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14398 bool PrevElemFromFirstVec
= Mask
[0] < NumElts
;
14399 for (int i
= 1, e
= Mask
.size(); i
< e
; i
++) {
14400 if (PrevElemFromFirstVec
&& Mask
[i
] < NumElts
)
14402 if (!PrevElemFromFirstVec
&& Mask
[i
] >= NumElts
)
14404 PrevElemFromFirstVec
= !PrevElemFromFirstVec
;
14409 static bool isSplatBV(SDValue Op
) {
14410 if (Op
.getOpcode() != ISD::BUILD_VECTOR
)
14414 // Find first non-undef input.
14415 for (int i
= 0, e
= Op
.getNumOperands(); i
< e
; i
++) {
14416 FirstOp
= Op
.getOperand(i
);
14417 if (!FirstOp
.isUndef())
14421 // All inputs are undef or the same as the first non-undef input.
14422 for (int i
= 1, e
= Op
.getNumOperands(); i
< e
; i
++)
14423 if (Op
.getOperand(i
) != FirstOp
&& !Op
.getOperand(i
).isUndef())
14428 static SDValue
isScalarToVec(SDValue Op
) {
14429 if (Op
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
14431 if (Op
.getOpcode() != ISD::BITCAST
)
14433 Op
= Op
.getOperand(0);
14434 if (Op
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
14439 // Fix up the shuffle mask to account for the fact that the result of
14440 // scalar_to_vector is not in lane zero. This just takes all values in
14441 // the ranges specified by the min/max indices and adds the number of
14442 // elements required to ensure each element comes from the respective
14443 // position in the valid lane.
14444 // On little endian, that's just the corresponding element in the other
14445 // half of the vector. On big endian, it is in the same half but right
14446 // justified rather than left justified in that half.
14447 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl
<int> &ShuffV
,
14448 int LHSMaxIdx
, int RHSMinIdx
,
14449 int RHSMaxIdx
, int HalfVec
,
14450 unsigned ValidLaneWidth
,
14451 const PPCSubtarget
&Subtarget
) {
14452 for (int i
= 0, e
= ShuffV
.size(); i
< e
; i
++) {
14453 int Idx
= ShuffV
[i
];
14454 if ((Idx
>= 0 && Idx
< LHSMaxIdx
) || (Idx
>= RHSMinIdx
&& Idx
< RHSMaxIdx
))
14456 Subtarget
.isLittleEndian() ? HalfVec
: HalfVec
- ValidLaneWidth
;
14460 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14461 // the original is:
14462 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14463 // In such a case, just change the shuffle mask to extract the element
14464 // from the permuted index.
14465 static SDValue
getSToVPermuted(SDValue OrigSToV
, SelectionDAG
&DAG
,
14466 const PPCSubtarget
&Subtarget
) {
14467 SDLoc
dl(OrigSToV
);
14468 EVT VT
= OrigSToV
.getValueType();
14469 assert(OrigSToV
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
14470 "Expecting a SCALAR_TO_VECTOR here");
14471 SDValue Input
= OrigSToV
.getOperand(0);
14473 if (Input
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
14474 ConstantSDNode
*Idx
= dyn_cast
<ConstantSDNode
>(Input
.getOperand(1));
14475 SDValue OrigVector
= Input
.getOperand(0);
14477 // Can't handle non-const element indices or different vector types
14478 // for the input to the extract and the output of the scalar_to_vector.
14479 if (Idx
&& VT
== OrigVector
.getValueType()) {
14480 unsigned NumElts
= VT
.getVectorNumElements();
14483 "Cannot produce a permuted scalar_to_vector for one element vector");
14484 SmallVector
<int, 16> NewMask(NumElts
, -1);
14485 unsigned ResultInElt
= NumElts
/ 2;
14486 ResultInElt
-= Subtarget
.isLittleEndian() ? 0 : 1;
14487 NewMask
[ResultInElt
] = Idx
->getZExtValue();
14488 return DAG
.getVectorShuffle(VT
, dl
, OrigVector
, OrigVector
, NewMask
);
14491 return DAG
.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED
, dl
, VT
,
14492 OrigSToV
.getOperand(0));
14495 // On little endian subtargets, combine shuffles such as:
14496 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14498 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14499 // because the latter can be matched to a single instruction merge.
14500 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14501 // to put the value into element zero. Adjust the shuffle mask so that the
14502 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14503 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14504 // nodes with elements smaller than doubleword because all the ways
14505 // of getting scalar data into a vector register put the value in the
14506 // rightmost element of the left half of the vector.
14507 SDValue
PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode
*SVN
,
14508 SelectionDAG
&DAG
) const {
14509 SDValue LHS
= SVN
->getOperand(0);
14510 SDValue RHS
= SVN
->getOperand(1);
14511 auto Mask
= SVN
->getMask();
14512 int NumElts
= LHS
.getValueType().getVectorNumElements();
14513 SDValue
Res(SVN
, 0);
14515 bool IsLittleEndian
= Subtarget
.isLittleEndian();
14517 // On big endian targets this is only useful for subtargets with direct moves.
14518 // On little endian targets it would be useful for all subtargets with VSX.
14519 // However adding special handling for LE subtargets without direct moves
14520 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14521 // which includes direct moves.
14522 if (!Subtarget
.hasDirectMove())
14525 // If this is not a shuffle of a shuffle and the first element comes from
14526 // the second vector, canonicalize to the commuted form. This will make it
14527 // more likely to match one of the single instruction patterns.
14528 if (Mask
[0] >= NumElts
&& LHS
.getOpcode() != ISD::VECTOR_SHUFFLE
&&
14529 RHS
.getOpcode() != ISD::VECTOR_SHUFFLE
) {
14530 std::swap(LHS
, RHS
);
14531 Res
= DAG
.getCommutedVectorShuffle(*SVN
);
14532 Mask
= cast
<ShuffleVectorSDNode
>(Res
)->getMask();
14535 // Adjust the shuffle mask if either input vector comes from a
14536 // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14537 // form (to prevent the need for a swap).
14538 SmallVector
<int, 16> ShuffV(Mask
.begin(), Mask
.end());
14539 SDValue SToVLHS
= isScalarToVec(LHS
);
14540 SDValue SToVRHS
= isScalarToVec(RHS
);
14541 if (SToVLHS
|| SToVRHS
) {
14542 int NumEltsIn
= SToVLHS
? SToVLHS
.getValueType().getVectorNumElements()
14543 : SToVRHS
.getValueType().getVectorNumElements();
14544 int NumEltsOut
= ShuffV
.size();
14545 // The width of the "valid lane" (i.e. the lane that contains the value that
14546 // is vectorized) needs to be expressed in terms of the number of elements
14547 // of the shuffle. It is thereby the ratio of the values before and after
14549 unsigned ValidLaneWidth
=
14550 SToVLHS
? SToVLHS
.getValueType().getScalarSizeInBits() /
14551 LHS
.getValueType().getScalarSizeInBits()
14552 : SToVRHS
.getValueType().getScalarSizeInBits() /
14553 RHS
.getValueType().getScalarSizeInBits();
14555 // Initially assume that neither input is permuted. These will be adjusted
14556 // accordingly if either input is.
14557 int LHSMaxIdx
= -1;
14558 int RHSMinIdx
= -1;
14559 int RHSMaxIdx
= -1;
14560 int HalfVec
= LHS
.getValueType().getVectorNumElements() / 2;
14562 // Get the permuted scalar to vector nodes for the source(s) that come from
14563 // ISD::SCALAR_TO_VECTOR.
14564 // On big endian systems, this only makes sense for element sizes smaller
14565 // than 64 bits since for 64-bit elements, all instructions already put
14566 // the value into element zero. Since scalar size of LHS and RHS may differ
14567 // after isScalarToVec, this should be checked using their own sizes.
14569 if (!IsLittleEndian
&& SToVLHS
.getValueType().getScalarSizeInBits() >= 64)
14571 // Set up the values for the shuffle vector fixup.
14572 LHSMaxIdx
= NumEltsOut
/ NumEltsIn
;
14573 SToVLHS
= getSToVPermuted(SToVLHS
, DAG
, Subtarget
);
14574 if (SToVLHS
.getValueType() != LHS
.getValueType())
14575 SToVLHS
= DAG
.getBitcast(LHS
.getValueType(), SToVLHS
);
14579 if (!IsLittleEndian
&& SToVRHS
.getValueType().getScalarSizeInBits() >= 64)
14581 RHSMinIdx
= NumEltsOut
;
14582 RHSMaxIdx
= NumEltsOut
/ NumEltsIn
+ RHSMinIdx
;
14583 SToVRHS
= getSToVPermuted(SToVRHS
, DAG
, Subtarget
);
14584 if (SToVRHS
.getValueType() != RHS
.getValueType())
14585 SToVRHS
= DAG
.getBitcast(RHS
.getValueType(), SToVRHS
);
14589 // Fix up the shuffle mask to reflect where the desired element actually is.
14590 // The minimum and maximum indices that correspond to element zero for both
14591 // the LHS and RHS are computed and will control which shuffle mask entries
14592 // are to be changed. For example, if the RHS is permuted, any shuffle mask
14593 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14594 fixupShuffleMaskForPermutedSToV(ShuffV
, LHSMaxIdx
, RHSMinIdx
, RHSMaxIdx
,
14595 HalfVec
, ValidLaneWidth
, Subtarget
);
14596 Res
= DAG
.getVectorShuffle(SVN
->getValueType(0), dl
, LHS
, RHS
, ShuffV
);
14598 // We may have simplified away the shuffle. We won't be able to do anything
14599 // further with it here.
14600 if (!isa
<ShuffleVectorSDNode
>(Res
))
14602 Mask
= cast
<ShuffleVectorSDNode
>(Res
)->getMask();
14605 SDValue TheSplat
= IsLittleEndian
? RHS
: LHS
;
14606 // The common case after we commuted the shuffle is that the RHS is a splat
14607 // and we have elements coming in from the splat at indices that are not
14608 // conducive to using a merge.
14610 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14611 if (!isSplatBV(TheSplat
))
14614 // We are looking for a mask such that all even elements are from
14615 // one vector and all odd elements from the other.
14616 if (!isAlternatingShuffMask(Mask
, NumElts
))
14619 // Adjust the mask so we are pulling in the same index from the splat
14620 // as the index from the interesting vector in consecutive elements.
14621 if (IsLittleEndian
) {
14622 // Example (even elements from first vector):
14623 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14624 if (Mask
[0] < NumElts
)
14625 for (int i
= 1, e
= Mask
.size(); i
< e
; i
+= 2)
14626 ShuffV
[i
] = (ShuffV
[i
- 1] + NumElts
);
14627 // Example (odd elements from first vector):
14628 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14630 for (int i
= 0, e
= Mask
.size(); i
< e
; i
+= 2)
14631 ShuffV
[i
] = (ShuffV
[i
+ 1] + NumElts
);
14633 // Example (even elements from first vector):
14634 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14635 if (Mask
[0] < NumElts
)
14636 for (int i
= 0, e
= Mask
.size(); i
< e
; i
+= 2)
14637 ShuffV
[i
] = ShuffV
[i
+ 1] - NumElts
;
14638 // Example (odd elements from first vector):
14639 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14641 for (int i
= 1, e
= Mask
.size(); i
< e
; i
+= 2)
14642 ShuffV
[i
] = ShuffV
[i
- 1] - NumElts
;
14645 // If the RHS has undefs, we need to remove them since we may have created
14646 // a shuffle that adds those instead of the splat value.
14648 cast
<BuildVectorSDNode
>(TheSplat
.getNode())->getSplatValue();
14649 TheSplat
= DAG
.getSplatBuildVector(TheSplat
.getValueType(), dl
, SplatVal
);
14651 if (IsLittleEndian
)
14655 return DAG
.getVectorShuffle(SVN
->getValueType(0), dl
, LHS
, RHS
, ShuffV
);
14658 SDValue
PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode
*SVN
,
14659 LSBaseSDNode
*LSBase
,
14660 DAGCombinerInfo
&DCI
) const {
14661 assert((ISD::isNormalLoad(LSBase
) || ISD::isNormalStore(LSBase
)) &&
14662 "Not a reverse memop pattern!");
14664 auto IsElementReverse
= [](const ShuffleVectorSDNode
*SVN
) -> bool {
14665 auto Mask
= SVN
->getMask();
14667 auto I
= Mask
.rbegin();
14668 auto E
= Mask
.rend();
14670 for (; I
!= E
; ++I
) {
14678 SelectionDAG
&DAG
= DCI
.DAG
;
14679 EVT VT
= SVN
->getValueType(0);
14681 if (!isTypeLegal(VT
) || !Subtarget
.isLittleEndian() || !Subtarget
.hasVSX())
14684 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14685 // See comment in PPCVSXSwapRemoval.cpp.
14686 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14687 if (!Subtarget
.hasP9Vector())
14690 if(!IsElementReverse(SVN
))
14693 if (LSBase
->getOpcode() == ISD::LOAD
) {
14694 // If the load return value 0 has more than one user except the
14695 // shufflevector instruction, it is not profitable to replace the
14696 // shufflevector with a reverse load.
14697 for (SDNode::use_iterator UI
= LSBase
->use_begin(), UE
= LSBase
->use_end();
14699 if (UI
.getUse().getResNo() == 0 && UI
->getOpcode() != ISD::VECTOR_SHUFFLE
)
14703 SDValue LoadOps
[] = {LSBase
->getChain(), LSBase
->getBasePtr()};
14704 return DAG
.getMemIntrinsicNode(
14705 PPCISD::LOAD_VEC_BE
, dl
, DAG
.getVTList(VT
, MVT::Other
), LoadOps
,
14706 LSBase
->getMemoryVT(), LSBase
->getMemOperand());
14709 if (LSBase
->getOpcode() == ISD::STORE
) {
14710 // If there are other uses of the shuffle, the swap cannot be avoided.
14711 // Forcing the use of an X-Form (since swapped stores only have
14712 // X-Forms) without removing the swap is unprofitable.
14713 if (!SVN
->hasOneUse())
14717 SDValue StoreOps
[] = {LSBase
->getChain(), SVN
->getOperand(0),
14718 LSBase
->getBasePtr()};
14719 return DAG
.getMemIntrinsicNode(
14720 PPCISD::STORE_VEC_BE
, dl
, DAG
.getVTList(MVT::Other
), StoreOps
,
14721 LSBase
->getMemoryVT(), LSBase
->getMemOperand());
14724 llvm_unreachable("Expected a load or store node here");
14727 SDValue
PPCTargetLowering::PerformDAGCombine(SDNode
*N
,
14728 DAGCombinerInfo
&DCI
) const {
14729 SelectionDAG
&DAG
= DCI
.DAG
;
14731 switch (N
->getOpcode()) {
14734 return combineADD(N
, DCI
);
14736 return combineSHL(N
, DCI
);
14738 return combineSRA(N
, DCI
);
14740 return combineSRL(N
, DCI
);
14742 return combineMUL(N
, DCI
);
14744 case PPCISD::FNMSUB
:
14745 return combineFMALike(N
, DCI
);
14747 if (isNullConstant(N
->getOperand(0))) // 0 << V -> 0.
14748 return N
->getOperand(0);
14751 if (isNullConstant(N
->getOperand(0))) // 0 >>u V -> 0.
14752 return N
->getOperand(0);
14755 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
14756 if (C
->isNullValue() || // 0 >>s V -> 0.
14757 C
->isAllOnesValue()) // -1 >>s V -> -1.
14758 return N
->getOperand(0);
14761 case ISD::SIGN_EXTEND
:
14762 case ISD::ZERO_EXTEND
:
14763 case ISD::ANY_EXTEND
:
14764 return DAGCombineExtBoolTrunc(N
, DCI
);
14765 case ISD::TRUNCATE
:
14766 return combineTRUNCATE(N
, DCI
);
14768 if (SDValue CSCC
= combineSetCC(N
, DCI
))
14771 case ISD::SELECT_CC
:
14772 return DAGCombineTruncBoolExt(N
, DCI
);
14773 case ISD::SINT_TO_FP
:
14774 case ISD::UINT_TO_FP
:
14775 return combineFPToIntToFP(N
, DCI
);
14776 case ISD::VECTOR_SHUFFLE
:
14777 if (ISD::isNormalLoad(N
->getOperand(0).getNode())) {
14778 LSBaseSDNode
* LSBase
= cast
<LSBaseSDNode
>(N
->getOperand(0));
14779 return combineVReverseMemOP(cast
<ShuffleVectorSDNode
>(N
), LSBase
, DCI
);
14781 return combineVectorShuffle(cast
<ShuffleVectorSDNode
>(N
), DCI
.DAG
);
14784 EVT Op1VT
= N
->getOperand(1).getValueType();
14785 unsigned Opcode
= N
->getOperand(1).getOpcode();
14787 if (Opcode
== ISD::FP_TO_SINT
|| Opcode
== ISD::FP_TO_UINT
) {
14788 SDValue Val
= combineStoreFPToInt(N
, DCI
);
14793 if (Opcode
== ISD::VECTOR_SHUFFLE
&& ISD::isNormalStore(N
)) {
14794 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
->getOperand(1));
14795 SDValue Val
= combineVReverseMemOP(SVN
, cast
<LSBaseSDNode
>(N
), DCI
);
14800 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14801 if (cast
<StoreSDNode
>(N
)->isUnindexed() && Opcode
== ISD::BSWAP
&&
14802 N
->getOperand(1).getNode()->hasOneUse() &&
14803 (Op1VT
== MVT::i32
|| Op1VT
== MVT::i16
||
14804 (Subtarget
.hasLDBRX() && Subtarget
.isPPC64() && Op1VT
== MVT::i64
))) {
14806 // STBRX can only handle simple types and it makes no sense to store less
14807 // two bytes in byte-reversed order.
14808 EVT mVT
= cast
<StoreSDNode
>(N
)->getMemoryVT();
14809 if (mVT
.isExtended() || mVT
.getSizeInBits() < 16)
14812 SDValue BSwapOp
= N
->getOperand(1).getOperand(0);
14813 // Do an any-extend to 32-bits if this is a half-word input.
14814 if (BSwapOp
.getValueType() == MVT::i16
)
14815 BSwapOp
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, BSwapOp
);
14817 // If the type of BSWAP operand is wider than stored memory width
14818 // it need to be shifted to the right side before STBRX.
14819 if (Op1VT
.bitsGT(mVT
)) {
14820 int Shift
= Op1VT
.getSizeInBits() - mVT
.getSizeInBits();
14821 BSwapOp
= DAG
.getNode(ISD::SRL
, dl
, Op1VT
, BSwapOp
,
14822 DAG
.getConstant(Shift
, dl
, MVT::i32
));
14823 // Need to truncate if this is a bswap of i64 stored as i32/i16.
14824 if (Op1VT
== MVT::i64
)
14825 BSwapOp
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, BSwapOp
);
14829 N
->getOperand(0), BSwapOp
, N
->getOperand(2), DAG
.getValueType(mVT
)
14832 DAG
.getMemIntrinsicNode(PPCISD::STBRX
, dl
, DAG
.getVTList(MVT::Other
),
14833 Ops
, cast
<StoreSDNode
>(N
)->getMemoryVT(),
14834 cast
<StoreSDNode
>(N
)->getMemOperand());
14837 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0>
14838 // So it can increase the chance of CSE constant construction.
14839 if (Subtarget
.isPPC64() && !DCI
.isBeforeLegalize() &&
14840 isa
<ConstantSDNode
>(N
->getOperand(1)) && Op1VT
== MVT::i32
) {
14841 // Need to sign-extended to 64-bits to handle negative values.
14842 EVT MemVT
= cast
<StoreSDNode
>(N
)->getMemoryVT();
14843 uint64_t Val64
= SignExtend64(N
->getConstantOperandVal(1),
14844 MemVT
.getSizeInBits());
14845 SDValue Const64
= DAG
.getConstant(Val64
, dl
, MVT::i64
);
14847 // DAG.getTruncStore() can't be used here because it doesn't accept
14848 // the general (base + offset) addressing mode.
14849 // So we use UpdateNodeOperands and setTruncatingStore instead.
14850 DAG
.UpdateNodeOperands(N
, N
->getOperand(0), Const64
, N
->getOperand(2),
14852 cast
<StoreSDNode
>(N
)->setTruncatingStore(true);
14853 return SDValue(N
, 0);
14856 // For little endian, VSX stores require generating xxswapd/lxvd2x.
14857 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14858 if (Op1VT
.isSimple()) {
14859 MVT StoreVT
= Op1VT
.getSimpleVT();
14860 if (Subtarget
.needsSwapsForVSXMemOps() &&
14861 (StoreVT
== MVT::v2f64
|| StoreVT
== MVT::v2i64
||
14862 StoreVT
== MVT::v4f32
|| StoreVT
== MVT::v4i32
))
14863 return expandVSXStoreForLE(N
, DCI
);
14868 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
14869 EVT VT
= LD
->getValueType(0);
14871 // For little endian, VSX loads require generating lxvd2x/xxswapd.
14872 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14873 if (VT
.isSimple()) {
14874 MVT LoadVT
= VT
.getSimpleVT();
14875 if (Subtarget
.needsSwapsForVSXMemOps() &&
14876 (LoadVT
== MVT::v2f64
|| LoadVT
== MVT::v2i64
||
14877 LoadVT
== MVT::v4f32
|| LoadVT
== MVT::v4i32
))
14878 return expandVSXLoadForLE(N
, DCI
);
14881 // We sometimes end up with a 64-bit integer load, from which we extract
14882 // two single-precision floating-point numbers. This happens with
14883 // std::complex<float>, and other similar structures, because of the way we
14884 // canonicalize structure copies. However, if we lack direct moves,
14885 // then the final bitcasts from the extracted integer values to the
14886 // floating-point numbers turn into store/load pairs. Even with direct moves,
14887 // just loading the two floating-point numbers is likely better.
14888 auto ReplaceTwoFloatLoad
= [&]() {
14889 if (VT
!= MVT::i64
)
14892 if (LD
->getExtensionType() != ISD::NON_EXTLOAD
||
14896 // We're looking for a sequence like this:
14897 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14898 // t16: i64 = srl t13, Constant:i32<32>
14899 // t17: i32 = truncate t16
14900 // t18: f32 = bitcast t17
14901 // t19: i32 = truncate t13
14902 // t20: f32 = bitcast t19
14904 if (!LD
->hasNUsesOfValue(2, 0))
14907 auto UI
= LD
->use_begin();
14908 while (UI
.getUse().getResNo() != 0) ++UI
;
14909 SDNode
*Trunc
= *UI
++;
14910 while (UI
.getUse().getResNo() != 0) ++UI
;
14911 SDNode
*RightShift
= *UI
;
14912 if (Trunc
->getOpcode() != ISD::TRUNCATE
)
14913 std::swap(Trunc
, RightShift
);
14915 if (Trunc
->getOpcode() != ISD::TRUNCATE
||
14916 Trunc
->getValueType(0) != MVT::i32
||
14917 !Trunc
->hasOneUse())
14919 if (RightShift
->getOpcode() != ISD::SRL
||
14920 !isa
<ConstantSDNode
>(RightShift
->getOperand(1)) ||
14921 RightShift
->getConstantOperandVal(1) != 32 ||
14922 !RightShift
->hasOneUse())
14925 SDNode
*Trunc2
= *RightShift
->use_begin();
14926 if (Trunc2
->getOpcode() != ISD::TRUNCATE
||
14927 Trunc2
->getValueType(0) != MVT::i32
||
14928 !Trunc2
->hasOneUse())
14931 SDNode
*Bitcast
= *Trunc
->use_begin();
14932 SDNode
*Bitcast2
= *Trunc2
->use_begin();
14934 if (Bitcast
->getOpcode() != ISD::BITCAST
||
14935 Bitcast
->getValueType(0) != MVT::f32
)
14937 if (Bitcast2
->getOpcode() != ISD::BITCAST
||
14938 Bitcast2
->getValueType(0) != MVT::f32
)
14941 if (Subtarget
.isLittleEndian())
14942 std::swap(Bitcast
, Bitcast2
);
14944 // Bitcast has the second float (in memory-layout order) and Bitcast2
14945 // has the first one.
14947 SDValue BasePtr
= LD
->getBasePtr();
14948 if (LD
->isIndexed()) {
14949 assert(LD
->getAddressingMode() == ISD::PRE_INC
&&
14950 "Non-pre-inc AM on PPC?");
14952 DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
14957 LD
->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile
;
14958 SDValue FloatLoad
= DAG
.getLoad(MVT::f32
, dl
, LD
->getChain(), BasePtr
,
14959 LD
->getPointerInfo(), LD
->getAlignment(),
14960 MMOFlags
, LD
->getAAInfo());
14962 DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(),
14963 BasePtr
, DAG
.getIntPtrConstant(4, dl
));
14964 SDValue FloatLoad2
= DAG
.getLoad(
14965 MVT::f32
, dl
, SDValue(FloatLoad
.getNode(), 1), AddPtr
,
14966 LD
->getPointerInfo().getWithOffset(4),
14967 MinAlign(LD
->getAlignment(), 4), MMOFlags
, LD
->getAAInfo());
14969 if (LD
->isIndexed()) {
14970 // Note that DAGCombine should re-form any pre-increment load(s) from
14971 // what is produced here if that makes sense.
14972 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), BasePtr
);
14975 DCI
.CombineTo(Bitcast2
, FloatLoad
);
14976 DCI
.CombineTo(Bitcast
, FloatLoad2
);
14978 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, LD
->isIndexed() ? 2 : 1),
14979 SDValue(FloatLoad2
.getNode(), 1));
14983 if (ReplaceTwoFloatLoad())
14984 return SDValue(N
, 0);
14986 EVT MemVT
= LD
->getMemoryVT();
14987 Type
*Ty
= MemVT
.getTypeForEVT(*DAG
.getContext());
14988 Align ABIAlignment
= DAG
.getDataLayout().getABITypeAlign(Ty
);
14989 if (LD
->isUnindexed() && VT
.isVector() &&
14990 ((Subtarget
.hasAltivec() && ISD::isNON_EXTLoad(N
) &&
14991 // P8 and later hardware should just use LOAD.
14992 !Subtarget
.hasP8Vector() &&
14993 (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
14994 VT
== MVT::v4f32
))) &&
14995 LD
->getAlign() < ABIAlignment
) {
14996 // This is a type-legal unaligned Altivec load.
14997 SDValue Chain
= LD
->getChain();
14998 SDValue Ptr
= LD
->getBasePtr();
14999 bool isLittleEndian
= Subtarget
.isLittleEndian();
15001 // This implements the loading of unaligned vectors as described in
15002 // the venerable Apple Velocity Engine overview. Specifically:
15003 // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15004 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15006 // The general idea is to expand a sequence of one or more unaligned
15007 // loads into an alignment-based permutation-control instruction (lvsl
15008 // or lvsr), a series of regular vector loads (which always truncate
15009 // their input address to an aligned address), and a series of
15010 // permutations. The results of these permutations are the requested
15011 // loaded values. The trick is that the last "extra" load is not taken
15012 // from the address you might suspect (sizeof(vector) bytes after the
15013 // last requested load), but rather sizeof(vector) - 1 bytes after the
15014 // last requested vector. The point of this is to avoid a page fault if
15015 // the base address happened to be aligned. This works because if the
15016 // base address is aligned, then adding less than a full vector length
15017 // will cause the last vector in the sequence to be (re)loaded.
15018 // Otherwise, the next vector will be fetched as you might suspect was
15021 // We might be able to reuse the permutation generation from
15022 // a different base address offset from this one by an aligned amount.
15023 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15024 // optimization later.
15025 Intrinsic::ID Intr
, IntrLD
, IntrPerm
;
15026 MVT PermCntlTy
, PermTy
, LDTy
;
15027 Intr
= isLittleEndian
? Intrinsic::ppc_altivec_lvsr
15028 : Intrinsic::ppc_altivec_lvsl
;
15029 IntrLD
= Intrinsic::ppc_altivec_lvx
;
15030 IntrPerm
= Intrinsic::ppc_altivec_vperm
;
15031 PermCntlTy
= MVT::v16i8
;
15032 PermTy
= MVT::v4i32
;
15035 SDValue PermCntl
= BuildIntrinsicOp(Intr
, Ptr
, DAG
, dl
, PermCntlTy
);
15037 // Create the new MMO for the new base load. It is like the original MMO,
15038 // but represents an area in memory almost twice the vector size centered
15039 // on the original address. If the address is unaligned, we might start
15040 // reading up to (sizeof(vector)-1) bytes below the address of the
15041 // original unaligned load.
15042 MachineFunction
&MF
= DAG
.getMachineFunction();
15043 MachineMemOperand
*BaseMMO
=
15044 MF
.getMachineMemOperand(LD
->getMemOperand(),
15045 -(long)MemVT
.getStoreSize()+1,
15046 2*MemVT
.getStoreSize()-1);
15048 // Create the new base load.
15050 DAG
.getTargetConstant(IntrLD
, dl
, getPointerTy(MF
.getDataLayout()));
15051 SDValue BaseLoadOps
[] = { Chain
, LDXIntID
, Ptr
};
15053 DAG
.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN
, dl
,
15054 DAG
.getVTList(PermTy
, MVT::Other
),
15055 BaseLoadOps
, LDTy
, BaseMMO
);
15057 // Note that the value of IncOffset (which is provided to the next
15058 // load's pointer info offset value, and thus used to calculate the
15059 // alignment), and the value of IncValue (which is actually used to
15060 // increment the pointer value) are different! This is because we
15061 // require the next load to appear to be aligned, even though it
15062 // is actually offset from the base pointer by a lesser amount.
15063 int IncOffset
= VT
.getSizeInBits() / 8;
15064 int IncValue
= IncOffset
;
15066 // Walk (both up and down) the chain looking for another load at the real
15067 // (aligned) offset (the alignment of the other load does not matter in
15068 // this case). If found, then do not use the offset reduction trick, as
15069 // that will prevent the loads from being later combined (as they would
15070 // otherwise be duplicates).
15071 if (!findConsecutiveLoad(LD
, DAG
))
15074 SDValue Increment
=
15075 DAG
.getConstant(IncValue
, dl
, getPointerTy(MF
.getDataLayout()));
15076 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
15078 MachineMemOperand
*ExtraMMO
=
15079 MF
.getMachineMemOperand(LD
->getMemOperand(),
15080 1, 2*MemVT
.getStoreSize()-1);
15081 SDValue ExtraLoadOps
[] = { Chain
, LDXIntID
, Ptr
};
15082 SDValue ExtraLoad
=
15083 DAG
.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN
, dl
,
15084 DAG
.getVTList(PermTy
, MVT::Other
),
15085 ExtraLoadOps
, LDTy
, ExtraMMO
);
15087 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
15088 BaseLoad
.getValue(1), ExtraLoad
.getValue(1));
15090 // Because vperm has a big-endian bias, we must reverse the order
15091 // of the input vectors and complement the permute control vector
15092 // when generating little endian code. We have already handled the
15093 // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15094 // and ExtraLoad here.
15096 if (isLittleEndian
)
15097 Perm
= BuildIntrinsicOp(IntrPerm
,
15098 ExtraLoad
, BaseLoad
, PermCntl
, DAG
, dl
);
15100 Perm
= BuildIntrinsicOp(IntrPerm
,
15101 BaseLoad
, ExtraLoad
, PermCntl
, DAG
, dl
);
15104 Perm
= Subtarget
.hasAltivec()
15105 ? DAG
.getNode(ISD::BITCAST
, dl
, VT
, Perm
)
15106 : DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Perm
,
15107 DAG
.getTargetConstant(1, dl
, MVT::i64
));
15108 // second argument is 1 because this rounding
15109 // is always exact.
15111 // The output of the permutation is our loaded result, the TokenFactor is
15113 DCI
.CombineTo(N
, Perm
, TF
);
15114 return SDValue(N
, 0);
15118 case ISD::INTRINSIC_WO_CHAIN
: {
15119 bool isLittleEndian
= Subtarget
.isLittleEndian();
15120 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
15121 Intrinsic::ID Intr
= (isLittleEndian
? Intrinsic::ppc_altivec_lvsr
15122 : Intrinsic::ppc_altivec_lvsl
);
15123 if (IID
== Intr
&& N
->getOperand(1)->getOpcode() == ISD::ADD
) {
15124 SDValue Add
= N
->getOperand(1);
15126 int Bits
= 4 /* 16 byte alignment */;
15128 if (DAG
.MaskedValueIsZero(Add
->getOperand(1),
15129 APInt::getAllOnesValue(Bits
/* alignment */)
15130 .zext(Add
.getScalarValueSizeInBits()))) {
15131 SDNode
*BasePtr
= Add
->getOperand(0).getNode();
15132 for (SDNode::use_iterator UI
= BasePtr
->use_begin(),
15133 UE
= BasePtr
->use_end();
15135 if (UI
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
15136 cast
<ConstantSDNode
>(UI
->getOperand(0))->getZExtValue() ==
15138 // We've found another LVSL/LVSR, and this address is an aligned
15139 // multiple of that one. The results will be the same, so use the
15140 // one we've just found instead.
15142 return SDValue(*UI
, 0);
15147 if (isa
<ConstantSDNode
>(Add
->getOperand(1))) {
15148 SDNode
*BasePtr
= Add
->getOperand(0).getNode();
15149 for (SDNode::use_iterator UI
= BasePtr
->use_begin(),
15150 UE
= BasePtr
->use_end(); UI
!= UE
; ++UI
) {
15151 if (UI
->getOpcode() == ISD::ADD
&&
15152 isa
<ConstantSDNode
>(UI
->getOperand(1)) &&
15153 (cast
<ConstantSDNode
>(Add
->getOperand(1))->getZExtValue() -
15154 cast
<ConstantSDNode
>(UI
->getOperand(1))->getZExtValue()) %
15155 (1ULL << Bits
) == 0) {
15156 SDNode
*OtherAdd
= *UI
;
15157 for (SDNode::use_iterator VI
= OtherAdd
->use_begin(),
15158 VE
= OtherAdd
->use_end(); VI
!= VE
; ++VI
) {
15159 if (VI
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
15160 cast
<ConstantSDNode
>(VI
->getOperand(0))->getZExtValue() == IID
) {
15161 return SDValue(*VI
, 0);
15169 // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15170 // Expose the vabsduw/h/b opportunity for down stream
15171 if (!DCI
.isAfterLegalizeDAG() && Subtarget
.hasP9Altivec() &&
15172 (IID
== Intrinsic::ppc_altivec_vmaxsw
||
15173 IID
== Intrinsic::ppc_altivec_vmaxsh
||
15174 IID
== Intrinsic::ppc_altivec_vmaxsb
)) {
15175 SDValue V1
= N
->getOperand(1);
15176 SDValue V2
= N
->getOperand(2);
15177 if ((V1
.getSimpleValueType() == MVT::v4i32
||
15178 V1
.getSimpleValueType() == MVT::v8i16
||
15179 V1
.getSimpleValueType() == MVT::v16i8
) &&
15180 V1
.getSimpleValueType() == V2
.getSimpleValueType()) {
15182 if (V1
.getOpcode() == ISD::SUB
&&
15183 ISD::isBuildVectorAllZeros(V1
.getOperand(0).getNode()) &&
15184 V1
.getOperand(1) == V2
) {
15185 return DAG
.getNode(ISD::ABS
, dl
, V2
.getValueType(), V2
);
15188 if (V2
.getOpcode() == ISD::SUB
&&
15189 ISD::isBuildVectorAllZeros(V2
.getOperand(0).getNode()) &&
15190 V2
.getOperand(1) == V1
) {
15191 return DAG
.getNode(ISD::ABS
, dl
, V1
.getValueType(), V1
);
15194 if (V1
.getOpcode() == ISD::SUB
&& V2
.getOpcode() == ISD::SUB
&&
15195 V1
.getOperand(0) == V2
.getOperand(1) &&
15196 V1
.getOperand(1) == V2
.getOperand(0)) {
15197 return DAG
.getNode(ISD::ABS
, dl
, V1
.getValueType(), V1
);
15204 case ISD::INTRINSIC_W_CHAIN
:
15205 // For little endian, VSX loads require generating lxvd2x/xxswapd.
15206 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15207 if (Subtarget
.needsSwapsForVSXMemOps()) {
15208 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
15211 case Intrinsic::ppc_vsx_lxvw4x
:
15212 case Intrinsic::ppc_vsx_lxvd2x
:
15213 return expandVSXLoadForLE(N
, DCI
);
15217 case ISD::INTRINSIC_VOID
:
15218 // For little endian, VSX stores require generating xxswapd/stxvd2x.
15219 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15220 if (Subtarget
.needsSwapsForVSXMemOps()) {
15221 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
15224 case Intrinsic::ppc_vsx_stxvw4x
:
15225 case Intrinsic::ppc_vsx_stxvd2x
:
15226 return expandVSXStoreForLE(N
, DCI
);
15231 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15232 // For subtargets without LDBRX, we can still do better than the default
15233 // expansion even for 64-bit BSWAP (LOAD).
15234 bool Is64BitBswapOn64BitTgt
=
15235 Subtarget
.isPPC64() && N
->getValueType(0) == MVT::i64
;
15236 bool IsSingleUseNormalLd
= ISD::isNormalLoad(N
->getOperand(0).getNode()) &&
15237 N
->getOperand(0).hasOneUse();
15238 if (IsSingleUseNormalLd
&&
15239 (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i16
||
15240 (Subtarget
.hasLDBRX() && Is64BitBswapOn64BitTgt
))) {
15241 SDValue Load
= N
->getOperand(0);
15242 LoadSDNode
*LD
= cast
<LoadSDNode
>(Load
);
15243 // Create the byte-swapping load.
15245 LD
->getChain(), // Chain
15246 LD
->getBasePtr(), // Ptr
15247 DAG
.getValueType(N
->getValueType(0)) // VT
15250 DAG
.getMemIntrinsicNode(PPCISD::LBRX
, dl
,
15251 DAG
.getVTList(N
->getValueType(0) == MVT::i64
?
15252 MVT::i64
: MVT::i32
, MVT::Other
),
15253 Ops
, LD
->getMemoryVT(), LD
->getMemOperand());
15255 // If this is an i16 load, insert the truncate.
15256 SDValue ResVal
= BSLoad
;
15257 if (N
->getValueType(0) == MVT::i16
)
15258 ResVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
, BSLoad
);
15260 // First, combine the bswap away. This makes the value produced by the
15262 DCI
.CombineTo(N
, ResVal
);
15264 // Next, combine the load away, we give it a bogus result value but a real
15265 // chain result. The result value is dead because the bswap is dead.
15266 DCI
.CombineTo(Load
.getNode(), ResVal
, BSLoad
.getValue(1));
15268 // Return N so it doesn't get rechecked!
15269 return SDValue(N
, 0);
15271 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15272 // before legalization so that the BUILD_PAIR is handled correctly.
15273 if (!DCI
.isBeforeLegalize() || !Is64BitBswapOn64BitTgt
||
15274 !IsSingleUseNormalLd
)
15276 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
->getOperand(0));
15278 // Can't split volatile or atomic loads.
15279 if (!LD
->isSimple())
15281 SDValue BasePtr
= LD
->getBasePtr();
15282 SDValue Lo
= DAG
.getLoad(MVT::i32
, dl
, LD
->getChain(), BasePtr
,
15283 LD
->getPointerInfo(), LD
->getAlignment());
15284 Lo
= DAG
.getNode(ISD::BSWAP
, dl
, MVT::i32
, Lo
);
15285 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
15286 DAG
.getIntPtrConstant(4, dl
));
15287 MachineMemOperand
*NewMMO
= DAG
.getMachineFunction().getMachineMemOperand(
15288 LD
->getMemOperand(), 4, 4);
15289 SDValue Hi
= DAG
.getLoad(MVT::i32
, dl
, LD
->getChain(), BasePtr
, NewMMO
);
15290 Hi
= DAG
.getNode(ISD::BSWAP
, dl
, MVT::i32
, Hi
);
15292 if (Subtarget
.isLittleEndian())
15293 Res
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Hi
, Lo
);
15295 Res
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
15297 DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
15298 Hi
.getOperand(0).getValue(1), Lo
.getOperand(0).getValue(1));
15299 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), TF
);
15303 // If a VCMP_rec node already exists with exactly the same operands as this
15304 // node, use its result instead of this node (VCMP_rec computes both a CR6
15305 // and a normal output).
15307 if (!N
->getOperand(0).hasOneUse() &&
15308 !N
->getOperand(1).hasOneUse() &&
15309 !N
->getOperand(2).hasOneUse()) {
15311 // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15312 SDNode
*VCMPrecNode
= nullptr;
15314 SDNode
*LHSN
= N
->getOperand(0).getNode();
15315 for (SDNode::use_iterator UI
= LHSN
->use_begin(), E
= LHSN
->use_end();
15317 if (UI
->getOpcode() == PPCISD::VCMP_rec
&&
15318 UI
->getOperand(1) == N
->getOperand(1) &&
15319 UI
->getOperand(2) == N
->getOperand(2) &&
15320 UI
->getOperand(0) == N
->getOperand(0)) {
15325 // If there is no VCMP_rec node, or if the flag value has a single use,
15326 // don't transform this.
15327 if (!VCMPrecNode
|| VCMPrecNode
->hasNUsesOfValue(0, 1))
15330 // Look at the (necessarily single) use of the flag value. If it has a
15331 // chain, this transformation is more complex. Note that multiple things
15332 // could use the value result, which we should ignore.
15333 SDNode
*FlagUser
= nullptr;
15334 for (SDNode::use_iterator UI
= VCMPrecNode
->use_begin();
15335 FlagUser
== nullptr; ++UI
) {
15336 assert(UI
!= VCMPrecNode
->use_end() && "Didn't find user!");
15337 SDNode
*User
= *UI
;
15338 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
15339 if (User
->getOperand(i
) == SDValue(VCMPrecNode
, 1)) {
15346 // If the user is a MFOCRF instruction, we know this is safe.
15347 // Otherwise we give up for right now.
15348 if (FlagUser
->getOpcode() == PPCISD::MFOCRF
)
15349 return SDValue(VCMPrecNode
, 0);
15352 case ISD::BRCOND
: {
15353 SDValue Cond
= N
->getOperand(1);
15354 SDValue Target
= N
->getOperand(2);
15356 if (Cond
.getOpcode() == ISD::INTRINSIC_W_CHAIN
&&
15357 cast
<ConstantSDNode
>(Cond
.getOperand(1))->getZExtValue() ==
15358 Intrinsic::loop_decrement
) {
15360 // We now need to make the intrinsic dead (it cannot be instruction
15362 DAG
.ReplaceAllUsesOfValueWith(Cond
.getValue(1), Cond
.getOperand(0));
15363 assert(Cond
.getNode()->hasOneUse() &&
15364 "Counter decrement has more than one use");
15366 return DAG
.getNode(PPCISD::BDNZ
, dl
, MVT::Other
,
15367 N
->getOperand(0), Target
);
15372 // If this is a branch on an altivec predicate comparison, lower this so
15373 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
15374 // lowering is done pre-legalize, because the legalizer lowers the predicate
15375 // compare down to code that is difficult to reassemble.
15376 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
15377 SDValue LHS
= N
->getOperand(2), RHS
= N
->getOperand(3);
15379 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15380 // value. If so, pass-through the AND to get to the intrinsic.
15381 if (LHS
.getOpcode() == ISD::AND
&&
15382 LHS
.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN
&&
15383 cast
<ConstantSDNode
>(LHS
.getOperand(0).getOperand(1))->getZExtValue() ==
15384 Intrinsic::loop_decrement
&&
15385 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
15386 !isNullConstant(LHS
.getOperand(1)))
15387 LHS
= LHS
.getOperand(0);
15389 if (LHS
.getOpcode() == ISD::INTRINSIC_W_CHAIN
&&
15390 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() ==
15391 Intrinsic::loop_decrement
&&
15392 isa
<ConstantSDNode
>(RHS
)) {
15393 assert((CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
15394 "Counter decrement comparison is not EQ or NE");
15396 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
15397 bool isBDNZ
= (CC
== ISD::SETEQ
&& Val
) ||
15398 (CC
== ISD::SETNE
&& !Val
);
15400 // We now need to make the intrinsic dead (it cannot be instruction
15402 DAG
.ReplaceAllUsesOfValueWith(LHS
.getValue(1), LHS
.getOperand(0));
15403 assert(LHS
.getNode()->hasOneUse() &&
15404 "Counter decrement has more than one use");
15406 return DAG
.getNode(isBDNZ
? PPCISD::BDNZ
: PPCISD::BDZ
, dl
, MVT::Other
,
15407 N
->getOperand(0), N
->getOperand(4));
15413 if (LHS
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
15414 isa
<ConstantSDNode
>(RHS
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
15415 getVectorCompareInfo(LHS
, CompareOpc
, isDot
, Subtarget
)) {
15416 assert(isDot
&& "Can't compare against a vector result!");
15418 // If this is a comparison against something other than 0/1, then we know
15419 // that the condition is never/always true.
15420 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
15421 if (Val
!= 0 && Val
!= 1) {
15422 if (CC
== ISD::SETEQ
) // Cond never true, remove branch.
15423 return N
->getOperand(0);
15424 // Always !=, turn it into an unconditional branch.
15425 return DAG
.getNode(ISD::BR
, dl
, MVT::Other
,
15426 N
->getOperand(0), N
->getOperand(4));
15429 bool BranchOnWhenPredTrue
= (CC
== ISD::SETEQ
) ^ (Val
== 0);
15431 // Create the PPCISD altivec 'dot' comparison node.
15433 LHS
.getOperand(2), // LHS of compare
15434 LHS
.getOperand(3), // RHS of compare
15435 DAG
.getConstant(CompareOpc
, dl
, MVT::i32
)
15437 EVT VTs
[] = { LHS
.getOperand(2).getValueType(), MVT::Glue
};
15438 SDValue CompNode
= DAG
.getNode(PPCISD::VCMP_rec
, dl
, VTs
, Ops
);
15440 // Unpack the result based on how the target uses it.
15441 PPC::Predicate CompOpc
;
15442 switch (cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue()) {
15443 default: // Can't happen, don't crash on invalid number though.
15444 case 0: // Branch on the value of the EQ bit of CR6.
15445 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_EQ
: PPC::PRED_NE
;
15447 case 1: // Branch on the inverted value of the EQ bit of CR6.
15448 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_NE
: PPC::PRED_EQ
;
15450 case 2: // Branch on the value of the LT bit of CR6.
15451 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_LT
: PPC::PRED_GE
;
15453 case 3: // Branch on the inverted value of the LT bit of CR6.
15454 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_GE
: PPC::PRED_LT
;
15458 return DAG
.getNode(PPCISD::COND_BRANCH
, dl
, MVT::Other
, N
->getOperand(0),
15459 DAG
.getConstant(CompOpc
, dl
, MVT::i32
),
15460 DAG
.getRegister(PPC::CR6
, MVT::i32
),
15461 N
->getOperand(4), CompNode
.getValue(1));
15465 case ISD::BUILD_VECTOR
:
15466 return DAGCombineBuildVector(N
, DCI
);
15468 return combineABS(N
, DCI
);
15470 return combineVSelect(N
, DCI
);
15477 PPCTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
15479 SmallVectorImpl
<SDNode
*> &Created
) const {
15480 // fold (sdiv X, pow2)
15481 EVT VT
= N
->getValueType(0);
15482 if (VT
== MVT::i64
&& !Subtarget
.isPPC64())
15484 if ((VT
!= MVT::i32
&& VT
!= MVT::i64
) ||
15485 !(Divisor
.isPowerOf2() || (-Divisor
).isPowerOf2()))
15489 SDValue N0
= N
->getOperand(0);
15491 bool IsNegPow2
= (-Divisor
).isPowerOf2();
15492 unsigned Lg2
= (IsNegPow2
? -Divisor
: Divisor
).countTrailingZeros();
15493 SDValue ShiftAmt
= DAG
.getConstant(Lg2
, DL
, VT
);
15495 SDValue Op
= DAG
.getNode(PPCISD::SRA_ADDZE
, DL
, VT
, N0
, ShiftAmt
);
15496 Created
.push_back(Op
.getNode());
15499 Op
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Op
);
15500 Created
.push_back(Op
.getNode());
15506 //===----------------------------------------------------------------------===//
15507 // Inline Assembly Support
15508 //===----------------------------------------------------------------------===//
15510 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
15512 const APInt
&DemandedElts
,
15513 const SelectionDAG
&DAG
,
15514 unsigned Depth
) const {
15516 switch (Op
.getOpcode()) {
15518 case PPCISD::LBRX
: {
15519 // lhbrx is known to have the top bits cleared out.
15520 if (cast
<VTSDNode
>(Op
.getOperand(2))->getVT() == MVT::i16
)
15521 Known
.Zero
= 0xFFFF0000;
15524 case ISD::INTRINSIC_WO_CHAIN
: {
15525 switch (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue()) {
15527 case Intrinsic::ppc_altivec_vcmpbfp_p
:
15528 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
15529 case Intrinsic::ppc_altivec_vcmpequb_p
:
15530 case Intrinsic::ppc_altivec_vcmpequh_p
:
15531 case Intrinsic::ppc_altivec_vcmpequw_p
:
15532 case Intrinsic::ppc_altivec_vcmpequd_p
:
15533 case Intrinsic::ppc_altivec_vcmpequq_p
:
15534 case Intrinsic::ppc_altivec_vcmpgefp_p
:
15535 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
15536 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
15537 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
15538 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
15539 case Intrinsic::ppc_altivec_vcmpgtsd_p
:
15540 case Intrinsic::ppc_altivec_vcmpgtsq_p
:
15541 case Intrinsic::ppc_altivec_vcmpgtub_p
:
15542 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
15543 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
15544 case Intrinsic::ppc_altivec_vcmpgtud_p
:
15545 case Intrinsic::ppc_altivec_vcmpgtuq_p
:
15546 Known
.Zero
= ~1U; // All bits but the low one are known to be zero.
15553 Align
PPCTargetLowering::getPrefLoopAlignment(MachineLoop
*ML
) const {
15554 switch (Subtarget
.getCPUDirective()) {
15557 case PPC::DIR_PWR4
:
15558 case PPC::DIR_PWR5
:
15559 case PPC::DIR_PWR5X
:
15560 case PPC::DIR_PWR6
:
15561 case PPC::DIR_PWR6X
:
15562 case PPC::DIR_PWR7
:
15563 case PPC::DIR_PWR8
:
15564 case PPC::DIR_PWR9
:
15565 case PPC::DIR_PWR10
:
15566 case PPC::DIR_PWR_FUTURE
: {
15570 if (!DisableInnermostLoopAlign32
) {
15571 // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15572 // so that we can decrease cache misses and branch-prediction misses.
15573 // Actual alignment of the loop will depend on the hotness check and other
15574 // logic in alignBlocks.
15575 if (ML
->getLoopDepth() > 1 && ML
->getSubLoops().empty())
15579 const PPCInstrInfo
*TII
= Subtarget
.getInstrInfo();
15581 // For small loops (between 5 and 8 instructions), align to a 32-byte
15582 // boundary so that the entire loop fits in one instruction-cache line.
15583 uint64_t LoopSize
= 0;
15584 for (auto I
= ML
->block_begin(), IE
= ML
->block_end(); I
!= IE
; ++I
)
15585 for (auto J
= (*I
)->begin(), JE
= (*I
)->end(); J
!= JE
; ++J
) {
15586 LoopSize
+= TII
->getInstSizeInBytes(*J
);
15591 if (LoopSize
> 16 && LoopSize
<= 32)
15598 return TargetLowering::getPrefLoopAlignment(ML
);
15601 /// getConstraintType - Given a constraint, return the type of
15602 /// constraint it is for this target.
15603 PPCTargetLowering::ConstraintType
15604 PPCTargetLowering::getConstraintType(StringRef Constraint
) const {
15605 if (Constraint
.size() == 1) {
15606 switch (Constraint
[0]) {
15614 return C_RegisterClass
;
15616 // FIXME: While Z does indicate a memory constraint, it specifically
15617 // indicates an r+r address (used in conjunction with the 'y' modifier
15618 // in the replacement string). Currently, we're forcing the base
15619 // register to be r0 in the asm printer (which is interpreted as zero)
15620 // and forming the complete address in the second register. This is
15624 } else if (Constraint
== "wc") { // individual CR bits.
15625 return C_RegisterClass
;
15626 } else if (Constraint
== "wa" || Constraint
== "wd" ||
15627 Constraint
== "wf" || Constraint
== "ws" ||
15628 Constraint
== "wi" || Constraint
== "ww") {
15629 return C_RegisterClass
; // VSX registers.
15631 return TargetLowering::getConstraintType(Constraint
);
15634 /// Examine constraint type and operand type and determine a weight value.
15635 /// This object must already have been set up with the operand type
15636 /// and the current alternative constraint selected.
15637 TargetLowering::ConstraintWeight
15638 PPCTargetLowering::getSingleConstraintMatchWeight(
15639 AsmOperandInfo
&info
, const char *constraint
) const {
15640 ConstraintWeight weight
= CW_Invalid
;
15641 Value
*CallOperandVal
= info
.CallOperandVal
;
15642 // If we don't have a value, we can't do a match,
15643 // but allow it at the lowest weight.
15644 if (!CallOperandVal
)
15646 Type
*type
= CallOperandVal
->getType();
15648 // Look at the constraint type.
15649 if (StringRef(constraint
) == "wc" && type
->isIntegerTy(1))
15650 return CW_Register
; // an individual CR bit.
15651 else if ((StringRef(constraint
) == "wa" ||
15652 StringRef(constraint
) == "wd" ||
15653 StringRef(constraint
) == "wf") &&
15654 type
->isVectorTy())
15655 return CW_Register
;
15656 else if (StringRef(constraint
) == "wi" && type
->isIntegerTy(64))
15657 return CW_Register
; // just hold 64-bit integers data.
15658 else if (StringRef(constraint
) == "ws" && type
->isDoubleTy())
15659 return CW_Register
;
15660 else if (StringRef(constraint
) == "ww" && type
->isFloatTy())
15661 return CW_Register
;
15663 switch (*constraint
) {
15665 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15668 if (type
->isIntegerTy())
15669 weight
= CW_Register
;
15672 if (type
->isFloatTy())
15673 weight
= CW_Register
;
15676 if (type
->isDoubleTy())
15677 weight
= CW_Register
;
15680 if (type
->isVectorTy())
15681 weight
= CW_Register
;
15684 weight
= CW_Register
;
15687 weight
= CW_Memory
;
15693 std::pair
<unsigned, const TargetRegisterClass
*>
15694 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
15695 StringRef Constraint
,
15697 if (Constraint
.size() == 1) {
15698 // GCC RS6000 Constraint Letters
15699 switch (Constraint
[0]) {
15700 case 'b': // R1-R31
15701 if (VT
== MVT::i64
&& Subtarget
.isPPC64())
15702 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass
);
15703 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass
);
15704 case 'r': // R0-R31
15705 if (VT
== MVT::i64
&& Subtarget
.isPPC64())
15706 return std::make_pair(0U, &PPC::G8RCRegClass
);
15707 return std::make_pair(0U, &PPC::GPRCRegClass
);
15708 // 'd' and 'f' constraints are both defined to be "the floating point
15709 // registers", where one is for 32-bit and the other for 64-bit. We don't
15710 // really care overly much here so just give them all the same reg classes.
15713 if (Subtarget
.hasSPE()) {
15714 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15715 return std::make_pair(0U, &PPC::GPRCRegClass
);
15716 if (VT
== MVT::f64
|| VT
== MVT::i64
)
15717 return std::make_pair(0U, &PPC::SPERCRegClass
);
15719 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15720 return std::make_pair(0U, &PPC::F4RCRegClass
);
15721 if (VT
== MVT::f64
|| VT
== MVT::i64
)
15722 return std::make_pair(0U, &PPC::F8RCRegClass
);
15726 if (Subtarget
.hasAltivec())
15727 return std::make_pair(0U, &PPC::VRRCRegClass
);
15730 return std::make_pair(0U, &PPC::CRRCRegClass
);
15732 } else if (Constraint
== "wc" && Subtarget
.useCRBits()) {
15733 // An individual CR bit.
15734 return std::make_pair(0U, &PPC::CRBITRCRegClass
);
15735 } else if ((Constraint
== "wa" || Constraint
== "wd" ||
15736 Constraint
== "wf" || Constraint
== "wi") &&
15737 Subtarget
.hasVSX()) {
15738 // A VSX register for either a scalar (FP) or vector. There is no
15739 // support for single precision scalars on subtargets prior to Power8.
15741 return std::make_pair(0U, &PPC::VSRCRegClass
);
15742 if (VT
== MVT::f32
&& Subtarget
.hasP8Vector())
15743 return std::make_pair(0U, &PPC::VSSRCRegClass
);
15744 return std::make_pair(0U, &PPC::VSFRCRegClass
);
15745 } else if ((Constraint
== "ws" || Constraint
== "ww") && Subtarget
.hasVSX()) {
15746 if (VT
== MVT::f32
&& Subtarget
.hasP8Vector())
15747 return std::make_pair(0U, &PPC::VSSRCRegClass
);
15749 return std::make_pair(0U, &PPC::VSFRCRegClass
);
15750 } else if (Constraint
== "lr") {
15751 if (VT
== MVT::i64
)
15752 return std::make_pair(0U, &PPC::LR8RCRegClass
);
15754 return std::make_pair(0U, &PPC::LRRCRegClass
);
15757 // Handle special cases of physical registers that are not properly handled
15758 // by the base class.
15759 if (Constraint
[0] == '{' && Constraint
[Constraint
.size() - 1] == '}') {
15760 // If we name a VSX register, we can't defer to the base class because it
15761 // will not recognize the correct register (their names will be VSL{0-31}
15762 // and V{0-31} so they won't match). So we match them here.
15763 if (Constraint
.size() > 3 && Constraint
[1] == 'v' && Constraint
[2] == 's') {
15764 int VSNum
= atoi(Constraint
.data() + 3);
15765 assert(VSNum
>= 0 && VSNum
<= 63 &&
15766 "Attempted to access a vsr out of range");
15768 return std::make_pair(PPC::VSL0
+ VSNum
, &PPC::VSRCRegClass
);
15769 return std::make_pair(PPC::V0
+ VSNum
- 32, &PPC::VSRCRegClass
);
15772 // For float registers, we can't defer to the base class as it will match
15773 // the SPILLTOVSRRC class.
15774 if (Constraint
.size() > 3 && Constraint
[1] == 'f') {
15775 int RegNum
= atoi(Constraint
.data() + 2);
15776 if (RegNum
> 31 || RegNum
< 0)
15777 report_fatal_error("Invalid floating point register number");
15778 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15779 return Subtarget
.hasSPE()
15780 ? std::make_pair(PPC::R0
+ RegNum
, &PPC::GPRCRegClass
)
15781 : std::make_pair(PPC::F0
+ RegNum
, &PPC::F4RCRegClass
);
15782 if (VT
== MVT::f64
|| VT
== MVT::i64
)
15783 return Subtarget
.hasSPE()
15784 ? std::make_pair(PPC::S0
+ RegNum
, &PPC::SPERCRegClass
)
15785 : std::make_pair(PPC::F0
+ RegNum
, &PPC::F8RCRegClass
);
15789 std::pair
<unsigned, const TargetRegisterClass
*> R
=
15790 TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15792 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15793 // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15794 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15796 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15797 // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15798 if (R
.first
&& VT
== MVT::i64
&& Subtarget
.isPPC64() &&
15799 PPC::GPRCRegClass
.contains(R
.first
))
15800 return std::make_pair(TRI
->getMatchingSuperReg(R
.first
,
15801 PPC::sub_32
, &PPC::G8RCRegClass
),
15802 &PPC::G8RCRegClass
);
15804 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15805 if (!R
.second
&& StringRef("{cc}").equals_insensitive(Constraint
)) {
15806 R
.first
= PPC::CR0
;
15807 R
.second
= &PPC::CRRCRegClass
;
15809 // FIXME: This warning should ideally be emitted in the front end.
15810 const auto &TM
= getTargetMachine();
15811 if (Subtarget
.isAIXABI() && !TM
.getAIXExtendedAltivecABI()) {
15812 if (((R
.first
>= PPC::V20
&& R
.first
<= PPC::V31
) ||
15813 (R
.first
>= PPC::VF20
&& R
.first
<= PPC::VF31
)) &&
15814 (R
.second
== &PPC::VSRCRegClass
|| R
.second
== &PPC::VSFRCRegClass
))
15815 errs() << "warning: vector registers 20 to 32 are reserved in the "
15816 "default AIX AltiVec ABI and cannot be used\n";
15822 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15823 /// vector. If it is invalid, don't add anything to Ops.
15824 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15825 std::string
&Constraint
,
15826 std::vector
<SDValue
>&Ops
,
15827 SelectionDAG
&DAG
) const {
15830 // Only support length 1 constraints.
15831 if (Constraint
.length() > 1) return;
15833 char Letter
= Constraint
[0];
15844 ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
);
15845 if (!CST
) return; // Must be an immediate to match.
15847 int64_t Value
= CST
->getSExtValue();
15848 EVT TCVT
= MVT::i64
; // All constants taken to be 64 bits so that negative
15849 // numbers are printed as such.
15851 default: llvm_unreachable("Unknown constraint letter!");
15852 case 'I': // "I" is a signed 16-bit constant.
15853 if (isInt
<16>(Value
))
15854 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15856 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
15857 if (isShiftedUInt
<16, 16>(Value
))
15858 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15860 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
15861 if (isShiftedInt
<16, 16>(Value
))
15862 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15864 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
15865 if (isUInt
<16>(Value
))
15866 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15868 case 'M': // "M" is a constant that is greater than 31.
15870 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15872 case 'N': // "N" is a positive constant that is an exact power of two.
15873 if (Value
> 0 && isPowerOf2_64(Value
))
15874 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15876 case 'O': // "O" is the constant zero.
15878 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15880 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
15881 if (isInt
<16>(-Value
))
15882 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
15889 if (Result
.getNode()) {
15890 Ops
.push_back(Result
);
15894 // Handle standard constraint letters.
15895 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15898 // isLegalAddressingMode - Return true if the addressing mode represented
15899 // by AM is legal for this target, for a load/store of the specified type.
15900 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
15901 const AddrMode
&AM
, Type
*Ty
,
15903 Instruction
*I
) const {
15904 // Vector type r+i form is supported since power9 as DQ form. We don't check
15905 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15906 // imm form is preferred and the offset can be adjusted to use imm form later
15907 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15908 // max offset to check legal addressing mode, we should be a little aggressive
15909 // to contain other offsets for that LSRUse.
15910 if (Ty
->isVectorTy() && AM
.BaseOffs
!= 0 && !Subtarget
.hasP9Vector())
15913 // PPC allows a sign-extended 16-bit immediate field.
15914 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
15917 // No global is ever allowed as a base.
15921 // PPC only support r+r,
15922 switch (AM
.Scale
) {
15923 case 0: // "r+i" or just "i", depending on HasBaseReg.
15926 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
15928 // Otherwise we have r+r or r+i.
15931 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
15933 // Allow 2*r as r+r.
15936 // No other scales are supported.
15943 SDValue
PPCTargetLowering::LowerRETURNADDR(SDValue Op
,
15944 SelectionDAG
&DAG
) const {
15945 MachineFunction
&MF
= DAG
.getMachineFunction();
15946 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
15947 MFI
.setReturnAddressIsTaken(true);
15949 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
15953 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
15955 // Make sure the function does not optimize away the store of the RA to
15957 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
15958 FuncInfo
->setLRStoreRequired();
15959 bool isPPC64
= Subtarget
.isPPC64();
15960 auto PtrVT
= getPointerTy(MF
.getDataLayout());
15963 // The link register (return address) is saved in the caller's frame
15964 // not the callee's stack frame. So we must get the caller's frame
15965 // address and load the return address at the LR offset from there.
15966 SDValue FrameAddr
=
15967 DAG
.getLoad(Op
.getValueType(), dl
, DAG
.getEntryNode(),
15968 LowerFRAMEADDR(Op
, DAG
), MachinePointerInfo());
15970 DAG
.getConstant(Subtarget
.getFrameLowering()->getReturnSaveOffset(), dl
,
15971 isPPC64
? MVT::i64
: MVT::i32
);
15972 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(),
15973 DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FrameAddr
, Offset
),
15974 MachinePointerInfo());
15977 // Just load the return address off the stack.
15978 SDValue RetAddrFI
= getReturnAddrFrameIndex(DAG
);
15979 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), RetAddrFI
,
15980 MachinePointerInfo());
15983 SDValue
PPCTargetLowering::LowerFRAMEADDR(SDValue Op
,
15984 SelectionDAG
&DAG
) const {
15986 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
15988 MachineFunction
&MF
= DAG
.getMachineFunction();
15989 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
15990 MFI
.setFrameAddressIsTaken(true);
15992 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
15993 bool isPPC64
= PtrVT
== MVT::i64
;
15995 // Naked functions never have a frame pointer, and so we use r1. For all
15996 // other functions, this decision must be delayed until during PEI.
15998 if (MF
.getFunction().hasFnAttribute(Attribute::Naked
))
15999 FrameReg
= isPPC64
? PPC::X1
: PPC::R1
;
16001 FrameReg
= isPPC64
? PPC::FP8
: PPC::FP
;
16003 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
,
16006 FrameAddr
= DAG
.getLoad(Op
.getValueType(), dl
, DAG
.getEntryNode(),
16007 FrameAddr
, MachinePointerInfo());
16011 // FIXME? Maybe this could be a TableGen attribute on some registers and
16012 // this table could be generated automatically from RegInfo.
16013 Register
PPCTargetLowering::getRegisterByName(const char* RegName
, LLT VT
,
16014 const MachineFunction
&MF
) const {
16015 bool isPPC64
= Subtarget
.isPPC64();
16017 bool is64Bit
= isPPC64
&& VT
== LLT::scalar(64);
16018 if (!is64Bit
&& VT
!= LLT::scalar(32))
16019 report_fatal_error("Invalid register global variable type");
16021 Register Reg
= StringSwitch
<Register
>(RegName
)
16022 .Case("r1", is64Bit
? PPC::X1
: PPC::R1
)
16023 .Case("r2", isPPC64
? Register() : PPC::R2
)
16024 .Case("r13", (is64Bit
? PPC::X13
: PPC::R13
))
16025 .Default(Register());
16029 report_fatal_error("Invalid register name global variable");
16032 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA
) const {
16033 // 32-bit SVR4 ABI access everything as got-indirect.
16034 if (Subtarget
.is32BitELFABI())
16037 // AIX accesses everything indirectly through the TOC, which is similar to
16039 if (Subtarget
.isAIXABI())
16042 CodeModel::Model CModel
= getTargetMachine().getCodeModel();
16043 // If it is small or large code model, module locals are accessed
16044 // indirectly by loading their address from .toc/.got.
16045 if (CModel
== CodeModel::Small
|| CModel
== CodeModel::Large
)
16048 // JumpTable and BlockAddress are accessed as got-indirect.
16049 if (isa
<JumpTableSDNode
>(GA
) || isa
<BlockAddressSDNode
>(GA
))
16052 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(GA
))
16053 return Subtarget
.isGVIndirectSymbol(G
->getGlobal());
16059 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
16060 // The PowerPC target isn't yet aware of offsets.
16064 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
16066 MachineFunction
&MF
,
16067 unsigned Intrinsic
) const {
16068 switch (Intrinsic
) {
16069 case Intrinsic::ppc_atomicrmw_xchg_i128
:
16070 case Intrinsic::ppc_atomicrmw_add_i128
:
16071 case Intrinsic::ppc_atomicrmw_sub_i128
:
16072 case Intrinsic::ppc_atomicrmw_nand_i128
:
16073 case Intrinsic::ppc_atomicrmw_and_i128
:
16074 case Intrinsic::ppc_atomicrmw_or_i128
:
16075 case Intrinsic::ppc_atomicrmw_xor_i128
:
16076 case Intrinsic::ppc_cmpxchg_i128
:
16077 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16078 Info
.memVT
= MVT::i128
;
16079 Info
.ptrVal
= I
.getArgOperand(0);
16081 Info
.align
= Align(16);
16082 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
|
16083 MachineMemOperand::MOVolatile
;
16085 case Intrinsic::ppc_altivec_lvx
:
16086 case Intrinsic::ppc_altivec_lvxl
:
16087 case Intrinsic::ppc_altivec_lvebx
:
16088 case Intrinsic::ppc_altivec_lvehx
:
16089 case Intrinsic::ppc_altivec_lvewx
:
16090 case Intrinsic::ppc_vsx_lxvd2x
:
16091 case Intrinsic::ppc_vsx_lxvw4x
:
16092 case Intrinsic::ppc_vsx_lxvd2x_be
:
16093 case Intrinsic::ppc_vsx_lxvw4x_be
:
16094 case Intrinsic::ppc_vsx_lxvl
:
16095 case Intrinsic::ppc_vsx_lxvll
: {
16097 switch (Intrinsic
) {
16098 case Intrinsic::ppc_altivec_lvebx
:
16101 case Intrinsic::ppc_altivec_lvehx
:
16104 case Intrinsic::ppc_altivec_lvewx
:
16107 case Intrinsic::ppc_vsx_lxvd2x
:
16108 case Intrinsic::ppc_vsx_lxvd2x_be
:
16116 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16118 Info
.ptrVal
= I
.getArgOperand(0);
16119 Info
.offset
= -VT
.getStoreSize()+1;
16120 Info
.size
= 2*VT
.getStoreSize()-1;
16121 Info
.align
= Align(1);
16122 Info
.flags
= MachineMemOperand::MOLoad
;
16125 case Intrinsic::ppc_altivec_stvx
:
16126 case Intrinsic::ppc_altivec_stvxl
:
16127 case Intrinsic::ppc_altivec_stvebx
:
16128 case Intrinsic::ppc_altivec_stvehx
:
16129 case Intrinsic::ppc_altivec_stvewx
:
16130 case Intrinsic::ppc_vsx_stxvd2x
:
16131 case Intrinsic::ppc_vsx_stxvw4x
:
16132 case Intrinsic::ppc_vsx_stxvd2x_be
:
16133 case Intrinsic::ppc_vsx_stxvw4x_be
:
16134 case Intrinsic::ppc_vsx_stxvl
:
16135 case Intrinsic::ppc_vsx_stxvll
: {
16137 switch (Intrinsic
) {
16138 case Intrinsic::ppc_altivec_stvebx
:
16141 case Intrinsic::ppc_altivec_stvehx
:
16144 case Intrinsic::ppc_altivec_stvewx
:
16147 case Intrinsic::ppc_vsx_stxvd2x
:
16148 case Intrinsic::ppc_vsx_stxvd2x_be
:
16156 Info
.opc
= ISD::INTRINSIC_VOID
;
16158 Info
.ptrVal
= I
.getArgOperand(1);
16159 Info
.offset
= -VT
.getStoreSize()+1;
16160 Info
.size
= 2*VT
.getStoreSize()-1;
16161 Info
.align
= Align(1);
16162 Info
.flags
= MachineMemOperand::MOStore
;
16172 /// It returns EVT::Other if the type should be determined using generic
16173 /// target-independent logic.
16174 EVT
PPCTargetLowering::getOptimalMemOpType(
16175 const MemOp
&Op
, const AttributeList
&FuncAttributes
) const {
16176 if (getTargetMachine().getOptLevel() != CodeGenOpt::None
) {
16177 // We should use Altivec/VSX loads and stores when available. For unaligned
16178 // addresses, unaligned VSX loads are only fast starting with the P8.
16179 if (Subtarget
.hasAltivec() && Op
.size() >= 16 &&
16180 (Op
.isAligned(Align(16)) ||
16181 ((Op
.isMemset() && Subtarget
.hasVSX()) || Subtarget
.hasP8Vector())))
16185 if (Subtarget
.isPPC64()) {
16192 /// Returns true if it is beneficial to convert a load of a constant
16193 /// to just the constant itself.
16194 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
16196 assert(Ty
->isIntegerTy());
16198 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
16199 return !(BitSize
== 0 || BitSize
> 64);
16202 bool PPCTargetLowering::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
16203 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
16205 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
16206 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
16207 return NumBits1
== 64 && NumBits2
== 32;
16210 bool PPCTargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
16211 if (!VT1
.isInteger() || !VT2
.isInteger())
16213 unsigned NumBits1
= VT1
.getSizeInBits();
16214 unsigned NumBits2
= VT2
.getSizeInBits();
16215 return NumBits1
== 64 && NumBits2
== 32;
16218 bool PPCTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
16219 // Generally speaking, zexts are not free, but they are free when they can be
16220 // folded with other operations.
16221 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Val
)) {
16222 EVT MemVT
= LD
->getMemoryVT();
16223 if ((MemVT
== MVT::i1
|| MemVT
== MVT::i8
|| MemVT
== MVT::i16
||
16224 (Subtarget
.isPPC64() && MemVT
== MVT::i32
)) &&
16225 (LD
->getExtensionType() == ISD::NON_EXTLOAD
||
16226 LD
->getExtensionType() == ISD::ZEXTLOAD
))
16230 // FIXME: Add other cases...
16231 // - 32-bit shifts with a zext to i64
16232 // - zext after ctlz, bswap, etc.
16233 // - zext after and by a constant mask
16235 return TargetLowering::isZExtFree(Val
, VT2
);
16238 bool PPCTargetLowering::isFPExtFree(EVT DestVT
, EVT SrcVT
) const {
16239 assert(DestVT
.isFloatingPoint() && SrcVT
.isFloatingPoint() &&
16240 "invalid fpext types");
16241 // Extending to float128 is not free.
16242 if (DestVT
== MVT::f128
)
16247 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
16248 return isInt
<16>(Imm
) || isUInt
<16>(Imm
);
16251 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
16252 return isInt
<16>(Imm
) || isUInt
<16>(Imm
);
16255 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned, Align
,
16256 MachineMemOperand::Flags
,
16257 bool *Fast
) const {
16258 if (DisablePPCUnaligned
)
16261 // PowerPC supports unaligned memory access for simple non-vector types.
16262 // Although accessing unaligned addresses is not as efficient as accessing
16263 // aligned addresses, it is generally more efficient than manual expansion,
16264 // and generally only traps for software emulation when crossing page
16267 if (!VT
.isSimple())
16270 if (VT
.isFloatingPoint() && !VT
.isVector() &&
16271 !Subtarget
.allowsUnalignedFPAccess())
16274 if (VT
.getSimpleVT().isVector()) {
16275 if (Subtarget
.hasVSX()) {
16276 if (VT
!= MVT::v2f64
&& VT
!= MVT::v2i64
&&
16277 VT
!= MVT::v4f32
&& VT
!= MVT::v4i32
)
16284 if (VT
== MVT::ppcf128
)
16293 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext
&Context
, EVT VT
,
16295 // Check integral scalar types.
16296 if (!VT
.isScalarInteger())
16298 if (auto *ConstNode
= dyn_cast
<ConstantSDNode
>(C
.getNode())) {
16299 if (!ConstNode
->getAPIntValue().isSignedIntN(64))
16301 // This transformation will generate >= 2 operations. But the following
16302 // cases will generate <= 2 instructions during ISEL. So exclude them.
16303 // 1. If the constant multiplier fits 16 bits, it can be handled by one
16304 // HW instruction, ie. MULLI
16305 // 2. If the multiplier after shifted fits 16 bits, an extra shift
16306 // instruction is needed than case 1, ie. MULLI and RLDICR
16307 int64_t Imm
= ConstNode
->getSExtValue();
16308 unsigned Shift
= countTrailingZeros
<uint64_t>(Imm
);
16310 if (isInt
<16>(Imm
))
16312 uint64_t UImm
= static_cast<uint64_t>(Imm
);
16313 if (isPowerOf2_64(UImm
+ 1) || isPowerOf2_64(UImm
- 1) ||
16314 isPowerOf2_64(1 - UImm
) || isPowerOf2_64(-1 - UImm
))
16320 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction
&MF
,
16322 return isFMAFasterThanFMulAndFAdd(
16323 MF
.getFunction(), VT
.getTypeForEVT(MF
.getFunction().getContext()));
16326 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function
&F
,
16328 switch (Ty
->getScalarType()->getTypeID()) {
16329 case Type::FloatTyID
:
16330 case Type::DoubleTyID
:
16332 case Type::FP128TyID
:
16333 return Subtarget
.hasP9Vector();
16339 // FIXME: add more patterns which are not profitable to hoist.
16340 bool PPCTargetLowering::isProfitableToHoist(Instruction
*I
) const {
16341 if (!I
->hasOneUse())
16344 Instruction
*User
= I
->user_back();
16345 assert(User
&& "A single use instruction with no uses.");
16347 switch (I
->getOpcode()) {
16348 case Instruction::FMul
: {
16349 // Don't break FMA, PowerPC prefers FMA.
16350 if (User
->getOpcode() != Instruction::FSub
&&
16351 User
->getOpcode() != Instruction::FAdd
)
16354 const TargetOptions
&Options
= getTargetMachine().Options
;
16355 const Function
*F
= I
->getFunction();
16356 const DataLayout
&DL
= F
->getParent()->getDataLayout();
16357 Type
*Ty
= User
->getOperand(0)->getType();
16360 isFMAFasterThanFMulAndFAdd(*F
, Ty
) &&
16361 isOperationLegalOrCustom(ISD::FMA
, getValueType(DL
, Ty
)) &&
16362 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
));
16364 case Instruction::Load
: {
16365 // Don't break "store (load float*)" pattern, this pattern will be combined
16366 // to "store (load int32)" in later InstCombine pass. See function
16367 // combineLoadToOperationType. On PowerPC, loading a float point takes more
16368 // cycles than loading a 32 bit integer.
16369 LoadInst
*LI
= cast
<LoadInst
>(I
);
16370 // For the loads that combineLoadToOperationType does nothing, like
16371 // ordered load, it should be profitable to hoist them.
16372 // For swifterror load, it can only be used for pointer to pointer type, so
16373 // later type check should get rid of this case.
16374 if (!LI
->isUnordered())
16377 if (User
->getOpcode() != Instruction::Store
)
16380 if (I
->getType()->getTypeID() != Type::FloatTyID
)
16392 PPCTargetLowering::getScratchRegisters(CallingConv::ID
) const {
16393 // LR is a callee-save register, but we must treat it as clobbered by any call
16394 // site. Hence we include LR in the scratch registers, which are in turn added
16395 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16396 // to CTR, which is used by any indirect call.
16397 static const MCPhysReg ScratchRegs
[] = {
16398 PPC::X12
, PPC::LR8
, PPC::CTR8
, 0
16401 return ScratchRegs
;
16404 Register
PPCTargetLowering::getExceptionPointerRegister(
16405 const Constant
*PersonalityFn
) const {
16406 return Subtarget
.isPPC64() ? PPC::X3
: PPC::R3
;
16409 Register
PPCTargetLowering::getExceptionSelectorRegister(
16410 const Constant
*PersonalityFn
) const {
16411 return Subtarget
.isPPC64() ? PPC::X4
: PPC::R4
;
16415 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16416 EVT VT
, unsigned DefinedValues
) const {
16417 if (VT
== MVT::v2i64
)
16418 return Subtarget
.hasDirectMove(); // Don't need stack ops with direct moves
16420 if (Subtarget
.hasVSX())
16423 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT
, DefinedValues
);
16426 Sched::Preference
PPCTargetLowering::getSchedulingPreference(SDNode
*N
) const {
16427 if (DisableILPPref
|| Subtarget
.enableMachineScheduler())
16428 return TargetLowering::getSchedulingPreference(N
);
16433 // Create a fast isel object.
16435 PPCTargetLowering::createFastISel(FunctionLoweringInfo
&FuncInfo
,
16436 const TargetLibraryInfo
*LibInfo
) const {
16437 return PPC::createFastISel(FuncInfo
, LibInfo
);
16440 // 'Inverted' means the FMA opcode after negating one multiplicand.
16441 // For example, (fma -a b c) = (fnmsub a b c)
16442 static unsigned invertFMAOpcode(unsigned Opc
) {
16445 llvm_unreachable("Invalid FMA opcode for PowerPC!");
16447 return PPCISD::FNMSUB
;
16448 case PPCISD::FNMSUB
:
16453 SDValue
PPCTargetLowering::getNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
16454 bool LegalOps
, bool OptForSize
,
16455 NegatibleCost
&Cost
,
16456 unsigned Depth
) const {
16457 if (Depth
> SelectionDAG::MaxRecursionDepth
)
16460 unsigned Opc
= Op
.getOpcode();
16461 EVT VT
= Op
.getValueType();
16462 SDNodeFlags Flags
= Op
.getNode()->getFlags();
16465 case PPCISD::FNMSUB
:
16466 if (!Op
.hasOneUse() || !isTypeLegal(VT
))
16469 const TargetOptions
&Options
= getTargetMachine().Options
;
16470 SDValue N0
= Op
.getOperand(0);
16471 SDValue N1
= Op
.getOperand(1);
16472 SDValue N2
= Op
.getOperand(2);
16475 NegatibleCost N2Cost
= NegatibleCost::Expensive
;
16477 getNegatedExpression(N2
, DAG
, LegalOps
, OptForSize
, N2Cost
, Depth
+ 1);
16482 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16483 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16484 // These transformations may change sign of zeroes. For example,
16485 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16486 if (Flags
.hasNoSignedZeros() || Options
.NoSignedZerosFPMath
) {
16487 // Try and choose the cheaper one to negate.
16488 NegatibleCost N0Cost
= NegatibleCost::Expensive
;
16489 SDValue NegN0
= getNegatedExpression(N0
, DAG
, LegalOps
, OptForSize
,
16490 N0Cost
, Depth
+ 1);
16492 NegatibleCost N1Cost
= NegatibleCost::Expensive
;
16493 SDValue NegN1
= getNegatedExpression(N1
, DAG
, LegalOps
, OptForSize
,
16494 N1Cost
, Depth
+ 1);
16496 if (NegN0
&& N0Cost
<= N1Cost
) {
16497 Cost
= std::min(N0Cost
, N2Cost
);
16498 return DAG
.getNode(Opc
, Loc
, VT
, NegN0
, N1
, NegN2
, Flags
);
16499 } else if (NegN1
) {
16500 Cost
= std::min(N1Cost
, N2Cost
);
16501 return DAG
.getNode(Opc
, Loc
, VT
, N0
, NegN1
, NegN2
, Flags
);
16505 // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16506 if (isOperationLegal(ISD::FMA
, VT
)) {
16508 return DAG
.getNode(ISD::FMA
, Loc
, VT
, N0
, N1
, NegN2
, Flags
);
16514 return TargetLowering::getNegatedExpression(Op
, DAG
, LegalOps
, OptForSize
,
16518 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16519 bool PPCTargetLowering::useLoadStackGuardNode() const {
16520 if (!Subtarget
.isTargetLinux())
16521 return TargetLowering::useLoadStackGuardNode();
16525 // Override to disable global variable loading on Linux and insert AIX canary
16526 // word declaration.
16527 void PPCTargetLowering::insertSSPDeclarations(Module
&M
) const {
16528 if (Subtarget
.isAIXABI()) {
16529 M
.getOrInsertGlobal(AIXSSPCanaryWordName
,
16530 Type::getInt8PtrTy(M
.getContext()));
16533 if (!Subtarget
.isTargetLinux())
16534 return TargetLowering::insertSSPDeclarations(M
);
16537 Value
*PPCTargetLowering::getSDagStackGuard(const Module
&M
) const {
16538 if (Subtarget
.isAIXABI())
16539 return M
.getGlobalVariable(AIXSSPCanaryWordName
);
16540 return TargetLowering::getSDagStackGuard(M
);
16543 bool PPCTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
16544 bool ForCodeSize
) const {
16545 if (!VT
.isSimple() || !Subtarget
.hasVSX())
16548 switch(VT
.getSimpleVT().SimpleTy
) {
16550 // For FP types that are currently not supported by PPC backend, return
16551 // false. Examples: f16, f80.
16555 if (Subtarget
.hasPrefixInstrs()) {
16556 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16561 return Imm
.isPosZero();
16565 // For vector shift operation op, fold
16566 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16567 static SDValue
stripModuloOnShift(const TargetLowering
&TLI
, SDNode
*N
,
16568 SelectionDAG
&DAG
) {
16569 SDValue N0
= N
->getOperand(0);
16570 SDValue N1
= N
->getOperand(1);
16571 EVT VT
= N0
.getValueType();
16572 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
16573 unsigned Opcode
= N
->getOpcode();
16574 unsigned TargetOpcode
;
16578 llvm_unreachable("Unexpected shift operation");
16580 TargetOpcode
= PPCISD::SHL
;
16583 TargetOpcode
= PPCISD::SRL
;
16586 TargetOpcode
= PPCISD::SRA
;
16590 if (VT
.isVector() && TLI
.isOperationLegal(Opcode
, VT
) &&
16591 N1
->getOpcode() == ISD::AND
)
16592 if (ConstantSDNode
*Mask
= isConstOrConstSplat(N1
->getOperand(1)))
16593 if (Mask
->getZExtValue() == OpSizeInBits
- 1)
16594 return DAG
.getNode(TargetOpcode
, SDLoc(N
), VT
, N0
, N1
->getOperand(0));
16599 SDValue
PPCTargetLowering::combineSHL(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
16600 if (auto Value
= stripModuloOnShift(*this, N
, DCI
.DAG
))
16603 SDValue N0
= N
->getOperand(0);
16604 ConstantSDNode
*CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
16605 if (!Subtarget
.isISA3_0() || !Subtarget
.isPPC64() ||
16606 N0
.getOpcode() != ISD::SIGN_EXTEND
||
16607 N0
.getOperand(0).getValueType() != MVT::i32
|| CN1
== nullptr ||
16608 N
->getValueType(0) != MVT::i64
)
16611 // We can't save an operation here if the value is already extended, and
16612 // the existing shift is easier to combine.
16613 SDValue ExtsSrc
= N0
.getOperand(0);
16614 if (ExtsSrc
.getOpcode() == ISD::TRUNCATE
&&
16615 ExtsSrc
.getOperand(0).getOpcode() == ISD::AssertSext
)
16619 SDValue ShiftBy
= SDValue(CN1
, 0);
16620 // We want the shift amount to be i32 on the extswli, but the shift could
16622 if (ShiftBy
.getValueType() == MVT::i64
)
16623 ShiftBy
= DCI
.DAG
.getConstant(CN1
->getZExtValue(), DL
, MVT::i32
);
16625 return DCI
.DAG
.getNode(PPCISD::EXTSWSLI
, DL
, MVT::i64
, N0
->getOperand(0),
16629 SDValue
PPCTargetLowering::combineSRA(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
16630 if (auto Value
= stripModuloOnShift(*this, N
, DCI
.DAG
))
16636 SDValue
PPCTargetLowering::combineSRL(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
16637 if (auto Value
= stripModuloOnShift(*this, N
, DCI
.DAG
))
16643 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16644 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16645 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16646 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16647 static SDValue
combineADDToADDZE(SDNode
*N
, SelectionDAG
&DAG
,
16648 const PPCSubtarget
&Subtarget
) {
16649 if (!Subtarget
.isPPC64())
16652 SDValue LHS
= N
->getOperand(0);
16653 SDValue RHS
= N
->getOperand(1);
16655 auto isZextOfCompareWithConstant
= [](SDValue Op
) {
16656 if (Op
.getOpcode() != ISD::ZERO_EXTEND
|| !Op
.hasOneUse() ||
16657 Op
.getValueType() != MVT::i64
)
16660 SDValue Cmp
= Op
.getOperand(0);
16661 if (Cmp
.getOpcode() != ISD::SETCC
|| !Cmp
.hasOneUse() ||
16662 Cmp
.getOperand(0).getValueType() != MVT::i64
)
16665 if (auto *Constant
= dyn_cast
<ConstantSDNode
>(Cmp
.getOperand(1))) {
16666 int64_t NegConstant
= 0 - Constant
->getSExtValue();
16667 // Due to the limitations of the addi instruction,
16668 // -C is required to be [-32768, 32767].
16669 return isInt
<16>(NegConstant
);
16675 bool LHSHasPattern
= isZextOfCompareWithConstant(LHS
);
16676 bool RHSHasPattern
= isZextOfCompareWithConstant(RHS
);
16678 // If there is a pattern, canonicalize a zext operand to the RHS.
16679 if (LHSHasPattern
&& !RHSHasPattern
)
16680 std::swap(LHS
, RHS
);
16681 else if (!LHSHasPattern
&& !RHSHasPattern
)
16685 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::Glue
);
16686 SDValue Cmp
= RHS
.getOperand(0);
16687 SDValue Z
= Cmp
.getOperand(0);
16688 auto *Constant
= cast
<ConstantSDNode
>(Cmp
.getOperand(1));
16689 int64_t NegConstant
= 0 - Constant
->getSExtValue();
16691 switch(cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get()) {
16695 // --> addze X, (addic Z, -1).carry
16697 // add X, (zext(setne Z, C))--
16698 // \ when -32768 <= -C <= 32767 && C != 0
16699 // --> addze X, (addic (addi Z, -C), -1).carry
16700 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, Z
,
16701 DAG
.getConstant(NegConstant
, DL
, MVT::i64
));
16702 SDValue AddOrZ
= NegConstant
!= 0 ? Add
: Z
;
16703 SDValue Addc
= DAG
.getNode(ISD::ADDC
, DL
, DAG
.getVTList(MVT::i64
, MVT::Glue
),
16704 AddOrZ
, DAG
.getConstant(-1ULL, DL
, MVT::i64
));
16705 return DAG
.getNode(ISD::ADDE
, DL
, VTs
, LHS
, DAG
.getConstant(0, DL
, MVT::i64
),
16706 SDValue(Addc
.getNode(), 1));
16710 // --> addze X, (subfic Z, 0).carry
16712 // add X, (zext(sete Z, C))--
16713 // \ when -32768 <= -C <= 32767 && C != 0
16714 // --> addze X, (subfic (addi Z, -C), 0).carry
16715 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, Z
,
16716 DAG
.getConstant(NegConstant
, DL
, MVT::i64
));
16717 SDValue AddOrZ
= NegConstant
!= 0 ? Add
: Z
;
16718 SDValue Subc
= DAG
.getNode(ISD::SUBC
, DL
, DAG
.getVTList(MVT::i64
, MVT::Glue
),
16719 DAG
.getConstant(0, DL
, MVT::i64
), AddOrZ
);
16720 return DAG
.getNode(ISD::ADDE
, DL
, VTs
, LHS
, DAG
.getConstant(0, DL
, MVT::i64
),
16721 SDValue(Subc
.getNode(), 1));
16729 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16730 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16731 // In this case both C1 and C2 must be known constants.
16732 // C1+C2 must fit into a 34 bit signed integer.
16733 static SDValue
combineADDToMAT_PCREL_ADDR(SDNode
*N
, SelectionDAG
&DAG
,
16734 const PPCSubtarget
&Subtarget
) {
16735 if (!Subtarget
.isUsingPCRelativeCalls())
16738 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16739 // If we find that node try to cast the Global Address and the Constant.
16740 SDValue LHS
= N
->getOperand(0);
16741 SDValue RHS
= N
->getOperand(1);
16743 if (LHS
.getOpcode() != PPCISD::MAT_PCREL_ADDR
)
16744 std::swap(LHS
, RHS
);
16746 if (LHS
.getOpcode() != PPCISD::MAT_PCREL_ADDR
)
16749 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16750 GlobalAddressSDNode
*GSDN
= dyn_cast
<GlobalAddressSDNode
>(LHS
.getOperand(0));
16751 ConstantSDNode
* ConstNode
= dyn_cast
<ConstantSDNode
>(RHS
);
16753 // Check that both casts succeeded.
16754 if (!GSDN
|| !ConstNode
)
16757 int64_t NewOffset
= GSDN
->getOffset() + ConstNode
->getSExtValue();
16760 // The signed int offset needs to fit in 34 bits.
16761 if (!isInt
<34>(NewOffset
))
16764 // The new global address is a copy of the old global address except
16765 // that it has the updated Offset.
16767 DAG
.getTargetGlobalAddress(GSDN
->getGlobal(), DL
, GSDN
->getValueType(0),
16768 NewOffset
, GSDN
->getTargetFlags());
16770 DAG
.getNode(PPCISD::MAT_PCREL_ADDR
, DL
, GSDN
->getValueType(0), GA
);
16774 SDValue
PPCTargetLowering::combineADD(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
16775 if (auto Value
= combineADDToADDZE(N
, DCI
.DAG
, Subtarget
))
16778 if (auto Value
= combineADDToMAT_PCREL_ADDR(N
, DCI
.DAG
, Subtarget
))
16784 // Detect TRUNCATE operations on bitcasts of float128 values.
16785 // What we are looking for here is the situtation where we extract a subset
16786 // of bits from a 128 bit float.
16787 // This can be of two forms:
16788 // 1) BITCAST of f128 feeding TRUNCATE
16789 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16790 // The reason this is required is because we do not have a legal i128 type
16791 // and so we want to prevent having to store the f128 and then reload part
16793 SDValue
PPCTargetLowering::combineTRUNCATE(SDNode
*N
,
16794 DAGCombinerInfo
&DCI
) const {
16795 // If we are using CRBits then try that first.
16796 if (Subtarget
.useCRBits()) {
16797 // Check if CRBits did anything and return that if it did.
16798 if (SDValue CRTruncValue
= DAGCombineTruncBoolExt(N
, DCI
))
16799 return CRTruncValue
;
16803 SDValue Op0
= N
->getOperand(0);
16805 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16806 if (Subtarget
.hasP9Altivec() && Op0
.getOpcode() == ISD::ABS
) {
16807 EVT VT
= N
->getValueType(0);
16808 if (VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
)
16810 SDValue Sub
= Op0
.getOperand(0);
16811 if (Sub
.getOpcode() == ISD::SUB
) {
16812 SDValue SubOp0
= Sub
.getOperand(0);
16813 SDValue SubOp1
= Sub
.getOperand(1);
16814 if ((SubOp0
.getOpcode() == ISD::ZERO_EXTEND
) &&
16815 (SubOp1
.getOpcode() == ISD::ZERO_EXTEND
)) {
16816 return DCI
.DAG
.getNode(PPCISD::VABSD
, dl
, VT
, SubOp0
.getOperand(0),
16817 SubOp1
.getOperand(0),
16818 DCI
.DAG
.getTargetConstant(0, dl
, MVT::i32
));
16823 // Looking for a truncate of i128 to i64.
16824 if (Op0
.getValueType() != MVT::i128
|| N
->getValueType(0) != MVT::i64
)
16827 int EltToExtract
= DCI
.DAG
.getDataLayout().isBigEndian() ? 1 : 0;
16829 // SRL feeding TRUNCATE.
16830 if (Op0
.getOpcode() == ISD::SRL
) {
16831 ConstantSDNode
*ConstNode
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1));
16832 // The right shift has to be by 64 bits.
16833 if (!ConstNode
|| ConstNode
->getZExtValue() != 64)
16836 // Switch the element number to extract.
16837 EltToExtract
= EltToExtract
? 0 : 1;
16838 // Update Op0 past the SRL.
16839 Op0
= Op0
.getOperand(0);
16842 // BITCAST feeding a TRUNCATE possibly via SRL.
16843 if (Op0
.getOpcode() == ISD::BITCAST
&&
16844 Op0
.getValueType() == MVT::i128
&&
16845 Op0
.getOperand(0).getValueType() == MVT::f128
) {
16846 SDValue Bitcast
= DCI
.DAG
.getBitcast(MVT::v2i64
, Op0
.getOperand(0));
16847 return DCI
.DAG
.getNode(
16848 ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
, Bitcast
,
16849 DCI
.DAG
.getTargetConstant(EltToExtract
, dl
, MVT::i32
));
16854 SDValue
PPCTargetLowering::combineMUL(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
16855 SelectionDAG
&DAG
= DCI
.DAG
;
16857 ConstantSDNode
*ConstOpOrElement
= isConstOrConstSplat(N
->getOperand(1));
16858 if (!ConstOpOrElement
)
16861 // An imul is usually smaller than the alternative sequence for legal type.
16862 if (DAG
.getMachineFunction().getFunction().hasMinSize() &&
16863 isOperationLegal(ISD::MUL
, N
->getValueType(0)))
16866 auto IsProfitable
= [this](bool IsNeg
, bool IsAddOne
, EVT VT
) -> bool {
16867 switch (this->Subtarget
.getCPUDirective()) {
16869 // TODO: enhance the condition for subtarget before pwr8
16871 case PPC::DIR_PWR8
:
16872 // type mul add shl
16876 case PPC::DIR_PWR9
:
16877 case PPC::DIR_PWR10
:
16878 case PPC::DIR_PWR_FUTURE
:
16879 // type mul add shl
16883 // The cycle RATIO of related operations are showed as a table above.
16884 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16885 // scalar and vector type. For 2 instrs patterns, add/sub + shl
16886 // are 4, it is always profitable; but for 3 instrs patterns
16887 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16888 // So we should only do it for vector type.
16889 return IsAddOne
&& IsNeg
? VT
.isVector() : true;
16893 EVT VT
= N
->getValueType(0);
16896 const APInt
&MulAmt
= ConstOpOrElement
->getAPIntValue();
16897 bool IsNeg
= MulAmt
.isNegative();
16898 APInt MulAmtAbs
= MulAmt
.abs();
16900 if ((MulAmtAbs
- 1).isPowerOf2()) {
16901 // (mul x, 2^N + 1) => (add (shl x, N), x)
16902 // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16904 if (!IsProfitable(IsNeg
, true, VT
))
16907 SDValue Op0
= N
->getOperand(0);
16909 DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
16910 DAG
.getConstant((MulAmtAbs
- 1).logBase2(), DL
, VT
));
16911 SDValue Res
= DAG
.getNode(ISD::ADD
, DL
, VT
, Op0
, Op1
);
16916 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Res
);
16917 } else if ((MulAmtAbs
+ 1).isPowerOf2()) {
16918 // (mul x, 2^N - 1) => (sub (shl x, N), x)
16919 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16921 if (!IsProfitable(IsNeg
, false, VT
))
16924 SDValue Op0
= N
->getOperand(0);
16926 DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
16927 DAG
.getConstant((MulAmtAbs
+ 1).logBase2(), DL
, VT
));
16930 return DAG
.getNode(ISD::SUB
, DL
, VT
, Op1
, Op0
);
16932 return DAG
.getNode(ISD::SUB
, DL
, VT
, Op0
, Op1
);
16939 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16940 // in combiner since we need to check SD flags and other subtarget features.
16941 SDValue
PPCTargetLowering::combineFMALike(SDNode
*N
,
16942 DAGCombinerInfo
&DCI
) const {
16943 SDValue N0
= N
->getOperand(0);
16944 SDValue N1
= N
->getOperand(1);
16945 SDValue N2
= N
->getOperand(2);
16946 SDNodeFlags Flags
= N
->getFlags();
16947 EVT VT
= N
->getValueType(0);
16948 SelectionDAG
&DAG
= DCI
.DAG
;
16949 const TargetOptions
&Options
= getTargetMachine().Options
;
16950 unsigned Opc
= N
->getOpcode();
16951 bool CodeSize
= DAG
.getMachineFunction().getFunction().hasOptSize();
16952 bool LegalOps
= !DCI
.isBeforeLegalizeOps();
16955 if (!isOperationLegal(ISD::FMA
, VT
))
16958 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16959 // since (fnmsub a b c)=-0 while c-ab=+0.
16960 if (!Flags
.hasNoSignedZeros() && !Options
.NoSignedZerosFPMath
)
16963 // (fma (fneg a) b c) => (fnmsub a b c)
16964 // (fnmsub (fneg a) b c) => (fma a b c)
16965 if (SDValue NegN0
= getCheaperNegatedExpression(N0
, DAG
, LegalOps
, CodeSize
))
16966 return DAG
.getNode(invertFMAOpcode(Opc
), Loc
, VT
, NegN0
, N1
, N2
, Flags
);
16968 // (fma a (fneg b) c) => (fnmsub a b c)
16969 // (fnmsub a (fneg b) c) => (fma a b c)
16970 if (SDValue NegN1
= getCheaperNegatedExpression(N1
, DAG
, LegalOps
, CodeSize
))
16971 return DAG
.getNode(invertFMAOpcode(Opc
), Loc
, VT
, N0
, NegN1
, N2
, Flags
);
16976 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
16977 // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16978 if (!Subtarget
.is64BitELFABI())
16981 // If not a tail call then no need to proceed.
16982 if (!CI
->isTailCall())
16985 // If sibling calls have been disabled and tail-calls aren't guaranteed
16986 // there is no reason to duplicate.
16987 auto &TM
= getTargetMachine();
16988 if (!TM
.Options
.GuaranteedTailCallOpt
&& DisableSCO
)
16991 // Can't tail call a function called indirectly, or if it has variadic args.
16992 const Function
*Callee
= CI
->getCalledFunction();
16993 if (!Callee
|| Callee
->isVarArg())
16996 // Make sure the callee and caller calling conventions are eligible for tco.
16997 const Function
*Caller
= CI
->getParent()->getParent();
16998 if (!areCallingConvEligibleForTCO_64SVR4(Caller
->getCallingConv(),
16999 CI
->getCallingConv()))
17002 // If the function is local then we have a good chance at tail-calling it
17003 return getTargetMachine().shouldAssumeDSOLocal(*Caller
->getParent(), Callee
);
17006 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT
) const {
17007 if (!Subtarget
.hasVSX())
17009 if (Subtarget
.hasP9Vector() && VT
== MVT::f128
)
17011 return VT
== MVT::f32
|| VT
== MVT::f64
||
17012 VT
== MVT::v4f32
|| VT
== MVT::v2f64
;
17015 bool PPCTargetLowering::
17016 isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const {
17017 const Value
*Mask
= AndI
.getOperand(1);
17018 // If the mask is suitable for andi. or andis. we should sink the and.
17019 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Mask
)) {
17020 // Can't handle constants wider than 64-bits.
17021 if (CI
->getBitWidth() > 64)
17023 int64_t ConstVal
= CI
->getZExtValue();
17024 return isUInt
<16>(ConstVal
) ||
17025 (isUInt
<16>(ConstVal
>> 16) && !(ConstVal
& 0xFFFF));
17028 // For non-constant masks, we can always use the record-form and.
17032 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17033 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17034 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17035 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17036 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17037 SDValue
PPCTargetLowering::combineABS(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
17038 assert((N
->getOpcode() == ISD::ABS
) && "Need ABS node here");
17039 assert(Subtarget
.hasP9Altivec() &&
17040 "Only combine this when P9 altivec supported!");
17041 EVT VT
= N
->getValueType(0);
17042 if (VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
)
17045 SelectionDAG
&DAG
= DCI
.DAG
;
17047 if (N
->getOperand(0).getOpcode() == ISD::SUB
) {
17048 // Even for signed integers, if it's known to be positive (as signed
17049 // integer) due to zero-extended inputs.
17050 unsigned SubOpcd0
= N
->getOperand(0)->getOperand(0).getOpcode();
17051 unsigned SubOpcd1
= N
->getOperand(0)->getOperand(1).getOpcode();
17052 if ((SubOpcd0
== ISD::ZERO_EXTEND
||
17053 SubOpcd0
== ISD::ZERO_EXTEND_VECTOR_INREG
) &&
17054 (SubOpcd1
== ISD::ZERO_EXTEND
||
17055 SubOpcd1
== ISD::ZERO_EXTEND_VECTOR_INREG
)) {
17056 return DAG
.getNode(PPCISD::VABSD
, dl
, N
->getOperand(0).getValueType(),
17057 N
->getOperand(0)->getOperand(0),
17058 N
->getOperand(0)->getOperand(1),
17059 DAG
.getTargetConstant(0, dl
, MVT::i32
));
17062 // For type v4i32, it can be optimized with xvnegsp + vabsduw
17063 if (N
->getOperand(0).getValueType() == MVT::v4i32
&&
17064 N
->getOperand(0).hasOneUse()) {
17065 return DAG
.getNode(PPCISD::VABSD
, dl
, N
->getOperand(0).getValueType(),
17066 N
->getOperand(0)->getOperand(0),
17067 N
->getOperand(0)->getOperand(1),
17068 DAG
.getTargetConstant(1, dl
, MVT::i32
));
17075 // For type v4i32/v8ii16/v16i8, transform
17076 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17077 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17078 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17079 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17080 SDValue
PPCTargetLowering::combineVSelect(SDNode
*N
,
17081 DAGCombinerInfo
&DCI
) const {
17082 assert((N
->getOpcode() == ISD::VSELECT
) && "Need VSELECT node here");
17083 assert(Subtarget
.hasP9Altivec() &&
17084 "Only combine this when P9 altivec supported!");
17086 SelectionDAG
&DAG
= DCI
.DAG
;
17088 SDValue Cond
= N
->getOperand(0);
17089 SDValue TrueOpnd
= N
->getOperand(1);
17090 SDValue FalseOpnd
= N
->getOperand(2);
17091 EVT VT
= N
->getOperand(1).getValueType();
17093 if (Cond
.getOpcode() != ISD::SETCC
|| TrueOpnd
.getOpcode() != ISD::SUB
||
17094 FalseOpnd
.getOpcode() != ISD::SUB
)
17097 // ABSD only available for type v4i32/v8i16/v16i8
17098 if (VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
)
17101 // At least to save one more dependent computation
17102 if (!(Cond
.hasOneUse() || TrueOpnd
.hasOneUse() || FalseOpnd
.hasOneUse()))
17105 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
17107 // Can only handle unsigned comparison here
17116 std::swap(TrueOpnd
, FalseOpnd
);
17120 SDValue CmpOpnd1
= Cond
.getOperand(0);
17121 SDValue CmpOpnd2
= Cond
.getOperand(1);
17123 // SETCC CmpOpnd1 CmpOpnd2 cond
17124 // TrueOpnd = CmpOpnd1 - CmpOpnd2
17125 // FalseOpnd = CmpOpnd2 - CmpOpnd1
17126 if (TrueOpnd
.getOperand(0) == CmpOpnd1
&&
17127 TrueOpnd
.getOperand(1) == CmpOpnd2
&&
17128 FalseOpnd
.getOperand(0) == CmpOpnd2
&&
17129 FalseOpnd
.getOperand(1) == CmpOpnd1
) {
17130 return DAG
.getNode(PPCISD::VABSD
, dl
, N
->getOperand(1).getValueType(),
17131 CmpOpnd1
, CmpOpnd2
,
17132 DAG
.getTargetConstant(0, dl
, MVT::i32
));
17138 /// getAddrModeForFlags - Based on the set of address flags, select the most
17139 /// optimal instruction format to match by.
17140 PPC::AddrMode
PPCTargetLowering::getAddrModeForFlags(unsigned Flags
) const {
17141 // This is not a node we should be handling here.
17142 if (Flags
== PPC::MOF_None
)
17143 return PPC::AM_None
;
17144 // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17145 for (auto FlagSet
: AddrModesMap
.at(PPC::AM_DForm
))
17146 if ((Flags
& FlagSet
) == FlagSet
)
17147 return PPC::AM_DForm
;
17148 for (auto FlagSet
: AddrModesMap
.at(PPC::AM_DSForm
))
17149 if ((Flags
& FlagSet
) == FlagSet
)
17150 return PPC::AM_DSForm
;
17151 for (auto FlagSet
: AddrModesMap
.at(PPC::AM_DQForm
))
17152 if ((Flags
& FlagSet
) == FlagSet
)
17153 return PPC::AM_DQForm
;
17154 // If no other forms are selected, return an X-Form as it is the most
17155 // general addressing mode.
17156 return PPC::AM_XForm
;
17159 /// Set alignment flags based on whether or not the Frame Index is aligned.
17160 /// Utilized when computing flags for address computation when selecting
17161 /// load and store instructions.
17162 static void setAlignFlagsForFI(SDValue N
, unsigned &FlagSet
,
17163 SelectionDAG
&DAG
) {
17164 bool IsAdd
= ((N
.getOpcode() == ISD::ADD
) || (N
.getOpcode() == ISD::OR
));
17165 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(IsAdd
? N
.getOperand(0) : N
);
17168 const MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
17169 unsigned FrameIndexAlign
= MFI
.getObjectAlign(FI
->getIndex()).value();
17170 // If this is (add $FI, $S16Imm), the alignment flags are already set
17171 // based on the immediate. We just need to clear the alignment flags
17172 // if the FI alignment is weaker.
17173 if ((FrameIndexAlign
% 4) != 0)
17174 FlagSet
&= ~PPC::MOF_RPlusSImm16Mult4
;
17175 if ((FrameIndexAlign
% 16) != 0)
17176 FlagSet
&= ~PPC::MOF_RPlusSImm16Mult16
;
17177 // If the address is a plain FrameIndex, set alignment flags based on
17180 if ((FrameIndexAlign
% 4) == 0)
17181 FlagSet
|= PPC::MOF_RPlusSImm16Mult4
;
17182 if ((FrameIndexAlign
% 16) == 0)
17183 FlagSet
|= PPC::MOF_RPlusSImm16Mult16
;
17187 /// Given a node, compute flags that are used for address computation when
17188 /// selecting load and store instructions. The flags computed are stored in
17189 /// FlagSet. This function takes into account whether the node is a constant,
17190 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17191 static void computeFlagsForAddressComputation(SDValue N
, unsigned &FlagSet
,
17192 SelectionDAG
&DAG
) {
17193 // Set the alignment flags for the node depending on if the node is
17194 // 4-byte or 16-byte aligned.
17195 auto SetAlignFlagsForImm
= [&](uint64_t Imm
) {
17196 if ((Imm
& 0x3) == 0)
17197 FlagSet
|= PPC::MOF_RPlusSImm16Mult4
;
17198 if ((Imm
& 0xf) == 0)
17199 FlagSet
|= PPC::MOF_RPlusSImm16Mult16
;
17202 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
17203 // All 32-bit constants can be computed as LIS + Disp.
17204 const APInt
&ConstImm
= CN
->getAPIntValue();
17205 if (ConstImm
.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17206 FlagSet
|= PPC::MOF_AddrIsSImm32
;
17207 SetAlignFlagsForImm(ConstImm
.getZExtValue());
17208 setAlignFlagsForFI(N
, FlagSet
, DAG
);
17210 if (ConstImm
.isSignedIntN(34)) // Flag to handle 34-bit constants.
17211 FlagSet
|= PPC::MOF_RPlusSImm34
;
17212 else // Let constant materialization handle large constants.
17213 FlagSet
|= PPC::MOF_NotAddNorCst
;
17214 } else if (N
.getOpcode() == ISD::ADD
|| provablyDisjointOr(DAG
, N
)) {
17215 // This address can be represented as an addition of:
17216 // - Register + Imm16 (possibly a multiple of 4/16)
17217 // - Register + Imm34
17218 // - Register + PPCISD::Lo
17219 // - Register + Register
17220 // In any case, we won't have to match this as Base + Zero.
17221 SDValue RHS
= N
.getOperand(1);
17222 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(RHS
)) {
17223 const APInt
&ConstImm
= CN
->getAPIntValue();
17224 if (ConstImm
.isSignedIntN(16)) {
17225 FlagSet
|= PPC::MOF_RPlusSImm16
; // Signed 16-bit immediates.
17226 SetAlignFlagsForImm(ConstImm
.getZExtValue());
17227 setAlignFlagsForFI(N
, FlagSet
, DAG
);
17229 if (ConstImm
.isSignedIntN(34))
17230 FlagSet
|= PPC::MOF_RPlusSImm34
; // Signed 34-bit immediates.
17232 FlagSet
|= PPC::MOF_RPlusR
; // Register.
17233 } else if (RHS
.getOpcode() == PPCISD::Lo
&&
17234 !cast
<ConstantSDNode
>(RHS
.getOperand(1))->getZExtValue())
17235 FlagSet
|= PPC::MOF_RPlusLo
; // PPCISD::Lo.
17237 FlagSet
|= PPC::MOF_RPlusR
;
17238 } else { // The address computation is not a constant or an addition.
17239 setAlignFlagsForFI(N
, FlagSet
, DAG
);
17240 FlagSet
|= PPC::MOF_NotAddNorCst
;
17244 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17245 /// the address flags of the load/store instruction that is to be matched.
17246 unsigned PPCTargetLowering::computeMOFlags(const SDNode
*Parent
, SDValue N
,
17247 SelectionDAG
&DAG
) const {
17248 unsigned FlagSet
= PPC::MOF_None
;
17250 // Compute subtarget flags.
17251 if (!Subtarget
.hasP9Vector())
17252 FlagSet
|= PPC::MOF_SubtargetBeforeP9
;
17254 FlagSet
|= PPC::MOF_SubtargetP9
;
17255 if (Subtarget
.hasPrefixInstrs())
17256 FlagSet
|= PPC::MOF_SubtargetP10
;
17258 if (Subtarget
.hasSPE())
17259 FlagSet
|= PPC::MOF_SubtargetSPE
;
17261 // Mark this as something we don't want to handle here if it is atomic
17262 // or pre-increment instruction.
17263 if (const LSBaseSDNode
*LSB
= dyn_cast
<LSBaseSDNode
>(Parent
))
17264 if (LSB
->isIndexed())
17265 return PPC::MOF_None
;
17267 // Compute in-memory type flags. This is based on if there are scalars,
17268 // floats or vectors.
17269 const MemSDNode
*MN
= dyn_cast
<MemSDNode
>(Parent
);
17270 assert(MN
&& "Parent should be a MemSDNode!");
17271 EVT MemVT
= MN
->getMemoryVT();
17272 unsigned Size
= MemVT
.getSizeInBits();
17273 if (MemVT
.isScalarInteger()) {
17274 assert(Size
<= 64 && "Not expecting scalar integers larger than 8 bytes!");
17276 FlagSet
|= PPC::MOF_SubWordInt
;
17277 else if (Size
== 32)
17278 FlagSet
|= PPC::MOF_WordInt
;
17280 FlagSet
|= PPC::MOF_DoubleWordInt
;
17281 } else if (MemVT
.isVector() && !MemVT
.isFloatingPoint()) { // Integer vectors.
17283 FlagSet
|= PPC::MOF_Vector
;
17284 else if (Size
== 256)
17285 FlagSet
|= PPC::MOF_Vector256
;
17287 llvm_unreachable("Not expecting illegal vectors!");
17288 } else { // Floating point type: can be scalar, f128 or vector types.
17289 if (Size
== 32 || Size
== 64)
17290 FlagSet
|= PPC::MOF_ScalarFloat
;
17291 else if (MemVT
== MVT::f128
|| MemVT
.isVector())
17292 FlagSet
|= PPC::MOF_Vector
;
17294 llvm_unreachable("Not expecting illegal scalar floats!");
17297 // Compute flags for address computation.
17298 computeFlagsForAddressComputation(N
, FlagSet
, DAG
);
17300 // Compute type extension flags.
17301 if (const LoadSDNode
*LN
= dyn_cast
<LoadSDNode
>(Parent
)) {
17302 switch (LN
->getExtensionType()) {
17303 case ISD::SEXTLOAD
:
17304 FlagSet
|= PPC::MOF_SExt
;
17307 case ISD::ZEXTLOAD
:
17308 FlagSet
|= PPC::MOF_ZExt
;
17310 case ISD::NON_EXTLOAD
:
17311 FlagSet
|= PPC::MOF_NoExt
;
17315 FlagSet
|= PPC::MOF_NoExt
;
17317 // For integers, no extension is the same as zero extension.
17318 // We set the extension mode to zero extension so we don't have
17319 // to add separate entries in AddrModesMap for loads and stores.
17320 if (MemVT
.isScalarInteger() && (FlagSet
& PPC::MOF_NoExt
)) {
17321 FlagSet
|= PPC::MOF_ZExt
;
17322 FlagSet
&= ~PPC::MOF_NoExt
;
17325 // If we don't have prefixed instructions, 34-bit constants should be
17326 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17327 bool IsNonP1034BitConst
=
17328 ((PPC::MOF_RPlusSImm34
| PPC::MOF_AddrIsSImm32
| PPC::MOF_SubtargetP10
) &
17329 FlagSet
) == PPC::MOF_RPlusSImm34
;
17330 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::OR
&&
17331 IsNonP1034BitConst
)
17332 FlagSet
|= PPC::MOF_NotAddNorCst
;
17337 /// SelectForceXFormMode - Given the specified address, force it to be
17338 /// represented as an indexed [r+r] operation (an XForm instruction).
17339 PPC::AddrMode
PPCTargetLowering::SelectForceXFormMode(SDValue N
, SDValue
&Disp
,
17341 SelectionDAG
&DAG
) const {
17343 PPC::AddrMode Mode
= PPC::AM_XForm
;
17344 int16_t ForceXFormImm
= 0;
17345 if (provablyDisjointOr(DAG
, N
) &&
17346 !isIntS16Immediate(N
.getOperand(1), ForceXFormImm
)) {
17347 Disp
= N
.getOperand(0);
17348 Base
= N
.getOperand(1);
17352 // If the address is the result of an add, we will utilize the fact that the
17353 // address calculation includes an implicit add. However, we can reduce
17354 // register pressure if we do not materialize a constant just for use as the
17355 // index register. We only get rid of the add if it is not an add of a
17356 // value and a 16-bit signed constant and both have a single use.
17357 if (N
.getOpcode() == ISD::ADD
&&
17358 (!isIntS16Immediate(N
.getOperand(1), ForceXFormImm
) ||
17359 !N
.getOperand(1).hasOneUse() || !N
.getOperand(0).hasOneUse())) {
17360 Disp
= N
.getOperand(0);
17361 Base
= N
.getOperand(1);
17365 // Otherwise, use R0 as the base register.
17366 Disp
= DAG
.getRegister(Subtarget
.isPPC64() ? PPC::ZERO8
: PPC::ZERO
,
17373 // If we happen to match to an aligned D-Form, check if the Frame Index is
17374 // adequately aligned. If it is not, reset the mode to match to X-Form.
17375 static void setXFormForUnalignedFI(SDValue N
, unsigned Flags
,
17376 PPC::AddrMode
&Mode
) {
17377 if (!isa
<FrameIndexSDNode
>(N
))
17379 if ((Mode
== PPC::AM_DSForm
&& !(Flags
& PPC::MOF_RPlusSImm16Mult4
)) ||
17380 (Mode
== PPC::AM_DQForm
&& !(Flags
& PPC::MOF_RPlusSImm16Mult16
)))
17381 Mode
= PPC::AM_XForm
;
17384 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17385 /// compute the address flags of the node, get the optimal address mode based
17386 /// on the flags, and set the Base and Disp based on the address mode.
17387 PPC::AddrMode
PPCTargetLowering::SelectOptimalAddrMode(const SDNode
*Parent
,
17388 SDValue N
, SDValue
&Disp
,
17391 MaybeAlign Align
) const {
17394 // Compute the address flags.
17395 unsigned Flags
= computeMOFlags(Parent
, N
, DAG
);
17397 // Get the optimal address mode based on the Flags.
17398 PPC::AddrMode Mode
= getAddrModeForFlags(Flags
);
17400 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17401 // Select an X-Form load if it is not.
17402 setXFormForUnalignedFI(N
, Flags
, Mode
);
17404 // Set Base and Disp accordingly depending on the address mode.
17406 case PPC::AM_DForm
:
17407 case PPC::AM_DSForm
:
17408 case PPC::AM_DQForm
: {
17409 // This is a register plus a 16-bit immediate. The base will be the
17410 // register and the displacement will be the immediate unless it
17411 // isn't sufficiently aligned.
17412 if (Flags
& PPC::MOF_RPlusSImm16
) {
17413 SDValue Op0
= N
.getOperand(0);
17414 SDValue Op1
= N
.getOperand(1);
17415 int16_t Imm
= cast
<ConstantSDNode
>(Op1
)->getAPIntValue().getZExtValue();
17416 if (!Align
|| isAligned(*Align
, Imm
)) {
17417 Disp
= DAG
.getTargetConstant(Imm
, DL
, N
.getValueType());
17419 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Op0
)) {
17420 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
17421 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
17426 // This is a register plus the @lo relocation. The base is the register
17427 // and the displacement is the global address.
17428 else if (Flags
& PPC::MOF_RPlusLo
) {
17429 Disp
= N
.getOperand(1).getOperand(0); // The global address.
17430 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
17431 Disp
.getOpcode() == ISD::TargetGlobalTLSAddress
||
17432 Disp
.getOpcode() == ISD::TargetConstantPool
||
17433 Disp
.getOpcode() == ISD::TargetJumpTable
);
17434 Base
= N
.getOperand(0);
17437 // This is a constant address at most 32 bits. The base will be
17438 // zero or load-immediate-shifted and the displacement will be
17439 // the low 16 bits of the address.
17440 else if (Flags
& PPC::MOF_AddrIsSImm32
) {
17441 auto *CN
= cast
<ConstantSDNode
>(N
);
17442 EVT CNType
= CN
->getValueType(0);
17443 uint64_t CNImm
= CN
->getZExtValue();
17444 // If this address fits entirely in a 16-bit sext immediate field, codegen
17447 if (isIntS16Immediate(CN
, Imm
) && (!Align
|| isAligned(*Align
, Imm
))) {
17448 Disp
= DAG
.getTargetConstant(Imm
, DL
, CNType
);
17449 Base
= DAG
.getRegister(Subtarget
.isPPC64() ? PPC::ZERO8
: PPC::ZERO
,
17453 // Handle 32-bit sext immediate with LIS + Addr mode.
17454 if ((CNType
== MVT::i32
|| isInt
<32>(CNImm
)) &&
17455 (!Align
|| isAligned(*Align
, CNImm
))) {
17456 int32_t Addr
= (int32_t)CNImm
;
17457 // Otherwise, break this down into LIS + Disp.
17458 Disp
= DAG
.getTargetConstant((int16_t)Addr
, DL
, MVT::i32
);
17460 DAG
.getTargetConstant((Addr
- (int16_t)Addr
) >> 16, DL
, MVT::i32
);
17461 uint32_t LIS
= CNType
== MVT::i32
? PPC::LIS
: PPC::LIS8
;
17462 Base
= SDValue(DAG
.getMachineNode(LIS
, DL
, CNType
, Base
), 0);
17466 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17467 Disp
= DAG
.getTargetConstant(0, DL
, getPointerTy(DAG
.getDataLayout()));
17468 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
)) {
17469 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
17470 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
17477 default: { // By default, X-Form is always available to be selected.
17478 // When a frame index is not aligned, we also match by XForm.
17479 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
);
17480 Base
= FI
? N
: N
.getOperand(1);
17481 Disp
= FI
? DAG
.getRegister(Subtarget
.isPPC64() ? PPC::ZERO8
: PPC::ZERO
,
17490 CCAssignFn
*PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC
,
17492 bool IsVarArg
) const {
17494 case CallingConv::Cold
:
17495 return (Return
? RetCC_PPC_Cold
: CC_PPC64_ELF_FIS
);
17497 return CC_PPC64_ELF_FIS
;
17501 TargetLowering::AtomicExpansionKind
17502 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
17503 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
17504 if (EnableQuadwordAtomics
&& Subtarget
.hasQuadwordAtomics() && Size
== 128)
17505 return AtomicExpansionKind::MaskedIntrinsic
;
17506 return TargetLowering::shouldExpandAtomicRMWInIR(AI
);
17509 TargetLowering::AtomicExpansionKind
17510 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
17511 unsigned Size
= AI
->getPointerOperand()
17513 ->getPointerElementType()
17514 ->getPrimitiveSizeInBits();
17515 if (EnableQuadwordAtomics
&& Subtarget
.hasQuadwordAtomics() && Size
== 128)
17516 return AtomicExpansionKind::MaskedIntrinsic
;
17517 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI
);
17520 static Intrinsic::ID
17521 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp
) {
17524 llvm_unreachable("Unexpected AtomicRMW BinOp");
17525 case AtomicRMWInst::Xchg
:
17526 return Intrinsic::ppc_atomicrmw_xchg_i128
;
17527 case AtomicRMWInst::Add
:
17528 return Intrinsic::ppc_atomicrmw_add_i128
;
17529 case AtomicRMWInst::Sub
:
17530 return Intrinsic::ppc_atomicrmw_sub_i128
;
17531 case AtomicRMWInst::And
:
17532 return Intrinsic::ppc_atomicrmw_and_i128
;
17533 case AtomicRMWInst::Or
:
17534 return Intrinsic::ppc_atomicrmw_or_i128
;
17535 case AtomicRMWInst::Xor
:
17536 return Intrinsic::ppc_atomicrmw_xor_i128
;
17537 case AtomicRMWInst::Nand
:
17538 return Intrinsic::ppc_atomicrmw_nand_i128
;
17542 Value
*PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
17543 IRBuilderBase
&Builder
, AtomicRMWInst
*AI
, Value
*AlignedAddr
, Value
*Incr
,
17544 Value
*Mask
, Value
*ShiftAmt
, AtomicOrdering Ord
) const {
17545 assert(EnableQuadwordAtomics
&& Subtarget
.hasQuadwordAtomics() &&
17546 "Only support quadword now");
17547 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
17548 Type
*ValTy
= cast
<PointerType
>(AlignedAddr
->getType())->getElementType();
17549 assert(ValTy
->getPrimitiveSizeInBits() == 128);
17550 Function
*RMW
= Intrinsic::getDeclaration(
17551 M
, getIntrinsicForAtomicRMWBinOp128(AI
->getOperation()));
17552 Type
*Int64Ty
= Type::getInt64Ty(M
->getContext());
17553 Value
*IncrLo
= Builder
.CreateTrunc(Incr
, Int64Ty
, "incr_lo");
17555 Builder
.CreateTrunc(Builder
.CreateLShr(Incr
, 64), Int64Ty
, "incr_hi");
17557 Builder
.CreateBitCast(AlignedAddr
, Type::getInt8PtrTy(M
->getContext()));
17558 Value
*LoHi
= Builder
.CreateCall(RMW
, {Addr
, IncrLo
, IncrHi
});
17559 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
17560 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
17561 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
17562 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
17563 return Builder
.CreateOr(
17564 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 64)), "val64");
17567 Value
*PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
17568 IRBuilderBase
&Builder
, AtomicCmpXchgInst
*CI
, Value
*AlignedAddr
,
17569 Value
*CmpVal
, Value
*NewVal
, Value
*Mask
, AtomicOrdering Ord
) const {
17570 assert(EnableQuadwordAtomics
&& Subtarget
.hasQuadwordAtomics() &&
17571 "Only support quadword now");
17572 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
17573 Type
*ValTy
= cast
<PointerType
>(AlignedAddr
->getType())->getElementType();
17574 assert(ValTy
->getPrimitiveSizeInBits() == 128);
17575 Function
*IntCmpXchg
=
17576 Intrinsic::getDeclaration(M
, Intrinsic::ppc_cmpxchg_i128
);
17577 Type
*Int64Ty
= Type::getInt64Ty(M
->getContext());
17578 Value
*CmpLo
= Builder
.CreateTrunc(CmpVal
, Int64Ty
, "cmp_lo");
17580 Builder
.CreateTrunc(Builder
.CreateLShr(CmpVal
, 64), Int64Ty
, "cmp_hi");
17581 Value
*NewLo
= Builder
.CreateTrunc(NewVal
, Int64Ty
, "new_lo");
17583 Builder
.CreateTrunc(Builder
.CreateLShr(NewVal
, 64), Int64Ty
, "new_hi");
17585 Builder
.CreateBitCast(AlignedAddr
, Type::getInt8PtrTy(M
->getContext()));
17586 emitLeadingFence(Builder
, CI
, Ord
);
17588 Builder
.CreateCall(IntCmpXchg
, {Addr
, CmpLo
, CmpHi
, NewLo
, NewHi
});
17589 emitTrailingFence(Builder
, CI
, Ord
);
17590 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
17591 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
17592 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
17593 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
17594 return Builder
.CreateOr(
17595 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 64)), "val64");