[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZCallingConv.h
blob96c1080d52375c42ed3a217cb30e2ef6b02f1db6
1 //===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
10 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
12 #include "SystemZSubtarget.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/MC/MCRegisterInfo.h"
17 namespace llvm {
18 namespace SystemZ {
19 const unsigned ELFNumArgGPRs = 5;
20 extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs];
22 const unsigned ELFNumArgFPRs = 4;
23 extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs];
25 const unsigned XPLINK64NumArgGPRs = 3;
26 extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs];
28 const unsigned XPLINK64NumArgFPRs = 4;
29 extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs];
30 } // end namespace SystemZ
32 class SystemZCCState : public CCState {
33 private:
34 /// Records whether the value was a fixed argument.
35 /// See ISD::OutputArg::IsFixed.
36 SmallVector<bool, 4> ArgIsFixed;
38 /// Records whether the value was widened from a short vector type.
39 SmallVector<bool, 4> ArgIsShortVector;
41 // Check whether ArgVT is a short vector type.
42 bool IsShortVectorType(EVT ArgVT) {
43 return ArgVT.isVector() && ArgVT.getStoreSize() <= 8;
46 public:
47 SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
48 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
49 : CCState(CC, isVarArg, MF, locs, C) {}
51 void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
52 CCAssignFn Fn) {
53 // Formal arguments are always fixed.
54 ArgIsFixed.clear();
55 for (unsigned i = 0; i < Ins.size(); ++i)
56 ArgIsFixed.push_back(true);
57 // Record whether the call operand was a short vector.
58 ArgIsShortVector.clear();
59 for (unsigned i = 0; i < Ins.size(); ++i)
60 ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT));
62 CCState::AnalyzeFormalArguments(Ins, Fn);
65 void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
66 CCAssignFn Fn) {
67 // Record whether the call operand was a fixed argument.
68 ArgIsFixed.clear();
69 for (unsigned i = 0; i < Outs.size(); ++i)
70 ArgIsFixed.push_back(Outs[i].IsFixed);
71 // Record whether the call operand was a short vector.
72 ArgIsShortVector.clear();
73 for (unsigned i = 0; i < Outs.size(); ++i)
74 ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT));
76 CCState::AnalyzeCallOperands(Outs, Fn);
79 // This version of AnalyzeCallOperands in the base class is not usable
80 // since we must provide a means of accessing ISD::OutputArg::IsFixed.
81 void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs,
82 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
83 CCAssignFn Fn) = delete;
85 bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; }
86 bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; }
89 // Handle i128 argument types. These need to be passed by implicit
90 // reference. This could be as simple as the following .td line:
91 // CCIfType<[i128], CCPassIndirect<i64>>,
92 // except that i128 is not a legal type, and therefore gets split by
93 // common code into a pair of i64 arguments.
94 inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT,
95 MVT &LocVT,
96 CCValAssign::LocInfo &LocInfo,
97 ISD::ArgFlagsTy &ArgFlags,
98 CCState &State) {
99 SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
101 // ArgFlags.isSplit() is true on the first part of a i128 argument;
102 // PendingMembers.empty() is false on all subsequent parts.
103 if (!ArgFlags.isSplit() && PendingMembers.empty())
104 return false;
106 // Push a pending Indirect value location for each part.
107 LocVT = MVT::i64;
108 LocInfo = CCValAssign::Indirect;
109 PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT,
110 LocVT, LocInfo));
111 if (!ArgFlags.isSplitEnd())
112 return true;
114 // OK, we've collected all parts in the pending list. Allocate
115 // the location (register or stack slot) for the indirect pointer.
116 // (This duplicates the usual i64 calling convention rules.)
117 unsigned Reg;
118 const SystemZSubtarget &Subtarget =
119 State.getMachineFunction().getSubtarget<SystemZSubtarget>();
120 if (Subtarget.isTargetELF())
121 Reg = State.AllocateReg(SystemZ::ELFArgGPRs);
122 else if (Subtarget.isTargetXPLINK64())
123 Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
124 else
125 llvm_unreachable("Unknown Calling Convention!");
127 unsigned Offset = Reg ? 0 : State.AllocateStack(8, Align(8));
129 // Use that same location for all the pending parts.
130 for (auto &It : PendingMembers) {
131 if (Reg)
132 It.convertToReg(Reg);
133 else
134 It.convertToMem(Offset);
135 State.addLoc(It);
138 PendingMembers.clear();
140 return true;
143 inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
144 CCValAssign::LocInfo &LocInfo,
145 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
146 if (LocVT == MVT::f32 || LocVT == MVT::f64) {
147 State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
149 if (LocVT == MVT::f128 || LocVT.is128BitVector()) {
150 // Shadow next two GPRs, if available.
151 State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
152 State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
154 // Quad precision floating point needs to
155 // go inside pre-defined FPR pair.
156 if (LocVT == MVT::f128) {
157 for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2)
158 if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I]))
159 State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]);
162 return false;
165 inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT,
166 MVT &LocVT,
167 CCValAssign::LocInfo &LocInfo,
168 ISD::ArgFlagsTy &ArgFlags,
169 CCState &State) {
170 if (LocVT.getSizeInBits() < 128)
171 return false;
173 if (static_cast<SystemZCCState *>(&State)->IsFixed(ValNo))
174 return false;
176 // For any C or C++ program, this should always be
177 // false, since it is illegal to have a function
178 // where the first argument is variadic. Therefore
179 // the first fixed argument should already have
180 // allocated GPR1 either through shadowing it or
181 // using it for parameter passing.
182 State.AllocateReg(SystemZ::R1D);
184 bool AllocGPR2 = State.AllocateReg(SystemZ::R2D);
185 bool AllocGPR3 = State.AllocateReg(SystemZ::R3D);
187 // If GPR2 and GPR3 are available, then we may pass vararg in R2Q.
188 if (AllocGPR2 && AllocGPR3) {
189 State.addLoc(
190 CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo));
191 return true;
194 // If only GPR3 is available, we allocate on stack but need to
195 // set custom handling to copy hi bits into GPR3.
196 if (!AllocGPR2 && AllocGPR3) {
197 auto Offset = State.AllocateStack(16, Align(8));
198 State.addLoc(
199 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
200 return true;
203 return false;
206 inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &,
207 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
208 CCState &) {
209 llvm_unreachable("Return value calling convention currently unsupported.");
212 inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &,
213 ISD::ArgFlagsTy &, CCState &) {
214 llvm_unreachable("Argument calling convention currently unsupported.");
217 inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &,
218 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
219 CCState &) {
220 report_fatal_error("No registers left in GHC calling convention");
221 return false;
224 } // end namespace llvm
226 #endif