[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / SystemZ / AsmParser / SystemZAsmParser.cpp
blob0de24245cfcc6d26dcd43d77d1292b3b86b9c522
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCAsmInfo.h"
11 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "TargetInfo/SystemZTargetInfo.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/MC/MCAsmInfo.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCExpr.h"
19 #include "llvm/MC/MCInst.h"
20 #include "llvm/MC/MCInstBuilder.h"
21 #include "llvm/MC/MCParser/MCAsmLexer.h"
22 #include "llvm/MC/MCParser/MCAsmParser.h"
23 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
24 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
25 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/SMLoc.h"
31 #include "llvm/Support/TargetRegistry.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <iterator>
37 #include <memory>
38 #include <string>
40 using namespace llvm;
42 // Return true if Expr is in the range [MinValue, MaxValue].
43 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
44 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
45 int64_t Value = CE->getValue();
46 return Value >= MinValue && Value <= MaxValue;
48 return false;
51 namespace {
53 enum RegisterKind {
54 GR32Reg,
55 GRH32Reg,
56 GR64Reg,
57 GR128Reg,
58 FP32Reg,
59 FP64Reg,
60 FP128Reg,
61 VR32Reg,
62 VR64Reg,
63 VR128Reg,
64 AR32Reg,
65 CR64Reg,
68 enum MemoryKind {
69 BDMem,
70 BDXMem,
71 BDLMem,
72 BDRMem,
73 BDVMem
76 class SystemZOperand : public MCParsedAsmOperand {
77 private:
78 enum OperandKind {
79 KindInvalid,
80 KindToken,
81 KindReg,
82 KindImm,
83 KindImmTLS,
84 KindMem
87 OperandKind Kind;
88 SMLoc StartLoc, EndLoc;
90 // A string of length Length, starting at Data.
91 struct TokenOp {
92 const char *Data;
93 unsigned Length;
96 // LLVM register Num, which has kind Kind. In some ways it might be
97 // easier for this class to have a register bank (general, floating-point
98 // or access) and a raw register number (0-15). This would postpone the
99 // interpretation of the operand to the add*() methods and avoid the need
100 // for context-dependent parsing. However, we do things the current way
101 // because of the virtual getReg() method, which needs to distinguish
102 // between (say) %r0 used as a single register and %r0 used as a pair.
103 // Context-dependent parsing can also give us slightly better error
104 // messages when invalid pairs like %r1 are used.
105 struct RegOp {
106 RegisterKind Kind;
107 unsigned Num;
110 // Base + Disp + Index, where Base and Index are LLVM registers or 0.
111 // MemKind says what type of memory this is and RegKind says what type
112 // the base register has (GR32Reg or GR64Reg). Length is the operand
113 // length for D(L,B)-style operands, otherwise it is null.
114 struct MemOp {
115 unsigned Base : 12;
116 unsigned Index : 12;
117 unsigned MemKind : 4;
118 unsigned RegKind : 4;
119 const MCExpr *Disp;
120 union {
121 const MCExpr *Imm;
122 unsigned Reg;
123 } Length;
126 // Imm is an immediate operand, and Sym is an optional TLS symbol
127 // for use with a __tls_get_offset marker relocation.
128 struct ImmTLSOp {
129 const MCExpr *Imm;
130 const MCExpr *Sym;
133 union {
134 TokenOp Token;
135 RegOp Reg;
136 const MCExpr *Imm;
137 ImmTLSOp ImmTLS;
138 MemOp Mem;
141 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
142 // Add as immediates when possible. Null MCExpr = 0.
143 if (!Expr)
144 Inst.addOperand(MCOperand::createImm(0));
145 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
146 Inst.addOperand(MCOperand::createImm(CE->getValue()));
147 else
148 Inst.addOperand(MCOperand::createExpr(Expr));
151 public:
152 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
153 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
155 // Create particular kinds of operand.
156 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
157 SMLoc EndLoc) {
158 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
161 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
162 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
163 Op->Token.Data = Str.data();
164 Op->Token.Length = Str.size();
165 return Op;
168 static std::unique_ptr<SystemZOperand>
169 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
170 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
171 Op->Reg.Kind = Kind;
172 Op->Reg.Num = Num;
173 return Op;
176 static std::unique_ptr<SystemZOperand>
177 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
178 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
179 Op->Imm = Expr;
180 return Op;
183 static std::unique_ptr<SystemZOperand>
184 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
185 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
186 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
187 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
188 Op->Mem.MemKind = MemKind;
189 Op->Mem.RegKind = RegKind;
190 Op->Mem.Base = Base;
191 Op->Mem.Index = Index;
192 Op->Mem.Disp = Disp;
193 if (MemKind == BDLMem)
194 Op->Mem.Length.Imm = LengthImm;
195 if (MemKind == BDRMem)
196 Op->Mem.Length.Reg = LengthReg;
197 return Op;
200 static std::unique_ptr<SystemZOperand>
201 createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
202 SMLoc StartLoc, SMLoc EndLoc) {
203 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
204 Op->ImmTLS.Imm = Imm;
205 Op->ImmTLS.Sym = Sym;
206 return Op;
209 // Token operands
210 bool isToken() const override {
211 return Kind == KindToken;
213 StringRef getToken() const {
214 assert(Kind == KindToken && "Not a token");
215 return StringRef(Token.Data, Token.Length);
218 // Register operands.
219 bool isReg() const override {
220 return Kind == KindReg;
222 bool isReg(RegisterKind RegKind) const {
223 return Kind == KindReg && Reg.Kind == RegKind;
225 unsigned getReg() const override {
226 assert(Kind == KindReg && "Not a register");
227 return Reg.Num;
230 // Immediate operands.
231 bool isImm() const override {
232 return Kind == KindImm;
234 bool isImm(int64_t MinValue, int64_t MaxValue) const {
235 return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
237 const MCExpr *getImm() const {
238 assert(Kind == KindImm && "Not an immediate");
239 return Imm;
242 // Immediate operands with optional TLS symbol.
243 bool isImmTLS() const {
244 return Kind == KindImmTLS;
247 const ImmTLSOp getImmTLS() const {
248 assert(Kind == KindImmTLS && "Not a TLS immediate");
249 return ImmTLS;
252 // Memory operands.
253 bool isMem() const override {
254 return Kind == KindMem;
256 bool isMem(MemoryKind MemKind) const {
257 return (Kind == KindMem &&
258 (Mem.MemKind == MemKind ||
259 // A BDMem can be treated as a BDXMem in which the index
260 // register field is 0.
261 (Mem.MemKind == BDMem && MemKind == BDXMem)));
263 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
264 return isMem(MemKind) && Mem.RegKind == RegKind;
266 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
267 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
269 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
270 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
272 bool isMemDisp12Len4(RegisterKind RegKind) const {
273 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
275 bool isMemDisp12Len8(RegisterKind RegKind) const {
276 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
279 const MemOp& getMem() const {
280 assert(Kind == KindMem && "Not a Mem operand");
281 return Mem;
284 // Override MCParsedAsmOperand.
285 SMLoc getStartLoc() const override { return StartLoc; }
286 SMLoc getEndLoc() const override { return EndLoc; }
287 void print(raw_ostream &OS) const override;
289 /// getLocRange - Get the range between the first and last token of this
290 /// operand.
291 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
293 // Used by the TableGen code to add particular types of operand
294 // to an instruction.
295 void addRegOperands(MCInst &Inst, unsigned N) const {
296 assert(N == 1 && "Invalid number of operands");
297 Inst.addOperand(MCOperand::createReg(getReg()));
299 void addImmOperands(MCInst &Inst, unsigned N) const {
300 assert(N == 1 && "Invalid number of operands");
301 addExpr(Inst, getImm());
303 void addBDAddrOperands(MCInst &Inst, unsigned N) const {
304 assert(N == 2 && "Invalid number of operands");
305 assert(isMem(BDMem) && "Invalid operand type");
306 Inst.addOperand(MCOperand::createReg(Mem.Base));
307 addExpr(Inst, Mem.Disp);
309 void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
310 assert(N == 3 && "Invalid number of operands");
311 assert(isMem(BDXMem) && "Invalid operand type");
312 Inst.addOperand(MCOperand::createReg(Mem.Base));
313 addExpr(Inst, Mem.Disp);
314 Inst.addOperand(MCOperand::createReg(Mem.Index));
316 void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
317 assert(N == 3 && "Invalid number of operands");
318 assert(isMem(BDLMem) && "Invalid operand type");
319 Inst.addOperand(MCOperand::createReg(Mem.Base));
320 addExpr(Inst, Mem.Disp);
321 addExpr(Inst, Mem.Length.Imm);
323 void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
324 assert(N == 3 && "Invalid number of operands");
325 assert(isMem(BDRMem) && "Invalid operand type");
326 Inst.addOperand(MCOperand::createReg(Mem.Base));
327 addExpr(Inst, Mem.Disp);
328 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
330 void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
331 assert(N == 3 && "Invalid number of operands");
332 assert(isMem(BDVMem) && "Invalid operand type");
333 Inst.addOperand(MCOperand::createReg(Mem.Base));
334 addExpr(Inst, Mem.Disp);
335 Inst.addOperand(MCOperand::createReg(Mem.Index));
337 void addImmTLSOperands(MCInst &Inst, unsigned N) const {
338 assert(N == 2 && "Invalid number of operands");
339 assert(Kind == KindImmTLS && "Invalid operand type");
340 addExpr(Inst, ImmTLS.Imm);
341 if (ImmTLS.Sym)
342 addExpr(Inst, ImmTLS.Sym);
345 // Used by the TableGen code to check for particular operand types.
346 bool isGR32() const { return isReg(GR32Reg); }
347 bool isGRH32() const { return isReg(GRH32Reg); }
348 bool isGRX32() const { return false; }
349 bool isGR64() const { return isReg(GR64Reg); }
350 bool isGR128() const { return isReg(GR128Reg); }
351 bool isADDR32() const { return isReg(GR32Reg); }
352 bool isADDR64() const { return isReg(GR64Reg); }
353 bool isADDR128() const { return false; }
354 bool isFP32() const { return isReg(FP32Reg); }
355 bool isFP64() const { return isReg(FP64Reg); }
356 bool isFP128() const { return isReg(FP128Reg); }
357 bool isVR32() const { return isReg(VR32Reg); }
358 bool isVR64() const { return isReg(VR64Reg); }
359 bool isVF128() const { return false; }
360 bool isVR128() const { return isReg(VR128Reg); }
361 bool isAR32() const { return isReg(AR32Reg); }
362 bool isCR64() const { return isReg(CR64Reg); }
363 bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
364 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
365 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
366 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
367 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
368 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
369 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
370 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
371 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
372 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
373 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
374 bool isU1Imm() const { return isImm(0, 1); }
375 bool isU2Imm() const { return isImm(0, 3); }
376 bool isU3Imm() const { return isImm(0, 7); }
377 bool isU4Imm() const { return isImm(0, 15); }
378 bool isU6Imm() const { return isImm(0, 63); }
379 bool isU8Imm() const { return isImm(0, 255); }
380 bool isS8Imm() const { return isImm(-128, 127); }
381 bool isU12Imm() const { return isImm(0, 4095); }
382 bool isU16Imm() const { return isImm(0, 65535); }
383 bool isS16Imm() const { return isImm(-32768, 32767); }
384 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
385 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
386 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
389 class SystemZAsmParser : public MCTargetAsmParser {
390 #define GET_ASSEMBLER_HEADER
391 #include "SystemZGenAsmMatcher.inc"
393 private:
394 MCAsmParser &Parser;
395 enum RegisterGroup {
396 RegGR,
397 RegFP,
398 RegV,
399 RegAR,
400 RegCR
402 struct Register {
403 RegisterGroup Group;
404 unsigned Num;
405 SMLoc StartLoc, EndLoc;
408 bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
410 bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
412 OperandMatchResultTy parseRegister(OperandVector &Operands,
413 RegisterKind Kind);
415 OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
417 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
418 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
419 bool HasLength = false, bool HasVectorIndex = false);
420 bool parseAddressRegister(Register &Reg);
422 bool ParseDirectiveInsn(SMLoc L);
424 OperandMatchResultTy parseAddress(OperandVector &Operands,
425 MemoryKind MemKind,
426 RegisterKind RegKind);
428 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
429 int64_t MaxVal, bool AllowTLS);
431 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
433 // Both the hlasm and att variants still rely on the basic gnu asm
434 // format with respect to inputs, clobbers, outputs etc.
436 // However, calling the overriden getAssemblerDialect() method in
437 // AsmParser is problematic. It either returns the AssemblerDialect field
438 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
439 // unset, otherwise it returns the private AssemblerDialect field in
440 // AsmParser.
442 // The problematic part is because, we forcibly set the inline asm dialect
443 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
444 // to the overriden getAssemblerDialect function in AsmParser.cpp, will
445 // not return the assembler dialect set in the respective MCAsmInfo instance.
447 // For this purpose, we explicitly query the SystemZMCAsmInfo instance
448 // here, to get the "correct" assembler dialect, and use it in various
449 // functions.
450 unsigned getMAIAssemblerDialect() {
451 return Parser.getContext().getAsmInfo()->getAssemblerDialect();
454 // An alphabetic character in HLASM is a letter from 'A' through 'Z',
455 // or from 'a' through 'z', or '$', '_','#', or '@'.
456 inline bool isHLASMAlpha(char C) {
457 return isAlpha(C) || llvm::is_contained("_@#$", C);
460 // A digit in HLASM is a number from 0 to 9.
461 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
463 // Are we parsing using the AD_HLASM dialect?
464 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
466 // Are we parsing using the AD_ATT dialect?
467 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; }
469 public:
470 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
471 const MCInstrInfo &MII,
472 const MCTargetOptions &Options)
473 : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
474 MCAsmParserExtension::Initialize(Parser);
476 // Alias the .word directive to .short.
477 parser.addAliasForDirective(".word", ".short");
479 // Initialize the set of available features.
480 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
483 // Override MCTargetAsmParser.
484 bool ParseDirective(AsmToken DirectiveID) override;
485 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
486 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
487 bool RestoreOnFailure);
488 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
489 SMLoc &EndLoc) override;
490 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
491 SMLoc NameLoc, OperandVector &Operands) override;
492 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
493 OperandVector &Operands, MCStreamer &Out,
494 uint64_t &ErrorInfo,
495 bool MatchingInlineAsm) override;
496 bool isLabel(AsmToken &Token) override;
498 // Used by the TableGen code to parse particular operand types.
499 OperandMatchResultTy parseGR32(OperandVector &Operands) {
500 return parseRegister(Operands, GR32Reg);
502 OperandMatchResultTy parseGRH32(OperandVector &Operands) {
503 return parseRegister(Operands, GRH32Reg);
505 OperandMatchResultTy parseGRX32(OperandVector &Operands) {
506 llvm_unreachable("GRX32 should only be used for pseudo instructions");
508 OperandMatchResultTy parseGR64(OperandVector &Operands) {
509 return parseRegister(Operands, GR64Reg);
511 OperandMatchResultTy parseGR128(OperandVector &Operands) {
512 return parseRegister(Operands, GR128Reg);
514 OperandMatchResultTy parseADDR32(OperandVector &Operands) {
515 // For the AsmParser, we will accept %r0 for ADDR32 as well.
516 return parseRegister(Operands, GR32Reg);
518 OperandMatchResultTy parseADDR64(OperandVector &Operands) {
519 // For the AsmParser, we will accept %r0 for ADDR64 as well.
520 return parseRegister(Operands, GR64Reg);
522 OperandMatchResultTy parseADDR128(OperandVector &Operands) {
523 llvm_unreachable("Shouldn't be used as an operand");
525 OperandMatchResultTy parseFP32(OperandVector &Operands) {
526 return parseRegister(Operands, FP32Reg);
528 OperandMatchResultTy parseFP64(OperandVector &Operands) {
529 return parseRegister(Operands, FP64Reg);
531 OperandMatchResultTy parseFP128(OperandVector &Operands) {
532 return parseRegister(Operands, FP128Reg);
534 OperandMatchResultTy parseVR32(OperandVector &Operands) {
535 return parseRegister(Operands, VR32Reg);
537 OperandMatchResultTy parseVR64(OperandVector &Operands) {
538 return parseRegister(Operands, VR64Reg);
540 OperandMatchResultTy parseVF128(OperandVector &Operands) {
541 llvm_unreachable("Shouldn't be used as an operand");
543 OperandMatchResultTy parseVR128(OperandVector &Operands) {
544 return parseRegister(Operands, VR128Reg);
546 OperandMatchResultTy parseAR32(OperandVector &Operands) {
547 return parseRegister(Operands, AR32Reg);
549 OperandMatchResultTy parseCR64(OperandVector &Operands) {
550 return parseRegister(Operands, CR64Reg);
552 OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
553 return parseAnyRegister(Operands);
555 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
556 return parseAddress(Operands, BDMem, GR32Reg);
558 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
559 return parseAddress(Operands, BDMem, GR64Reg);
561 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
562 return parseAddress(Operands, BDXMem, GR64Reg);
564 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
565 return parseAddress(Operands, BDLMem, GR64Reg);
567 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
568 return parseAddress(Operands, BDRMem, GR64Reg);
570 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
571 return parseAddress(Operands, BDVMem, GR64Reg);
573 OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
574 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
576 OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
577 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
579 OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
580 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
582 OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
583 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
585 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
586 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
588 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
589 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
593 } // end anonymous namespace
595 #define GET_REGISTER_MATCHER
596 #define GET_SUBTARGET_FEATURE_NAME
597 #define GET_MATCHER_IMPLEMENTATION
598 #define GET_MNEMONIC_SPELL_CHECKER
599 #include "SystemZGenAsmMatcher.inc"
601 // Used for the .insn directives; contains information needed to parse the
602 // operands in the directive.
603 struct InsnMatchEntry {
604 StringRef Format;
605 uint64_t Opcode;
606 int32_t NumOperands;
607 MatchClassKind OperandKinds[7];
610 // For equal_range comparison.
611 struct CompareInsn {
612 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
613 return LHS.Format < RHS;
615 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
616 return LHS < RHS.Format;
618 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
619 return LHS.Format < RHS.Format;
623 // Table initializing information for parsing the .insn directive.
624 static struct InsnMatchEntry InsnMatchTable[] = {
625 /* Format, Opcode, NumOperands, OperandKinds */
626 { "e", SystemZ::InsnE, 1,
627 { MCK_U16Imm } },
628 { "ri", SystemZ::InsnRI, 3,
629 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
630 { "rie", SystemZ::InsnRIE, 4,
631 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
632 { "ril", SystemZ::InsnRIL, 3,
633 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
634 { "rilu", SystemZ::InsnRILU, 3,
635 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
636 { "ris", SystemZ::InsnRIS, 5,
637 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
638 { "rr", SystemZ::InsnRR, 3,
639 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
640 { "rre", SystemZ::InsnRRE, 3,
641 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
642 { "rrf", SystemZ::InsnRRF, 5,
643 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
644 { "rrs", SystemZ::InsnRRS, 5,
645 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
646 { "rs", SystemZ::InsnRS, 4,
647 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
648 { "rse", SystemZ::InsnRSE, 4,
649 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
650 { "rsi", SystemZ::InsnRSI, 4,
651 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
652 { "rsy", SystemZ::InsnRSY, 4,
653 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
654 { "rx", SystemZ::InsnRX, 3,
655 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
656 { "rxe", SystemZ::InsnRXE, 3,
657 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
658 { "rxf", SystemZ::InsnRXF, 4,
659 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
660 { "rxy", SystemZ::InsnRXY, 3,
661 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
662 { "s", SystemZ::InsnS, 2,
663 { MCK_U32Imm, MCK_BDAddr64Disp12 } },
664 { "si", SystemZ::InsnSI, 3,
665 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
666 { "sil", SystemZ::InsnSIL, 3,
667 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
668 { "siy", SystemZ::InsnSIY, 3,
669 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
670 { "ss", SystemZ::InsnSS, 4,
671 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
672 { "sse", SystemZ::InsnSSE, 3,
673 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
674 { "ssf", SystemZ::InsnSSF, 4,
675 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
676 { "vri", SystemZ::InsnVRI, 6,
677 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
678 { "vrr", SystemZ::InsnVRR, 7,
679 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
680 MCK_U4Imm } },
681 { "vrs", SystemZ::InsnVRS, 5,
682 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
683 { "vrv", SystemZ::InsnVRV, 4,
684 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
685 { "vrx", SystemZ::InsnVRX, 4,
686 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
687 { "vsi", SystemZ::InsnVSI, 4,
688 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
691 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
692 if (!E)
693 return;
694 if (auto *CE = dyn_cast<MCConstantExpr>(E))
695 OS << *CE;
696 else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
697 OS << *UE;
698 else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
699 OS << *BE;
700 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
701 OS << *SRE;
702 else
703 OS << *E;
706 void SystemZOperand::print(raw_ostream &OS) const {
707 switch (Kind) {
708 case KindToken:
709 OS << "Token:" << getToken();
710 break;
711 case KindReg:
712 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
713 break;
714 case KindImm:
715 OS << "Imm:";
716 printMCExpr(getImm(), OS);
717 break;
718 case KindImmTLS:
719 OS << "ImmTLS:";
720 printMCExpr(getImmTLS().Imm, OS);
721 if (getImmTLS().Sym) {
722 OS << ", ";
723 printMCExpr(getImmTLS().Sym, OS);
725 break;
726 case KindMem: {
727 const MemOp &Op = getMem();
728 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
729 if (Op.Base) {
730 OS << "(";
731 if (Op.MemKind == BDLMem)
732 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
733 else if (Op.MemKind == BDRMem)
734 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
735 if (Op.Index)
736 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
737 OS << SystemZInstPrinter::getRegisterName(Op.Base);
738 OS << ")";
740 break;
742 case KindInvalid:
743 break;
747 // Parse one register of the form %<prefix><number>.
748 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
749 Reg.StartLoc = Parser.getTok().getLoc();
751 // Eat the % prefix.
752 if (Parser.getTok().isNot(AsmToken::Percent))
753 return Error(Parser.getTok().getLoc(), "register expected");
754 const AsmToken &PercentTok = Parser.getTok();
755 Parser.Lex();
757 // Expect a register name.
758 if (Parser.getTok().isNot(AsmToken::Identifier)) {
759 if (RestoreOnFailure)
760 getLexer().UnLex(PercentTok);
761 return Error(Reg.StartLoc, "invalid register");
764 // Check that there's a prefix.
765 StringRef Name = Parser.getTok().getString();
766 if (Name.size() < 2) {
767 if (RestoreOnFailure)
768 getLexer().UnLex(PercentTok);
769 return Error(Reg.StartLoc, "invalid register");
771 char Prefix = Name[0];
773 // Treat the rest of the register name as a register number.
774 if (Name.substr(1).getAsInteger(10, Reg.Num)) {
775 if (RestoreOnFailure)
776 getLexer().UnLex(PercentTok);
777 return Error(Reg.StartLoc, "invalid register");
780 // Look for valid combinations of prefix and number.
781 if (Prefix == 'r' && Reg.Num < 16)
782 Reg.Group = RegGR;
783 else if (Prefix == 'f' && Reg.Num < 16)
784 Reg.Group = RegFP;
785 else if (Prefix == 'v' && Reg.Num < 32)
786 Reg.Group = RegV;
787 else if (Prefix == 'a' && Reg.Num < 16)
788 Reg.Group = RegAR;
789 else if (Prefix == 'c' && Reg.Num < 16)
790 Reg.Group = RegCR;
791 else {
792 if (RestoreOnFailure)
793 getLexer().UnLex(PercentTok);
794 return Error(Reg.StartLoc, "invalid register");
797 Reg.EndLoc = Parser.getTok().getLoc();
798 Parser.Lex();
799 return false;
802 // Parse a register of kind Kind and add it to Operands.
803 OperandMatchResultTy
804 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
805 Register Reg;
806 RegisterGroup Group;
807 switch (Kind) {
808 case GR32Reg:
809 case GRH32Reg:
810 case GR64Reg:
811 case GR128Reg:
812 Group = RegGR;
813 break;
814 case FP32Reg:
815 case FP64Reg:
816 case FP128Reg:
817 Group = RegFP;
818 break;
819 case VR32Reg:
820 case VR64Reg:
821 case VR128Reg:
822 Group = RegV;
823 break;
824 case AR32Reg:
825 Group = RegAR;
826 break;
827 case CR64Reg:
828 Group = RegCR;
829 break;
832 // Handle register names of the form %<prefix><number>
833 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
834 if (parseRegister(Reg))
835 return MatchOperand_ParseFail;
837 // Check the parsed register group "Reg.Group" with the expected "Group"
838 // Have to error out if user specified wrong prefix.
839 switch (Group) {
840 case RegGR:
841 case RegFP:
842 case RegAR:
843 case RegCR:
844 if (Group != Reg.Group) {
845 Error(Reg.StartLoc, "invalid operand for instruction");
846 return MatchOperand_ParseFail;
848 break;
849 case RegV:
850 if (Reg.Group != RegV && Reg.Group != RegFP) {
851 Error(Reg.StartLoc, "invalid operand for instruction");
852 return MatchOperand_ParseFail;
854 break;
856 } else if (Parser.getTok().is(AsmToken::Integer)) {
857 if (parseIntegerRegister(Reg, Group))
858 return MatchOperand_ParseFail;
860 // Otherwise we didn't match a register operand.
861 else
862 return MatchOperand_NoMatch;
864 // Determine the LLVM register number according to Kind.
865 const unsigned *Regs;
866 switch (Kind) {
867 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
868 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
869 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
870 case GR128Reg: Regs = SystemZMC::GR128Regs; break;
871 case FP32Reg: Regs = SystemZMC::FP32Regs; break;
872 case FP64Reg: Regs = SystemZMC::FP64Regs; break;
873 case FP128Reg: Regs = SystemZMC::FP128Regs; break;
874 case VR32Reg: Regs = SystemZMC::VR32Regs; break;
875 case VR64Reg: Regs = SystemZMC::VR64Regs; break;
876 case VR128Reg: Regs = SystemZMC::VR128Regs; break;
877 case AR32Reg: Regs = SystemZMC::AR32Regs; break;
878 case CR64Reg: Regs = SystemZMC::CR64Regs; break;
880 if (Regs[Reg.Num] == 0) {
881 Error(Reg.StartLoc, "invalid register pair");
882 return MatchOperand_ParseFail;
885 Operands.push_back(
886 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
887 return MatchOperand_Success;
890 // Parse any type of register (including integers) and add it to Operands.
891 OperandMatchResultTy
892 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
893 SMLoc StartLoc = Parser.getTok().getLoc();
895 // Handle integer values.
896 if (Parser.getTok().is(AsmToken::Integer)) {
897 const MCExpr *Register;
898 if (Parser.parseExpression(Register))
899 return MatchOperand_ParseFail;
901 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
902 int64_t Value = CE->getValue();
903 if (Value < 0 || Value > 15) {
904 Error(StartLoc, "invalid register");
905 return MatchOperand_ParseFail;
909 SMLoc EndLoc =
910 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
912 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
914 else {
915 if (isParsingHLASM())
916 return MatchOperand_NoMatch;
918 Register Reg;
919 if (parseRegister(Reg))
920 return MatchOperand_ParseFail;
922 if (Reg.Num > 15) {
923 Error(StartLoc, "invalid register");
924 return MatchOperand_ParseFail;
927 // Map to the correct register kind.
928 RegisterKind Kind;
929 unsigned RegNo;
930 if (Reg.Group == RegGR) {
931 Kind = GR64Reg;
932 RegNo = SystemZMC::GR64Regs[Reg.Num];
934 else if (Reg.Group == RegFP) {
935 Kind = FP64Reg;
936 RegNo = SystemZMC::FP64Regs[Reg.Num];
938 else if (Reg.Group == RegV) {
939 Kind = VR128Reg;
940 RegNo = SystemZMC::VR128Regs[Reg.Num];
942 else if (Reg.Group == RegAR) {
943 Kind = AR32Reg;
944 RegNo = SystemZMC::AR32Regs[Reg.Num];
946 else if (Reg.Group == RegCR) {
947 Kind = CR64Reg;
948 RegNo = SystemZMC::CR64Regs[Reg.Num];
950 else {
951 return MatchOperand_ParseFail;
954 Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
955 Reg.StartLoc, Reg.EndLoc));
957 return MatchOperand_Success;
960 bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
961 RegisterGroup Group) {
962 Reg.StartLoc = Parser.getTok().getLoc();
963 // We have an integer token
964 const MCExpr *Register;
965 if (Parser.parseExpression(Register))
966 return true;
968 const auto *CE = dyn_cast<MCConstantExpr>(Register);
969 if (!CE)
970 return true;
972 int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
973 int64_t Value = CE->getValue();
974 if (Value < 0 || Value > MaxRegNum) {
975 Error(Parser.getTok().getLoc(), "invalid register");
976 return true;
979 // Assign the Register Number
980 Reg.Num = (unsigned)Value;
981 Reg.Group = Group;
982 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
984 // At this point, successfully parsed an integer register.
985 return false;
988 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
989 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
990 bool &HaveReg2, Register &Reg2,
991 const MCExpr *&Disp, const MCExpr *&Length,
992 bool HasLength, bool HasVectorIndex) {
993 // Parse the displacement, which must always be present.
994 if (getParser().parseExpression(Disp))
995 return true;
997 // Parse the optional base and index.
998 HaveReg1 = false;
999 HaveReg2 = false;
1000 Length = nullptr;
1002 // If we have a scenario as below:
1003 // vgef %v0, 0(0), 0
1004 // This is an example of a "BDVMem" instruction type.
1006 // So when we parse this as an integer register, the register group
1007 // needs to be tied to "RegV". Usually when the prefix is passed in
1008 // as %<prefix><reg-number> its easy to check which group it should belong to
1009 // However, if we're passing in just the integer there's no real way to
1010 // "check" what register group it should belong to.
1012 // When the user passes in the register as an integer, the user assumes that
1013 // the compiler is responsible for substituting it as the right kind of
1014 // register. Whereas, when the user specifies a "prefix", the onus is on
1015 // the user to make sure they pass in the right kind of register.
1017 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1018 // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1019 // (i.e. insn is of type BDVMem) is true.
1020 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
1022 if (getLexer().is(AsmToken::LParen)) {
1023 Parser.Lex();
1025 if (isParsingATT() && getLexer().is(AsmToken::Percent)) {
1026 // Parse the first register.
1027 HaveReg1 = true;
1028 if (parseRegister(Reg1))
1029 return true;
1031 // So if we have an integer as the first token in ([tok1], ..), it could:
1032 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1033 // instructions)
1034 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1035 else if (getLexer().is(AsmToken::Integer)) {
1036 if (HasLength) {
1037 // Instruction has a "Length" field, safe to parse the first token as
1038 // the "Length" field
1039 if (getParser().parseExpression(Length))
1040 return true;
1041 } else {
1042 // Otherwise, if the instruction has no "Length" field, parse the
1043 // token as a "Register". We don't have to worry about whether the
1044 // instruction is invalid here, because the caller will take care of
1045 // error reporting.
1046 HaveReg1 = true;
1047 if (parseIntegerRegister(Reg1, RegGroup))
1048 return true;
1050 } else {
1051 // If its not an integer or a percent token, then if the instruction
1052 // is reported to have a "Length" then, parse it as "Length".
1053 if (HasLength) {
1054 if (getParser().parseExpression(Length))
1055 return true;
1059 // Check whether there's a second register.
1060 if (getLexer().is(AsmToken::Comma)) {
1061 Parser.Lex();
1062 HaveReg2 = true;
1064 if (getLexer().is(AsmToken::Integer)) {
1065 if (parseIntegerRegister(Reg2, RegGR))
1066 return true;
1067 } else {
1068 if (isParsingATT() && parseRegister(Reg2))
1069 return true;
1073 // Consume the closing bracket.
1074 if (getLexer().isNot(AsmToken::RParen))
1075 return Error(Parser.getTok().getLoc(), "unexpected token in address");
1076 Parser.Lex();
1078 return false;
1081 // Verify that Reg is a valid address register (base or index).
1082 bool
1083 SystemZAsmParser::parseAddressRegister(Register &Reg) {
1084 if (Reg.Group == RegV) {
1085 Error(Reg.StartLoc, "invalid use of vector addressing");
1086 return true;
1087 } else if (Reg.Group != RegGR) {
1088 Error(Reg.StartLoc, "invalid address register");
1089 return true;
1091 return false;
1094 // Parse a memory operand and add it to Operands. The other arguments
1095 // are as above.
1096 OperandMatchResultTy
1097 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
1098 RegisterKind RegKind) {
1099 SMLoc StartLoc = Parser.getTok().getLoc();
1100 unsigned Base = 0, Index = 0, LengthReg = 0;
1101 Register Reg1, Reg2;
1102 bool HaveReg1, HaveReg2;
1103 const MCExpr *Disp;
1104 const MCExpr *Length;
1106 bool HasLength = (MemKind == BDLMem) ? true : false;
1107 bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1108 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1109 HasVectorIndex))
1110 return MatchOperand_ParseFail;
1112 const unsigned *Regs;
1113 switch (RegKind) {
1114 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1115 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1116 default: llvm_unreachable("invalid RegKind");
1119 switch (MemKind) {
1120 case BDMem:
1121 // If we have Reg1, it must be an address register.
1122 if (HaveReg1) {
1123 if (parseAddressRegister(Reg1))
1124 return MatchOperand_ParseFail;
1125 Base = Regs[Reg1.Num];
1127 // There must be no Reg2.
1128 if (HaveReg2) {
1129 Error(StartLoc, "invalid use of indexed addressing");
1130 return MatchOperand_ParseFail;
1132 break;
1133 case BDXMem:
1134 // If we have Reg1, it must be an address register.
1135 if (HaveReg1) {
1136 if (parseAddressRegister(Reg1))
1137 return MatchOperand_ParseFail;
1138 // If the are two registers, the first one is the index and the
1139 // second is the base.
1140 if (HaveReg2)
1141 Index = Regs[Reg1.Num];
1142 else
1143 Base = Regs[Reg1.Num];
1145 // If we have Reg2, it must be an address register.
1146 if (HaveReg2) {
1147 if (parseAddressRegister(Reg2))
1148 return MatchOperand_ParseFail;
1149 Base = Regs[Reg2.Num];
1151 break;
1152 case BDLMem:
1153 // If we have Reg2, it must be an address register.
1154 if (HaveReg2) {
1155 if (parseAddressRegister(Reg2))
1156 return MatchOperand_ParseFail;
1157 Base = Regs[Reg2.Num];
1159 // We cannot support base+index addressing.
1160 if (HaveReg1 && HaveReg2) {
1161 Error(StartLoc, "invalid use of indexed addressing");
1162 return MatchOperand_ParseFail;
1164 // We must have a length.
1165 if (!Length) {
1166 Error(StartLoc, "missing length in address");
1167 return MatchOperand_ParseFail;
1169 break;
1170 case BDRMem:
1171 // We must have Reg1, and it must be a GPR.
1172 if (!HaveReg1 || Reg1.Group != RegGR) {
1173 Error(StartLoc, "invalid operand for instruction");
1174 return MatchOperand_ParseFail;
1176 LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1177 // If we have Reg2, it must be an address register.
1178 if (HaveReg2) {
1179 if (parseAddressRegister(Reg2))
1180 return MatchOperand_ParseFail;
1181 Base = Regs[Reg2.Num];
1183 break;
1184 case BDVMem:
1185 // We must have Reg1, and it must be a vector register.
1186 if (!HaveReg1 || Reg1.Group != RegV) {
1187 Error(StartLoc, "vector index required in address");
1188 return MatchOperand_ParseFail;
1190 Index = SystemZMC::VR128Regs[Reg1.Num];
1191 // If we have Reg2, it must be an address register.
1192 if (HaveReg2) {
1193 if (parseAddressRegister(Reg2))
1194 return MatchOperand_ParseFail;
1195 Base = Regs[Reg2.Num];
1197 break;
1200 SMLoc EndLoc =
1201 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1202 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1203 Index, Length, LengthReg,
1204 StartLoc, EndLoc));
1205 return MatchOperand_Success;
1208 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1209 StringRef IDVal = DirectiveID.getIdentifier();
1211 if (IDVal == ".insn")
1212 return ParseDirectiveInsn(DirectiveID.getLoc());
1214 return true;
1217 /// ParseDirectiveInsn
1218 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1219 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1220 MCAsmParser &Parser = getParser();
1222 // Expect instruction format as identifier.
1223 StringRef Format;
1224 SMLoc ErrorLoc = Parser.getTok().getLoc();
1225 if (Parser.parseIdentifier(Format))
1226 return Error(ErrorLoc, "expected instruction format");
1228 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1230 // Find entry for this format in InsnMatchTable.
1231 auto EntryRange =
1232 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1233 Format, CompareInsn());
1235 // If first == second, couldn't find a match in the table.
1236 if (EntryRange.first == EntryRange.second)
1237 return Error(ErrorLoc, "unrecognized format");
1239 struct InsnMatchEntry *Entry = EntryRange.first;
1241 // Format should match from equal_range.
1242 assert(Entry->Format == Format);
1244 // Parse the following operands using the table's information.
1245 for (int i = 0; i < Entry->NumOperands; i++) {
1246 MatchClassKind Kind = Entry->OperandKinds[i];
1248 SMLoc StartLoc = Parser.getTok().getLoc();
1250 // Always expect commas as separators for operands.
1251 if (getLexer().isNot(AsmToken::Comma))
1252 return Error(StartLoc, "unexpected token in directive");
1253 Lex();
1255 // Parse operands.
1256 OperandMatchResultTy ResTy;
1257 if (Kind == MCK_AnyReg)
1258 ResTy = parseAnyReg(Operands);
1259 else if (Kind == MCK_VR128)
1260 ResTy = parseVR128(Operands);
1261 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1262 ResTy = parseBDXAddr64(Operands);
1263 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1264 ResTy = parseBDAddr64(Operands);
1265 else if (Kind == MCK_BDVAddr64Disp12)
1266 ResTy = parseBDVAddr64(Operands);
1267 else if (Kind == MCK_PCRel32)
1268 ResTy = parsePCRel32(Operands);
1269 else if (Kind == MCK_PCRel16)
1270 ResTy = parsePCRel16(Operands);
1271 else {
1272 // Only remaining operand kind is an immediate.
1273 const MCExpr *Expr;
1274 SMLoc StartLoc = Parser.getTok().getLoc();
1276 // Expect immediate expression.
1277 if (Parser.parseExpression(Expr))
1278 return Error(StartLoc, "unexpected token in directive");
1280 SMLoc EndLoc =
1281 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1283 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1284 ResTy = MatchOperand_Success;
1287 if (ResTy != MatchOperand_Success)
1288 return true;
1291 // Build the instruction with the parsed operands.
1292 MCInst Inst = MCInstBuilder(Entry->Opcode);
1294 for (size_t i = 0; i < Operands.size(); i++) {
1295 MCParsedAsmOperand &Operand = *Operands[i];
1296 MatchClassKind Kind = Entry->OperandKinds[i];
1298 // Verify operand.
1299 unsigned Res = validateOperandClass(Operand, Kind);
1300 if (Res != Match_Success)
1301 return Error(Operand.getStartLoc(), "unexpected operand type");
1303 // Add operands to instruction.
1304 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1305 if (ZOperand.isReg())
1306 ZOperand.addRegOperands(Inst, 1);
1307 else if (ZOperand.isMem(BDMem))
1308 ZOperand.addBDAddrOperands(Inst, 2);
1309 else if (ZOperand.isMem(BDXMem))
1310 ZOperand.addBDXAddrOperands(Inst, 3);
1311 else if (ZOperand.isMem(BDVMem))
1312 ZOperand.addBDVAddrOperands(Inst, 3);
1313 else if (ZOperand.isImm())
1314 ZOperand.addImmOperands(Inst, 1);
1315 else
1316 llvm_unreachable("unexpected operand type");
1319 // Emit as a regular instruction.
1320 Parser.getStreamer().emitInstruction(Inst, getSTI());
1322 return false;
1325 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1326 SMLoc &EndLoc, bool RestoreOnFailure) {
1327 Register Reg;
1328 if (parseRegister(Reg, RestoreOnFailure))
1329 return true;
1330 if (Reg.Group == RegGR)
1331 RegNo = SystemZMC::GR64Regs[Reg.Num];
1332 else if (Reg.Group == RegFP)
1333 RegNo = SystemZMC::FP64Regs[Reg.Num];
1334 else if (Reg.Group == RegV)
1335 RegNo = SystemZMC::VR128Regs[Reg.Num];
1336 else if (Reg.Group == RegAR)
1337 RegNo = SystemZMC::AR32Regs[Reg.Num];
1338 else if (Reg.Group == RegCR)
1339 RegNo = SystemZMC::CR64Regs[Reg.Num];
1340 StartLoc = Reg.StartLoc;
1341 EndLoc = Reg.EndLoc;
1342 return false;
1345 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1346 SMLoc &EndLoc) {
1347 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1350 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo,
1351 SMLoc &StartLoc,
1352 SMLoc &EndLoc) {
1353 bool Result =
1354 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1355 bool PendingErrors = getParser().hasPendingError();
1356 getParser().clearPendingErrors();
1357 if (PendingErrors)
1358 return MatchOperand_ParseFail;
1359 if (Result)
1360 return MatchOperand_NoMatch;
1361 return MatchOperand_Success;
1364 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1365 StringRef Name, SMLoc NameLoc,
1366 OperandVector &Operands) {
1368 // Apply mnemonic aliases first, before doing anything else, in
1369 // case the target uses it.
1370 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1372 Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1374 // Read the remaining operands.
1375 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1376 // Read the first operand.
1377 if (parseOperand(Operands, Name)) {
1378 return true;
1381 // Read any subsequent operands.
1382 while (getLexer().is(AsmToken::Comma)) {
1383 Parser.Lex();
1385 if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1386 return Error(
1387 Parser.getTok().getLoc(),
1388 "No space allowed between comma that separates operand entries");
1390 if (parseOperand(Operands, Name)) {
1391 return true;
1395 // Under the HLASM variant, we could have the remark field
1396 // The remark field occurs after the operation entries
1397 // There is a space that separates the operation entries and the
1398 // remark field.
1399 if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1400 // We've confirmed that there is a Remark field.
1401 StringRef Remark(getLexer().LexUntilEndOfStatement());
1402 Parser.Lex();
1404 // If there is nothing after the space, then there is nothing to emit
1405 // We could have a situation as this:
1406 // " \n"
1407 // After lexing above, we will have
1408 // "\n"
1409 // This isn't an explicit remark field, so we don't have to output
1410 // this as a comment.
1411 if (Remark.size())
1412 // Output the entire Remarks Field as a comment
1413 getStreamer().AddComment(Remark);
1416 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1417 SMLoc Loc = getLexer().getLoc();
1418 return Error(Loc, "unexpected token in argument list");
1422 // Consume the EndOfStatement.
1423 Parser.Lex();
1424 return false;
1427 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1428 StringRef Mnemonic) {
1429 // Check if the current operand has a custom associated parser, if so, try to
1430 // custom parse the operand, or fallback to the general approach. Force all
1431 // features to be available during the operand check, or else we will fail to
1432 // find the custom parser, and then we will later get an InvalidOperand error
1433 // instead of a MissingFeature errror.
1434 FeatureBitset AvailableFeatures = getAvailableFeatures();
1435 FeatureBitset All;
1436 All.set();
1437 setAvailableFeatures(All);
1438 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1439 setAvailableFeatures(AvailableFeatures);
1440 if (ResTy == MatchOperand_Success)
1441 return false;
1443 // If there wasn't a custom match, try the generic matcher below. Otherwise,
1444 // there was a match, but an error occurred, in which case, just return that
1445 // the operand parsing failed.
1446 if (ResTy == MatchOperand_ParseFail)
1447 return true;
1449 // Check for a register. All real register operands should have used
1450 // a context-dependent parse routine, which gives the required register
1451 // class. The code is here to mop up other cases, like those where
1452 // the instruction isn't recognized.
1453 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
1454 Register Reg;
1455 if (parseRegister(Reg))
1456 return true;
1457 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1458 return false;
1461 // The only other type of operand is an immediate or address. As above,
1462 // real address operands should have used a context-dependent parse routine,
1463 // so we treat any plain expression as an immediate.
1464 SMLoc StartLoc = Parser.getTok().getLoc();
1465 Register Reg1, Reg2;
1466 bool HaveReg1, HaveReg2;
1467 const MCExpr *Expr;
1468 const MCExpr *Length;
1469 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1470 /*HasLength*/ true, /*HasVectorIndex*/ true))
1471 return true;
1472 // If the register combination is not valid for any instruction, reject it.
1473 // Otherwise, fall back to reporting an unrecognized instruction.
1474 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1475 && parseAddressRegister(Reg1))
1476 return true;
1477 if (HaveReg2 && parseAddressRegister(Reg2))
1478 return true;
1480 SMLoc EndLoc =
1481 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1482 if (HaveReg1 || HaveReg2 || Length)
1483 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1484 else
1485 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1486 return false;
1489 static std::string SystemZMnemonicSpellCheck(StringRef S,
1490 const FeatureBitset &FBS,
1491 unsigned VariantID = 0);
1493 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1494 OperandVector &Operands,
1495 MCStreamer &Out,
1496 uint64_t &ErrorInfo,
1497 bool MatchingInlineAsm) {
1498 MCInst Inst;
1499 unsigned MatchResult;
1501 unsigned Dialect = getMAIAssemblerDialect();
1503 FeatureBitset MissingFeatures;
1504 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1505 MatchingInlineAsm, Dialect);
1506 switch (MatchResult) {
1507 case Match_Success:
1508 Inst.setLoc(IDLoc);
1509 Out.emitInstruction(Inst, getSTI());
1510 return false;
1512 case Match_MissingFeature: {
1513 assert(MissingFeatures.any() && "Unknown missing feature!");
1514 // Special case the error message for the very common case where only
1515 // a single subtarget feature is missing
1516 std::string Msg = "instruction requires:";
1517 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1518 if (MissingFeatures[I]) {
1519 Msg += " ";
1520 Msg += getSubtargetFeatureName(I);
1523 return Error(IDLoc, Msg);
1526 case Match_InvalidOperand: {
1527 SMLoc ErrorLoc = IDLoc;
1528 if (ErrorInfo != ~0ULL) {
1529 if (ErrorInfo >= Operands.size())
1530 return Error(IDLoc, "too few operands for instruction");
1532 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1533 if (ErrorLoc == SMLoc())
1534 ErrorLoc = IDLoc;
1536 return Error(ErrorLoc, "invalid operand for instruction");
1539 case Match_MnemonicFail: {
1540 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1541 std::string Suggestion = SystemZMnemonicSpellCheck(
1542 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1543 return Error(IDLoc, "invalid instruction" + Suggestion,
1544 ((SystemZOperand &)*Operands[0]).getLocRange());
1548 llvm_unreachable("Unexpected match type");
1551 OperandMatchResultTy
1552 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1553 int64_t MaxVal, bool AllowTLS) {
1554 MCContext &Ctx = getContext();
1555 MCStreamer &Out = getStreamer();
1556 const MCExpr *Expr;
1557 SMLoc StartLoc = Parser.getTok().getLoc();
1558 if (getParser().parseExpression(Expr))
1559 return MatchOperand_NoMatch;
1561 auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool {
1562 if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1563 int64_t Value = CE->getValue();
1564 if ((Value & 1) || Value < MinVal || Value > MaxVal)
1565 return true;
1567 return false;
1570 // For consistency with the GNU assembler, treat immediates as offsets
1571 // from ".".
1572 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1573 if (isParsingHLASM()) {
1574 Error(StartLoc, "Expected PC-relative expression");
1575 return MatchOperand_ParseFail;
1577 if (isOutOfRangeConstant(CE)) {
1578 Error(StartLoc, "offset out of range");
1579 return MatchOperand_ParseFail;
1581 int64_t Value = CE->getValue();
1582 MCSymbol *Sym = Ctx.createTempSymbol();
1583 Out.emitLabel(Sym);
1584 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1585 Ctx);
1586 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1589 // For consistency with the GNU assembler, conservatively assume that a
1590 // constant offset must by itself be within the given size range.
1591 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1592 if (isOutOfRangeConstant(BE->getLHS()) ||
1593 isOutOfRangeConstant(BE->getRHS())) {
1594 Error(StartLoc, "offset out of range");
1595 return MatchOperand_ParseFail;
1598 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1599 const MCExpr *Sym = nullptr;
1600 if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1601 Parser.Lex();
1603 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1604 Error(Parser.getTok().getLoc(), "unexpected token");
1605 return MatchOperand_ParseFail;
1608 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1609 StringRef Name = Parser.getTok().getString();
1610 if (Name == "tls_gdcall")
1611 Kind = MCSymbolRefExpr::VK_TLSGD;
1612 else if (Name == "tls_ldcall")
1613 Kind = MCSymbolRefExpr::VK_TLSLDM;
1614 else {
1615 Error(Parser.getTok().getLoc(), "unknown TLS tag");
1616 return MatchOperand_ParseFail;
1618 Parser.Lex();
1620 if (Parser.getTok().isNot(AsmToken::Colon)) {
1621 Error(Parser.getTok().getLoc(), "unexpected token");
1622 return MatchOperand_ParseFail;
1624 Parser.Lex();
1626 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1627 Error(Parser.getTok().getLoc(), "unexpected token");
1628 return MatchOperand_ParseFail;
1631 StringRef Identifier = Parser.getTok().getString();
1632 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1633 Kind, Ctx);
1634 Parser.Lex();
1637 SMLoc EndLoc =
1638 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1640 if (AllowTLS)
1641 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1642 StartLoc, EndLoc));
1643 else
1644 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1646 return MatchOperand_Success;
1649 bool SystemZAsmParser::isLabel(AsmToken &Token) {
1650 if (isParsingATT())
1651 return true;
1653 // HLASM labels are ordinary symbols.
1654 // An HLASM label always starts at column 1.
1655 // An ordinary symbol syntax is laid out as follows:
1656 // Rules:
1657 // 1. Has to start with an "alphabetic character". Can be followed by up to
1658 // 62 alphanumeric characters. An "alphabetic character", in this scenario,
1659 // is a letter from 'A' through 'Z', or from 'a' through 'z',
1660 // or '$', '_', '#', or '@'
1661 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1662 // are all treated as the same symbol. However, the processing for the case
1663 // folding will not be done in this function.
1664 StringRef RawLabel = Token.getString();
1665 SMLoc Loc = Token.getLoc();
1667 // An HLASM label cannot be empty.
1668 if (!RawLabel.size())
1669 return !Error(Loc, "HLASM Label cannot be empty");
1671 // An HLASM label cannot exceed greater than 63 characters.
1672 if (RawLabel.size() > 63)
1673 return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1675 // A label must start with an "alphabetic character".
1676 if (!isHLASMAlpha(RawLabel[0]))
1677 return !Error(Loc, "HLASM Label has to start with an alphabetic "
1678 "character or the underscore character");
1680 // Now, we've established that the length is valid
1681 // and the first character is alphabetic.
1682 // Check whether remaining string is alphanumeric.
1683 for (unsigned I = 1; I < RawLabel.size(); ++I)
1684 if (!isHLASMAlnum(RawLabel[I]))
1685 return !Error(Loc, "HLASM Label has to be alphanumeric");
1687 return true;
1690 // Force static initialization.
1691 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1692 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());