1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/IntrinsicsRISCV.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
41 #define DEBUG_TYPE "riscv-lower"
43 STATISTIC(NumTailCalls
, "Number of tail calls");
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine
&TM
,
46 const RISCVSubtarget
&STI
)
47 : TargetLowering(TM
), Subtarget(STI
) {
49 if (Subtarget
.isRV32E())
50 report_fatal_error("Codegen not yet implemented for RV32E");
52 RISCVABI::ABI ABI
= Subtarget
.getTargetABI();
53 assert(ABI
!= RISCVABI::ABI_Unknown
&& "Improperly initialised target ABI");
55 if ((ABI
== RISCVABI::ABI_ILP32F
|| ABI
== RISCVABI::ABI_LP64F
) &&
56 !Subtarget
.hasStdExtF()) {
57 errs() << "Hard-float 'f' ABI can't be used for a target that "
58 "doesn't support the F instruction set extension (ignoring "
60 ABI
= Subtarget
.is64Bit() ? RISCVABI::ABI_LP64
: RISCVABI::ABI_ILP32
;
61 } else if ((ABI
== RISCVABI::ABI_ILP32D
|| ABI
== RISCVABI::ABI_LP64D
) &&
62 !Subtarget
.hasStdExtD()) {
63 errs() << "Hard-float 'd' ABI can't be used for a target that "
64 "doesn't support the D instruction set extension (ignoring "
66 ABI
= Subtarget
.is64Bit() ? RISCVABI::ABI_LP64
: RISCVABI::ABI_ILP32
;
71 report_fatal_error("Don't know how to lower this ABI");
72 case RISCVABI::ABI_ILP32
:
73 case RISCVABI::ABI_ILP32F
:
74 case RISCVABI::ABI_ILP32D
:
75 case RISCVABI::ABI_LP64
:
76 case RISCVABI::ABI_LP64F
:
77 case RISCVABI::ABI_LP64D
:
81 MVT XLenVT
= Subtarget
.getXLenVT();
83 // Set up the register classes.
84 addRegisterClass(XLenVT
, &RISCV::GPRRegClass
);
86 if (Subtarget
.hasStdExtZfh())
87 addRegisterClass(MVT::f16
, &RISCV::FPR16RegClass
);
88 if (Subtarget
.hasStdExtF())
89 addRegisterClass(MVT::f32
, &RISCV::FPR32RegClass
);
90 if (Subtarget
.hasStdExtD())
91 addRegisterClass(MVT::f64
, &RISCV::FPR64RegClass
);
93 static const MVT::SimpleValueType BoolVecVTs
[] = {
94 MVT::nxv1i1
, MVT::nxv2i1
, MVT::nxv4i1
, MVT::nxv8i1
,
95 MVT::nxv16i1
, MVT::nxv32i1
, MVT::nxv64i1
};
96 static const MVT::SimpleValueType IntVecVTs
[] = {
97 MVT::nxv1i8
, MVT::nxv2i8
, MVT::nxv4i8
, MVT::nxv8i8
, MVT::nxv16i8
,
98 MVT::nxv32i8
, MVT::nxv64i8
, MVT::nxv1i16
, MVT::nxv2i16
, MVT::nxv4i16
,
99 MVT::nxv8i16
, MVT::nxv16i16
, MVT::nxv32i16
, MVT::nxv1i32
, MVT::nxv2i32
,
100 MVT::nxv4i32
, MVT::nxv8i32
, MVT::nxv16i32
, MVT::nxv1i64
, MVT::nxv2i64
,
101 MVT::nxv4i64
, MVT::nxv8i64
};
102 static const MVT::SimpleValueType F16VecVTs
[] = {
103 MVT::nxv1f16
, MVT::nxv2f16
, MVT::nxv4f16
,
104 MVT::nxv8f16
, MVT::nxv16f16
, MVT::nxv32f16
};
105 static const MVT::SimpleValueType F32VecVTs
[] = {
106 MVT::nxv1f32
, MVT::nxv2f32
, MVT::nxv4f32
, MVT::nxv8f32
, MVT::nxv16f32
};
107 static const MVT::SimpleValueType F64VecVTs
[] = {
108 MVT::nxv1f64
, MVT::nxv2f64
, MVT::nxv4f64
, MVT::nxv8f64
};
110 if (Subtarget
.hasStdExtV()) {
111 auto addRegClassForRVV
= [this](MVT VT
) {
112 unsigned Size
= VT
.getSizeInBits().getKnownMinValue();
113 assert(Size
<= 512 && isPowerOf2_32(Size
));
114 const TargetRegisterClass
*RC
;
116 RC
= &RISCV::VRRegClass
;
117 else if (Size
== 128)
118 RC
= &RISCV::VRM2RegClass
;
119 else if (Size
== 256)
120 RC
= &RISCV::VRM4RegClass
;
122 RC
= &RISCV::VRM8RegClass
;
124 addRegisterClass(VT
, RC
);
127 for (MVT VT
: BoolVecVTs
)
128 addRegClassForRVV(VT
);
129 for (MVT VT
: IntVecVTs
)
130 addRegClassForRVV(VT
);
132 if (Subtarget
.hasStdExtZfh())
133 for (MVT VT
: F16VecVTs
)
134 addRegClassForRVV(VT
);
136 if (Subtarget
.hasStdExtF())
137 for (MVT VT
: F32VecVTs
)
138 addRegClassForRVV(VT
);
140 if (Subtarget
.hasStdExtD())
141 for (MVT VT
: F64VecVTs
)
142 addRegClassForRVV(VT
);
144 if (Subtarget
.useRVVForFixedLengthVectors()) {
145 auto addRegClassForFixedVectors
= [this](MVT VT
) {
146 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
147 unsigned RCID
= getRegClassIDForVecVT(ContainerVT
);
148 const RISCVRegisterInfo
&TRI
= *Subtarget
.getRegisterInfo();
149 addRegisterClass(VT
, TRI
.getRegClass(RCID
));
151 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes())
152 if (useRVVForFixedLengthVectorVT(VT
))
153 addRegClassForFixedVectors(VT
);
155 for (MVT VT
: MVT::fp_fixedlen_vector_valuetypes())
156 if (useRVVForFixedLengthVectorVT(VT
))
157 addRegClassForFixedVectors(VT
);
161 // Compute derived properties from the register classes.
162 computeRegisterProperties(STI
.getRegisterInfo());
164 setStackPointerRegisterToSaveRestore(RISCV::X2
);
166 for (auto N
: {ISD::EXTLOAD
, ISD::SEXTLOAD
, ISD::ZEXTLOAD
})
167 setLoadExtAction(N
, XLenVT
, MVT::i1
, Promote
);
169 // TODO: add all necessary setOperationAction calls.
170 setOperationAction(ISD::DYNAMIC_STACKALLOC
, XLenVT
, Expand
);
172 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
173 setOperationAction(ISD::BR_CC
, XLenVT
, Expand
);
174 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
175 setOperationAction(ISD::SELECT_CC
, XLenVT
, Expand
);
177 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
178 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
180 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
181 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
182 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
183 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
185 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
186 if (!Subtarget
.hasStdExtZbb()) {
187 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
188 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
191 if (Subtarget
.is64Bit()) {
192 setOperationAction(ISD::ADD
, MVT::i32
, Custom
);
193 setOperationAction(ISD::SUB
, MVT::i32
, Custom
);
194 setOperationAction(ISD::SHL
, MVT::i32
, Custom
);
195 setOperationAction(ISD::SRA
, MVT::i32
, Custom
);
196 setOperationAction(ISD::SRL
, MVT::i32
, Custom
);
198 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
199 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
200 setOperationAction(ISD::UADDSAT
, MVT::i32
, Custom
);
201 setOperationAction(ISD::USUBSAT
, MVT::i32
, Custom
);
204 if (!Subtarget
.hasStdExtM()) {
205 setOperationAction(ISD::MUL
, XLenVT
, Expand
);
206 setOperationAction(ISD::MULHS
, XLenVT
, Expand
);
207 setOperationAction(ISD::MULHU
, XLenVT
, Expand
);
208 setOperationAction(ISD::SDIV
, XLenVT
, Expand
);
209 setOperationAction(ISD::UDIV
, XLenVT
, Expand
);
210 setOperationAction(ISD::SREM
, XLenVT
, Expand
);
211 setOperationAction(ISD::UREM
, XLenVT
, Expand
);
213 if (Subtarget
.is64Bit()) {
214 setOperationAction(ISD::MUL
, MVT::i32
, Custom
);
215 setOperationAction(ISD::MUL
, MVT::i128
, Custom
);
217 setOperationAction(ISD::SDIV
, MVT::i8
, Custom
);
218 setOperationAction(ISD::UDIV
, MVT::i8
, Custom
);
219 setOperationAction(ISD::UREM
, MVT::i8
, Custom
);
220 setOperationAction(ISD::SDIV
, MVT::i16
, Custom
);
221 setOperationAction(ISD::UDIV
, MVT::i16
, Custom
);
222 setOperationAction(ISD::UREM
, MVT::i16
, Custom
);
223 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
224 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
225 setOperationAction(ISD::UREM
, MVT::i32
, Custom
);
227 setOperationAction(ISD::MUL
, MVT::i64
, Custom
);
231 setOperationAction(ISD::SDIVREM
, XLenVT
, Expand
);
232 setOperationAction(ISD::UDIVREM
, XLenVT
, Expand
);
233 setOperationAction(ISD::SMUL_LOHI
, XLenVT
, Expand
);
234 setOperationAction(ISD::UMUL_LOHI
, XLenVT
, Expand
);
236 setOperationAction(ISD::SHL_PARTS
, XLenVT
, Custom
);
237 setOperationAction(ISD::SRL_PARTS
, XLenVT
, Custom
);
238 setOperationAction(ISD::SRA_PARTS
, XLenVT
, Custom
);
240 if (Subtarget
.hasStdExtZbb() || Subtarget
.hasStdExtZbp()) {
241 if (Subtarget
.is64Bit()) {
242 setOperationAction(ISD::ROTL
, MVT::i32
, Custom
);
243 setOperationAction(ISD::ROTR
, MVT::i32
, Custom
);
246 setOperationAction(ISD::ROTL
, XLenVT
, Expand
);
247 setOperationAction(ISD::ROTR
, XLenVT
, Expand
);
250 if (Subtarget
.hasStdExtZbp()) {
251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
253 setOperationAction(ISD::BITREVERSE
, XLenVT
, Custom
);
254 setOperationAction(ISD::BSWAP
, XLenVT
, Custom
);
255 setOperationAction(ISD::BITREVERSE
, MVT::i8
, Custom
);
256 // BSWAP i8 doesn't exist.
257 setOperationAction(ISD::BITREVERSE
, MVT::i16
, Custom
);
258 setOperationAction(ISD::BSWAP
, MVT::i16
, Custom
);
260 if (Subtarget
.is64Bit()) {
261 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Custom
);
262 setOperationAction(ISD::BSWAP
, MVT::i32
, Custom
);
265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
266 // pattern match it directly in isel.
267 setOperationAction(ISD::BSWAP
, XLenVT
,
268 Subtarget
.hasStdExtZbb() ? Legal
: Expand
);
271 if (Subtarget
.hasStdExtZbb()) {
272 setOperationAction(ISD::SMIN
, XLenVT
, Legal
);
273 setOperationAction(ISD::SMAX
, XLenVT
, Legal
);
274 setOperationAction(ISD::UMIN
, XLenVT
, Legal
);
275 setOperationAction(ISD::UMAX
, XLenVT
, Legal
);
277 if (Subtarget
.is64Bit()) {
278 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
279 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i32
, Custom
);
280 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
281 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, Custom
);
284 setOperationAction(ISD::CTTZ
, XLenVT
, Expand
);
285 setOperationAction(ISD::CTLZ
, XLenVT
, Expand
);
286 setOperationAction(ISD::CTPOP
, XLenVT
, Expand
);
289 if (Subtarget
.hasStdExtZbt()) {
290 setOperationAction(ISD::FSHL
, XLenVT
, Custom
);
291 setOperationAction(ISD::FSHR
, XLenVT
, Custom
);
292 setOperationAction(ISD::SELECT
, XLenVT
, Legal
);
294 if (Subtarget
.is64Bit()) {
295 setOperationAction(ISD::FSHL
, MVT::i32
, Custom
);
296 setOperationAction(ISD::FSHR
, MVT::i32
, Custom
);
299 setOperationAction(ISD::SELECT
, XLenVT
, Custom
);
302 ISD::CondCode FPCCToExpand
[] = {
303 ISD::SETOGT
, ISD::SETOGE
, ISD::SETONE
, ISD::SETUEQ
, ISD::SETUGT
,
304 ISD::SETUGE
, ISD::SETULT
, ISD::SETULE
, ISD::SETUNE
, ISD::SETGT
,
305 ISD::SETGE
, ISD::SETNE
, ISD::SETO
, ISD::SETUO
};
307 ISD::NodeType FPOpToExpand
[] = {
308 ISD::FSIN
, ISD::FCOS
, ISD::FSINCOS
, ISD::FPOW
, ISD::FREM
, ISD::FP16_TO_FP
,
311 if (Subtarget
.hasStdExtZfh())
312 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
314 if (Subtarget
.hasStdExtZfh()) {
315 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
316 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
317 setOperationAction(ISD::LRINT
, MVT::f16
, Legal
);
318 setOperationAction(ISD::LLRINT
, MVT::f16
, Legal
);
319 setOperationAction(ISD::LROUND
, MVT::f16
, Legal
);
320 setOperationAction(ISD::LLROUND
, MVT::f16
, Legal
);
321 for (auto CC
: FPCCToExpand
)
322 setCondCodeAction(CC
, MVT::f16
, Expand
);
323 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Expand
);
324 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
325 setOperationAction(ISD::BR_CC
, MVT::f16
, Expand
);
326 for (auto Op
: FPOpToExpand
)
327 setOperationAction(Op
, MVT::f16
, Expand
);
330 if (Subtarget
.hasStdExtF()) {
331 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
332 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
333 setOperationAction(ISD::LRINT
, MVT::f32
, Legal
);
334 setOperationAction(ISD::LLRINT
, MVT::f32
, Legal
);
335 setOperationAction(ISD::LROUND
, MVT::f32
, Legal
);
336 setOperationAction(ISD::LLROUND
, MVT::f32
, Legal
);
337 for (auto CC
: FPCCToExpand
)
338 setCondCodeAction(CC
, MVT::f32
, Expand
);
339 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
340 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
341 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
342 for (auto Op
: FPOpToExpand
)
343 setOperationAction(Op
, MVT::f32
, Expand
);
344 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
345 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
348 if (Subtarget
.hasStdExtF() && Subtarget
.is64Bit())
349 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
351 if (Subtarget
.hasStdExtD()) {
352 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
353 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
354 setOperationAction(ISD::LRINT
, MVT::f64
, Legal
);
355 setOperationAction(ISD::LLRINT
, MVT::f64
, Legal
);
356 setOperationAction(ISD::LROUND
, MVT::f64
, Legal
);
357 setOperationAction(ISD::LLROUND
, MVT::f64
, Legal
);
358 for (auto CC
: FPCCToExpand
)
359 setCondCodeAction(CC
, MVT::f64
, Expand
);
360 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
361 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
362 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
363 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
364 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
365 for (auto Op
: FPOpToExpand
)
366 setOperationAction(Op
, MVT::f64
, Expand
);
367 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
368 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
371 if (Subtarget
.is64Bit()) {
372 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
373 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
374 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i32
, Custom
);
375 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i32
, Custom
);
378 if (Subtarget
.hasStdExtF()) {
379 setOperationAction(ISD::FP_TO_UINT_SAT
, XLenVT
, Custom
);
380 setOperationAction(ISD::FP_TO_SINT_SAT
, XLenVT
, Custom
);
382 setOperationAction(ISD::FLT_ROUNDS_
, XLenVT
, Custom
);
383 setOperationAction(ISD::SET_ROUNDING
, MVT::Other
, Custom
);
386 setOperationAction(ISD::GlobalAddress
, XLenVT
, Custom
);
387 setOperationAction(ISD::BlockAddress
, XLenVT
, Custom
);
388 setOperationAction(ISD::ConstantPool
, XLenVT
, Custom
);
389 setOperationAction(ISD::JumpTable
, XLenVT
, Custom
);
391 setOperationAction(ISD::GlobalTLSAddress
, XLenVT
, Custom
);
393 // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
394 // Unfortunately this can't be determined just from the ISA naming string.
395 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
,
396 Subtarget
.is64Bit() ? Legal
: Custom
);
398 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
399 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
400 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
401 if (Subtarget
.is64Bit())
402 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i32
, Custom
);
404 if (Subtarget
.hasStdExtA()) {
405 setMaxAtomicSizeInBitsSupported(Subtarget
.getXLen());
406 setMinCmpXchgSizeInBits(32);
408 setMaxAtomicSizeInBitsSupported(0);
411 setBooleanContents(ZeroOrOneBooleanContent
);
413 if (Subtarget
.hasStdExtV()) {
414 setBooleanVectorContents(ZeroOrOneBooleanContent
);
416 setOperationAction(ISD::VSCALE
, XLenVT
, Custom
);
418 // RVV intrinsics may have illegal operands.
419 // We also need to custom legalize vmv.x.s.
420 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i8
, Custom
);
421 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i16
, Custom
);
422 setOperationAction(ISD::INTRINSIC_W_CHAIN
, MVT::i8
, Custom
);
423 setOperationAction(ISD::INTRINSIC_W_CHAIN
, MVT::i16
, Custom
);
424 if (Subtarget
.is64Bit()) {
425 setOperationAction(ISD::INTRINSIC_W_CHAIN
, MVT::i32
, Custom
);
427 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
428 setOperationAction(ISD::INTRINSIC_W_CHAIN
, MVT::i64
, Custom
);
431 setOperationAction(ISD::INTRINSIC_W_CHAIN
, MVT::Other
, Custom
);
433 static unsigned IntegerVPOps
[] = {
434 ISD::VP_ADD
, ISD::VP_SUB
, ISD::VP_MUL
, ISD::VP_SDIV
, ISD::VP_UDIV
,
435 ISD::VP_SREM
, ISD::VP_UREM
, ISD::VP_AND
, ISD::VP_OR
, ISD::VP_XOR
,
436 ISD::VP_ASHR
, ISD::VP_LSHR
, ISD::VP_SHL
};
438 static unsigned FloatingPointVPOps
[] = {ISD::VP_FADD
, ISD::VP_FSUB
,
439 ISD::VP_FMUL
, ISD::VP_FDIV
};
441 if (!Subtarget
.is64Bit()) {
442 // We must custom-lower certain vXi64 operations on RV32 due to the vector
443 // element type being illegal.
444 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::i64
, Custom
);
445 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::i64
, Custom
);
447 setOperationAction(ISD::VECREDUCE_ADD
, MVT::i64
, Custom
);
448 setOperationAction(ISD::VECREDUCE_AND
, MVT::i64
, Custom
);
449 setOperationAction(ISD::VECREDUCE_OR
, MVT::i64
, Custom
);
450 setOperationAction(ISD::VECREDUCE_XOR
, MVT::i64
, Custom
);
451 setOperationAction(ISD::VECREDUCE_SMAX
, MVT::i64
, Custom
);
452 setOperationAction(ISD::VECREDUCE_SMIN
, MVT::i64
, Custom
);
453 setOperationAction(ISD::VECREDUCE_UMAX
, MVT::i64
, Custom
);
454 setOperationAction(ISD::VECREDUCE_UMIN
, MVT::i64
, Custom
);
457 for (MVT VT
: BoolVecVTs
) {
458 setOperationAction(ISD::SPLAT_VECTOR
, VT
, Custom
);
460 // Mask VTs are custom-expanded into a series of standard nodes
461 setOperationAction(ISD::TRUNCATE
, VT
, Custom
);
462 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
463 setOperationAction(ISD::INSERT_SUBVECTOR
, VT
, Custom
);
464 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
466 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
467 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
469 setOperationAction(ISD::SELECT
, VT
, Custom
);
470 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
471 setOperationAction(ISD::VSELECT
, VT
, Expand
);
473 setOperationAction(ISD::VECREDUCE_AND
, VT
, Custom
);
474 setOperationAction(ISD::VECREDUCE_OR
, VT
, Custom
);
475 setOperationAction(ISD::VECREDUCE_XOR
, VT
, Custom
);
477 // RVV has native int->float & float->int conversions where the
478 // element type sizes are within one power-of-two of each other. Any
479 // wider distances between type sizes have to be lowered as sequences
480 // which progressively narrow the gap in stages.
481 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
482 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
483 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
484 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
486 // Expand all extending loads to types larger than this, and truncating
487 // stores from types larger than this.
488 for (MVT OtherVT
: MVT::integer_scalable_vector_valuetypes()) {
489 setTruncStoreAction(OtherVT
, VT
, Expand
);
490 setLoadExtAction(ISD::EXTLOAD
, OtherVT
, VT
, Expand
);
491 setLoadExtAction(ISD::SEXTLOAD
, OtherVT
, VT
, Expand
);
492 setLoadExtAction(ISD::ZEXTLOAD
, OtherVT
, VT
, Expand
);
496 for (MVT VT
: IntVecVTs
) {
497 setOperationAction(ISD::SPLAT_VECTOR
, VT
, Legal
);
498 setOperationAction(ISD::SPLAT_VECTOR_PARTS
, VT
, Custom
);
500 setOperationAction(ISD::SMIN
, VT
, Legal
);
501 setOperationAction(ISD::SMAX
, VT
, Legal
);
502 setOperationAction(ISD::UMIN
, VT
, Legal
);
503 setOperationAction(ISD::UMAX
, VT
, Legal
);
505 setOperationAction(ISD::ROTL
, VT
, Expand
);
506 setOperationAction(ISD::ROTR
, VT
, Expand
);
508 // Custom-lower extensions and truncations from/to mask types.
509 setOperationAction(ISD::ANY_EXTEND
, VT
, Custom
);
510 setOperationAction(ISD::SIGN_EXTEND
, VT
, Custom
);
511 setOperationAction(ISD::ZERO_EXTEND
, VT
, Custom
);
513 // RVV has native int->float & float->int conversions where the
514 // element type sizes are within one power-of-two of each other. Any
515 // wider distances between type sizes have to be lowered as sequences
516 // which progressively narrow the gap in stages.
517 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
518 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
519 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
520 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
522 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
523 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
524 setOperationAction(ISD::SSUBSAT
, VT
, Legal
);
525 setOperationAction(ISD::USUBSAT
, VT
, Legal
);
527 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
528 // nodes which truncate by one power of two at a time.
529 setOperationAction(ISD::TRUNCATE
, VT
, Custom
);
531 // Custom-lower insert/extract operations to simplify patterns.
532 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
533 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
535 // Custom-lower reduction operations to set up the corresponding custom
537 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Custom
);
538 setOperationAction(ISD::VECREDUCE_AND
, VT
, Custom
);
539 setOperationAction(ISD::VECREDUCE_OR
, VT
, Custom
);
540 setOperationAction(ISD::VECREDUCE_XOR
, VT
, Custom
);
541 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Custom
);
542 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Custom
);
543 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Custom
);
544 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Custom
);
546 for (unsigned VPOpc
: IntegerVPOps
)
547 setOperationAction(VPOpc
, VT
, Custom
);
549 setOperationAction(ISD::LOAD
, VT
, Custom
);
550 setOperationAction(ISD::STORE
, VT
, Custom
);
552 setOperationAction(ISD::MLOAD
, VT
, Custom
);
553 setOperationAction(ISD::MSTORE
, VT
, Custom
);
554 setOperationAction(ISD::MGATHER
, VT
, Custom
);
555 setOperationAction(ISD::MSCATTER
, VT
, Custom
);
557 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
558 setOperationAction(ISD::INSERT_SUBVECTOR
, VT
, Custom
);
559 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
561 setOperationAction(ISD::SELECT
, VT
, Custom
);
562 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
564 setOperationAction(ISD::STEP_VECTOR
, VT
, Custom
);
565 setOperationAction(ISD::VECTOR_REVERSE
, VT
, Custom
);
567 for (MVT OtherVT
: MVT::integer_scalable_vector_valuetypes()) {
568 setTruncStoreAction(VT
, OtherVT
, Expand
);
569 setLoadExtAction(ISD::EXTLOAD
, OtherVT
, VT
, Expand
);
570 setLoadExtAction(ISD::SEXTLOAD
, OtherVT
, VT
, Expand
);
571 setLoadExtAction(ISD::ZEXTLOAD
, OtherVT
, VT
, Expand
);
575 // Expand various CCs to best match the RVV ISA, which natively supports UNE
576 // but no other unordered comparisons, and supports all ordered comparisons
577 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
578 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
579 // and we pattern-match those back to the "original", swapping operands once
580 // more. This way we catch both operations and both "vf" and "fv" forms with
582 ISD::CondCode VFPCCToExpand
[] = {
583 ISD::SETO
, ISD::SETONE
, ISD::SETUEQ
, ISD::SETUGT
,
584 ISD::SETUGE
, ISD::SETULT
, ISD::SETULE
, ISD::SETUO
,
585 ISD::SETGT
, ISD::SETOGT
, ISD::SETGE
, ISD::SETOGE
,
588 // Sets common operation actions on RVV floating-point vector types.
589 const auto SetCommonVFPActions
= [&](MVT VT
) {
590 setOperationAction(ISD::SPLAT_VECTOR
, VT
, Legal
);
591 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
592 // sizes are within one power-of-two of each other. Therefore conversions
593 // between vXf16 and vXf64 must be lowered as sequences which convert via
595 setOperationAction(ISD::FP_ROUND
, VT
, Custom
);
596 setOperationAction(ISD::FP_EXTEND
, VT
, Custom
);
597 // Custom-lower insert/extract operations to simplify patterns.
598 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
599 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
600 // Expand various condition codes (explained above).
601 for (auto CC
: VFPCCToExpand
)
602 setCondCodeAction(CC
, VT
, Expand
);
604 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
605 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
607 setOperationAction(ISD::VECREDUCE_FADD
, VT
, Custom
);
608 setOperationAction(ISD::VECREDUCE_SEQ_FADD
, VT
, Custom
);
609 setOperationAction(ISD::VECREDUCE_FMIN
, VT
, Custom
);
610 setOperationAction(ISD::VECREDUCE_FMAX
, VT
, Custom
);
611 setOperationAction(ISD::FCOPYSIGN
, VT
, Legal
);
613 setOperationAction(ISD::LOAD
, VT
, Custom
);
614 setOperationAction(ISD::STORE
, VT
, Custom
);
616 setOperationAction(ISD::MLOAD
, VT
, Custom
);
617 setOperationAction(ISD::MSTORE
, VT
, Custom
);
618 setOperationAction(ISD::MGATHER
, VT
, Custom
);
619 setOperationAction(ISD::MSCATTER
, VT
, Custom
);
621 setOperationAction(ISD::SELECT
, VT
, Custom
);
622 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
624 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
625 setOperationAction(ISD::INSERT_SUBVECTOR
, VT
, Custom
);
626 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
628 setOperationAction(ISD::VECTOR_REVERSE
, VT
, Custom
);
630 for (unsigned VPOpc
: FloatingPointVPOps
)
631 setOperationAction(VPOpc
, VT
, Custom
);
634 // Sets common extload/truncstore actions on RVV floating-point vector
636 const auto SetCommonVFPExtLoadTruncStoreActions
=
637 [&](MVT VT
, ArrayRef
<MVT::SimpleValueType
> SmallerVTs
) {
638 for (auto SmallVT
: SmallerVTs
) {
639 setTruncStoreAction(VT
, SmallVT
, Expand
);
640 setLoadExtAction(ISD::EXTLOAD
, VT
, SmallVT
, Expand
);
644 if (Subtarget
.hasStdExtZfh())
645 for (MVT VT
: F16VecVTs
)
646 SetCommonVFPActions(VT
);
648 for (MVT VT
: F32VecVTs
) {
649 if (Subtarget
.hasStdExtF())
650 SetCommonVFPActions(VT
);
651 SetCommonVFPExtLoadTruncStoreActions(VT
, F16VecVTs
);
654 for (MVT VT
: F64VecVTs
) {
655 if (Subtarget
.hasStdExtD())
656 SetCommonVFPActions(VT
);
657 SetCommonVFPExtLoadTruncStoreActions(VT
, F16VecVTs
);
658 SetCommonVFPExtLoadTruncStoreActions(VT
, F32VecVTs
);
661 if (Subtarget
.useRVVForFixedLengthVectors()) {
662 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
663 if (!useRVVForFixedLengthVectorVT(VT
))
666 // By default everything must be expanded.
667 for (unsigned Op
= 0; Op
< ISD::BUILTIN_OP_END
; ++Op
)
668 setOperationAction(Op
, VT
, Expand
);
669 for (MVT OtherVT
: MVT::integer_fixedlen_vector_valuetypes()) {
670 setTruncStoreAction(VT
, OtherVT
, Expand
);
671 setLoadExtAction(ISD::EXTLOAD
, OtherVT
, VT
, Expand
);
672 setLoadExtAction(ISD::SEXTLOAD
, OtherVT
, VT
, Expand
);
673 setLoadExtAction(ISD::ZEXTLOAD
, OtherVT
, VT
, Expand
);
676 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
677 setOperationAction(ISD::INSERT_SUBVECTOR
, VT
, Custom
);
678 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
680 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
681 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
683 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
684 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
686 setOperationAction(ISD::LOAD
, VT
, Custom
);
687 setOperationAction(ISD::STORE
, VT
, Custom
);
689 setOperationAction(ISD::SETCC
, VT
, Custom
);
691 setOperationAction(ISD::SELECT
, VT
, Custom
);
693 setOperationAction(ISD::TRUNCATE
, VT
, Custom
);
695 setOperationAction(ISD::BITCAST
, VT
, Custom
);
697 setOperationAction(ISD::VECREDUCE_AND
, VT
, Custom
);
698 setOperationAction(ISD::VECREDUCE_OR
, VT
, Custom
);
699 setOperationAction(ISD::VECREDUCE_XOR
, VT
, Custom
);
701 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
702 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
703 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
704 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
706 // Operations below are different for between masks and other vectors.
707 if (VT
.getVectorElementType() == MVT::i1
) {
708 setOperationAction(ISD::AND
, VT
, Custom
);
709 setOperationAction(ISD::OR
, VT
, Custom
);
710 setOperationAction(ISD::XOR
, VT
, Custom
);
714 // Use SPLAT_VECTOR to prevent type legalization from destroying the
715 // splats when type legalizing i64 scalar on RV32.
716 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
717 // improvements first.
718 if (!Subtarget
.is64Bit() && VT
.getVectorElementType() == MVT::i64
) {
719 setOperationAction(ISD::SPLAT_VECTOR
, VT
, Custom
);
720 setOperationAction(ISD::SPLAT_VECTOR_PARTS
, VT
, Custom
);
723 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
724 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
726 setOperationAction(ISD::MLOAD
, VT
, Custom
);
727 setOperationAction(ISD::MSTORE
, VT
, Custom
);
728 setOperationAction(ISD::MGATHER
, VT
, Custom
);
729 setOperationAction(ISD::MSCATTER
, VT
, Custom
);
730 setOperationAction(ISD::ADD
, VT
, Custom
);
731 setOperationAction(ISD::MUL
, VT
, Custom
);
732 setOperationAction(ISD::SUB
, VT
, Custom
);
733 setOperationAction(ISD::AND
, VT
, Custom
);
734 setOperationAction(ISD::OR
, VT
, Custom
);
735 setOperationAction(ISD::XOR
, VT
, Custom
);
736 setOperationAction(ISD::SDIV
, VT
, Custom
);
737 setOperationAction(ISD::SREM
, VT
, Custom
);
738 setOperationAction(ISD::UDIV
, VT
, Custom
);
739 setOperationAction(ISD::UREM
, VT
, Custom
);
740 setOperationAction(ISD::SHL
, VT
, Custom
);
741 setOperationAction(ISD::SRA
, VT
, Custom
);
742 setOperationAction(ISD::SRL
, VT
, Custom
);
744 setOperationAction(ISD::SMIN
, VT
, Custom
);
745 setOperationAction(ISD::SMAX
, VT
, Custom
);
746 setOperationAction(ISD::UMIN
, VT
, Custom
);
747 setOperationAction(ISD::UMAX
, VT
, Custom
);
748 setOperationAction(ISD::ABS
, VT
, Custom
);
750 setOperationAction(ISD::MULHS
, VT
, Custom
);
751 setOperationAction(ISD::MULHU
, VT
, Custom
);
753 setOperationAction(ISD::SADDSAT
, VT
, Custom
);
754 setOperationAction(ISD::UADDSAT
, VT
, Custom
);
755 setOperationAction(ISD::SSUBSAT
, VT
, Custom
);
756 setOperationAction(ISD::USUBSAT
, VT
, Custom
);
758 setOperationAction(ISD::VSELECT
, VT
, Custom
);
759 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
761 setOperationAction(ISD::ANY_EXTEND
, VT
, Custom
);
762 setOperationAction(ISD::SIGN_EXTEND
, VT
, Custom
);
763 setOperationAction(ISD::ZERO_EXTEND
, VT
, Custom
);
765 // Custom-lower reduction operations to set up the corresponding custom
767 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Custom
);
768 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Custom
);
769 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Custom
);
770 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Custom
);
771 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Custom
);
773 for (unsigned VPOpc
: IntegerVPOps
)
774 setOperationAction(VPOpc
, VT
, Custom
);
777 for (MVT VT
: MVT::fp_fixedlen_vector_valuetypes()) {
778 if (!useRVVForFixedLengthVectorVT(VT
))
781 // By default everything must be expanded.
782 for (unsigned Op
= 0; Op
< ISD::BUILTIN_OP_END
; ++Op
)
783 setOperationAction(Op
, VT
, Expand
);
784 for (MVT OtherVT
: MVT::fp_fixedlen_vector_valuetypes()) {
785 setLoadExtAction(ISD::EXTLOAD
, OtherVT
, VT
, Expand
);
786 setTruncStoreAction(VT
, OtherVT
, Expand
);
789 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
790 setOperationAction(ISD::INSERT_SUBVECTOR
, VT
, Custom
);
791 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
793 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
794 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
795 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
796 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
798 setOperationAction(ISD::LOAD
, VT
, Custom
);
799 setOperationAction(ISD::STORE
, VT
, Custom
);
800 setOperationAction(ISD::MLOAD
, VT
, Custom
);
801 setOperationAction(ISD::MSTORE
, VT
, Custom
);
802 setOperationAction(ISD::MGATHER
, VT
, Custom
);
803 setOperationAction(ISD::MSCATTER
, VT
, Custom
);
804 setOperationAction(ISD::FADD
, VT
, Custom
);
805 setOperationAction(ISD::FSUB
, VT
, Custom
);
806 setOperationAction(ISD::FMUL
, VT
, Custom
);
807 setOperationAction(ISD::FDIV
, VT
, Custom
);
808 setOperationAction(ISD::FNEG
, VT
, Custom
);
809 setOperationAction(ISD::FABS
, VT
, Custom
);
810 setOperationAction(ISD::FCOPYSIGN
, VT
, Custom
);
811 setOperationAction(ISD::FSQRT
, VT
, Custom
);
812 setOperationAction(ISD::FMA
, VT
, Custom
);
813 setOperationAction(ISD::FMINNUM
, VT
, Custom
);
814 setOperationAction(ISD::FMAXNUM
, VT
, Custom
);
816 setOperationAction(ISD::FP_ROUND
, VT
, Custom
);
817 setOperationAction(ISD::FP_EXTEND
, VT
, Custom
);
819 for (auto CC
: VFPCCToExpand
)
820 setCondCodeAction(CC
, VT
, Expand
);
822 setOperationAction(ISD::VSELECT
, VT
, Custom
);
823 setOperationAction(ISD::SELECT
, VT
, Custom
);
824 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
826 setOperationAction(ISD::BITCAST
, VT
, Custom
);
828 setOperationAction(ISD::VECREDUCE_FADD
, VT
, Custom
);
829 setOperationAction(ISD::VECREDUCE_SEQ_FADD
, VT
, Custom
);
830 setOperationAction(ISD::VECREDUCE_FMIN
, VT
, Custom
);
831 setOperationAction(ISD::VECREDUCE_FMAX
, VT
, Custom
);
833 for (unsigned VPOpc
: FloatingPointVPOps
)
834 setOperationAction(VPOpc
, VT
, Custom
);
837 // Custom-legalize bitcasts from fixed-length vectors to scalar types.
838 setOperationAction(ISD::BITCAST
, MVT::i8
, Custom
);
839 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
840 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
841 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
842 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
843 setOperationAction(ISD::BITCAST
, MVT::f32
, Custom
);
844 setOperationAction(ISD::BITCAST
, MVT::f64
, Custom
);
848 // Function alignments.
849 const Align
FunctionAlignment(Subtarget
.hasStdExtC() ? 2 : 4);
850 setMinFunctionAlignment(FunctionAlignment
);
851 setPrefFunctionAlignment(FunctionAlignment
);
853 setMinimumJumpTableEntries(5);
855 // Jumps are expensive, compared to logic
856 setJumpIsExpensive();
858 // We can use any register for comparisons
859 setHasMultipleConditionRegisters();
861 setTargetDAGCombine(ISD::ADD
);
862 setTargetDAGCombine(ISD::SUB
);
863 setTargetDAGCombine(ISD::AND
);
864 setTargetDAGCombine(ISD::OR
);
865 setTargetDAGCombine(ISD::XOR
);
866 setTargetDAGCombine(ISD::ANY_EXTEND
);
867 setTargetDAGCombine(ISD::ZERO_EXTEND
);
868 if (Subtarget
.hasStdExtV()) {
869 setTargetDAGCombine(ISD::FCOPYSIGN
);
870 setTargetDAGCombine(ISD::MGATHER
);
871 setTargetDAGCombine(ISD::MSCATTER
);
872 setTargetDAGCombine(ISD::SRA
);
873 setTargetDAGCombine(ISD::SRL
);
874 setTargetDAGCombine(ISD::SHL
);
878 EVT
RISCVTargetLowering::getSetCCResultType(const DataLayout
&DL
,
879 LLVMContext
&Context
,
882 return getPointerTy(DL
);
883 if (Subtarget
.hasStdExtV() &&
884 (VT
.isScalableVector() || Subtarget
.useRVVForFixedLengthVectors()))
885 return EVT::getVectorVT(Context
, MVT::i1
, VT
.getVectorElementCount());
886 return VT
.changeVectorElementTypeToInteger();
889 MVT
RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
890 return Subtarget
.getXLenVT();
893 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
896 unsigned Intrinsic
) const {
900 case Intrinsic::riscv_masked_atomicrmw_xchg_i32
:
901 case Intrinsic::riscv_masked_atomicrmw_add_i32
:
902 case Intrinsic::riscv_masked_atomicrmw_sub_i32
:
903 case Intrinsic::riscv_masked_atomicrmw_nand_i32
:
904 case Intrinsic::riscv_masked_atomicrmw_max_i32
:
905 case Intrinsic::riscv_masked_atomicrmw_min_i32
:
906 case Intrinsic::riscv_masked_atomicrmw_umax_i32
:
907 case Intrinsic::riscv_masked_atomicrmw_umin_i32
:
908 case Intrinsic::riscv_masked_cmpxchg_i32
: {
909 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
910 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
911 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
912 Info
.ptrVal
= I
.getArgOperand(0);
914 Info
.align
= Align(4);
915 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
|
916 MachineMemOperand::MOVolatile
;
922 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
923 const AddrMode
&AM
, Type
*Ty
,
925 Instruction
*I
) const {
926 // No global is ever allowed as a base.
930 // Require a 12-bit signed offset.
931 if (!isInt
<12>(AM
.BaseOffs
))
935 case 0: // "r+i" or just "i", depending on HasBaseReg.
938 if (!AM
.HasBaseReg
) // allow "r+i".
940 return false; // disallow "r+r" or "r+r+i".
948 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
949 return isInt
<12>(Imm
);
952 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
953 return isInt
<12>(Imm
);
956 // On RV32, 64-bit integers are split into their high and low parts and held
957 // in two different registers, so the trunc is free since the low register can
959 bool RISCVTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
960 if (Subtarget
.is64Bit() || !SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
962 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
963 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
964 return (SrcBits
== 64 && DestBits
== 32);
967 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
968 if (Subtarget
.is64Bit() || SrcVT
.isVector() || DstVT
.isVector() ||
969 !SrcVT
.isInteger() || !DstVT
.isInteger())
971 unsigned SrcBits
= SrcVT
.getSizeInBits();
972 unsigned DestBits
= DstVT
.getSizeInBits();
973 return (SrcBits
== 64 && DestBits
== 32);
976 bool RISCVTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
977 // Zexts are free if they can be combined with a load.
978 if (auto *LD
= dyn_cast
<LoadSDNode
>(Val
)) {
979 EVT MemVT
= LD
->getMemoryVT();
980 if ((MemVT
== MVT::i8
|| MemVT
== MVT::i16
||
981 (Subtarget
.is64Bit() && MemVT
== MVT::i32
)) &&
982 (LD
->getExtensionType() == ISD::NON_EXTLOAD
||
983 LD
->getExtensionType() == ISD::ZEXTLOAD
))
987 return TargetLowering::isZExtFree(Val
, VT2
);
990 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT
, EVT DstVT
) const {
991 return Subtarget
.is64Bit() && SrcVT
== MVT::i32
&& DstVT
== MVT::i64
;
994 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
995 return Subtarget
.hasStdExtZbb();
998 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
999 return Subtarget
.hasStdExtZbb();
1002 bool RISCVTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
1003 bool ForCodeSize
) const {
1004 if (VT
== MVT::f16
&& !Subtarget
.hasStdExtZfh())
1006 if (VT
== MVT::f32
&& !Subtarget
.hasStdExtF())
1008 if (VT
== MVT::f64
&& !Subtarget
.hasStdExtD())
1010 if (Imm
.isNegZero())
1012 return Imm
.isZero();
1015 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT
) const {
1016 return (VT
== MVT::f16
&& Subtarget
.hasStdExtZfh()) ||
1017 (VT
== MVT::f32
&& Subtarget
.hasStdExtF()) ||
1018 (VT
== MVT::f64
&& Subtarget
.hasStdExtD());
1021 MVT
RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
1024 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1025 // end up using a GPR but that will be decided based on ABI.
1026 if (VT
== MVT::f16
&& Subtarget
.hasStdExtF() && !Subtarget
.hasStdExtZfh())
1029 return TargetLowering::getRegisterTypeForCallingConv(Context
, CC
, VT
);
1032 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
1035 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1036 // end up using a GPR but that will be decided based on ABI.
1037 if (VT
== MVT::f16
&& Subtarget
.hasStdExtF() && !Subtarget
.hasStdExtZfh())
1040 return TargetLowering::getNumRegistersForCallingConv(Context
, CC
, VT
);
1043 // Changes the condition code and swaps operands if necessary, so the SetCC
1044 // operation matches one of the comparisons supported directly by branches
1045 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1047 static void translateSetCCForBranch(const SDLoc
&DL
, SDValue
&LHS
, SDValue
&RHS
,
1048 ISD::CondCode
&CC
, SelectionDAG
&DAG
) {
1049 // Convert X > -1 to X >= 0.
1050 if (CC
== ISD::SETGT
&& isAllOnesConstant(RHS
)) {
1051 RHS
= DAG
.getConstant(0, DL
, RHS
.getValueType());
1055 // Convert X < 1 to 0 >= X.
1056 if (CC
== ISD::SETLT
&& isOneConstant(RHS
)) {
1058 LHS
= DAG
.getConstant(0, DL
, RHS
.getValueType());
1070 CC
= ISD::getSetCCSwappedOperands(CC
);
1071 std::swap(LHS
, RHS
);
1076 RISCVII::VLMUL
RISCVTargetLowering::getLMUL(MVT VT
) {
1077 assert(VT
.isScalableVector() && "Expecting a scalable vector type");
1078 unsigned KnownSize
= VT
.getSizeInBits().getKnownMinValue();
1079 if (VT
.getVectorElementType() == MVT::i1
)
1082 switch (KnownSize
) {
1084 llvm_unreachable("Invalid LMUL.");
1086 return RISCVII::VLMUL::LMUL_F8
;
1088 return RISCVII::VLMUL::LMUL_F4
;
1090 return RISCVII::VLMUL::LMUL_F2
;
1092 return RISCVII::VLMUL::LMUL_1
;
1094 return RISCVII::VLMUL::LMUL_2
;
1096 return RISCVII::VLMUL::LMUL_4
;
1098 return RISCVII::VLMUL::LMUL_8
;
1102 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul
) {
1105 llvm_unreachable("Invalid LMUL.");
1106 case RISCVII::VLMUL::LMUL_F8
:
1107 case RISCVII::VLMUL::LMUL_F4
:
1108 case RISCVII::VLMUL::LMUL_F2
:
1109 case RISCVII::VLMUL::LMUL_1
:
1110 return RISCV::VRRegClassID
;
1111 case RISCVII::VLMUL::LMUL_2
:
1112 return RISCV::VRM2RegClassID
;
1113 case RISCVII::VLMUL::LMUL_4
:
1114 return RISCV::VRM4RegClassID
;
1115 case RISCVII::VLMUL::LMUL_8
:
1116 return RISCV::VRM8RegClassID
;
1120 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT
, unsigned Index
) {
1121 RISCVII::VLMUL LMUL
= getLMUL(VT
);
1122 if (LMUL
== RISCVII::VLMUL::LMUL_F8
||
1123 LMUL
== RISCVII::VLMUL::LMUL_F4
||
1124 LMUL
== RISCVII::VLMUL::LMUL_F2
||
1125 LMUL
== RISCVII::VLMUL::LMUL_1
) {
1126 static_assert(RISCV::sub_vrm1_7
== RISCV::sub_vrm1_0
+ 7,
1127 "Unexpected subreg numbering");
1128 return RISCV::sub_vrm1_0
+ Index
;
1130 if (LMUL
== RISCVII::VLMUL::LMUL_2
) {
1131 static_assert(RISCV::sub_vrm2_3
== RISCV::sub_vrm2_0
+ 3,
1132 "Unexpected subreg numbering");
1133 return RISCV::sub_vrm2_0
+ Index
;
1135 if (LMUL
== RISCVII::VLMUL::LMUL_4
) {
1136 static_assert(RISCV::sub_vrm4_1
== RISCV::sub_vrm4_0
+ 1,
1137 "Unexpected subreg numbering");
1138 return RISCV::sub_vrm4_0
+ Index
;
1140 llvm_unreachable("Invalid vector type.");
1143 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT
) {
1144 if (VT
.getVectorElementType() == MVT::i1
)
1145 return RISCV::VRRegClassID
;
1146 return getRegClassIDForLMUL(getLMUL(VT
));
1149 // Attempt to decompose a subvector insert/extract between VecVT and
1150 // SubVecVT via subregister indices. Returns the subregister index that
1151 // can perform the subvector insert/extract with the given element index, as
1152 // well as the index corresponding to any leftover subvectors that must be
1153 // further inserted/extracted within the register class for SubVecVT.
1154 std::pair
<unsigned, unsigned>
1155 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1156 MVT VecVT
, MVT SubVecVT
, unsigned InsertExtractIdx
,
1157 const RISCVRegisterInfo
*TRI
) {
1158 static_assert((RISCV::VRM8RegClassID
> RISCV::VRM4RegClassID
&&
1159 RISCV::VRM4RegClassID
> RISCV::VRM2RegClassID
&&
1160 RISCV::VRM2RegClassID
> RISCV::VRRegClassID
),
1161 "Register classes not ordered");
1162 unsigned VecRegClassID
= getRegClassIDForVecVT(VecVT
);
1163 unsigned SubRegClassID
= getRegClassIDForVecVT(SubVecVT
);
1164 // Try to compose a subregister index that takes us from the incoming
1165 // LMUL>1 register class down to the outgoing one. At each step we half
1167 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1168 // Note that this is not guaranteed to find a subregister index, such as
1169 // when we are extracting from one VR type to another.
1170 unsigned SubRegIdx
= RISCV::NoSubRegister
;
1171 for (const unsigned RCID
:
1172 {RISCV::VRM4RegClassID
, RISCV::VRM2RegClassID
, RISCV::VRRegClassID
})
1173 if (VecRegClassID
> RCID
&& SubRegClassID
<= RCID
) {
1174 VecVT
= VecVT
.getHalfNumVectorElementsVT();
1176 InsertExtractIdx
>= VecVT
.getVectorElementCount().getKnownMinValue();
1177 SubRegIdx
= TRI
->composeSubRegIndices(SubRegIdx
,
1178 getSubregIndexByMVT(VecVT
, IsHi
));
1180 InsertExtractIdx
-= VecVT
.getVectorElementCount().getKnownMinValue();
1182 return {SubRegIdx
, InsertExtractIdx
};
1185 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1186 // stores for those types.
1187 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT
) const {
1188 return !Subtarget
.useRVVForFixedLengthVectors() ||
1189 (VT
.isFixedLengthVector() && VT
.getVectorElementType() == MVT::i1
);
1192 static bool useRVVForFixedLengthVectorVT(MVT VT
,
1193 const RISCVSubtarget
&Subtarget
) {
1194 assert(VT
.isFixedLengthVector() && "Expected a fixed length vector type!");
1195 if (!Subtarget
.useRVVForFixedLengthVectors())
1198 // We only support a set of vector types with a consistent maximum fixed size
1199 // across all supported vector element types to avoid legalization issues.
1200 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1201 // fixed-length vector type we support is 1024 bytes.
1202 if (VT
.getFixedSizeInBits() > 1024 * 8)
1205 unsigned MinVLen
= Subtarget
.getMinRVVVectorSizeInBits();
1207 // Don't use RVV for vectors we cannot scalarize if required.
1208 switch (VT
.getVectorElementType().SimpleTy
) {
1209 // i1 is supported but has different rules.
1213 // Masks can only use a single register.
1214 if (VT
.getVectorNumElements() > MinVLen
)
1224 if (!Subtarget
.hasStdExtZfh())
1228 if (!Subtarget
.hasStdExtF())
1232 if (!Subtarget
.hasStdExtD())
1237 unsigned LMul
= divideCeil(VT
.getSizeInBits(), MinVLen
);
1238 // Don't use RVV for types that don't fit.
1239 if (LMul
> Subtarget
.getMaxLMULForFixedLengthVectors())
1242 // TODO: Perhaps an artificial restriction, but worth having whilst getting
1243 // the base fixed length RVV support in place.
1244 if (!VT
.isPow2VectorType())
1250 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT
) const {
1251 return ::useRVVForFixedLengthVectorVT(VT
, Subtarget
);
1254 // Return the largest legal scalable vector type that matches VT's element type.
1255 static MVT
getContainerForFixedLengthVector(const TargetLowering
&TLI
, MVT VT
,
1256 const RISCVSubtarget
&Subtarget
) {
1257 // This may be called before legal types are setup.
1258 assert(((VT
.isFixedLengthVector() && TLI
.isTypeLegal(VT
)) ||
1259 useRVVForFixedLengthVectorVT(VT
, Subtarget
)) &&
1260 "Expected legal fixed length vector!");
1262 unsigned MinVLen
= Subtarget
.getMinRVVVectorSizeInBits();
1264 MVT EltVT
= VT
.getVectorElementType();
1265 switch (EltVT
.SimpleTy
) {
1267 llvm_unreachable("unexpected element type for RVV container");
1276 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1277 // narrower types, but we can't have a fractional LMUL with demoninator less
1280 divideCeil(VT
.getVectorNumElements(), MinVLen
/ RISCV::RVVBitsPerBlock
);
1281 return MVT::getScalableVectorVT(EltVT
, NumElts
);
1286 static MVT
getContainerForFixedLengthVector(SelectionDAG
&DAG
, MVT VT
,
1287 const RISCVSubtarget
&Subtarget
) {
1288 return getContainerForFixedLengthVector(DAG
.getTargetLoweringInfo(), VT
,
1292 MVT
RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT
) const {
1293 return ::getContainerForFixedLengthVector(*this, VT
, getSubtarget());
1296 // Grow V to consume an entire RVV register.
1297 static SDValue
convertToScalableVector(EVT VT
, SDValue V
, SelectionDAG
&DAG
,
1298 const RISCVSubtarget
&Subtarget
) {
1299 assert(VT
.isScalableVector() &&
1300 "Expected to convert into a scalable vector!");
1301 assert(V
.getValueType().isFixedLengthVector() &&
1302 "Expected a fixed length vector operand!");
1304 SDValue Zero
= DAG
.getConstant(0, DL
, Subtarget
.getXLenVT());
1305 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, DAG
.getUNDEF(VT
), V
, Zero
);
1308 // Shrink V so it's just big enough to maintain a VT's worth of data.
1309 static SDValue
convertFromScalableVector(EVT VT
, SDValue V
, SelectionDAG
&DAG
,
1310 const RISCVSubtarget
&Subtarget
) {
1311 assert(VT
.isFixedLengthVector() &&
1312 "Expected to convert into a fixed length vector!");
1313 assert(V
.getValueType().isScalableVector() &&
1314 "Expected a scalable vector operand!");
1316 SDValue Zero
= DAG
.getConstant(0, DL
, Subtarget
.getXLenVT());
1317 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, V
, Zero
);
1320 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1321 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1322 // the vector type that it is contained in.
1323 static std::pair
<SDValue
, SDValue
>
1324 getDefaultVLOps(MVT VecVT
, MVT ContainerVT
, SDLoc DL
, SelectionDAG
&DAG
,
1325 const RISCVSubtarget
&Subtarget
) {
1326 assert(ContainerVT
.isScalableVector() && "Expecting scalable container type");
1327 MVT XLenVT
= Subtarget
.getXLenVT();
1328 SDValue VL
= VecVT
.isFixedLengthVector()
1329 ? DAG
.getConstant(VecVT
.getVectorNumElements(), DL
, XLenVT
)
1330 : DAG
.getRegister(RISCV::X0
, XLenVT
);
1331 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
1332 SDValue Mask
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, MaskVT
, VL
);
1336 // As above but assuming the given type is a scalable vector type.
1337 static std::pair
<SDValue
, SDValue
>
1338 getDefaultScalableVLOps(MVT VecVT
, SDLoc DL
, SelectionDAG
&DAG
,
1339 const RISCVSubtarget
&Subtarget
) {
1340 assert(VecVT
.isScalableVector() && "Expecting a scalable vector");
1341 return getDefaultVLOps(VecVT
, VecVT
, DL
, DAG
, Subtarget
);
1344 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1345 // of either is (currently) supported. This can get us into an infinite loop
1346 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1348 // Until either (or both) of these can reliably lower any node, reporting that
1349 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1350 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1351 // which is not desirable.
1352 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1353 EVT VT
, unsigned DefinedValues
) const {
1357 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
1358 // Only splats are currently supported.
1359 if (ShuffleVectorSDNode::isSplatMask(M
.data(), VT
))
1365 static SDValue
lowerFP_TO_INT_SAT(SDValue Op
, SelectionDAG
&DAG
) {
1366 // RISCV FP-to-int conversions saturate to the destination register size, but
1367 // don't produce 0 for nan. We can use a conversion instruction and fix the
1368 // nan case with a compare and a select.
1369 SDValue Src
= Op
.getOperand(0);
1371 EVT DstVT
= Op
.getValueType();
1372 EVT SatVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1374 bool IsSigned
= Op
.getOpcode() == ISD::FP_TO_SINT_SAT
;
1377 Opc
= IsSigned
? RISCVISD::FCVT_X_RTZ
: RISCVISD::FCVT_XU_RTZ
;
1378 else if (DstVT
== MVT::i64
&& SatVT
== MVT::i32
)
1379 Opc
= IsSigned
? RISCVISD::FCVT_W_RTZ_RV64
: RISCVISD::FCVT_WU_RTZ_RV64
;
1382 // FIXME: Support other SatVTs by clamping before or after the conversion.
1385 SDValue FpToInt
= DAG
.getNode(Opc
, DL
, DstVT
, Src
);
1387 SDValue ZeroInt
= DAG
.getConstant(0, DL
, DstVT
);
1388 return DAG
.getSelectCC(DL
, Src
, Src
, ZeroInt
, FpToInt
, ISD::CondCode::SETUO
);
1391 static SDValue
lowerSPLAT_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
1392 const RISCVSubtarget
&Subtarget
) {
1393 MVT VT
= Op
.getSimpleValueType();
1394 assert(VT
.isFixedLengthVector() && "Unexpected vector!");
1396 MVT ContainerVT
= getContainerForFixedLengthVector(DAG
, VT
, Subtarget
);
1400 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
1403 VT
.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
: RISCVISD::VMV_V_X_VL
;
1404 SDValue Splat
= DAG
.getNode(Opc
, DL
, ContainerVT
, Op
.getOperand(0), VL
);
1405 return convertFromScalableVector(VT
, Splat
, DAG
, Subtarget
);
1408 struct VIDSequence
{
1409 int64_t StepNumerator
;
1410 unsigned StepDenominator
;
1414 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1415 // to the (non-zero) step S and start value X. This can be then lowered as the
1416 // RVV sequence (VID * S) + X, for example.
1417 // The step S is represented as an integer numerator divided by a positive
1418 // denominator. Note that the implementation currently only identifies
1419 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1420 // cannot detect 2/3, for example.
1421 // Note that this method will also match potentially unappealing index
1422 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1423 // determine whether this is worth generating code for.
1424 static Optional
<VIDSequence
> isSimpleVIDSequence(SDValue Op
) {
1425 unsigned NumElts
= Op
.getNumOperands();
1426 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unexpected BUILD_VECTOR");
1427 if (!Op
.getValueType().isInteger())
1430 Optional
<unsigned> SeqStepDenom
;
1431 Optional
<int64_t> SeqStepNum
, SeqAddend
;
1432 Optional
<std::pair
<uint64_t, unsigned>> PrevElt
;
1433 unsigned EltSizeInBits
= Op
.getValueType().getScalarSizeInBits();
1434 for (unsigned Idx
= 0; Idx
< NumElts
; Idx
++) {
1435 // Assume undef elements match the sequence; we just have to be careful
1436 // when interpolating across them.
1437 if (Op
.getOperand(Idx
).isUndef())
1439 // The BUILD_VECTOR must be all constants.
1440 if (!isa
<ConstantSDNode
>(Op
.getOperand(Idx
)))
1443 uint64_t Val
= Op
.getConstantOperandVal(Idx
) &
1444 maskTrailingOnes
<uint64_t>(EltSizeInBits
);
1447 // Calculate the step since the last non-undef element, and ensure
1448 // it's consistent across the entire sequence.
1449 unsigned IdxDiff
= Idx
- PrevElt
->second
;
1450 int64_t ValDiff
= SignExtend64(Val
- PrevElt
->first
, EltSizeInBits
);
1452 // A zero-value value difference means that we're somewhere in the middle
1453 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1454 // step change before evaluating the sequence.
1456 int64_t Remainder
= ValDiff
% IdxDiff
;
1457 // Normalize the step if it's greater than 1.
1458 if (Remainder
!= ValDiff
) {
1459 // The difference must cleanly divide the element span.
1467 SeqStepNum
= ValDiff
;
1468 else if (ValDiff
!= SeqStepNum
)
1472 SeqStepDenom
= IdxDiff
;
1473 else if (IdxDiff
!= *SeqStepDenom
)
1478 // Record and/or check any addend.
1479 if (SeqStepNum
&& SeqStepDenom
) {
1480 uint64_t ExpectedVal
=
1481 (int64_t)(Idx
* (uint64_t)*SeqStepNum
) / *SeqStepDenom
;
1482 int64_t Addend
= SignExtend64(Val
- ExpectedVal
, EltSizeInBits
);
1485 else if (SeqAddend
!= Addend
)
1489 // Record this non-undef element for later.
1490 if (!PrevElt
|| PrevElt
->first
!= Val
)
1491 PrevElt
= std::make_pair(Val
, Idx
);
1493 // We need to have logged both a step and an addend for this to count as
1494 // a legal index sequence.
1495 if (!SeqStepNum
|| !SeqStepDenom
|| !SeqAddend
)
1498 return VIDSequence
{*SeqStepNum
, *SeqStepDenom
, *SeqAddend
};
1501 static SDValue
lowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
1502 const RISCVSubtarget
&Subtarget
) {
1503 MVT VT
= Op
.getSimpleValueType();
1504 assert(VT
.isFixedLengthVector() && "Unexpected vector!");
1506 MVT ContainerVT
= getContainerForFixedLengthVector(DAG
, VT
, Subtarget
);
1510 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
1512 MVT XLenVT
= Subtarget
.getXLenVT();
1513 unsigned NumElts
= Op
.getNumOperands();
1515 if (VT
.getVectorElementType() == MVT::i1
) {
1516 if (ISD::isBuildVectorAllZeros(Op
.getNode())) {
1517 SDValue VMClr
= DAG
.getNode(RISCVISD::VMCLR_VL
, DL
, ContainerVT
, VL
);
1518 return convertFromScalableVector(VT
, VMClr
, DAG
, Subtarget
);
1521 if (ISD::isBuildVectorAllOnes(Op
.getNode())) {
1522 SDValue VMSet
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, ContainerVT
, VL
);
1523 return convertFromScalableVector(VT
, VMSet
, DAG
, Subtarget
);
1526 // Lower constant mask BUILD_VECTORs via an integer vector type, in
1527 // scalar integer chunks whose bit-width depends on the number of mask
1529 // First, determine the most appropriate scalar integer type to use. This
1530 // is at most XLenVT, but may be shrunk to a smaller vector element type
1531 // according to the size of the final vector - use i8 chunks rather than
1532 // XLenVT if we're producing a v8i1. This results in more consistent
1533 // codegen across RV32 and RV64.
1534 unsigned NumViaIntegerBits
=
1535 std::min(std::max(NumElts
, 8u), Subtarget
.getXLen());
1536 if (ISD::isBuildVectorOfConstantSDNodes(Op
.getNode())) {
1537 // If we have to use more than one INSERT_VECTOR_ELT then this
1538 // optimization is likely to increase code size; avoid peforming it in
1539 // such a case. We can use a load from a constant pool in this case.
1540 if (DAG
.shouldOptForSize() && NumElts
> NumViaIntegerBits
)
1542 // Now we can create our integer vector type. Note that it may be larger
1543 // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1544 MVT IntegerViaVecVT
=
1545 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits
),
1546 divideCeil(NumElts
, NumViaIntegerBits
));
1549 unsigned BitPos
= 0, IntegerEltIdx
= 0;
1550 SDValue Vec
= DAG
.getUNDEF(IntegerViaVecVT
);
1552 for (unsigned I
= 0; I
< NumElts
; I
++, BitPos
++) {
1553 // Once we accumulate enough bits to fill our scalar type, insert into
1554 // our vector and clear our accumulated data.
1555 if (I
!= 0 && I
% NumViaIntegerBits
== 0) {
1556 if (NumViaIntegerBits
<= 32)
1557 Bits
= SignExtend64(Bits
, 32);
1558 SDValue Elt
= DAG
.getConstant(Bits
, DL
, XLenVT
);
1559 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, IntegerViaVecVT
, Vec
,
1560 Elt
, DAG
.getConstant(IntegerEltIdx
, DL
, XLenVT
));
1565 SDValue V
= Op
.getOperand(I
);
1566 bool BitValue
= !V
.isUndef() && cast
<ConstantSDNode
>(V
)->getZExtValue();
1567 Bits
|= ((uint64_t)BitValue
<< BitPos
);
1570 // Insert the (remaining) scalar value into position in our integer
1572 if (NumViaIntegerBits
<= 32)
1573 Bits
= SignExtend64(Bits
, 32);
1574 SDValue Elt
= DAG
.getConstant(Bits
, DL
, XLenVT
);
1575 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, IntegerViaVecVT
, Vec
, Elt
,
1576 DAG
.getConstant(IntegerEltIdx
, DL
, XLenVT
));
1578 if (NumElts
< NumViaIntegerBits
) {
1579 // If we're producing a smaller vector than our minimum legal integer
1580 // type, bitcast to the equivalent (known-legal) mask type, and extract
1582 assert(IntegerViaVecVT
== MVT::v1i8
&& "Unexpected mask vector type");
1583 Vec
= DAG
.getBitcast(MVT::v8i1
, Vec
);
1584 Vec
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Vec
,
1585 DAG
.getConstant(0, DL
, XLenVT
));
1587 // Else we must have produced an integer type with the same size as the
1588 // mask type; bitcast for the final result.
1589 assert(VT
.getSizeInBits() == IntegerViaVecVT
.getSizeInBits());
1590 Vec
= DAG
.getBitcast(VT
, Vec
);
1596 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1597 // vector type, we have a legal equivalently-sized i8 type, so we can use
1599 MVT WideVecVT
= VT
.changeVectorElementType(MVT::i8
);
1600 SDValue VecZero
= DAG
.getConstant(0, DL
, WideVecVT
);
1603 if (SDValue Splat
= cast
<BuildVectorSDNode
>(Op
)->getSplatValue()) {
1604 // For a splat, perform a scalar truncate before creating the wider
1606 assert(Splat
.getValueType() == XLenVT
&&
1607 "Unexpected type for i1 splat value");
1608 Splat
= DAG
.getNode(ISD::AND
, DL
, XLenVT
, Splat
,
1609 DAG
.getConstant(1, DL
, XLenVT
));
1610 WideVec
= DAG
.getSplatBuildVector(WideVecVT
, DL
, Splat
);
1612 SmallVector
<SDValue
, 8> Ops(Op
->op_values());
1613 WideVec
= DAG
.getBuildVector(WideVecVT
, DL
, Ops
);
1614 SDValue VecOne
= DAG
.getConstant(1, DL
, WideVecVT
);
1615 WideVec
= DAG
.getNode(ISD::AND
, DL
, WideVecVT
, WideVec
, VecOne
);
1618 return DAG
.getSetCC(DL
, VT
, WideVec
, VecZero
, ISD::SETNE
);
1621 if (SDValue Splat
= cast
<BuildVectorSDNode
>(Op
)->getSplatValue()) {
1622 unsigned Opc
= VT
.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1623 : RISCVISD::VMV_V_X_VL
;
1624 Splat
= DAG
.getNode(Opc
, DL
, ContainerVT
, Splat
, VL
);
1625 return convertFromScalableVector(VT
, Splat
, DAG
, Subtarget
);
1628 // Try and match index sequences, which we can lower to the vid instruction
1629 // with optional modifications. An all-undef vector is matched by
1630 // getSplatValue, above.
1631 if (auto SimpleVID
= isSimpleVIDSequence(Op
)) {
1632 int64_t StepNumerator
= SimpleVID
->StepNumerator
;
1633 unsigned StepDenominator
= SimpleVID
->StepDenominator
;
1634 int64_t Addend
= SimpleVID
->Addend
;
1635 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1636 // threshold since it's the immediate value many RVV instructions accept.
1637 if (isInt
<5>(StepNumerator
) && isPowerOf2_32(StepDenominator
) &&
1639 SDValue VID
= DAG
.getNode(RISCVISD::VID_VL
, DL
, ContainerVT
, Mask
, VL
);
1640 // Convert right out of the scalable type so we can use standard ISD
1641 // nodes for the rest of the computation. If we used scalable types with
1642 // these, we'd lose the fixed-length vector info and generate worse
1644 VID
= convertFromScalableVector(VT
, VID
, DAG
, Subtarget
);
1645 assert(StepNumerator
!= 0 && "Invalid step");
1646 bool Negate
= false;
1647 if (StepNumerator
!= 1) {
1648 int64_t SplatStepVal
= StepNumerator
;
1649 unsigned Opcode
= ISD::MUL
;
1650 if (isPowerOf2_64(std::abs(StepNumerator
))) {
1651 Negate
= StepNumerator
< 0;
1653 SplatStepVal
= Log2_64(std::abs(StepNumerator
));
1655 SDValue SplatStep
= DAG
.getSplatVector(
1656 VT
, DL
, DAG
.getConstant(SplatStepVal
, DL
, XLenVT
));
1657 VID
= DAG
.getNode(Opcode
, DL
, VT
, VID
, SplatStep
);
1659 if (StepDenominator
!= 1) {
1660 SDValue SplatStep
= DAG
.getSplatVector(
1661 VT
, DL
, DAG
.getConstant(Log2_64(StepDenominator
), DL
, XLenVT
));
1662 VID
= DAG
.getNode(ISD::SRL
, DL
, VT
, VID
, SplatStep
);
1664 if (Addend
!= 0 || Negate
) {
1665 SDValue SplatAddend
=
1666 DAG
.getSplatVector(VT
, DL
, DAG
.getConstant(Addend
, DL
, XLenVT
));
1667 VID
= DAG
.getNode(Negate
? ISD::SUB
: ISD::ADD
, DL
, VT
, SplatAddend
, VID
);
1673 // Attempt to detect "hidden" splats, which only reveal themselves as splats
1674 // when re-interpreted as a vector with a larger element type. For example,
1675 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1676 // could be instead splat as
1677 // v2i32 = build_vector i32 0x00010000, i32 0x00010000
1678 // TODO: This optimization could also work on non-constant splats, but it
1679 // would require bit-manipulation instructions to construct the splat value.
1680 SmallVector
<SDValue
> Sequence
;
1681 unsigned EltBitSize
= VT
.getScalarSizeInBits();
1682 const auto *BV
= cast
<BuildVectorSDNode
>(Op
);
1683 if (VT
.isInteger() && EltBitSize
< 64 &&
1684 ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) &&
1685 BV
->getRepeatedSequence(Sequence
) &&
1686 (Sequence
.size() * EltBitSize
) <= 64) {
1687 unsigned SeqLen
= Sequence
.size();
1688 MVT ViaIntVT
= MVT::getIntegerVT(EltBitSize
* SeqLen
);
1689 MVT ViaVecVT
= MVT::getVectorVT(ViaIntVT
, NumElts
/ SeqLen
);
1690 assert((ViaIntVT
== MVT::i16
|| ViaIntVT
== MVT::i32
||
1691 ViaIntVT
== MVT::i64
) &&
1692 "Unexpected sequence type");
1694 unsigned EltIdx
= 0;
1695 uint64_t EltMask
= maskTrailingOnes
<uint64_t>(EltBitSize
);
1696 uint64_t SplatValue
= 0;
1697 // Construct the amalgamated value which can be splatted as this larger
1699 for (const auto &SeqV
: Sequence
) {
1700 if (!SeqV
.isUndef())
1701 SplatValue
|= ((cast
<ConstantSDNode
>(SeqV
)->getZExtValue() & EltMask
)
1702 << (EltIdx
* EltBitSize
));
1706 // On RV64, sign-extend from 32 to 64 bits where possible in order to
1707 // achieve better constant materializion.
1708 if (Subtarget
.is64Bit() && ViaIntVT
== MVT::i32
)
1709 SplatValue
= SignExtend64(SplatValue
, 32);
1711 // Since we can't introduce illegal i64 types at this stage, we can only
1712 // perform an i64 splat on RV32 if it is its own sign-extended value. That
1713 // way we can use RVV instructions to splat.
1714 assert((ViaIntVT
.bitsLE(XLenVT
) ||
1715 (!Subtarget
.is64Bit() && ViaIntVT
== MVT::i64
)) &&
1716 "Unexpected bitcast sequence");
1717 if (ViaIntVT
.bitsLE(XLenVT
) || isInt
<32>(SplatValue
)) {
1719 DAG
.getConstant(ViaVecVT
.getVectorNumElements(), DL
, XLenVT
);
1720 MVT ViaContainerVT
=
1721 getContainerForFixedLengthVector(DAG
, ViaVecVT
, Subtarget
);
1723 DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, ViaContainerVT
,
1724 DAG
.getConstant(SplatValue
, DL
, XLenVT
), ViaVL
);
1725 Splat
= convertFromScalableVector(ViaVecVT
, Splat
, DAG
, Subtarget
);
1726 return DAG
.getBitcast(VT
, Splat
);
1730 // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1731 // which constitute a large proportion of the elements. In such cases we can
1732 // splat a vector with the dominant element and make up the shortfall with
1733 // INSERT_VECTOR_ELTs.
1734 // Note that this includes vectors of 2 elements by association. The
1735 // upper-most element is the "dominant" one, allowing us to use a splat to
1736 // "insert" the upper element, and an insert of the lower element at position
1737 // 0, which improves codegen.
1738 SDValue DominantValue
;
1739 unsigned MostCommonCount
= 0;
1740 DenseMap
<SDValue
, unsigned> ValueCounts
;
1741 unsigned NumUndefElts
=
1742 count_if(Op
->op_values(), [](const SDValue
&V
) { return V
.isUndef(); });
1744 // Track the number of scalar loads we know we'd be inserting, estimated as
1745 // any non-zero floating-point constant. Other kinds of element are either
1746 // already in registers or are materialized on demand. The threshold at which
1747 // a vector load is more desirable than several scalar materializion and
1748 // vector-insertion instructions is not known.
1749 unsigned NumScalarLoads
= 0;
1751 for (SDValue V
: Op
->op_values()) {
1755 ValueCounts
.insert(std::make_pair(V
, 0));
1756 unsigned &Count
= ValueCounts
[V
];
1758 if (auto *CFP
= dyn_cast
<ConstantFPSDNode
>(V
))
1759 NumScalarLoads
+= !CFP
->isExactlyValue(+0.0);
1761 // Is this value dominant? In case of a tie, prefer the highest element as
1762 // it's cheaper to insert near the beginning of a vector than it is at the
1764 if (++Count
>= MostCommonCount
) {
1766 MostCommonCount
= Count
;
1770 assert(DominantValue
&& "Not expecting an all-undef BUILD_VECTOR");
1771 unsigned NumDefElts
= NumElts
- NumUndefElts
;
1772 unsigned DominantValueCountThreshold
= NumDefElts
<= 2 ? 0 : NumDefElts
- 2;
1774 // Don't perform this optimization when optimizing for size, since
1775 // materializing elements and inserting them tends to cause code bloat.
1776 if (!DAG
.shouldOptForSize() && NumScalarLoads
< NumElts
&&
1777 ((MostCommonCount
> DominantValueCountThreshold
) ||
1778 (ValueCounts
.size() <= Log2_32(NumDefElts
)))) {
1779 // Start by splatting the most common element.
1780 SDValue Vec
= DAG
.getSplatBuildVector(VT
, DL
, DominantValue
);
1782 DenseSet
<SDValue
> Processed
{DominantValue
};
1783 MVT SelMaskTy
= VT
.changeVectorElementType(MVT::i1
);
1784 for (const auto &OpIdx
: enumerate(Op
->ops())) {
1785 const SDValue
&V
= OpIdx
.value();
1786 if (V
.isUndef() || !Processed
.insert(V
).second
)
1788 if (ValueCounts
[V
] == 1) {
1789 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
, Vec
, V
,
1790 DAG
.getConstant(OpIdx
.index(), DL
, XLenVT
));
1792 // Blend in all instances of this value using a VSELECT, using a
1793 // mask where each bit signals whether that element is the one
1795 SmallVector
<SDValue
> Ops
;
1796 transform(Op
->op_values(), std::back_inserter(Ops
), [&](SDValue V1
) {
1797 return DAG
.getConstant(V
== V1
, DL
, XLenVT
);
1799 Vec
= DAG
.getNode(ISD::VSELECT
, DL
, VT
,
1800 DAG
.getBuildVector(SelMaskTy
, DL
, Ops
),
1801 DAG
.getSplatBuildVector(VT
, DL
, V
), Vec
);
1811 static SDValue
splatPartsI64WithVL(const SDLoc
&DL
, MVT VT
, SDValue Lo
,
1812 SDValue Hi
, SDValue VL
, SelectionDAG
&DAG
) {
1813 if (isa
<ConstantSDNode
>(Lo
) && isa
<ConstantSDNode
>(Hi
)) {
1814 int32_t LoC
= cast
<ConstantSDNode
>(Lo
)->getSExtValue();
1815 int32_t HiC
= cast
<ConstantSDNode
>(Hi
)->getSExtValue();
1816 // If Hi constant is all the same sign bit as Lo, lower this as a custom
1817 // node in order to try and match RVV vector/scalar instructions.
1818 if ((LoC
>> 31) == HiC
)
1819 return DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, VT
, Lo
, VL
);
1822 // Fall back to a stack store and stride x0 vector load.
1823 return DAG
.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL
, DL
, VT
, Lo
, Hi
, VL
);
1826 // Called by type legalization to handle splat of i64 on RV32.
1827 // FIXME: We can optimize this when the type has sign or zero bits in one
1829 static SDValue
splatSplitI64WithVL(const SDLoc
&DL
, MVT VT
, SDValue Scalar
,
1830 SDValue VL
, SelectionDAG
&DAG
) {
1831 assert(Scalar
.getValueType() == MVT::i64
&& "Unexpected VT!");
1832 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Scalar
,
1833 DAG
.getConstant(0, DL
, MVT::i32
));
1834 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Scalar
,
1835 DAG
.getConstant(1, DL
, MVT::i32
));
1836 return splatPartsI64WithVL(DL
, VT
, Lo
, Hi
, VL
, DAG
);
1839 // This function lowers a splat of a scalar operand Splat with the vector
1840 // length VL. It ensures the final sequence is type legal, which is useful when
1841 // lowering a splat after type legalization.
1842 static SDValue
lowerScalarSplat(SDValue Scalar
, SDValue VL
, MVT VT
, SDLoc DL
,
1844 const RISCVSubtarget
&Subtarget
) {
1845 if (VT
.isFloatingPoint())
1846 return DAG
.getNode(RISCVISD::VFMV_V_F_VL
, DL
, VT
, Scalar
, VL
);
1848 MVT XLenVT
= Subtarget
.getXLenVT();
1850 // Simplest case is that the operand needs to be promoted to XLenVT.
1851 if (Scalar
.getValueType().bitsLE(XLenVT
)) {
1852 // If the operand is a constant, sign extend to increase our chances
1853 // of being able to use a .vi instruction. ANY_EXTEND would become a
1854 // a zero extend and the simm5 check in isel would fail.
1855 // FIXME: Should we ignore the upper bits in isel instead?
1857 isa
<ConstantSDNode
>(Scalar
) ? ISD::SIGN_EXTEND
: ISD::ANY_EXTEND
;
1858 Scalar
= DAG
.getNode(ExtOpc
, DL
, XLenVT
, Scalar
);
1859 return DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, VT
, Scalar
, VL
);
1862 assert(XLenVT
== MVT::i32
&& Scalar
.getValueType() == MVT::i64
&&
1863 "Unexpected scalar for splat lowering!");
1865 // Otherwise use the more complicated splatting algorithm.
1866 return splatSplitI64WithVL(DL
, VT
, Scalar
, VL
, DAG
);
1869 static SDValue
lowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
1870 const RISCVSubtarget
&Subtarget
) {
1871 SDValue V1
= Op
.getOperand(0);
1872 SDValue V2
= Op
.getOperand(1);
1874 MVT XLenVT
= Subtarget
.getXLenVT();
1875 MVT VT
= Op
.getSimpleValueType();
1876 unsigned NumElts
= VT
.getVectorNumElements();
1877 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
1879 MVT ContainerVT
= getContainerForFixedLengthVector(DAG
, VT
, Subtarget
);
1881 SDValue TrueMask
, VL
;
1882 std::tie(TrueMask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
1884 if (SVN
->isSplat()) {
1885 const int Lane
= SVN
->getSplatIndex();
1887 MVT SVT
= VT
.getVectorElementType();
1889 // Turn splatted vector load into a strided load with an X0 stride.
1891 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1893 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1895 if (V
.getOpcode() == ISD::CONCAT_VECTORS
) {
1897 V
.getOperand(0).getSimpleValueType().getVectorNumElements();
1898 V
= V
.getOperand(Offset
/ OpElements
);
1899 Offset
%= OpElements
;
1902 // We need to ensure the load isn't atomic or volatile.
1903 if (ISD::isNormalLoad(V
.getNode()) && cast
<LoadSDNode
>(V
)->isSimple()) {
1904 auto *Ld
= cast
<LoadSDNode
>(V
);
1905 Offset
*= SVT
.getStoreSize();
1906 SDValue NewAddr
= DAG
.getMemBasePlusOffset(Ld
->getBasePtr(),
1907 TypeSize::Fixed(Offset
), DL
);
1909 // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1910 if (SVT
.isInteger() && SVT
.bitsGT(XLenVT
)) {
1911 SDVTList VTs
= DAG
.getVTList({ContainerVT
, MVT::Other
});
1913 DAG
.getTargetConstant(Intrinsic::riscv_vlse
, DL
, XLenVT
);
1914 SDValue Ops
[] = {Ld
->getChain(), IntID
, NewAddr
,
1915 DAG
.getRegister(RISCV::X0
, XLenVT
), VL
};
1916 SDValue NewLoad
= DAG
.getMemIntrinsicNode(
1917 ISD::INTRINSIC_W_CHAIN
, DL
, VTs
, Ops
, SVT
,
1918 DAG
.getMachineFunction().getMachineMemOperand(
1919 Ld
->getMemOperand(), Offset
, SVT
.getStoreSize()));
1920 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLoad
);
1921 return convertFromScalableVector(VT
, NewLoad
, DAG
, Subtarget
);
1924 // Otherwise use a scalar load and splat. This will give the best
1925 // opportunity to fold a splat into the operation. ISel can turn it into
1926 // the x0 strided load if we aren't able to fold away the select.
1927 if (SVT
.isFloatingPoint())
1928 V
= DAG
.getLoad(SVT
, DL
, Ld
->getChain(), NewAddr
,
1929 Ld
->getPointerInfo().getWithOffset(Offset
),
1930 Ld
->getOriginalAlign(),
1931 Ld
->getMemOperand()->getFlags());
1933 V
= DAG
.getExtLoad(ISD::SEXTLOAD
, DL
, XLenVT
, Ld
->getChain(), NewAddr
,
1934 Ld
->getPointerInfo().getWithOffset(Offset
), SVT
,
1935 Ld
->getOriginalAlign(),
1936 Ld
->getMemOperand()->getFlags());
1937 DAG
.makeEquivalentMemoryOrdering(Ld
, V
);
1940 VT
.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
: RISCVISD::VMV_V_X_VL
;
1941 SDValue Splat
= DAG
.getNode(Opc
, DL
, ContainerVT
, V
, VL
);
1942 return convertFromScalableVector(VT
, Splat
, DAG
, Subtarget
);
1945 V1
= convertToScalableVector(ContainerVT
, V1
, DAG
, Subtarget
);
1946 assert(Lane
< (int)NumElts
&& "Unexpected lane!");
1948 DAG
.getNode(RISCVISD::VRGATHER_VX_VL
, DL
, ContainerVT
, V1
,
1949 DAG
.getConstant(Lane
, DL
, XLenVT
), TrueMask
, VL
);
1950 return convertFromScalableVector(VT
, Gather
, DAG
, Subtarget
);
1954 // Detect shuffles which can be re-expressed as vector selects; these are
1955 // shuffles in which each element in the destination is taken from an element
1956 // at the corresponding index in either source vectors.
1957 bool IsSelect
= all_of(enumerate(SVN
->getMask()), [&](const auto &MaskIdx
) {
1958 int MaskIndex
= MaskIdx
.value();
1959 return MaskIndex
< 0 || MaskIdx
.index() == (unsigned)MaskIndex
% NumElts
;
1962 assert(!V1
.isUndef() && "Unexpected shuffle canonicalization");
1964 SmallVector
<SDValue
> MaskVals
;
1965 // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1966 // merged with a second vrgather.
1967 SmallVector
<SDValue
> GatherIndicesLHS
, GatherIndicesRHS
;
1969 // By default we preserve the original operand order, and use a mask to
1970 // select LHS as true and RHS as false. However, since RVV vector selects may
1971 // feature splats but only on the LHS, we may choose to invert our mask and
1972 // instead select between RHS and LHS.
1973 bool SwapOps
= DAG
.isSplatValue(V2
) && !DAG
.isSplatValue(V1
);
1974 bool InvertMask
= IsSelect
== SwapOps
;
1976 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
1978 DenseMap
<int, unsigned> LHSIndexCounts
, RHSIndexCounts
;
1980 // Now construct the mask that will be used by the vselect or blended
1981 // vrgather operation. For vrgathers, construct the appropriate indices into
1983 for (int MaskIndex
: SVN
->getMask()) {
1984 bool SelectMaskVal
= (MaskIndex
< (int)NumElts
) ^ InvertMask
;
1985 MaskVals
.push_back(DAG
.getConstant(SelectMaskVal
, DL
, XLenVT
));
1987 bool IsLHSOrUndefIndex
= MaskIndex
< (int)NumElts
;
1988 GatherIndicesLHS
.push_back(IsLHSOrUndefIndex
&& MaskIndex
>= 0
1989 ? DAG
.getConstant(MaskIndex
, DL
, XLenVT
)
1990 : DAG
.getUNDEF(XLenVT
));
1991 GatherIndicesRHS
.push_back(
1992 IsLHSOrUndefIndex
? DAG
.getUNDEF(XLenVT
)
1993 : DAG
.getConstant(MaskIndex
- NumElts
, DL
, XLenVT
));
1994 if (IsLHSOrUndefIndex
&& MaskIndex
>= 0)
1995 ++LHSIndexCounts
[MaskIndex
];
1996 if (!IsLHSOrUndefIndex
)
1997 ++RHSIndexCounts
[MaskIndex
- NumElts
];
2003 std::swap(GatherIndicesLHS
, GatherIndicesRHS
);
2006 assert(MaskVals
.size() == NumElts
&& "Unexpected select-like shuffle");
2007 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, NumElts
);
2008 SDValue SelectMask
= DAG
.getBuildVector(MaskVT
, DL
, MaskVals
);
2011 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SelectMask
, V1
, V2
);
2013 if (VT
.getScalarSizeInBits() == 8 && VT
.getVectorNumElements() > 256) {
2014 // On such a large vector we're unable to use i8 as the index type.
2015 // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2016 // may involve vector splitting if we're already at LMUL=8, or our
2017 // user-supplied maximum fixed-length LMUL.
2021 unsigned GatherVXOpc
= RISCVISD::VRGATHER_VX_VL
;
2022 unsigned GatherVVOpc
= RISCVISD::VRGATHER_VV_VL
;
2023 MVT IndexVT
= VT
.changeTypeToInteger();
2024 // Since we can't introduce illegal index types at this stage, use i16 and
2025 // vrgatherei16 if the corresponding index type for plain vrgather is greater
2027 if (IndexVT
.getScalarType().bitsGT(XLenVT
)) {
2028 GatherVVOpc
= RISCVISD::VRGATHEREI16_VV_VL
;
2029 IndexVT
= IndexVT
.changeVectorElementType(MVT::i16
);
2032 MVT IndexContainerVT
=
2033 ContainerVT
.changeVectorElementType(IndexVT
.getScalarType());
2036 // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2037 // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2038 if (SDValue SplatValue
= DAG
.getSplatValue(V1
, /*LegalTypes*/ true)) {
2039 Gather
= lowerScalarSplat(SplatValue
, VL
, ContainerVT
, DL
, DAG
, Subtarget
);
2041 V1
= convertToScalableVector(ContainerVT
, V1
, DAG
, Subtarget
);
2042 // If only one index is used, we can use a "splat" vrgather.
2043 // TODO: We can splat the most-common index and fix-up any stragglers, if
2044 // that's beneficial.
2045 if (LHSIndexCounts
.size() == 1) {
2046 int SplatIndex
= LHSIndexCounts
.begin()->getFirst();
2048 DAG
.getNode(GatherVXOpc
, DL
, ContainerVT
, V1
,
2049 DAG
.getConstant(SplatIndex
, DL
, XLenVT
), TrueMask
, VL
);
2051 SDValue LHSIndices
= DAG
.getBuildVector(IndexVT
, DL
, GatherIndicesLHS
);
2053 convertToScalableVector(IndexContainerVT
, LHSIndices
, DAG
, Subtarget
);
2055 Gather
= DAG
.getNode(GatherVVOpc
, DL
, ContainerVT
, V1
, LHSIndices
,
2060 // If a second vector operand is used by this shuffle, blend it in with an
2061 // additional vrgather.
2062 if (!V2
.isUndef()) {
2063 V2
= convertToScalableVector(ContainerVT
, V2
, DAG
, Subtarget
);
2064 // If only one index is used, we can use a "splat" vrgather.
2065 // TODO: We can splat the most-common index and fix-up any stragglers, if
2066 // that's beneficial.
2067 if (RHSIndexCounts
.size() == 1) {
2068 int SplatIndex
= RHSIndexCounts
.begin()->getFirst();
2069 V2
= DAG
.getNode(GatherVXOpc
, DL
, ContainerVT
, V2
,
2070 DAG
.getConstant(SplatIndex
, DL
, XLenVT
), TrueMask
, VL
);
2072 SDValue RHSIndices
= DAG
.getBuildVector(IndexVT
, DL
, GatherIndicesRHS
);
2074 convertToScalableVector(IndexContainerVT
, RHSIndices
, DAG
, Subtarget
);
2075 V2
= DAG
.getNode(GatherVVOpc
, DL
, ContainerVT
, V2
, RHSIndices
, TrueMask
,
2079 MVT MaskContainerVT
= ContainerVT
.changeVectorElementType(MVT::i1
);
2081 convertToScalableVector(MaskContainerVT
, SelectMask
, DAG
, Subtarget
);
2083 Gather
= DAG
.getNode(RISCVISD::VSELECT_VL
, DL
, ContainerVT
, SelectMask
, V2
,
2087 return convertFromScalableVector(VT
, Gather
, DAG
, Subtarget
);
2090 static SDValue
getRVVFPExtendOrRound(SDValue Op
, MVT VT
, MVT ContainerVT
,
2091 SDLoc DL
, SelectionDAG
&DAG
,
2092 const RISCVSubtarget
&Subtarget
) {
2093 if (VT
.isScalableVector())
2094 return DAG
.getFPExtendOrRound(Op
, DL
, VT
);
2095 assert(VT
.isFixedLengthVector() &&
2096 "Unexpected value type for RVV FP extend/round lowering");
2098 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
2099 unsigned RVVOpc
= ContainerVT
.bitsGT(Op
.getSimpleValueType())
2100 ? RISCVISD::FP_EXTEND_VL
2101 : RISCVISD::FP_ROUND_VL
;
2102 return DAG
.getNode(RVVOpc
, DL
, ContainerVT
, Op
, Mask
, VL
);
2105 // While RVV has alignment restrictions, we should always be able to load as a
2106 // legal equivalently-sized byte-typed vector instead. This method is
2107 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2108 // the load is already correctly-aligned, it returns SDValue().
2109 SDValue
RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op
,
2110 SelectionDAG
&DAG
) const {
2111 auto *Load
= cast
<LoadSDNode
>(Op
);
2112 assert(Load
&& Load
->getMemoryVT().isVector() && "Expected vector load");
2114 if (allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
2115 Load
->getMemoryVT(),
2116 *Load
->getMemOperand()))
2120 MVT VT
= Op
.getSimpleValueType();
2121 unsigned EltSizeBits
= VT
.getScalarSizeInBits();
2122 assert((EltSizeBits
== 16 || EltSizeBits
== 32 || EltSizeBits
== 64) &&
2123 "Unexpected unaligned RVV load type");
2125 MVT::getVectorVT(MVT::i8
, VT
.getVectorElementCount() * (EltSizeBits
/ 8));
2126 assert(NewVT
.isValid() &&
2127 "Expecting equally-sized RVV vector types to be legal");
2128 SDValue L
= DAG
.getLoad(NewVT
, DL
, Load
->getChain(), Load
->getBasePtr(),
2129 Load
->getPointerInfo(), Load
->getOriginalAlign(),
2130 Load
->getMemOperand()->getFlags());
2131 return DAG
.getMergeValues({DAG
.getBitcast(VT
, L
), L
.getValue(1)}, DL
);
2134 // While RVV has alignment restrictions, we should always be able to store as a
2135 // legal equivalently-sized byte-typed vector instead. This method is
2136 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2137 // returns SDValue() if the store is already correctly aligned.
2138 SDValue
RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op
,
2139 SelectionDAG
&DAG
) const {
2140 auto *Store
= cast
<StoreSDNode
>(Op
);
2141 assert(Store
&& Store
->getValue().getValueType().isVector() &&
2142 "Expected vector store");
2144 if (allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
2145 Store
->getMemoryVT(),
2146 *Store
->getMemOperand()))
2150 SDValue StoredVal
= Store
->getValue();
2151 MVT VT
= StoredVal
.getSimpleValueType();
2152 unsigned EltSizeBits
= VT
.getScalarSizeInBits();
2153 assert((EltSizeBits
== 16 || EltSizeBits
== 32 || EltSizeBits
== 64) &&
2154 "Unexpected unaligned RVV store type");
2156 MVT::getVectorVT(MVT::i8
, VT
.getVectorElementCount() * (EltSizeBits
/ 8));
2157 assert(NewVT
.isValid() &&
2158 "Expecting equally-sized RVV vector types to be legal");
2159 StoredVal
= DAG
.getBitcast(NewVT
, StoredVal
);
2160 return DAG
.getStore(Store
->getChain(), DL
, StoredVal
, Store
->getBasePtr(),
2161 Store
->getPointerInfo(), Store
->getOriginalAlign(),
2162 Store
->getMemOperand()->getFlags());
2165 SDValue
RISCVTargetLowering::LowerOperation(SDValue Op
,
2166 SelectionDAG
&DAG
) const {
2167 switch (Op
.getOpcode()) {
2169 report_fatal_error("unimplemented operand");
2170 case ISD::GlobalAddress
:
2171 return lowerGlobalAddress(Op
, DAG
);
2172 case ISD::BlockAddress
:
2173 return lowerBlockAddress(Op
, DAG
);
2174 case ISD::ConstantPool
:
2175 return lowerConstantPool(Op
, DAG
);
2176 case ISD::JumpTable
:
2177 return lowerJumpTable(Op
, DAG
);
2178 case ISD::GlobalTLSAddress
:
2179 return lowerGlobalTLSAddress(Op
, DAG
);
2181 return lowerSELECT(Op
, DAG
);
2183 return lowerBRCOND(Op
, DAG
);
2185 return lowerVASTART(Op
, DAG
);
2186 case ISD::FRAMEADDR
:
2187 return lowerFRAMEADDR(Op
, DAG
);
2188 case ISD::RETURNADDR
:
2189 return lowerRETURNADDR(Op
, DAG
);
2190 case ISD::SHL_PARTS
:
2191 return lowerShiftLeftParts(Op
, DAG
);
2192 case ISD::SRA_PARTS
:
2193 return lowerShiftRightParts(Op
, DAG
, true);
2194 case ISD::SRL_PARTS
:
2195 return lowerShiftRightParts(Op
, DAG
, false);
2196 case ISD::BITCAST
: {
2198 EVT VT
= Op
.getValueType();
2199 SDValue Op0
= Op
.getOperand(0);
2200 EVT Op0VT
= Op0
.getValueType();
2201 MVT XLenVT
= Subtarget
.getXLenVT();
2202 if (VT
.isFixedLengthVector()) {
2203 // We can handle fixed length vector bitcasts with a simple replacement
2205 if (Op0VT
.isFixedLengthVector())
2207 // When bitcasting from scalar to fixed-length vector, insert the scalar
2208 // into a one-element vector of the result type, and perform a vector
2210 if (!Op0VT
.isVector()) {
2211 auto BVT
= EVT::getVectorVT(*DAG
.getContext(), Op0VT
, 1);
2212 return DAG
.getBitcast(VT
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, BVT
,
2213 DAG
.getUNDEF(BVT
), Op0
,
2214 DAG
.getConstant(0, DL
, XLenVT
)));
2218 // Custom-legalize bitcasts from fixed-length vector types to scalar types
2219 // thus: bitcast the vector to a one-element vector type whose element type
2220 // is the same as the result type, and extract the first element.
2221 if (!VT
.isVector() && Op0VT
.isFixedLengthVector()) {
2222 LLVMContext
&Context
= *DAG
.getContext();
2223 SDValue BVec
= DAG
.getBitcast(EVT::getVectorVT(Context
, VT
, 1), Op0
);
2224 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, BVec
,
2225 DAG
.getConstant(0, DL
, XLenVT
));
2227 if (VT
== MVT::f16
&& Op0VT
== MVT::i16
&& Subtarget
.hasStdExtZfh()) {
2228 SDValue NewOp0
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, XLenVT
, Op0
);
2229 SDValue FPConv
= DAG
.getNode(RISCVISD::FMV_H_X
, DL
, MVT::f16
, NewOp0
);
2232 if (VT
== MVT::f32
&& Op0VT
== MVT::i32
&& Subtarget
.is64Bit() &&
2233 Subtarget
.hasStdExtF()) {
2234 SDValue NewOp0
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, Op0
);
2236 DAG
.getNode(RISCVISD::FMV_W_X_RV64
, DL
, MVT::f32
, NewOp0
);
2241 case ISD::INTRINSIC_WO_CHAIN
:
2242 return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
2243 case ISD::INTRINSIC_W_CHAIN
:
2244 return LowerINTRINSIC_W_CHAIN(Op
, DAG
);
2246 case ISD::BITREVERSE
: {
2247 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2248 assert(Subtarget
.hasStdExtZbp() && "Unexpected custom legalisation");
2249 MVT VT
= Op
.getSimpleValueType();
2251 // Start with the maximum immediate value which is the bitwidth - 1.
2252 unsigned Imm
= VT
.getSizeInBits() - 1;
2253 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2254 if (Op
.getOpcode() == ISD::BSWAP
)
2256 return DAG
.getNode(RISCVISD::GREV
, DL
, VT
, Op
.getOperand(0),
2257 DAG
.getConstant(Imm
, DL
, VT
));
2261 MVT VT
= Op
.getSimpleValueType();
2262 assert(VT
== Subtarget
.getXLenVT() && "Unexpected custom legalization");
2264 if (Op
.getOperand(2).getOpcode() == ISD::Constant
)
2266 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2267 // use log(XLen) bits. Mask the shift amount accordingly.
2268 unsigned ShAmtWidth
= Subtarget
.getXLen() - 1;
2269 SDValue ShAmt
= DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(2),
2270 DAG
.getConstant(ShAmtWidth
, DL
, VT
));
2271 unsigned Opc
= Op
.getOpcode() == ISD::FSHL
? RISCVISD::FSL
: RISCVISD::FSR
;
2272 return DAG
.getNode(Opc
, DL
, VT
, Op
.getOperand(0), Op
.getOperand(1), ShAmt
);
2274 case ISD::TRUNCATE
: {
2276 MVT VT
= Op
.getSimpleValueType();
2277 // Only custom-lower vector truncates
2281 // Truncates to mask types are handled differently
2282 if (VT
.getVectorElementType() == MVT::i1
)
2283 return lowerVectorMaskTrunc(Op
, DAG
);
2285 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2286 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2287 // truncate by one power of two at a time.
2288 MVT DstEltVT
= VT
.getVectorElementType();
2290 SDValue Src
= Op
.getOperand(0);
2291 MVT SrcVT
= Src
.getSimpleValueType();
2292 MVT SrcEltVT
= SrcVT
.getVectorElementType();
2294 assert(DstEltVT
.bitsLT(SrcEltVT
) &&
2295 isPowerOf2_64(DstEltVT
.getSizeInBits()) &&
2296 isPowerOf2_64(SrcEltVT
.getSizeInBits()) &&
2297 "Unexpected vector truncate lowering");
2299 MVT ContainerVT
= SrcVT
;
2300 if (SrcVT
.isFixedLengthVector()) {
2301 ContainerVT
= getContainerForFixedLengthVector(SrcVT
);
2302 Src
= convertToScalableVector(ContainerVT
, Src
, DAG
, Subtarget
);
2305 SDValue Result
= Src
;
2307 std::tie(Mask
, VL
) =
2308 getDefaultVLOps(SrcVT
, ContainerVT
, DL
, DAG
, Subtarget
);
2309 LLVMContext
&Context
= *DAG
.getContext();
2310 const ElementCount Count
= ContainerVT
.getVectorElementCount();
2312 SrcEltVT
= MVT::getIntegerVT(SrcEltVT
.getSizeInBits() / 2);
2313 EVT ResultVT
= EVT::getVectorVT(Context
, SrcEltVT
, Count
);
2314 Result
= DAG
.getNode(RISCVISD::TRUNCATE_VECTOR_VL
, DL
, ResultVT
, Result
,
2316 } while (SrcEltVT
!= DstEltVT
);
2318 if (SrcVT
.isFixedLengthVector())
2319 Result
= convertFromScalableVector(VT
, Result
, DAG
, Subtarget
);
2323 case ISD::ANY_EXTEND
:
2324 case ISD::ZERO_EXTEND
:
2325 if (Op
.getOperand(0).getValueType().isVector() &&
2326 Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i1
)
2327 return lowerVectorMaskExt(Op
, DAG
, /*ExtVal*/ 1);
2328 return lowerFixedLengthVectorExtendToRVV(Op
, DAG
, RISCVISD::VZEXT_VL
);
2329 case ISD::SIGN_EXTEND
:
2330 if (Op
.getOperand(0).getValueType().isVector() &&
2331 Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i1
)
2332 return lowerVectorMaskExt(Op
, DAG
, /*ExtVal*/ -1);
2333 return lowerFixedLengthVectorExtendToRVV(Op
, DAG
, RISCVISD::VSEXT_VL
);
2334 case ISD::SPLAT_VECTOR_PARTS
:
2335 return lowerSPLAT_VECTOR_PARTS(Op
, DAG
);
2336 case ISD::INSERT_VECTOR_ELT
:
2337 return lowerINSERT_VECTOR_ELT(Op
, DAG
);
2338 case ISD::EXTRACT_VECTOR_ELT
:
2339 return lowerEXTRACT_VECTOR_ELT(Op
, DAG
);
2341 MVT VT
= Op
.getSimpleValueType();
2343 SDValue VLENB
= DAG
.getNode(RISCVISD::READ_VLENB
, DL
, VT
);
2344 // We define our scalable vector types for lmul=1 to use a 64 bit known
2345 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2346 // vscale as VLENB / 8.
2347 assert(RISCV::RVVBitsPerBlock
== 64 && "Unexpected bits per block!");
2348 if (isa
<ConstantSDNode
>(Op
.getOperand(0))) {
2349 // We assume VLENB is a multiple of 8. We manually choose the best shift
2350 // here because SimplifyDemandedBits isn't always able to simplify it.
2351 uint64_t Val
= Op
.getConstantOperandVal(0);
2352 if (isPowerOf2_64(Val
)) {
2353 uint64_t Log2
= Log2_64(Val
);
2355 return DAG
.getNode(ISD::SRL
, DL
, VT
, VLENB
,
2356 DAG
.getConstant(3 - Log2
, DL
, VT
));
2358 return DAG
.getNode(ISD::SHL
, DL
, VT
, VLENB
,
2359 DAG
.getConstant(Log2
- 3, DL
, VT
));
2362 // If the multiplier is a multiple of 8, scale it down to avoid needing
2363 // to shift the VLENB value.
2365 return DAG
.getNode(ISD::MUL
, DL
, VT
, VLENB
,
2366 DAG
.getConstant(Val
/ 8, DL
, VT
));
2369 SDValue VScale
= DAG
.getNode(ISD::SRL
, DL
, VT
, VLENB
,
2370 DAG
.getConstant(3, DL
, VT
));
2371 return DAG
.getNode(ISD::MUL
, DL
, VT
, VScale
, Op
.getOperand(0));
2373 case ISD::FP_EXTEND
: {
2374 // RVV can only do fp_extend to types double the size as the source. We
2375 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2378 MVT VT
= Op
.getSimpleValueType();
2379 SDValue Src
= Op
.getOperand(0);
2380 MVT SrcVT
= Src
.getSimpleValueType();
2382 // Prepare any fixed-length vector operands.
2383 MVT ContainerVT
= VT
;
2384 if (SrcVT
.isFixedLengthVector()) {
2385 ContainerVT
= getContainerForFixedLengthVector(VT
);
2386 MVT SrcContainerVT
=
2387 ContainerVT
.changeVectorElementType(SrcVT
.getVectorElementType());
2388 Src
= convertToScalableVector(SrcContainerVT
, Src
, DAG
, Subtarget
);
2391 if (!VT
.isVector() || VT
.getVectorElementType() != MVT::f64
||
2392 SrcVT
.getVectorElementType() != MVT::f16
) {
2393 // For scalable vectors, we only need to close the gap between
2395 if (!VT
.isFixedLengthVector())
2397 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2398 Src
= getRVVFPExtendOrRound(Src
, VT
, ContainerVT
, DL
, DAG
, Subtarget
);
2399 return convertFromScalableVector(VT
, Src
, DAG
, Subtarget
);
2402 MVT InterVT
= VT
.changeVectorElementType(MVT::f32
);
2403 MVT InterContainerVT
= ContainerVT
.changeVectorElementType(MVT::f32
);
2404 SDValue IntermediateExtend
= getRVVFPExtendOrRound(
2405 Src
, InterVT
, InterContainerVT
, DL
, DAG
, Subtarget
);
2407 SDValue Extend
= getRVVFPExtendOrRound(IntermediateExtend
, VT
, ContainerVT
,
2408 DL
, DAG
, Subtarget
);
2409 if (VT
.isFixedLengthVector())
2410 return convertFromScalableVector(VT
, Extend
, DAG
, Subtarget
);
2413 case ISD::FP_ROUND
: {
2414 // RVV can only do fp_round to types half the size as the source. We
2415 // custom-lower f64->f16 rounds via RVV's round-to-odd float
2416 // conversion instruction.
2418 MVT VT
= Op
.getSimpleValueType();
2419 SDValue Src
= Op
.getOperand(0);
2420 MVT SrcVT
= Src
.getSimpleValueType();
2422 // Prepare any fixed-length vector operands.
2423 MVT ContainerVT
= VT
;
2424 if (VT
.isFixedLengthVector()) {
2425 MVT SrcContainerVT
= getContainerForFixedLengthVector(SrcVT
);
2427 SrcContainerVT
.changeVectorElementType(VT
.getVectorElementType());
2428 Src
= convertToScalableVector(SrcContainerVT
, Src
, DAG
, Subtarget
);
2431 if (!VT
.isVector() || VT
.getVectorElementType() != MVT::f16
||
2432 SrcVT
.getVectorElementType() != MVT::f64
) {
2433 // For scalable vectors, we only need to close the gap between
2435 if (!VT
.isFixedLengthVector())
2437 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2438 Src
= getRVVFPExtendOrRound(Src
, VT
, ContainerVT
, DL
, DAG
, Subtarget
);
2439 return convertFromScalableVector(VT
, Src
, DAG
, Subtarget
);
2443 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
2445 MVT InterVT
= ContainerVT
.changeVectorElementType(MVT::f32
);
2446 SDValue IntermediateRound
=
2447 DAG
.getNode(RISCVISD::VFNCVT_ROD_VL
, DL
, InterVT
, Src
, Mask
, VL
);
2448 SDValue Round
= getRVVFPExtendOrRound(IntermediateRound
, VT
, ContainerVT
,
2449 DL
, DAG
, Subtarget
);
2451 if (VT
.isFixedLengthVector())
2452 return convertFromScalableVector(VT
, Round
, DAG
, Subtarget
);
2455 case ISD::FP_TO_SINT
:
2456 case ISD::FP_TO_UINT
:
2457 case ISD::SINT_TO_FP
:
2458 case ISD::UINT_TO_FP
: {
2459 // RVV can only do fp<->int conversions to types half/double the size as
2460 // the source. We custom-lower any conversions that do two hops into
2462 MVT VT
= Op
.getSimpleValueType();
2466 SDValue Src
= Op
.getOperand(0);
2467 MVT EltVT
= VT
.getVectorElementType();
2468 MVT SrcVT
= Src
.getSimpleValueType();
2469 MVT SrcEltVT
= SrcVT
.getVectorElementType();
2470 unsigned EltSize
= EltVT
.getSizeInBits();
2471 unsigned SrcEltSize
= SrcEltVT
.getSizeInBits();
2472 assert(isPowerOf2_32(EltSize
) && isPowerOf2_32(SrcEltSize
) &&
2473 "Unexpected vector element types");
2475 bool IsInt2FP
= SrcEltVT
.isInteger();
2476 // Widening conversions
2477 if (EltSize
> SrcEltSize
&& (EltSize
/ SrcEltSize
>= 4)) {
2479 // Do a regular integer sign/zero extension then convert to float.
2480 MVT IVecVT
= MVT::getVectorVT(MVT::getIntegerVT(EltVT
.getSizeInBits()),
2481 VT
.getVectorElementCount());
2482 unsigned ExtOpcode
= Op
.getOpcode() == ISD::UINT_TO_FP
2485 SDValue Ext
= DAG
.getNode(ExtOpcode
, DL
, IVecVT
, Src
);
2486 return DAG
.getNode(Op
.getOpcode(), DL
, VT
, Ext
);
2489 assert(SrcEltVT
== MVT::f16
&& "Unexpected FP_TO_[US]INT lowering");
2490 // Do one doubling fp_extend then complete the operation by converting
2492 MVT InterimFVT
= MVT::getVectorVT(MVT::f32
, VT
.getVectorElementCount());
2493 SDValue FExt
= DAG
.getFPExtendOrRound(Src
, DL
, InterimFVT
);
2494 return DAG
.getNode(Op
.getOpcode(), DL
, VT
, FExt
);
2497 // Narrowing conversions
2498 if (SrcEltSize
> EltSize
&& (SrcEltSize
/ EltSize
>= 4)) {
2500 // One narrowing int_to_fp, then an fp_round.
2501 assert(EltVT
== MVT::f16
&& "Unexpected [US]_TO_FP lowering");
2502 MVT InterimFVT
= MVT::getVectorVT(MVT::f32
, VT
.getVectorElementCount());
2503 SDValue Int2FP
= DAG
.getNode(Op
.getOpcode(), DL
, InterimFVT
, Src
);
2504 return DAG
.getFPExtendOrRound(Int2FP
, DL
, VT
);
2507 // One narrowing fp_to_int, then truncate the integer. If the float isn't
2508 // representable by the integer, the result is poison.
2510 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT
.getSizeInBits() / 2),
2511 VT
.getVectorElementCount());
2512 SDValue FP2Int
= DAG
.getNode(Op
.getOpcode(), DL
, IVecVT
, Src
);
2513 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FP2Int
);
2516 // Scalable vectors can exit here. Patterns will handle equally-sized
2517 // conversions halving/doubling ones.
2518 if (!VT
.isFixedLengthVector())
2521 // For fixed-length vectors we lower to a custom "VL" node.
2522 unsigned RVVOpc
= 0;
2523 switch (Op
.getOpcode()) {
2525 llvm_unreachable("Impossible opcode");
2526 case ISD::FP_TO_SINT
:
2527 RVVOpc
= RISCVISD::FP_TO_SINT_VL
;
2529 case ISD::FP_TO_UINT
:
2530 RVVOpc
= RISCVISD::FP_TO_UINT_VL
;
2532 case ISD::SINT_TO_FP
:
2533 RVVOpc
= RISCVISD::SINT_TO_FP_VL
;
2535 case ISD::UINT_TO_FP
:
2536 RVVOpc
= RISCVISD::UINT_TO_FP_VL
;
2540 MVT ContainerVT
, SrcContainerVT
;
2541 // Derive the reference container type from the larger vector type.
2542 if (SrcEltSize
> EltSize
) {
2543 SrcContainerVT
= getContainerForFixedLengthVector(SrcVT
);
2545 SrcContainerVT
.changeVectorElementType(VT
.getVectorElementType());
2547 ContainerVT
= getContainerForFixedLengthVector(VT
);
2548 SrcContainerVT
= ContainerVT
.changeVectorElementType(SrcEltVT
);
2552 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
2554 Src
= convertToScalableVector(SrcContainerVT
, Src
, DAG
, Subtarget
);
2555 Src
= DAG
.getNode(RVVOpc
, DL
, ContainerVT
, Src
, Mask
, VL
);
2556 return convertFromScalableVector(VT
, Src
, DAG
, Subtarget
);
2558 case ISD::FP_TO_SINT_SAT
:
2559 case ISD::FP_TO_UINT_SAT
:
2560 return lowerFP_TO_INT_SAT(Op
, DAG
);
2561 case ISD::VECREDUCE_ADD
:
2562 case ISD::VECREDUCE_UMAX
:
2563 case ISD::VECREDUCE_SMAX
:
2564 case ISD::VECREDUCE_UMIN
:
2565 case ISD::VECREDUCE_SMIN
:
2566 return lowerVECREDUCE(Op
, DAG
);
2567 case ISD::VECREDUCE_AND
:
2568 case ISD::VECREDUCE_OR
:
2569 case ISD::VECREDUCE_XOR
:
2570 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i1
)
2571 return lowerVectorMaskVECREDUCE(Op
, DAG
);
2572 return lowerVECREDUCE(Op
, DAG
);
2573 case ISD::VECREDUCE_FADD
:
2574 case ISD::VECREDUCE_SEQ_FADD
:
2575 case ISD::VECREDUCE_FMIN
:
2576 case ISD::VECREDUCE_FMAX
:
2577 return lowerFPVECREDUCE(Op
, DAG
);
2578 case ISD::INSERT_SUBVECTOR
:
2579 return lowerINSERT_SUBVECTOR(Op
, DAG
);
2580 case ISD::EXTRACT_SUBVECTOR
:
2581 return lowerEXTRACT_SUBVECTOR(Op
, DAG
);
2582 case ISD::STEP_VECTOR
:
2583 return lowerSTEP_VECTOR(Op
, DAG
);
2584 case ISD::VECTOR_REVERSE
:
2585 return lowerVECTOR_REVERSE(Op
, DAG
);
2586 case ISD::BUILD_VECTOR
:
2587 return lowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
2588 case ISD::SPLAT_VECTOR
:
2589 if (Op
.getValueType().getVectorElementType() == MVT::i1
)
2590 return lowerVectorMaskSplat(Op
, DAG
);
2591 return lowerSPLAT_VECTOR(Op
, DAG
, Subtarget
);
2592 case ISD::VECTOR_SHUFFLE
:
2593 return lowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
2594 case ISD::CONCAT_VECTORS
: {
2595 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2596 // better than going through the stack, as the default expansion does.
2598 MVT VT
= Op
.getSimpleValueType();
2599 unsigned NumOpElts
=
2600 Op
.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2601 SDValue Vec
= DAG
.getUNDEF(VT
);
2602 for (const auto &OpIdx
: enumerate(Op
->ops()))
2603 Vec
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, Vec
, OpIdx
.value(),
2604 DAG
.getIntPtrConstant(OpIdx
.index() * NumOpElts
, DL
));
2608 if (auto V
= expandUnalignedRVVLoad(Op
, DAG
))
2610 if (Op
.getValueType().isFixedLengthVector())
2611 return lowerFixedLengthVectorLoadToRVV(Op
, DAG
);
2614 if (auto V
= expandUnalignedRVVStore(Op
, DAG
))
2616 if (Op
.getOperand(1).getValueType().isFixedLengthVector())
2617 return lowerFixedLengthVectorStoreToRVV(Op
, DAG
);
2620 return lowerMLOAD(Op
, DAG
);
2622 return lowerMSTORE(Op
, DAG
);
2624 return lowerFixedLengthVectorSetccToRVV(Op
, DAG
);
2626 return lowerToScalableOp(Op
, DAG
, RISCVISD::ADD_VL
);
2628 return lowerToScalableOp(Op
, DAG
, RISCVISD::SUB_VL
);
2630 return lowerToScalableOp(Op
, DAG
, RISCVISD::MUL_VL
);
2632 return lowerToScalableOp(Op
, DAG
, RISCVISD::MULHS_VL
);
2634 return lowerToScalableOp(Op
, DAG
, RISCVISD::MULHU_VL
);
2636 return lowerFixedLengthVectorLogicOpToRVV(Op
, DAG
, RISCVISD::VMAND_VL
,
2639 return lowerFixedLengthVectorLogicOpToRVV(Op
, DAG
, RISCVISD::VMOR_VL
,
2642 return lowerFixedLengthVectorLogicOpToRVV(Op
, DAG
, RISCVISD::VMXOR_VL
,
2645 return lowerToScalableOp(Op
, DAG
, RISCVISD::SDIV_VL
);
2647 return lowerToScalableOp(Op
, DAG
, RISCVISD::SREM_VL
);
2649 return lowerToScalableOp(Op
, DAG
, RISCVISD::UDIV_VL
);
2651 return lowerToScalableOp(Op
, DAG
, RISCVISD::UREM_VL
);
2655 if (Op
.getSimpleValueType().isFixedLengthVector())
2656 return lowerFixedLengthVectorShiftToRVV(Op
, DAG
);
2657 // This can be called for an i32 shift amount that needs to be promoted.
2658 assert(Op
.getOperand(1).getValueType() == MVT::i32
&& Subtarget
.is64Bit() &&
2659 "Unexpected custom legalisation");
2662 return lowerToScalableOp(Op
, DAG
, RISCVISD::SADDSAT_VL
);
2664 return lowerToScalableOp(Op
, DAG
, RISCVISD::UADDSAT_VL
);
2666 return lowerToScalableOp(Op
, DAG
, RISCVISD::SSUBSAT_VL
);
2668 return lowerToScalableOp(Op
, DAG
, RISCVISD::USUBSAT_VL
);
2670 return lowerToScalableOp(Op
, DAG
, RISCVISD::FADD_VL
);
2672 return lowerToScalableOp(Op
, DAG
, RISCVISD::FSUB_VL
);
2674 return lowerToScalableOp(Op
, DAG
, RISCVISD::FMUL_VL
);
2676 return lowerToScalableOp(Op
, DAG
, RISCVISD::FDIV_VL
);
2678 return lowerToScalableOp(Op
, DAG
, RISCVISD::FNEG_VL
);
2680 return lowerToScalableOp(Op
, DAG
, RISCVISD::FABS_VL
);
2682 return lowerToScalableOp(Op
, DAG
, RISCVISD::FSQRT_VL
);
2684 return lowerToScalableOp(Op
, DAG
, RISCVISD::FMA_VL
);
2686 return lowerToScalableOp(Op
, DAG
, RISCVISD::SMIN_VL
);
2688 return lowerToScalableOp(Op
, DAG
, RISCVISD::SMAX_VL
);
2690 return lowerToScalableOp(Op
, DAG
, RISCVISD::UMIN_VL
);
2692 return lowerToScalableOp(Op
, DAG
, RISCVISD::UMAX_VL
);
2694 return lowerToScalableOp(Op
, DAG
, RISCVISD::FMINNUM_VL
);
2696 return lowerToScalableOp(Op
, DAG
, RISCVISD::FMAXNUM_VL
);
2698 return lowerABS(Op
, DAG
);
2700 return lowerFixedLengthVectorSelectToRVV(Op
, DAG
);
2701 case ISD::FCOPYSIGN
:
2702 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op
, DAG
);
2704 return lowerMGATHER(Op
, DAG
);
2706 return lowerMSCATTER(Op
, DAG
);
2707 case ISD::FLT_ROUNDS_
:
2708 return lowerGET_ROUNDING(Op
, DAG
);
2709 case ISD::SET_ROUNDING
:
2710 return lowerSET_ROUNDING(Op
, DAG
);
2712 return lowerVPOp(Op
, DAG
, RISCVISD::ADD_VL
);
2714 return lowerVPOp(Op
, DAG
, RISCVISD::SUB_VL
);
2716 return lowerVPOp(Op
, DAG
, RISCVISD::MUL_VL
);
2718 return lowerVPOp(Op
, DAG
, RISCVISD::SDIV_VL
);
2720 return lowerVPOp(Op
, DAG
, RISCVISD::UDIV_VL
);
2722 return lowerVPOp(Op
, DAG
, RISCVISD::SREM_VL
);
2724 return lowerVPOp(Op
, DAG
, RISCVISD::UREM_VL
);
2726 return lowerVPOp(Op
, DAG
, RISCVISD::AND_VL
);
2728 return lowerVPOp(Op
, DAG
, RISCVISD::OR_VL
);
2730 return lowerVPOp(Op
, DAG
, RISCVISD::XOR_VL
);
2732 return lowerVPOp(Op
, DAG
, RISCVISD::SRA_VL
);
2734 return lowerVPOp(Op
, DAG
, RISCVISD::SRL_VL
);
2736 return lowerVPOp(Op
, DAG
, RISCVISD::SHL_VL
);
2738 return lowerVPOp(Op
, DAG
, RISCVISD::FADD_VL
);
2740 return lowerVPOp(Op
, DAG
, RISCVISD::FSUB_VL
);
2742 return lowerVPOp(Op
, DAG
, RISCVISD::FMUL_VL
);
2744 return lowerVPOp(Op
, DAG
, RISCVISD::FDIV_VL
);
2748 static SDValue
getTargetNode(GlobalAddressSDNode
*N
, SDLoc DL
, EVT Ty
,
2749 SelectionDAG
&DAG
, unsigned Flags
) {
2750 return DAG
.getTargetGlobalAddress(N
->getGlobal(), DL
, Ty
, 0, Flags
);
2753 static SDValue
getTargetNode(BlockAddressSDNode
*N
, SDLoc DL
, EVT Ty
,
2754 SelectionDAG
&DAG
, unsigned Flags
) {
2755 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, N
->getOffset(),
2759 static SDValue
getTargetNode(ConstantPoolSDNode
*N
, SDLoc DL
, EVT Ty
,
2760 SelectionDAG
&DAG
, unsigned Flags
) {
2761 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlign(),
2762 N
->getOffset(), Flags
);
2765 static SDValue
getTargetNode(JumpTableSDNode
*N
, SDLoc DL
, EVT Ty
,
2766 SelectionDAG
&DAG
, unsigned Flags
) {
2767 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flags
);
2770 template <class NodeTy
>
2771 SDValue
RISCVTargetLowering::getAddr(NodeTy
*N
, SelectionDAG
&DAG
,
2772 bool IsLocal
) const {
2774 EVT Ty
= getPointerTy(DAG
.getDataLayout());
2776 if (isPositionIndependent()) {
2777 SDValue Addr
= getTargetNode(N
, DL
, Ty
, DAG
, 0);
2779 // Use PC-relative addressing to access the symbol. This generates the
2780 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2781 // %pcrel_lo(auipc)).
2782 return SDValue(DAG
.getMachineNode(RISCV::PseudoLLA
, DL
, Ty
, Addr
), 0);
2784 // Use PC-relative addressing to access the GOT for this symbol, then load
2785 // the address from the GOT. This generates the pattern (PseudoLA sym),
2786 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2787 return SDValue(DAG
.getMachineNode(RISCV::PseudoLA
, DL
, Ty
, Addr
), 0);
2790 switch (getTargetMachine().getCodeModel()) {
2792 report_fatal_error("Unsupported code model for lowering");
2793 case CodeModel::Small
: {
2794 // Generate a sequence for accessing addresses within the first 2 GiB of
2795 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2796 SDValue AddrHi
= getTargetNode(N
, DL
, Ty
, DAG
, RISCVII::MO_HI
);
2797 SDValue AddrLo
= getTargetNode(N
, DL
, Ty
, DAG
, RISCVII::MO_LO
);
2798 SDValue MNHi
= SDValue(DAG
.getMachineNode(RISCV::LUI
, DL
, Ty
, AddrHi
), 0);
2799 return SDValue(DAG
.getMachineNode(RISCV::ADDI
, DL
, Ty
, MNHi
, AddrLo
), 0);
2801 case CodeModel::Medium
: {
2802 // Generate a sequence for accessing addresses within any 2GiB range within
2803 // the address space. This generates the pattern (PseudoLLA sym), which
2804 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2805 SDValue Addr
= getTargetNode(N
, DL
, Ty
, DAG
, 0);
2806 return SDValue(DAG
.getMachineNode(RISCV::PseudoLLA
, DL
, Ty
, Addr
), 0);
2811 SDValue
RISCVTargetLowering::lowerGlobalAddress(SDValue Op
,
2812 SelectionDAG
&DAG
) const {
2814 EVT Ty
= Op
.getValueType();
2815 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
2816 int64_t Offset
= N
->getOffset();
2817 MVT XLenVT
= Subtarget
.getXLenVT();
2819 const GlobalValue
*GV
= N
->getGlobal();
2820 bool IsLocal
= getTargetMachine().shouldAssumeDSOLocal(*GV
->getParent(), GV
);
2821 SDValue Addr
= getAddr(N
, DAG
, IsLocal
);
2823 // In order to maximise the opportunity for common subexpression elimination,
2824 // emit a separate ADD node for the global address offset instead of folding
2825 // it in the global address node. Later peephole optimisations may choose to
2826 // fold it back in when profitable.
2828 return DAG
.getNode(ISD::ADD
, DL
, Ty
, Addr
,
2829 DAG
.getConstant(Offset
, DL
, XLenVT
));
2833 SDValue
RISCVTargetLowering::lowerBlockAddress(SDValue Op
,
2834 SelectionDAG
&DAG
) const {
2835 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2837 return getAddr(N
, DAG
);
2840 SDValue
RISCVTargetLowering::lowerConstantPool(SDValue Op
,
2841 SelectionDAG
&DAG
) const {
2842 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2844 return getAddr(N
, DAG
);
2847 SDValue
RISCVTargetLowering::lowerJumpTable(SDValue Op
,
2848 SelectionDAG
&DAG
) const {
2849 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2851 return getAddr(N
, DAG
);
2854 SDValue
RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode
*N
,
2856 bool UseGOT
) const {
2858 EVT Ty
= getPointerTy(DAG
.getDataLayout());
2859 const GlobalValue
*GV
= N
->getGlobal();
2860 MVT XLenVT
= Subtarget
.getXLenVT();
2863 // Use PC-relative addressing to access the GOT for this TLS symbol, then
2864 // load the address from the GOT and add the thread pointer. This generates
2865 // the pattern (PseudoLA_TLS_IE sym), which expands to
2866 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2867 SDValue Addr
= DAG
.getTargetGlobalAddress(GV
, DL
, Ty
, 0, 0);
2869 SDValue(DAG
.getMachineNode(RISCV::PseudoLA_TLS_IE
, DL
, Ty
, Addr
), 0);
2871 // Add the thread pointer.
2872 SDValue TPReg
= DAG
.getRegister(RISCV::X4
, XLenVT
);
2873 return DAG
.getNode(ISD::ADD
, DL
, Ty
, Load
, TPReg
);
2876 // Generate a sequence for accessing the address relative to the thread
2877 // pointer, with the appropriate adjustment for the thread pointer offset.
2878 // This generates the pattern
2879 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2881 DAG
.getTargetGlobalAddress(GV
, DL
, Ty
, 0, RISCVII::MO_TPREL_HI
);
2883 DAG
.getTargetGlobalAddress(GV
, DL
, Ty
, 0, RISCVII::MO_TPREL_ADD
);
2885 DAG
.getTargetGlobalAddress(GV
, DL
, Ty
, 0, RISCVII::MO_TPREL_LO
);
2887 SDValue MNHi
= SDValue(DAG
.getMachineNode(RISCV::LUI
, DL
, Ty
, AddrHi
), 0);
2888 SDValue TPReg
= DAG
.getRegister(RISCV::X4
, XLenVT
);
2889 SDValue MNAdd
= SDValue(
2890 DAG
.getMachineNode(RISCV::PseudoAddTPRel
, DL
, Ty
, MNHi
, TPReg
, AddrAdd
),
2892 return SDValue(DAG
.getMachineNode(RISCV::ADDI
, DL
, Ty
, MNAdd
, AddrLo
), 0);
2895 SDValue
RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode
*N
,
2896 SelectionDAG
&DAG
) const {
2898 EVT Ty
= getPointerTy(DAG
.getDataLayout());
2899 IntegerType
*CallTy
= Type::getIntNTy(*DAG
.getContext(), Ty
.getSizeInBits());
2900 const GlobalValue
*GV
= N
->getGlobal();
2902 // Use a PC-relative addressing mode to access the global dynamic GOT address.
2903 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2904 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2905 SDValue Addr
= DAG
.getTargetGlobalAddress(GV
, DL
, Ty
, 0, 0);
2907 SDValue(DAG
.getMachineNode(RISCV::PseudoLA_TLS_GD
, DL
, Ty
, Addr
), 0);
2909 // Prepare argument list to generate call.
2914 Args
.push_back(Entry
);
2916 // Setup call to __tls_get_addr.
2917 TargetLowering::CallLoweringInfo
CLI(DAG
);
2919 .setChain(DAG
.getEntryNode())
2920 .setLibCallee(CallingConv::C
, CallTy
,
2921 DAG
.getExternalSymbol("__tls_get_addr", Ty
),
2924 return LowerCallTo(CLI
).first
;
2927 SDValue
RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op
,
2928 SelectionDAG
&DAG
) const {
2930 EVT Ty
= Op
.getValueType();
2931 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
2932 int64_t Offset
= N
->getOffset();
2933 MVT XLenVT
= Subtarget
.getXLenVT();
2935 TLSModel::Model Model
= getTargetMachine().getTLSModel(N
->getGlobal());
2937 if (DAG
.getMachineFunction().getFunction().getCallingConv() ==
2939 report_fatal_error("In GHC calling convention TLS is not supported");
2943 case TLSModel::LocalExec
:
2944 Addr
= getStaticTLSAddr(N
, DAG
, /*UseGOT=*/false);
2946 case TLSModel::InitialExec
:
2947 Addr
= getStaticTLSAddr(N
, DAG
, /*UseGOT=*/true);
2949 case TLSModel::LocalDynamic
:
2950 case TLSModel::GeneralDynamic
:
2951 Addr
= getDynamicTLSAddr(N
, DAG
);
2955 // In order to maximise the opportunity for common subexpression elimination,
2956 // emit a separate ADD node for the global address offset instead of folding
2957 // it in the global address node. Later peephole optimisations may choose to
2958 // fold it back in when profitable.
2960 return DAG
.getNode(ISD::ADD
, DL
, Ty
, Addr
,
2961 DAG
.getConstant(Offset
, DL
, XLenVT
));
2965 SDValue
RISCVTargetLowering::lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
2966 SDValue CondV
= Op
.getOperand(0);
2967 SDValue TrueV
= Op
.getOperand(1);
2968 SDValue FalseV
= Op
.getOperand(2);
2970 MVT VT
= Op
.getSimpleValueType();
2971 MVT XLenVT
= Subtarget
.getXLenVT();
2973 // Lower vector SELECTs to VSELECTs by splatting the condition.
2974 if (VT
.isVector()) {
2975 MVT SplatCondVT
= VT
.changeVectorElementType(MVT::i1
);
2976 SDValue CondSplat
= VT
.isScalableVector()
2977 ? DAG
.getSplatVector(SplatCondVT
, DL
, CondV
)
2978 : DAG
.getSplatBuildVector(SplatCondVT
, DL
, CondV
);
2979 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, CondSplat
, TrueV
, FalseV
);
2982 // If the result type is XLenVT and CondV is the output of a SETCC node
2983 // which also operated on XLenVT inputs, then merge the SETCC node into the
2984 // lowered RISCVISD::SELECT_CC to take advantage of the integer
2985 // compare+branch instructions. i.e.:
2986 // (select (setcc lhs, rhs, cc), truev, falsev)
2987 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2988 if (VT
== XLenVT
&& CondV
.getOpcode() == ISD::SETCC
&&
2989 CondV
.getOperand(0).getSimpleValueType() == XLenVT
) {
2990 SDValue LHS
= CondV
.getOperand(0);
2991 SDValue RHS
= CondV
.getOperand(1);
2992 const auto *CC
= cast
<CondCodeSDNode
>(CondV
.getOperand(2));
2993 ISD::CondCode CCVal
= CC
->get();
2995 // Special case for a select of 2 constants that have a diffence of 1.
2996 // Normally this is done by DAGCombine, but if the select is introduced by
2997 // type legalization or op legalization, we miss it. Restricting to SETLT
2998 // case for now because that is what signed saturating add/sub need.
2999 // FIXME: We don't need the condition to be SETLT or even a SETCC,
3000 // but we would probably want to swap the true/false values if the condition
3001 // is SETGE/SETLE to avoid an XORI.
3002 if (isa
<ConstantSDNode
>(TrueV
) && isa
<ConstantSDNode
>(FalseV
) &&
3003 CCVal
== ISD::SETLT
) {
3004 const APInt
&TrueVal
= cast
<ConstantSDNode
>(TrueV
)->getAPIntValue();
3005 const APInt
&FalseVal
= cast
<ConstantSDNode
>(FalseV
)->getAPIntValue();
3006 if (TrueVal
- 1 == FalseVal
)
3007 return DAG
.getNode(ISD::ADD
, DL
, Op
.getValueType(), CondV
, FalseV
);
3008 if (TrueVal
+ 1 == FalseVal
)
3009 return DAG
.getNode(ISD::SUB
, DL
, Op
.getValueType(), FalseV
, CondV
);
3012 translateSetCCForBranch(DL
, LHS
, RHS
, CCVal
, DAG
);
3014 SDValue TargetCC
= DAG
.getCondCode(CCVal
);
3015 SDValue Ops
[] = {LHS
, RHS
, TargetCC
, TrueV
, FalseV
};
3016 return DAG
.getNode(RISCVISD::SELECT_CC
, DL
, Op
.getValueType(), Ops
);
3020 // (select condv, truev, falsev)
3021 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3022 SDValue Zero
= DAG
.getConstant(0, DL
, XLenVT
);
3023 SDValue SetNE
= DAG
.getCondCode(ISD::SETNE
);
3025 SDValue Ops
[] = {CondV
, Zero
, SetNE
, TrueV
, FalseV
};
3027 return DAG
.getNode(RISCVISD::SELECT_CC
, DL
, Op
.getValueType(), Ops
);
3030 SDValue
RISCVTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
3031 SDValue CondV
= Op
.getOperand(1);
3033 MVT XLenVT
= Subtarget
.getXLenVT();
3035 if (CondV
.getOpcode() == ISD::SETCC
&&
3036 CondV
.getOperand(0).getValueType() == XLenVT
) {
3037 SDValue LHS
= CondV
.getOperand(0);
3038 SDValue RHS
= CondV
.getOperand(1);
3039 ISD::CondCode CCVal
= cast
<CondCodeSDNode
>(CondV
.getOperand(2))->get();
3041 translateSetCCForBranch(DL
, LHS
, RHS
, CCVal
, DAG
);
3043 SDValue TargetCC
= DAG
.getCondCode(CCVal
);
3044 return DAG
.getNode(RISCVISD::BR_CC
, DL
, Op
.getValueType(), Op
.getOperand(0),
3045 LHS
, RHS
, TargetCC
, Op
.getOperand(2));
3048 return DAG
.getNode(RISCVISD::BR_CC
, DL
, Op
.getValueType(), Op
.getOperand(0),
3049 CondV
, DAG
.getConstant(0, DL
, XLenVT
),
3050 DAG
.getCondCode(ISD::SETNE
), Op
.getOperand(2));
3053 SDValue
RISCVTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
3054 MachineFunction
&MF
= DAG
.getMachineFunction();
3055 RISCVMachineFunctionInfo
*FuncInfo
= MF
.getInfo
<RISCVMachineFunctionInfo
>();
3058 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
3059 getPointerTy(MF
.getDataLayout()));
3061 // vastart just stores the address of the VarArgsFrameIndex slot into the
3062 // memory location argument.
3063 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3064 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
3065 MachinePointerInfo(SV
));
3068 SDValue
RISCVTargetLowering::lowerFRAMEADDR(SDValue Op
,
3069 SelectionDAG
&DAG
) const {
3070 const RISCVRegisterInfo
&RI
= *Subtarget
.getRegisterInfo();
3071 MachineFunction
&MF
= DAG
.getMachineFunction();
3072 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3073 MFI
.setFrameAddressIsTaken(true);
3074 Register FrameReg
= RI
.getFrameRegister(MF
);
3075 int XLenInBytes
= Subtarget
.getXLen() / 8;
3077 EVT VT
= Op
.getValueType();
3079 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, FrameReg
, VT
);
3080 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3082 int Offset
= -(XLenInBytes
* 2);
3083 SDValue Ptr
= DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
,
3084 DAG
.getIntPtrConstant(Offset
, DL
));
3086 DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(), Ptr
, MachinePointerInfo());
3091 SDValue
RISCVTargetLowering::lowerRETURNADDR(SDValue Op
,
3092 SelectionDAG
&DAG
) const {
3093 const RISCVRegisterInfo
&RI
= *Subtarget
.getRegisterInfo();
3094 MachineFunction
&MF
= DAG
.getMachineFunction();
3095 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3096 MFI
.setReturnAddressIsTaken(true);
3097 MVT XLenVT
= Subtarget
.getXLenVT();
3098 int XLenInBytes
= Subtarget
.getXLen() / 8;
3100 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
3103 EVT VT
= Op
.getValueType();
3105 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3107 int Off
= -XLenInBytes
;
3108 SDValue FrameAddr
= lowerFRAMEADDR(Op
, DAG
);
3109 SDValue Offset
= DAG
.getConstant(Off
, DL
, VT
);
3110 return DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(),
3111 DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
, Offset
),
3112 MachinePointerInfo());
3115 // Return the value of the return address register, marking it an implicit
3117 Register Reg
= MF
.addLiveIn(RI
.getRARegister(), getRegClassFor(XLenVT
));
3118 return DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, Reg
, XLenVT
);
3121 SDValue
RISCVTargetLowering::lowerShiftLeftParts(SDValue Op
,
3122 SelectionDAG
&DAG
) const {
3124 SDValue Lo
= Op
.getOperand(0);
3125 SDValue Hi
= Op
.getOperand(1);
3126 SDValue Shamt
= Op
.getOperand(2);
3127 EVT VT
= Lo
.getValueType();
3129 // if Shamt-XLEN < 0: // Shamt < XLEN
3131 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3134 // Hi = Lo << (Shamt-XLEN)
3136 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3137 SDValue One
= DAG
.getConstant(1, DL
, VT
);
3138 SDValue MinusXLen
= DAG
.getConstant(-(int)Subtarget
.getXLen(), DL
, VT
);
3139 SDValue XLenMinus1
= DAG
.getConstant(Subtarget
.getXLen() - 1, DL
, VT
);
3140 SDValue ShamtMinusXLen
= DAG
.getNode(ISD::ADD
, DL
, VT
, Shamt
, MinusXLen
);
3141 SDValue XLenMinus1Shamt
= DAG
.getNode(ISD::SUB
, DL
, VT
, XLenMinus1
, Shamt
);
3143 SDValue LoTrue
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
3144 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, One
);
3145 SDValue ShiftRightLo
=
3146 DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, XLenMinus1Shamt
);
3147 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
3148 SDValue HiTrue
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
3149 SDValue HiFalse
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, ShamtMinusXLen
);
3151 SDValue CC
= DAG
.getSetCC(DL
, VT
, ShamtMinusXLen
, Zero
, ISD::SETLT
);
3153 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, CC
, LoTrue
, Zero
);
3154 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, CC
, HiTrue
, HiFalse
);
3156 SDValue Parts
[2] = {Lo
, Hi
};
3157 return DAG
.getMergeValues(Parts
, DL
);
3160 SDValue
RISCVTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
3163 SDValue Lo
= Op
.getOperand(0);
3164 SDValue Hi
= Op
.getOperand(1);
3165 SDValue Shamt
= Op
.getOperand(2);
3166 EVT VT
= Lo
.getValueType();
3169 // if Shamt-XLEN < 0: // Shamt < XLEN
3170 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3171 // Hi = Hi >>s Shamt
3173 // Lo = Hi >>s (Shamt-XLEN);
3174 // Hi = Hi >>s (XLEN-1)
3177 // if Shamt-XLEN < 0: // Shamt < XLEN
3178 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3179 // Hi = Hi >>u Shamt
3181 // Lo = Hi >>u (Shamt-XLEN);
3184 unsigned ShiftRightOp
= IsSRA
? ISD::SRA
: ISD::SRL
;
3186 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3187 SDValue One
= DAG
.getConstant(1, DL
, VT
);
3188 SDValue MinusXLen
= DAG
.getConstant(-(int)Subtarget
.getXLen(), DL
, VT
);
3189 SDValue XLenMinus1
= DAG
.getConstant(Subtarget
.getXLen() - 1, DL
, VT
);
3190 SDValue ShamtMinusXLen
= DAG
.getNode(ISD::ADD
, DL
, VT
, Shamt
, MinusXLen
);
3191 SDValue XLenMinus1Shamt
= DAG
.getNode(ISD::SUB
, DL
, VT
, XLenMinus1
, Shamt
);
3193 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
3194 SDValue ShiftLeftHi1
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, One
);
3195 SDValue ShiftLeftHi
=
3196 DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeftHi1
, XLenMinus1Shamt
);
3197 SDValue LoTrue
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftRightLo
, ShiftLeftHi
);
3198 SDValue HiTrue
= DAG
.getNode(ShiftRightOp
, DL
, VT
, Hi
, Shamt
);
3199 SDValue LoFalse
= DAG
.getNode(ShiftRightOp
, DL
, VT
, Hi
, ShamtMinusXLen
);
3201 IsSRA
? DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
, XLenMinus1
) : Zero
;
3203 SDValue CC
= DAG
.getSetCC(DL
, VT
, ShamtMinusXLen
, Zero
, ISD::SETLT
);
3205 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, CC
, LoTrue
, LoFalse
);
3206 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, CC
, HiTrue
, HiFalse
);
3208 SDValue Parts
[2] = {Lo
, Hi
};
3209 return DAG
.getMergeValues(Parts
, DL
);
3212 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3213 // legal equivalently-sized i8 type, so we can use that as a go-between.
3214 SDValue
RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op
,
3215 SelectionDAG
&DAG
) const {
3217 MVT VT
= Op
.getSimpleValueType();
3218 SDValue SplatVal
= Op
.getOperand(0);
3219 // All-zeros or all-ones splats are handled specially.
3220 if (ISD::isConstantSplatVectorAllOnes(Op
.getNode())) {
3221 SDValue VL
= getDefaultScalableVLOps(VT
, DL
, DAG
, Subtarget
).second
;
3222 return DAG
.getNode(RISCVISD::VMSET_VL
, DL
, VT
, VL
);
3224 if (ISD::isConstantSplatVectorAllZeros(Op
.getNode())) {
3225 SDValue VL
= getDefaultScalableVLOps(VT
, DL
, DAG
, Subtarget
).second
;
3226 return DAG
.getNode(RISCVISD::VMCLR_VL
, DL
, VT
, VL
);
3228 MVT XLenVT
= Subtarget
.getXLenVT();
3229 assert(SplatVal
.getValueType() == XLenVT
&&
3230 "Unexpected type for i1 splat value");
3231 MVT InterVT
= VT
.changeVectorElementType(MVT::i8
);
3232 SplatVal
= DAG
.getNode(ISD::AND
, DL
, XLenVT
, SplatVal
,
3233 DAG
.getConstant(1, DL
, XLenVT
));
3234 SDValue LHS
= DAG
.getSplatVector(InterVT
, DL
, SplatVal
);
3235 SDValue Zero
= DAG
.getConstant(0, DL
, InterVT
);
3236 return DAG
.getSetCC(DL
, VT
, LHS
, Zero
, ISD::SETNE
);
3239 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3240 // illegal (currently only vXi64 RV32).
3241 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3242 // them to SPLAT_VECTOR_I64
3243 SDValue
RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op
,
3244 SelectionDAG
&DAG
) const {
3246 MVT VecVT
= Op
.getSimpleValueType();
3247 assert(!Subtarget
.is64Bit() && VecVT
.getVectorElementType() == MVT::i64
&&
3248 "Unexpected SPLAT_VECTOR_PARTS lowering");
3250 assert(Op
.getNumOperands() == 2 && "Unexpected number of operands!");
3251 SDValue Lo
= Op
.getOperand(0);
3252 SDValue Hi
= Op
.getOperand(1);
3254 if (VecVT
.isFixedLengthVector()) {
3255 MVT ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3258 std::tie(Mask
, VL
) =
3259 getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
);
3261 SDValue Res
= splatPartsI64WithVL(DL
, ContainerVT
, Lo
, Hi
, VL
, DAG
);
3262 return convertFromScalableVector(VecVT
, Res
, DAG
, Subtarget
);
3265 if (isa
<ConstantSDNode
>(Lo
) && isa
<ConstantSDNode
>(Hi
)) {
3266 int32_t LoC
= cast
<ConstantSDNode
>(Lo
)->getSExtValue();
3267 int32_t HiC
= cast
<ConstantSDNode
>(Hi
)->getSExtValue();
3268 // If Hi constant is all the same sign bit as Lo, lower this as a custom
3269 // node in order to try and match RVV vector/scalar instructions.
3270 if ((LoC
>> 31) == HiC
)
3271 return DAG
.getNode(RISCVISD::SPLAT_VECTOR_I64
, DL
, VecVT
, Lo
);
3274 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3275 if (Hi
.getOpcode() == ISD::SRA
&& Hi
.getOperand(0) == Lo
&&
3276 isa
<ConstantSDNode
>(Hi
.getOperand(1)) &&
3277 Hi
.getConstantOperandVal(1) == 31)
3278 return DAG
.getNode(RISCVISD::SPLAT_VECTOR_I64
, DL
, VecVT
, Lo
);
3280 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3281 return DAG
.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL
, DL
, VecVT
, Lo
, Hi
,
3282 DAG
.getRegister(RISCV::X0
, MVT::i64
));
3285 // Custom-lower extensions from mask vectors by using a vselect either with 1
3286 // for zero/any-extension or -1 for sign-extension:
3287 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3288 // Note that any-extension is lowered identically to zero-extension.
3289 SDValue
RISCVTargetLowering::lowerVectorMaskExt(SDValue Op
, SelectionDAG
&DAG
,
3290 int64_t ExtTrueVal
) const {
3292 MVT VecVT
= Op
.getSimpleValueType();
3293 SDValue Src
= Op
.getOperand(0);
3294 // Only custom-lower extensions from mask types
3295 assert(Src
.getValueType().isVector() &&
3296 Src
.getValueType().getVectorElementType() == MVT::i1
);
3298 MVT XLenVT
= Subtarget
.getXLenVT();
3299 SDValue SplatZero
= DAG
.getConstant(0, DL
, XLenVT
);
3300 SDValue SplatTrueVal
= DAG
.getConstant(ExtTrueVal
, DL
, XLenVT
);
3302 if (VecVT
.isScalableVector()) {
3303 // Be careful not to introduce illegal scalar types at this stage, and be
3304 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3305 // illegal and must be expanded. Since we know that the constants are
3306 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3308 !Subtarget
.is64Bit() && VecVT
.getVectorElementType() == MVT::i64
;
3311 SplatZero
= DAG
.getSplatVector(VecVT
, DL
, SplatZero
);
3312 SplatTrueVal
= DAG
.getSplatVector(VecVT
, DL
, SplatTrueVal
);
3314 SplatZero
= DAG
.getNode(RISCVISD::SPLAT_VECTOR_I64
, DL
, VecVT
, SplatZero
);
3316 DAG
.getNode(RISCVISD::SPLAT_VECTOR_I64
, DL
, VecVT
, SplatTrueVal
);
3319 return DAG
.getNode(ISD::VSELECT
, DL
, VecVT
, Src
, SplatTrueVal
, SplatZero
);
3322 MVT ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3324 MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
3326 SDValue CC
= convertToScalableVector(I1ContainerVT
, Src
, DAG
, Subtarget
);
3329 std::tie(Mask
, VL
) = getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
);
3331 SplatZero
= DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, ContainerVT
, SplatZero
, VL
);
3333 DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, ContainerVT
, SplatTrueVal
, VL
);
3334 SDValue Select
= DAG
.getNode(RISCVISD::VSELECT_VL
, DL
, ContainerVT
, CC
,
3335 SplatTrueVal
, SplatZero
, VL
);
3337 return convertFromScalableVector(VecVT
, Select
, DAG
, Subtarget
);
3340 SDValue
RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3341 SDValue Op
, SelectionDAG
&DAG
, unsigned ExtendOpc
) const {
3342 MVT ExtVT
= Op
.getSimpleValueType();
3343 // Only custom-lower extensions from fixed-length vector types.
3344 if (!ExtVT
.isFixedLengthVector())
3346 MVT VT
= Op
.getOperand(0).getSimpleValueType();
3347 // Grab the canonical container type for the extended type. Infer the smaller
3348 // type from that to ensure the same number of vector elements, as we know
3349 // the LMUL will be sufficient to hold the smaller type.
3350 MVT ContainerExtVT
= getContainerForFixedLengthVector(ExtVT
);
3351 // Get the extended container type manually to ensure the same number of
3352 // vector elements between source and dest.
3353 MVT ContainerVT
= MVT::getVectorVT(VT
.getVectorElementType(),
3354 ContainerExtVT
.getVectorElementCount());
3357 convertToScalableVector(ContainerVT
, Op
.getOperand(0), DAG
, Subtarget
);
3361 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
3363 SDValue Ext
= DAG
.getNode(ExtendOpc
, DL
, ContainerExtVT
, Op1
, Mask
, VL
);
3365 return convertFromScalableVector(ExtVT
, Ext
, DAG
, Subtarget
);
3368 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3370 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3371 SDValue
RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op
,
3372 SelectionDAG
&DAG
) const {
3374 EVT MaskVT
= Op
.getValueType();
3375 // Only expect to custom-lower truncations to mask types
3376 assert(MaskVT
.isVector() && MaskVT
.getVectorElementType() == MVT::i1
&&
3377 "Unexpected type for vector mask lowering");
3378 SDValue Src
= Op
.getOperand(0);
3379 MVT VecVT
= Src
.getSimpleValueType();
3381 // If this is a fixed vector, we need to convert it to a scalable vector.
3382 MVT ContainerVT
= VecVT
;
3383 if (VecVT
.isFixedLengthVector()) {
3384 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3385 Src
= convertToScalableVector(ContainerVT
, Src
, DAG
, Subtarget
);
3388 SDValue SplatOne
= DAG
.getConstant(1, DL
, Subtarget
.getXLenVT());
3389 SDValue SplatZero
= DAG
.getConstant(0, DL
, Subtarget
.getXLenVT());
3391 SplatOne
= DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, ContainerVT
, SplatOne
);
3392 SplatZero
= DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, ContainerVT
, SplatZero
);
3394 if (VecVT
.isScalableVector()) {
3395 SDValue Trunc
= DAG
.getNode(ISD::AND
, DL
, VecVT
, Src
, SplatOne
);
3396 return DAG
.getSetCC(DL
, MaskVT
, Trunc
, SplatZero
, ISD::SETNE
);
3400 std::tie(Mask
, VL
) = getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
);
3402 MVT MaskContainerVT
= ContainerVT
.changeVectorElementType(MVT::i1
);
3404 DAG
.getNode(RISCVISD::AND_VL
, DL
, ContainerVT
, Src
, SplatOne
, Mask
, VL
);
3405 Trunc
= DAG
.getNode(RISCVISD::SETCC_VL
, DL
, MaskContainerVT
, Trunc
, SplatZero
,
3406 DAG
.getCondCode(ISD::SETNE
), Mask
, VL
);
3407 return convertFromScalableVector(MaskVT
, Trunc
, DAG
, Subtarget
);
3410 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3411 // first position of a vector, and that vector is slid up to the insert index.
3412 // By limiting the active vector length to index+1 and merging with the
3413 // original vector (with an undisturbed tail policy for elements >= VL), we
3414 // achieve the desired result of leaving all elements untouched except the one
3415 // at VL-1, which is replaced with the desired value.
3416 SDValue
RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op
,
3417 SelectionDAG
&DAG
) const {
3419 MVT VecVT
= Op
.getSimpleValueType();
3420 SDValue Vec
= Op
.getOperand(0);
3421 SDValue Val
= Op
.getOperand(1);
3422 SDValue Idx
= Op
.getOperand(2);
3424 if (VecVT
.getVectorElementType() == MVT::i1
) {
3425 // FIXME: For now we just promote to an i8 vector and insert into that,
3426 // but this is probably not optimal.
3427 MVT WideVT
= MVT::getVectorVT(MVT::i8
, VecVT
.getVectorElementCount());
3428 Vec
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, WideVT
, Vec
);
3429 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, WideVT
, Vec
, Val
, Idx
);
3430 return DAG
.getNode(ISD::TRUNCATE
, DL
, VecVT
, Vec
);
3433 MVT ContainerVT
= VecVT
;
3434 // If the operand is a fixed-length vector, convert to a scalable one.
3435 if (VecVT
.isFixedLengthVector()) {
3436 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3437 Vec
= convertToScalableVector(ContainerVT
, Vec
, DAG
, Subtarget
);
3440 MVT XLenVT
= Subtarget
.getXLenVT();
3442 SDValue Zero
= DAG
.getConstant(0, DL
, XLenVT
);
3443 bool IsLegalInsert
= Subtarget
.is64Bit() || Val
.getValueType() != MVT::i64
;
3444 // Even i64-element vectors on RV32 can be lowered without scalar
3445 // legalization if the most-significant 32 bits of the value are not affected
3446 // by the sign-extension of the lower 32 bits.
3447 // TODO: We could also catch sign extensions of a 32-bit value.
3448 if (!IsLegalInsert
&& isa
<ConstantSDNode
>(Val
)) {
3449 const auto *CVal
= cast
<ConstantSDNode
>(Val
);
3450 if (isInt
<32>(CVal
->getSExtValue())) {
3451 IsLegalInsert
= true;
3452 Val
= DAG
.getConstant(CVal
->getSExtValue(), DL
, MVT::i32
);
3457 std::tie(Mask
, VL
) = getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
);
3461 if (IsLegalInsert
) {
3463 VecVT
.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL
: RISCVISD::VMV_S_X_VL
;
3464 if (isNullConstant(Idx
)) {
3465 Vec
= DAG
.getNode(Opc
, DL
, ContainerVT
, Vec
, Val
, VL
);
3466 if (!VecVT
.isFixedLengthVector())
3468 return convertFromScalableVector(VecVT
, Vec
, DAG
, Subtarget
);
3471 DAG
.getNode(Opc
, DL
, ContainerVT
, DAG
.getUNDEF(ContainerVT
), Val
, VL
);
3473 // On RV32, i64-element vectors must be specially handled to place the
3474 // value at element 0, by using two vslide1up instructions in sequence on
3475 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3477 SDValue One
= DAG
.getConstant(1, DL
, XLenVT
);
3478 SDValue ValLo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Val
, Zero
);
3479 SDValue ValHi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Val
, One
);
3480 MVT I32ContainerVT
=
3481 MVT::getVectorVT(MVT::i32
, ContainerVT
.getVectorElementCount() * 2);
3483 getDefaultScalableVLOps(I32ContainerVT
, DL
, DAG
, Subtarget
).first
;
3484 // Limit the active VL to two.
3485 SDValue InsertI64VL
= DAG
.getConstant(2, DL
, XLenVT
);
3486 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3487 // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3488 ValInVec
= DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, I32ContainerVT
, Zero
,
3490 // First slide in the hi value, then the lo in underneath it.
3491 ValInVec
= DAG
.getNode(RISCVISD::VSLIDE1UP_VL
, DL
, I32ContainerVT
, ValInVec
,
3492 ValHi
, I32Mask
, InsertI64VL
);
3493 ValInVec
= DAG
.getNode(RISCVISD::VSLIDE1UP_VL
, DL
, I32ContainerVT
, ValInVec
,
3494 ValLo
, I32Mask
, InsertI64VL
);
3495 // Bitcast back to the right container type.
3496 ValInVec
= DAG
.getBitcast(ContainerVT
, ValInVec
);
3499 // Now that the value is in a vector, slide it into position.
3501 DAG
.getNode(ISD::ADD
, DL
, XLenVT
, Idx
, DAG
.getConstant(1, DL
, XLenVT
));
3502 SDValue Slideup
= DAG
.getNode(RISCVISD::VSLIDEUP_VL
, DL
, ContainerVT
, Vec
,
3503 ValInVec
, Idx
, Mask
, InsertVL
);
3504 if (!VecVT
.isFixedLengthVector())
3506 return convertFromScalableVector(VecVT
, Slideup
, DAG
, Subtarget
);
3509 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3510 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3511 // types this is done using VMV_X_S to allow us to glean information about the
3512 // sign bits of the result.
3513 SDValue
RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op
,
3514 SelectionDAG
&DAG
) const {
3516 SDValue Idx
= Op
.getOperand(1);
3517 SDValue Vec
= Op
.getOperand(0);
3518 EVT EltVT
= Op
.getValueType();
3519 MVT VecVT
= Vec
.getSimpleValueType();
3520 MVT XLenVT
= Subtarget
.getXLenVT();
3522 if (VecVT
.getVectorElementType() == MVT::i1
) {
3523 // FIXME: For now we just promote to an i8 vector and extract from that,
3524 // but this is probably not optimal.
3525 MVT WideVT
= MVT::getVectorVT(MVT::i8
, VecVT
.getVectorElementCount());
3526 Vec
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, WideVT
, Vec
);
3527 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Vec
, Idx
);
3530 // If this is a fixed vector, we need to convert it to a scalable vector.
3531 MVT ContainerVT
= VecVT
;
3532 if (VecVT
.isFixedLengthVector()) {
3533 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3534 Vec
= convertToScalableVector(ContainerVT
, Vec
, DAG
, Subtarget
);
3537 // If the index is 0, the vector is already in the right position.
3538 if (!isNullConstant(Idx
)) {
3539 // Use a VL of 1 to avoid processing more elements than we need.
3540 SDValue VL
= DAG
.getConstant(1, DL
, XLenVT
);
3541 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
3542 SDValue Mask
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, MaskVT
, VL
);
3543 Vec
= DAG
.getNode(RISCVISD::VSLIDEDOWN_VL
, DL
, ContainerVT
,
3544 DAG
.getUNDEF(ContainerVT
), Vec
, Idx
, Mask
, VL
);
3547 if (!EltVT
.isInteger()) {
3548 // Floating-point extracts are handled in TableGen.
3549 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Vec
,
3550 DAG
.getConstant(0, DL
, XLenVT
));
3553 SDValue Elt0
= DAG
.getNode(RISCVISD::VMV_X_S
, DL
, XLenVT
, Vec
);
3554 return DAG
.getNode(ISD::TRUNCATE
, DL
, EltVT
, Elt0
);
3557 // Some RVV intrinsics may claim that they want an integer operand to be
3558 // promoted or expanded.
3559 static SDValue
lowerVectorIntrinsicSplats(SDValue Op
, SelectionDAG
&DAG
,
3560 const RISCVSubtarget
&Subtarget
) {
3561 assert((Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
3562 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
) &&
3563 "Unexpected opcode");
3565 if (!Subtarget
.hasStdExtV())
3568 bool HasChain
= Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
;
3569 unsigned IntNo
= Op
.getConstantOperandVal(HasChain
? 1 : 0);
3572 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo
*II
=
3573 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo
);
3574 if (!II
|| !II
->SplatOperand
)
3577 unsigned SplatOp
= II
->SplatOperand
+ HasChain
;
3578 assert(SplatOp
< Op
.getNumOperands());
3580 SmallVector
<SDValue
, 8> Operands(Op
->op_begin(), Op
->op_end());
3581 SDValue
&ScalarOp
= Operands
[SplatOp
];
3582 MVT OpVT
= ScalarOp
.getSimpleValueType();
3583 MVT XLenVT
= Subtarget
.getXLenVT();
3585 // If this isn't a scalar, or its type is XLenVT we're done.
3586 if (!OpVT
.isScalarInteger() || OpVT
== XLenVT
)
3589 // Simplest case is that the operand needs to be promoted to XLenVT.
3590 if (OpVT
.bitsLT(XLenVT
)) {
3591 // If the operand is a constant, sign extend to increase our chances
3592 // of being able to use a .vi instruction. ANY_EXTEND would become a
3593 // a zero extend and the simm5 check in isel would fail.
3594 // FIXME: Should we ignore the upper bits in isel instead?
3596 isa
<ConstantSDNode
>(ScalarOp
) ? ISD::SIGN_EXTEND
: ISD::ANY_EXTEND
;
3597 ScalarOp
= DAG
.getNode(ExtOpc
, DL
, XLenVT
, ScalarOp
);
3598 return DAG
.getNode(Op
->getOpcode(), DL
, Op
->getVTList(), Operands
);
3601 // Use the previous operand to get the vXi64 VT. The result might be a mask
3602 // VT for compares. Using the previous operand assumes that the previous
3603 // operand will never have a smaller element size than a scalar operand and
3604 // that a widening operation never uses SEW=64.
3605 // NOTE: If this fails the below assert, we can probably just find the
3606 // element count from any operand or result and use it to construct the VT.
3607 assert(II
->SplatOperand
> 1 && "Unexpected splat operand!");
3608 MVT VT
= Op
.getOperand(SplatOp
- 1).getSimpleValueType();
3610 // The more complex case is when the scalar is larger than XLenVT.
3611 assert(XLenVT
== MVT::i32
&& OpVT
== MVT::i64
&&
3612 VT
.getVectorElementType() == MVT::i64
&& "Unexpected VTs!");
3614 // If this is a sign-extended 32-bit constant, we can truncate it and rely
3615 // on the instruction to sign-extend since SEW>XLEN.
3616 if (auto *CVal
= dyn_cast
<ConstantSDNode
>(ScalarOp
)) {
3617 if (isInt
<32>(CVal
->getSExtValue())) {
3618 ScalarOp
= DAG
.getConstant(CVal
->getSExtValue(), DL
, MVT::i32
);
3619 return DAG
.getNode(Op
->getOpcode(), DL
, Op
->getVTList(), Operands
);
3623 // We need to convert the scalar to a splat vector.
3624 // FIXME: Can we implicitly truncate the scalar if it is known to
3625 // be sign extended?
3626 // VL should be the last operand.
3627 SDValue VL
= Op
.getOperand(Op
.getNumOperands() - 1);
3628 assert(VL
.getValueType() == XLenVT
);
3629 ScalarOp
= splatSplitI64WithVL(DL
, VT
, ScalarOp
, VL
, DAG
);
3630 return DAG
.getNode(Op
->getOpcode(), DL
, Op
->getVTList(), Operands
);
3633 SDValue
RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
3634 SelectionDAG
&DAG
) const {
3635 unsigned IntNo
= Op
.getConstantOperandVal(0);
3637 MVT XLenVT
= Subtarget
.getXLenVT();
3641 break; // Don't custom lower most intrinsics.
3642 case Intrinsic::thread_pointer
: {
3643 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3644 return DAG
.getRegister(RISCV::X4
, PtrVT
);
3646 case Intrinsic::riscv_orc_b
:
3647 // Lower to the GORCI encoding for orc.b.
3648 return DAG
.getNode(RISCVISD::GORC
, DL
, XLenVT
, Op
.getOperand(1),
3649 DAG
.getConstant(7, DL
, XLenVT
));
3650 case Intrinsic::riscv_grev
:
3651 case Intrinsic::riscv_gorc
: {
3653 IntNo
== Intrinsic::riscv_grev
? RISCVISD::GREV
: RISCVISD::GORC
;
3654 return DAG
.getNode(Opc
, DL
, XLenVT
, Op
.getOperand(1), Op
.getOperand(2));
3656 case Intrinsic::riscv_shfl
:
3657 case Intrinsic::riscv_unshfl
: {
3659 IntNo
== Intrinsic::riscv_shfl
? RISCVISD::SHFL
: RISCVISD::UNSHFL
;
3660 return DAG
.getNode(Opc
, DL
, XLenVT
, Op
.getOperand(1), Op
.getOperand(2));
3662 case Intrinsic::riscv_bcompress
:
3663 case Intrinsic::riscv_bdecompress
: {
3664 unsigned Opc
= IntNo
== Intrinsic::riscv_bcompress
? RISCVISD::BCOMPRESS
3665 : RISCVISD::BDECOMPRESS
;
3666 return DAG
.getNode(Opc
, DL
, XLenVT
, Op
.getOperand(1), Op
.getOperand(2));
3668 case Intrinsic::riscv_vmv_x_s
:
3669 assert(Op
.getValueType() == XLenVT
&& "Unexpected VT!");
3670 return DAG
.getNode(RISCVISD::VMV_X_S
, DL
, Op
.getValueType(),
3672 case Intrinsic::riscv_vmv_v_x
:
3673 return lowerScalarSplat(Op
.getOperand(1), Op
.getOperand(2),
3674 Op
.getSimpleValueType(), DL
, DAG
, Subtarget
);
3675 case Intrinsic::riscv_vfmv_v_f
:
3676 return DAG
.getNode(RISCVISD::VFMV_V_F_VL
, DL
, Op
.getValueType(),
3677 Op
.getOperand(1), Op
.getOperand(2));
3678 case Intrinsic::riscv_vmv_s_x
: {
3679 SDValue Scalar
= Op
.getOperand(2);
3681 if (Scalar
.getValueType().bitsLE(XLenVT
)) {
3682 Scalar
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, XLenVT
, Scalar
);
3683 return DAG
.getNode(RISCVISD::VMV_S_X_VL
, DL
, Op
.getValueType(),
3684 Op
.getOperand(1), Scalar
, Op
.getOperand(3));
3687 assert(Scalar
.getValueType() == MVT::i64
&& "Unexpected scalar VT!");
3689 // This is an i64 value that lives in two scalar registers. We have to
3690 // insert this in a convoluted way. First we build vXi64 splat containing
3691 // the/ two values that we assemble using some bit math. Next we'll use
3692 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3693 // to merge element 0 from our splat into the source vector.
3694 // FIXME: This is probably not the best way to do this, but it is
3695 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3702 // vmseq.vx mMask, vVid, 0
3703 // vmerge.vvm vDest, vSrc, vVal, mMask
3704 MVT VT
= Op
.getSimpleValueType();
3705 SDValue Vec
= Op
.getOperand(1);
3706 SDValue VL
= Op
.getOperand(3);
3708 SDValue SplattedVal
= splatSplitI64WithVL(DL
, VT
, Scalar
, VL
, DAG
);
3709 SDValue SplattedIdx
= DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, VT
,
3710 DAG
.getConstant(0, DL
, MVT::i32
), VL
);
3712 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
3713 SDValue Mask
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, MaskVT
, VL
);
3714 SDValue VID
= DAG
.getNode(RISCVISD::VID_VL
, DL
, VT
, Mask
, VL
);
3715 SDValue SelectCond
=
3716 DAG
.getNode(RISCVISD::SETCC_VL
, DL
, MaskVT
, VID
, SplattedIdx
,
3717 DAG
.getCondCode(ISD::SETEQ
), Mask
, VL
);
3718 return DAG
.getNode(RISCVISD::VSELECT_VL
, DL
, VT
, SelectCond
, SplattedVal
,
3721 case Intrinsic::riscv_vslide1up
:
3722 case Intrinsic::riscv_vslide1down
:
3723 case Intrinsic::riscv_vslide1up_mask
:
3724 case Intrinsic::riscv_vslide1down_mask
: {
3725 // We need to special case these when the scalar is larger than XLen.
3726 unsigned NumOps
= Op
.getNumOperands();
3727 bool IsMasked
= NumOps
== 6;
3728 unsigned OpOffset
= IsMasked
? 1 : 0;
3729 SDValue Scalar
= Op
.getOperand(2 + OpOffset
);
3730 if (Scalar
.getValueType().bitsLE(XLenVT
))
3733 // Splatting a sign extended constant is fine.
3734 if (auto *CVal
= dyn_cast
<ConstantSDNode
>(Scalar
))
3735 if (isInt
<32>(CVal
->getSExtValue()))
3738 MVT VT
= Op
.getSimpleValueType();
3739 assert(VT
.getVectorElementType() == MVT::i64
&&
3740 Scalar
.getValueType() == MVT::i64
&& "Unexpected VTs");
3742 // Convert the vector source to the equivalent nxvXi32 vector.
3743 MVT I32VT
= MVT::getVectorVT(MVT::i32
, VT
.getVectorElementCount() * 2);
3744 SDValue Vec
= DAG
.getBitcast(I32VT
, Op
.getOperand(1 + OpOffset
));
3746 SDValue ScalarLo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Scalar
,
3747 DAG
.getConstant(0, DL
, XLenVT
));
3748 SDValue ScalarHi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Scalar
,
3749 DAG
.getConstant(1, DL
, XLenVT
));
3751 // Double the VL since we halved SEW.
3752 SDValue VL
= Op
.getOperand(NumOps
- 1);
3754 DAG
.getNode(ISD::SHL
, DL
, XLenVT
, VL
, DAG
.getConstant(1, DL
, XLenVT
));
3756 MVT I32MaskVT
= MVT::getVectorVT(MVT::i1
, I32VT
.getVectorElementCount());
3757 SDValue I32Mask
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, I32MaskVT
, VL
);
3759 // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3761 if (IntNo
== Intrinsic::riscv_vslide1up
||
3762 IntNo
== Intrinsic::riscv_vslide1up_mask
) {
3763 Vec
= DAG
.getNode(RISCVISD::VSLIDE1UP_VL
, DL
, I32VT
, Vec
, ScalarHi
,
3765 Vec
= DAG
.getNode(RISCVISD::VSLIDE1UP_VL
, DL
, I32VT
, Vec
, ScalarLo
,
3768 Vec
= DAG
.getNode(RISCVISD::VSLIDE1DOWN_VL
, DL
, I32VT
, Vec
, ScalarLo
,
3770 Vec
= DAG
.getNode(RISCVISD::VSLIDE1DOWN_VL
, DL
, I32VT
, Vec
, ScalarHi
,
3774 // Convert back to nxvXi64.
3775 Vec
= DAG
.getBitcast(VT
, Vec
);
3780 // Apply mask after the operation.
3781 SDValue Mask
= Op
.getOperand(NumOps
- 2);
3782 SDValue MaskedOff
= Op
.getOperand(1);
3783 return DAG
.getNode(RISCVISD::VSELECT_VL
, DL
, VT
, Mask
, Vec
, MaskedOff
, VL
);
3787 return lowerVectorIntrinsicSplats(Op
, DAG
, Subtarget
);
3790 SDValue
RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op
,
3791 SelectionDAG
&DAG
) const {
3792 return lowerVectorIntrinsicSplats(Op
, DAG
, Subtarget
);
3795 static MVT
getLMUL1VT(MVT VT
) {
3796 assert(VT
.getVectorElementType().getSizeInBits() <= 64 &&
3797 "Unexpected vector MVT");
3798 return MVT::getScalableVectorVT(
3799 VT
.getVectorElementType(),
3800 RISCV::RVVBitsPerBlock
/ VT
.getVectorElementType().getSizeInBits());
3803 static unsigned getRVVReductionOp(unsigned ISDOpcode
) {
3804 switch (ISDOpcode
) {
3806 llvm_unreachable("Unhandled reduction");
3807 case ISD::VECREDUCE_ADD
:
3808 return RISCVISD::VECREDUCE_ADD_VL
;
3809 case ISD::VECREDUCE_UMAX
:
3810 return RISCVISD::VECREDUCE_UMAX_VL
;
3811 case ISD::VECREDUCE_SMAX
:
3812 return RISCVISD::VECREDUCE_SMAX_VL
;
3813 case ISD::VECREDUCE_UMIN
:
3814 return RISCVISD::VECREDUCE_UMIN_VL
;
3815 case ISD::VECREDUCE_SMIN
:
3816 return RISCVISD::VECREDUCE_SMIN_VL
;
3817 case ISD::VECREDUCE_AND
:
3818 return RISCVISD::VECREDUCE_AND_VL
;
3819 case ISD::VECREDUCE_OR
:
3820 return RISCVISD::VECREDUCE_OR_VL
;
3821 case ISD::VECREDUCE_XOR
:
3822 return RISCVISD::VECREDUCE_XOR_VL
;
3826 SDValue
RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op
,
3827 SelectionDAG
&DAG
) const {
3829 SDValue Vec
= Op
.getOperand(0);
3830 MVT VecVT
= Vec
.getSimpleValueType();
3831 assert((Op
.getOpcode() == ISD::VECREDUCE_AND
||
3832 Op
.getOpcode() == ISD::VECREDUCE_OR
||
3833 Op
.getOpcode() == ISD::VECREDUCE_XOR
) &&
3834 "Unexpected reduction lowering");
3836 MVT XLenVT
= Subtarget
.getXLenVT();
3837 assert(Op
.getValueType() == XLenVT
&&
3838 "Expected reduction output to be legalized to XLenVT");
3840 MVT ContainerVT
= VecVT
;
3841 if (VecVT
.isFixedLengthVector()) {
3842 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3843 Vec
= convertToScalableVector(ContainerVT
, Vec
, DAG
, Subtarget
);
3847 std::tie(Mask
, VL
) = getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
);
3848 SDValue Zero
= DAG
.getConstant(0, DL
, XLenVT
);
3850 switch (Op
.getOpcode()) {
3852 llvm_unreachable("Unhandled reduction");
3853 case ISD::VECREDUCE_AND
:
3855 Vec
= DAG
.getNode(RISCVISD::VMXOR_VL
, DL
, ContainerVT
, Vec
, Mask
, VL
);
3856 Vec
= DAG
.getNode(RISCVISD::VPOPC_VL
, DL
, XLenVT
, Vec
, Mask
, VL
);
3857 return DAG
.getSetCC(DL
, XLenVT
, Vec
, Zero
, ISD::SETEQ
);
3858 case ISD::VECREDUCE_OR
:
3860 Vec
= DAG
.getNode(RISCVISD::VPOPC_VL
, DL
, XLenVT
, Vec
, Mask
, VL
);
3861 return DAG
.getSetCC(DL
, XLenVT
, Vec
, Zero
, ISD::SETNE
);
3862 case ISD::VECREDUCE_XOR
: {
3863 // ((vpopc x) & 1) != 0
3864 SDValue One
= DAG
.getConstant(1, DL
, XLenVT
);
3865 Vec
= DAG
.getNode(RISCVISD::VPOPC_VL
, DL
, XLenVT
, Vec
, Mask
, VL
);
3866 Vec
= DAG
.getNode(ISD::AND
, DL
, XLenVT
, Vec
, One
);
3867 return DAG
.getSetCC(DL
, XLenVT
, Vec
, Zero
, ISD::SETNE
);
3872 SDValue
RISCVTargetLowering::lowerVECREDUCE(SDValue Op
,
3873 SelectionDAG
&DAG
) const {
3875 SDValue Vec
= Op
.getOperand(0);
3876 EVT VecEVT
= Vec
.getValueType();
3878 unsigned BaseOpc
= ISD::getVecReduceBaseOpcode(Op
.getOpcode());
3880 // Due to ordering in legalize types we may have a vector type that needs to
3881 // be split. Do that manually so we can get down to a legal type.
3882 while (getTypeAction(*DAG
.getContext(), VecEVT
) ==
3883 TargetLowering::TypeSplitVector
) {
3885 std::tie(Lo
, Hi
) = DAG
.SplitVector(Vec
, DL
);
3886 VecEVT
= Lo
.getValueType();
3887 Vec
= DAG
.getNode(BaseOpc
, DL
, VecEVT
, Lo
, Hi
);
3890 // TODO: The type may need to be widened rather than split. Or widened before
3892 if (!isTypeLegal(VecEVT
))
3895 MVT VecVT
= VecEVT
.getSimpleVT();
3896 MVT VecEltVT
= VecVT
.getVectorElementType();
3897 unsigned RVVOpcode
= getRVVReductionOp(Op
.getOpcode());
3899 MVT ContainerVT
= VecVT
;
3900 if (VecVT
.isFixedLengthVector()) {
3901 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3902 Vec
= convertToScalableVector(ContainerVT
, Vec
, DAG
, Subtarget
);
3905 MVT M1VT
= getLMUL1VT(ContainerVT
);
3908 std::tie(Mask
, VL
) = getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
);
3910 // FIXME: This is a VLMAX splat which might be too large and can prevent
3912 SDValue NeutralElem
=
3913 DAG
.getNeutralElement(BaseOpc
, DL
, VecEltVT
, SDNodeFlags());
3914 SDValue IdentitySplat
= DAG
.getSplatVector(M1VT
, DL
, NeutralElem
);
3916 DAG
.getNode(RVVOpcode
, DL
, M1VT
, Vec
, IdentitySplat
, Mask
, VL
);
3917 SDValue Elt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VecEltVT
, Reduction
,
3918 DAG
.getConstant(0, DL
, Subtarget
.getXLenVT()));
3919 return DAG
.getSExtOrTrunc(Elt0
, DL
, Op
.getValueType());
3922 // Given a reduction op, this function returns the matching reduction opcode,
3923 // the vector SDValue and the scalar SDValue required to lower this to a
3925 static std::tuple
<unsigned, SDValue
, SDValue
>
3926 getRVVFPReductionOpAndOperands(SDValue Op
, SelectionDAG
&DAG
, EVT EltVT
) {
3928 auto Flags
= Op
->getFlags();
3929 unsigned Opcode
= Op
.getOpcode();
3930 unsigned BaseOpcode
= ISD::getVecReduceBaseOpcode(Opcode
);
3933 llvm_unreachable("Unhandled reduction");
3934 case ISD::VECREDUCE_FADD
:
3935 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL
, Op
.getOperand(0),
3936 DAG
.getNeutralElement(BaseOpcode
, DL
, EltVT
, Flags
));
3937 case ISD::VECREDUCE_SEQ_FADD
:
3938 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL
, Op
.getOperand(1),
3940 case ISD::VECREDUCE_FMIN
:
3941 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL
, Op
.getOperand(0),
3942 DAG
.getNeutralElement(BaseOpcode
, DL
, EltVT
, Flags
));
3943 case ISD::VECREDUCE_FMAX
:
3944 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL
, Op
.getOperand(0),
3945 DAG
.getNeutralElement(BaseOpcode
, DL
, EltVT
, Flags
));
3949 SDValue
RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op
,
3950 SelectionDAG
&DAG
) const {
3952 MVT VecEltVT
= Op
.getSimpleValueType();
3955 SDValue VectorVal
, ScalarVal
;
3956 std::tie(RVVOpcode
, VectorVal
, ScalarVal
) =
3957 getRVVFPReductionOpAndOperands(Op
, DAG
, VecEltVT
);
3958 MVT VecVT
= VectorVal
.getSimpleValueType();
3960 MVT ContainerVT
= VecVT
;
3961 if (VecVT
.isFixedLengthVector()) {
3962 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
3963 VectorVal
= convertToScalableVector(ContainerVT
, VectorVal
, DAG
, Subtarget
);
3966 MVT M1VT
= getLMUL1VT(VectorVal
.getSimpleValueType());
3969 std::tie(Mask
, VL
) = getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
);
3971 // FIXME: This is a VLMAX splat which might be too large and can prevent
3973 SDValue ScalarSplat
= DAG
.getSplatVector(M1VT
, DL
, ScalarVal
);
3975 DAG
.getNode(RVVOpcode
, DL
, M1VT
, VectorVal
, ScalarSplat
, Mask
, VL
);
3976 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VecEltVT
, Reduction
,
3977 DAG
.getConstant(0, DL
, Subtarget
.getXLenVT()));
3980 SDValue
RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op
,
3981 SelectionDAG
&DAG
) const {
3982 SDValue Vec
= Op
.getOperand(0);
3983 SDValue SubVec
= Op
.getOperand(1);
3984 MVT VecVT
= Vec
.getSimpleValueType();
3985 MVT SubVecVT
= SubVec
.getSimpleValueType();
3988 MVT XLenVT
= Subtarget
.getXLenVT();
3989 unsigned OrigIdx
= Op
.getConstantOperandVal(2);
3990 const RISCVRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
3992 // We don't have the ability to slide mask vectors up indexed by their i1
3993 // elements; the smallest we can do is i8. Often we are able to bitcast to
3994 // equivalent i8 vectors. Note that when inserting a fixed-length vector
3995 // into a scalable one, we might not necessarily have enough scalable
3996 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3997 if (SubVecVT
.getVectorElementType() == MVT::i1
&&
3998 (OrigIdx
!= 0 || !Vec
.isUndef())) {
3999 if (VecVT
.getVectorMinNumElements() >= 8 &&
4000 SubVecVT
.getVectorMinNumElements() >= 8) {
4001 assert(OrigIdx
% 8 == 0 && "Invalid index");
4002 assert(VecVT
.getVectorMinNumElements() % 8 == 0 &&
4003 SubVecVT
.getVectorMinNumElements() % 8 == 0 &&
4004 "Unexpected mask vector lowering");
4007 MVT::getVectorVT(MVT::i8
, SubVecVT
.getVectorMinNumElements() / 8,
4008 SubVecVT
.isScalableVector());
4009 VecVT
= MVT::getVectorVT(MVT::i8
, VecVT
.getVectorMinNumElements() / 8,
4010 VecVT
.isScalableVector());
4011 Vec
= DAG
.getBitcast(VecVT
, Vec
);
4012 SubVec
= DAG
.getBitcast(SubVecVT
, SubVec
);
4014 // We can't slide this mask vector up indexed by its i1 elements.
4015 // This poses a problem when we wish to insert a scalable vector which
4016 // can't be re-expressed as a larger type. Just choose the slow path and
4017 // extend to a larger type, then truncate back down.
4018 MVT ExtVecVT
= VecVT
.changeVectorElementType(MVT::i8
);
4019 MVT ExtSubVecVT
= SubVecVT
.changeVectorElementType(MVT::i8
);
4020 Vec
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ExtVecVT
, Vec
);
4021 SubVec
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ExtSubVecVT
, SubVec
);
4022 Vec
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, ExtVecVT
, Vec
, SubVec
,
4024 SDValue SplatZero
= DAG
.getConstant(0, DL
, ExtVecVT
);
4025 return DAG
.getSetCC(DL
, VecVT
, Vec
, SplatZero
, ISD::SETNE
);
4029 // If the subvector vector is a fixed-length type, we cannot use subregister
4030 // manipulation to simplify the codegen; we don't know which register of a
4031 // LMUL group contains the specific subvector as we only know the minimum
4032 // register size. Therefore we must slide the vector group up the full
4034 if (SubVecVT
.isFixedLengthVector()) {
4035 if (OrigIdx
== 0 && Vec
.isUndef())
4037 MVT ContainerVT
= VecVT
;
4038 if (VecVT
.isFixedLengthVector()) {
4039 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
4040 Vec
= convertToScalableVector(ContainerVT
, Vec
, DAG
, Subtarget
);
4042 SubVec
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, ContainerVT
,
4043 DAG
.getUNDEF(ContainerVT
), SubVec
,
4044 DAG
.getConstant(0, DL
, XLenVT
));
4046 getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
).first
;
4047 // Set the vector length to only the number of elements we care about. Note
4048 // that for slideup this includes the offset.
4050 DAG
.getConstant(OrigIdx
+ SubVecVT
.getVectorNumElements(), DL
, XLenVT
);
4051 SDValue SlideupAmt
= DAG
.getConstant(OrigIdx
, DL
, XLenVT
);
4052 SDValue Slideup
= DAG
.getNode(RISCVISD::VSLIDEUP_VL
, DL
, ContainerVT
, Vec
,
4053 SubVec
, SlideupAmt
, Mask
, VL
);
4054 if (VecVT
.isFixedLengthVector())
4055 Slideup
= convertFromScalableVector(VecVT
, Slideup
, DAG
, Subtarget
);
4056 return DAG
.getBitcast(Op
.getValueType(), Slideup
);
4059 unsigned SubRegIdx
, RemIdx
;
4060 std::tie(SubRegIdx
, RemIdx
) =
4061 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4062 VecVT
, SubVecVT
, OrigIdx
, TRI
);
4064 RISCVII::VLMUL SubVecLMUL
= RISCVTargetLowering::getLMUL(SubVecVT
);
4065 bool IsSubVecPartReg
= SubVecLMUL
== RISCVII::VLMUL::LMUL_F2
||
4066 SubVecLMUL
== RISCVII::VLMUL::LMUL_F4
||
4067 SubVecLMUL
== RISCVII::VLMUL::LMUL_F8
;
4069 // 1. If the Idx has been completely eliminated and this subvector's size is
4070 // a vector register or a multiple thereof, or the surrounding elements are
4071 // undef, then this is a subvector insert which naturally aligns to a vector
4072 // register. These can easily be handled using subregister manipulation.
4073 // 2. If the subvector is smaller than a vector register, then the insertion
4074 // must preserve the undisturbed elements of the register. We do this by
4075 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4076 // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4077 // subvector within the vector register, and an INSERT_SUBVECTOR of that
4078 // LMUL=1 type back into the larger vector (resolving to another subregister
4079 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4080 // to avoid allocating a large register group to hold our subvector.
4081 if (RemIdx
== 0 && (!IsSubVecPartReg
|| Vec
.isUndef()))
4084 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4085 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4086 // (in our case undisturbed). This means we can set up a subvector insertion
4087 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4088 // size of the subvector.
4089 MVT InterSubVT
= VecVT
;
4090 SDValue AlignedExtract
= Vec
;
4091 unsigned AlignedIdx
= OrigIdx
- RemIdx
;
4092 if (VecVT
.bitsGT(getLMUL1VT(VecVT
))) {
4093 InterSubVT
= getLMUL1VT(VecVT
);
4094 // Extract a subvector equal to the nearest full vector register type. This
4095 // should resolve to a EXTRACT_SUBREG instruction.
4096 AlignedExtract
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InterSubVT
, Vec
,
4097 DAG
.getConstant(AlignedIdx
, DL
, XLenVT
));
4100 SDValue SlideupAmt
= DAG
.getConstant(RemIdx
, DL
, XLenVT
);
4101 // For scalable vectors this must be further multiplied by vscale.
4102 SlideupAmt
= DAG
.getNode(ISD::VSCALE
, DL
, XLenVT
, SlideupAmt
);
4105 std::tie(Mask
, VL
) = getDefaultScalableVLOps(VecVT
, DL
, DAG
, Subtarget
);
4107 // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4108 VL
= DAG
.getConstant(SubVecVT
.getVectorMinNumElements(), DL
, XLenVT
);
4109 VL
= DAG
.getNode(ISD::VSCALE
, DL
, XLenVT
, VL
);
4110 VL
= DAG
.getNode(ISD::ADD
, DL
, XLenVT
, SlideupAmt
, VL
);
4112 SubVec
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InterSubVT
,
4113 DAG
.getUNDEF(InterSubVT
), SubVec
,
4114 DAG
.getConstant(0, DL
, XLenVT
));
4116 SDValue Slideup
= DAG
.getNode(RISCVISD::VSLIDEUP_VL
, DL
, InterSubVT
,
4117 AlignedExtract
, SubVec
, SlideupAmt
, Mask
, VL
);
4119 // If required, insert this subvector back into the correct vector register.
4120 // This should resolve to an INSERT_SUBREG instruction.
4121 if (VecVT
.bitsGT(InterSubVT
))
4122 Slideup
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VecVT
, Vec
, Slideup
,
4123 DAG
.getConstant(AlignedIdx
, DL
, XLenVT
));
4125 // We might have bitcast from a mask type: cast back to the original type if
4127 return DAG
.getBitcast(Op
.getSimpleValueType(), Slideup
);
4130 SDValue
RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op
,
4131 SelectionDAG
&DAG
) const {
4132 SDValue Vec
= Op
.getOperand(0);
4133 MVT SubVecVT
= Op
.getSimpleValueType();
4134 MVT VecVT
= Vec
.getSimpleValueType();
4137 MVT XLenVT
= Subtarget
.getXLenVT();
4138 unsigned OrigIdx
= Op
.getConstantOperandVal(1);
4139 const RISCVRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
4141 // We don't have the ability to slide mask vectors down indexed by their i1
4142 // elements; the smallest we can do is i8. Often we are able to bitcast to
4143 // equivalent i8 vectors. Note that when extracting a fixed-length vector
4144 // from a scalable one, we might not necessarily have enough scalable
4145 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4146 if (SubVecVT
.getVectorElementType() == MVT::i1
&& OrigIdx
!= 0) {
4147 if (VecVT
.getVectorMinNumElements() >= 8 &&
4148 SubVecVT
.getVectorMinNumElements() >= 8) {
4149 assert(OrigIdx
% 8 == 0 && "Invalid index");
4150 assert(VecVT
.getVectorMinNumElements() % 8 == 0 &&
4151 SubVecVT
.getVectorMinNumElements() % 8 == 0 &&
4152 "Unexpected mask vector lowering");
4155 MVT::getVectorVT(MVT::i8
, SubVecVT
.getVectorMinNumElements() / 8,
4156 SubVecVT
.isScalableVector());
4157 VecVT
= MVT::getVectorVT(MVT::i8
, VecVT
.getVectorMinNumElements() / 8,
4158 VecVT
.isScalableVector());
4159 Vec
= DAG
.getBitcast(VecVT
, Vec
);
4161 // We can't slide this mask vector down, indexed by its i1 elements.
4162 // This poses a problem when we wish to extract a scalable vector which
4163 // can't be re-expressed as a larger type. Just choose the slow path and
4164 // extend to a larger type, then truncate back down.
4165 // TODO: We could probably improve this when extracting certain fixed
4166 // from fixed, where we can extract as i8 and shift the correct element
4167 // right to reach the desired subvector?
4168 MVT ExtVecVT
= VecVT
.changeVectorElementType(MVT::i8
);
4169 MVT ExtSubVecVT
= SubVecVT
.changeVectorElementType(MVT::i8
);
4170 Vec
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ExtVecVT
, Vec
);
4171 Vec
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, ExtSubVecVT
, Vec
,
4173 SDValue SplatZero
= DAG
.getConstant(0, DL
, ExtSubVecVT
);
4174 return DAG
.getSetCC(DL
, SubVecVT
, Vec
, SplatZero
, ISD::SETNE
);
4178 // If the subvector vector is a fixed-length type, we cannot use subregister
4179 // manipulation to simplify the codegen; we don't know which register of a
4180 // LMUL group contains the specific subvector as we only know the minimum
4181 // register size. Therefore we must slide the vector group down the full
4183 if (SubVecVT
.isFixedLengthVector()) {
4184 // With an index of 0 this is a cast-like subvector, which can be performed
4185 // with subregister operations.
4188 MVT ContainerVT
= VecVT
;
4189 if (VecVT
.isFixedLengthVector()) {
4190 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
4191 Vec
= convertToScalableVector(ContainerVT
, Vec
, DAG
, Subtarget
);
4194 getDefaultVLOps(VecVT
, ContainerVT
, DL
, DAG
, Subtarget
).first
;
4195 // Set the vector length to only the number of elements we care about. This
4196 // avoids sliding down elements we're going to discard straight away.
4197 SDValue VL
= DAG
.getConstant(SubVecVT
.getVectorNumElements(), DL
, XLenVT
);
4198 SDValue SlidedownAmt
= DAG
.getConstant(OrigIdx
, DL
, XLenVT
);
4200 DAG
.getNode(RISCVISD::VSLIDEDOWN_VL
, DL
, ContainerVT
,
4201 DAG
.getUNDEF(ContainerVT
), Vec
, SlidedownAmt
, Mask
, VL
);
4202 // Now we can use a cast-like subvector extract to get the result.
4203 Slidedown
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SubVecVT
, Slidedown
,
4204 DAG
.getConstant(0, DL
, XLenVT
));
4205 return DAG
.getBitcast(Op
.getValueType(), Slidedown
);
4208 unsigned SubRegIdx
, RemIdx
;
4209 std::tie(SubRegIdx
, RemIdx
) =
4210 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4211 VecVT
, SubVecVT
, OrigIdx
, TRI
);
4213 // If the Idx has been completely eliminated then this is a subvector extract
4214 // which naturally aligns to a vector register. These can easily be handled
4215 // using subregister manipulation.
4219 // Else we must shift our vector register directly to extract the subvector.
4220 // Do this using VSLIDEDOWN.
4222 // If the vector type is an LMUL-group type, extract a subvector equal to the
4223 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4225 MVT InterSubVT
= VecVT
;
4226 if (VecVT
.bitsGT(getLMUL1VT(VecVT
))) {
4227 InterSubVT
= getLMUL1VT(VecVT
);
4228 Vec
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InterSubVT
, Vec
,
4229 DAG
.getConstant(OrigIdx
- RemIdx
, DL
, XLenVT
));
4232 // Slide this vector register down by the desired number of elements in order
4233 // to place the desired subvector starting at element 0.
4234 SDValue SlidedownAmt
= DAG
.getConstant(RemIdx
, DL
, XLenVT
);
4235 // For scalable vectors this must be further multiplied by vscale.
4236 SlidedownAmt
= DAG
.getNode(ISD::VSCALE
, DL
, XLenVT
, SlidedownAmt
);
4239 std::tie(Mask
, VL
) = getDefaultScalableVLOps(InterSubVT
, DL
, DAG
, Subtarget
);
4241 DAG
.getNode(RISCVISD::VSLIDEDOWN_VL
, DL
, InterSubVT
,
4242 DAG
.getUNDEF(InterSubVT
), Vec
, SlidedownAmt
, Mask
, VL
);
4244 // Now the vector is in the right position, extract our final subvector. This
4245 // should resolve to a COPY.
4246 Slidedown
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SubVecVT
, Slidedown
,
4247 DAG
.getConstant(0, DL
, XLenVT
));
4249 // We might have bitcast from a mask type: cast back to the original type if
4251 return DAG
.getBitcast(Op
.getSimpleValueType(), Slidedown
);
4254 // Lower step_vector to the vid instruction. Any non-identity step value must
4255 // be accounted for my manual expansion.
4256 SDValue
RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op
,
4257 SelectionDAG
&DAG
) const {
4259 MVT VT
= Op
.getSimpleValueType();
4260 MVT XLenVT
= Subtarget
.getXLenVT();
4262 std::tie(Mask
, VL
) = getDefaultScalableVLOps(VT
, DL
, DAG
, Subtarget
);
4263 SDValue StepVec
= DAG
.getNode(RISCVISD::VID_VL
, DL
, VT
, Mask
, VL
);
4264 uint64_t StepValImm
= Op
.getConstantOperandVal(0);
4265 if (StepValImm
!= 1) {
4266 if (isPowerOf2_64(StepValImm
)) {
4268 DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, VT
,
4269 DAG
.getConstant(Log2_64(StepValImm
), DL
, XLenVT
));
4270 StepVec
= DAG
.getNode(ISD::SHL
, DL
, VT
, StepVec
, StepVal
);
4272 SDValue StepVal
= lowerScalarSplat(
4273 DAG
.getConstant(StepValImm
, DL
, VT
.getVectorElementType()), VL
, VT
,
4274 DL
, DAG
, Subtarget
);
4275 StepVec
= DAG
.getNode(ISD::MUL
, DL
, VT
, StepVec
, StepVal
);
4281 // Implement vector_reverse using vrgather.vv with indices determined by
4282 // subtracting the id of each element from (VLMAX-1). This will convert
4283 // the indices like so:
4284 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4285 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4286 SDValue
RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op
,
4287 SelectionDAG
&DAG
) const {
4289 MVT VecVT
= Op
.getSimpleValueType();
4290 unsigned EltSize
= VecVT
.getScalarSizeInBits();
4291 unsigned MinSize
= VecVT
.getSizeInBits().getKnownMinValue();
4293 unsigned MaxVLMAX
= 0;
4294 unsigned VectorBitsMax
= Subtarget
.getMaxRVVVectorSizeInBits();
4295 if (VectorBitsMax
!= 0)
4296 MaxVLMAX
= ((VectorBitsMax
/ EltSize
) * MinSize
) / RISCV::RVVBitsPerBlock
;
4298 unsigned GatherOpc
= RISCVISD::VRGATHER_VV_VL
;
4299 MVT IntVT
= VecVT
.changeVectorElementTypeToInteger();
4301 // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4302 // to use vrgatherei16.vv.
4303 // TODO: It's also possible to use vrgatherei16.vv for other types to
4304 // decrease register width for the index calculation.
4305 if ((MaxVLMAX
== 0 || MaxVLMAX
> 256) && EltSize
== 8) {
4306 // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4307 // Reverse each half, then reassemble them in reverse order.
4308 // NOTE: It's also possible that after splitting that VLMAX no longer
4309 // requires vrgatherei16.vv.
4310 if (MinSize
== (8 * RISCV::RVVBitsPerBlock
)) {
4312 std::tie(Lo
, Hi
) = DAG
.SplitVectorOperand(Op
.getNode(), 0);
4314 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(VecVT
);
4315 Lo
= DAG
.getNode(ISD::VECTOR_REVERSE
, DL
, LoVT
, Lo
);
4316 Hi
= DAG
.getNode(ISD::VECTOR_REVERSE
, DL
, HiVT
, Hi
);
4317 // Reassemble the low and high pieces reversed.
4318 // FIXME: This is a CONCAT_VECTORS.
4320 DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VecVT
, DAG
.getUNDEF(VecVT
), Hi
,
4321 DAG
.getIntPtrConstant(0, DL
));
4323 ISD::INSERT_SUBVECTOR
, DL
, VecVT
, Res
, Lo
,
4324 DAG
.getIntPtrConstant(LoVT
.getVectorMinNumElements(), DL
));
4327 // Just promote the int type to i16 which will double the LMUL.
4328 IntVT
= MVT::getVectorVT(MVT::i16
, VecVT
.getVectorElementCount());
4329 GatherOpc
= RISCVISD::VRGATHEREI16_VV_VL
;
4332 MVT XLenVT
= Subtarget
.getXLenVT();
4334 std::tie(Mask
, VL
) = getDefaultScalableVLOps(VecVT
, DL
, DAG
, Subtarget
);
4336 // Calculate VLMAX-1 for the desired SEW.
4337 unsigned MinElts
= VecVT
.getVectorMinNumElements();
4338 SDValue VLMax
= DAG
.getNode(ISD::VSCALE
, DL
, XLenVT
,
4339 DAG
.getConstant(MinElts
, DL
, XLenVT
));
4341 DAG
.getNode(ISD::SUB
, DL
, XLenVT
, VLMax
, DAG
.getConstant(1, DL
, XLenVT
));
4343 // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4345 !Subtarget
.is64Bit() && IntVT
.getVectorElementType() == MVT::i64
;
4348 SplatVL
= DAG
.getSplatVector(IntVT
, DL
, VLMinus1
);
4350 SplatVL
= DAG
.getNode(RISCVISD::SPLAT_VECTOR_I64
, DL
, IntVT
, VLMinus1
);
4352 SDValue VID
= DAG
.getNode(RISCVISD::VID_VL
, DL
, IntVT
, Mask
, VL
);
4354 DAG
.getNode(RISCVISD::SUB_VL
, DL
, IntVT
, SplatVL
, VID
, Mask
, VL
);
4356 return DAG
.getNode(GatherOpc
, DL
, VecVT
, Op
.getOperand(0), Indices
, Mask
, VL
);
4360 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op
,
4361 SelectionDAG
&DAG
) const {
4363 auto *Load
= cast
<LoadSDNode
>(Op
);
4365 assert(allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
4366 Load
->getMemoryVT(),
4367 *Load
->getMemOperand()) &&
4368 "Expecting a correctly-aligned load");
4370 MVT VT
= Op
.getSimpleValueType();
4371 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
4374 DAG
.getConstant(VT
.getVectorNumElements(), DL
, Subtarget
.getXLenVT());
4376 SDVTList VTs
= DAG
.getVTList({ContainerVT
, MVT::Other
});
4377 SDValue NewLoad
= DAG
.getMemIntrinsicNode(
4378 RISCVISD::VLE_VL
, DL
, VTs
, {Load
->getChain(), Load
->getBasePtr(), VL
},
4379 Load
->getMemoryVT(), Load
->getMemOperand());
4381 SDValue Result
= convertFromScalableVector(VT
, NewLoad
, DAG
, Subtarget
);
4382 return DAG
.getMergeValues({Result
, Load
->getChain()}, DL
);
4386 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op
,
4387 SelectionDAG
&DAG
) const {
4389 auto *Store
= cast
<StoreSDNode
>(Op
);
4391 assert(allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
4392 Store
->getMemoryVT(),
4393 *Store
->getMemOperand()) &&
4394 "Expecting a correctly-aligned store");
4396 SDValue StoreVal
= Store
->getValue();
4397 MVT VT
= StoreVal
.getSimpleValueType();
4399 // If the size less than a byte, we need to pad with zeros to make a byte.
4400 if (VT
.getVectorElementType() == MVT::i1
&& VT
.getVectorNumElements() < 8) {
4402 StoreVal
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
,
4403 DAG
.getConstant(0, DL
, VT
), StoreVal
,
4404 DAG
.getIntPtrConstant(0, DL
));
4407 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
4410 DAG
.getConstant(VT
.getVectorNumElements(), DL
, Subtarget
.getXLenVT());
4413 convertToScalableVector(ContainerVT
, StoreVal
, DAG
, Subtarget
);
4414 return DAG
.getMemIntrinsicNode(
4415 RISCVISD::VSE_VL
, DL
, DAG
.getVTList(MVT::Other
),
4416 {Store
->getChain(), NewValue
, Store
->getBasePtr(), VL
},
4417 Store
->getMemoryVT(), Store
->getMemOperand());
4420 SDValue
RISCVTargetLowering::lowerMLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
4421 auto *Load
= cast
<MaskedLoadSDNode
>(Op
);
4424 MVT VT
= Op
.getSimpleValueType();
4425 MVT XLenVT
= Subtarget
.getXLenVT();
4427 SDValue Mask
= Load
->getMask();
4428 SDValue PassThru
= Load
->getPassThru();
4431 MVT ContainerVT
= VT
;
4432 if (VT
.isFixedLengthVector()) {
4433 ContainerVT
= getContainerForFixedLengthVector(VT
);
4434 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
4436 Mask
= convertToScalableVector(MaskVT
, Mask
, DAG
, Subtarget
);
4437 PassThru
= convertToScalableVector(ContainerVT
, PassThru
, DAG
, Subtarget
);
4438 VL
= DAG
.getConstant(VT
.getVectorNumElements(), DL
, XLenVT
);
4440 VL
= DAG
.getRegister(RISCV::X0
, XLenVT
);
4442 SDVTList VTs
= DAG
.getVTList({ContainerVT
, MVT::Other
});
4443 SDValue IntID
= DAG
.getTargetConstant(Intrinsic::riscv_vle_mask
, DL
, XLenVT
);
4444 SDValue Ops
[] = {Load
->getChain(), IntID
, PassThru
,
4445 Load
->getBasePtr(), Mask
, VL
};
4447 DAG
.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN
, DL
, VTs
, Ops
,
4448 Load
->getMemoryVT(), Load
->getMemOperand());
4449 SDValue Chain
= Result
.getValue(1);
4451 if (VT
.isFixedLengthVector())
4452 Result
= convertFromScalableVector(VT
, Result
, DAG
, Subtarget
);
4454 return DAG
.getMergeValues({Result
, Chain
}, DL
);
4457 SDValue
RISCVTargetLowering::lowerMSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
4458 auto *Store
= cast
<MaskedStoreSDNode
>(Op
);
4461 SDValue Val
= Store
->getValue();
4462 SDValue Mask
= Store
->getMask();
4463 MVT VT
= Val
.getSimpleValueType();
4464 MVT XLenVT
= Subtarget
.getXLenVT();
4467 MVT ContainerVT
= VT
;
4468 if (VT
.isFixedLengthVector()) {
4469 ContainerVT
= getContainerForFixedLengthVector(VT
);
4470 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
4472 Val
= convertToScalableVector(ContainerVT
, Val
, DAG
, Subtarget
);
4473 Mask
= convertToScalableVector(MaskVT
, Mask
, DAG
, Subtarget
);
4474 VL
= DAG
.getConstant(VT
.getVectorNumElements(), DL
, XLenVT
);
4476 VL
= DAG
.getRegister(RISCV::X0
, XLenVT
);
4478 SDValue IntID
= DAG
.getTargetConstant(Intrinsic::riscv_vse_mask
, DL
, XLenVT
);
4479 return DAG
.getMemIntrinsicNode(
4480 ISD::INTRINSIC_VOID
, DL
, DAG
.getVTList(MVT::Other
),
4481 {Store
->getChain(), IntID
, Val
, Store
->getBasePtr(), Mask
, VL
},
4482 Store
->getMemoryVT(), Store
->getMemOperand());
4486 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op
,
4487 SelectionDAG
&DAG
) const {
4488 MVT InVT
= Op
.getOperand(0).getSimpleValueType();
4489 MVT ContainerVT
= getContainerForFixedLengthVector(InVT
);
4491 MVT VT
= Op
.getSimpleValueType();
4494 convertToScalableVector(ContainerVT
, Op
.getOperand(0), DAG
, Subtarget
);
4496 convertToScalableVector(ContainerVT
, Op
.getOperand(1), DAG
, Subtarget
);
4500 DAG
.getConstant(VT
.getVectorNumElements(), DL
, Subtarget
.getXLenVT());
4502 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
4503 SDValue Mask
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, MaskVT
, VL
);
4505 SDValue Cmp
= DAG
.getNode(RISCVISD::SETCC_VL
, DL
, MaskVT
, Op1
, Op2
,
4506 Op
.getOperand(2), Mask
, VL
);
4508 return convertFromScalableVector(VT
, Cmp
, DAG
, Subtarget
);
4511 SDValue
RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4512 SDValue Op
, SelectionDAG
&DAG
, unsigned MaskOpc
, unsigned VecOpc
) const {
4513 MVT VT
= Op
.getSimpleValueType();
4515 if (VT
.getVectorElementType() == MVT::i1
)
4516 return lowerToScalableOp(Op
, DAG
, MaskOpc
, /*HasMask*/ false);
4518 return lowerToScalableOp(Op
, DAG
, VecOpc
, /*HasMask*/ true);
4522 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op
,
4523 SelectionDAG
&DAG
) const {
4525 switch (Op
.getOpcode()) {
4526 default: llvm_unreachable("Unexpected opcode!");
4527 case ISD::SHL
: Opc
= RISCVISD::SHL_VL
; break;
4528 case ISD::SRA
: Opc
= RISCVISD::SRA_VL
; break;
4529 case ISD::SRL
: Opc
= RISCVISD::SRL_VL
; break;
4532 return lowerToScalableOp(Op
, DAG
, Opc
);
4535 // Lower vector ABS to smax(X, sub(0, X)).
4536 SDValue
RISCVTargetLowering::lowerABS(SDValue Op
, SelectionDAG
&DAG
) const {
4538 MVT VT
= Op
.getSimpleValueType();
4539 SDValue X
= Op
.getOperand(0);
4541 assert(VT
.isFixedLengthVector() && "Unexpected type");
4543 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
4544 X
= convertToScalableVector(ContainerVT
, X
, DAG
, Subtarget
);
4547 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
4550 DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, ContainerVT
,
4551 DAG
.getConstant(0, DL
, Subtarget
.getXLenVT()));
4553 DAG
.getNode(RISCVISD::SUB_VL
, DL
, ContainerVT
, SplatZero
, X
, Mask
, VL
);
4555 DAG
.getNode(RISCVISD::SMAX_VL
, DL
, ContainerVT
, X
, NegX
, Mask
, VL
);
4557 return convertFromScalableVector(VT
, Max
, DAG
, Subtarget
);
4560 SDValue
RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4561 SDValue Op
, SelectionDAG
&DAG
) const {
4563 MVT VT
= Op
.getSimpleValueType();
4564 SDValue Mag
= Op
.getOperand(0);
4565 SDValue Sign
= Op
.getOperand(1);
4566 assert(Mag
.getValueType() == Sign
.getValueType() &&
4567 "Can only handle COPYSIGN with matching types.");
4569 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
4570 Mag
= convertToScalableVector(ContainerVT
, Mag
, DAG
, Subtarget
);
4571 Sign
= convertToScalableVector(ContainerVT
, Sign
, DAG
, Subtarget
);
4574 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
4577 DAG
.getNode(RISCVISD::FCOPYSIGN_VL
, DL
, ContainerVT
, Mag
, Sign
, Mask
, VL
);
4579 return convertFromScalableVector(VT
, CopySign
, DAG
, Subtarget
);
4582 SDValue
RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4583 SDValue Op
, SelectionDAG
&DAG
) const {
4584 MVT VT
= Op
.getSimpleValueType();
4585 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
4588 MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
4591 convertToScalableVector(I1ContainerVT
, Op
.getOperand(0), DAG
, Subtarget
);
4593 convertToScalableVector(ContainerVT
, Op
.getOperand(1), DAG
, Subtarget
);
4595 convertToScalableVector(ContainerVT
, Op
.getOperand(2), DAG
, Subtarget
);
4599 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
4602 DAG
.getNode(RISCVISD::VSELECT_VL
, DL
, ContainerVT
, CC
, Op1
, Op2
, VL
);
4604 return convertFromScalableVector(VT
, Select
, DAG
, Subtarget
);
4607 SDValue
RISCVTargetLowering::lowerToScalableOp(SDValue Op
, SelectionDAG
&DAG
,
4609 bool HasMask
) const {
4610 MVT VT
= Op
.getSimpleValueType();
4611 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
4613 // Create list of operands by converting existing ones to scalable types.
4614 SmallVector
<SDValue
, 6> Ops
;
4615 for (const SDValue
&V
: Op
->op_values()) {
4616 assert(!isa
<VTSDNode
>(V
) && "Unexpected VTSDNode node!");
4618 // Pass through non-vector operands.
4619 if (!V
.getValueType().isVector()) {
4624 // "cast" fixed length vector to a scalable vector.
4625 assert(useRVVForFixedLengthVectorVT(V
.getSimpleValueType()) &&
4626 "Only fixed length vectors are supported!");
4627 Ops
.push_back(convertToScalableVector(ContainerVT
, V
, DAG
, Subtarget
));
4632 std::tie(Mask
, VL
) = getDefaultVLOps(VT
, ContainerVT
, DL
, DAG
, Subtarget
);
4634 Ops
.push_back(Mask
);
4637 SDValue ScalableRes
= DAG
.getNode(NewOpc
, DL
, ContainerVT
, Ops
);
4638 return convertFromScalableVector(VT
, ScalableRes
, DAG
, Subtarget
);
4641 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4642 // * Operands of each node are assumed to be in the same order.
4643 // * The EVL operand is promoted from i32 to i64 on RV64.
4644 // * Fixed-length vectors are converted to their scalable-vector container
4646 SDValue
RISCVTargetLowering::lowerVPOp(SDValue Op
, SelectionDAG
&DAG
,
4647 unsigned RISCVISDOpc
) const {
4649 MVT VT
= Op
.getSimpleValueType();
4650 SmallVector
<SDValue
, 4> Ops
;
4652 for (const auto &OpIdx
: enumerate(Op
->ops())) {
4653 SDValue V
= OpIdx
.value();
4654 assert(!isa
<VTSDNode
>(V
) && "Unexpected VTSDNode node!");
4655 // Pass through operands which aren't fixed-length vectors.
4656 if (!V
.getValueType().isFixedLengthVector()) {
4660 // "cast" fixed length vector to a scalable vector.
4661 MVT OpVT
= V
.getSimpleValueType();
4662 MVT ContainerVT
= getContainerForFixedLengthVector(OpVT
);
4663 assert(useRVVForFixedLengthVectorVT(OpVT
) &&
4664 "Only fixed length vectors are supported!");
4665 Ops
.push_back(convertToScalableVector(ContainerVT
, V
, DAG
, Subtarget
));
4668 if (!VT
.isFixedLengthVector())
4669 return DAG
.getNode(RISCVISDOpc
, DL
, VT
, Ops
);
4671 MVT ContainerVT
= getContainerForFixedLengthVector(VT
);
4673 SDValue VPOp
= DAG
.getNode(RISCVISDOpc
, DL
, ContainerVT
, Ops
);
4675 return convertFromScalableVector(VT
, VPOp
, DAG
, Subtarget
);
4678 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4679 // a RVV indexed load. The RVV indexed load instructions only support the
4680 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4681 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4682 // indexing is extended to the XLEN value type and scaled accordingly.
4683 SDValue
RISCVTargetLowering::lowerMGATHER(SDValue Op
, SelectionDAG
&DAG
) const {
4684 auto *MGN
= cast
<MaskedGatherSDNode
>(Op
.getNode());
4687 SDValue Index
= MGN
->getIndex();
4688 SDValue Mask
= MGN
->getMask();
4689 SDValue PassThru
= MGN
->getPassThru();
4691 MVT VT
= Op
.getSimpleValueType();
4692 MVT IndexVT
= Index
.getSimpleValueType();
4693 MVT XLenVT
= Subtarget
.getXLenVT();
4695 assert(VT
.getVectorElementCount() == IndexVT
.getVectorElementCount() &&
4697 assert(MGN
->getBasePtr().getSimpleValueType() == XLenVT
&&
4698 "Unexpected pointer type");
4699 // Targets have to explicitly opt-in for extending vector loads.
4700 assert(MGN
->getExtensionType() == ISD::NON_EXTLOAD
&&
4701 "Unexpected extending MGATHER");
4703 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4704 // the selection of the masked intrinsics doesn't do this for us.
4705 bool IsUnmasked
= ISD::isConstantSplatVectorAllOnes(Mask
.getNode());
4708 MVT ContainerVT
= VT
;
4709 if (VT
.isFixedLengthVector()) {
4710 // We need to use the larger of the result and index type to determine the
4711 // scalable type to use so we don't increase LMUL for any operand/result.
4712 if (VT
.bitsGE(IndexVT
)) {
4713 ContainerVT
= getContainerForFixedLengthVector(VT
);
4714 IndexVT
= MVT::getVectorVT(IndexVT
.getVectorElementType(),
4715 ContainerVT
.getVectorElementCount());
4717 IndexVT
= getContainerForFixedLengthVector(IndexVT
);
4718 ContainerVT
= MVT::getVectorVT(ContainerVT
.getVectorElementType(),
4719 IndexVT
.getVectorElementCount());
4722 Index
= convertToScalableVector(IndexVT
, Index
, DAG
, Subtarget
);
4726 MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
4727 Mask
= convertToScalableVector(MaskVT
, Mask
, DAG
, Subtarget
);
4728 PassThru
= convertToScalableVector(ContainerVT
, PassThru
, DAG
, Subtarget
);
4731 VL
= DAG
.getConstant(VT
.getVectorNumElements(), DL
, XLenVT
);
4733 VL
= DAG
.getRegister(RISCV::X0
, XLenVT
);
4736 IsUnmasked
? Intrinsic::riscv_vluxei
: Intrinsic::riscv_vluxei_mask
;
4737 SmallVector
<SDValue
, 8> Ops
{MGN
->getChain(),
4738 DAG
.getTargetConstant(IntID
, DL
, XLenVT
)};
4740 Ops
.push_back(PassThru
);
4741 Ops
.push_back(MGN
->getBasePtr());
4742 Ops
.push_back(Index
);
4744 Ops
.push_back(Mask
);
4747 SDVTList VTs
= DAG
.getVTList({ContainerVT
, MVT::Other
});
4749 DAG
.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN
, DL
, VTs
, Ops
,
4750 MGN
->getMemoryVT(), MGN
->getMemOperand());
4751 SDValue Chain
= Result
.getValue(1);
4753 if (VT
.isFixedLengthVector())
4754 Result
= convertFromScalableVector(VT
, Result
, DAG
, Subtarget
);
4756 return DAG
.getMergeValues({Result
, Chain
}, DL
);
4759 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4760 // a RVV indexed store. The RVV indexed store instructions only support the
4761 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4762 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4763 // indexing is extended to the XLEN value type and scaled accordingly.
4764 SDValue
RISCVTargetLowering::lowerMSCATTER(SDValue Op
,
4765 SelectionDAG
&DAG
) const {
4766 auto *MSN
= cast
<MaskedScatterSDNode
>(Op
.getNode());
4768 SDValue Index
= MSN
->getIndex();
4769 SDValue Mask
= MSN
->getMask();
4770 SDValue Val
= MSN
->getValue();
4772 MVT VT
= Val
.getSimpleValueType();
4773 MVT IndexVT
= Index
.getSimpleValueType();
4774 MVT XLenVT
= Subtarget
.getXLenVT();
4776 assert(VT
.getVectorElementCount() == IndexVT
.getVectorElementCount() &&
4778 assert(MSN
->getBasePtr().getSimpleValueType() == XLenVT
&&
4779 "Unexpected pointer type");
4780 // Targets have to explicitly opt-in for extending vector loads and
4781 // truncating vector stores.
4782 assert(!MSN
->isTruncatingStore() && "Unexpected extending MSCATTER");
4784 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4785 // the selection of the masked intrinsics doesn't do this for us.
4786 bool IsUnmasked
= ISD::isConstantSplatVectorAllOnes(Mask
.getNode());
4789 if (VT
.isFixedLengthVector()) {
4790 // We need to use the larger of the value and index type to determine the
4791 // scalable type to use so we don't increase LMUL for any operand/result.
4793 if (VT
.bitsGE(IndexVT
)) {
4794 ContainerVT
= getContainerForFixedLengthVector(VT
);
4795 IndexVT
= MVT::getVectorVT(IndexVT
.getVectorElementType(),
4796 ContainerVT
.getVectorElementCount());
4798 IndexVT
= getContainerForFixedLengthVector(IndexVT
);
4799 ContainerVT
= MVT::getVectorVT(VT
.getVectorElementType(),
4800 IndexVT
.getVectorElementCount());
4803 Index
= convertToScalableVector(IndexVT
, Index
, DAG
, Subtarget
);
4804 Val
= convertToScalableVector(ContainerVT
, Val
, DAG
, Subtarget
);
4808 MVT::getVectorVT(MVT::i1
, ContainerVT
.getVectorElementCount());
4809 Mask
= convertToScalableVector(MaskVT
, Mask
, DAG
, Subtarget
);
4812 VL
= DAG
.getConstant(VT
.getVectorNumElements(), DL
, XLenVT
);
4814 VL
= DAG
.getRegister(RISCV::X0
, XLenVT
);
4817 IsUnmasked
? Intrinsic::riscv_vsoxei
: Intrinsic::riscv_vsoxei_mask
;
4818 SmallVector
<SDValue
, 8> Ops
{MSN
->getChain(),
4819 DAG
.getTargetConstant(IntID
, DL
, XLenVT
)};
4821 Ops
.push_back(MSN
->getBasePtr());
4822 Ops
.push_back(Index
);
4824 Ops
.push_back(Mask
);
4827 return DAG
.getMemIntrinsicNode(ISD::INTRINSIC_VOID
, DL
, MSN
->getVTList(), Ops
,
4828 MSN
->getMemoryVT(), MSN
->getMemOperand());
4831 SDValue
RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op
,
4832 SelectionDAG
&DAG
) const {
4833 const MVT XLenVT
= Subtarget
.getXLenVT();
4835 SDValue Chain
= Op
->getOperand(0);
4836 SDValue SysRegNo
= DAG
.getConstant(
4837 RISCVSysReg::lookupSysRegByName("FRM")->Encoding
, DL
, XLenVT
);
4838 SDVTList VTs
= DAG
.getVTList(XLenVT
, MVT::Other
);
4839 SDValue RM
= DAG
.getNode(RISCVISD::READ_CSR
, DL
, VTs
, Chain
, SysRegNo
);
4841 // Encoding used for rounding mode in RISCV differs from that used in
4842 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4843 // table, which consists of a sequence of 4-bit fields, each representing
4844 // corresponding FLT_ROUNDS mode.
4845 static const int Table
=
4846 (int(RoundingMode::NearestTiesToEven
) << 4 * RISCVFPRndMode::RNE
) |
4847 (int(RoundingMode::TowardZero
) << 4 * RISCVFPRndMode::RTZ
) |
4848 (int(RoundingMode::TowardNegative
) << 4 * RISCVFPRndMode::RDN
) |
4849 (int(RoundingMode::TowardPositive
) << 4 * RISCVFPRndMode::RUP
) |
4850 (int(RoundingMode::NearestTiesToAway
) << 4 * RISCVFPRndMode::RMM
);
4853 DAG
.getNode(ISD::SHL
, DL
, XLenVT
, RM
, DAG
.getConstant(2, DL
, XLenVT
));
4854 SDValue Shifted
= DAG
.getNode(ISD::SRL
, DL
, XLenVT
,
4855 DAG
.getConstant(Table
, DL
, XLenVT
), Shift
);
4856 SDValue Masked
= DAG
.getNode(ISD::AND
, DL
, XLenVT
, Shifted
,
4857 DAG
.getConstant(7, DL
, XLenVT
));
4859 return DAG
.getMergeValues({Masked
, Chain
}, DL
);
4862 SDValue
RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op
,
4863 SelectionDAG
&DAG
) const {
4864 const MVT XLenVT
= Subtarget
.getXLenVT();
4866 SDValue Chain
= Op
->getOperand(0);
4867 SDValue RMValue
= Op
->getOperand(1);
4868 SDValue SysRegNo
= DAG
.getConstant(
4869 RISCVSysReg::lookupSysRegByName("FRM")->Encoding
, DL
, XLenVT
);
4871 // Encoding used for rounding mode in RISCV differs from that used in
4872 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4873 // a table, which consists of a sequence of 4-bit fields, each representing
4874 // corresponding RISCV mode.
4875 static const unsigned Table
=
4876 (RISCVFPRndMode::RNE
<< 4 * int(RoundingMode::NearestTiesToEven
)) |
4877 (RISCVFPRndMode::RTZ
<< 4 * int(RoundingMode::TowardZero
)) |
4878 (RISCVFPRndMode::RDN
<< 4 * int(RoundingMode::TowardNegative
)) |
4879 (RISCVFPRndMode::RUP
<< 4 * int(RoundingMode::TowardPositive
)) |
4880 (RISCVFPRndMode::RMM
<< 4 * int(RoundingMode::NearestTiesToAway
));
4882 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, XLenVT
, RMValue
,
4883 DAG
.getConstant(2, DL
, XLenVT
));
4884 SDValue Shifted
= DAG
.getNode(ISD::SRL
, DL
, XLenVT
,
4885 DAG
.getConstant(Table
, DL
, XLenVT
), Shift
);
4886 RMValue
= DAG
.getNode(ISD::AND
, DL
, XLenVT
, Shifted
,
4887 DAG
.getConstant(0x7, DL
, XLenVT
));
4888 return DAG
.getNode(RISCVISD::WRITE_CSR
, DL
, MVT::Other
, Chain
, SysRegNo
,
4892 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4893 // form of the given Opcode.
4894 static RISCVISD::NodeType
getRISCVWOpcode(unsigned Opcode
) {
4897 llvm_unreachable("Unexpected opcode");
4899 return RISCVISD::SLLW
;
4901 return RISCVISD::SRAW
;
4903 return RISCVISD::SRLW
;
4905 return RISCVISD::DIVW
;
4907 return RISCVISD::DIVUW
;
4909 return RISCVISD::REMUW
;
4911 return RISCVISD::ROLW
;
4913 return RISCVISD::RORW
;
4914 case RISCVISD::GREV
:
4915 return RISCVISD::GREVW
;
4916 case RISCVISD::GORC
:
4917 return RISCVISD::GORCW
;
4921 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
4922 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
4923 // otherwise be promoted to i64, making it difficult to select the
4924 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
4925 // type i8/i16/i32 is lost.
4926 static SDValue
customLegalizeToWOp(SDNode
*N
, SelectionDAG
&DAG
,
4927 unsigned ExtOpc
= ISD::ANY_EXTEND
) {
4929 RISCVISD::NodeType WOpcode
= getRISCVWOpcode(N
->getOpcode());
4930 SDValue NewOp0
= DAG
.getNode(ExtOpc
, DL
, MVT::i64
, N
->getOperand(0));
4931 SDValue NewOp1
= DAG
.getNode(ExtOpc
, DL
, MVT::i64
, N
->getOperand(1));
4932 SDValue NewRes
= DAG
.getNode(WOpcode
, DL
, MVT::i64
, NewOp0
, NewOp1
);
4933 // ReplaceNodeResults requires we maintain the same type for the return value.
4934 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewRes
);
4937 // Converts the given 32-bit operation to a i64 operation with signed extension
4938 // semantic to reduce the signed extension instructions.
4939 static SDValue
customLegalizeToWOpWithSExt(SDNode
*N
, SelectionDAG
&DAG
) {
4941 SDValue NewOp0
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
4942 SDValue NewOp1
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
4943 SDValue NewWOp
= DAG
.getNode(N
->getOpcode(), DL
, MVT::i64
, NewOp0
, NewOp1
);
4944 SDValue NewRes
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i64
, NewWOp
,
4945 DAG
.getValueType(MVT::i32
));
4946 return DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, NewRes
);
4949 void RISCVTargetLowering::ReplaceNodeResults(SDNode
*N
,
4950 SmallVectorImpl
<SDValue
> &Results
,
4951 SelectionDAG
&DAG
) const {
4953 switch (N
->getOpcode()) {
4955 llvm_unreachable("Don't know how to custom type legalize this operation!");
4956 case ISD::STRICT_FP_TO_SINT
:
4957 case ISD::STRICT_FP_TO_UINT
:
4958 case ISD::FP_TO_SINT
:
4959 case ISD::FP_TO_UINT
: {
4960 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
4961 "Unexpected custom legalisation");
4962 bool IsStrict
= N
->isStrictFPOpcode();
4963 bool IsSigned
= N
->getOpcode() == ISD::FP_TO_SINT
||
4964 N
->getOpcode() == ISD::STRICT_FP_TO_SINT
;
4965 SDValue Op0
= IsStrict
? N
->getOperand(1) : N
->getOperand(0);
4966 if (getTypeAction(*DAG
.getContext(), Op0
.getValueType()) !=
4967 TargetLowering::TypeSoftenFloat
) {
4968 // FIXME: Support strict FP.
4971 if (!isTypeLegal(Op0
.getValueType()))
4974 IsSigned
? RISCVISD::FCVT_W_RTZ_RV64
: RISCVISD::FCVT_WU_RTZ_RV64
;
4975 SDValue Res
= DAG
.getNode(Opc
, DL
, MVT::i64
, Op0
);
4976 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
4979 // If the FP type needs to be softened, emit a library call using the 'si'
4980 // version. If we left it to default legalization we'd end up with 'di'. If
4981 // the FP type doesn't need to be softened just let generic type
4982 // legalization promote the result type.
4985 LC
= RTLIB::getFPTOSINT(Op0
.getValueType(), N
->getValueType(0));
4987 LC
= RTLIB::getFPTOUINT(Op0
.getValueType(), N
->getValueType(0));
4988 MakeLibCallOptions CallOptions
;
4989 EVT OpVT
= Op0
.getValueType();
4990 CallOptions
.setTypeListBeforeSoften(OpVT
, N
->getValueType(0), true);
4991 SDValue Chain
= IsStrict
? N
->getOperand(0) : SDValue();
4993 std::tie(Result
, Chain
) =
4994 makeLibCall(DAG
, LC
, N
->getValueType(0), Op0
, CallOptions
, DL
, Chain
);
4995 Results
.push_back(Result
);
4997 Results
.push_back(Chain
);
5000 case ISD::READCYCLECOUNTER
: {
5001 assert(!Subtarget
.is64Bit() &&
5002 "READCYCLECOUNTER only has custom type legalization on riscv32");
5004 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
5006 DAG
.getNode(RISCVISD::READ_CYCLE_WIDE
, DL
, VTs
, N
->getOperand(0));
5009 DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, RCW
, RCW
.getValue(1)));
5010 Results
.push_back(RCW
.getValue(2));
5014 unsigned Size
= N
->getSimpleValueType(0).getSizeInBits();
5015 unsigned XLen
= Subtarget
.getXLen();
5016 // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5018 assert(Size
== (XLen
* 2) && "Unexpected custom legalisation");
5019 SDValue LHS
= N
->getOperand(0);
5020 SDValue RHS
= N
->getOperand(1);
5021 APInt HighMask
= APInt::getHighBitsSet(Size
, XLen
);
5023 bool LHSIsU
= DAG
.MaskedValueIsZero(LHS
, HighMask
);
5024 bool RHSIsU
= DAG
.MaskedValueIsZero(RHS
, HighMask
);
5025 // We need exactly one side to be unsigned.
5026 if (LHSIsU
== RHSIsU
)
5029 auto MakeMULPair
= [&](SDValue S
, SDValue U
) {
5030 MVT XLenVT
= Subtarget
.getXLenVT();
5031 S
= DAG
.getNode(ISD::TRUNCATE
, DL
, XLenVT
, S
);
5032 U
= DAG
.getNode(ISD::TRUNCATE
, DL
, XLenVT
, U
);
5033 SDValue Lo
= DAG
.getNode(ISD::MUL
, DL
, XLenVT
, S
, U
);
5034 SDValue Hi
= DAG
.getNode(RISCVISD::MULHSU
, DL
, XLenVT
, S
, U
);
5035 return DAG
.getNode(ISD::BUILD_PAIR
, DL
, N
->getValueType(0), Lo
, Hi
);
5038 bool LHSIsS
= DAG
.ComputeNumSignBits(LHS
) > XLen
;
5039 bool RHSIsS
= DAG
.ComputeNumSignBits(RHS
) > XLen
;
5041 // The other operand should be signed, but still prefer MULH when
5043 if (RHSIsU
&& LHSIsS
&& !RHSIsS
)
5044 Results
.push_back(MakeMULPair(LHS
, RHS
));
5045 else if (LHSIsU
&& RHSIsS
&& !LHSIsS
)
5046 Results
.push_back(MakeMULPair(RHS
, LHS
));
5054 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5055 "Unexpected custom legalisation");
5056 Results
.push_back(customLegalizeToWOpWithSExt(N
, DAG
));
5061 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5062 "Unexpected custom legalisation");
5063 if (N
->getOperand(1).getOpcode() == ISD::Constant
)
5065 Results
.push_back(customLegalizeToWOp(N
, DAG
));
5069 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5070 "Unexpected custom legalisation");
5071 Results
.push_back(customLegalizeToWOp(N
, DAG
));
5074 case ISD::CTTZ_ZERO_UNDEF
:
5076 case ISD::CTLZ_ZERO_UNDEF
: {
5077 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5078 "Unexpected custom legalisation");
5081 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
5083 N
->getOpcode() == ISD::CTTZ
|| N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
;
5084 unsigned Opc
= IsCTZ
? RISCVISD::CTZW
: RISCVISD::CLZW
;
5085 SDValue Res
= DAG
.getNode(Opc
, DL
, MVT::i64
, NewOp0
);
5086 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
5092 MVT VT
= N
->getSimpleValueType(0);
5093 assert((VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
) &&
5094 Subtarget
.is64Bit() && Subtarget
.hasStdExtM() &&
5095 "Unexpected custom legalisation");
5096 // Don't promote division/remainder by constant since we should expand those
5097 // to multiply by magic constant.
5098 // FIXME: What if the expansion is disabled for minsize.
5099 if (N
->getOperand(1).getOpcode() == ISD::Constant
)
5102 // If the input is i32, use ANY_EXTEND since the W instructions don't read
5103 // the upper 32 bits. For other types we need to sign or zero extend
5104 // based on the opcode.
5105 unsigned ExtOpc
= ISD::ANY_EXTEND
;
5107 ExtOpc
= N
->getOpcode() == ISD::SDIV
? ISD::SIGN_EXTEND
5110 Results
.push_back(customLegalizeToWOp(N
, DAG
, ExtOpc
));
5115 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5116 "Unexpected custom legalisation");
5117 bool IsAdd
= N
->getOpcode() == ISD::UADDO
;
5118 // Create an ADDW or SUBW.
5119 SDValue LHS
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
5120 SDValue RHS
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5122 DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, DL
, MVT::i64
, LHS
, RHS
);
5123 Res
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i64
, Res
,
5124 DAG
.getValueType(MVT::i32
));
5126 // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5127 // Since the inputs are sign extended from i32, this is equivalent to
5128 // comparing the lower 32 bits.
5129 LHS
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
5130 SDValue Overflow
= DAG
.getSetCC(DL
, N
->getValueType(1), Res
, LHS
,
5131 IsAdd
? ISD::SETULT
: ISD::SETUGT
);
5133 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
5134 Results
.push_back(Overflow
);
5138 case ISD::USUBSAT
: {
5139 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5140 "Unexpected custom legalisation");
5141 if (Subtarget
.hasStdExtZbb()) {
5142 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5143 // sign extend allows overflow of the lower 32 bits to be detected on
5144 // the promoted size.
5146 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
5148 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5149 SDValue Res
= DAG
.getNode(N
->getOpcode(), DL
, MVT::i64
, LHS
, RHS
);
5150 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
5154 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5155 // promotion for UADDO/USUBO.
5156 Results
.push_back(expandAddSubSat(N
, DAG
));
5159 case ISD::BITCAST
: {
5160 EVT VT
= N
->getValueType(0);
5161 assert(VT
.isInteger() && !VT
.isVector() && "Unexpected VT!");
5162 SDValue Op0
= N
->getOperand(0);
5163 EVT Op0VT
= Op0
.getValueType();
5164 MVT XLenVT
= Subtarget
.getXLenVT();
5165 if (VT
== MVT::i16
&& Op0VT
== MVT::f16
&& Subtarget
.hasStdExtZfh()) {
5166 SDValue FPConv
= DAG
.getNode(RISCVISD::FMV_X_ANYEXTH
, DL
, XLenVT
, Op0
);
5167 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i16
, FPConv
));
5168 } else if (VT
== MVT::i32
&& Op0VT
== MVT::f32
&& Subtarget
.is64Bit() &&
5169 Subtarget
.hasStdExtF()) {
5171 DAG
.getNode(RISCVISD::FMV_X_ANYEXTW_RV64
, DL
, MVT::i64
, Op0
);
5172 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, FPConv
));
5173 } else if (!VT
.isVector() && Op0VT
.isFixedLengthVector() &&
5174 isTypeLegal(Op0VT
)) {
5175 // Custom-legalize bitcasts from fixed-length vector types to illegal
5176 // scalar types in order to improve codegen. Bitcast the vector to a
5177 // one-element vector type whose element type is the same as the result
5178 // type, and extract the first element.
5179 LLVMContext
&Context
= *DAG
.getContext();
5180 SDValue BVec
= DAG
.getBitcast(EVT::getVectorVT(Context
, VT
, 1), Op0
);
5181 Results
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, BVec
,
5182 DAG
.getConstant(0, DL
, XLenVT
)));
5186 case RISCVISD::GREV
:
5187 case RISCVISD::GORC
: {
5188 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5189 "Unexpected custom legalisation");
5190 assert(isa
<ConstantSDNode
>(N
->getOperand(1)) && "Expected constant");
5191 // This is similar to customLegalizeToWOp, except that we pass the second
5192 // operand (a TargetConstant) straight through: it is already of type
5194 RISCVISD::NodeType WOpcode
= getRISCVWOpcode(N
->getOpcode());
5196 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
5198 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5199 SDValue NewRes
= DAG
.getNode(WOpcode
, DL
, MVT::i64
, NewOp0
, NewOp1
);
5200 // ReplaceNodeResults requires we maintain the same type for the return
5202 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, NewRes
));
5205 case RISCVISD::SHFL
: {
5206 // There is no SHFLIW instruction, but we can just promote the operation.
5207 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5208 "Unexpected custom legalisation");
5209 assert(isa
<ConstantSDNode
>(N
->getOperand(1)) && "Expected constant");
5211 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
5213 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5214 SDValue NewRes
= DAG
.getNode(RISCVISD::SHFL
, DL
, MVT::i64
, NewOp0
, NewOp1
);
5215 // ReplaceNodeResults requires we maintain the same type for the return
5217 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, NewRes
));
5221 case ISD::BITREVERSE
: {
5222 MVT VT
= N
->getSimpleValueType(0);
5223 MVT XLenVT
= Subtarget
.getXLenVT();
5224 assert((VT
== MVT::i8
|| VT
== MVT::i16
||
5225 (VT
== MVT::i32
&& Subtarget
.is64Bit())) &&
5226 Subtarget
.hasStdExtZbp() && "Unexpected custom legalisation");
5227 SDValue NewOp0
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, XLenVT
, N
->getOperand(0));
5228 unsigned Imm
= VT
.getSizeInBits() - 1;
5229 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5230 if (N
->getOpcode() == ISD::BSWAP
)
5232 unsigned Opc
= Subtarget
.is64Bit() ? RISCVISD::GREVW
: RISCVISD::GREV
;
5234 DAG
.getNode(Opc
, DL
, XLenVT
, NewOp0
, DAG
.getConstant(Imm
, DL
, XLenVT
));
5235 // ReplaceNodeResults requires we maintain the same type for the return
5237 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, GREVI
));
5242 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5243 Subtarget
.hasStdExtZbt() && "Unexpected custom legalisation");
5245 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(0));
5247 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5249 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(2));
5250 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5251 // Mask the shift amount to 5 bits.
5252 NewOp2
= DAG
.getNode(ISD::AND
, DL
, MVT::i64
, NewOp2
,
5253 DAG
.getConstant(0x1f, DL
, MVT::i64
));
5255 N
->getOpcode() == ISD::FSHL
? RISCVISD::FSLW
: RISCVISD::FSRW
;
5256 SDValue NewOp
= DAG
.getNode(Opc
, DL
, MVT::i64
, NewOp0
, NewOp1
, NewOp2
);
5257 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, NewOp
));
5260 case ISD::EXTRACT_VECTOR_ELT
: {
5261 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5262 // type is illegal (currently only vXi64 RV32).
5263 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5264 // transferred to the destination register. We issue two of these from the
5265 // upper- and lower- halves of the SEW-bit vector element, slid down to the
5267 SDValue Vec
= N
->getOperand(0);
5268 SDValue Idx
= N
->getOperand(1);
5270 // The vector type hasn't been legalized yet so we can't issue target
5271 // specific nodes if it needs legalization.
5272 // FIXME: We would manually legalize if it's important.
5273 if (!isTypeLegal(Vec
.getValueType()))
5276 MVT VecVT
= Vec
.getSimpleValueType();
5278 assert(!Subtarget
.is64Bit() && N
->getValueType(0) == MVT::i64
&&
5279 VecVT
.getVectorElementType() == MVT::i64
&&
5280 "Unexpected EXTRACT_VECTOR_ELT legalization");
5282 // If this is a fixed vector, we need to convert it to a scalable vector.
5283 MVT ContainerVT
= VecVT
;
5284 if (VecVT
.isFixedLengthVector()) {
5285 ContainerVT
= getContainerForFixedLengthVector(VecVT
);
5286 Vec
= convertToScalableVector(ContainerVT
, Vec
, DAG
, Subtarget
);
5289 MVT XLenVT
= Subtarget
.getXLenVT();
5291 // Use a VL of 1 to avoid processing more elements than we need.
5292 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, VecVT
.getVectorElementCount());
5293 SDValue VL
= DAG
.getConstant(1, DL
, XLenVT
);
5294 SDValue Mask
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, MaskVT
, VL
);
5296 // Unless the index is known to be 0, we must slide the vector down to get
5297 // the desired element into index 0.
5298 if (!isNullConstant(Idx
)) {
5299 Vec
= DAG
.getNode(RISCVISD::VSLIDEDOWN_VL
, DL
, ContainerVT
,
5300 DAG
.getUNDEF(ContainerVT
), Vec
, Idx
, Mask
, VL
);
5303 // Extract the lower XLEN bits of the correct vector element.
5304 SDValue EltLo
= DAG
.getNode(RISCVISD::VMV_X_S
, DL
, XLenVT
, Vec
);
5306 // To extract the upper XLEN bits of the vector element, shift the first
5307 // element right by 32 bits and re-extract the lower XLEN bits.
5308 SDValue ThirtyTwoV
= DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, ContainerVT
,
5309 DAG
.getConstant(32, DL
, XLenVT
), VL
);
5310 SDValue LShr32
= DAG
.getNode(RISCVISD::SRL_VL
, DL
, ContainerVT
, Vec
,
5311 ThirtyTwoV
, Mask
, VL
);
5313 SDValue EltHi
= DAG
.getNode(RISCVISD::VMV_X_S
, DL
, XLenVT
, LShr32
);
5315 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, EltLo
, EltHi
));
5318 case ISD::INTRINSIC_WO_CHAIN
: {
5319 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
5323 "Don't know how to custom type legalize this intrinsic!");
5324 case Intrinsic::riscv_orc_b
: {
5325 // Lower to the GORCI encoding for orc.b with the operand extended.
5327 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5328 // If Zbp is enabled, use GORCIW which will sign extend the result.
5330 Subtarget
.hasStdExtZbp() ? RISCVISD::GORCW
: RISCVISD::GORC
;
5331 SDValue Res
= DAG
.getNode(Opc
, DL
, MVT::i64
, NewOp
,
5332 DAG
.getConstant(7, DL
, MVT::i64
));
5333 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
5336 case Intrinsic::riscv_grev
:
5337 case Intrinsic::riscv_gorc
: {
5338 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5339 "Unexpected custom legalisation");
5341 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5343 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(2));
5345 IntNo
== Intrinsic::riscv_grev
? RISCVISD::GREVW
: RISCVISD::GORCW
;
5346 SDValue Res
= DAG
.getNode(Opc
, DL
, MVT::i64
, NewOp1
, NewOp2
);
5347 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
5350 case Intrinsic::riscv_shfl
:
5351 case Intrinsic::riscv_unshfl
: {
5352 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5353 "Unexpected custom legalisation");
5355 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5357 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(2));
5359 IntNo
== Intrinsic::riscv_shfl
? RISCVISD::SHFLW
: RISCVISD::UNSHFLW
;
5360 if (isa
<ConstantSDNode
>(N
->getOperand(2))) {
5361 NewOp2
= DAG
.getNode(ISD::AND
, DL
, MVT::i64
, NewOp2
,
5362 DAG
.getConstant(0xf, DL
, MVT::i64
));
5364 IntNo
== Intrinsic::riscv_shfl
? RISCVISD::SHFL
: RISCVISD::UNSHFL
;
5366 SDValue Res
= DAG
.getNode(Opc
, DL
, MVT::i64
, NewOp1
, NewOp2
);
5367 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
5370 case Intrinsic::riscv_bcompress
:
5371 case Intrinsic::riscv_bdecompress
: {
5372 assert(N
->getValueType(0) == MVT::i32
&& Subtarget
.is64Bit() &&
5373 "Unexpected custom legalisation");
5375 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(1));
5377 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
, N
->getOperand(2));
5378 unsigned Opc
= IntNo
== Intrinsic::riscv_bcompress
5379 ? RISCVISD::BCOMPRESSW
5380 : RISCVISD::BDECOMPRESSW
;
5381 SDValue Res
= DAG
.getNode(Opc
, DL
, MVT::i64
, NewOp1
, NewOp2
);
5382 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Res
));
5385 case Intrinsic::riscv_vmv_x_s
: {
5386 EVT VT
= N
->getValueType(0);
5387 MVT XLenVT
= Subtarget
.getXLenVT();
5388 if (VT
.bitsLT(XLenVT
)) {
5389 // Simple case just extract using vmv.x.s and truncate.
5390 SDValue Extract
= DAG
.getNode(RISCVISD::VMV_X_S
, DL
,
5391 Subtarget
.getXLenVT(), N
->getOperand(1));
5392 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Extract
));
5396 assert(VT
== MVT::i64
&& !Subtarget
.is64Bit() &&
5397 "Unexpected custom legalization");
5399 // We need to do the move in two steps.
5400 SDValue Vec
= N
->getOperand(1);
5401 MVT VecVT
= Vec
.getSimpleValueType();
5403 // First extract the lower XLEN bits of the element.
5404 SDValue EltLo
= DAG
.getNode(RISCVISD::VMV_X_S
, DL
, XLenVT
, Vec
);
5406 // To extract the upper XLEN bits of the vector element, shift the first
5407 // element right by 32 bits and re-extract the lower XLEN bits.
5408 SDValue VL
= DAG
.getConstant(1, DL
, XLenVT
);
5409 MVT MaskVT
= MVT::getVectorVT(MVT::i1
, VecVT
.getVectorElementCount());
5410 SDValue Mask
= DAG
.getNode(RISCVISD::VMSET_VL
, DL
, MaskVT
, VL
);
5411 SDValue ThirtyTwoV
= DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, VecVT
,
5412 DAG
.getConstant(32, DL
, XLenVT
), VL
);
5414 DAG
.getNode(RISCVISD::SRL_VL
, DL
, VecVT
, Vec
, ThirtyTwoV
, Mask
, VL
);
5415 SDValue EltHi
= DAG
.getNode(RISCVISD::VMV_X_S
, DL
, XLenVT
, LShr32
);
5418 DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, EltLo
, EltHi
));
5424 case ISD::VECREDUCE_ADD
:
5425 case ISD::VECREDUCE_AND
:
5426 case ISD::VECREDUCE_OR
:
5427 case ISD::VECREDUCE_XOR
:
5428 case ISD::VECREDUCE_SMAX
:
5429 case ISD::VECREDUCE_UMAX
:
5430 case ISD::VECREDUCE_SMIN
:
5431 case ISD::VECREDUCE_UMIN
:
5432 if (SDValue V
= lowerVECREDUCE(SDValue(N
, 0), DAG
))
5433 Results
.push_back(V
);
5435 case ISD::FLT_ROUNDS_
: {
5436 SDVTList VTs
= DAG
.getVTList(Subtarget
.getXLenVT(), MVT::Other
);
5437 SDValue Res
= DAG
.getNode(ISD::FLT_ROUNDS_
, DL
, VTs
, N
->getOperand(0));
5438 Results
.push_back(Res
.getValue(0));
5439 Results
.push_back(Res
.getValue(1));
5445 // A structure to hold one of the bit-manipulation patterns below. Together, a
5446 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5447 // (or (and (shl x, 1), 0xAAAAAAAA),
5448 // (and (srl x, 1), 0x55555555))
5449 struct RISCVBitmanipPat
{
5454 bool formsPairWith(const RISCVBitmanipPat
&Other
) const {
5455 return Op
== Other
.Op
&& ShAmt
== Other
.ShAmt
&& IsSHL
!= Other
.IsSHL
;
5459 // Matches patterns of the form
5460 // (and (shl x, C2), (C1 << C2))
5461 // (and (srl x, C2), C1)
5462 // (shl (and x, C1), C2)
5463 // (srl (and x, (C1 << C2)), C2)
5464 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5465 // The expected masks for each shift amount are specified in BitmanipMasks where
5466 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5467 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5468 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5470 static Optional
<RISCVBitmanipPat
>
5471 matchRISCVBitmanipPat(SDValue Op
, ArrayRef
<uint64_t> BitmanipMasks
) {
5472 assert((BitmanipMasks
.size() == 5 || BitmanipMasks
.size() == 6) &&
5473 "Unexpected number of masks");
5474 Optional
<uint64_t> Mask
;
5475 // Optionally consume a mask around the shift operation.
5476 if (Op
.getOpcode() == ISD::AND
&& isa
<ConstantSDNode
>(Op
.getOperand(1))) {
5477 Mask
= Op
.getConstantOperandVal(1);
5478 Op
= Op
.getOperand(0);
5480 if (Op
.getOpcode() != ISD::SHL
&& Op
.getOpcode() != ISD::SRL
)
5482 bool IsSHL
= Op
.getOpcode() == ISD::SHL
;
5484 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
5486 uint64_t ShAmt
= Op
.getConstantOperandVal(1);
5488 unsigned Width
= Op
.getValueType() == MVT::i64
? 64 : 32;
5489 if (ShAmt
>= Width
|| !isPowerOf2_64(ShAmt
))
5491 // If we don't have enough masks for 64 bit, then we must be trying to
5492 // match SHFL so we're only allowed to shift 1/4 of the width.
5493 if (BitmanipMasks
.size() == 5 && ShAmt
>= (Width
/ 2))
5496 SDValue Src
= Op
.getOperand(0);
5498 // The expected mask is shifted left when the AND is found around SHL
5500 // ((x >> 1) & 0x55555555)
5501 // ((x << 1) & 0xAAAAAAAA)
5502 bool SHLExpMask
= IsSHL
;
5505 // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5506 // the mask is all ones: consume that now.
5507 if (Src
.getOpcode() == ISD::AND
&& isa
<ConstantSDNode
>(Src
.getOperand(1))) {
5508 Mask
= Src
.getConstantOperandVal(1);
5509 Src
= Src
.getOperand(0);
5510 // The expected mask is now in fact shifted left for SRL, so reverse the
5512 // ((x & 0xAAAAAAAA) >> 1)
5513 // ((x & 0x55555555) << 1)
5514 SHLExpMask
= !SHLExpMask
;
5516 // Use a default shifted mask of all-ones if there's no AND, truncated
5517 // down to the expected width. This simplifies the logic later on.
5518 Mask
= maskTrailingOnes
<uint64_t>(Width
);
5519 *Mask
&= (IsSHL
? *Mask
<< ShAmt
: *Mask
>> ShAmt
);
5523 unsigned MaskIdx
= Log2_32(ShAmt
);
5524 uint64_t ExpMask
= BitmanipMasks
[MaskIdx
] & maskTrailingOnes
<uint64_t>(Width
);
5529 if (Mask
!= ExpMask
)
5532 return RISCVBitmanipPat
{Src
, (unsigned)ShAmt
, IsSHL
};
5535 // Matches any of the following bit-manipulation patterns:
5536 // (and (shl x, 1), (0x55555555 << 1))
5537 // (and (srl x, 1), 0x55555555)
5538 // (shl (and x, 0x55555555), 1)
5539 // (srl (and x, (0x55555555 << 1)), 1)
5540 // where the shift amount and mask may vary thus:
5541 // [1] = 0x55555555 / 0xAAAAAAAA
5542 // [2] = 0x33333333 / 0xCCCCCCCC
5543 // [4] = 0x0F0F0F0F / 0xF0F0F0F0
5544 // [8] = 0x00FF00FF / 0xFF00FF00
5545 // [16] = 0x0000FFFF / 0xFFFFFFFF
5546 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
5547 static Optional
<RISCVBitmanipPat
> matchGREVIPat(SDValue Op
) {
5548 // These are the unshifted masks which we use to match bit-manipulation
5549 // patterns. They may be shifted left in certain circumstances.
5550 static const uint64_t BitmanipMasks
[] = {
5551 0x5555555555555555ULL
, 0x3333333333333333ULL
, 0x0F0F0F0F0F0F0F0FULL
,
5552 0x00FF00FF00FF00FFULL
, 0x0000FFFF0000FFFFULL
, 0x00000000FFFFFFFFULL
};
5554 return matchRISCVBitmanipPat(Op
, BitmanipMasks
);
5557 // Match the following pattern as a GREVI(W) operation
5558 // (or (BITMANIP_SHL x), (BITMANIP_SRL x))
5559 static SDValue
combineORToGREV(SDValue Op
, SelectionDAG
&DAG
,
5560 const RISCVSubtarget
&Subtarget
) {
5561 assert(Subtarget
.hasStdExtZbp() && "Expected Zbp extenson");
5562 EVT VT
= Op
.getValueType();
5564 if (VT
== Subtarget
.getXLenVT() || (Subtarget
.is64Bit() && VT
== MVT::i32
)) {
5565 auto LHS
= matchGREVIPat(Op
.getOperand(0));
5566 auto RHS
= matchGREVIPat(Op
.getOperand(1));
5567 if (LHS
&& RHS
&& LHS
->formsPairWith(*RHS
)) {
5569 return DAG
.getNode(RISCVISD::GREV
, DL
, VT
, LHS
->Op
,
5570 DAG
.getConstant(LHS
->ShAmt
, DL
, VT
));
5576 // Matches any the following pattern as a GORCI(W) operation
5577 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2
5578 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2
5579 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5580 // Note that with the variant of 3.,
5581 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5582 // the inner pattern will first be matched as GREVI and then the outer
5583 // pattern will be matched to GORC via the first rule above.
5584 // 4. (or (rotl/rotr x, bitwidth/2), x)
5585 static SDValue
combineORToGORC(SDValue Op
, SelectionDAG
&DAG
,
5586 const RISCVSubtarget
&Subtarget
) {
5587 assert(Subtarget
.hasStdExtZbp() && "Expected Zbp extenson");
5588 EVT VT
= Op
.getValueType();
5590 if (VT
== Subtarget
.getXLenVT() || (Subtarget
.is64Bit() && VT
== MVT::i32
)) {
5592 SDValue Op0
= Op
.getOperand(0);
5593 SDValue Op1
= Op
.getOperand(1);
5595 auto MatchOROfReverse
= [&](SDValue Reverse
, SDValue X
) {
5596 if (Reverse
.getOpcode() == RISCVISD::GREV
&& Reverse
.getOperand(0) == X
&&
5597 isa
<ConstantSDNode
>(Reverse
.getOperand(1)) &&
5598 isPowerOf2_32(Reverse
.getConstantOperandVal(1)))
5599 return DAG
.getNode(RISCVISD::GORC
, DL
, VT
, X
, Reverse
.getOperand(1));
5600 // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5601 if ((Reverse
.getOpcode() == ISD::ROTL
||
5602 Reverse
.getOpcode() == ISD::ROTR
) &&
5603 Reverse
.getOperand(0) == X
&&
5604 isa
<ConstantSDNode
>(Reverse
.getOperand(1))) {
5605 uint64_t RotAmt
= Reverse
.getConstantOperandVal(1);
5606 if (RotAmt
== (VT
.getSizeInBits() / 2))
5607 return DAG
.getNode(RISCVISD::GORC
, DL
, VT
, X
,
5608 DAG
.getConstant(RotAmt
, DL
, VT
));
5613 // Check for either commutable permutation of (or (GREVI x, shamt), x)
5614 if (SDValue V
= MatchOROfReverse(Op0
, Op1
))
5616 if (SDValue V
= MatchOROfReverse(Op1
, Op0
))
5619 // OR is commutable so canonicalize its OR operand to the left
5620 if (Op0
.getOpcode() != ISD::OR
&& Op1
.getOpcode() == ISD::OR
)
5621 std::swap(Op0
, Op1
);
5622 if (Op0
.getOpcode() != ISD::OR
)
5624 SDValue OrOp0
= Op0
.getOperand(0);
5625 SDValue OrOp1
= Op0
.getOperand(1);
5626 auto LHS
= matchGREVIPat(OrOp0
);
5627 // OR is commutable so swap the operands and try again: x might have been
5630 std::swap(OrOp0
, OrOp1
);
5631 LHS
= matchGREVIPat(OrOp0
);
5633 auto RHS
= matchGREVIPat(Op1
);
5634 if (LHS
&& RHS
&& LHS
->formsPairWith(*RHS
) && LHS
->Op
== OrOp1
) {
5635 return DAG
.getNode(RISCVISD::GORC
, DL
, VT
, LHS
->Op
,
5636 DAG
.getConstant(LHS
->ShAmt
, DL
, VT
));
5642 // Matches any of the following bit-manipulation patterns:
5643 // (and (shl x, 1), (0x22222222 << 1))
5644 // (and (srl x, 1), 0x22222222)
5645 // (shl (and x, 0x22222222), 1)
5646 // (srl (and x, (0x22222222 << 1)), 1)
5647 // where the shift amount and mask may vary thus:
5648 // [1] = 0x22222222 / 0x44444444
5649 // [2] = 0x0C0C0C0C / 0x3C3C3C3C
5650 // [4] = 0x00F000F0 / 0x0F000F00
5651 // [8] = 0x0000FF00 / 0x00FF0000
5652 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5653 static Optional
<RISCVBitmanipPat
> matchSHFLPat(SDValue Op
) {
5654 // These are the unshifted masks which we use to match bit-manipulation
5655 // patterns. They may be shifted left in certain circumstances.
5656 static const uint64_t BitmanipMasks
[] = {
5657 0x2222222222222222ULL
, 0x0C0C0C0C0C0C0C0CULL
, 0x00F000F000F000F0ULL
,
5658 0x0000FF000000FF00ULL
, 0x00000000FFFF0000ULL
};
5660 return matchRISCVBitmanipPat(Op
, BitmanipMasks
);
5663 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5664 static SDValue
combineORToSHFL(SDValue Op
, SelectionDAG
&DAG
,
5665 const RISCVSubtarget
&Subtarget
) {
5666 assert(Subtarget
.hasStdExtZbp() && "Expected Zbp extenson");
5667 EVT VT
= Op
.getValueType();
5669 if (VT
!= MVT::i32
&& VT
!= Subtarget
.getXLenVT())
5672 SDValue Op0
= Op
.getOperand(0);
5673 SDValue Op1
= Op
.getOperand(1);
5675 // Or is commutable so canonicalize the second OR to the LHS.
5676 if (Op0
.getOpcode() != ISD::OR
)
5677 std::swap(Op0
, Op1
);
5678 if (Op0
.getOpcode() != ISD::OR
)
5681 // We found an inner OR, so our operands are the operands of the inner OR
5682 // and the other operand of the outer OR.
5683 SDValue A
= Op0
.getOperand(0);
5684 SDValue B
= Op0
.getOperand(1);
5687 auto Match1
= matchSHFLPat(A
);
5688 auto Match2
= matchSHFLPat(B
);
5690 // If neither matched, we failed.
5691 if (!Match1
&& !Match2
)
5694 // We had at least one match. if one failed, try the remaining C operand.
5697 Match1
= matchSHFLPat(A
);
5700 } else if (!Match2
) {
5702 Match2
= matchSHFLPat(B
);
5706 assert(Match1
&& Match2
);
5708 // Make sure our matches pair up.
5709 if (!Match1
->formsPairWith(*Match2
))
5712 // All the remains is to make sure C is an AND with the same input, that masks
5713 // out the bits that are being shuffled.
5714 if (C
.getOpcode() != ISD::AND
|| !isa
<ConstantSDNode
>(C
.getOperand(1)) ||
5715 C
.getOperand(0) != Match1
->Op
)
5718 uint64_t Mask
= C
.getConstantOperandVal(1);
5720 static const uint64_t BitmanipMasks
[] = {
5721 0x9999999999999999ULL
, 0xC3C3C3C3C3C3C3C3ULL
, 0xF00FF00FF00FF00FULL
,
5722 0xFF0000FFFF0000FFULL
, 0xFFFF00000000FFFFULL
,
5725 unsigned Width
= Op
.getValueType() == MVT::i64
? 64 : 32;
5726 unsigned MaskIdx
= Log2_32(Match1
->ShAmt
);
5727 uint64_t ExpMask
= BitmanipMasks
[MaskIdx
] & maskTrailingOnes
<uint64_t>(Width
);
5729 if (Mask
!= ExpMask
)
5733 return DAG
.getNode(RISCVISD::SHFL
, DL
, VT
, Match1
->Op
,
5734 DAG
.getConstant(Match1
->ShAmt
, DL
, VT
));
5737 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5738 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5739 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5740 // not undo itself, but they are redundant.
5741 static SDValue
combineGREVI_GORCI(SDNode
*N
, SelectionDAG
&DAG
) {
5742 SDValue Src
= N
->getOperand(0);
5744 if (Src
.getOpcode() != N
->getOpcode())
5747 if (!isa
<ConstantSDNode
>(N
->getOperand(1)) ||
5748 !isa
<ConstantSDNode
>(Src
.getOperand(1)))
5751 unsigned ShAmt1
= N
->getConstantOperandVal(1);
5752 unsigned ShAmt2
= Src
.getConstantOperandVal(1);
5753 Src
= Src
.getOperand(0);
5755 unsigned CombinedShAmt
;
5756 if (N
->getOpcode() == RISCVISD::GORC
|| N
->getOpcode() == RISCVISD::GORCW
)
5757 CombinedShAmt
= ShAmt1
| ShAmt2
;
5759 CombinedShAmt
= ShAmt1
^ ShAmt2
;
5761 if (CombinedShAmt
== 0)
5766 N
->getOpcode(), DL
, N
->getValueType(0), Src
,
5767 DAG
.getConstant(CombinedShAmt
, DL
, N
->getOperand(1).getValueType()));
5770 // Combine a constant select operand into its use:
5772 // (and (select cond, -1, c), x)
5773 // -> (select cond, x, (and x, c)) [AllOnes=1]
5774 // (or (select cond, 0, c), x)
5775 // -> (select cond, x, (or x, c)) [AllOnes=0]
5776 // (xor (select cond, 0, c), x)
5777 // -> (select cond, x, (xor x, c)) [AllOnes=0]
5778 // (add (select cond, 0, c), x)
5779 // -> (select cond, x, (add x, c)) [AllOnes=0]
5780 // (sub x, (select cond, 0, c))
5781 // -> (select cond, x, (sub x, c)) [AllOnes=0]
5782 static SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
5783 SelectionDAG
&DAG
, bool AllOnes
) {
5784 EVT VT
= N
->getValueType(0);
5790 if ((Slct
.getOpcode() != ISD::SELECT
&&
5791 Slct
.getOpcode() != RISCVISD::SELECT_CC
) ||
5795 auto isZeroOrAllOnes
= [](SDValue N
, bool AllOnes
) {
5796 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
5800 unsigned OpOffset
= Slct
.getOpcode() == RISCVISD::SELECT_CC
? 2 : 0;
5801 SDValue TrueVal
= Slct
.getOperand(1 + OpOffset
);
5802 SDValue FalseVal
= Slct
.getOperand(2 + OpOffset
);
5803 SDValue NonConstantVal
;
5804 if (isZeroOrAllOnes(TrueVal
, AllOnes
)) {
5805 SwapSelectOps
= false;
5806 NonConstantVal
= FalseVal
;
5807 } else if (isZeroOrAllOnes(FalseVal
, AllOnes
)) {
5808 SwapSelectOps
= true;
5809 NonConstantVal
= TrueVal
;
5813 // Slct is now know to be the desired identity constant when CC is true.
5815 FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, OtherOp
, NonConstantVal
);
5816 // Unless SwapSelectOps says the condition should be false.
5818 std::swap(TrueVal
, FalseVal
);
5820 if (Slct
.getOpcode() == RISCVISD::SELECT_CC
)
5821 return DAG
.getNode(RISCVISD::SELECT_CC
, SDLoc(N
), VT
,
5822 {Slct
.getOperand(0), Slct
.getOperand(1),
5823 Slct
.getOperand(2), TrueVal
, FalseVal
});
5825 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
5826 {Slct
.getOperand(0), TrueVal
, FalseVal
});
5829 // Attempt combineSelectAndUse on each operand of a commutative operator N.
5830 static SDValue
combineSelectAndUseCommutative(SDNode
*N
, SelectionDAG
&DAG
,
5832 SDValue N0
= N
->getOperand(0);
5833 SDValue N1
= N
->getOperand(1);
5834 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DAG
, AllOnes
))
5836 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DAG
, AllOnes
))
5841 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
5842 // fold (add (select lhs, rhs, cc, 0, y), x) ->
5843 // (select lhs, rhs, cc, x, (add x, y))
5844 return combineSelectAndUseCommutative(N
, DAG
, /*AllOnes*/ false);
5847 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
) {
5848 // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
5849 // (select lhs, rhs, cc, x, (sub x, y))
5850 SDValue N0
= N
->getOperand(0);
5851 SDValue N1
= N
->getOperand(1);
5852 return combineSelectAndUse(N
, N1
, N0
, DAG
, /*AllOnes*/ false);
5855 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
5856 // fold (and (select lhs, rhs, cc, -1, y), x) ->
5857 // (select lhs, rhs, cc, x, (and x, y))
5858 return combineSelectAndUseCommutative(N
, DAG
, /*AllOnes*/ true);
5861 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
5862 const RISCVSubtarget
&Subtarget
) {
5863 if (Subtarget
.hasStdExtZbp()) {
5864 if (auto GREV
= combineORToGREV(SDValue(N
, 0), DAG
, Subtarget
))
5866 if (auto GORC
= combineORToGORC(SDValue(N
, 0), DAG
, Subtarget
))
5868 if (auto SHFL
= combineORToSHFL(SDValue(N
, 0), DAG
, Subtarget
))
5872 // fold (or (select cond, 0, y), x) ->
5873 // (select cond, x, (or x, y))
5874 return combineSelectAndUseCommutative(N
, DAG
, /*AllOnes*/ false);
5877 static SDValue
performXORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
5878 // fold (xor (select cond, 0, y), x) ->
5879 // (select cond, x, (xor x, y))
5880 return combineSelectAndUseCommutative(N
, DAG
, /*AllOnes*/ false);
5883 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
5884 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
5885 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
5886 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
5888 static SDValue
performANY_EXTENDCombine(SDNode
*N
,
5889 TargetLowering::DAGCombinerInfo
&DCI
,
5890 const RISCVSubtarget
&Subtarget
) {
5891 if (!Subtarget
.is64Bit())
5894 SelectionDAG
&DAG
= DCI
.DAG
;
5896 SDValue Src
= N
->getOperand(0);
5897 EVT VT
= N
->getValueType(0);
5898 if (VT
!= MVT::i64
|| Src
.getValueType() != MVT::i32
)
5901 // The opcode must be one that can implicitly sign_extend.
5902 // FIXME: Additional opcodes.
5903 switch (Src
.getOpcode()) {
5907 if (!Subtarget
.hasStdExtM())
5915 // Only handle cases where the result is used by a CopyToReg. That likely
5916 // means the value is a liveout of the basic block. This helps prevent
5917 // infinite combine loops like PR51206.
5918 if (none_of(N
->uses(),
5919 [](SDNode
*User
) { return User
->getOpcode() == ISD::CopyToReg
; }))
5922 SmallVector
<SDNode
*, 4> SetCCs
;
5923 for (SDNode::use_iterator UI
= Src
.getNode()->use_begin(),
5924 UE
= Src
.getNode()->use_end();
5929 if (UI
.getUse().getResNo() != Src
.getResNo())
5931 // All i32 setccs are legalized by sign extending operands.
5932 if (User
->getOpcode() == ISD::SETCC
) {
5933 SetCCs
.push_back(User
);
5936 // We don't know if we can extend this user.
5940 // If we don't have any SetCCs, this isn't worthwhile.
5945 SDValue SExt
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i64
, Src
);
5946 DCI
.CombineTo(N
, SExt
);
5948 // Promote all the setccs.
5949 for (SDNode
*SetCC
: SetCCs
) {
5950 SmallVector
<SDValue
, 4> Ops
;
5952 for (unsigned j
= 0; j
!= 2; ++j
) {
5953 SDValue SOp
= SetCC
->getOperand(j
);
5955 Ops
.push_back(SExt
);
5957 Ops
.push_back(DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i64
, SOp
));
5960 Ops
.push_back(SetCC
->getOperand(2));
5961 DCI
.CombineTo(SetCC
,
5962 DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
5964 return SDValue(N
, 0);
5967 SDValue
RISCVTargetLowering::PerformDAGCombine(SDNode
*N
,
5968 DAGCombinerInfo
&DCI
) const {
5969 SelectionDAG
&DAG
= DCI
.DAG
;
5971 // Helper to call SimplifyDemandedBits on an operand of N where only some low
5972 // bits are demanded. N will be added to the Worklist if it was not deleted.
5973 // Caller should return SDValue(N, 0) if this returns true.
5974 auto SimplifyDemandedLowBitsHelper
= [&](unsigned OpNo
, unsigned LowBits
) {
5975 SDValue Op
= N
->getOperand(OpNo
);
5976 APInt Mask
= APInt::getLowBitsSet(Op
.getValueSizeInBits(), LowBits
);
5977 if (!SimplifyDemandedBits(Op
, Mask
, DCI
))
5980 if (N
->getOpcode() != ISD::DELETED_NODE
)
5981 DCI
.AddToWorklist(N
);
5985 switch (N
->getOpcode()) {
5988 case RISCVISD::SplitF64
: {
5989 SDValue Op0
= N
->getOperand(0);
5990 // If the input to SplitF64 is just BuildPairF64 then the operation is
5991 // redundant. Instead, use BuildPairF64's operands directly.
5992 if (Op0
->getOpcode() == RISCVISD::BuildPairF64
)
5993 return DCI
.CombineTo(N
, Op0
.getOperand(0), Op0
.getOperand(1));
5997 // It's cheaper to materialise two 32-bit integers than to load a double
5998 // from the constant pool and transfer it to integer registers through the
6000 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op0
)) {
6001 APInt V
= C
->getValueAPF().bitcastToAPInt();
6002 SDValue Lo
= DAG
.getConstant(V
.trunc(32), DL
, MVT::i32
);
6003 SDValue Hi
= DAG
.getConstant(V
.lshr(32).trunc(32), DL
, MVT::i32
);
6004 return DCI
.CombineTo(N
, Lo
, Hi
);
6007 // This is a target-specific version of a DAGCombine performed in
6008 // DAGCombiner::visitBITCAST. It performs the equivalent of:
6009 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6010 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6011 if (!(Op0
.getOpcode() == ISD::FNEG
|| Op0
.getOpcode() == ISD::FABS
) ||
6012 !Op0
.getNode()->hasOneUse())
6014 SDValue NewSplitF64
=
6015 DAG
.getNode(RISCVISD::SplitF64
, DL
, DAG
.getVTList(MVT::i32
, MVT::i32
),
6017 SDValue Lo
= NewSplitF64
.getValue(0);
6018 SDValue Hi
= NewSplitF64
.getValue(1);
6019 APInt SignBit
= APInt::getSignMask(32);
6020 if (Op0
.getOpcode() == ISD::FNEG
) {
6021 SDValue NewHi
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Hi
,
6022 DAG
.getConstant(SignBit
, DL
, MVT::i32
));
6023 return DCI
.CombineTo(N
, Lo
, NewHi
);
6025 assert(Op0
.getOpcode() == ISD::FABS
);
6026 SDValue NewHi
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Hi
,
6027 DAG
.getConstant(~SignBit
, DL
, MVT::i32
));
6028 return DCI
.CombineTo(N
, Lo
, NewHi
);
6030 case RISCVISD::SLLW
:
6031 case RISCVISD::SRAW
:
6032 case RISCVISD::SRLW
:
6033 case RISCVISD::ROLW
:
6034 case RISCVISD::RORW
: {
6035 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6036 if (SimplifyDemandedLowBitsHelper(0, 32) ||
6037 SimplifyDemandedLowBitsHelper(1, 5))
6038 return SDValue(N
, 0);
6041 case RISCVISD::CLZW
:
6042 case RISCVISD::CTZW
: {
6043 // Only the lower 32 bits of the first operand are read
6044 if (SimplifyDemandedLowBitsHelper(0, 32))
6045 return SDValue(N
, 0);
6049 case RISCVISD::FSR
: {
6050 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6051 unsigned BitWidth
= N
->getOperand(2).getValueSizeInBits();
6052 assert(isPowerOf2_32(BitWidth
) && "Unexpected bit width");
6053 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth
) + 1))
6054 return SDValue(N
, 0);
6057 case RISCVISD::FSLW
:
6058 case RISCVISD::FSRW
: {
6059 // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6061 if (SimplifyDemandedLowBitsHelper(0, 32) ||
6062 SimplifyDemandedLowBitsHelper(1, 32) ||
6063 SimplifyDemandedLowBitsHelper(2, 6))
6064 return SDValue(N
, 0);
6067 case RISCVISD::GREV
:
6068 case RISCVISD::GORC
: {
6069 // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6070 unsigned BitWidth
= N
->getOperand(1).getValueSizeInBits();
6071 assert(isPowerOf2_32(BitWidth
) && "Unexpected bit width");
6072 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth
)))
6073 return SDValue(N
, 0);
6075 return combineGREVI_GORCI(N
, DCI
.DAG
);
6077 case RISCVISD::GREVW
:
6078 case RISCVISD::GORCW
: {
6079 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6080 if (SimplifyDemandedLowBitsHelper(0, 32) ||
6081 SimplifyDemandedLowBitsHelper(1, 5))
6082 return SDValue(N
, 0);
6084 return combineGREVI_GORCI(N
, DCI
.DAG
);
6086 case RISCVISD::SHFL
:
6087 case RISCVISD::UNSHFL
: {
6088 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6089 unsigned BitWidth
= N
->getOperand(1).getValueSizeInBits();
6090 assert(isPowerOf2_32(BitWidth
) && "Unexpected bit width");
6091 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth
) - 1))
6092 return SDValue(N
, 0);
6096 case RISCVISD::SHFLW
:
6097 case RISCVISD::UNSHFLW
: {
6098 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6099 SDValue LHS
= N
->getOperand(0);
6100 SDValue RHS
= N
->getOperand(1);
6101 APInt LHSMask
= APInt::getLowBitsSet(LHS
.getValueSizeInBits(), 32);
6102 APInt RHSMask
= APInt::getLowBitsSet(RHS
.getValueSizeInBits(), 4);
6103 if (SimplifyDemandedLowBitsHelper(0, 32) ||
6104 SimplifyDemandedLowBitsHelper(1, 4))
6105 return SDValue(N
, 0);
6109 case RISCVISD::BCOMPRESSW
:
6110 case RISCVISD::BDECOMPRESSW
: {
6111 // Only the lower 32 bits of LHS and RHS are read.
6112 if (SimplifyDemandedLowBitsHelper(0, 32) ||
6113 SimplifyDemandedLowBitsHelper(1, 32))
6114 return SDValue(N
, 0);
6118 case RISCVISD::FMV_X_ANYEXTH
:
6119 case RISCVISD::FMV_X_ANYEXTW_RV64
: {
6121 SDValue Op0
= N
->getOperand(0);
6122 MVT VT
= N
->getSimpleValueType(0);
6123 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6124 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6125 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6126 if ((N
->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64
&&
6127 Op0
->getOpcode() == RISCVISD::FMV_W_X_RV64
) ||
6128 (N
->getOpcode() == RISCVISD::FMV_X_ANYEXTH
&&
6129 Op0
->getOpcode() == RISCVISD::FMV_H_X
)) {
6130 assert(Op0
.getOperand(0).getValueType() == VT
&&
6131 "Unexpected value type!");
6132 return Op0
.getOperand(0);
6135 // This is a target-specific version of a DAGCombine performed in
6136 // DAGCombiner::visitBITCAST. It performs the equivalent of:
6137 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6138 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6139 if (!(Op0
.getOpcode() == ISD::FNEG
|| Op0
.getOpcode() == ISD::FABS
) ||
6140 !Op0
.getNode()->hasOneUse())
6142 SDValue NewFMV
= DAG
.getNode(N
->getOpcode(), DL
, VT
, Op0
.getOperand(0));
6143 unsigned FPBits
= N
->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64
? 32 : 16;
6144 APInt SignBit
= APInt::getSignMask(FPBits
).sextOrSelf(VT
.getSizeInBits());
6145 if (Op0
.getOpcode() == ISD::FNEG
)
6146 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewFMV
,
6147 DAG
.getConstant(SignBit
, DL
, VT
));
6149 assert(Op0
.getOpcode() == ISD::FABS
);
6150 return DAG
.getNode(ISD::AND
, DL
, VT
, NewFMV
,
6151 DAG
.getConstant(~SignBit
, DL
, VT
));
6154 return performADDCombine(N
, DAG
);
6156 return performSUBCombine(N
, DAG
);
6158 return performANDCombine(N
, DAG
);
6160 return performORCombine(N
, DAG
, Subtarget
);
6162 return performXORCombine(N
, DAG
);
6163 case ISD::ANY_EXTEND
:
6164 return performANY_EXTENDCombine(N
, DCI
, Subtarget
);
6165 case ISD::ZERO_EXTEND
:
6166 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6167 // type legalization. This is safe because fp_to_uint produces poison if
6169 if (N
->getValueType(0) == MVT::i64
&& Subtarget
.is64Bit() &&
6170 N
->getOperand(0).getOpcode() == ISD::FP_TO_UINT
&&
6171 isTypeLegal(N
->getOperand(0).getOperand(0).getValueType()))
6172 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), MVT::i64
,
6173 N
->getOperand(0).getOperand(0));
6175 case RISCVISD::SELECT_CC
: {
6177 SDValue LHS
= N
->getOperand(0);
6178 SDValue RHS
= N
->getOperand(1);
6179 ISD::CondCode CCVal
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
6180 if (!ISD::isIntEqualitySetCC(CCVal
))
6183 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6184 // (select_cc X, Y, lt, trueV, falseV)
6185 // Sometimes the setcc is introduced after select_cc has been formed.
6186 if (LHS
.getOpcode() == ISD::SETCC
&& isNullConstant(RHS
) &&
6187 LHS
.getOperand(0).getValueType() == Subtarget
.getXLenVT()) {
6188 // If we're looking for eq 0 instead of ne 0, we need to invert the
6190 bool Invert
= CCVal
== ISD::SETEQ
;
6191 CCVal
= cast
<CondCodeSDNode
>(LHS
.getOperand(2))->get();
6193 CCVal
= ISD::getSetCCInverse(CCVal
, LHS
.getValueType());
6196 RHS
= LHS
.getOperand(1);
6197 LHS
= LHS
.getOperand(0);
6198 translateSetCCForBranch(DL
, LHS
, RHS
, CCVal
, DAG
);
6200 SDValue TargetCC
= DAG
.getCondCode(CCVal
);
6202 RISCVISD::SELECT_CC
, DL
, N
->getValueType(0),
6203 {LHS
, RHS
, TargetCC
, N
->getOperand(3), N
->getOperand(4)});
6206 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6207 // (select_cc X, Y, eq/ne, trueV, falseV)
6208 if (LHS
.getOpcode() == ISD::XOR
&& isNullConstant(RHS
))
6209 return DAG
.getNode(RISCVISD::SELECT_CC
, SDLoc(N
), N
->getValueType(0),
6210 {LHS
.getOperand(0), LHS
.getOperand(1),
6211 N
->getOperand(2), N
->getOperand(3),
6213 // (select_cc X, 1, setne, trueV, falseV) ->
6214 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6215 // This can occur when legalizing some floating point comparisons.
6216 APInt Mask
= APInt::getBitsSetFrom(LHS
.getValueSizeInBits(), 1);
6217 if (isOneConstant(RHS
) && DAG
.MaskedValueIsZero(LHS
, Mask
)) {
6219 CCVal
= ISD::getSetCCInverse(CCVal
, LHS
.getValueType());
6220 SDValue TargetCC
= DAG
.getCondCode(CCVal
);
6221 RHS
= DAG
.getConstant(0, DL
, LHS
.getValueType());
6223 RISCVISD::SELECT_CC
, DL
, N
->getValueType(0),
6224 {LHS
, RHS
, TargetCC
, N
->getOperand(3), N
->getOperand(4)});
6229 case RISCVISD::BR_CC
: {
6230 SDValue LHS
= N
->getOperand(1);
6231 SDValue RHS
= N
->getOperand(2);
6232 ISD::CondCode CCVal
= cast
<CondCodeSDNode
>(N
->getOperand(3))->get();
6233 if (!ISD::isIntEqualitySetCC(CCVal
))
6236 // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
6237 // (br_cc X, Y, lt, dest)
6238 // Sometimes the setcc is introduced after br_cc has been formed.
6239 if (LHS
.getOpcode() == ISD::SETCC
&& isNullConstant(RHS
) &&
6240 LHS
.getOperand(0).getValueType() == Subtarget
.getXLenVT()) {
6241 // If we're looking for eq 0 instead of ne 0, we need to invert the
6243 bool Invert
= CCVal
== ISD::SETEQ
;
6244 CCVal
= cast
<CondCodeSDNode
>(LHS
.getOperand(2))->get();
6246 CCVal
= ISD::getSetCCInverse(CCVal
, LHS
.getValueType());
6249 RHS
= LHS
.getOperand(1);
6250 LHS
= LHS
.getOperand(0);
6251 translateSetCCForBranch(DL
, LHS
, RHS
, CCVal
, DAG
);
6253 return DAG
.getNode(RISCVISD::BR_CC
, DL
, N
->getValueType(0),
6254 N
->getOperand(0), LHS
, RHS
, DAG
.getCondCode(CCVal
),
6258 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
6259 // (br_cc X, Y, eq/ne, trueV, falseV)
6260 if (LHS
.getOpcode() == ISD::XOR
&& isNullConstant(RHS
))
6261 return DAG
.getNode(RISCVISD::BR_CC
, SDLoc(N
), N
->getValueType(0),
6262 N
->getOperand(0), LHS
.getOperand(0), LHS
.getOperand(1),
6263 N
->getOperand(3), N
->getOperand(4));
6265 // (br_cc X, 1, setne, br_cc) ->
6266 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
6267 // This can occur when legalizing some floating point comparisons.
6268 APInt Mask
= APInt::getBitsSetFrom(LHS
.getValueSizeInBits(), 1);
6269 if (isOneConstant(RHS
) && DAG
.MaskedValueIsZero(LHS
, Mask
)) {
6271 CCVal
= ISD::getSetCCInverse(CCVal
, LHS
.getValueType());
6272 SDValue TargetCC
= DAG
.getCondCode(CCVal
);
6273 RHS
= DAG
.getConstant(0, DL
, LHS
.getValueType());
6274 return DAG
.getNode(RISCVISD::BR_CC
, DL
, N
->getValueType(0),
6275 N
->getOperand(0), LHS
, RHS
, TargetCC
,
6280 case ISD::FCOPYSIGN
: {
6281 EVT VT
= N
->getValueType(0);
6284 // There is a form of VFSGNJ which injects the negated sign of its second
6285 // operand. Try and bubble any FNEG up after the extend/round to produce
6286 // this optimized pattern. Avoid modifying cases where FP_ROUND and
6288 SDValue In2
= N
->getOperand(1);
6289 // Avoid cases where the extend/round has multiple uses, as duplicating
6290 // those is typically more expensive than removing a fneg.
6291 if (!In2
.hasOneUse())
6293 if (In2
.getOpcode() != ISD::FP_EXTEND
&&
6294 (In2
.getOpcode() != ISD::FP_ROUND
|| In2
.getConstantOperandVal(1) != 0))
6296 In2
= In2
.getOperand(0);
6297 if (In2
.getOpcode() != ISD::FNEG
)
6300 SDValue NewFPExtRound
= DAG
.getFPExtendOrRound(In2
.getOperand(0), DL
, VT
);
6301 return DAG
.getNode(ISD::FCOPYSIGN
, DL
, VT
, N
->getOperand(0),
6302 DAG
.getNode(ISD::FNEG
, DL
, VT
, NewFPExtRound
));
6305 case ISD::MSCATTER
: {
6306 if (!DCI
.isBeforeLegalize())
6308 MaskedGatherScatterSDNode
*MGSN
= cast
<MaskedGatherScatterSDNode
>(N
);
6309 SDValue Index
= MGSN
->getIndex();
6310 EVT IndexVT
= Index
.getValueType();
6311 MVT XLenVT
= Subtarget
.getXLenVT();
6312 // RISCV indexed loads only support the "unsigned unscaled" addressing
6313 // mode, so anything else must be manually legalized.
6314 bool NeedsIdxLegalization
= MGSN
->isIndexScaled() ||
6315 (MGSN
->isIndexSigned() &&
6316 IndexVT
.getVectorElementType().bitsLT(XLenVT
));
6317 if (!NeedsIdxLegalization
)
6322 // Any index legalization should first promote to XLenVT, so we don't lose
6323 // bits when scaling. This may create an illegal index type so we let
6324 // LLVM's legalization take care of the splitting.
6325 if (IndexVT
.getVectorElementType().bitsLT(XLenVT
)) {
6326 IndexVT
= IndexVT
.changeVectorElementType(XLenVT
);
6327 Index
= DAG
.getNode(MGSN
->isIndexSigned() ? ISD::SIGN_EXTEND
6329 DL
, IndexVT
, Index
);
6332 unsigned Scale
= N
->getConstantOperandVal(5);
6333 if (MGSN
->isIndexScaled() && Scale
!= 1) {
6334 // Manually scale the indices by the element size.
6335 // TODO: Sanitize the scale operand here?
6336 assert(isPowerOf2_32(Scale
) && "Expecting power-of-two types");
6337 SDValue SplatScale
= DAG
.getConstant(Log2_32(Scale
), DL
, IndexVT
);
6338 Index
= DAG
.getNode(ISD::SHL
, DL
, IndexVT
, Index
, SplatScale
);
6341 ISD::MemIndexType NewIndexTy
= ISD::UNSIGNED_UNSCALED
;
6342 if (const auto *MGN
= dyn_cast
<MaskedGatherSDNode
>(N
)) {
6343 return DAG
.getMaskedGather(
6344 N
->getVTList(), MGSN
->getMemoryVT(), DL
,
6345 {MGSN
->getChain(), MGN
->getPassThru(), MGSN
->getMask(),
6346 MGSN
->getBasePtr(), Index
, MGN
->getScale()},
6347 MGN
->getMemOperand(), NewIndexTy
, MGN
->getExtensionType());
6349 const auto *MSN
= cast
<MaskedScatterSDNode
>(N
);
6350 return DAG
.getMaskedScatter(
6351 N
->getVTList(), MGSN
->getMemoryVT(), DL
,
6352 {MGSN
->getChain(), MSN
->getValue(), MGSN
->getMask(), MGSN
->getBasePtr(),
6353 Index
, MGSN
->getScale()},
6354 MGSN
->getMemOperand(), NewIndexTy
, MSN
->isTruncatingStore());
6356 case RISCVISD::SRA_VL
:
6357 case RISCVISD::SRL_VL
:
6358 case RISCVISD::SHL_VL
: {
6359 SDValue ShAmt
= N
->getOperand(1);
6360 if (ShAmt
.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL
) {
6361 // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6363 SDValue VL
= N
->getOperand(3);
6364 EVT VT
= N
->getValueType(0);
6366 DAG
.getNode(RISCVISD::VMV_V_X_VL
, DL
, VT
, ShAmt
.getOperand(0), VL
);
6367 return DAG
.getNode(N
->getOpcode(), DL
, VT
, N
->getOperand(0), ShAmt
,
6368 N
->getOperand(2), N
->getOperand(3));
6375 SDValue ShAmt
= N
->getOperand(1);
6376 if (ShAmt
.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL
) {
6377 // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6379 EVT VT
= N
->getValueType(0);
6381 DAG
.getNode(RISCVISD::SPLAT_VECTOR_I64
, DL
, VT
, ShAmt
.getOperand(0));
6382 return DAG
.getNode(N
->getOpcode(), DL
, VT
, N
->getOperand(0), ShAmt
);
6386 case RISCVISD::MUL_VL
: {
6387 // Try to form VWMUL or VWMULU.
6388 // FIXME: Look for splat of extended scalar as well.
6389 // FIXME: Support VWMULSU.
6390 SDValue Op0
= N
->getOperand(0);
6391 SDValue Op1
= N
->getOperand(1);
6392 bool IsSignExt
= Op0
.getOpcode() == RISCVISD::VSEXT_VL
;
6393 bool IsZeroExt
= Op0
.getOpcode() == RISCVISD::VZEXT_VL
;
6394 if ((!IsSignExt
&& !IsZeroExt
) || Op0
.getOpcode() != Op1
.getOpcode())
6397 // Make sure the extends have a single use.
6398 if (!Op0
.hasOneUse() || !Op1
.hasOneUse())
6401 SDValue Mask
= N
->getOperand(2);
6402 SDValue VL
= N
->getOperand(3);
6403 if (Op0
.getOperand(1) != Mask
|| Op1
.getOperand(1) != Mask
||
6404 Op0
.getOperand(2) != VL
|| Op1
.getOperand(2) != VL
)
6407 Op0
= Op0
.getOperand(0);
6408 Op1
= Op1
.getOperand(0);
6410 MVT VT
= N
->getSimpleValueType(0);
6412 MVT::getVectorVT(MVT::getIntegerVT(VT
.getScalarSizeInBits() / 2),
6413 VT
.getVectorElementCount());
6417 // Re-introduce narrower extends if needed.
6418 unsigned ExtOpc
= IsSignExt
? RISCVISD::VSEXT_VL
: RISCVISD::VZEXT_VL
;
6419 if (Op0
.getValueType() != NarrowVT
)
6420 Op0
= DAG
.getNode(ExtOpc
, DL
, NarrowVT
, Op0
, Mask
, VL
);
6421 if (Op1
.getValueType() != NarrowVT
)
6422 Op1
= DAG
.getNode(ExtOpc
, DL
, NarrowVT
, Op1
, Mask
, VL
);
6424 unsigned WMulOpc
= IsSignExt
? RISCVISD::VWMUL_VL
: RISCVISD::VWMULU_VL
;
6425 return DAG
.getNode(WMulOpc
, DL
, VT
, Op0
, Op1
, Mask
, VL
);
6432 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
6433 const SDNode
*N
, CombineLevel Level
) const {
6434 // The following folds are only desirable if `(OP _, c1 << c2)` can be
6435 // materialised in fewer instructions than `(OP _, c1)`:
6437 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
6438 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
6439 SDValue N0
= N
->getOperand(0);
6440 EVT Ty
= N0
.getValueType();
6441 if (Ty
.isScalarInteger() &&
6442 (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
)) {
6443 auto *C1
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
6444 auto *C2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
6446 const APInt
&C1Int
= C1
->getAPIntValue();
6447 APInt ShiftedC1Int
= C1Int
<< C2
->getAPIntValue();
6449 // We can materialise `c1 << c2` into an add immediate, so it's "free",
6450 // and the combine should happen, to potentially allow further combines
6452 if (ShiftedC1Int
.getMinSignedBits() <= 64 &&
6453 isLegalAddImmediate(ShiftedC1Int
.getSExtValue()))
6456 // We can materialise `c1` in an add immediate, so it's "free", and the
6457 // combine should be prevented.
6458 if (C1Int
.getMinSignedBits() <= 64 &&
6459 isLegalAddImmediate(C1Int
.getSExtValue()))
6462 // Neither constant will fit into an immediate, so find materialisation
6464 int C1Cost
= RISCVMatInt::getIntMatCost(C1Int
, Ty
.getSizeInBits(),
6465 Subtarget
.getFeatureBits(),
6466 /*CompressionCost*/true);
6467 int ShiftedC1Cost
= RISCVMatInt::getIntMatCost(
6468 ShiftedC1Int
, Ty
.getSizeInBits(), Subtarget
.getFeatureBits(),
6469 /*CompressionCost*/true);
6471 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
6472 // combine should be prevented.
6473 if (C1Cost
< ShiftedC1Cost
)
6480 bool RISCVTargetLowering::targetShrinkDemandedConstant(
6481 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
6482 TargetLoweringOpt
&TLO
) const {
6483 // Delay this optimization as late as possible.
6487 EVT VT
= Op
.getValueType();
6491 // Only handle AND for now.
6492 if (Op
.getOpcode() != ISD::AND
)
6495 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
6499 const APInt
&Mask
= C
->getAPIntValue();
6501 // Clear all non-demanded bits initially.
6502 APInt ShrunkMask
= Mask
& DemandedBits
;
6504 // Try to make a smaller immediate by setting undemanded bits.
6506 APInt ExpandedMask
= Mask
| ~DemandedBits
;
6508 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](const APInt
&Mask
) -> bool {
6509 return ShrunkMask
.isSubsetOf(Mask
) && Mask
.isSubsetOf(ExpandedMask
);
6511 auto UseMask
= [Mask
, Op
, VT
, &TLO
](const APInt
&NewMask
) -> bool {
6512 if (NewMask
== Mask
)
6515 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
6516 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
6517 return TLO
.CombineTo(Op
, NewOp
);
6520 // If the shrunk mask fits in sign extended 12 bits, let the target
6521 // independent code apply it.
6522 if (ShrunkMask
.isSignedIntN(12))
6525 // Preserve (and X, 0xffff) when zext.h is supported.
6526 if (Subtarget
.hasStdExtZbb() || Subtarget
.hasStdExtZbp()) {
6527 APInt NewMask
= APInt(Mask
.getBitWidth(), 0xffff);
6528 if (IsLegalMask(NewMask
))
6529 return UseMask(NewMask
);
6532 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6533 if (VT
== MVT::i64
) {
6534 APInt NewMask
= APInt(64, 0xffffffff);
6535 if (IsLegalMask(NewMask
))
6536 return UseMask(NewMask
);
6539 // For the remaining optimizations, we need to be able to make a negative
6540 // number through a combination of mask and undemanded bits.
6541 if (!ExpandedMask
.isNegative())
6544 // What is the fewest number of bits we need to represent the negative number.
6545 unsigned MinSignedBits
= ExpandedMask
.getMinSignedBits();
6547 // Try to make a 12 bit negative immediate. If that fails try to make a 32
6548 // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6549 APInt NewMask
= ShrunkMask
;
6550 if (MinSignedBits
<= 12)
6551 NewMask
.setBitsFrom(11);
6552 else if (MinSignedBits
<= 32 && !ShrunkMask
.isSignedIntN(32))
6553 NewMask
.setBitsFrom(31);
6557 // Sanity check that our new mask is a subset of the demanded mask.
6558 assert(IsLegalMask(NewMask
));
6559 return UseMask(NewMask
);
6562 static void computeGREV(APInt
&Src
, unsigned ShAmt
) {
6563 ShAmt
&= Src
.getBitWidth() - 1;
6564 uint64_t x
= Src
.getZExtValue();
6566 x
= ((x
& 0x5555555555555555LL
) << 1) | ((x
& 0xAAAAAAAAAAAAAAAALL
) >> 1);
6568 x
= ((x
& 0x3333333333333333LL
) << 2) | ((x
& 0xCCCCCCCCCCCCCCCCLL
) >> 2);
6570 x
= ((x
& 0x0F0F0F0F0F0F0F0FLL
) << 4) | ((x
& 0xF0F0F0F0F0F0F0F0LL
) >> 4);
6572 x
= ((x
& 0x00FF00FF00FF00FFLL
) << 8) | ((x
& 0xFF00FF00FF00FF00LL
) >> 8);
6574 x
= ((x
& 0x0000FFFF0000FFFFLL
) << 16) | ((x
& 0xFFFF0000FFFF0000LL
) >> 16);
6576 x
= ((x
& 0x00000000FFFFFFFFLL
) << 32) | ((x
& 0xFFFFFFFF00000000LL
) >> 32);
6580 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
6582 const APInt
&DemandedElts
,
6583 const SelectionDAG
&DAG
,
6584 unsigned Depth
) const {
6585 unsigned BitWidth
= Known
.getBitWidth();
6586 unsigned Opc
= Op
.getOpcode();
6587 assert((Opc
>= ISD::BUILTIN_OP_END
||
6588 Opc
== ISD::INTRINSIC_WO_CHAIN
||
6589 Opc
== ISD::INTRINSIC_W_CHAIN
||
6590 Opc
== ISD::INTRINSIC_VOID
) &&
6591 "Should use MaskedValueIsZero if you don't know whether Op"
6592 " is a target node!");
6597 case RISCVISD::SELECT_CC
: {
6598 Known
= DAG
.computeKnownBits(Op
.getOperand(4), Depth
+ 1);
6599 // If we don't know any bits, early out.
6600 if (Known
.isUnknown())
6602 KnownBits Known2
= DAG
.computeKnownBits(Op
.getOperand(3), Depth
+ 1);
6604 // Only known if known in both the LHS and RHS.
6605 Known
= KnownBits::commonBits(Known
, Known2
);
6608 case RISCVISD::REMUW
: {
6610 Known
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
6611 Known2
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
6612 // We only care about the lower 32 bits.
6613 Known
= KnownBits::urem(Known
.trunc(32), Known2
.trunc(32));
6614 // Restore the original width by sign extending.
6615 Known
= Known
.sext(BitWidth
);
6618 case RISCVISD::DIVUW
: {
6620 Known
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
6621 Known2
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
6622 // We only care about the lower 32 bits.
6623 Known
= KnownBits::udiv(Known
.trunc(32), Known2
.trunc(32));
6624 // Restore the original width by sign extending.
6625 Known
= Known
.sext(BitWidth
);
6628 case RISCVISD::CTZW
: {
6629 KnownBits Known2
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
6630 unsigned PossibleTZ
= Known2
.trunc(32).countMaxTrailingZeros();
6631 unsigned LowBits
= Log2_32(PossibleTZ
) + 1;
6632 Known
.Zero
.setBitsFrom(LowBits
);
6635 case RISCVISD::CLZW
: {
6636 KnownBits Known2
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
6637 unsigned PossibleLZ
= Known2
.trunc(32).countMaxLeadingZeros();
6638 unsigned LowBits
= Log2_32(PossibleLZ
) + 1;
6639 Known
.Zero
.setBitsFrom(LowBits
);
6642 case RISCVISD::GREV
:
6643 case RISCVISD::GREVW
: {
6644 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
6645 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
6646 if (Opc
== RISCVISD::GREVW
)
6647 Known
= Known
.trunc(32);
6648 unsigned ShAmt
= C
->getZExtValue();
6649 computeGREV(Known
.Zero
, ShAmt
);
6650 computeGREV(Known
.One
, ShAmt
);
6651 if (Opc
== RISCVISD::GREVW
)
6652 Known
= Known
.sext(BitWidth
);
6656 case RISCVISD::READ_VLENB
:
6657 // We assume VLENB is at least 16 bytes.
6658 Known
.Zero
.setLowBits(4);
6659 // We assume VLENB is no more than 65536 / 8 bytes.
6660 Known
.Zero
.setBitsFrom(14);
6662 case ISD::INTRINSIC_W_CHAIN
: {
6663 unsigned IntNo
= Op
.getConstantOperandVal(1);
6666 // We can't do anything for most intrinsics.
6668 case Intrinsic::riscv_vsetvli
:
6669 case Intrinsic::riscv_vsetvlimax
:
6670 // Assume that VL output is positive and would fit in an int32_t.
6671 // TODO: VLEN might be capped at 16 bits in a future V spec update.
6673 Known
.Zero
.setBitsFrom(31);
6681 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6682 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
6683 unsigned Depth
) const {
6684 switch (Op
.getOpcode()) {
6687 case RISCVISD::SELECT_CC
: {
6688 unsigned Tmp
= DAG
.ComputeNumSignBits(Op
.getOperand(3), DemandedElts
, Depth
+ 1);
6689 if (Tmp
== 1) return 1; // Early out.
6690 unsigned Tmp2
= DAG
.ComputeNumSignBits(Op
.getOperand(4), DemandedElts
, Depth
+ 1);
6691 return std::min(Tmp
, Tmp2
);
6693 case RISCVISD::SLLW
:
6694 case RISCVISD::SRAW
:
6695 case RISCVISD::SRLW
:
6696 case RISCVISD::DIVW
:
6697 case RISCVISD::DIVUW
:
6698 case RISCVISD::REMUW
:
6699 case RISCVISD::ROLW
:
6700 case RISCVISD::RORW
:
6701 case RISCVISD::GREVW
:
6702 case RISCVISD::GORCW
:
6703 case RISCVISD::FSLW
:
6704 case RISCVISD::FSRW
:
6705 case RISCVISD::SHFLW
:
6706 case RISCVISD::UNSHFLW
:
6707 case RISCVISD::BCOMPRESSW
:
6708 case RISCVISD::BDECOMPRESSW
:
6709 case RISCVISD::FCVT_W_RTZ_RV64
:
6710 case RISCVISD::FCVT_WU_RTZ_RV64
:
6711 // TODO: As the result is sign-extended, this is conservatively correct. A
6712 // more precise answer could be calculated for SRAW depending on known
6713 // bits in the shift amount.
6715 case RISCVISD::SHFL
:
6716 case RISCVISD::UNSHFL
: {
6717 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6718 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6719 // will stay within the upper 32 bits. If there were more than 32 sign bits
6720 // before there will be at least 33 sign bits after.
6721 if (Op
.getValueType() == MVT::i64
&&
6722 isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
6723 (Op
.getConstantOperandVal(1) & 0x10) == 0) {
6724 unsigned Tmp
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
6730 case RISCVISD::VMV_X_S
:
6731 // The number of sign bits of the scalar result is computed by obtaining the
6732 // element type of the input vector operand, subtracting its width from the
6733 // XLEN, and then adding one (sign bit within the element type). If the
6734 // element type is wider than XLen, the least-significant XLEN bits are
6736 if (Op
.getOperand(0).getScalarValueSizeInBits() > Subtarget
.getXLen())
6738 return Subtarget
.getXLen() - Op
.getOperand(0).getScalarValueSizeInBits() + 1;
6744 static MachineBasicBlock
*emitReadCycleWidePseudo(MachineInstr
&MI
,
6745 MachineBasicBlock
*BB
) {
6746 assert(MI
.getOpcode() == RISCV::ReadCycleWide
&& "Unexpected instruction");
6748 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6749 // Should the count have wrapped while it was being read, we need to try
6753 // rdcycleh x3 # load high word of cycle
6754 // rdcycle x2 # load low word of cycle
6755 // rdcycleh x4 # load high word of cycle
6756 // bne x3, x4, read # check if high word reads match, otherwise try again
6759 MachineFunction
&MF
= *BB
->getParent();
6760 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
6761 MachineFunction::iterator It
= ++BB
->getIterator();
6763 MachineBasicBlock
*LoopMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
6764 MF
.insert(It
, LoopMBB
);
6766 MachineBasicBlock
*DoneMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
6767 MF
.insert(It
, DoneMBB
);
6769 // Transfer the remainder of BB and its successor edges to DoneMBB.
6770 DoneMBB
->splice(DoneMBB
->begin(), BB
,
6771 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
6772 DoneMBB
->transferSuccessorsAndUpdatePHIs(BB
);
6774 BB
->addSuccessor(LoopMBB
);
6776 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
6777 Register ReadAgainReg
= RegInfo
.createVirtualRegister(&RISCV::GPRRegClass
);
6778 Register LoReg
= MI
.getOperand(0).getReg();
6779 Register HiReg
= MI
.getOperand(1).getReg();
6780 DebugLoc DL
= MI
.getDebugLoc();
6782 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
6783 BuildMI(LoopMBB
, DL
, TII
->get(RISCV::CSRRS
), HiReg
)
6784 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding
)
6786 BuildMI(LoopMBB
, DL
, TII
->get(RISCV::CSRRS
), LoReg
)
6787 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding
)
6789 BuildMI(LoopMBB
, DL
, TII
->get(RISCV::CSRRS
), ReadAgainReg
)
6790 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding
)
6793 BuildMI(LoopMBB
, DL
, TII
->get(RISCV::BNE
))
6795 .addReg(ReadAgainReg
)
6798 LoopMBB
->addSuccessor(LoopMBB
);
6799 LoopMBB
->addSuccessor(DoneMBB
);
6801 MI
.eraseFromParent();
6806 static MachineBasicBlock
*emitSplitF64Pseudo(MachineInstr
&MI
,
6807 MachineBasicBlock
*BB
) {
6808 assert(MI
.getOpcode() == RISCV::SplitF64Pseudo
&& "Unexpected instruction");
6810 MachineFunction
&MF
= *BB
->getParent();
6811 DebugLoc DL
= MI
.getDebugLoc();
6812 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
6813 const TargetRegisterInfo
*RI
= MF
.getSubtarget().getRegisterInfo();
6814 Register LoReg
= MI
.getOperand(0).getReg();
6815 Register HiReg
= MI
.getOperand(1).getReg();
6816 Register SrcReg
= MI
.getOperand(2).getReg();
6817 const TargetRegisterClass
*SrcRC
= &RISCV::FPR64RegClass
;
6818 int FI
= MF
.getInfo
<RISCVMachineFunctionInfo
>()->getMoveF64FrameIndex(MF
);
6820 TII
.storeRegToStackSlot(*BB
, MI
, SrcReg
, MI
.getOperand(2).isKill(), FI
, SrcRC
,
6822 MachinePointerInfo MPI
= MachinePointerInfo::getFixedStack(MF
, FI
);
6823 MachineMemOperand
*MMOLo
=
6824 MF
.getMachineMemOperand(MPI
, MachineMemOperand::MOLoad
, 4, Align(8));
6825 MachineMemOperand
*MMOHi
= MF
.getMachineMemOperand(
6826 MPI
.getWithOffset(4), MachineMemOperand::MOLoad
, 4, Align(8));
6827 BuildMI(*BB
, MI
, DL
, TII
.get(RISCV::LW
), LoReg
)
6830 .addMemOperand(MMOLo
);
6831 BuildMI(*BB
, MI
, DL
, TII
.get(RISCV::LW
), HiReg
)
6834 .addMemOperand(MMOHi
);
6835 MI
.eraseFromParent(); // The pseudo instruction is gone now.
6839 static MachineBasicBlock
*emitBuildPairF64Pseudo(MachineInstr
&MI
,
6840 MachineBasicBlock
*BB
) {
6841 assert(MI
.getOpcode() == RISCV::BuildPairF64Pseudo
&&
6842 "Unexpected instruction");
6844 MachineFunction
&MF
= *BB
->getParent();
6845 DebugLoc DL
= MI
.getDebugLoc();
6846 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
6847 const TargetRegisterInfo
*RI
= MF
.getSubtarget().getRegisterInfo();
6848 Register DstReg
= MI
.getOperand(0).getReg();
6849 Register LoReg
= MI
.getOperand(1).getReg();
6850 Register HiReg
= MI
.getOperand(2).getReg();
6851 const TargetRegisterClass
*DstRC
= &RISCV::FPR64RegClass
;
6852 int FI
= MF
.getInfo
<RISCVMachineFunctionInfo
>()->getMoveF64FrameIndex(MF
);
6854 MachinePointerInfo MPI
= MachinePointerInfo::getFixedStack(MF
, FI
);
6855 MachineMemOperand
*MMOLo
=
6856 MF
.getMachineMemOperand(MPI
, MachineMemOperand::MOStore
, 4, Align(8));
6857 MachineMemOperand
*MMOHi
= MF
.getMachineMemOperand(
6858 MPI
.getWithOffset(4), MachineMemOperand::MOStore
, 4, Align(8));
6859 BuildMI(*BB
, MI
, DL
, TII
.get(RISCV::SW
))
6860 .addReg(LoReg
, getKillRegState(MI
.getOperand(1).isKill()))
6863 .addMemOperand(MMOLo
);
6864 BuildMI(*BB
, MI
, DL
, TII
.get(RISCV::SW
))
6865 .addReg(HiReg
, getKillRegState(MI
.getOperand(2).isKill()))
6868 .addMemOperand(MMOHi
);
6869 TII
.loadRegFromStackSlot(*BB
, MI
, DstReg
, FI
, DstRC
, RI
);
6870 MI
.eraseFromParent(); // The pseudo instruction is gone now.
6874 static bool isSelectPseudo(MachineInstr
&MI
) {
6875 switch (MI
.getOpcode()) {
6878 case RISCV::Select_GPR_Using_CC_GPR
:
6879 case RISCV::Select_FPR16_Using_CC_GPR
:
6880 case RISCV::Select_FPR32_Using_CC_GPR
:
6881 case RISCV::Select_FPR64_Using_CC_GPR
:
6886 static MachineBasicBlock
*emitSelectPseudo(MachineInstr
&MI
,
6887 MachineBasicBlock
*BB
,
6888 const RISCVSubtarget
&Subtarget
) {
6889 // To "insert" Select_* instructions, we actually have to insert the triangle
6890 // control-flow pattern. The incoming instructions know the destination vreg
6891 // to set, the condition code register to branch on, the true/false values to
6892 // select between, and the condcode to use to select the appropriate branch.
6894 // We produce the following control flow:
6901 // When we find a sequence of selects we attempt to optimize their emission
6902 // by sharing the control flow. Currently we only handle cases where we have
6903 // multiple selects with the exact same condition (same LHS, RHS and CC).
6904 // The selects may be interleaved with other instructions if the other
6905 // instructions meet some requirements we deem safe:
6906 // - They are debug instructions. Otherwise,
6907 // - They do not have side-effects, do not access memory and their inputs do
6908 // not depend on the results of the select pseudo-instructions.
6909 // The TrueV/FalseV operands of the selects cannot depend on the result of
6910 // previous selects in the sequence.
6911 // These conditions could be further relaxed. See the X86 target for a
6912 // related approach and more information.
6913 Register LHS
= MI
.getOperand(1).getReg();
6914 Register RHS
= MI
.getOperand(2).getReg();
6915 auto CC
= static_cast<RISCVCC::CondCode
>(MI
.getOperand(3).getImm());
6917 SmallVector
<MachineInstr
*, 4> SelectDebugValues
;
6918 SmallSet
<Register
, 4> SelectDests
;
6919 SelectDests
.insert(MI
.getOperand(0).getReg());
6921 MachineInstr
*LastSelectPseudo
= &MI
;
6923 for (auto E
= BB
->end(), SequenceMBBI
= MachineBasicBlock::iterator(MI
);
6924 SequenceMBBI
!= E
; ++SequenceMBBI
) {
6925 if (SequenceMBBI
->isDebugInstr())
6927 else if (isSelectPseudo(*SequenceMBBI
)) {
6928 if (SequenceMBBI
->getOperand(1).getReg() != LHS
||
6929 SequenceMBBI
->getOperand(2).getReg() != RHS
||
6930 SequenceMBBI
->getOperand(3).getImm() != CC
||
6931 SelectDests
.count(SequenceMBBI
->getOperand(4).getReg()) ||
6932 SelectDests
.count(SequenceMBBI
->getOperand(5).getReg()))
6934 LastSelectPseudo
= &*SequenceMBBI
;
6935 SequenceMBBI
->collectDebugValues(SelectDebugValues
);
6936 SelectDests
.insert(SequenceMBBI
->getOperand(0).getReg());
6938 if (SequenceMBBI
->hasUnmodeledSideEffects() ||
6939 SequenceMBBI
->mayLoadOrStore())
6941 if (llvm::any_of(SequenceMBBI
->operands(), [&](MachineOperand
&MO
) {
6942 return MO
.isReg() && MO
.isUse() && SelectDests
.count(MO
.getReg());
6948 const RISCVInstrInfo
&TII
= *Subtarget
.getInstrInfo();
6949 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
6950 DebugLoc DL
= MI
.getDebugLoc();
6951 MachineFunction::iterator I
= ++BB
->getIterator();
6953 MachineBasicBlock
*HeadMBB
= BB
;
6954 MachineFunction
*F
= BB
->getParent();
6955 MachineBasicBlock
*TailMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
6956 MachineBasicBlock
*IfFalseMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
6958 F
->insert(I
, IfFalseMBB
);
6959 F
->insert(I
, TailMBB
);
6961 // Transfer debug instructions associated with the selects to TailMBB.
6962 for (MachineInstr
*DebugInstr
: SelectDebugValues
) {
6963 TailMBB
->push_back(DebugInstr
->removeFromParent());
6966 // Move all instructions after the sequence to TailMBB.
6967 TailMBB
->splice(TailMBB
->end(), HeadMBB
,
6968 std::next(LastSelectPseudo
->getIterator()), HeadMBB
->end());
6969 // Update machine-CFG edges by transferring all successors of the current
6970 // block to the new block which will contain the Phi nodes for the selects.
6971 TailMBB
->transferSuccessorsAndUpdatePHIs(HeadMBB
);
6972 // Set the successors for HeadMBB.
6973 HeadMBB
->addSuccessor(IfFalseMBB
);
6974 HeadMBB
->addSuccessor(TailMBB
);
6976 // Insert appropriate branch.
6977 BuildMI(HeadMBB
, DL
, TII
.getBrCond(CC
))
6982 // IfFalseMBB just falls through to TailMBB.
6983 IfFalseMBB
->addSuccessor(TailMBB
);
6985 // Create PHIs for all of the select pseudo-instructions.
6986 auto SelectMBBI
= MI
.getIterator();
6987 auto SelectEnd
= std::next(LastSelectPseudo
->getIterator());
6988 auto InsertionPoint
= TailMBB
->begin();
6989 while (SelectMBBI
!= SelectEnd
) {
6990 auto Next
= std::next(SelectMBBI
);
6991 if (isSelectPseudo(*SelectMBBI
)) {
6992 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6993 BuildMI(*TailMBB
, InsertionPoint
, SelectMBBI
->getDebugLoc(),
6994 TII
.get(RISCV::PHI
), SelectMBBI
->getOperand(0).getReg())
6995 .addReg(SelectMBBI
->getOperand(4).getReg())
6997 .addReg(SelectMBBI
->getOperand(5).getReg())
6998 .addMBB(IfFalseMBB
);
6999 SelectMBBI
->eraseFromParent();
7004 F
->getProperties().reset(MachineFunctionProperties::Property::NoPHIs
);
7009 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
7010 MachineBasicBlock
*BB
) const {
7011 switch (MI
.getOpcode()) {
7013 llvm_unreachable("Unexpected instr type to insert");
7014 case RISCV::ReadCycleWide
:
7015 assert(!Subtarget
.is64Bit() &&
7016 "ReadCycleWrite is only to be used on riscv32");
7017 return emitReadCycleWidePseudo(MI
, BB
);
7018 case RISCV::Select_GPR_Using_CC_GPR
:
7019 case RISCV::Select_FPR16_Using_CC_GPR
:
7020 case RISCV::Select_FPR32_Using_CC_GPR
:
7021 case RISCV::Select_FPR64_Using_CC_GPR
:
7022 return emitSelectPseudo(MI
, BB
, Subtarget
);
7023 case RISCV::BuildPairF64Pseudo
:
7024 return emitBuildPairF64Pseudo(MI
, BB
);
7025 case RISCV::SplitF64Pseudo
:
7026 return emitSplitF64Pseudo(MI
, BB
);
7030 // Calling Convention Implementation.
7031 // The expectations for frontend ABI lowering vary from target to target.
7032 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7033 // details, but this is a longer term goal. For now, we simply try to keep the
7034 // role of the frontend as simple and well-defined as possible. The rules can
7035 // be summarised as:
7036 // * Never split up large scalar arguments. We handle them here.
7037 // * If a hardfloat calling convention is being used, and the struct may be
7038 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7039 // available, then pass as two separate arguments. If either the GPRs or FPRs
7040 // are exhausted, then pass according to the rule below.
7041 // * If a struct could never be passed in registers or directly in a stack
7042 // slot (as it is larger than 2*XLEN and the floating point rules don't
7043 // apply), then pass it using a pointer with the byval attribute.
7044 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7045 // word-sized array or a 2*XLEN scalar (depending on alignment).
7046 // * The frontend can determine whether a struct is returned by reference or
7047 // not based on its size and fields. If it will be returned by reference, the
7048 // frontend must modify the prototype so a pointer with the sret annotation is
7049 // passed as the first argument. This is not necessary for large scalar
7051 // * Struct return values and varargs should be coerced to structs containing
7052 // register-size fields in the same situations they would be for fixed
7055 static const MCPhysReg ArgGPRs
[] = {
7056 RISCV::X10
, RISCV::X11
, RISCV::X12
, RISCV::X13
,
7057 RISCV::X14
, RISCV::X15
, RISCV::X16
, RISCV::X17
7059 static const MCPhysReg ArgFPR16s
[] = {
7060 RISCV::F10_H
, RISCV::F11_H
, RISCV::F12_H
, RISCV::F13_H
,
7061 RISCV::F14_H
, RISCV::F15_H
, RISCV::F16_H
, RISCV::F17_H
7063 static const MCPhysReg ArgFPR32s
[] = {
7064 RISCV::F10_F
, RISCV::F11_F
, RISCV::F12_F
, RISCV::F13_F
,
7065 RISCV::F14_F
, RISCV::F15_F
, RISCV::F16_F
, RISCV::F17_F
7067 static const MCPhysReg ArgFPR64s
[] = {
7068 RISCV::F10_D
, RISCV::F11_D
, RISCV::F12_D
, RISCV::F13_D
,
7069 RISCV::F14_D
, RISCV::F15_D
, RISCV::F16_D
, RISCV::F17_D
7071 // This is an interim calling convention and it may be changed in the future.
7072 static const MCPhysReg ArgVRs
[] = {
7073 RISCV::V8
, RISCV::V9
, RISCV::V10
, RISCV::V11
, RISCV::V12
, RISCV::V13
,
7074 RISCV::V14
, RISCV::V15
, RISCV::V16
, RISCV::V17
, RISCV::V18
, RISCV::V19
,
7075 RISCV::V20
, RISCV::V21
, RISCV::V22
, RISCV::V23
};
7076 static const MCPhysReg ArgVRM2s
[] = {RISCV::V8M2
, RISCV::V10M2
, RISCV::V12M2
,
7077 RISCV::V14M2
, RISCV::V16M2
, RISCV::V18M2
,
7078 RISCV::V20M2
, RISCV::V22M2
};
7079 static const MCPhysReg ArgVRM4s
[] = {RISCV::V8M4
, RISCV::V12M4
, RISCV::V16M4
,
7081 static const MCPhysReg ArgVRM8s
[] = {RISCV::V8M8
, RISCV::V16M8
};
7083 // Pass a 2*XLEN argument that has been split into two XLEN values through
7084 // registers or the stack as necessary.
7085 static bool CC_RISCVAssign2XLen(unsigned XLen
, CCState
&State
, CCValAssign VA1
,
7086 ISD::ArgFlagsTy ArgFlags1
, unsigned ValNo2
,
7087 MVT ValVT2
, MVT LocVT2
,
7088 ISD::ArgFlagsTy ArgFlags2
) {
7089 unsigned XLenInBytes
= XLen
/ 8;
7090 if (Register Reg
= State
.AllocateReg(ArgGPRs
)) {
7091 // At least one half can be passed via register.
7092 State
.addLoc(CCValAssign::getReg(VA1
.getValNo(), VA1
.getValVT(), Reg
,
7093 VA1
.getLocVT(), CCValAssign::Full
));
7095 // Both halves must be passed on the stack, with proper alignment.
7097 std::max(Align(XLenInBytes
), ArgFlags1
.getNonZeroOrigAlign());
7099 CCValAssign::getMem(VA1
.getValNo(), VA1
.getValVT(),
7100 State
.AllocateStack(XLenInBytes
, StackAlign
),
7101 VA1
.getLocVT(), CCValAssign::Full
));
7102 State
.addLoc(CCValAssign::getMem(
7103 ValNo2
, ValVT2
, State
.AllocateStack(XLenInBytes
, Align(XLenInBytes
)),
7104 LocVT2
, CCValAssign::Full
));
7108 if (Register Reg
= State
.AllocateReg(ArgGPRs
)) {
7109 // The second half can also be passed via register.
7111 CCValAssign::getReg(ValNo2
, ValVT2
, Reg
, LocVT2
, CCValAssign::Full
));
7113 // The second half is passed via the stack, without additional alignment.
7114 State
.addLoc(CCValAssign::getMem(
7115 ValNo2
, ValVT2
, State
.AllocateStack(XLenInBytes
, Align(XLenInBytes
)),
7116 LocVT2
, CCValAssign::Full
));
7122 static unsigned allocateRVVReg(MVT ValVT
, unsigned ValNo
,
7123 Optional
<unsigned> FirstMaskArgument
,
7124 CCState
&State
, const RISCVTargetLowering
&TLI
) {
7125 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(ValVT
);
7126 if (RC
== &RISCV::VRRegClass
) {
7127 // Assign the first mask argument to V0.
7128 // This is an interim calling convention and it may be changed in the
7130 if (FirstMaskArgument
.hasValue() && ValNo
== FirstMaskArgument
.getValue())
7131 return State
.AllocateReg(RISCV::V0
);
7132 return State
.AllocateReg(ArgVRs
);
7134 if (RC
== &RISCV::VRM2RegClass
)
7135 return State
.AllocateReg(ArgVRM2s
);
7136 if (RC
== &RISCV::VRM4RegClass
)
7137 return State
.AllocateReg(ArgVRM4s
);
7138 if (RC
== &RISCV::VRM8RegClass
)
7139 return State
.AllocateReg(ArgVRM8s
);
7140 llvm_unreachable("Unhandled register class for ValueType");
7143 // Implements the RISC-V calling convention. Returns true upon failure.
7144 static bool CC_RISCV(const DataLayout
&DL
, RISCVABI::ABI ABI
, unsigned ValNo
,
7145 MVT ValVT
, MVT LocVT
, CCValAssign::LocInfo LocInfo
,
7146 ISD::ArgFlagsTy ArgFlags
, CCState
&State
, bool IsFixed
,
7147 bool IsRet
, Type
*OrigTy
, const RISCVTargetLowering
&TLI
,
7148 Optional
<unsigned> FirstMaskArgument
) {
7149 unsigned XLen
= DL
.getLargestLegalIntTypeSizeInBits();
7150 assert(XLen
== 32 || XLen
== 64);
7151 MVT XLenVT
= XLen
== 32 ? MVT::i32
: MVT::i64
;
7153 // Any return value split in to more than two values can't be returned
7154 // directly. Vectors are returned via the available vector registers.
7155 if (!LocVT
.isVector() && IsRet
&& ValNo
> 1)
7158 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7159 // variadic argument, or if no F16/F32 argument registers are available.
7160 bool UseGPRForF16_F32
= true;
7161 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7162 // variadic argument, or if no F64 argument registers are available.
7163 bool UseGPRForF64
= true;
7167 llvm_unreachable("Unexpected ABI");
7168 case RISCVABI::ABI_ILP32
:
7169 case RISCVABI::ABI_LP64
:
7171 case RISCVABI::ABI_ILP32F
:
7172 case RISCVABI::ABI_LP64F
:
7173 UseGPRForF16_F32
= !IsFixed
;
7175 case RISCVABI::ABI_ILP32D
:
7176 case RISCVABI::ABI_LP64D
:
7177 UseGPRForF16_F32
= !IsFixed
;
7178 UseGPRForF64
= !IsFixed
;
7182 // FPR16, FPR32, and FPR64 alias each other.
7183 if (State
.getFirstUnallocated(ArgFPR32s
) == array_lengthof(ArgFPR32s
)) {
7184 UseGPRForF16_F32
= true;
7185 UseGPRForF64
= true;
7188 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7189 // similar local variables rather than directly checking against the target
7192 if (UseGPRForF16_F32
&& (ValVT
== MVT::f16
|| ValVT
== MVT::f32
)) {
7194 LocInfo
= CCValAssign::BCvt
;
7195 } else if (UseGPRForF64
&& XLen
== 64 && ValVT
== MVT::f64
) {
7197 LocInfo
= CCValAssign::BCvt
;
7200 // If this is a variadic argument, the RISC-V calling convention requires
7201 // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7202 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7203 // be used regardless of whether the original argument was split during
7204 // legalisation or not. The argument will not be passed by registers if the
7205 // original type is larger than 2*XLEN, so the register alignment rule does
7207 unsigned TwoXLenInBytes
= (2 * XLen
) / 8;
7208 if (!IsFixed
&& ArgFlags
.getNonZeroOrigAlign() == TwoXLenInBytes
&&
7209 DL
.getTypeAllocSize(OrigTy
) == TwoXLenInBytes
) {
7210 unsigned RegIdx
= State
.getFirstUnallocated(ArgGPRs
);
7211 // Skip 'odd' register if necessary.
7212 if (RegIdx
!= array_lengthof(ArgGPRs
) && RegIdx
% 2 == 1)
7213 State
.AllocateReg(ArgGPRs
);
7216 SmallVectorImpl
<CCValAssign
> &PendingLocs
= State
.getPendingLocs();
7217 SmallVectorImpl
<ISD::ArgFlagsTy
> &PendingArgFlags
=
7218 State
.getPendingArgFlags();
7220 assert(PendingLocs
.size() == PendingArgFlags
.size() &&
7221 "PendingLocs and PendingArgFlags out of sync");
7223 // Handle passing f64 on RV32D with a soft float ABI or when floating point
7224 // registers are exhausted.
7225 if (UseGPRForF64
&& XLen
== 32 && ValVT
== MVT::f64
) {
7226 assert(!ArgFlags
.isSplit() && PendingLocs
.empty() &&
7227 "Can't lower f64 if it is split");
7228 // Depending on available argument GPRS, f64 may be passed in a pair of
7229 // GPRs, split between a GPR and the stack, or passed completely on the
7230 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
7232 Register Reg
= State
.AllocateReg(ArgGPRs
);
7235 unsigned StackOffset
= State
.AllocateStack(8, Align(8));
7237 CCValAssign::getMem(ValNo
, ValVT
, StackOffset
, LocVT
, LocInfo
));
7240 if (!State
.AllocateReg(ArgGPRs
))
7241 State
.AllocateStack(4, Align(4));
7242 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7246 // Fixed-length vectors are located in the corresponding scalable-vector
7248 if (ValVT
.isFixedLengthVector())
7249 LocVT
= TLI
.getContainerForFixedLengthVector(LocVT
);
7251 // Split arguments might be passed indirectly, so keep track of the pending
7252 // values. Split vectors are passed via a mix of registers and indirectly, so
7253 // treat them as we would any other argument.
7254 if (ValVT
.isScalarInteger() && (ArgFlags
.isSplit() || !PendingLocs
.empty())) {
7256 LocInfo
= CCValAssign::Indirect
;
7257 PendingLocs
.push_back(
7258 CCValAssign::getPending(ValNo
, ValVT
, LocVT
, LocInfo
));
7259 PendingArgFlags
.push_back(ArgFlags
);
7260 if (!ArgFlags
.isSplitEnd()) {
7265 // If the split argument only had two elements, it should be passed directly
7266 // in registers or on the stack.
7267 if (ValVT
.isScalarInteger() && ArgFlags
.isSplitEnd() &&
7268 PendingLocs
.size() <= 2) {
7269 assert(PendingLocs
.size() == 2 && "Unexpected PendingLocs.size()");
7270 // Apply the normal calling convention rules to the first half of the
7272 CCValAssign VA
= PendingLocs
[0];
7273 ISD::ArgFlagsTy AF
= PendingArgFlags
[0];
7274 PendingLocs
.clear();
7275 PendingArgFlags
.clear();
7276 return CC_RISCVAssign2XLen(XLen
, State
, VA
, AF
, ValNo
, ValVT
, LocVT
,
7280 // Allocate to a register if possible, or else a stack slot.
7282 unsigned StoreSizeBytes
= XLen
/ 8;
7283 Align StackAlign
= Align(XLen
/ 8);
7285 if (ValVT
== MVT::f16
&& !UseGPRForF16_F32
)
7286 Reg
= State
.AllocateReg(ArgFPR16s
);
7287 else if (ValVT
== MVT::f32
&& !UseGPRForF16_F32
)
7288 Reg
= State
.AllocateReg(ArgFPR32s
);
7289 else if (ValVT
== MVT::f64
&& !UseGPRForF64
)
7290 Reg
= State
.AllocateReg(ArgFPR64s
);
7291 else if (ValVT
.isVector()) {
7292 Reg
= allocateRVVReg(ValVT
, ValNo
, FirstMaskArgument
, State
, TLI
);
7294 // For return values, the vector must be passed fully via registers or
7296 // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
7297 // but we're using all of them.
7300 // Try using a GPR to pass the address
7301 if ((Reg
= State
.AllocateReg(ArgGPRs
))) {
7303 LocInfo
= CCValAssign::Indirect
;
7304 } else if (ValVT
.isScalableVector()) {
7305 report_fatal_error("Unable to pass scalable vector types on the stack");
7307 // Pass fixed-length vectors on the stack.
7309 StoreSizeBytes
= ValVT
.getStoreSize();
7310 // Align vectors to their element sizes, being careful for vXi1
7312 StackAlign
= MaybeAlign(ValVT
.getScalarSizeInBits() / 8).valueOrOne();
7316 Reg
= State
.AllocateReg(ArgGPRs
);
7319 unsigned StackOffset
=
7320 Reg
? 0 : State
.AllocateStack(StoreSizeBytes
, StackAlign
);
7322 // If we reach this point and PendingLocs is non-empty, we must be at the
7323 // end of a split argument that must be passed indirectly.
7324 if (!PendingLocs
.empty()) {
7325 assert(ArgFlags
.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
7326 assert(PendingLocs
.size() > 2 && "Unexpected PendingLocs.size()");
7328 for (auto &It
: PendingLocs
) {
7330 It
.convertToReg(Reg
);
7332 It
.convertToMem(StackOffset
);
7335 PendingLocs
.clear();
7336 PendingArgFlags
.clear();
7340 assert((!UseGPRForF16_F32
|| !UseGPRForF64
|| LocVT
== XLenVT
||
7341 (TLI
.getSubtarget().hasStdExtV() && ValVT
.isVector())) &&
7342 "Expected an XLenVT or vector types at this stage");
7345 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7349 // When a floating-point value is passed on the stack, no bit-conversion is
7351 if (ValVT
.isFloatingPoint()) {
7353 LocInfo
= CCValAssign::Full
;
7355 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, StackOffset
, LocVT
, LocInfo
));
7359 template <typename ArgTy
>
7360 static Optional
<unsigned> preAssignMask(const ArgTy
&Args
) {
7361 for (const auto &ArgIdx
: enumerate(Args
)) {
7362 MVT ArgVT
= ArgIdx
.value().VT
;
7363 if (ArgVT
.isVector() && ArgVT
.getVectorElementType() == MVT::i1
)
7364 return ArgIdx
.index();
7369 void RISCVTargetLowering::analyzeInputArgs(
7370 MachineFunction
&MF
, CCState
&CCInfo
,
7371 const SmallVectorImpl
<ISD::InputArg
> &Ins
, bool IsRet
,
7372 RISCVCCAssignFn Fn
) const {
7373 unsigned NumArgs
= Ins
.size();
7374 FunctionType
*FType
= MF
.getFunction().getFunctionType();
7376 Optional
<unsigned> FirstMaskArgument
;
7377 if (Subtarget
.hasStdExtV())
7378 FirstMaskArgument
= preAssignMask(Ins
);
7380 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
7381 MVT ArgVT
= Ins
[i
].VT
;
7382 ISD::ArgFlagsTy ArgFlags
= Ins
[i
].Flags
;
7384 Type
*ArgTy
= nullptr;
7386 ArgTy
= FType
->getReturnType();
7387 else if (Ins
[i
].isOrigArg())
7388 ArgTy
= FType
->getParamType(Ins
[i
].getOrigArgIndex());
7390 RISCVABI::ABI ABI
= MF
.getSubtarget
<RISCVSubtarget
>().getTargetABI();
7391 if (Fn(MF
.getDataLayout(), ABI
, i
, ArgVT
, ArgVT
, CCValAssign::Full
,
7392 ArgFlags
, CCInfo
, /*IsFixed=*/true, IsRet
, ArgTy
, *this,
7393 FirstMaskArgument
)) {
7394 LLVM_DEBUG(dbgs() << "InputArg #" << i
<< " has unhandled type "
7395 << EVT(ArgVT
).getEVTString() << '\n');
7396 llvm_unreachable(nullptr);
7401 void RISCVTargetLowering::analyzeOutputArgs(
7402 MachineFunction
&MF
, CCState
&CCInfo
,
7403 const SmallVectorImpl
<ISD::OutputArg
> &Outs
, bool IsRet
,
7404 CallLoweringInfo
*CLI
, RISCVCCAssignFn Fn
) const {
7405 unsigned NumArgs
= Outs
.size();
7407 Optional
<unsigned> FirstMaskArgument
;
7408 if (Subtarget
.hasStdExtV())
7409 FirstMaskArgument
= preAssignMask(Outs
);
7411 for (unsigned i
= 0; i
!= NumArgs
; i
++) {
7412 MVT ArgVT
= Outs
[i
].VT
;
7413 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
7414 Type
*OrigTy
= CLI
? CLI
->getArgs()[Outs
[i
].OrigArgIndex
].Ty
: nullptr;
7416 RISCVABI::ABI ABI
= MF
.getSubtarget
<RISCVSubtarget
>().getTargetABI();
7417 if (Fn(MF
.getDataLayout(), ABI
, i
, ArgVT
, ArgVT
, CCValAssign::Full
,
7418 ArgFlags
, CCInfo
, Outs
[i
].IsFixed
, IsRet
, OrigTy
, *this,
7419 FirstMaskArgument
)) {
7420 LLVM_DEBUG(dbgs() << "OutputArg #" << i
<< " has unhandled type "
7421 << EVT(ArgVT
).getEVTString() << "\n");
7422 llvm_unreachable(nullptr);
7427 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
7429 static SDValue
convertLocVTToValVT(SelectionDAG
&DAG
, SDValue Val
,
7430 const CCValAssign
&VA
, const SDLoc
&DL
,
7431 const RISCVSubtarget
&Subtarget
) {
7432 switch (VA
.getLocInfo()) {
7434 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7435 case CCValAssign::Full
:
7436 if (VA
.getValVT().isFixedLengthVector() && VA
.getLocVT().isScalableVector())
7437 Val
= convertFromScalableVector(VA
.getValVT(), Val
, DAG
, Subtarget
);
7439 case CCValAssign::BCvt
:
7440 if (VA
.getLocVT().isInteger() && VA
.getValVT() == MVT::f16
)
7441 Val
= DAG
.getNode(RISCVISD::FMV_H_X
, DL
, MVT::f16
, Val
);
7442 else if (VA
.getLocVT() == MVT::i64
&& VA
.getValVT() == MVT::f32
)
7443 Val
= DAG
.getNode(RISCVISD::FMV_W_X_RV64
, DL
, MVT::f32
, Val
);
7445 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
7451 // The caller is responsible for loading the full value if the argument is
7452 // passed with CCValAssign::Indirect.
7453 static SDValue
unpackFromRegLoc(SelectionDAG
&DAG
, SDValue Chain
,
7454 const CCValAssign
&VA
, const SDLoc
&DL
,
7455 const RISCVTargetLowering
&TLI
) {
7456 MachineFunction
&MF
= DAG
.getMachineFunction();
7457 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7458 EVT LocVT
= VA
.getLocVT();
7460 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(LocVT
.getSimpleVT());
7461 Register VReg
= RegInfo
.createVirtualRegister(RC
);
7462 RegInfo
.addLiveIn(VA
.getLocReg(), VReg
);
7463 Val
= DAG
.getCopyFromReg(Chain
, DL
, VReg
, LocVT
);
7465 if (VA
.getLocInfo() == CCValAssign::Indirect
)
7468 return convertLocVTToValVT(DAG
, Val
, VA
, DL
, TLI
.getSubtarget());
7471 static SDValue
convertValVTToLocVT(SelectionDAG
&DAG
, SDValue Val
,
7472 const CCValAssign
&VA
, const SDLoc
&DL
,
7473 const RISCVSubtarget
&Subtarget
) {
7474 EVT LocVT
= VA
.getLocVT();
7476 switch (VA
.getLocInfo()) {
7478 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7479 case CCValAssign::Full
:
7480 if (VA
.getValVT().isFixedLengthVector() && LocVT
.isScalableVector())
7481 Val
= convertToScalableVector(LocVT
, Val
, DAG
, Subtarget
);
7483 case CCValAssign::BCvt
:
7484 if (VA
.getLocVT().isInteger() && VA
.getValVT() == MVT::f16
)
7485 Val
= DAG
.getNode(RISCVISD::FMV_X_ANYEXTH
, DL
, VA
.getLocVT(), Val
);
7486 else if (VA
.getLocVT() == MVT::i64
&& VA
.getValVT() == MVT::f32
)
7487 Val
= DAG
.getNode(RISCVISD::FMV_X_ANYEXTW_RV64
, DL
, MVT::i64
, Val
);
7489 Val
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Val
);
7495 // The caller is responsible for loading the full value if the argument is
7496 // passed with CCValAssign::Indirect.
7497 static SDValue
unpackFromMemLoc(SelectionDAG
&DAG
, SDValue Chain
,
7498 const CCValAssign
&VA
, const SDLoc
&DL
) {
7499 MachineFunction
&MF
= DAG
.getMachineFunction();
7500 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
7501 EVT LocVT
= VA
.getLocVT();
7502 EVT ValVT
= VA
.getValVT();
7503 EVT PtrVT
= MVT::getIntegerVT(DAG
.getDataLayout().getPointerSizeInBits(0));
7504 int FI
= MFI
.CreateFixedObject(ValVT
.getStoreSize(), VA
.getLocMemOffset(),
7505 /*Immutable=*/true);
7506 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
7509 ISD::LoadExtType ExtType
;
7510 switch (VA
.getLocInfo()) {
7512 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7513 case CCValAssign::Full
:
7514 case CCValAssign::Indirect
:
7515 case CCValAssign::BCvt
:
7516 ExtType
= ISD::NON_EXTLOAD
;
7519 Val
= DAG
.getExtLoad(
7520 ExtType
, DL
, LocVT
, Chain
, FIN
,
7521 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
), ValVT
);
7525 static SDValue
unpackF64OnRV32DSoftABI(SelectionDAG
&DAG
, SDValue Chain
,
7526 const CCValAssign
&VA
, const SDLoc
&DL
) {
7527 assert(VA
.getLocVT() == MVT::i32
&& VA
.getValVT() == MVT::f64
&&
7529 MachineFunction
&MF
= DAG
.getMachineFunction();
7530 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
7531 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7533 if (VA
.isMemLoc()) {
7534 // f64 is passed on the stack.
7535 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), /*Immutable=*/true);
7536 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
7537 return DAG
.getLoad(MVT::f64
, DL
, Chain
, FIN
,
7538 MachinePointerInfo::getFixedStack(MF
, FI
));
7541 assert(VA
.isRegLoc() && "Expected register VA assignment");
7543 Register LoVReg
= RegInfo
.createVirtualRegister(&RISCV::GPRRegClass
);
7544 RegInfo
.addLiveIn(VA
.getLocReg(), LoVReg
);
7545 SDValue Lo
= DAG
.getCopyFromReg(Chain
, DL
, LoVReg
, MVT::i32
);
7547 if (VA
.getLocReg() == RISCV::X17
) {
7548 // Second half of f64 is passed on the stack.
7549 int FI
= MFI
.CreateFixedObject(4, 0, /*Immutable=*/true);
7550 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
7551 Hi
= DAG
.getLoad(MVT::i32
, DL
, Chain
, FIN
,
7552 MachinePointerInfo::getFixedStack(MF
, FI
));
7554 // Second half of f64 is passed in another GPR.
7555 Register HiVReg
= RegInfo
.createVirtualRegister(&RISCV::GPRRegClass
);
7556 RegInfo
.addLiveIn(VA
.getLocReg() + 1, HiVReg
);
7557 Hi
= DAG
.getCopyFromReg(Chain
, DL
, HiVReg
, MVT::i32
);
7559 return DAG
.getNode(RISCVISD::BuildPairF64
, DL
, MVT::f64
, Lo
, Hi
);
7562 // FastCC has less than 1% performance improvement for some particular
7563 // benchmark. But theoretically, it may has benenfit for some cases.
7564 static bool CC_RISCV_FastCC(const DataLayout
&DL
, RISCVABI::ABI ABI
,
7565 unsigned ValNo
, MVT ValVT
, MVT LocVT
,
7566 CCValAssign::LocInfo LocInfo
,
7567 ISD::ArgFlagsTy ArgFlags
, CCState
&State
,
7568 bool IsFixed
, bool IsRet
, Type
*OrigTy
,
7569 const RISCVTargetLowering
&TLI
,
7570 Optional
<unsigned> FirstMaskArgument
) {
7572 // X5 and X6 might be used for save-restore libcall.
7573 static const MCPhysReg GPRList
[] = {
7574 RISCV::X10
, RISCV::X11
, RISCV::X12
, RISCV::X13
, RISCV::X14
,
7575 RISCV::X15
, RISCV::X16
, RISCV::X17
, RISCV::X7
, RISCV::X28
,
7576 RISCV::X29
, RISCV::X30
, RISCV::X31
};
7578 if (LocVT
== MVT::i32
|| LocVT
== MVT::i64
) {
7579 if (unsigned Reg
= State
.AllocateReg(GPRList
)) {
7580 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7585 if (LocVT
== MVT::f16
) {
7586 static const MCPhysReg FPR16List
[] = {
7587 RISCV::F10_H
, RISCV::F11_H
, RISCV::F12_H
, RISCV::F13_H
, RISCV::F14_H
,
7588 RISCV::F15_H
, RISCV::F16_H
, RISCV::F17_H
, RISCV::F0_H
, RISCV::F1_H
,
7589 RISCV::F2_H
, RISCV::F3_H
, RISCV::F4_H
, RISCV::F5_H
, RISCV::F6_H
,
7590 RISCV::F7_H
, RISCV::F28_H
, RISCV::F29_H
, RISCV::F30_H
, RISCV::F31_H
};
7591 if (unsigned Reg
= State
.AllocateReg(FPR16List
)) {
7592 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7597 if (LocVT
== MVT::f32
) {
7598 static const MCPhysReg FPR32List
[] = {
7599 RISCV::F10_F
, RISCV::F11_F
, RISCV::F12_F
, RISCV::F13_F
, RISCV::F14_F
,
7600 RISCV::F15_F
, RISCV::F16_F
, RISCV::F17_F
, RISCV::F0_F
, RISCV::F1_F
,
7601 RISCV::F2_F
, RISCV::F3_F
, RISCV::F4_F
, RISCV::F5_F
, RISCV::F6_F
,
7602 RISCV::F7_F
, RISCV::F28_F
, RISCV::F29_F
, RISCV::F30_F
, RISCV::F31_F
};
7603 if (unsigned Reg
= State
.AllocateReg(FPR32List
)) {
7604 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7609 if (LocVT
== MVT::f64
) {
7610 static const MCPhysReg FPR64List
[] = {
7611 RISCV::F10_D
, RISCV::F11_D
, RISCV::F12_D
, RISCV::F13_D
, RISCV::F14_D
,
7612 RISCV::F15_D
, RISCV::F16_D
, RISCV::F17_D
, RISCV::F0_D
, RISCV::F1_D
,
7613 RISCV::F2_D
, RISCV::F3_D
, RISCV::F4_D
, RISCV::F5_D
, RISCV::F6_D
,
7614 RISCV::F7_D
, RISCV::F28_D
, RISCV::F29_D
, RISCV::F30_D
, RISCV::F31_D
};
7615 if (unsigned Reg
= State
.AllocateReg(FPR64List
)) {
7616 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7621 if (LocVT
== MVT::i32
|| LocVT
== MVT::f32
) {
7622 unsigned Offset4
= State
.AllocateStack(4, Align(4));
7623 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset4
, LocVT
, LocInfo
));
7627 if (LocVT
== MVT::i64
|| LocVT
== MVT::f64
) {
7628 unsigned Offset5
= State
.AllocateStack(8, Align(8));
7629 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset5
, LocVT
, LocInfo
));
7633 if (LocVT
.isVector()) {
7635 allocateRVVReg(ValVT
, ValNo
, FirstMaskArgument
, State
, TLI
)) {
7636 // Fixed-length vectors are located in the corresponding scalable-vector
7638 if (ValVT
.isFixedLengthVector())
7639 LocVT
= TLI
.getContainerForFixedLengthVector(LocVT
);
7640 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7642 // Try and pass the address via a "fast" GPR.
7643 if (unsigned GPRReg
= State
.AllocateReg(GPRList
)) {
7644 LocInfo
= CCValAssign::Indirect
;
7645 LocVT
= TLI
.getSubtarget().getXLenVT();
7646 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, GPRReg
, LocVT
, LocInfo
));
7647 } else if (ValVT
.isFixedLengthVector()) {
7649 MaybeAlign(ValVT
.getScalarSizeInBits() / 8).valueOrOne();
7650 unsigned StackOffset
=
7651 State
.AllocateStack(ValVT
.getStoreSize(), StackAlign
);
7653 CCValAssign::getMem(ValNo
, ValVT
, StackOffset
, LocVT
, LocInfo
));
7655 // Can't pass scalable vectors on the stack.
7663 return true; // CC didn't match.
7666 static bool CC_RISCV_GHC(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
7667 CCValAssign::LocInfo LocInfo
,
7668 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
7670 if (LocVT
== MVT::i32
|| LocVT
== MVT::i64
) {
7671 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7672 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
7673 static const MCPhysReg GPRList
[] = {
7674 RISCV::X9
, RISCV::X18
, RISCV::X19
, RISCV::X20
, RISCV::X21
, RISCV::X22
,
7675 RISCV::X23
, RISCV::X24
, RISCV::X25
, RISCV::X26
, RISCV::X27
};
7676 if (unsigned Reg
= State
.AllocateReg(GPRList
)) {
7677 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7682 if (LocVT
== MVT::f32
) {
7683 // Pass in STG registers: F1, ..., F6
7685 static const MCPhysReg FPR32List
[] = {RISCV::F8_F
, RISCV::F9_F
,
7686 RISCV::F18_F
, RISCV::F19_F
,
7687 RISCV::F20_F
, RISCV::F21_F
};
7688 if (unsigned Reg
= State
.AllocateReg(FPR32List
)) {
7689 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7694 if (LocVT
== MVT::f64
) {
7695 // Pass in STG registers: D1, ..., D6
7697 static const MCPhysReg FPR64List
[] = {RISCV::F22_D
, RISCV::F23_D
,
7698 RISCV::F24_D
, RISCV::F25_D
,
7699 RISCV::F26_D
, RISCV::F27_D
};
7700 if (unsigned Reg
= State
.AllocateReg(FPR64List
)) {
7701 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
7706 report_fatal_error("No registers left in GHC calling convention");
7710 // Transform physical registers into virtual registers.
7711 SDValue
RISCVTargetLowering::LowerFormalArguments(
7712 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
7713 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
7714 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
7716 MachineFunction
&MF
= DAG
.getMachineFunction();
7720 report_fatal_error("Unsupported calling convention");
7721 case CallingConv::C
:
7722 case CallingConv::Fast
:
7724 case CallingConv::GHC
:
7725 if (!MF
.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF
] ||
7726 !MF
.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD
])
7728 "GHC calling convention requires the F and D instruction set extensions");
7731 const Function
&Func
= MF
.getFunction();
7732 if (Func
.hasFnAttribute("interrupt")) {
7733 if (!Func
.arg_empty())
7735 "Functions with the interrupt attribute cannot have arguments!");
7738 MF
.getFunction().getFnAttribute("interrupt").getValueAsString();
7740 if (!(Kind
== "user" || Kind
== "supervisor" || Kind
== "machine"))
7742 "Function interrupt attribute argument not supported!");
7745 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
7746 MVT XLenVT
= Subtarget
.getXLenVT();
7747 unsigned XLenInBytes
= Subtarget
.getXLen() / 8;
7748 // Used with vargs to acumulate store chains.
7749 std::vector
<SDValue
> OutChains
;
7751 // Assign locations to all of the incoming arguments.
7752 SmallVector
<CCValAssign
, 16> ArgLocs
;
7753 CCState
CCInfo(CallConv
, IsVarArg
, MF
, ArgLocs
, *DAG
.getContext());
7755 if (CallConv
== CallingConv::GHC
)
7756 CCInfo
.AnalyzeFormalArguments(Ins
, CC_RISCV_GHC
);
7758 analyzeInputArgs(MF
, CCInfo
, Ins
, /*IsRet=*/false,
7759 CallConv
== CallingConv::Fast
? CC_RISCV_FastCC
7762 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
7763 CCValAssign
&VA
= ArgLocs
[i
];
7765 // Passing f64 on RV32D with a soft float ABI must be handled as a special
7767 if (VA
.getLocVT() == MVT::i32
&& VA
.getValVT() == MVT::f64
)
7768 ArgValue
= unpackF64OnRV32DSoftABI(DAG
, Chain
, VA
, DL
);
7769 else if (VA
.isRegLoc())
7770 ArgValue
= unpackFromRegLoc(DAG
, Chain
, VA
, DL
, *this);
7772 ArgValue
= unpackFromMemLoc(DAG
, Chain
, VA
, DL
);
7774 if (VA
.getLocInfo() == CCValAssign::Indirect
) {
7775 // If the original argument was split and passed by reference (e.g. i128
7776 // on RV32), we need to load all parts of it here (using the same
7777 // address). Vectors may be partly split to registers and partly to the
7778 // stack, in which case the base address is partly offset and subsequent
7779 // stores are relative to that.
7780 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), DL
, Chain
, ArgValue
,
7781 MachinePointerInfo()));
7782 unsigned ArgIndex
= Ins
[i
].OrigArgIndex
;
7783 unsigned ArgPartOffset
= Ins
[i
].PartOffset
;
7784 assert(VA
.getValVT().isVector() || ArgPartOffset
== 0);
7785 while (i
+ 1 != e
&& Ins
[i
+ 1].OrigArgIndex
== ArgIndex
) {
7786 CCValAssign
&PartVA
= ArgLocs
[i
+ 1];
7787 unsigned PartOffset
= Ins
[i
+ 1].PartOffset
- ArgPartOffset
;
7788 SDValue Offset
= DAG
.getIntPtrConstant(PartOffset
, DL
);
7789 if (PartVA
.getValVT().isScalableVector())
7790 Offset
= DAG
.getNode(ISD::VSCALE
, DL
, XLenVT
, Offset
);
7791 SDValue Address
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ArgValue
, Offset
);
7792 InVals
.push_back(DAG
.getLoad(PartVA
.getValVT(), DL
, Chain
, Address
,
7793 MachinePointerInfo()));
7798 InVals
.push_back(ArgValue
);
7802 ArrayRef
<MCPhysReg
> ArgRegs
= makeArrayRef(ArgGPRs
);
7803 unsigned Idx
= CCInfo
.getFirstUnallocated(ArgRegs
);
7804 const TargetRegisterClass
*RC
= &RISCV::GPRRegClass
;
7805 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
7806 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7807 RISCVMachineFunctionInfo
*RVFI
= MF
.getInfo
<RISCVMachineFunctionInfo
>();
7809 // Offset of the first variable argument from stack pointer, and size of
7810 // the vararg save area. For now, the varargs save area is either zero or
7811 // large enough to hold a0-a7.
7812 int VaArgOffset
, VarArgsSaveSize
;
7814 // If all registers are allocated, then all varargs must be passed on the
7815 // stack and we don't need to save any argregs.
7816 if (ArgRegs
.size() == Idx
) {
7817 VaArgOffset
= CCInfo
.getNextStackOffset();
7818 VarArgsSaveSize
= 0;
7820 VarArgsSaveSize
= XLenInBytes
* (ArgRegs
.size() - Idx
);
7821 VaArgOffset
= -VarArgsSaveSize
;
7824 // Record the frame index of the first variable argument
7825 // which is a value necessary to VASTART.
7826 int FI
= MFI
.CreateFixedObject(XLenInBytes
, VaArgOffset
, true);
7827 RVFI
->setVarArgsFrameIndex(FI
);
7829 // If saving an odd number of registers then create an extra stack slot to
7830 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7831 // offsets to even-numbered registered remain 2*XLEN-aligned.
7833 MFI
.CreateFixedObject(XLenInBytes
, VaArgOffset
- (int)XLenInBytes
, true);
7834 VarArgsSaveSize
+= XLenInBytes
;
7837 // Copy the integer registers that may have been used for passing varargs
7838 // to the vararg save area.
7839 for (unsigned I
= Idx
; I
< ArgRegs
.size();
7840 ++I
, VaArgOffset
+= XLenInBytes
) {
7841 const Register Reg
= RegInfo
.createVirtualRegister(RC
);
7842 RegInfo
.addLiveIn(ArgRegs
[I
], Reg
);
7843 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, XLenVT
);
7844 FI
= MFI
.CreateFixedObject(XLenInBytes
, VaArgOffset
, true);
7845 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
7846 SDValue Store
= DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
,
7847 MachinePointerInfo::getFixedStack(MF
, FI
));
7848 cast
<StoreSDNode
>(Store
.getNode())
7850 ->setValue((Value
*)nullptr);
7851 OutChains
.push_back(Store
);
7853 RVFI
->setVarArgsSaveSize(VarArgsSaveSize
);
7856 // All stores are grouped in one node to allow the matching between
7857 // the size of Ins and InVals. This only happens for vararg functions.
7858 if (!OutChains
.empty()) {
7859 OutChains
.push_back(Chain
);
7860 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
7866 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7867 /// for tail call optimization.
7868 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7869 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7870 CCState
&CCInfo
, CallLoweringInfo
&CLI
, MachineFunction
&MF
,
7871 const SmallVector
<CCValAssign
, 16> &ArgLocs
) const {
7873 auto &Callee
= CLI
.Callee
;
7874 auto CalleeCC
= CLI
.CallConv
;
7875 auto &Outs
= CLI
.Outs
;
7876 auto &Caller
= MF
.getFunction();
7877 auto CallerCC
= Caller
.getCallingConv();
7879 // Exception-handling functions need a special set of instructions to
7880 // indicate a return to the hardware. Tail-calling another function would
7881 // probably break this.
7882 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7883 // should be expanded as new function attributes are introduced.
7884 if (Caller
.hasFnAttribute("interrupt"))
7887 // Do not tail call opt if the stack is used to pass parameters.
7888 if (CCInfo
.getNextStackOffset() != 0)
7891 // Do not tail call opt if any parameters need to be passed indirectly.
7892 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7893 // passed indirectly. So the address of the value will be passed in a
7894 // register, or if not available, then the address is put on the stack. In
7895 // order to pass indirectly, space on the stack often needs to be allocated
7896 // in order to store the value. In this case the CCInfo.getNextStackOffset()
7897 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7898 // are passed CCValAssign::Indirect.
7899 for (auto &VA
: ArgLocs
)
7900 if (VA
.getLocInfo() == CCValAssign::Indirect
)
7903 // Do not tail call opt if either caller or callee uses struct return
7905 auto IsCallerStructRet
= Caller
.hasStructRetAttr();
7906 auto IsCalleeStructRet
= Outs
.empty() ? false : Outs
[0].Flags
.isSRet();
7907 if (IsCallerStructRet
|| IsCalleeStructRet
)
7910 // Externally-defined functions with weak linkage should not be
7911 // tail-called. The behaviour of branch instructions in this situation (as
7912 // used for tail calls) is implementation-defined, so we cannot rely on the
7913 // linker replacing the tail call with a return.
7914 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
7915 const GlobalValue
*GV
= G
->getGlobal();
7916 if (GV
->hasExternalWeakLinkage())
7920 // The callee has to preserve all registers the caller needs to preserve.
7921 const RISCVRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
7922 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
7923 if (CalleeCC
!= CallerCC
) {
7924 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
7925 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
7929 // Byval parameters hand the function a pointer directly into the stack area
7930 // we want to reuse during a tail call. Working around this *is* possible
7931 // but less efficient and uglier in LowerCall.
7932 for (auto &Arg
: Outs
)
7933 if (Arg
.Flags
.isByVal())
7939 static Align
getPrefTypeAlign(EVT VT
, SelectionDAG
&DAG
) {
7940 return DAG
.getDataLayout().getPrefTypeAlign(
7941 VT
.getTypeForEVT(*DAG
.getContext()));
7944 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7945 // and output parameter nodes.
7946 SDValue
RISCVTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
7947 SmallVectorImpl
<SDValue
> &InVals
) const {
7948 SelectionDAG
&DAG
= CLI
.DAG
;
7950 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
7951 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
7952 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
7953 SDValue Chain
= CLI
.Chain
;
7954 SDValue Callee
= CLI
.Callee
;
7955 bool &IsTailCall
= CLI
.IsTailCall
;
7956 CallingConv::ID CallConv
= CLI
.CallConv
;
7957 bool IsVarArg
= CLI
.IsVarArg
;
7958 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
7959 MVT XLenVT
= Subtarget
.getXLenVT();
7961 MachineFunction
&MF
= DAG
.getMachineFunction();
7963 // Analyze the operands of the call, assigning locations to each operand.
7964 SmallVector
<CCValAssign
, 16> ArgLocs
;
7965 CCState
ArgCCInfo(CallConv
, IsVarArg
, MF
, ArgLocs
, *DAG
.getContext());
7967 if (CallConv
== CallingConv::GHC
)
7968 ArgCCInfo
.AnalyzeCallOperands(Outs
, CC_RISCV_GHC
);
7970 analyzeOutputArgs(MF
, ArgCCInfo
, Outs
, /*IsRet=*/false, &CLI
,
7971 CallConv
== CallingConv::Fast
? CC_RISCV_FastCC
7974 // Check if it's really possible to do a tail call.
7976 IsTailCall
= isEligibleForTailCallOptimization(ArgCCInfo
, CLI
, MF
, ArgLocs
);
7980 else if (CLI
.CB
&& CLI
.CB
->isMustTailCall())
7981 report_fatal_error("failed to perform tail call elimination on a call "
7982 "site marked musttail");
7984 // Get a count of how many bytes are to be pushed on the stack.
7985 unsigned NumBytes
= ArgCCInfo
.getNextStackOffset();
7987 // Create local copies for byval args
7988 SmallVector
<SDValue
, 8> ByValArgs
;
7989 for (unsigned i
= 0, e
= Outs
.size(); i
!= e
; ++i
) {
7990 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
7991 if (!Flags
.isByVal())
7994 SDValue Arg
= OutVals
[i
];
7995 unsigned Size
= Flags
.getByValSize();
7996 Align Alignment
= Flags
.getNonZeroByValAlign();
7999 MF
.getFrameInfo().CreateStackObject(Size
, Alignment
, /*isSS=*/false);
8000 SDValue FIPtr
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
8001 SDValue SizeNode
= DAG
.getConstant(Size
, DL
, XLenVT
);
8003 Chain
= DAG
.getMemcpy(Chain
, DL
, FIPtr
, Arg
, SizeNode
, Alignment
,
8004 /*IsVolatile=*/false,
8005 /*AlwaysInline=*/false, IsTailCall
,
8006 MachinePointerInfo(), MachinePointerInfo());
8007 ByValArgs
.push_back(FIPtr
);
8011 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, CLI
.DL
);
8013 // Copy argument values to their designated locations.
8014 SmallVector
<std::pair
<Register
, SDValue
>, 8> RegsToPass
;
8015 SmallVector
<SDValue
, 8> MemOpChains
;
8017 for (unsigned i
= 0, j
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
8018 CCValAssign
&VA
= ArgLocs
[i
];
8019 SDValue ArgValue
= OutVals
[i
];
8020 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
8022 // Handle passing f64 on RV32D with a soft float ABI as a special case.
8023 bool IsF64OnRV32DSoftABI
=
8024 VA
.getLocVT() == MVT::i32
&& VA
.getValVT() == MVT::f64
;
8025 if (IsF64OnRV32DSoftABI
&& VA
.isRegLoc()) {
8026 SDValue SplitF64
= DAG
.getNode(
8027 RISCVISD::SplitF64
, DL
, DAG
.getVTList(MVT::i32
, MVT::i32
), ArgValue
);
8028 SDValue Lo
= SplitF64
.getValue(0);
8029 SDValue Hi
= SplitF64
.getValue(1);
8031 Register RegLo
= VA
.getLocReg();
8032 RegsToPass
.push_back(std::make_pair(RegLo
, Lo
));
8034 if (RegLo
== RISCV::X17
) {
8035 // Second half of f64 is passed on the stack.
8036 // Work out the address of the stack slot.
8037 if (!StackPtr
.getNode())
8038 StackPtr
= DAG
.getCopyFromReg(Chain
, DL
, RISCV::X2
, PtrVT
);
8040 MemOpChains
.push_back(
8041 DAG
.getStore(Chain
, DL
, Hi
, StackPtr
, MachinePointerInfo()));
8043 // Second half of f64 is passed in another GPR.
8044 assert(RegLo
< RISCV::X31
&& "Invalid register pair");
8045 Register RegHigh
= RegLo
+ 1;
8046 RegsToPass
.push_back(std::make_pair(RegHigh
, Hi
));
8051 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8052 // as any other MemLoc.
8054 // Promote the value if needed.
8055 // For now, only handle fully promoted and indirect arguments.
8056 if (VA
.getLocInfo() == CCValAssign::Indirect
) {
8057 // Store the argument in a stack slot and pass its address.
8059 std::max(getPrefTypeAlign(Outs
[i
].ArgVT
, DAG
),
8060 getPrefTypeAlign(ArgValue
.getValueType(), DAG
));
8061 TypeSize StoredSize
= ArgValue
.getValueType().getStoreSize();
8062 // If the original argument was split (e.g. i128), we need
8063 // to store the required parts of it here (and pass just one address).
8064 // Vectors may be partly split to registers and partly to the stack, in
8065 // which case the base address is partly offset and subsequent stores are
8066 // relative to that.
8067 unsigned ArgIndex
= Outs
[i
].OrigArgIndex
;
8068 unsigned ArgPartOffset
= Outs
[i
].PartOffset
;
8069 assert(VA
.getValVT().isVector() || ArgPartOffset
== 0);
8070 // Calculate the total size to store. We don't have access to what we're
8071 // actually storing other than performing the loop and collecting the
8073 SmallVector
<std::pair
<SDValue
, SDValue
>> Parts
;
8074 while (i
+ 1 != e
&& Outs
[i
+ 1].OrigArgIndex
== ArgIndex
) {
8075 SDValue PartValue
= OutVals
[i
+ 1];
8076 unsigned PartOffset
= Outs
[i
+ 1].PartOffset
- ArgPartOffset
;
8077 SDValue Offset
= DAG
.getIntPtrConstant(PartOffset
, DL
);
8078 EVT PartVT
= PartValue
.getValueType();
8079 if (PartVT
.isScalableVector())
8080 Offset
= DAG
.getNode(ISD::VSCALE
, DL
, XLenVT
, Offset
);
8081 StoredSize
+= PartVT
.getStoreSize();
8082 StackAlign
= std::max(StackAlign
, getPrefTypeAlign(PartVT
, DAG
));
8083 Parts
.push_back(std::make_pair(PartValue
, Offset
));
8086 SDValue SpillSlot
= DAG
.CreateStackTemporary(StoredSize
, StackAlign
);
8087 int FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
8088 MemOpChains
.push_back(
8089 DAG
.getStore(Chain
, DL
, ArgValue
, SpillSlot
,
8090 MachinePointerInfo::getFixedStack(MF
, FI
)));
8091 for (const auto &Part
: Parts
) {
8092 SDValue PartValue
= Part
.first
;
8093 SDValue PartOffset
= Part
.second
;
8095 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, SpillSlot
, PartOffset
);
8096 MemOpChains
.push_back(
8097 DAG
.getStore(Chain
, DL
, PartValue
, Address
,
8098 MachinePointerInfo::getFixedStack(MF
, FI
)));
8100 ArgValue
= SpillSlot
;
8102 ArgValue
= convertValVTToLocVT(DAG
, ArgValue
, VA
, DL
, Subtarget
);
8105 // Use local copy if it is a byval arg.
8106 if (Flags
.isByVal())
8107 ArgValue
= ByValArgs
[j
++];
8109 if (VA
.isRegLoc()) {
8110 // Queue up the argument copies and emit them at the end.
8111 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), ArgValue
));
8113 assert(VA
.isMemLoc() && "Argument not register or memory");
8114 assert(!IsTailCall
&& "Tail call not allowed if stack is used "
8115 "for passing parameters");
8117 // Work out the address of the stack slot.
8118 if (!StackPtr
.getNode())
8119 StackPtr
= DAG
.getCopyFromReg(Chain
, DL
, RISCV::X2
, PtrVT
);
8121 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, StackPtr
,
8122 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
8125 MemOpChains
.push_back(
8126 DAG
.getStore(Chain
, DL
, ArgValue
, Address
, MachinePointerInfo()));
8130 // Join the stores, which are independent of one another.
8131 if (!MemOpChains
.empty())
8132 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
8136 // Build a sequence of copy-to-reg nodes, chained and glued together.
8137 for (auto &Reg
: RegsToPass
) {
8138 Chain
= DAG
.getCopyToReg(Chain
, DL
, Reg
.first
, Reg
.second
, Glue
);
8139 Glue
= Chain
.getValue(1);
8142 // Validate that none of the argument registers have been marked as
8143 // reserved, if so report an error. Do the same for the return address if this
8144 // is not a tailcall.
8145 validateCCReservedRegs(RegsToPass
, MF
);
8147 MF
.getSubtarget
<RISCVSubtarget
>().isRegisterReservedByUser(RISCV::X1
))
8148 MF
.getFunction().getContext().diagnose(DiagnosticInfoUnsupported
{
8150 "Return address register required, but has been reserved."});
8152 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8153 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8154 // split it and then direct call can be matched by PseudoCALL.
8155 if (GlobalAddressSDNode
*S
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
8156 const GlobalValue
*GV
= S
->getGlobal();
8158 unsigned OpFlags
= RISCVII::MO_CALL
;
8159 if (!getTargetMachine().shouldAssumeDSOLocal(*GV
->getParent(), GV
))
8160 OpFlags
= RISCVII::MO_PLT
;
8162 Callee
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, OpFlags
);
8163 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
8164 unsigned OpFlags
= RISCVII::MO_CALL
;
8166 if (!getTargetMachine().shouldAssumeDSOLocal(*MF
.getFunction().getParent(),
8168 OpFlags
= RISCVII::MO_PLT
;
8170 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), PtrVT
, OpFlags
);
8173 // The first call operand is the chain and the second is the target address.
8174 SmallVector
<SDValue
, 8> Ops
;
8175 Ops
.push_back(Chain
);
8176 Ops
.push_back(Callee
);
8178 // Add argument registers to the end of the list so that they are
8179 // known live into the call.
8180 for (auto &Reg
: RegsToPass
)
8181 Ops
.push_back(DAG
.getRegister(Reg
.first
, Reg
.second
.getValueType()));
8184 // Add a register mask operand representing the call-preserved registers.
8185 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
8186 const uint32_t *Mask
= TRI
->getCallPreservedMask(MF
, CallConv
);
8187 assert(Mask
&& "Missing call preserved mask for calling convention");
8188 Ops
.push_back(DAG
.getRegisterMask(Mask
));
8191 // Glue the call to the argument copies, if any.
8193 Ops
.push_back(Glue
);
8196 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8199 MF
.getFrameInfo().setHasTailCall();
8200 return DAG
.getNode(RISCVISD::TAIL
, DL
, NodeTys
, Ops
);
8203 Chain
= DAG
.getNode(RISCVISD::CALL
, DL
, NodeTys
, Ops
);
8204 DAG
.addNoMergeSiteInfo(Chain
.getNode(), CLI
.NoMerge
);
8205 Glue
= Chain
.getValue(1);
8207 // Mark the end of the call, which is glued to the call itself.
8208 Chain
= DAG
.getCALLSEQ_END(Chain
,
8209 DAG
.getConstant(NumBytes
, DL
, PtrVT
, true),
8210 DAG
.getConstant(0, DL
, PtrVT
, true),
8212 Glue
= Chain
.getValue(1);
8214 // Assign locations to each value returned by this call.
8215 SmallVector
<CCValAssign
, 16> RVLocs
;
8216 CCState
RetCCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
8217 analyzeInputArgs(MF
, RetCCInfo
, Ins
, /*IsRet=*/true, CC_RISCV
);
8219 // Copy all of the result registers out of their specified physreg.
8220 for (auto &VA
: RVLocs
) {
8221 // Copy the value out
8223 DAG
.getCopyFromReg(Chain
, DL
, VA
.getLocReg(), VA
.getLocVT(), Glue
);
8224 // Glue the RetValue to the end of the call sequence
8225 Chain
= RetValue
.getValue(1);
8226 Glue
= RetValue
.getValue(2);
8228 if (VA
.getLocVT() == MVT::i32
&& VA
.getValVT() == MVT::f64
) {
8229 assert(VA
.getLocReg() == ArgGPRs
[0] && "Unexpected reg assignment");
8231 DAG
.getCopyFromReg(Chain
, DL
, ArgGPRs
[1], MVT::i32
, Glue
);
8232 Chain
= RetValue2
.getValue(1);
8233 Glue
= RetValue2
.getValue(2);
8234 RetValue
= DAG
.getNode(RISCVISD::BuildPairF64
, DL
, MVT::f64
, RetValue
,
8238 RetValue
= convertLocVTToValVT(DAG
, RetValue
, VA
, DL
, Subtarget
);
8240 InVals
.push_back(RetValue
);
8246 bool RISCVTargetLowering::CanLowerReturn(
8247 CallingConv::ID CallConv
, MachineFunction
&MF
, bool IsVarArg
,
8248 const SmallVectorImpl
<ISD::OutputArg
> &Outs
, LLVMContext
&Context
) const {
8249 SmallVector
<CCValAssign
, 16> RVLocs
;
8250 CCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
8252 Optional
<unsigned> FirstMaskArgument
;
8253 if (Subtarget
.hasStdExtV())
8254 FirstMaskArgument
= preAssignMask(Outs
);
8256 for (unsigned i
= 0, e
= Outs
.size(); i
!= e
; ++i
) {
8257 MVT VT
= Outs
[i
].VT
;
8258 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
8259 RISCVABI::ABI ABI
= MF
.getSubtarget
<RISCVSubtarget
>().getTargetABI();
8260 if (CC_RISCV(MF
.getDataLayout(), ABI
, i
, VT
, VT
, CCValAssign::Full
,
8261 ArgFlags
, CCInfo
, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
8262 *this, FirstMaskArgument
))
8269 RISCVTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
8271 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
8272 const SmallVectorImpl
<SDValue
> &OutVals
,
8273 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
8274 const MachineFunction
&MF
= DAG
.getMachineFunction();
8275 const RISCVSubtarget
&STI
= MF
.getSubtarget
<RISCVSubtarget
>();
8277 // Stores the assignment of the return value to a location.
8278 SmallVector
<CCValAssign
, 16> RVLocs
;
8280 // Info about the registers and stack slot.
8281 CCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
8284 analyzeOutputArgs(DAG
.getMachineFunction(), CCInfo
, Outs
, /*IsRet=*/true,
8287 if (CallConv
== CallingConv::GHC
&& !RVLocs
.empty())
8288 report_fatal_error("GHC functions return void only");
8291 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
8293 // Copy the result values into the output registers.
8294 for (unsigned i
= 0, e
= RVLocs
.size(); i
< e
; ++i
) {
8295 SDValue Val
= OutVals
[i
];
8296 CCValAssign
&VA
= RVLocs
[i
];
8297 assert(VA
.isRegLoc() && "Can only return in registers!");
8299 if (VA
.getLocVT() == MVT::i32
&& VA
.getValVT() == MVT::f64
) {
8300 // Handle returning f64 on RV32D with a soft float ABI.
8301 assert(VA
.isRegLoc() && "Expected return via registers");
8302 SDValue SplitF64
= DAG
.getNode(RISCVISD::SplitF64
, DL
,
8303 DAG
.getVTList(MVT::i32
, MVT::i32
), Val
);
8304 SDValue Lo
= SplitF64
.getValue(0);
8305 SDValue Hi
= SplitF64
.getValue(1);
8306 Register RegLo
= VA
.getLocReg();
8307 assert(RegLo
< RISCV::X31
&& "Invalid register pair");
8308 Register RegHi
= RegLo
+ 1;
8310 if (STI
.isRegisterReservedByUser(RegLo
) ||
8311 STI
.isRegisterReservedByUser(RegHi
))
8312 MF
.getFunction().getContext().diagnose(DiagnosticInfoUnsupported
{
8314 "Return value register required, but has been reserved."});
8316 Chain
= DAG
.getCopyToReg(Chain
, DL
, RegLo
, Lo
, Glue
);
8317 Glue
= Chain
.getValue(1);
8318 RetOps
.push_back(DAG
.getRegister(RegLo
, MVT::i32
));
8319 Chain
= DAG
.getCopyToReg(Chain
, DL
, RegHi
, Hi
, Glue
);
8320 Glue
= Chain
.getValue(1);
8321 RetOps
.push_back(DAG
.getRegister(RegHi
, MVT::i32
));
8323 // Handle a 'normal' return.
8324 Val
= convertValVTToLocVT(DAG
, Val
, VA
, DL
, Subtarget
);
8325 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Glue
);
8327 if (STI
.isRegisterReservedByUser(VA
.getLocReg()))
8328 MF
.getFunction().getContext().diagnose(DiagnosticInfoUnsupported
{
8330 "Return value register required, but has been reserved."});
8332 // Guarantee that all emitted copies are stuck together.
8333 Glue
= Chain
.getValue(1);
8334 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
8338 RetOps
[0] = Chain
; // Update chain.
8340 // Add the glue node if we have it.
8341 if (Glue
.getNode()) {
8342 RetOps
.push_back(Glue
);
8345 unsigned RetOpc
= RISCVISD::RET_FLAG
;
8346 // Interrupt service routines use different return instructions.
8347 const Function
&Func
= DAG
.getMachineFunction().getFunction();
8348 if (Func
.hasFnAttribute("interrupt")) {
8349 if (!Func
.getReturnType()->isVoidTy())
8351 "Functions with the interrupt attribute must have void return type!");
8353 MachineFunction
&MF
= DAG
.getMachineFunction();
8355 MF
.getFunction().getFnAttribute("interrupt").getValueAsString();
8358 RetOpc
= RISCVISD::URET_FLAG
;
8359 else if (Kind
== "supervisor")
8360 RetOpc
= RISCVISD::SRET_FLAG
;
8362 RetOpc
= RISCVISD::MRET_FLAG
;
8365 return DAG
.getNode(RetOpc
, DL
, MVT::Other
, RetOps
);
8368 void RISCVTargetLowering::validateCCReservedRegs(
8369 const SmallVectorImpl
<std::pair
<llvm::Register
, llvm::SDValue
>> &Regs
,
8370 MachineFunction
&MF
) const {
8371 const Function
&F
= MF
.getFunction();
8372 const RISCVSubtarget
&STI
= MF
.getSubtarget
<RISCVSubtarget
>();
8374 if (llvm::any_of(Regs
, [&STI
](auto Reg
) {
8375 return STI
.isRegisterReservedByUser(Reg
.first
);
8377 F
.getContext().diagnose(DiagnosticInfoUnsupported
{
8378 F
, "Argument register required, but has been reserved."});
8381 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
8382 return CI
->isTailCall();
8385 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode
) const {
8386 #define NODE_NAME_CASE(NODE) \
8387 case RISCVISD::NODE: \
8388 return "RISCVISD::" #NODE;
8390 switch ((RISCVISD::NodeType
)Opcode
) {
8391 case RISCVISD::FIRST_NUMBER
:
8393 NODE_NAME_CASE(RET_FLAG
)
8394 NODE_NAME_CASE(URET_FLAG
)
8395 NODE_NAME_CASE(SRET_FLAG
)
8396 NODE_NAME_CASE(MRET_FLAG
)
8397 NODE_NAME_CASE(CALL
)
8398 NODE_NAME_CASE(SELECT_CC
)
8399 NODE_NAME_CASE(BR_CC
)
8400 NODE_NAME_CASE(BuildPairF64
)
8401 NODE_NAME_CASE(SplitF64
)
8402 NODE_NAME_CASE(TAIL
)
8403 NODE_NAME_CASE(MULHSU
)
8404 NODE_NAME_CASE(SLLW
)
8405 NODE_NAME_CASE(SRAW
)
8406 NODE_NAME_CASE(SRLW
)
8407 NODE_NAME_CASE(DIVW
)
8408 NODE_NAME_CASE(DIVUW
)
8409 NODE_NAME_CASE(REMUW
)
8410 NODE_NAME_CASE(ROLW
)
8411 NODE_NAME_CASE(RORW
)
8412 NODE_NAME_CASE(CLZW
)
8413 NODE_NAME_CASE(CTZW
)
8414 NODE_NAME_CASE(FSLW
)
8415 NODE_NAME_CASE(FSRW
)
8418 NODE_NAME_CASE(FMV_H_X
)
8419 NODE_NAME_CASE(FMV_X_ANYEXTH
)
8420 NODE_NAME_CASE(FMV_W_X_RV64
)
8421 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64
)
8422 NODE_NAME_CASE(FCVT_X_RTZ
)
8423 NODE_NAME_CASE(FCVT_XU_RTZ
)
8424 NODE_NAME_CASE(FCVT_W_RTZ_RV64
)
8425 NODE_NAME_CASE(FCVT_WU_RTZ_RV64
)
8426 NODE_NAME_CASE(READ_CYCLE_WIDE
)
8427 NODE_NAME_CASE(GREV
)
8428 NODE_NAME_CASE(GREVW
)
8429 NODE_NAME_CASE(GORC
)
8430 NODE_NAME_CASE(GORCW
)
8431 NODE_NAME_CASE(SHFL
)
8432 NODE_NAME_CASE(SHFLW
)
8433 NODE_NAME_CASE(UNSHFL
)
8434 NODE_NAME_CASE(UNSHFLW
)
8435 NODE_NAME_CASE(BCOMPRESS
)
8436 NODE_NAME_CASE(BCOMPRESSW
)
8437 NODE_NAME_CASE(BDECOMPRESS
)
8438 NODE_NAME_CASE(BDECOMPRESSW
)
8439 NODE_NAME_CASE(VMV_V_X_VL
)
8440 NODE_NAME_CASE(VFMV_V_F_VL
)
8441 NODE_NAME_CASE(VMV_X_S
)
8442 NODE_NAME_CASE(VMV_S_X_VL
)
8443 NODE_NAME_CASE(VFMV_S_F_VL
)
8444 NODE_NAME_CASE(SPLAT_VECTOR_I64
)
8445 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL
)
8446 NODE_NAME_CASE(READ_VLENB
)
8447 NODE_NAME_CASE(TRUNCATE_VECTOR_VL
)
8448 NODE_NAME_CASE(VSLIDEUP_VL
)
8449 NODE_NAME_CASE(VSLIDE1UP_VL
)
8450 NODE_NAME_CASE(VSLIDEDOWN_VL
)
8451 NODE_NAME_CASE(VSLIDE1DOWN_VL
)
8452 NODE_NAME_CASE(VID_VL
)
8453 NODE_NAME_CASE(VFNCVT_ROD_VL
)
8454 NODE_NAME_CASE(VECREDUCE_ADD_VL
)
8455 NODE_NAME_CASE(VECREDUCE_UMAX_VL
)
8456 NODE_NAME_CASE(VECREDUCE_SMAX_VL
)
8457 NODE_NAME_CASE(VECREDUCE_UMIN_VL
)
8458 NODE_NAME_CASE(VECREDUCE_SMIN_VL
)
8459 NODE_NAME_CASE(VECREDUCE_AND_VL
)
8460 NODE_NAME_CASE(VECREDUCE_OR_VL
)
8461 NODE_NAME_CASE(VECREDUCE_XOR_VL
)
8462 NODE_NAME_CASE(VECREDUCE_FADD_VL
)
8463 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL
)
8464 NODE_NAME_CASE(VECREDUCE_FMIN_VL
)
8465 NODE_NAME_CASE(VECREDUCE_FMAX_VL
)
8466 NODE_NAME_CASE(ADD_VL
)
8467 NODE_NAME_CASE(AND_VL
)
8468 NODE_NAME_CASE(MUL_VL
)
8469 NODE_NAME_CASE(OR_VL
)
8470 NODE_NAME_CASE(SDIV_VL
)
8471 NODE_NAME_CASE(SHL_VL
)
8472 NODE_NAME_CASE(SREM_VL
)
8473 NODE_NAME_CASE(SRA_VL
)
8474 NODE_NAME_CASE(SRL_VL
)
8475 NODE_NAME_CASE(SUB_VL
)
8476 NODE_NAME_CASE(UDIV_VL
)
8477 NODE_NAME_CASE(UREM_VL
)
8478 NODE_NAME_CASE(XOR_VL
)
8479 NODE_NAME_CASE(SADDSAT_VL
)
8480 NODE_NAME_CASE(UADDSAT_VL
)
8481 NODE_NAME_CASE(SSUBSAT_VL
)
8482 NODE_NAME_CASE(USUBSAT_VL
)
8483 NODE_NAME_CASE(FADD_VL
)
8484 NODE_NAME_CASE(FSUB_VL
)
8485 NODE_NAME_CASE(FMUL_VL
)
8486 NODE_NAME_CASE(FDIV_VL
)
8487 NODE_NAME_CASE(FNEG_VL
)
8488 NODE_NAME_CASE(FABS_VL
)
8489 NODE_NAME_CASE(FSQRT_VL
)
8490 NODE_NAME_CASE(FMA_VL
)
8491 NODE_NAME_CASE(FCOPYSIGN_VL
)
8492 NODE_NAME_CASE(SMIN_VL
)
8493 NODE_NAME_CASE(SMAX_VL
)
8494 NODE_NAME_CASE(UMIN_VL
)
8495 NODE_NAME_CASE(UMAX_VL
)
8496 NODE_NAME_CASE(FMINNUM_VL
)
8497 NODE_NAME_CASE(FMAXNUM_VL
)
8498 NODE_NAME_CASE(MULHS_VL
)
8499 NODE_NAME_CASE(MULHU_VL
)
8500 NODE_NAME_CASE(FP_TO_SINT_VL
)
8501 NODE_NAME_CASE(FP_TO_UINT_VL
)
8502 NODE_NAME_CASE(SINT_TO_FP_VL
)
8503 NODE_NAME_CASE(UINT_TO_FP_VL
)
8504 NODE_NAME_CASE(FP_EXTEND_VL
)
8505 NODE_NAME_CASE(FP_ROUND_VL
)
8506 NODE_NAME_CASE(VWMUL_VL
)
8507 NODE_NAME_CASE(VWMULU_VL
)
8508 NODE_NAME_CASE(SETCC_VL
)
8509 NODE_NAME_CASE(VSELECT_VL
)
8510 NODE_NAME_CASE(VMAND_VL
)
8511 NODE_NAME_CASE(VMOR_VL
)
8512 NODE_NAME_CASE(VMXOR_VL
)
8513 NODE_NAME_CASE(VMCLR_VL
)
8514 NODE_NAME_CASE(VMSET_VL
)
8515 NODE_NAME_CASE(VRGATHER_VX_VL
)
8516 NODE_NAME_CASE(VRGATHER_VV_VL
)
8517 NODE_NAME_CASE(VRGATHEREI16_VV_VL
)
8518 NODE_NAME_CASE(VSEXT_VL
)
8519 NODE_NAME_CASE(VZEXT_VL
)
8520 NODE_NAME_CASE(VPOPC_VL
)
8521 NODE_NAME_CASE(VLE_VL
)
8522 NODE_NAME_CASE(VSE_VL
)
8523 NODE_NAME_CASE(READ_CSR
)
8524 NODE_NAME_CASE(WRITE_CSR
)
8525 NODE_NAME_CASE(SWAP_CSR
)
8529 #undef NODE_NAME_CASE
8532 /// getConstraintType - Given a constraint letter, return the type of
8533 /// constraint it is for this target.
8534 RISCVTargetLowering::ConstraintType
8535 RISCVTargetLowering::getConstraintType(StringRef Constraint
) const {
8536 if (Constraint
.size() == 1) {
8537 switch (Constraint
[0]) {
8541 return C_RegisterClass
;
8548 case 'S': // A symbolic address
8552 if (Constraint
== "vr" || Constraint
== "vm")
8553 return C_RegisterClass
;
8555 return TargetLowering::getConstraintType(Constraint
);
8558 std::pair
<unsigned, const TargetRegisterClass
*>
8559 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
8560 StringRef Constraint
,
8562 // First, see if this is a constraint that directly corresponds to a
8563 // RISCV register class.
8564 if (Constraint
.size() == 1) {
8565 switch (Constraint
[0]) {
8567 return std::make_pair(0U, &RISCV::GPRRegClass
);
8569 if (Subtarget
.hasStdExtZfh() && VT
== MVT::f16
)
8570 return std::make_pair(0U, &RISCV::FPR16RegClass
);
8571 if (Subtarget
.hasStdExtF() && VT
== MVT::f32
)
8572 return std::make_pair(0U, &RISCV::FPR32RegClass
);
8573 if (Subtarget
.hasStdExtD() && VT
== MVT::f64
)
8574 return std::make_pair(0U, &RISCV::FPR64RegClass
);
8580 if (Constraint
== "vr") {
8581 for (const auto *RC
: {&RISCV::VRRegClass
, &RISCV::VRM2RegClass
,
8582 &RISCV::VRM4RegClass
, &RISCV::VRM8RegClass
}) {
8583 if (TRI
->isTypeLegalForClass(*RC
, VT
.SimpleTy
))
8584 return std::make_pair(0U, RC
);
8586 } else if (Constraint
== "vm") {
8587 if (TRI
->isTypeLegalForClass(RISCV::VMRegClass
, VT
.SimpleTy
))
8588 return std::make_pair(0U, &RISCV::VMRegClass
);
8592 // Clang will correctly decode the usage of register name aliases into their
8593 // official names. However, other frontends like `rustc` do not. This allows
8594 // users of these frontends to use the ABI names for registers in LLVM-style
8595 // register constraints.
8596 unsigned XRegFromAlias
= StringSwitch
<unsigned>(Constraint
.lower())
8597 .Case("{zero}", RISCV::X0
)
8598 .Case("{ra}", RISCV::X1
)
8599 .Case("{sp}", RISCV::X2
)
8600 .Case("{gp}", RISCV::X3
)
8601 .Case("{tp}", RISCV::X4
)
8602 .Case("{t0}", RISCV::X5
)
8603 .Case("{t1}", RISCV::X6
)
8604 .Case("{t2}", RISCV::X7
)
8605 .Cases("{s0}", "{fp}", RISCV::X8
)
8606 .Case("{s1}", RISCV::X9
)
8607 .Case("{a0}", RISCV::X10
)
8608 .Case("{a1}", RISCV::X11
)
8609 .Case("{a2}", RISCV::X12
)
8610 .Case("{a3}", RISCV::X13
)
8611 .Case("{a4}", RISCV::X14
)
8612 .Case("{a5}", RISCV::X15
)
8613 .Case("{a6}", RISCV::X16
)
8614 .Case("{a7}", RISCV::X17
)
8615 .Case("{s2}", RISCV::X18
)
8616 .Case("{s3}", RISCV::X19
)
8617 .Case("{s4}", RISCV::X20
)
8618 .Case("{s5}", RISCV::X21
)
8619 .Case("{s6}", RISCV::X22
)
8620 .Case("{s7}", RISCV::X23
)
8621 .Case("{s8}", RISCV::X24
)
8622 .Case("{s9}", RISCV::X25
)
8623 .Case("{s10}", RISCV::X26
)
8624 .Case("{s11}", RISCV::X27
)
8625 .Case("{t3}", RISCV::X28
)
8626 .Case("{t4}", RISCV::X29
)
8627 .Case("{t5}", RISCV::X30
)
8628 .Case("{t6}", RISCV::X31
)
8629 .Default(RISCV::NoRegister
);
8630 if (XRegFromAlias
!= RISCV::NoRegister
)
8631 return std::make_pair(XRegFromAlias
, &RISCV::GPRRegClass
);
8633 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8634 // TableGen record rather than the AsmName to choose registers for InlineAsm
8635 // constraints, plus we want to match those names to the widest floating point
8636 // register type available, manually select floating point registers here.
8638 // The second case is the ABI name of the register, so that frontends can also
8639 // use the ABI names in register constraint lists.
8640 if (Subtarget
.hasStdExtF()) {
8641 unsigned FReg
= StringSwitch
<unsigned>(Constraint
.lower())
8642 .Cases("{f0}", "{ft0}", RISCV::F0_F
)
8643 .Cases("{f1}", "{ft1}", RISCV::F1_F
)
8644 .Cases("{f2}", "{ft2}", RISCV::F2_F
)
8645 .Cases("{f3}", "{ft3}", RISCV::F3_F
)
8646 .Cases("{f4}", "{ft4}", RISCV::F4_F
)
8647 .Cases("{f5}", "{ft5}", RISCV::F5_F
)
8648 .Cases("{f6}", "{ft6}", RISCV::F6_F
)
8649 .Cases("{f7}", "{ft7}", RISCV::F7_F
)
8650 .Cases("{f8}", "{fs0}", RISCV::F8_F
)
8651 .Cases("{f9}", "{fs1}", RISCV::F9_F
)
8652 .Cases("{f10}", "{fa0}", RISCV::F10_F
)
8653 .Cases("{f11}", "{fa1}", RISCV::F11_F
)
8654 .Cases("{f12}", "{fa2}", RISCV::F12_F
)
8655 .Cases("{f13}", "{fa3}", RISCV::F13_F
)
8656 .Cases("{f14}", "{fa4}", RISCV::F14_F
)
8657 .Cases("{f15}", "{fa5}", RISCV::F15_F
)
8658 .Cases("{f16}", "{fa6}", RISCV::F16_F
)
8659 .Cases("{f17}", "{fa7}", RISCV::F17_F
)
8660 .Cases("{f18}", "{fs2}", RISCV::F18_F
)
8661 .Cases("{f19}", "{fs3}", RISCV::F19_F
)
8662 .Cases("{f20}", "{fs4}", RISCV::F20_F
)
8663 .Cases("{f21}", "{fs5}", RISCV::F21_F
)
8664 .Cases("{f22}", "{fs6}", RISCV::F22_F
)
8665 .Cases("{f23}", "{fs7}", RISCV::F23_F
)
8666 .Cases("{f24}", "{fs8}", RISCV::F24_F
)
8667 .Cases("{f25}", "{fs9}", RISCV::F25_F
)
8668 .Cases("{f26}", "{fs10}", RISCV::F26_F
)
8669 .Cases("{f27}", "{fs11}", RISCV::F27_F
)
8670 .Cases("{f28}", "{ft8}", RISCV::F28_F
)
8671 .Cases("{f29}", "{ft9}", RISCV::F29_F
)
8672 .Cases("{f30}", "{ft10}", RISCV::F30_F
)
8673 .Cases("{f31}", "{ft11}", RISCV::F31_F
)
8674 .Default(RISCV::NoRegister
);
8675 if (FReg
!= RISCV::NoRegister
) {
8676 assert(RISCV::F0_F
<= FReg
&& FReg
<= RISCV::F31_F
&& "Unknown fp-reg");
8677 if (Subtarget
.hasStdExtD()) {
8678 unsigned RegNo
= FReg
- RISCV::F0_F
;
8679 unsigned DReg
= RISCV::F0_D
+ RegNo
;
8680 return std::make_pair(DReg
, &RISCV::FPR64RegClass
);
8682 return std::make_pair(FReg
, &RISCV::FPR32RegClass
);
8686 if (Subtarget
.hasStdExtV()) {
8687 Register VReg
= StringSwitch
<Register
>(Constraint
.lower())
8688 .Case("{v0}", RISCV::V0
)
8689 .Case("{v1}", RISCV::V1
)
8690 .Case("{v2}", RISCV::V2
)
8691 .Case("{v3}", RISCV::V3
)
8692 .Case("{v4}", RISCV::V4
)
8693 .Case("{v5}", RISCV::V5
)
8694 .Case("{v6}", RISCV::V6
)
8695 .Case("{v7}", RISCV::V7
)
8696 .Case("{v8}", RISCV::V8
)
8697 .Case("{v9}", RISCV::V9
)
8698 .Case("{v10}", RISCV::V10
)
8699 .Case("{v11}", RISCV::V11
)
8700 .Case("{v12}", RISCV::V12
)
8701 .Case("{v13}", RISCV::V13
)
8702 .Case("{v14}", RISCV::V14
)
8703 .Case("{v15}", RISCV::V15
)
8704 .Case("{v16}", RISCV::V16
)
8705 .Case("{v17}", RISCV::V17
)
8706 .Case("{v18}", RISCV::V18
)
8707 .Case("{v19}", RISCV::V19
)
8708 .Case("{v20}", RISCV::V20
)
8709 .Case("{v21}", RISCV::V21
)
8710 .Case("{v22}", RISCV::V22
)
8711 .Case("{v23}", RISCV::V23
)
8712 .Case("{v24}", RISCV::V24
)
8713 .Case("{v25}", RISCV::V25
)
8714 .Case("{v26}", RISCV::V26
)
8715 .Case("{v27}", RISCV::V27
)
8716 .Case("{v28}", RISCV::V28
)
8717 .Case("{v29}", RISCV::V29
)
8718 .Case("{v30}", RISCV::V30
)
8719 .Case("{v31}", RISCV::V31
)
8720 .Default(RISCV::NoRegister
);
8721 if (VReg
!= RISCV::NoRegister
) {
8722 if (TRI
->isTypeLegalForClass(RISCV::VMRegClass
, VT
.SimpleTy
))
8723 return std::make_pair(VReg
, &RISCV::VMRegClass
);
8724 if (TRI
->isTypeLegalForClass(RISCV::VRRegClass
, VT
.SimpleTy
))
8725 return std::make_pair(VReg
, &RISCV::VRRegClass
);
8726 for (const auto *RC
:
8727 {&RISCV::VRM2RegClass
, &RISCV::VRM4RegClass
, &RISCV::VRM8RegClass
}) {
8728 if (TRI
->isTypeLegalForClass(*RC
, VT
.SimpleTy
)) {
8729 VReg
= TRI
->getMatchingSuperReg(VReg
, RISCV::sub_vrm1_0
, RC
);
8730 return std::make_pair(VReg
, RC
);
8736 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
8740 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode
) const {
8741 // Currently only support length 1 constraints.
8742 if (ConstraintCode
.size() == 1) {
8743 switch (ConstraintCode
[0]) {
8745 return InlineAsm::Constraint_A
;
8751 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
8754 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8755 SDValue Op
, std::string
&Constraint
, std::vector
<SDValue
> &Ops
,
8756 SelectionDAG
&DAG
) const {
8757 // Currently only support length 1 constraints.
8758 if (Constraint
.length() == 1) {
8759 switch (Constraint
[0]) {
8761 // Validate & create a 12-bit signed immediate operand.
8762 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8763 uint64_t CVal
= C
->getSExtValue();
8764 if (isInt
<12>(CVal
))
8766 DAG
.getTargetConstant(CVal
, SDLoc(Op
), Subtarget
.getXLenVT()));
8770 // Validate & create an integer zero operand.
8771 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
))
8772 if (C
->getZExtValue() == 0)
8774 DAG
.getTargetConstant(0, SDLoc(Op
), Subtarget
.getXLenVT()));
8777 // Validate & create a 5-bit unsigned immediate operand.
8778 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8779 uint64_t CVal
= C
->getZExtValue();
8780 if (isUInt
<5>(CVal
))
8782 DAG
.getTargetConstant(CVal
, SDLoc(Op
), Subtarget
.getXLenVT()));
8786 if (const auto *GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) {
8787 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
8788 GA
->getValueType(0)));
8789 } else if (const auto *BA
= dyn_cast
<BlockAddressSDNode
>(Op
)) {
8790 Ops
.push_back(DAG
.getTargetBlockAddress(BA
->getBlockAddress(),
8791 BA
->getValueType(0)));
8798 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
8801 Instruction
*RISCVTargetLowering::emitLeadingFence(IRBuilderBase
&Builder
,
8803 AtomicOrdering Ord
) const {
8804 if (isa
<LoadInst
>(Inst
) && Ord
== AtomicOrdering::SequentiallyConsistent
)
8805 return Builder
.CreateFence(Ord
);
8806 if (isa
<StoreInst
>(Inst
) && isReleaseOrStronger(Ord
))
8807 return Builder
.CreateFence(AtomicOrdering::Release
);
8811 Instruction
*RISCVTargetLowering::emitTrailingFence(IRBuilderBase
&Builder
,
8813 AtomicOrdering Ord
) const {
8814 if (isa
<LoadInst
>(Inst
) && isAcquireOrStronger(Ord
))
8815 return Builder
.CreateFence(AtomicOrdering::Acquire
);
8819 TargetLowering::AtomicExpansionKind
8820 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
8821 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8822 // point operations can't be used in an lr/sc sequence without breaking the
8823 // forward-progress guarantee.
8824 if (AI
->isFloatingPointOperation())
8825 return AtomicExpansionKind::CmpXChg
;
8827 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
8828 if (Size
== 8 || Size
== 16)
8829 return AtomicExpansionKind::MaskedIntrinsic
;
8830 return AtomicExpansionKind::None
;
8833 static Intrinsic::ID
8834 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen
, AtomicRMWInst::BinOp BinOp
) {
8838 llvm_unreachable("Unexpected AtomicRMW BinOp");
8839 case AtomicRMWInst::Xchg
:
8840 return Intrinsic::riscv_masked_atomicrmw_xchg_i32
;
8841 case AtomicRMWInst::Add
:
8842 return Intrinsic::riscv_masked_atomicrmw_add_i32
;
8843 case AtomicRMWInst::Sub
:
8844 return Intrinsic::riscv_masked_atomicrmw_sub_i32
;
8845 case AtomicRMWInst::Nand
:
8846 return Intrinsic::riscv_masked_atomicrmw_nand_i32
;
8847 case AtomicRMWInst::Max
:
8848 return Intrinsic::riscv_masked_atomicrmw_max_i32
;
8849 case AtomicRMWInst::Min
:
8850 return Intrinsic::riscv_masked_atomicrmw_min_i32
;
8851 case AtomicRMWInst::UMax
:
8852 return Intrinsic::riscv_masked_atomicrmw_umax_i32
;
8853 case AtomicRMWInst::UMin
:
8854 return Intrinsic::riscv_masked_atomicrmw_umin_i32
;
8861 llvm_unreachable("Unexpected AtomicRMW BinOp");
8862 case AtomicRMWInst::Xchg
:
8863 return Intrinsic::riscv_masked_atomicrmw_xchg_i64
;
8864 case AtomicRMWInst::Add
:
8865 return Intrinsic::riscv_masked_atomicrmw_add_i64
;
8866 case AtomicRMWInst::Sub
:
8867 return Intrinsic::riscv_masked_atomicrmw_sub_i64
;
8868 case AtomicRMWInst::Nand
:
8869 return Intrinsic::riscv_masked_atomicrmw_nand_i64
;
8870 case AtomicRMWInst::Max
:
8871 return Intrinsic::riscv_masked_atomicrmw_max_i64
;
8872 case AtomicRMWInst::Min
:
8873 return Intrinsic::riscv_masked_atomicrmw_min_i64
;
8874 case AtomicRMWInst::UMax
:
8875 return Intrinsic::riscv_masked_atomicrmw_umax_i64
;
8876 case AtomicRMWInst::UMin
:
8877 return Intrinsic::riscv_masked_atomicrmw_umin_i64
;
8881 llvm_unreachable("Unexpected XLen\n");
8884 Value
*RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8885 IRBuilderBase
&Builder
, AtomicRMWInst
*AI
, Value
*AlignedAddr
, Value
*Incr
,
8886 Value
*Mask
, Value
*ShiftAmt
, AtomicOrdering Ord
) const {
8887 unsigned XLen
= Subtarget
.getXLen();
8889 Builder
.getIntN(XLen
, static_cast<uint64_t>(AI
->getOrdering()));
8890 Type
*Tys
[] = {AlignedAddr
->getType()};
8891 Function
*LrwOpScwLoop
= Intrinsic::getDeclaration(
8893 getIntrinsicForMaskedAtomicRMWBinOp(XLen
, AI
->getOperation()), Tys
);
8896 Incr
= Builder
.CreateSExt(Incr
, Builder
.getInt64Ty());
8897 Mask
= Builder
.CreateSExt(Mask
, Builder
.getInt64Ty());
8898 ShiftAmt
= Builder
.CreateSExt(ShiftAmt
, Builder
.getInt64Ty());
8903 // Must pass the shift amount needed to sign extend the loaded value prior
8904 // to performing a signed comparison for min/max. ShiftAmt is the number of
8905 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8906 // is the number of bits to left+right shift the value in order to
8908 if (AI
->getOperation() == AtomicRMWInst::Min
||
8909 AI
->getOperation() == AtomicRMWInst::Max
) {
8910 const DataLayout
&DL
= AI
->getModule()->getDataLayout();
8912 DL
.getTypeStoreSizeInBits(AI
->getValOperand()->getType());
8914 Builder
.CreateSub(Builder
.getIntN(XLen
, XLen
- ValWidth
), ShiftAmt
);
8915 Result
= Builder
.CreateCall(LrwOpScwLoop
,
8916 {AlignedAddr
, Incr
, Mask
, SextShamt
, Ordering
});
8919 Builder
.CreateCall(LrwOpScwLoop
, {AlignedAddr
, Incr
, Mask
, Ordering
});
8923 Result
= Builder
.CreateTrunc(Result
, Builder
.getInt32Ty());
8927 TargetLowering::AtomicExpansionKind
8928 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8929 AtomicCmpXchgInst
*CI
) const {
8930 unsigned Size
= CI
->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8931 if (Size
== 8 || Size
== 16)
8932 return AtomicExpansionKind::MaskedIntrinsic
;
8933 return AtomicExpansionKind::None
;
8936 Value
*RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8937 IRBuilderBase
&Builder
, AtomicCmpXchgInst
*CI
, Value
*AlignedAddr
,
8938 Value
*CmpVal
, Value
*NewVal
, Value
*Mask
, AtomicOrdering Ord
) const {
8939 unsigned XLen
= Subtarget
.getXLen();
8940 Value
*Ordering
= Builder
.getIntN(XLen
, static_cast<uint64_t>(Ord
));
8941 Intrinsic::ID CmpXchgIntrID
= Intrinsic::riscv_masked_cmpxchg_i32
;
8943 CmpVal
= Builder
.CreateSExt(CmpVal
, Builder
.getInt64Ty());
8944 NewVal
= Builder
.CreateSExt(NewVal
, Builder
.getInt64Ty());
8945 Mask
= Builder
.CreateSExt(Mask
, Builder
.getInt64Ty());
8946 CmpXchgIntrID
= Intrinsic::riscv_masked_cmpxchg_i64
;
8948 Type
*Tys
[] = {AlignedAddr
->getType()};
8949 Function
*MaskedCmpXchg
=
8950 Intrinsic::getDeclaration(CI
->getModule(), CmpXchgIntrID
, Tys
);
8951 Value
*Result
= Builder
.CreateCall(
8952 MaskedCmpXchg
, {AlignedAddr
, CmpVal
, NewVal
, Mask
, Ordering
});
8954 Result
= Builder
.CreateTrunc(Result
, Builder
.getInt32Ty());
8958 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT
) const {
8962 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction
&MF
,
8964 VT
= VT
.getScalarType();
8969 switch (VT
.getSimpleVT().SimpleTy
) {
8971 return Subtarget
.hasStdExtZfh();
8973 return Subtarget
.hasStdExtF();
8975 return Subtarget
.hasStdExtD();
8983 Register
RISCVTargetLowering::getExceptionPointerRegister(
8984 const Constant
*PersonalityFn
) const {
8988 Register
RISCVTargetLowering::getExceptionSelectorRegister(
8989 const Constant
*PersonalityFn
) const {
8993 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type
) const {
8994 // Return false to suppress the unnecessary extensions if the LibCall
8995 // arguments or return value is f32 type for LP64 ABI.
8996 RISCVABI::ABI ABI
= Subtarget
.getTargetABI();
8997 if (ABI
== RISCVABI::ABI_LP64
&& (Type
== MVT::f32
))
9003 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
, bool IsSigned
) const {
9004 if (Subtarget
.is64Bit() && Type
== MVT::i32
)
9010 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext
&Context
, EVT VT
,
9012 // Check integral scalar types.
9013 if (VT
.isScalarInteger()) {
9014 // Omit the optimization if the sub target has the M extension and the data
9015 // size exceeds XLen.
9016 if (Subtarget
.hasStdExtM() && VT
.getSizeInBits() > Subtarget
.getXLen())
9018 if (auto *ConstNode
= dyn_cast
<ConstantSDNode
>(C
.getNode())) {
9019 // Break the MUL to a SLLI and an ADD/SUB.
9020 const APInt
&Imm
= ConstNode
->getAPIntValue();
9021 if ((Imm
+ 1).isPowerOf2() || (Imm
- 1).isPowerOf2() ||
9022 (1 - Imm
).isPowerOf2() || (-1 - Imm
).isPowerOf2())
9024 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9025 if (Subtarget
.hasStdExtZba() && !Imm
.isSignedIntN(12) &&
9026 ((Imm
- 2).isPowerOf2() || (Imm
- 4).isPowerOf2() ||
9027 (Imm
- 8).isPowerOf2()))
9029 // Omit the following optimization if the sub target has the M extension
9030 // and the data size >= XLen.
9031 if (Subtarget
.hasStdExtM() && VT
.getSizeInBits() >= Subtarget
.getXLen())
9033 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9034 // a pair of LUI/ADDI.
9035 if (!Imm
.isSignedIntN(12) && Imm
.countTrailingZeros() < 12) {
9036 APInt ImmS
= Imm
.ashr(Imm
.countTrailingZeros());
9037 if ((ImmS
+ 1).isPowerOf2() || (ImmS
- 1).isPowerOf2() ||
9038 (1 - ImmS
).isPowerOf2())
9047 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9048 EVT VT
, unsigned AddrSpace
, Align Alignment
, MachineMemOperand::Flags Flags
,
9053 EVT ElemVT
= VT
.getVectorElementType();
9054 if (Alignment
>= ElemVT
.getStoreSize()) {
9063 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9064 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
, SDValue
*Parts
,
9065 unsigned NumParts
, MVT PartVT
, Optional
<CallingConv::ID
> CC
) const {
9066 bool IsABIRegCopy
= CC
.hasValue();
9067 EVT ValueVT
= Val
.getValueType();
9068 if (IsABIRegCopy
&& ValueVT
== MVT::f16
&& PartVT
== MVT::f32
) {
9069 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9071 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i16
, Val
);
9072 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, Val
);
9073 Val
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Val
,
9074 DAG
.getConstant(0xFFFF0000, DL
, MVT::i32
));
9075 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Val
);
9080 if (ValueVT
.isScalableVector() && PartVT
.isScalableVector()) {
9081 LLVMContext
&Context
= *DAG
.getContext();
9082 EVT ValueEltVT
= ValueVT
.getVectorElementType();
9083 EVT PartEltVT
= PartVT
.getVectorElementType();
9084 unsigned ValueVTBitSize
= ValueVT
.getSizeInBits().getKnownMinSize();
9085 unsigned PartVTBitSize
= PartVT
.getSizeInBits().getKnownMinSize();
9086 if (PartVTBitSize
% ValueVTBitSize
== 0) {
9087 // If the element types are different, bitcast to the same element type of
9089 if (ValueEltVT
!= PartEltVT
) {
9090 unsigned Count
= ValueVTBitSize
/ PartEltVT
.getSizeInBits();
9091 assert(Count
!= 0 && "The number of element should not be zero.");
9093 EVT::getVectorVT(Context
, PartEltVT
, Count
, /*IsScalable=*/true);
9094 Val
= DAG
.getNode(ISD::BITCAST
, DL
, SameEltTypeVT
, Val
);
9096 Val
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, PartVT
, DAG
.getUNDEF(PartVT
),
9097 Val
, DAG
.getConstant(0, DL
, Subtarget
.getXLenVT()));
9105 SDValue
RISCVTargetLowering::joinRegisterPartsIntoValue(
9106 SelectionDAG
&DAG
, const SDLoc
&DL
, const SDValue
*Parts
, unsigned NumParts
,
9107 MVT PartVT
, EVT ValueVT
, Optional
<CallingConv::ID
> CC
) const {
9108 bool IsABIRegCopy
= CC
.hasValue();
9109 if (IsABIRegCopy
&& ValueVT
== MVT::f16
&& PartVT
== MVT::f32
) {
9110 SDValue Val
= Parts
[0];
9112 // Cast the f32 to i32, truncate to i16, and cast back to f16.
9113 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Val
);
9114 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i16
, Val
);
9115 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::f16
, Val
);
9119 if (ValueVT
.isScalableVector() && PartVT
.isScalableVector()) {
9120 LLVMContext
&Context
= *DAG
.getContext();
9121 SDValue Val
= Parts
[0];
9122 EVT ValueEltVT
= ValueVT
.getVectorElementType();
9123 EVT PartEltVT
= PartVT
.getVectorElementType();
9124 unsigned ValueVTBitSize
= ValueVT
.getSizeInBits().getKnownMinSize();
9125 unsigned PartVTBitSize
= PartVT
.getSizeInBits().getKnownMinSize();
9126 if (PartVTBitSize
% ValueVTBitSize
== 0) {
9127 EVT SameEltTypeVT
= ValueVT
;
9128 // If the element types are different, convert it to the same element type
9130 if (ValueEltVT
!= PartEltVT
) {
9131 unsigned Count
= ValueVTBitSize
/ PartEltVT
.getSizeInBits();
9132 assert(Count
!= 0 && "The number of element should not be zero.");
9134 EVT::getVectorVT(Context
, PartEltVT
, Count
, /*IsScalable=*/true);
9136 Val
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SameEltTypeVT
, Val
,
9137 DAG
.getConstant(0, DL
, Subtarget
.getXLenVT()));
9138 if (ValueEltVT
!= PartEltVT
)
9139 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
9146 #define GET_REGISTER_MATCHER
9147 #include "RISCVGenAsmMatcher.inc"
9150 RISCVTargetLowering::getRegisterByName(const char *RegName
, LLT VT
,
9151 const MachineFunction
&MF
) const {
9152 Register Reg
= MatchRegisterAltName(RegName
);
9153 if (Reg
== RISCV::NoRegister
)
9154 Reg
= MatchRegisterName(RegName
);
9155 if (Reg
== RISCV::NoRegister
)
9157 Twine("Invalid register name \"" + StringRef(RegName
) + "\"."));
9158 BitVector ReservedRegs
= Subtarget
.getRegisterInfo()->getReservedRegs(MF
);
9159 if (!ReservedRegs
.test(Reg
) && !Subtarget
.isRegisterReservedByUser(Reg
))
9160 report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9161 StringRef(RegName
) + "\"."));
9166 namespace RISCVVIntrinsicsTable
{
9168 #define GET_RISCVVIntrinsicsTable_IMPL
9169 #include "RISCVGenSearchableTables.inc"
9171 } // namespace RISCVVIntrinsicsTable