1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===---------------------------------------------------------------------===//
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
19 //===---------------------------------------------------------------------===//
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
40 #define DEBUG_TYPE "ppc-mi-peepholes"
42 STATISTIC(RemoveTOCSave
, "Number of TOC saves removed");
43 STATISTIC(MultiTOCSaves
,
44 "Number of functions with multiple TOC saves that must be kept");
45 STATISTIC(NumTOCSavesInPrologue
, "Number of TOC saves placed in the prologue");
46 STATISTIC(NumEliminatedSExt
, "Number of eliminated sign-extensions");
47 STATISTIC(NumEliminatedZExt
, "Number of eliminated zero-extensions");
48 STATISTIC(NumOptADDLIs
, "Number of optimized ADD instruction fed by LI");
49 STATISTIC(NumConvertedToImmediateForm
,
50 "Number of instructions converted to their immediate form");
51 STATISTIC(NumFunctionsEnteredInMIPeephole
,
52 "Number of functions entered in PPC MI Peepholes");
53 STATISTIC(NumFixedPointIterations
,
54 "Number of fixed-point iterations converting reg-reg instructions "
56 STATISTIC(NumRotatesCollapsed
,
57 "Number of pairs of rotate left, clear left/right collapsed");
58 STATISTIC(NumEXTSWAndSLDICombined
,
59 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 STATISTIC(NumLoadImmZeroFoldedAndRemoved
,
61 "Number of LI(8) reg, 0 that are folded to r0 and removed");
64 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden
, cl::init(true),
65 cl::desc("Iterate to a fixed point when attempting to "
66 "convert reg-reg instructions to reg-imm"));
69 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden
, cl::init(true),
70 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
73 EnableSExtElimination("ppc-eliminate-signext",
74 cl::desc("enable elimination of sign-extensions"),
75 cl::init(false), cl::Hidden
);
78 EnableZExtElimination("ppc-eliminate-zeroext",
79 cl::desc("enable elimination of zero-extensions"),
80 cl::init(false), cl::Hidden
);
84 struct PPCMIPeephole
: public MachineFunctionPass
{
87 const PPCInstrInfo
*TII
;
89 MachineRegisterInfo
*MRI
;
91 PPCMIPeephole() : MachineFunctionPass(ID
) {
92 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
96 MachineDominatorTree
*MDT
;
97 MachinePostDominatorTree
*MPDT
;
98 MachineBlockFrequencyInfo
*MBFI
;
101 // Initialize class variables.
102 void initialize(MachineFunction
&MFParm
);
104 // Perform peepholes.
105 bool simplifyCode(void);
107 // Perform peepholes.
108 bool eliminateRedundantCompare(void);
109 bool eliminateRedundantTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
);
110 bool combineSEXTAndSHL(MachineInstr
&MI
, MachineInstr
*&ToErase
);
111 bool emitRLDICWhenLoweringJumpTables(MachineInstr
&MI
);
112 void UpdateTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
,
117 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
118 AU
.addRequired
<MachineDominatorTree
>();
119 AU
.addRequired
<MachinePostDominatorTree
>();
120 AU
.addRequired
<MachineBlockFrequencyInfo
>();
121 AU
.addPreserved
<MachineDominatorTree
>();
122 AU
.addPreserved
<MachinePostDominatorTree
>();
123 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
124 MachineFunctionPass::getAnalysisUsage(AU
);
127 // Main entry point for this pass.
128 bool runOnMachineFunction(MachineFunction
&MF
) override
{
130 // At this point, TOC pointer should not be used in a function that uses
131 // PC-Relative addressing.
132 assert((MF
.getRegInfo().use_empty(PPC::X2
) ||
133 !MF
.getSubtarget
<PPCSubtarget
>().isUsingPCRelativeCalls()) &&
134 "TOC pointer used in a function using PC-Relative addressing!");
135 if (skipFunction(MF
.getFunction()))
137 return simplifyCode();
141 // Initialize class variables.
142 void PPCMIPeephole::initialize(MachineFunction
&MFParm
) {
144 MRI
= &MF
->getRegInfo();
145 MDT
= &getAnalysis
<MachineDominatorTree
>();
146 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
147 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
148 EntryFreq
= MBFI
->getEntryFreq();
149 TII
= MF
->getSubtarget
<PPCSubtarget
>().getInstrInfo();
150 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
151 LLVM_DEBUG(MF
->dump());
154 static MachineInstr
*getVRegDefOrNull(MachineOperand
*Op
,
155 MachineRegisterInfo
*MRI
) {
156 assert(Op
&& "Invalid Operand!");
160 Register Reg
= Op
->getReg();
161 if (!Register::isVirtualRegister(Reg
))
164 return MRI
->getVRegDef(Reg
);
167 // This function returns number of known zero bits in output of MI
168 // starting from the most significant bit.
170 getKnownLeadingZeroCount(MachineInstr
*MI
, const PPCInstrInfo
*TII
) {
171 unsigned Opcode
= MI
->getOpcode();
172 if (Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICL_rec
||
173 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCL_rec
)
174 return MI
->getOperand(3).getImm();
176 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDIC_rec
) &&
177 MI
->getOperand(3).getImm() <= 63 - MI
->getOperand(2).getImm())
178 return MI
->getOperand(3).getImm();
180 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINM_rec
||
181 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNM_rec
||
182 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
183 MI
->getOperand(3).getImm() <= MI
->getOperand(4).getImm())
184 return 32 + MI
->getOperand(3).getImm();
186 if (Opcode
== PPC::ANDI_rec
) {
187 uint16_t Imm
= MI
->getOperand(2).getImm();
188 return 48 + countLeadingZeros(Imm
);
191 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZW_rec
||
192 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZW_rec
||
193 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
)
194 // The result ranges from 0 to 32.
197 if (Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZD_rec
||
198 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZD_rec
)
199 // The result ranges from 0 to 64.
202 if (Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
203 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
204 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
205 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
)
208 if (Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
209 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
210 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
211 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
)
214 if (TII
->isZeroExtended(*MI
))
220 // This function maintains a map for the pairs <TOC Save Instr, Keep>
221 // Each time a new TOC save is encountered, it checks if any of the existing
222 // ones are dominated by the new one. If so, it marks the existing one as
223 // redundant by setting it's entry in the map as false. It then adds the new
224 // instruction to the map with either true or false depending on if any
225 // existing instructions dominated the new one.
226 void PPCMIPeephole::UpdateTOCSaves(
227 std::map
<MachineInstr
*, bool> &TOCSaves
, MachineInstr
*MI
) {
228 assert(TII
->isTOCSaveMI(*MI
) && "Expecting a TOC save instruction here");
229 // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
230 // here only support it under ELFv2.
231 if (MF
->getSubtarget
<PPCSubtarget
>().isELFv2ABI()) {
232 PPCFunctionInfo
*FI
= MF
->getInfo
<PPCFunctionInfo
>();
234 MachineBasicBlock
*Entry
= &MF
->front();
235 uint64_t CurrBlockFreq
= MBFI
->getBlockFreq(MI
->getParent()).getFrequency();
237 // If the block in which the TOC save resides is in a block that
238 // post-dominates Entry, or a block that is hotter than entry (keep in mind
239 // that early MachineLICM has already run so the TOC save won't be hoisted)
240 // we can just do the save in the prologue.
241 if (CurrBlockFreq
> EntryFreq
|| MPDT
->dominates(MI
->getParent(), Entry
))
242 FI
->setMustSaveTOC(true);
244 // If we are saving the TOC in the prologue, all the TOC saves can be
245 // removed from the code.
246 if (FI
->mustSaveTOC()) {
247 for (auto &TOCSave
: TOCSaves
)
248 TOCSave
.second
= false;
249 // Add new instruction to map.
250 TOCSaves
[MI
] = false;
256 for (auto It
= TOCSaves
.begin(); It
!= TOCSaves
.end(); It
++ ) {
257 MachineInstr
*CurrInst
= It
->first
;
258 // If new instruction dominates an existing one, mark existing one as
260 if (It
->second
&& MDT
->dominates(MI
, CurrInst
))
262 // Check if the new instruction is redundant.
263 if (MDT
->dominates(CurrInst
, MI
)) {
268 // Add new instruction to map.
272 // This function returns a list of all PHI nodes in the tree starting from
273 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
274 // The list initially only contains the root PHI. When we visit a PHI node, we
275 // add it to the list. We continue to look for other PHI node operands while
276 // there are nodes to visit in the list. The function returns false if the
277 // optimization cannot be applied on this tree.
278 static bool collectUnprimedAccPHIs(MachineRegisterInfo
*MRI
,
279 MachineInstr
*RootPHI
,
280 SmallVectorImpl
<MachineInstr
*> &PHIs
) {
281 PHIs
.push_back(RootPHI
);
282 unsigned VisitedIndex
= 0;
283 while (VisitedIndex
< PHIs
.size()) {
284 MachineInstr
*VisitedPHI
= PHIs
[VisitedIndex
];
285 for (unsigned PHIOp
= 1, NumOps
= VisitedPHI
->getNumOperands();
286 PHIOp
!= NumOps
; PHIOp
+= 2) {
287 Register RegOp
= VisitedPHI
->getOperand(PHIOp
).getReg();
288 if (!Register::isVirtualRegister(RegOp
))
290 MachineInstr
*Instr
= MRI
->getVRegDef(RegOp
);
291 // While collecting the PHI nodes, we check if they can be converted (i.e.
292 // all the operands are either copies, implicit defs or PHI nodes).
293 unsigned Opcode
= Instr
->getOpcode();
294 if (Opcode
== PPC::COPY
) {
295 Register Reg
= Instr
->getOperand(1).getReg();
296 if (!Register::isVirtualRegister(Reg
) ||
297 MRI
->getRegClass(Reg
) != &PPC::ACCRCRegClass
)
299 } else if (Opcode
!= PPC::IMPLICIT_DEF
&& Opcode
!= PPC::PHI
)
301 // If we detect a cycle in the PHI nodes, we exit. It would be
302 // possible to change cycles as well, but that would add a lot
303 // of complexity for a case that is unlikely to occur with MMA
305 if (Opcode
!= PPC::PHI
)
307 if (llvm::is_contained(PHIs
, Instr
))
309 PHIs
.push_back(Instr
);
316 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
317 // primed accumulator PHI nodes. The list is traversed in reverse order to
318 // change all the PHI operands of a PHI node before changing the node itself.
319 // We keep a map to associate each changed PHI node to its non-changed form.
320 static void convertUnprimedAccPHIs(const PPCInstrInfo
*TII
,
321 MachineRegisterInfo
*MRI
,
322 SmallVectorImpl
<MachineInstr
*> &PHIs
,
324 DenseMap
<MachineInstr
*, MachineInstr
*> ChangedPHIMap
;
325 for (auto It
= PHIs
.rbegin(), End
= PHIs
.rend(); It
!= End
; ++It
) {
326 MachineInstr
*PHI
= *It
;
327 SmallVector
<std::pair
<MachineOperand
, MachineOperand
>, 4> PHIOps
;
328 // We check if the current PHI node can be changed by looking at its
329 // operands. If all the operands are either copies from primed
330 // accumulators, implicit definitions or other unprimed accumulator
331 // PHI nodes, we change it.
332 for (unsigned PHIOp
= 1, NumOps
= PHI
->getNumOperands(); PHIOp
!= NumOps
;
334 Register RegOp
= PHI
->getOperand(PHIOp
).getReg();
335 MachineInstr
*PHIInput
= MRI
->getVRegDef(RegOp
);
336 unsigned Opcode
= PHIInput
->getOpcode();
337 assert((Opcode
== PPC::COPY
|| Opcode
== PPC::IMPLICIT_DEF
||
338 Opcode
== PPC::PHI
) &&
339 "Unexpected instruction");
340 if (Opcode
== PPC::COPY
) {
341 assert(MRI
->getRegClass(PHIInput
->getOperand(1).getReg()) ==
342 &PPC::ACCRCRegClass
&&
343 "Unexpected register class");
344 PHIOps
.push_back({PHIInput
->getOperand(1), PHI
->getOperand(PHIOp
+ 1)});
345 } else if (Opcode
== PPC::IMPLICIT_DEF
) {
346 Register AccReg
= MRI
->createVirtualRegister(&PPC::ACCRCRegClass
);
347 BuildMI(*PHIInput
->getParent(), PHIInput
, PHIInput
->getDebugLoc(),
348 TII
->get(PPC::IMPLICIT_DEF
), AccReg
);
349 PHIOps
.push_back({MachineOperand::CreateReg(AccReg
, false),
350 PHI
->getOperand(PHIOp
+ 1)});
351 } else if (Opcode
== PPC::PHI
) {
352 // We found a PHI operand. At this point we know this operand
353 // has already been changed so we get its associated changed form
355 assert(ChangedPHIMap
.count(PHIInput
) == 1 &&
356 "This PHI node should have already been changed.");
357 MachineInstr
*PrimedAccPHI
= ChangedPHIMap
.lookup(PHIInput
);
358 PHIOps
.push_back({MachineOperand::CreateReg(
359 PrimedAccPHI
->getOperand(0).getReg(), false),
360 PHI
->getOperand(PHIOp
+ 1)});
363 Register AccReg
= Dst
;
364 // If the PHI node we are changing is the root node, the register it defines
365 // will be the destination register of the original copy (of the PHI def).
366 // For all other PHI's in the list, we need to create another primed
367 // accumulator virtual register as the PHI will no longer define the
368 // unprimed accumulator.
370 AccReg
= MRI
->createVirtualRegister(&PPC::ACCRCRegClass
);
371 MachineInstrBuilder NewPHI
= BuildMI(
372 *PHI
->getParent(), PHI
, PHI
->getDebugLoc(), TII
->get(PPC::PHI
), AccReg
);
373 for (auto RegMBB
: PHIOps
)
374 NewPHI
.add(RegMBB
.first
).add(RegMBB
.second
);
375 ChangedPHIMap
[PHI
] = NewPHI
.getInstr();
379 // Perform peephole optimizations.
380 bool PPCMIPeephole::simplifyCode(void) {
381 bool Simplified
= false;
382 MachineInstr
* ToErase
= nullptr;
383 std::map
<MachineInstr
*, bool> TOCSaves
;
384 const TargetRegisterInfo
*TRI
= &TII
->getRegisterInfo();
385 NumFunctionsEnteredInMIPeephole
++;
387 // Fixed-point conversion of reg/reg instructions fed by load-immediate
388 // into reg/imm instructions. FIXME: This is expensive, control it with
390 bool SomethingChanged
= false;
392 NumFixedPointIterations
++;
393 SomethingChanged
= false;
394 for (MachineBasicBlock
&MBB
: *MF
) {
395 for (MachineInstr
&MI
: MBB
) {
396 if (MI
.isDebugInstr())
399 if (TII
->convertToImmediateForm(MI
)) {
400 // We don't erase anything in case the def has other uses. Let DCE
401 // remove it if it can be removed.
402 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
403 LLVM_DEBUG(MI
.dump());
404 NumConvertedToImmediateForm
++;
405 SomethingChanged
= true;
411 } while (SomethingChanged
&& FixedPointRegToImm
);
414 for (MachineBasicBlock
&MBB
: *MF
) {
415 for (MachineInstr
&MI
: MBB
) {
417 // If the previous instruction was marked for elimination,
420 ToErase
->eraseFromParent();
424 // Ignore debug instructions.
425 if (MI
.isDebugInstr())
428 // Per-opcode peepholes.
429 switch (MI
.getOpcode()) {
434 Register Src
= MI
.getOperand(1).getReg();
435 Register Dst
= MI
.getOperand(0).getReg();
436 if (!Register::isVirtualRegister(Src
) ||
437 !Register::isVirtualRegister(Dst
))
439 if (MRI
->getRegClass(Src
) != &PPC::UACCRCRegClass
||
440 MRI
->getRegClass(Dst
) != &PPC::ACCRCRegClass
)
443 // We are copying an unprimed accumulator to a primed accumulator.
444 // If the input to the copy is a PHI that is fed only by (i) copies in
445 // the other direction (ii) implicitly defined unprimed accumulators or
446 // (iii) other PHI nodes satisfying (i) and (ii), we can change
447 // the PHI to a PHI on primed accumulators (as long as we also change
448 // its operands). To detect and change such copies, we first get a list
449 // of all the PHI nodes starting from the root PHI node in BFS order.
450 // We then visit all these PHI nodes to check if they can be changed to
451 // primed accumulator PHI nodes and if so, we change them.
452 MachineInstr
*RootPHI
= MRI
->getVRegDef(Src
);
453 if (RootPHI
->getOpcode() != PPC::PHI
)
456 SmallVector
<MachineInstr
*, 4> PHIs
;
457 if (!collectUnprimedAccPHIs(MRI
, RootPHI
, PHIs
))
460 convertUnprimedAccPHIs(TII
, MRI
, PHIs
, Dst
);
467 // If we are materializing a zero, look for any use operands for which
468 // zero means immediate zero. All such operands can be replaced with
470 if (!MI
.getOperand(1).isImm() || MI
.getOperand(1).getImm() != 0)
472 unsigned MIDestReg
= MI
.getOperand(0).getReg();
473 for (MachineInstr
& UseMI
: MRI
->use_instructions(MIDestReg
))
474 Simplified
|= TII
->onlyFoldImmediate(UseMI
, MI
, MIDestReg
);
475 if (MRI
->use_nodbg_empty(MIDestReg
)) {
476 ++NumLoadImmZeroFoldedAndRemoved
;
483 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
484 if (MFI
.hasVarSizedObjects() ||
485 (!MF
->getSubtarget
<PPCSubtarget
>().isELFv2ABI() &&
486 !MF
->getSubtarget
<PPCSubtarget
>().isAIXABI()))
488 // When encountering a TOC save instruction, call UpdateTOCSaves
489 // to add it to the TOCSaves map and mark any existing TOC saves
490 // it dominates as redundant.
491 if (TII
->isTOCSaveMI(MI
))
492 UpdateTOCSaves(TOCSaves
, &MI
);
495 case PPC::XXPERMDI
: {
496 // Perform simplifications of 2x64 vector swaps and splats.
497 // A swap is identified by an immediate value of 2, and a splat
498 // is identified by an immediate value of 0 or 3.
499 int Immed
= MI
.getOperand(3).getImm();
504 // For each of these simplifications, we need the two source
505 // regs to match. Unfortunately, MachineCSE ignores COPY and
506 // SUBREG_TO_REG, so for example we can see
507 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
508 // We have to look through chains of COPY and SUBREG_TO_REG
509 // to find the real source values for comparison.
511 TRI
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
513 TRI
->lookThruCopyLike(MI
.getOperand(2).getReg(), MRI
);
515 if (!(TrueReg1
== TrueReg2
&& Register::isVirtualRegister(TrueReg1
)))
518 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg1
);
523 unsigned DefOpc
= DefMI
->getOpcode();
525 // If this is a splat fed by a splatting load, the splat is
526 // redundant. Replace with a copy. This doesn't happen directly due
527 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
528 // a load of a double to a vector of 64-bit integers.
529 auto isConversionOfLoadAndSplat
= [=]() -> bool {
530 if (DefOpc
!= PPC::XVCVDPSXDS
&& DefOpc
!= PPC::XVCVDPUXDS
)
533 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
534 if (Register::isVirtualRegister(FeedReg1
)) {
535 MachineInstr
*LoadMI
= MRI
->getVRegDef(FeedReg1
);
536 if (LoadMI
&& LoadMI
->getOpcode() == PPC::LXVDSX
)
541 if ((Immed
== 0 || Immed
== 3) &&
542 (DefOpc
== PPC::LXVDSX
|| isConversionOfLoadAndSplat())) {
543 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
544 "to load-and-splat/copy: ");
545 LLVM_DEBUG(MI
.dump());
546 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
547 MI
.getOperand(0).getReg())
548 .add(MI
.getOperand(1));
553 // If this is a splat or a swap fed by another splat, we
554 // can replace it with a copy.
555 if (DefOpc
== PPC::XXPERMDI
) {
556 unsigned DefReg1
= DefMI
->getOperand(1).getReg();
557 unsigned DefReg2
= DefMI
->getOperand(2).getReg();
558 unsigned DefImmed
= DefMI
->getOperand(3).getImm();
560 // If the two inputs are not the same register, check to see if
561 // they originate from the same virtual register after only
562 // copy-like instructions.
563 if (DefReg1
!= DefReg2
) {
564 unsigned FeedReg1
= TRI
->lookThruCopyLike(DefReg1
, MRI
);
565 unsigned FeedReg2
= TRI
->lookThruCopyLike(DefReg2
, MRI
);
567 if (!(FeedReg1
== FeedReg2
&&
568 Register::isVirtualRegister(FeedReg1
)))
572 if (DefImmed
== 0 || DefImmed
== 3) {
573 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
575 LLVM_DEBUG(MI
.dump());
576 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
577 MI
.getOperand(0).getReg())
578 .add(MI
.getOperand(1));
583 // If this is a splat fed by a swap, we can simplify modify
584 // the splat to splat the other value from the swap's input
586 else if ((Immed
== 0 || Immed
== 3) && DefImmed
== 2) {
587 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
588 LLVM_DEBUG(MI
.dump());
589 MI
.getOperand(1).setReg(DefReg1
);
590 MI
.getOperand(2).setReg(DefReg2
);
591 MI
.getOperand(3).setImm(3 - Immed
);
595 // If this is a swap fed by a swap, we can replace it
596 // with a copy from the first swap's input.
597 else if (Immed
== 2 && DefImmed
== 2) {
598 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
599 LLVM_DEBUG(MI
.dump());
600 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
601 MI
.getOperand(0).getReg())
602 .add(DefMI
->getOperand(1));
606 } else if ((Immed
== 0 || Immed
== 3) && DefOpc
== PPC::XXPERMDIs
&&
607 (DefMI
->getOperand(2).getImm() == 0 ||
608 DefMI
->getOperand(2).getImm() == 3)) {
609 // Splat fed by another splat - switch the output of the first
610 // and remove the second.
611 DefMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
614 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
615 LLVM_DEBUG(MI
.dump());
622 unsigned MyOpcode
= MI
.getOpcode();
623 unsigned OpNo
= MyOpcode
== PPC::XXSPLTW
? 1 : 2;
625 TRI
->lookThruCopyLike(MI
.getOperand(OpNo
).getReg(), MRI
);
626 if (!Register::isVirtualRegister(TrueReg
))
628 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
631 unsigned DefOpcode
= DefMI
->getOpcode();
632 auto isConvertOfSplat
= [=]() -> bool {
633 if (DefOpcode
!= PPC::XVCVSPSXWS
&& DefOpcode
!= PPC::XVCVSPUXWS
)
635 Register ConvReg
= DefMI
->getOperand(1).getReg();
636 if (!Register::isVirtualRegister(ConvReg
))
638 MachineInstr
*Splt
= MRI
->getVRegDef(ConvReg
);
639 return Splt
&& (Splt
->getOpcode() == PPC::LXVWSX
||
640 Splt
->getOpcode() == PPC::XXSPLTW
);
642 bool AlreadySplat
= (MyOpcode
== DefOpcode
) ||
643 (MyOpcode
== PPC::VSPLTB
&& DefOpcode
== PPC::VSPLTBs
) ||
644 (MyOpcode
== PPC::VSPLTH
&& DefOpcode
== PPC::VSPLTHs
) ||
645 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::XXSPLTWs
) ||
646 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::LXVWSX
) ||
647 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::MTVSRWS
)||
648 (MyOpcode
== PPC::XXSPLTW
&& isConvertOfSplat());
649 // If the instruction[s] that feed this splat have already splat
650 // the value, this splat is redundant.
652 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
653 LLVM_DEBUG(MI
.dump());
654 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
655 MI
.getOperand(0).getReg())
656 .add(MI
.getOperand(OpNo
));
660 // Splat fed by a shift. Usually when we align value to splat into
661 // vector element zero.
662 if (DefOpcode
== PPC::XXSLDWI
) {
663 Register ShiftRes
= DefMI
->getOperand(0).getReg();
664 Register ShiftOp1
= DefMI
->getOperand(1).getReg();
665 Register ShiftOp2
= DefMI
->getOperand(2).getReg();
666 unsigned ShiftImm
= DefMI
->getOperand(3).getImm();
668 MI
.getOperand(MyOpcode
== PPC::XXSPLTW
? 2 : 1).getImm();
669 if (ShiftOp1
== ShiftOp2
) {
670 unsigned NewElem
= (SplatImm
+ ShiftImm
) & 0x3;
671 if (MRI
->hasOneNonDBGUse(ShiftRes
)) {
672 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
673 LLVM_DEBUG(DefMI
->dump());
677 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
678 << " to " << NewElem
<< " in instruction: ");
679 LLVM_DEBUG(MI
.dump());
680 MI
.getOperand(1).setReg(ShiftOp1
);
681 MI
.getOperand(2).setImm(NewElem
);
686 case PPC::XVCVDPSP
: {
687 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
689 TRI
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
690 if (!Register::isVirtualRegister(TrueReg
))
692 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
694 // This can occur when building a vector of single precision or integer
696 if (DefMI
&& DefMI
->getOpcode() == PPC::XXPERMDI
) {
698 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
700 TRI
->lookThruCopyLike(DefMI
->getOperand(2).getReg(), MRI
);
701 if (!Register::isVirtualRegister(DefsReg1
) ||
702 !Register::isVirtualRegister(DefsReg2
))
704 MachineInstr
*P1
= MRI
->getVRegDef(DefsReg1
);
705 MachineInstr
*P2
= MRI
->getVRegDef(DefsReg2
);
710 // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
711 // and set any uses of that FRSP/XSRSP (in this MI) to the source of
713 auto removeFRSPIfPossible
= [&](MachineInstr
*RoundInstr
) {
714 unsigned Opc
= RoundInstr
->getOpcode();
715 if ((Opc
== PPC::FRSP
|| Opc
== PPC::XSRSP
) &&
716 MRI
->hasOneNonDBGUse(RoundInstr
->getOperand(0).getReg())) {
718 Register ConvReg1
= RoundInstr
->getOperand(1).getReg();
719 Register FRSPDefines
= RoundInstr
->getOperand(0).getReg();
720 MachineInstr
&Use
= *(MRI
->use_instr_nodbg_begin(FRSPDefines
));
721 for (int i
= 0, e
= Use
.getNumOperands(); i
< e
; ++i
)
722 if (Use
.getOperand(i
).isReg() &&
723 Use
.getOperand(i
).getReg() == FRSPDefines
)
724 Use
.getOperand(i
).setReg(ConvReg1
);
725 LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
726 LLVM_DEBUG(RoundInstr
->dump());
727 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
728 LLVM_DEBUG(MI
.dump());
729 LLVM_DEBUG(dbgs() << "Through instruction:\n");
730 LLVM_DEBUG(DefMI
->dump());
731 RoundInstr
->eraseFromParent();
735 // If the input to XVCVDPSP is a vector that was built (even
736 // partially) out of FRSP's, the FRSP(s) can safely be removed
737 // since this instruction performs the same operation.
739 removeFRSPIfPossible(P1
);
740 removeFRSPIfPossible(P2
);
743 removeFRSPIfPossible(P1
);
749 case PPC::EXTSH8_32_64
: {
750 if (!EnableSExtElimination
) break;
751 Register NarrowReg
= MI
.getOperand(1).getReg();
752 if (!Register::isVirtualRegister(NarrowReg
))
755 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
756 // If we've used a zero-extending load that we will sign-extend,
757 // just do a sign-extending load.
758 if (SrcMI
->getOpcode() == PPC::LHZ
||
759 SrcMI
->getOpcode() == PPC::LHZX
) {
760 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
762 auto is64Bit
= [] (unsigned Opcode
) {
763 return Opcode
== PPC::EXTSH8
;
765 auto isXForm
= [] (unsigned Opcode
) {
766 return Opcode
== PPC::LHZX
;
768 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
770 if (isXForm
) return PPC::LHAX8
;
771 else return PPC::LHA8
;
773 if (isXForm
) return PPC::LHAX
;
774 else return PPC::LHA
;
776 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
777 isXForm(SrcMI
->getOpcode()));
778 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
779 LLVM_DEBUG(SrcMI
->dump());
780 LLVM_DEBUG(dbgs() << "and sign-extension\n");
781 LLVM_DEBUG(MI
.dump());
782 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
783 SrcMI
->setDesc(TII
->get(Opc
));
784 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
793 case PPC::EXTSW_32_64
: {
794 if (!EnableSExtElimination
) break;
795 Register NarrowReg
= MI
.getOperand(1).getReg();
796 if (!Register::isVirtualRegister(NarrowReg
))
799 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
800 // If we've used a zero-extending load that we will sign-extend,
801 // just do a sign-extending load.
802 if (SrcMI
->getOpcode() == PPC::LWZ
||
803 SrcMI
->getOpcode() == PPC::LWZX
) {
804 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
806 auto is64Bit
= [] (unsigned Opcode
) {
807 return Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSW_32_64
;
809 auto isXForm
= [] (unsigned Opcode
) {
810 return Opcode
== PPC::LWZX
;
812 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
814 if (isXForm
) return PPC::LWAX
;
815 else return PPC::LWA
;
817 if (isXForm
) return PPC::LWAX_32
;
818 else return PPC::LWA_32
;
820 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
821 isXForm(SrcMI
->getOpcode()));
822 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
823 LLVM_DEBUG(SrcMI
->dump());
824 LLVM_DEBUG(dbgs() << "and sign-extension\n");
825 LLVM_DEBUG(MI
.dump());
826 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
827 SrcMI
->setDesc(TII
->get(Opc
));
828 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
832 } else if (MI
.getOpcode() == PPC::EXTSW_32_64
&&
833 TII
->isSignExtended(*SrcMI
)) {
834 // We can eliminate EXTSW if the input is known to be already
836 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
838 MF
->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass
);
839 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::IMPLICIT_DEF
),
841 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::INSERT_SUBREG
),
842 MI
.getOperand(0).getReg())
845 .addImm(PPC::sub_32
);
853 // We can eliminate RLDICL (e.g. for zero-extension)
854 // if all bits to clear are already zero in the input.
855 // This code assume following code sequence for zero-extension.
856 // %6 = COPY %5:sub_32; (optional)
857 // %8 = IMPLICIT_DEF;
858 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
859 if (!EnableZExtElimination
) break;
861 if (MI
.getOperand(2).getImm() != 0)
864 Register SrcReg
= MI
.getOperand(1).getReg();
865 if (!Register::isVirtualRegister(SrcReg
))
868 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
869 if (!(SrcMI
&& SrcMI
->getOpcode() == PPC::INSERT_SUBREG
&&
870 SrcMI
->getOperand(0).isReg() && SrcMI
->getOperand(1).isReg()))
873 MachineInstr
*ImpDefMI
, *SubRegMI
;
874 ImpDefMI
= MRI
->getVRegDef(SrcMI
->getOperand(1).getReg());
875 SubRegMI
= MRI
->getVRegDef(SrcMI
->getOperand(2).getReg());
876 if (ImpDefMI
->getOpcode() != PPC::IMPLICIT_DEF
) break;
879 if (SubRegMI
->getOpcode() == PPC::COPY
) {
880 Register CopyReg
= SubRegMI
->getOperand(1).getReg();
881 if (Register::isVirtualRegister(CopyReg
))
882 SrcMI
= MRI
->getVRegDef(CopyReg
);
885 unsigned KnownZeroCount
= getKnownLeadingZeroCount(SrcMI
, TII
);
886 if (MI
.getOperand(3).getImm() <= KnownZeroCount
) {
887 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
888 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
889 MI
.getOperand(0).getReg())
898 // TODO: Any instruction that has an immediate form fed only by a PHI
899 // whose operands are all load immediate can be folded away. We currently
900 // do this for ADD instructions, but should expand it to arithmetic and
901 // binary instructions with immediate forms in the future.
904 auto isSingleUsePHI
= [&](MachineOperand
*PhiOp
) {
905 assert(PhiOp
&& "Invalid Operand!");
906 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
908 return DefPhiMI
&& (DefPhiMI
->getOpcode() == PPC::PHI
) &&
909 MRI
->hasOneNonDBGUse(DefPhiMI
->getOperand(0).getReg());
912 auto dominatesAllSingleUseLIs
= [&](MachineOperand
*DominatorOp
,
913 MachineOperand
*PhiOp
) {
914 assert(PhiOp
&& "Invalid Operand!");
915 assert(DominatorOp
&& "Invalid Operand!");
916 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
917 MachineInstr
*DefDomMI
= getVRegDefOrNull(DominatorOp
, MRI
);
919 // Note: the vregs only show up at odd indices position of PHI Node,
920 // the even indices position save the BB info.
921 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
923 getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
925 (LiMI
->getOpcode() != PPC::LI
&& LiMI
->getOpcode() != PPC::LI8
)
926 || !MRI
->hasOneNonDBGUse(LiMI
->getOperand(0).getReg()) ||
927 !MDT
->dominates(DefDomMI
, LiMI
))
934 MachineOperand Op1
= MI
.getOperand(1);
935 MachineOperand Op2
= MI
.getOperand(2);
936 if (isSingleUsePHI(&Op2
) && dominatesAllSingleUseLIs(&Op1
, &Op2
))
938 else if (!isSingleUsePHI(&Op1
) || !dominatesAllSingleUseLIs(&Op2
, &Op1
))
939 break; // We don't have an ADD fed by LI's that can be transformed
941 // Now we know that Op1 is the PHI node and Op2 is the dominator
942 Register DominatorReg
= Op2
.getReg();
944 const TargetRegisterClass
*TRC
= MI
.getOpcode() == PPC::ADD8
945 ? &PPC::G8RC_and_G8RC_NOX0RegClass
946 : &PPC::GPRC_and_GPRC_NOR0RegClass
;
947 MRI
->setRegClass(DominatorReg
, TRC
);
949 // replace LIs with ADDIs
950 MachineInstr
*DefPhiMI
= getVRegDefOrNull(&Op1
, MRI
);
951 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
952 MachineInstr
*LiMI
= getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
953 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
954 LLVM_DEBUG(LiMI
->dump());
956 // There could be repeated registers in the PHI, e.g: %1 =
957 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
958 // already replaced the def instruction, skip.
959 if (LiMI
->getOpcode() == PPC::ADDI
|| LiMI
->getOpcode() == PPC::ADDI8
)
962 assert((LiMI
->getOpcode() == PPC::LI
||
963 LiMI
->getOpcode() == PPC::LI8
) &&
965 auto LiImm
= LiMI
->getOperand(1).getImm(); // save the imm of LI
966 LiMI
->RemoveOperand(1); // remove the imm of LI
967 LiMI
->setDesc(TII
->get(LiMI
->getOpcode() == PPC::LI
? PPC::ADDI
969 MachineInstrBuilder(*LiMI
->getParent()->getParent(), *LiMI
)
970 .addReg(DominatorReg
)
971 .addImm(LiImm
); // restore the imm of LI
972 LLVM_DEBUG(LiMI
->dump());
975 // Replace ADD with COPY
976 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
977 LLVM_DEBUG(MI
.dump());
978 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
979 MI
.getOperand(0).getReg())
987 Simplified
|= emitRLDICWhenLoweringJumpTables(MI
) ||
988 combineSEXTAndSHL(MI
, ToErase
);
992 case PPC::RLWINM_rec
:
994 case PPC::RLWINM8_rec
: {
995 Simplified
= TII
->combineRLWINM(MI
, &ToErase
);
997 ++NumRotatesCollapsed
;
1003 // If the last instruction was marked for elimination,
1006 ToErase
->eraseFromParent();
1011 // Eliminate all the TOC save instructions which are redundant.
1012 Simplified
|= eliminateRedundantTOCSaves(TOCSaves
);
1013 PPCFunctionInfo
*FI
= MF
->getInfo
<PPCFunctionInfo
>();
1014 if (FI
->mustSaveTOC())
1015 NumTOCSavesInPrologue
++;
1017 // We try to eliminate redundant compare instruction.
1018 Simplified
|= eliminateRedundantCompare();
1023 // helper functions for eliminateRedundantCompare
1024 static bool isEqOrNe(MachineInstr
*BI
) {
1025 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
1026 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1027 return (PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
);
1030 static bool isSupportedCmpOp(unsigned opCode
) {
1031 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
1032 opCode
== PPC::CMPLW
|| opCode
== PPC::CMPW
||
1033 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
||
1034 opCode
== PPC::CMPLWI
|| opCode
== PPC::CMPWI
);
1037 static bool is64bitCmpOp(unsigned opCode
) {
1038 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
1039 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
);
1042 static bool isSignedCmpOp(unsigned opCode
) {
1043 return (opCode
== PPC::CMPD
|| opCode
== PPC::CMPW
||
1044 opCode
== PPC::CMPDI
|| opCode
== PPC::CMPWI
);
1047 static unsigned getSignedCmpOpCode(unsigned opCode
) {
1048 if (opCode
== PPC::CMPLD
) return PPC::CMPD
;
1049 if (opCode
== PPC::CMPLW
) return PPC::CMPW
;
1050 if (opCode
== PPC::CMPLDI
) return PPC::CMPDI
;
1051 if (opCode
== PPC::CMPLWI
) return PPC::CMPWI
;
1055 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1056 // (LT x) to (LE x-1)
1057 static unsigned getPredicateToDecImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
1058 uint64_t Imm
= CMPI
->getOperand(2).getImm();
1059 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
1060 if ((!SignedCmp
&& Imm
== 0) || (SignedCmp
&& Imm
== 0x8000))
1063 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
1064 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1065 unsigned PredHint
= PPC::getPredicateHint(Pred
);
1066 if (PredCond
== PPC::PRED_GE
)
1067 return PPC::getPredicate(PPC::PRED_GT
, PredHint
);
1068 if (PredCond
== PPC::PRED_LT
)
1069 return PPC::getPredicate(PPC::PRED_LE
, PredHint
);
1074 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1075 // (LE x) to (LT x+1)
1076 static unsigned getPredicateToIncImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
1077 uint64_t Imm
= CMPI
->getOperand(2).getImm();
1078 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
1079 if ((!SignedCmp
&& Imm
== 0xFFFF) || (SignedCmp
&& Imm
== 0x7FFF))
1082 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
1083 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1084 unsigned PredHint
= PPC::getPredicateHint(Pred
);
1085 if (PredCond
== PPC::PRED_GT
)
1086 return PPC::getPredicate(PPC::PRED_GE
, PredHint
);
1087 if (PredCond
== PPC::PRED_LE
)
1088 return PPC::getPredicate(PPC::PRED_LT
, PredHint
);
1093 // This takes a Phi node and returns a register value for the specified BB.
1094 static unsigned getIncomingRegForBlock(MachineInstr
*Phi
,
1095 MachineBasicBlock
*MBB
) {
1096 for (unsigned I
= 2, E
= Phi
->getNumOperands() + 1; I
!= E
; I
+= 2) {
1097 MachineOperand
&MO
= Phi
->getOperand(I
);
1098 if (MO
.getMBB() == MBB
)
1099 return Phi
->getOperand(I
-1).getReg();
1101 llvm_unreachable("invalid src basic block for this Phi node\n");
1105 // This function tracks the source of the register through register copy.
1106 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1107 // assuming that the control comes from BB1 into BB2.
1108 static unsigned getSrcVReg(unsigned Reg
, MachineBasicBlock
*BB1
,
1109 MachineBasicBlock
*BB2
, MachineRegisterInfo
*MRI
) {
1110 unsigned SrcReg
= Reg
;
1112 unsigned NextReg
= SrcReg
;
1113 MachineInstr
*Inst
= MRI
->getVRegDef(SrcReg
);
1114 if (BB1
&& Inst
->getOpcode() == PPC::PHI
&& Inst
->getParent() == BB2
) {
1115 NextReg
= getIncomingRegForBlock(Inst
, BB1
);
1116 // We track through PHI only once to avoid infinite loop.
1119 else if (Inst
->isFullCopy())
1120 NextReg
= Inst
->getOperand(1).getReg();
1121 if (NextReg
== SrcReg
|| !Register::isVirtualRegister(NextReg
))
1128 static bool eligibleForCompareElimination(MachineBasicBlock
&MBB
,
1129 MachineBasicBlock
*&PredMBB
,
1130 MachineBasicBlock
*&MBBtoMoveCmp
,
1131 MachineRegisterInfo
*MRI
) {
1133 auto isEligibleBB
= [&](MachineBasicBlock
&BB
) {
1134 auto BII
= BB
.getFirstInstrTerminator();
1135 // We optimize BBs ending with a conditional branch.
1136 // We check only for BCC here, not BCCLR, because BCCLR
1137 // will be formed only later in the pipeline.
1138 if (BB
.succ_size() == 2 &&
1139 BII
!= BB
.instr_end() &&
1140 (*BII
).getOpcode() == PPC::BCC
&&
1141 (*BII
).getOperand(1).isReg()) {
1142 // We optimize only if the condition code is used only by one BCC.
1143 Register CndReg
= (*BII
).getOperand(1).getReg();
1144 if (!Register::isVirtualRegister(CndReg
) || !MRI
->hasOneNonDBGUse(CndReg
))
1147 MachineInstr
*CMPI
= MRI
->getVRegDef(CndReg
);
1148 // We assume compare and branch are in the same BB for ease of analysis.
1149 if (CMPI
->getParent() != &BB
)
1152 // We skip this BB if a physical register is used in comparison.
1153 for (MachineOperand
&MO
: CMPI
->operands())
1154 if (MO
.isReg() && !Register::isVirtualRegister(MO
.getReg()))
1162 // If this BB has more than one successor, we can create a new BB and
1163 // move the compare instruction in the new BB.
1164 // So far, we do not move compare instruction to a BB having multiple
1165 // successors to avoid potentially increasing code size.
1166 auto isEligibleForMoveCmp
= [](MachineBasicBlock
&BB
) {
1167 return BB
.succ_size() == 1;
1170 if (!isEligibleBB(MBB
))
1173 unsigned NumPredBBs
= MBB
.pred_size();
1174 if (NumPredBBs
== 1) {
1175 MachineBasicBlock
*TmpMBB
= *MBB
.pred_begin();
1176 if (isEligibleBB(*TmpMBB
)) {
1178 MBBtoMoveCmp
= nullptr;
1182 else if (NumPredBBs
== 2) {
1183 // We check for partially redundant case.
1184 // So far, we support cases with only two predecessors
1185 // to avoid increasing the number of instructions.
1186 MachineBasicBlock::pred_iterator PI
= MBB
.pred_begin();
1187 MachineBasicBlock
*Pred1MBB
= *PI
;
1188 MachineBasicBlock
*Pred2MBB
= *(PI
+1);
1190 if (isEligibleBB(*Pred1MBB
) && isEligibleForMoveCmp(*Pred2MBB
)) {
1191 // We assume Pred1MBB is the BB containing the compare to be merged and
1192 // Pred2MBB is the BB to which we will append a compare instruction.
1193 // Hence we can proceed as is.
1195 else if (isEligibleBB(*Pred2MBB
) && isEligibleForMoveCmp(*Pred1MBB
)) {
1196 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1197 std::swap(Pred1MBB
, Pred2MBB
);
1201 // Here, Pred2MBB is the BB to which we need to append a compare inst.
1202 // We cannot move the compare instruction if operands are not available
1203 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1204 MachineInstr
*BI
= &*MBB
.getFirstInstrTerminator();
1205 MachineInstr
*CMPI
= MRI
->getVRegDef(BI
->getOperand(1).getReg());
1206 for (int I
= 1; I
<= 2; I
++)
1207 if (CMPI
->getOperand(I
).isReg()) {
1208 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI
->getOperand(I
).getReg());
1209 if (Inst
->getParent() == &MBB
&& Inst
->getOpcode() != PPC::PHI
)
1214 MBBtoMoveCmp
= Pred2MBB
;
1221 // This function will iterate over the input map containing a pair of TOC save
1222 // instruction and a flag. The flag will be set to false if the TOC save is
1223 // proven redundant. This function will erase from the basic block all the TOC
1224 // saves marked as redundant.
1225 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1226 std::map
<MachineInstr
*, bool> &TOCSaves
) {
1227 bool Simplified
= false;
1229 for (auto TOCSave
: TOCSaves
) {
1230 if (!TOCSave
.second
) {
1231 TOCSave
.first
->eraseFromParent();
1245 // If multiple conditional branches are executed based on the (essentially)
1246 // same comparison, we merge compare instructions into one and make multiple
1247 // conditional branches on this comparison.
1249 // if (a == 0) { ... }
1250 // else if (a < 0) { ... }
1251 // can be executed by one compare and two conditional branches instead of
1252 // two pairs of a compare and a conditional branch.
1254 // This method merges two compare instructions in two MBBs and modifies the
1255 // compare and conditional branch instructions if needed.
1256 // For the above example, the input for this pass looks like:
1261 // So, before merging two compares, we need to modify these instructions as
1262 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1264 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1267 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1268 bool Simplified
= false;
1270 for (MachineBasicBlock
&MBB2
: *MF
) {
1271 MachineBasicBlock
*MBB1
= nullptr, *MBBtoMoveCmp
= nullptr;
1273 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1274 // as an optimization target if
1275 // - both MBBs end with a conditional branch,
1276 // - MBB1 is the only predecessor of MBB2, and
1277 // - compare does not take a physical register as a operand in both MBBs.
1278 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1280 // As partially redundant case, we additionally handle if MBB2 has one
1281 // additional predecessor, which has only one successor (MBB2).
1282 // In this case, we move the compare instruction originally in MBB2 into
1283 // MBBtoMoveCmp. This partially redundant case is typically appear by
1284 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1286 // Overview of CFG of related basic blocks
1287 // Fully redundant case Partially redundant case
1288 // -------- ---------------- --------
1289 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1290 // -------- ---------------- --------
1291 // | \ (w/ 1 succ) \ | \
1294 // -------- --------
1295 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1296 // -------- and 2 succ) -------- and 2 succ)
1300 if (!eligibleForCompareElimination(MBB2
, MBB1
, MBBtoMoveCmp
, MRI
))
1303 MachineInstr
*BI1
= &*MBB1
->getFirstInstrTerminator();
1304 MachineInstr
*CMPI1
= MRI
->getVRegDef(BI1
->getOperand(1).getReg());
1306 MachineInstr
*BI2
= &*MBB2
.getFirstInstrTerminator();
1307 MachineInstr
*CMPI2
= MRI
->getVRegDef(BI2
->getOperand(1).getReg());
1308 bool IsPartiallyRedundant
= (MBBtoMoveCmp
!= nullptr);
1310 // We cannot optimize an unsupported compare opcode or
1311 // a mix of 32-bit and 64-bit comaprisons
1312 if (!isSupportedCmpOp(CMPI1
->getOpcode()) ||
1313 !isSupportedCmpOp(CMPI2
->getOpcode()) ||
1314 is64bitCmpOp(CMPI1
->getOpcode()) != is64bitCmpOp(CMPI2
->getOpcode()))
1317 unsigned NewOpCode
= 0;
1318 unsigned NewPredicate1
= 0, NewPredicate2
= 0;
1319 int16_t Imm1
= 0, NewImm1
= 0, Imm2
= 0, NewImm2
= 0;
1320 bool SwapOperands
= false;
1322 if (CMPI1
->getOpcode() != CMPI2
->getOpcode()) {
1323 // Typically, unsigned comparison is used for equality check, but
1324 // we replace it with a signed comparison if the comparison
1325 // to be merged is a signed comparison.
1326 // In other cases of opcode mismatch, we cannot optimize this.
1328 // We cannot change opcode when comparing against an immediate
1329 // if the most significant bit of the immediate is one
1330 // due to the difference in sign extension.
1331 auto CmpAgainstImmWithSignBit
= [](MachineInstr
*I
) {
1332 if (!I
->getOperand(2).isImm())
1334 int16_t Imm
= (int16_t)I
->getOperand(2).getImm();
1338 if (isEqOrNe(BI2
) && !CmpAgainstImmWithSignBit(CMPI2
) &&
1339 CMPI1
->getOpcode() == getSignedCmpOpCode(CMPI2
->getOpcode()))
1340 NewOpCode
= CMPI1
->getOpcode();
1341 else if (isEqOrNe(BI1
) && !CmpAgainstImmWithSignBit(CMPI1
) &&
1342 getSignedCmpOpCode(CMPI1
->getOpcode()) == CMPI2
->getOpcode())
1343 NewOpCode
= CMPI2
->getOpcode();
1347 if (CMPI1
->getOperand(2).isReg() && CMPI2
->getOperand(2).isReg()) {
1348 // In case of comparisons between two registers, these two registers
1349 // must be same to merge two comparisons.
1350 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1351 nullptr, nullptr, MRI
);
1352 unsigned Cmp1Operand2
= getSrcVReg(CMPI1
->getOperand(2).getReg(),
1353 nullptr, nullptr, MRI
);
1354 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1356 unsigned Cmp2Operand2
= getSrcVReg(CMPI2
->getOperand(2).getReg(),
1359 if (Cmp1Operand1
== Cmp2Operand1
&& Cmp1Operand2
== Cmp2Operand2
) {
1360 // Same pair of registers in the same order; ready to merge as is.
1362 else if (Cmp1Operand1
== Cmp2Operand2
&& Cmp1Operand2
== Cmp2Operand1
) {
1363 // Same pair of registers in different order.
1364 // We reverse the predicate to merge compare instructions.
1365 PPC::Predicate Pred
= (PPC::Predicate
)BI2
->getOperand(0).getImm();
1366 NewPredicate2
= (unsigned)PPC::getSwappedPredicate(Pred
);
1367 // In case of partial redundancy, we need to swap operands
1368 // in another compare instruction.
1369 SwapOperands
= true;
1373 else if (CMPI1
->getOperand(2).isImm() && CMPI2
->getOperand(2).isImm()) {
1374 // In case of comparisons between a register and an immediate,
1375 // the operand register must be same for two compare instructions.
1376 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1377 nullptr, nullptr, MRI
);
1378 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1380 if (Cmp1Operand1
!= Cmp2Operand1
)
1383 NewImm1
= Imm1
= (int16_t)CMPI1
->getOperand(2).getImm();
1384 NewImm2
= Imm2
= (int16_t)CMPI2
->getOperand(2).getImm();
1386 // If immediate are not same, we try to adjust by changing predicate;
1387 // e.g. GT imm means GE (imm+1).
1388 if (Imm1
!= Imm2
&& (!isEqOrNe(BI2
) || !isEqOrNe(BI1
))) {
1389 int Diff
= Imm1
- Imm2
;
1390 if (Diff
< -2 || Diff
> 2)
1393 unsigned PredToInc1
= getPredicateToIncImm(BI1
, CMPI1
);
1394 unsigned PredToDec1
= getPredicateToDecImm(BI1
, CMPI1
);
1395 unsigned PredToInc2
= getPredicateToIncImm(BI2
, CMPI2
);
1396 unsigned PredToDec2
= getPredicateToDecImm(BI2
, CMPI2
);
1398 if (PredToInc2
&& PredToDec1
) {
1399 NewPredicate2
= PredToInc2
;
1400 NewPredicate1
= PredToDec1
;
1405 else if (Diff
== 1) {
1408 NewPredicate2
= PredToInc2
;
1410 else if (PredToDec1
) {
1412 NewPredicate1
= PredToDec1
;
1415 else if (Diff
== -1) {
1418 NewPredicate2
= PredToDec2
;
1420 else if (PredToInc1
) {
1422 NewPredicate1
= PredToInc1
;
1425 else if (Diff
== -2) {
1426 if (PredToDec2
&& PredToInc1
) {
1427 NewPredicate2
= PredToDec2
;
1428 NewPredicate1
= PredToInc1
;
1435 // We cannot merge two compares if the immediates are not same.
1436 if (NewImm2
!= NewImm1
)
1440 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1441 LLVM_DEBUG(CMPI1
->dump());
1442 LLVM_DEBUG(BI1
->dump());
1443 LLVM_DEBUG(CMPI2
->dump());
1444 LLVM_DEBUG(BI2
->dump());
1446 // We adjust opcode, predicates and immediate as we determined above.
1447 if (NewOpCode
!= 0 && NewOpCode
!= CMPI1
->getOpcode()) {
1448 CMPI1
->setDesc(TII
->get(NewOpCode
));
1450 if (NewPredicate1
) {
1451 BI1
->getOperand(0).setImm(NewPredicate1
);
1453 if (NewPredicate2
) {
1454 BI2
->getOperand(0).setImm(NewPredicate2
);
1456 if (NewImm1
!= Imm1
) {
1457 CMPI1
->getOperand(2).setImm(NewImm1
);
1460 if (IsPartiallyRedundant
) {
1461 // We touch up the compare instruction in MBB2 and move it to
1462 // a previous BB to handle partially redundant case.
1464 Register Op1
= CMPI2
->getOperand(1).getReg();
1465 Register Op2
= CMPI2
->getOperand(2).getReg();
1466 CMPI2
->getOperand(1).setReg(Op2
);
1467 CMPI2
->getOperand(2).setReg(Op1
);
1469 if (NewImm2
!= Imm2
)
1470 CMPI2
->getOperand(2).setImm(NewImm2
);
1472 for (int I
= 1; I
<= 2; I
++) {
1473 if (CMPI2
->getOperand(I
).isReg()) {
1474 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI2
->getOperand(I
).getReg());
1475 if (Inst
->getParent() != &MBB2
)
1478 assert(Inst
->getOpcode() == PPC::PHI
&&
1479 "We cannot support if an operand comes from this BB.");
1480 unsigned SrcReg
= getIncomingRegForBlock(Inst
, MBBtoMoveCmp
);
1481 CMPI2
->getOperand(I
).setReg(SrcReg
);
1484 auto I
= MachineBasicBlock::iterator(MBBtoMoveCmp
->getFirstTerminator());
1485 MBBtoMoveCmp
->splice(I
, &MBB2
, MachineBasicBlock::iterator(CMPI2
));
1487 DebugLoc DL
= CMPI2
->getDebugLoc();
1488 Register NewVReg
= MRI
->createVirtualRegister(&PPC::CRRCRegClass
);
1489 BuildMI(MBB2
, MBB2
.begin(), DL
,
1490 TII
->get(PPC::PHI
), NewVReg
)
1491 .addReg(BI1
->getOperand(1).getReg()).addMBB(MBB1
)
1492 .addReg(BI2
->getOperand(1).getReg()).addMBB(MBBtoMoveCmp
);
1493 BI2
->getOperand(1).setReg(NewVReg
);
1496 // We finally eliminate compare instruction in MBB2.
1497 BI2
->getOperand(1).setReg(BI1
->getOperand(1).getReg());
1498 CMPI2
->eraseFromParent();
1500 BI2
->getOperand(1).setIsKill(true);
1501 BI1
->getOperand(1).setIsKill(false);
1503 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1504 LLVM_DEBUG(CMPI1
->dump());
1505 LLVM_DEBUG(BI1
->dump());
1506 LLVM_DEBUG(BI2
->dump());
1507 if (IsPartiallyRedundant
) {
1508 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1509 << printMBBReference(*MBBtoMoveCmp
)
1510 << " to handle partial redundancy.\n");
1511 LLVM_DEBUG(CMPI2
->dump());
1520 // We miss the opportunity to emit an RLDIC when lowering jump tables
1521 // since ISEL sees only a single basic block. When selecting, the clear
1522 // and shift left will be in different blocks.
1523 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr
&MI
) {
1524 if (MI
.getOpcode() != PPC::RLDICR
)
1527 Register SrcReg
= MI
.getOperand(1).getReg();
1528 if (!Register::isVirtualRegister(SrcReg
))
1531 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
1532 if (SrcMI
->getOpcode() != PPC::RLDICL
)
1535 MachineOperand MOpSHSrc
= SrcMI
->getOperand(2);
1536 MachineOperand MOpMBSrc
= SrcMI
->getOperand(3);
1537 MachineOperand MOpSHMI
= MI
.getOperand(2);
1538 MachineOperand MOpMEMI
= MI
.getOperand(3);
1539 if (!(MOpSHSrc
.isImm() && MOpMBSrc
.isImm() && MOpSHMI
.isImm() &&
1543 uint64_t SHSrc
= MOpSHSrc
.getImm();
1544 uint64_t MBSrc
= MOpMBSrc
.getImm();
1545 uint64_t SHMI
= MOpSHMI
.getImm();
1546 uint64_t MEMI
= MOpMEMI
.getImm();
1547 uint64_t NewSH
= SHSrc
+ SHMI
;
1548 uint64_t NewMB
= MBSrc
- SHMI
;
1549 if (NewMB
> 63 || NewSH
> 63)
1552 // The bits cleared with RLDICL are [0, MBSrc).
1553 // The bits cleared with RLDICR are (MEMI, 63].
1554 // After the sequence, the bits cleared are:
1555 // [0, MBSrc-SHMI) and (MEMI, 63).
1557 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1558 if ((63 - NewSH
) != MEMI
)
1561 LLVM_DEBUG(dbgs() << "Converting pair: ");
1562 LLVM_DEBUG(SrcMI
->dump());
1563 LLVM_DEBUG(MI
.dump());
1565 MI
.setDesc(TII
->get(PPC::RLDIC
));
1566 MI
.getOperand(1).setReg(SrcMI
->getOperand(1).getReg());
1567 MI
.getOperand(2).setImm(NewSH
);
1568 MI
.getOperand(3).setImm(NewMB
);
1569 MI
.getOperand(1).setIsKill(SrcMI
->getOperand(1).isKill());
1570 SrcMI
->getOperand(1).setIsKill(false);
1572 LLVM_DEBUG(dbgs() << "To: ");
1573 LLVM_DEBUG(MI
.dump());
1574 NumRotatesCollapsed
++;
1575 // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1576 if (MRI
->use_nodbg_empty(SrcReg
)) {
1577 assert(!SrcMI
->hasImplicitDef() &&
1578 "Not expecting an implicit def with this instr.");
1579 SrcMI
->eraseFromParent();
1584 // For case in LLVM IR
1586 // %iconv = sext i32 %index to i64
1587 // br i1 undef label %true, label %false
1589 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1591 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1592 // different BBs when conducting instruction selection. We can do a peephole
1593 // optimization to combine these two instructions into extswsli after
1594 // instruction selection.
1595 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr
&MI
,
1596 MachineInstr
*&ToErase
) {
1597 if (MI
.getOpcode() != PPC::RLDICR
)
1600 if (!MF
->getSubtarget
<PPCSubtarget
>().isISA3_0())
1603 assert(MI
.getNumOperands() == 4 && "RLDICR should have 4 operands");
1605 MachineOperand MOpSHMI
= MI
.getOperand(2);
1606 MachineOperand MOpMEMI
= MI
.getOperand(3);
1607 if (!(MOpSHMI
.isImm() && MOpMEMI
.isImm()))
1610 uint64_t SHMI
= MOpSHMI
.getImm();
1611 uint64_t MEMI
= MOpMEMI
.getImm();
1612 if (SHMI
+ MEMI
!= 63)
1615 Register SrcReg
= MI
.getOperand(1).getReg();
1616 if (!Register::isVirtualRegister(SrcReg
))
1619 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
1620 if (SrcMI
->getOpcode() != PPC::EXTSW
&&
1621 SrcMI
->getOpcode() != PPC::EXTSW_32_64
)
1624 // If the register defined by extsw has more than one use, combination is not
1626 if (!MRI
->hasOneNonDBGUse(SrcReg
))
1629 assert(SrcMI
->getNumOperands() == 2 && "EXTSW should have 2 operands");
1630 assert(SrcMI
->getOperand(1).isReg() &&
1631 "EXTSW's second operand should be a register");
1632 if (!Register::isVirtualRegister(SrcMI
->getOperand(1).getReg()))
1635 LLVM_DEBUG(dbgs() << "Combining pair: ");
1636 LLVM_DEBUG(SrcMI
->dump());
1637 LLVM_DEBUG(MI
.dump());
1639 MachineInstr
*NewInstr
=
1640 BuildMI(*MI
.getParent(), &MI
, MI
.getDebugLoc(),
1641 SrcMI
->getOpcode() == PPC::EXTSW
? TII
->get(PPC::EXTSWSLI
)
1642 : TII
->get(PPC::EXTSWSLI_32_64
),
1643 MI
.getOperand(0).getReg())
1644 .add(SrcMI
->getOperand(1))
1648 LLVM_DEBUG(dbgs() << "TO: ");
1649 LLVM_DEBUG(NewInstr
->dump());
1650 ++NumEXTSWAndSLDICombined
;
1652 // SrcMI, which is extsw, is of no use now, erase it.
1653 SrcMI
->eraseFromParent();
1657 } // end default namespace
1659 INITIALIZE_PASS_BEGIN(PPCMIPeephole
, DEBUG_TYPE
,
1660 "PowerPC MI Peephole Optimization", false, false)
1661 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
1662 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
1663 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
1664 INITIALIZE_PASS_END(PPCMIPeephole
, DEBUG_TYPE
,
1665 "PowerPC MI Peephole Optimization", false, false)
1667 char PPCMIPeephole::ID
= 0;
1669 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }