1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCInstrInfo.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
42 // Temporarily disable FMA mutation by default, since it doesn't handle
43 // cross-basic-block intervals well.
44 // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
45 // http://reviews.llvm.org/D17087
46 static cl::opt
<bool> DisableVSXFMAMutate(
47 "disable-ppc-vsx-fma-mutation",
48 cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
51 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
53 namespace llvm
{ namespace PPC
{
54 int getAltVSXFMAOpcode(uint16_t Opcode
);
58 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
59 // (Altivec and scalar floating-point registers), we need to transform the
60 // copies into subregister copies with other restrictions.
61 struct PPCVSXFMAMutate
: public MachineFunctionPass
{
63 PPCVSXFMAMutate() : MachineFunctionPass(ID
) {
64 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
68 const PPCInstrInfo
*TII
;
71 bool processBlock(MachineBasicBlock
&MBB
) {
74 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
75 const TargetRegisterInfo
*TRI
= &TII
->getRegisterInfo();
76 for (MachineBasicBlock::iterator I
= MBB
.begin(), IE
= MBB
.end();
78 MachineInstr
&MI
= *I
;
80 // The default (A-type) VSX FMA form kills the addend (it is taken from
81 // the target register, which is then updated to reflect the result of
82 // the FMA). If the instruction, however, kills one of the registers
83 // used for the product, then we can use the M-form instruction (which
84 // will take that value from the to-be-defined register).
86 int AltOpc
= PPC::getAltVSXFMAOpcode(MI
.getOpcode());
90 // This pass is run after register coalescing, and so we're looking for
91 // a situation like this:
93 // %5 = COPY %9; VSLRC:%5,%9
94 // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
95 // implicit %rm; VSLRC:%5,%17,%16
97 // %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
98 // implicit %rm; VSLRC:%9,%17,%19
100 // Where we can eliminate the copy by changing from the A-type to the
101 // M-type instruction. Specifically, for this example, this means:
102 // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
103 // implicit %rm; VSLRC:%5,%17,%16
105 // %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
106 // implicit %rm; VSLRC:%16,%18,%9
107 // and we remove: %5 = COPY %9; VSLRC:%5,%9
109 SlotIndex FMAIdx
= LIS
->getInstructionIndex(MI
);
111 VNInfo
*AddendValNo
=
112 LIS
->getInterval(MI
.getOperand(1).getReg()).Query(FMAIdx
).valueIn();
114 // This can be null if the register is undef.
118 MachineInstr
*AddendMI
= LIS
->getInstructionFromIndex(AddendValNo
->def
);
120 // The addend and this instruction must be in the same block.
122 if (!AddendMI
|| AddendMI
->getParent() != MI
.getParent())
125 // The addend must be a full copy within the same register class.
127 if (!AddendMI
->isFullCopy())
130 Register AddendSrcReg
= AddendMI
->getOperand(1).getReg();
131 if (Register::isVirtualRegister(AddendSrcReg
)) {
132 if (MRI
.getRegClass(AddendMI
->getOperand(0).getReg()) !=
133 MRI
.getRegClass(AddendSrcReg
))
136 // If AddendSrcReg is a physical register, make sure the destination
137 // register class contains it.
138 if (!MRI
.getRegClass(AddendMI
->getOperand(0).getReg())
139 ->contains(AddendSrcReg
))
143 // In theory, there could be other uses of the addend copy before this
144 // fma. We could deal with this, but that would require additional
145 // logic below and I suspect it will not occur in any relevant
146 // situations. Additionally, check whether the copy source is killed
147 // prior to the fma. In order to replace the addend here with the
148 // source of the copy, it must still be live here. We can't use
149 // interval testing for a physical register, so as long as we're
150 // walking the MIs we may as well test liveness here.
152 // FIXME: There is a case that occurs in practice, like this:
153 // %9 = COPY %f1; VSSRC:%9
155 // %6 = COPY %9; VSSRC:%6,%9
156 // %7 = COPY %9; VSSRC:%7,%9
157 // %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
158 // %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
159 // %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
160 // which prevents an otherwise-profitable transformation.
161 bool OtherUsers
= false, KillsAddendSrc
= false;
162 for (auto J
= std::prev(I
), JE
= MachineBasicBlock::iterator(AddendMI
);
164 if (J
->readsVirtualRegister(AddendMI
->getOperand(0).getReg())) {
168 if (J
->modifiesRegister(AddendSrcReg
, TRI
) ||
169 J
->killsRegister(AddendSrcReg
, TRI
)) {
170 KillsAddendSrc
= true;
175 if (OtherUsers
|| KillsAddendSrc
)
179 // The transformation doesn't work well with things like:
180 // %5 = A-form-op %5, %11, %5;
181 // unless %11 is also a kill, so skip when it is not,
182 // and check operand 3 to see it is also a kill to handle the case:
183 // %5 = A-form-op %5, %5, %11;
184 // where %5 and %11 are both kills. This case would be skipped
186 Register OldFMAReg
= MI
.getOperand(0).getReg();
188 // Find one of the product operands that is killed by this instruction.
189 unsigned KilledProdOp
= 0, OtherProdOp
= 0;
190 Register Reg2
= MI
.getOperand(2).getReg();
191 Register Reg3
= MI
.getOperand(3).getReg();
192 if (LIS
->getInterval(Reg2
).Query(FMAIdx
).isKill()
193 && Reg2
!= OldFMAReg
) {
196 } else if (LIS
->getInterval(Reg3
).Query(FMAIdx
).isKill()
197 && Reg3
!= OldFMAReg
) {
202 // If there are no usable killed product operands, then this
203 // transformation is likely not profitable.
207 // If the addend copy is used only by this MI, then the addend source
208 // register is likely not live here. This could be fixed (based on the
209 // legality checks above, the live range for the addend source register
210 // could be extended), but it seems likely that such a trivial copy can
211 // be coalesced away later, and thus is not worth the effort.
212 if (Register::isVirtualRegister(AddendSrcReg
) &&
213 !LIS
->getInterval(AddendSrcReg
).liveAt(FMAIdx
))
216 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
218 Register KilledProdReg
= MI
.getOperand(KilledProdOp
).getReg();
219 Register OtherProdReg
= MI
.getOperand(OtherProdOp
).getReg();
221 unsigned AddSubReg
= AddendMI
->getOperand(1).getSubReg();
222 unsigned KilledProdSubReg
= MI
.getOperand(KilledProdOp
).getSubReg();
223 unsigned OtherProdSubReg
= MI
.getOperand(OtherProdOp
).getSubReg();
225 bool AddRegKill
= AddendMI
->getOperand(1).isKill();
226 bool KilledProdRegKill
= MI
.getOperand(KilledProdOp
).isKill();
227 bool OtherProdRegKill
= MI
.getOperand(OtherProdOp
).isKill();
229 bool AddRegUndef
= AddendMI
->getOperand(1).isUndef();
230 bool KilledProdRegUndef
= MI
.getOperand(KilledProdOp
).isUndef();
231 bool OtherProdRegUndef
= MI
.getOperand(OtherProdOp
).isUndef();
233 // If there isn't a class that fits, we can't perform the transform.
234 // This is needed for correctness with a mixture of VSX and Altivec
235 // instructions to make sure that a low VSX register is not assigned to
236 // the Altivec instruction.
237 if (!MRI
.constrainRegClass(KilledProdReg
,
238 MRI
.getRegClass(OldFMAReg
)))
241 assert(OldFMAReg
== AddendMI
->getOperand(0).getReg() &&
242 "Addend copy not tied to old FMA output!");
244 LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI
);
246 MI
.getOperand(0).setReg(KilledProdReg
);
247 MI
.getOperand(1).setReg(KilledProdReg
);
248 MI
.getOperand(3).setReg(AddendSrcReg
);
250 MI
.getOperand(0).setSubReg(KilledProdSubReg
);
251 MI
.getOperand(1).setSubReg(KilledProdSubReg
);
252 MI
.getOperand(3).setSubReg(AddSubReg
);
254 MI
.getOperand(1).setIsKill(KilledProdRegKill
);
255 MI
.getOperand(3).setIsKill(AddRegKill
);
257 MI
.getOperand(1).setIsUndef(KilledProdRegUndef
);
258 MI
.getOperand(3).setIsUndef(AddRegUndef
);
260 MI
.setDesc(TII
->get(AltOpc
));
262 // If the addend is also a multiplicand, replace it with the addend
263 // source in both places.
264 if (OtherProdReg
== AddendMI
->getOperand(0).getReg()) {
265 MI
.getOperand(2).setReg(AddendSrcReg
);
266 MI
.getOperand(2).setSubReg(AddSubReg
);
267 MI
.getOperand(2).setIsKill(AddRegKill
);
268 MI
.getOperand(2).setIsUndef(AddRegUndef
);
270 MI
.getOperand(2).setReg(OtherProdReg
);
271 MI
.getOperand(2).setSubReg(OtherProdSubReg
);
272 MI
.getOperand(2).setIsKill(OtherProdRegKill
);
273 MI
.getOperand(2).setIsUndef(OtherProdRegUndef
);
276 LLVM_DEBUG(dbgs() << " -> " << MI
);
278 // The killed product operand was killed here, so we can reuse it now
279 // for the result of the fma.
281 LiveInterval
&FMAInt
= LIS
->getInterval(OldFMAReg
);
282 VNInfo
*FMAValNo
= FMAInt
.getVNInfoAt(FMAIdx
.getRegSlot());
283 for (auto UI
= MRI
.reg_nodbg_begin(OldFMAReg
), UE
= MRI
.reg_nodbg_end();
285 MachineOperand
&UseMO
= *UI
;
286 MachineInstr
*UseMI
= UseMO
.getParent();
289 // Don't replace the result register of the copy we're about to erase.
290 if (UseMI
== AddendMI
)
293 UseMO
.substVirtReg(KilledProdReg
, KilledProdSubReg
, *TRI
);
296 // Extend the live intervals of the killed product operand to hold the
299 LiveInterval
&NewFMAInt
= LIS
->getInterval(KilledProdReg
);
300 for (LiveInterval::iterator AI
= FMAInt
.begin(), AE
= FMAInt
.end();
302 // Don't add the segment that corresponds to the original copy.
303 if (AI
->valno
== AddendValNo
)
306 VNInfo
*NewFMAValNo
=
307 NewFMAInt
.getNextValue(AI
->start
,
308 LIS
->getVNInfoAllocator());
310 NewFMAInt
.addSegment(LiveInterval::Segment(AI
->start
, AI
->end
,
313 LLVM_DEBUG(dbgs() << " extended: " << NewFMAInt
<< '\n');
315 // Extend the live interval of the addend source (it might end at the
316 // copy to be removed, or somewhere in between there and here). This
317 // is necessary only if it is a physical register.
318 if (!AddendSrcReg
.isVirtual())
319 for (MCRegUnitIterator
Units(AddendSrcReg
.asMCReg(), TRI
);
320 Units
.isValid(); ++Units
) {
321 unsigned Unit
= *Units
;
323 LiveRange
&AddendSrcRange
= LIS
->getRegUnit(Unit
);
324 AddendSrcRange
.extendInBlock(LIS
->getMBBStartIdx(&MBB
),
325 FMAIdx
.getRegSlot());
326 LLVM_DEBUG(dbgs() << " extended: " << AddendSrcRange
<< '\n');
329 FMAInt
.removeValNo(FMAValNo
);
330 LLVM_DEBUG(dbgs() << " trimmed: " << FMAInt
<< '\n');
332 // Remove the (now unused) copy.
334 LLVM_DEBUG(dbgs() << " removing: " << *AddendMI
<< '\n');
335 LIS
->RemoveMachineInstrFromMaps(*AddendMI
);
336 AddendMI
->eraseFromParent();
345 bool runOnMachineFunction(MachineFunction
&MF
) override
{
346 if (skipFunction(MF
.getFunction()))
349 // If we don't have VSX then go ahead and return without doing
351 const PPCSubtarget
&STI
= MF
.getSubtarget
<PPCSubtarget
>();
355 LIS
= &getAnalysis
<LiveIntervals
>();
357 TII
= STI
.getInstrInfo();
359 bool Changed
= false;
361 if (DisableVSXFMAMutate
)
364 for (MachineFunction::iterator I
= MF
.begin(); I
!= MF
.end();) {
365 MachineBasicBlock
&B
= *I
++;
373 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
374 AU
.addRequired
<LiveIntervals
>();
375 AU
.addPreserved
<LiveIntervals
>();
376 AU
.addRequired
<SlotIndexes
>();
377 AU
.addPreserved
<SlotIndexes
>();
378 AU
.addRequired
<MachineDominatorTree
>();
379 AU
.addPreserved
<MachineDominatorTree
>();
380 MachineFunctionPass::getAnalysisUsage(AU
);
385 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate
, DEBUG_TYPE
,
386 "PowerPC VSX FMA Mutation", false, false)
387 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
388 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
389 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
390 INITIALIZE_PASS_END(PPCVSXFMAMutate
, DEBUG_TYPE
,
391 "PowerPC VSX FMA Mutation", false, false)
393 char &llvm::PPCVSXFMAMutateID
= PPCVSXFMAMutate::ID
;
395 char PPCVSXFMAMutate::ID
= 0;
396 FunctionPass
*llvm::createPPCVSXFMAMutatePass() {
397 return new PPCVSXFMAMutate();