[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCReduceCRLogicals.cpp
blob5cee00c61fc1e456a36513377da6ce414faacf85
1 //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass aims to reduce the number of logical operations on bits in the CR
10 // register. These instructions have a fairly high latency and only a single
11 // pipeline at their disposal in modern PPC cores. Furthermore, they have a
12 // tendency to occur in fairly small blocks where there's little opportunity
13 // to hide the latency between the CR logical operation and its user.
15 //===---------------------------------------------------------------------===//
17 #include "PPC.h"
18 #include "PPCInstrInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Support/Debug.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "ppc-reduce-cr-ops"
34 STATISTIC(NumContainedSingleUseBinOps,
35 "Number of single-use binary CR logical ops contained in a block");
36 STATISTIC(NumToSplitBlocks,
37 "Number of binary CR logical ops that can be used to split blocks");
38 STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
39 STATISTIC(TotalNullaryCRLogicals,
40 "Number of nullary CR logical ops (CRSET/CRUNSET).");
41 STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
42 STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
43 STATISTIC(NumBlocksSplitOnBinaryCROp,
44 "Number of blocks split on CR binary logical ops.");
45 STATISTIC(NumNotSplitIdenticalOperands,
46 "Number of blocks not split due to operands being identical.");
47 STATISTIC(NumNotSplitChainCopies,
48 "Number of blocks not split due to operands being chained copies.");
49 STATISTIC(NumNotSplitWrongOpcode,
50 "Number of blocks not split due to the wrong opcode.");
52 /// Given a basic block \p Successor that potentially contains PHIs, this
53 /// function will look for any incoming values in the PHIs that are supposed to
54 /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
55 /// Any such PHIs will be updated to reflect reality.
56 static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
57 MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
58 for (auto &MI : Successor->instrs()) {
59 if (!MI.isPHI())
60 continue;
61 // This is a really ugly-looking loop, but it was pillaged directly from
62 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
63 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
64 MachineOperand &MO = MI.getOperand(i);
65 if (MO.getMBB() == OrigMBB) {
66 // Check if the instruction is actually defined in NewMBB.
67 if (MI.getOperand(i - 1).isReg()) {
68 MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
69 if (DefMI->getParent() == NewMBB ||
70 !OrigMBB->isSuccessor(Successor)) {
71 MO.setMBB(NewMBB);
72 break;
80 /// Given a basic block \p Successor that potentially contains PHIs, this
81 /// function will look for PHIs that have an incoming value from \p OrigMBB
82 /// and will add the same incoming value from \p NewMBB.
83 /// NOTE: This should only be used if \p NewMBB is an immediate dominator of
84 /// \p OrigMBB.
85 static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
86 MachineBasicBlock *OrigMBB,
87 MachineBasicBlock *NewMBB,
88 MachineRegisterInfo *MRI) {
89 assert(OrigMBB->isSuccessor(NewMBB) &&
90 "NewMBB must be a successor of OrigMBB");
91 for (auto &MI : Successor->instrs()) {
92 if (!MI.isPHI())
93 continue;
94 // This is a really ugly-looking loop, but it was pillaged directly from
95 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
96 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
97 MachineOperand &MO = MI.getOperand(i);
98 if (MO.getMBB() == OrigMBB) {
99 MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
100 MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
101 break;
107 struct BlockSplitInfo {
108 MachineInstr *OrigBranch;
109 MachineInstr *SplitBefore;
110 MachineInstr *SplitCond;
111 bool InvertNewBranch;
112 bool InvertOrigBranch;
113 bool BranchToFallThrough;
114 const MachineBranchProbabilityInfo *MBPI;
115 MachineInstr *MIToDelete;
116 MachineInstr *NewCond;
117 bool allInstrsInSameMBB() {
118 if (!OrigBranch || !SplitBefore || !SplitCond)
119 return false;
120 MachineBasicBlock *MBB = OrigBranch->getParent();
121 if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
122 return false;
123 if (MIToDelete && MIToDelete->getParent() != MBB)
124 return false;
125 if (NewCond && NewCond->getParent() != MBB)
126 return false;
127 return true;
131 /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
132 /// branch is \p OrigBranch. The target of the new branch can either be the same
133 /// as the target of the original branch or the fallthrough successor of the
134 /// original block as determined by \p BranchToFallThrough. The branch
135 /// conditions will be inverted according to \p InvertNewBranch and
136 /// \p InvertOrigBranch. If an instruction that previously fed the branch is to
137 /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
138 /// the branch condition. The branch probabilities will be set if the
139 /// MachineBranchProbabilityInfo isn't null.
140 static bool splitMBB(BlockSplitInfo &BSI) {
141 assert(BSI.allInstrsInSameMBB() &&
142 "All instructions must be in the same block.");
144 MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
145 MachineFunction *MF = ThisMBB->getParent();
146 MachineRegisterInfo *MRI = &MF->getRegInfo();
147 assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
148 if (ThisMBB->succ_size() != 2) {
149 LLVM_DEBUG(
150 dbgs() << "Don't know how to handle blocks that don't have exactly"
151 << " two successors.\n");
152 return false;
155 const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
156 unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
157 unsigned InvertedOpcode =
158 OrigBROpcode == PPC::BC
159 ? PPC::BCn
160 : OrigBROpcode == PPC::BCn
161 ? PPC::BC
162 : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
163 unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
164 MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
165 MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
166 ? *ThisMBB->succ_rbegin()
167 : *ThisMBB->succ_begin();
168 MachineBasicBlock *NewBRTarget =
169 BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
171 // It's impossible to know the precise branch probability after the split.
172 // But it still needs to be reasonable, the whole probability to original
173 // targets should not be changed.
174 // After split NewBRTarget will get two incoming edges. Assume P0 is the
175 // original branch probability to NewBRTarget, P1 and P2 are new branch
176 // probabilies to NewBRTarget after split. If the two edge frequencies are
177 // same, then
178 // F * P1 = F * P0 / 2 ==> P1 = P0 / 2
179 // F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1)
180 BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br.
181 BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br.
182 ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown();
183 ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown();
184 if (BSI.MBPI) {
185 if (BSI.BranchToFallThrough) {
186 ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2;
187 ProbFallThrough = ProbToNewTarget.getCompl();
188 ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl();
189 ProbOrigTarget = ProbOrigFallThrough.getCompl();
190 } else {
191 ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2;
192 ProbFallThrough = ProbToNewTarget.getCompl();
193 ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl();
194 ProbOrigFallThrough = ProbOrigTarget.getCompl();
198 // Create a new basic block.
199 MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
200 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
201 MachineFunction::iterator It = ThisMBB->getIterator();
202 MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
203 MF->insert(++It, NewMBB);
205 // Move everything after SplitBefore into the new block.
206 NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
207 NewMBB->transferSuccessors(ThisMBB);
208 if (!ProbOrigTarget.isUnknown()) {
209 auto MBBI = find(NewMBB->successors(), OrigTarget);
210 NewMBB->setSuccProbability(MBBI, ProbOrigTarget);
211 MBBI = find(NewMBB->successors(), OrigFallThrough);
212 NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough);
215 // Add the two successors to ThisMBB.
216 ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
217 ThisMBB->addSuccessor(NewMBB, ProbFallThrough);
219 // Add the branches to ThisMBB.
220 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
221 TII->get(NewBROpcode))
222 .addReg(BSI.SplitCond->getOperand(0).getReg())
223 .addMBB(NewBRTarget);
224 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
225 TII->get(PPC::B))
226 .addMBB(NewMBB);
227 if (BSI.MIToDelete)
228 BSI.MIToDelete->eraseFromParent();
230 // Change the condition on the original branch and invert it if requested.
231 auto FirstTerminator = NewMBB->getFirstTerminator();
232 if (BSI.NewCond) {
233 assert(FirstTerminator->getOperand(0).isReg() &&
234 "Can't update condition of unconditional branch.");
235 FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
237 if (BSI.InvertOrigBranch)
238 FirstTerminator->setDesc(TII->get(InvertedOpcode));
240 // If any of the PHIs in the successors of NewMBB reference values that
241 // now come from NewMBB, they need to be updated.
242 for (auto *Succ : NewMBB->successors()) {
243 updatePHIs(Succ, ThisMBB, NewMBB, MRI);
245 addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
247 LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
248 LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
249 LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
250 return true;
253 static bool isBinary(MachineInstr &MI) {
254 return MI.getNumOperands() == 3;
257 static bool isNullary(MachineInstr &MI) {
258 return MI.getNumOperands() == 1;
261 /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
262 /// a flag to indicate if the first operand of \p CROp is used as the
263 /// SplitBefore operand, determines whether either of the branches are to be
264 /// inverted as well as whether the new target should be the original
265 /// fall-through block.
266 static void
267 computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
268 bool &InvertNewBranch, bool &InvertOrigBranch,
269 bool &TargetIsFallThrough) {
270 // The conditions under which each of the output operands should be [un]set
271 // can certainly be written much more concisely with just 3 if statements or
272 // ternary expressions. However, this provides a much clearer overview to the
273 // reader as to what is set for each <CROp, BROp, OpUsed> combination.
274 if (BROp == PPC::BC || BROp == PPC::BCLR) {
275 // Regular branches.
276 switch (CROp) {
277 default:
278 llvm_unreachable("Don't know how to handle this CR logical.");
279 case PPC::CROR:
280 InvertNewBranch = false;
281 InvertOrigBranch = false;
282 TargetIsFallThrough = false;
283 return;
284 case PPC::CRAND:
285 InvertNewBranch = true;
286 InvertOrigBranch = false;
287 TargetIsFallThrough = true;
288 return;
289 case PPC::CRNAND:
290 InvertNewBranch = true;
291 InvertOrigBranch = true;
292 TargetIsFallThrough = false;
293 return;
294 case PPC::CRNOR:
295 InvertNewBranch = false;
296 InvertOrigBranch = true;
297 TargetIsFallThrough = true;
298 return;
299 case PPC::CRORC:
300 InvertNewBranch = UsingDef1;
301 InvertOrigBranch = !UsingDef1;
302 TargetIsFallThrough = false;
303 return;
304 case PPC::CRANDC:
305 InvertNewBranch = !UsingDef1;
306 InvertOrigBranch = !UsingDef1;
307 TargetIsFallThrough = true;
308 return;
310 } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
311 // Negated branches.
312 switch (CROp) {
313 default:
314 llvm_unreachable("Don't know how to handle this CR logical.");
315 case PPC::CROR:
316 InvertNewBranch = true;
317 InvertOrigBranch = false;
318 TargetIsFallThrough = true;
319 return;
320 case PPC::CRAND:
321 InvertNewBranch = false;
322 InvertOrigBranch = false;
323 TargetIsFallThrough = false;
324 return;
325 case PPC::CRNAND:
326 InvertNewBranch = false;
327 InvertOrigBranch = true;
328 TargetIsFallThrough = true;
329 return;
330 case PPC::CRNOR:
331 InvertNewBranch = true;
332 InvertOrigBranch = true;
333 TargetIsFallThrough = false;
334 return;
335 case PPC::CRORC:
336 InvertNewBranch = !UsingDef1;
337 InvertOrigBranch = !UsingDef1;
338 TargetIsFallThrough = true;
339 return;
340 case PPC::CRANDC:
341 InvertNewBranch = UsingDef1;
342 InvertOrigBranch = !UsingDef1;
343 TargetIsFallThrough = false;
344 return;
346 } else
347 llvm_unreachable("Don't know how to handle this branch.");
350 namespace {
352 class PPCReduceCRLogicals : public MachineFunctionPass {
354 public:
355 static char ID;
356 struct CRLogicalOpInfo {
357 MachineInstr *MI;
358 // FIXME: If chains of copies are to be handled, this should be a vector.
359 std::pair<MachineInstr*, MachineInstr*> CopyDefs;
360 std::pair<MachineInstr*, MachineInstr*> TrueDefs;
361 unsigned IsBinary : 1;
362 unsigned IsNullary : 1;
363 unsigned ContainedInBlock : 1;
364 unsigned FeedsISEL : 1;
365 unsigned FeedsBR : 1;
366 unsigned FeedsLogical : 1;
367 unsigned SingleUse : 1;
368 unsigned DefsSingleUse : 1;
369 unsigned SubregDef1;
370 unsigned SubregDef2;
371 CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
372 ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
373 FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
374 SubregDef1(0), SubregDef2(0) { }
375 void dump();
378 private:
379 const PPCInstrInfo *TII = nullptr;
380 MachineFunction *MF = nullptr;
381 MachineRegisterInfo *MRI = nullptr;
382 const MachineBranchProbabilityInfo *MBPI = nullptr;
384 // A vector to contain all the CR logical operations
385 SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps;
386 void initialize(MachineFunction &MFParm);
387 void collectCRLogicals();
388 bool handleCROp(unsigned Idx);
389 bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
390 static bool isCRLogical(MachineInstr &MI) {
391 unsigned Opc = MI.getOpcode();
392 return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
393 Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
394 Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
395 Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
397 bool simplifyCode() {
398 bool Changed = false;
399 // Not using a range-based for loop here as the vector may grow while being
400 // operated on.
401 for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
402 Changed |= handleCROp(i);
403 return Changed;
406 public:
407 PPCReduceCRLogicals() : MachineFunctionPass(ID) {
408 initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
411 MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
412 MachineInstr *&CpDef);
413 bool runOnMachineFunction(MachineFunction &MF) override {
414 if (skipFunction(MF.getFunction()))
415 return false;
417 // If the subtarget doesn't use CR bits, there's nothing to do.
418 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
419 if (!STI.useCRBits())
420 return false;
422 initialize(MF);
423 collectCRLogicals();
424 return simplifyCode();
426 CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
427 void getAnalysisUsage(AnalysisUsage &AU) const override {
428 AU.addRequired<MachineBranchProbabilityInfo>();
429 AU.addRequired<MachineDominatorTree>();
430 MachineFunctionPass::getAnalysisUsage(AU);
434 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
435 LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
436 dbgs() << "CRLogicalOpMI: ";
437 MI->dump();
438 dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
439 dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
440 dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
441 dbgs() << ", DefsSingleUse: " << DefsSingleUse;
442 dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
443 dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
444 if (!IsNullary) {
445 dbgs() << "\nDefs:\n";
446 TrueDefs.first->dump();
448 if (IsBinary)
449 TrueDefs.second->dump();
450 dbgs() << "\n";
451 if (CopyDefs.first) {
452 dbgs() << "CopyDef1: ";
453 CopyDefs.first->dump();
455 if (CopyDefs.second) {
456 dbgs() << "CopyDef2: ";
457 CopyDefs.second->dump();
460 #endif
462 PPCReduceCRLogicals::CRLogicalOpInfo
463 PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
464 CRLogicalOpInfo Ret;
465 Ret.MI = &MIParam;
466 // Get the defs
467 if (isNullary(MIParam)) {
468 Ret.IsNullary = 1;
469 Ret.TrueDefs = std::make_pair(nullptr, nullptr);
470 Ret.CopyDefs = std::make_pair(nullptr, nullptr);
471 } else {
472 MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
473 Ret.SubregDef1, Ret.CopyDefs.first);
474 assert(Def1 && "Must be able to find a definition of operand 1.");
475 Ret.DefsSingleUse &=
476 MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
477 Ret.DefsSingleUse &=
478 MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
479 if (isBinary(MIParam)) {
480 Ret.IsBinary = 1;
481 MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
482 Ret.SubregDef2,
483 Ret.CopyDefs.second);
484 assert(Def2 && "Must be able to find a definition of operand 2.");
485 Ret.DefsSingleUse &=
486 MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
487 Ret.DefsSingleUse &=
488 MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
489 Ret.TrueDefs = std::make_pair(Def1, Def2);
490 } else {
491 Ret.TrueDefs = std::make_pair(Def1, nullptr);
492 Ret.CopyDefs.second = nullptr;
496 Ret.ContainedInBlock = 1;
497 // Get the uses
498 for (MachineInstr &UseMI :
499 MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
500 unsigned Opc = UseMI.getOpcode();
501 if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
502 Ret.FeedsISEL = 1;
503 if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
504 Opc == PPC::BCLRn)
505 Ret.FeedsBR = 1;
506 Ret.FeedsLogical = isCRLogical(UseMI);
507 if (UseMI.getParent() != MIParam.getParent())
508 Ret.ContainedInBlock = 0;
510 Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
512 // We now know whether all the uses of the CR logical are in the same block.
513 if (!Ret.IsNullary) {
514 Ret.ContainedInBlock &=
515 (MIParam.getParent() == Ret.TrueDefs.first->getParent());
516 if (Ret.IsBinary)
517 Ret.ContainedInBlock &=
518 (MIParam.getParent() == Ret.TrueDefs.second->getParent());
520 LLVM_DEBUG(Ret.dump());
521 if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
522 NumContainedSingleUseBinOps++;
523 if (Ret.FeedsBR && Ret.DefsSingleUse)
524 NumToSplitBlocks++;
526 return Ret;
529 /// Looks through a COPY instruction to the actual definition of the CR-bit
530 /// register and returns the instruction that defines it.
531 /// FIXME: This currently handles what is by-far the most common case:
532 /// an instruction that defines a CR field followed by a single copy of a bit
533 /// from that field into a virtual register. If chains of copies need to be
534 /// handled, this should have a loop until a non-copy instruction is found.
535 MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
536 unsigned &Subreg,
537 MachineInstr *&CpDef) {
538 Subreg = -1;
539 if (!Register::isVirtualRegister(Reg))
540 return nullptr;
541 MachineInstr *Copy = MRI->getVRegDef(Reg);
542 CpDef = Copy;
543 if (!Copy->isCopy())
544 return Copy;
545 Register CopySrc = Copy->getOperand(1).getReg();
546 Subreg = Copy->getOperand(1).getSubReg();
547 if (!Register::isVirtualRegister(CopySrc)) {
548 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
549 // Set the Subreg
550 if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
551 Subreg = PPC::sub_eq;
552 if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
553 Subreg = PPC::sub_lt;
554 if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
555 Subreg = PPC::sub_gt;
556 if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
557 Subreg = PPC::sub_un;
558 // Loop backwards and return the first MI that modifies the physical CR Reg.
559 MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
560 while (Me != B)
561 if ((--Me)->modifiesRegister(CopySrc, TRI))
562 return &*Me;
563 return nullptr;
565 return MRI->getVRegDef(CopySrc);
568 void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
569 MF = &MFParam;
570 MRI = &MF->getRegInfo();
571 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
572 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
574 AllCRLogicalOps.clear();
577 /// Contains all the implemented transformations on CR logical operations.
578 /// For example, a binary CR logical can be used to split a block on its inputs,
579 /// a unary CR logical might be used to change the condition code on a
580 /// comparison feeding it. A nullary CR logical might simply be removable
581 /// if the user of the bit it [un]sets can be transformed.
582 bool PPCReduceCRLogicals::handleCROp(unsigned Idx) {
583 // We can definitely split a block on the inputs to a binary CR operation
584 // whose defs and (single) use are within the same block.
585 bool Changed = false;
586 CRLogicalOpInfo CRI = AllCRLogicalOps[Idx];
587 if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
588 CRI.DefsSingleUse) {
589 Changed = splitBlockOnBinaryCROp(CRI);
590 if (Changed)
591 NumBlocksSplitOnBinaryCROp++;
593 return Changed;
596 /// Splits a block that contains a CR-logical operation that feeds a branch
597 /// and whose operands are produced within the block.
598 /// Example:
599 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
600 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
601 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
602 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
603 /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
604 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
605 /// Becomes:
606 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
607 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
608 /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
610 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
611 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
612 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
613 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
614 if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
615 LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
616 NumNotSplitIdenticalOperands++;
617 return false;
619 if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
620 CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
621 LLVM_DEBUG(
622 dbgs() << "Unable to split because one of the operands is a PHI or "
623 "chain of copies.\n");
624 NumNotSplitChainCopies++;
625 return false;
627 // Note: keep in sync with computeBranchTargetAndInversion().
628 if (CRI.MI->getOpcode() != PPC::CROR &&
629 CRI.MI->getOpcode() != PPC::CRAND &&
630 CRI.MI->getOpcode() != PPC::CRNOR &&
631 CRI.MI->getOpcode() != PPC::CRNAND &&
632 CRI.MI->getOpcode() != PPC::CRORC &&
633 CRI.MI->getOpcode() != PPC::CRANDC) {
634 LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
635 NumNotSplitWrongOpcode++;
636 return false;
638 LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
639 MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
640 MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
642 bool UsingDef1 = false;
643 MachineInstr *SplitBefore = &*Def2It;
644 for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
645 if (Def1It == Def2It) { // Def2 comes before Def1.
646 SplitBefore = &*Def1It;
647 UsingDef1 = true;
648 break;
652 LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
653 LLVM_DEBUG(CRI.MI->getParent()->dump());
654 LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
656 // Get the branch instruction.
657 MachineInstr *Branch =
658 MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
660 // We want the new block to have no code in it other than the definition
661 // of the input to the CR logical and the CR logical itself. So we move
662 // those to the bottom of the block (just before the branch). Then we
663 // will split before the CR logical.
664 MachineBasicBlock *MBB = SplitBefore->getParent();
665 auto FirstTerminator = MBB->getFirstTerminator();
666 MachineBasicBlock::iterator FirstInstrToMove =
667 UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
668 MachineBasicBlock::iterator SecondInstrToMove =
669 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
671 // The instructions that need to be moved are not guaranteed to be
672 // contiguous. Move them individually.
673 // FIXME: If one of the operands is a chain of (single use) copies, they
674 // can all be moved and we can still split.
675 MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
676 if (FirstInstrToMove != SecondInstrToMove)
677 MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
678 MBB->splice(FirstTerminator, MBB, CRI.MI);
680 unsigned Opc = CRI.MI->getOpcode();
681 bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
682 computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
683 InvertNewBranch, InvertOrigBranch,
684 TargetIsFallThrough);
685 MachineInstr *SplitCond =
686 UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
687 LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
688 LLVM_DEBUG(dbgs() << " the original branch and the target is the "
689 << (TargetIsFallThrough ? "fallthrough block\n"
690 : "orig. target block\n"));
691 LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
692 BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
693 InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
694 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
695 bool Changed = splitMBB(BSI);
696 // If we've split on a CR logical that is fed by a CR logical,
697 // recompute the source CR logical as it may be usable for splitting.
698 if (Changed) {
699 bool Input1CRlogical =
700 CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
701 bool Input2CRlogical =
702 CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
703 if (Input1CRlogical)
704 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
705 if (Input2CRlogical)
706 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
708 return Changed;
711 void PPCReduceCRLogicals::collectCRLogicals() {
712 for (MachineBasicBlock &MBB : *MF) {
713 for (MachineInstr &MI : MBB) {
714 if (isCRLogical(MI)) {
715 AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
716 TotalCRLogicals++;
717 if (AllCRLogicalOps.back().IsNullary)
718 TotalNullaryCRLogicals++;
719 else if (AllCRLogicalOps.back().IsBinary)
720 TotalBinaryCRLogicals++;
721 else
722 TotalUnaryCRLogicals++;
728 } // end anonymous namespace
730 INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
731 "PowerPC Reduce CR logical Operation", false, false)
732 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
733 INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
734 "PowerPC Reduce CR logical Operation", false, false)
736 char PPCReduceCRLogicals::ID = 0;
737 FunctionPass*
738 llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }