[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZISelLowering.cpp
blobd70d48638b140c07d14d62f82536e0d066724928
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
29 using namespace llvm;
31 #define DEBUG_TYPE "systemz-lower"
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
40 // The operands to the comparison.
41 SDValue Op0, Op1;
43 // Chain if this is a strict floating-point comparison.
44 SDValue Chain;
46 // The opcode that should be used to compare Op0 and Op1.
47 unsigned Opcode;
49 // A SystemZICMP value. Only used for integer comparisons.
50 unsigned ICmpType;
52 // The mask of CC values that Opcode can produce.
53 unsigned CCValid;
55 // The mask of CC values for which the original condition is true.
56 unsigned CCMask;
58 } // end anonymous namespace
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62 switch (VT.getSimpleVT().SimpleTy) {
63 case MVT::i32:
64 return true;
65 case MVT::i64:
66 return false;
67 default:
68 llvm_unreachable("Unsupported type");
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75 if (Op.isReg())
76 Op.setIsKill(false);
77 return Op;
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81 const SystemZSubtarget &STI)
82 : TargetLowering(TM), Subtarget(STI) {
83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
85 // Set up the register classes.
86 if (Subtarget.hasHighWord())
87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88 else
89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91 if (!useSoftFloat()) {
92 if (Subtarget.hasVector()) {
93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95 } else {
96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
99 if (Subtarget.hasVectorEnhancements1())
100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101 else
102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
104 if (Subtarget.hasVector()) {
105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
114 // Compute derived properties from the register classes
115 computeRegisterProperties(Subtarget.getRegisterInfo());
117 // Set up special registers.
118 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
120 // TODO: It may be better to default to latency-oriented scheduling, however
121 // LLVM's current latency-oriented scheduler can't handle physreg definitions
122 // such as SystemZ has with CC, so set this to the register-pressure
123 // scheduler, because it can.
124 setSchedulingPreference(Sched::RegPressure);
126 setBooleanContents(ZeroOrOneBooleanContent);
127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
129 // Instructions are strings of 2-byte aligned 2-byte values.
130 setMinFunctionAlignment(Align(2));
131 // For performance reasons we prefer 16-byte alignment.
132 setPrefFunctionAlignment(Align(16));
134 // Handle operations that are handled in a similar way for all types.
135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136 I <= MVT::LAST_FP_VALUETYPE;
137 ++I) {
138 MVT VT = MVT::SimpleValueType(I);
139 if (isTypeLegal(VT)) {
140 // Lower SET_CC into an IPM-based sequence.
141 setOperationAction(ISD::SETCC, VT, Custom);
142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146 setOperationAction(ISD::SELECT, VT, Expand);
148 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149 setOperationAction(ISD::SELECT_CC, VT, Custom);
150 setOperationAction(ISD::BR_CC, VT, Custom);
154 // Expand jump table branches as address arithmetic followed by an
155 // indirect jump.
156 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
158 // Expand BRCOND into a BR_CC (see above).
159 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
161 // Handle integer types.
162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163 I <= MVT::LAST_INTEGER_VALUETYPE;
164 ++I) {
165 MVT VT = MVT::SimpleValueType(I);
166 if (isTypeLegal(VT)) {
167 setOperationAction(ISD::ABS, VT, Legal);
169 // Expand individual DIV and REMs into DIVREMs.
170 setOperationAction(ISD::SDIV, VT, Expand);
171 setOperationAction(ISD::UDIV, VT, Expand);
172 setOperationAction(ISD::SREM, VT, Expand);
173 setOperationAction(ISD::UREM, VT, Expand);
174 setOperationAction(ISD::SDIVREM, VT, Custom);
175 setOperationAction(ISD::UDIVREM, VT, Custom);
177 // Support addition/subtraction with overflow.
178 setOperationAction(ISD::SADDO, VT, Custom);
179 setOperationAction(ISD::SSUBO, VT, Custom);
181 // Support addition/subtraction with carry.
182 setOperationAction(ISD::UADDO, VT, Custom);
183 setOperationAction(ISD::USUBO, VT, Custom);
185 // Support carry in as value rather than glue.
186 setOperationAction(ISD::ADDCARRY, VT, Custom);
187 setOperationAction(ISD::SUBCARRY, VT, Custom);
189 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190 // stores, putting a serialization instruction after the stores.
191 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
192 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
194 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195 // available, or if the operand is constant.
196 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
198 // Use POPCNT on z196 and above.
199 if (Subtarget.hasPopulationCount())
200 setOperationAction(ISD::CTPOP, VT, Custom);
201 else
202 setOperationAction(ISD::CTPOP, VT, Expand);
204 // No special instructions for these.
205 setOperationAction(ISD::CTTZ, VT, Expand);
206 setOperationAction(ISD::ROTR, VT, Expand);
208 // Use *MUL_LOHI where possible instead of MULH*.
209 setOperationAction(ISD::MULHS, VT, Expand);
210 setOperationAction(ISD::MULHU, VT, Expand);
211 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
214 // Only z196 and above have native support for conversions to unsigned.
215 // On z10, promoting to i64 doesn't generate an inexact condition for
216 // values that are outside the i32 range but in the i64 range, so use
217 // the default expansion.
218 if (!Subtarget.hasFPExtension())
219 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
221 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all
222 // default to Expand, so need to be modified to Legal where appropriate.
223 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224 if (Subtarget.hasFPExtension())
225 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
227 // And similarly for STRICT_[SU]INT_TO_FP.
228 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229 if (Subtarget.hasFPExtension())
230 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
234 // Type legalization will convert 8- and 16-bit atomic operations into
235 // forms that operate on i32s (but still keeping the original memory VT).
236 // Lower them into full i32 operations.
237 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
238 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
239 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
240 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
241 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
242 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
243 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
245 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
246 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
249 // Even though i128 is not a legal type, we still need to custom lower
250 // the atomic operations in order to exploit SystemZ instructions.
251 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
252 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
254 // We can use the CC result of compare-and-swap to implement
255 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
260 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
262 // Traps are legal, as we will convert them to "j .+2".
263 setOperationAction(ISD::TRAP, MVT::Other, Legal);
265 // z10 has instructions for signed but not unsigned FP conversion.
266 // Handle unsigned 32-bit types as signed 64-bit types.
267 if (!Subtarget.hasFPExtension()) {
268 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274 // We have native support for a 64-bit CTLZ, via FLOGR.
275 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
279 // On z15 we have native support for a 64-bit CTPOP.
280 if (Subtarget.hasMiscellaneousExtensions3()) {
281 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286 setOperationAction(ISD::OR, MVT::i64, Custom);
288 // Expand 128 bit shifts without using a libcall.
289 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292 setLibcallName(RTLIB::SRL_I128, nullptr);
293 setLibcallName(RTLIB::SHL_I128, nullptr);
294 setLibcallName(RTLIB::SRA_I128, nullptr);
296 // We have native instructions for i8, i16 and i32 extensions, but not i1.
297 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
298 for (MVT VT : MVT::integer_valuetypes()) {
299 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
300 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
301 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
304 // Handle the various types of symbolic address.
305 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
306 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
307 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
308 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
309 setOperationAction(ISD::JumpTable, PtrVT, Custom);
311 // We need to handle dynamic allocations specially because of the
312 // 160-byte area at the bottom of the stack.
313 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
314 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
316 // Use custom expanders so that we can force the function to use
317 // a frame pointer.
318 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
319 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
321 // Handle prefetches with PFD or PFDRL.
322 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
324 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
325 // Assume by default that all vector operations need to be expanded.
326 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
327 if (getOperationAction(Opcode, VT) == Legal)
328 setOperationAction(Opcode, VT, Expand);
330 // Likewise all truncating stores and extending loads.
331 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
332 setTruncStoreAction(VT, InnerVT, Expand);
333 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
334 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
335 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
338 if (isTypeLegal(VT)) {
339 // These operations are legal for anything that can be stored in a
340 // vector register, even if there is no native support for the format
341 // as such. In particular, we can do these for v4f32 even though there
342 // are no specific instructions for that format.
343 setOperationAction(ISD::LOAD, VT, Legal);
344 setOperationAction(ISD::STORE, VT, Legal);
345 setOperationAction(ISD::VSELECT, VT, Legal);
346 setOperationAction(ISD::BITCAST, VT, Legal);
347 setOperationAction(ISD::UNDEF, VT, Legal);
349 // Likewise, except that we need to replace the nodes with something
350 // more specific.
351 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
352 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356 // Handle integer vector types.
357 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
358 if (isTypeLegal(VT)) {
359 // These operations have direct equivalents.
360 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
361 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
362 setOperationAction(ISD::ADD, VT, Legal);
363 setOperationAction(ISD::SUB, VT, Legal);
364 if (VT != MVT::v2i64)
365 setOperationAction(ISD::MUL, VT, Legal);
366 setOperationAction(ISD::ABS, VT, Legal);
367 setOperationAction(ISD::AND, VT, Legal);
368 setOperationAction(ISD::OR, VT, Legal);
369 setOperationAction(ISD::XOR, VT, Legal);
370 if (Subtarget.hasVectorEnhancements1())
371 setOperationAction(ISD::CTPOP, VT, Legal);
372 else
373 setOperationAction(ISD::CTPOP, VT, Custom);
374 setOperationAction(ISD::CTTZ, VT, Legal);
375 setOperationAction(ISD::CTLZ, VT, Legal);
377 // Convert a GPR scalar to a vector by inserting it into element 0.
378 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
380 // Use a series of unpacks for extensions.
381 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
382 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
384 // Detect shifts by a scalar amount and convert them into
385 // V*_BY_SCALAR.
386 setOperationAction(ISD::SHL, VT, Custom);
387 setOperationAction(ISD::SRA, VT, Custom);
388 setOperationAction(ISD::SRL, VT, Custom);
390 // At present ROTL isn't matched by DAGCombiner. ROTR should be
391 // converted into ROTL.
392 setOperationAction(ISD::ROTL, VT, Expand);
393 setOperationAction(ISD::ROTR, VT, Expand);
395 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
396 // and inverting the result as necessary.
397 setOperationAction(ISD::SETCC, VT, Custom);
398 setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
399 if (Subtarget.hasVectorEnhancements1())
400 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404 if (Subtarget.hasVector()) {
405 // There should be no need to check for float types other than v2f64
406 // since <2 x f32> isn't a legal type.
407 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
408 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
409 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
410 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
411 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
412 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
413 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
414 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
416 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
417 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
418 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
419 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
420 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
421 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
422 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
423 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
426 if (Subtarget.hasVectorEnhancements2()) {
427 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
428 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
429 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
430 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
431 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
432 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
433 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
434 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
436 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
437 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
438 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
439 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
440 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
441 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
442 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
443 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
446 // Handle floating-point types.
447 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
448 I <= MVT::LAST_FP_VALUETYPE;
449 ++I) {
450 MVT VT = MVT::SimpleValueType(I);
451 if (isTypeLegal(VT)) {
452 // We can use FI for FRINT.
453 setOperationAction(ISD::FRINT, VT, Legal);
455 // We can use the extended form of FI for other rounding operations.
456 if (Subtarget.hasFPExtension()) {
457 setOperationAction(ISD::FNEARBYINT, VT, Legal);
458 setOperationAction(ISD::FFLOOR, VT, Legal);
459 setOperationAction(ISD::FCEIL, VT, Legal);
460 setOperationAction(ISD::FTRUNC, VT, Legal);
461 setOperationAction(ISD::FROUND, VT, Legal);
464 // No special instructions for these.
465 setOperationAction(ISD::FSIN, VT, Expand);
466 setOperationAction(ISD::FCOS, VT, Expand);
467 setOperationAction(ISD::FSINCOS, VT, Expand);
468 setOperationAction(ISD::FREM, VT, Expand);
469 setOperationAction(ISD::FPOW, VT, Expand);
471 // Handle constrained floating-point operations.
472 setOperationAction(ISD::STRICT_FADD, VT, Legal);
473 setOperationAction(ISD::STRICT_FSUB, VT, Legal);
474 setOperationAction(ISD::STRICT_FMUL, VT, Legal);
475 setOperationAction(ISD::STRICT_FDIV, VT, Legal);
476 setOperationAction(ISD::STRICT_FMA, VT, Legal);
477 setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
478 setOperationAction(ISD::STRICT_FRINT, VT, Legal);
479 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
480 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
481 if (Subtarget.hasFPExtension()) {
482 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
483 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
484 setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
485 setOperationAction(ISD::STRICT_FROUND, VT, Legal);
486 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
491 // Handle floating-point vector types.
492 if (Subtarget.hasVector()) {
493 // Scalar-to-vector conversion is just a subreg.
494 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
495 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
497 // Some insertions and extractions can be done directly but others
498 // need to go via integers.
499 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
500 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
501 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
502 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
504 // These operations have direct equivalents.
505 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
506 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
507 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
508 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
509 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
510 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
511 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
512 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
513 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
514 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
515 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
516 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
517 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
518 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
520 // Handle constrained floating-point operations.
521 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
522 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
523 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
524 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
525 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
526 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
527 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
528 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
529 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
530 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
531 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
532 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
535 // The vector enhancements facility 1 has instructions for these.
536 if (Subtarget.hasVectorEnhancements1()) {
537 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
538 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
539 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
540 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
541 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
542 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
543 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
544 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
545 setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
546 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
547 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
548 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
549 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
550 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
552 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
553 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
554 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
555 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
557 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
558 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
559 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
560 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
562 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
563 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
564 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
565 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
567 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
568 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
569 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
570 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
572 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
573 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
574 setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
575 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
577 // Handle constrained floating-point operations.
578 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
579 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
580 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
581 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
582 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
583 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
584 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
585 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
586 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
587 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
588 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
589 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
590 for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
591 MVT::v4f32, MVT::v2f64 }) {
592 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
593 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
594 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
595 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
599 // We only have fused f128 multiply-addition on vector registers.
600 if (!Subtarget.hasVectorEnhancements1()) {
601 setOperationAction(ISD::FMA, MVT::f128, Expand);
602 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
605 // We don't have a copysign instruction on vector registers.
606 if (Subtarget.hasVectorEnhancements1())
607 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
609 // Needed so that we don't try to implement f128 constant loads using
610 // a load-and-extend of a f80 constant (in cases where the constant
611 // would fit in an f80).
612 for (MVT VT : MVT::fp_valuetypes())
613 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
615 // We don't have extending load instruction on vector registers.
616 if (Subtarget.hasVectorEnhancements1()) {
617 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
618 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
621 // Floating-point truncation and stores need to be done separately.
622 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
623 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
624 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
626 // We have 64-bit FPR<->GPR moves, but need special handling for
627 // 32-bit forms.
628 if (!Subtarget.hasVector()) {
629 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
630 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
633 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
634 // structure, but VAEND is a no-op.
635 setOperationAction(ISD::VASTART, MVT::Other, Custom);
636 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
637 setOperationAction(ISD::VAEND, MVT::Other, Expand);
639 // Codes for which we want to perform some z-specific combinations.
640 setTargetDAGCombine(ISD::ZERO_EXTEND);
641 setTargetDAGCombine(ISD::SIGN_EXTEND);
642 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
643 setTargetDAGCombine(ISD::LOAD);
644 setTargetDAGCombine(ISD::STORE);
645 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
646 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
647 setTargetDAGCombine(ISD::FP_ROUND);
648 setTargetDAGCombine(ISD::STRICT_FP_ROUND);
649 setTargetDAGCombine(ISD::FP_EXTEND);
650 setTargetDAGCombine(ISD::SINT_TO_FP);
651 setTargetDAGCombine(ISD::UINT_TO_FP);
652 setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
653 setTargetDAGCombine(ISD::BSWAP);
654 setTargetDAGCombine(ISD::SDIV);
655 setTargetDAGCombine(ISD::UDIV);
656 setTargetDAGCombine(ISD::SREM);
657 setTargetDAGCombine(ISD::UREM);
658 setTargetDAGCombine(ISD::INTRINSIC_VOID);
659 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
661 // Handle intrinsics.
662 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
663 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
665 // We want to use MVC in preference to even a single load/store pair.
666 MaxStoresPerMemcpy = 0;
667 MaxStoresPerMemcpyOptSize = 0;
669 // The main memset sequence is a byte store followed by an MVC.
670 // Two STC or MV..I stores win over that, but the kind of fused stores
671 // generated by target-independent code don't when the byte value is
672 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
673 // than "STC;MVC". Handle the choice in target-specific code instead.
674 MaxStoresPerMemset = 0;
675 MaxStoresPerMemsetOptSize = 0;
677 // Default to having -disable-strictnode-mutation on
678 IsStrictFPEnabled = true;
681 bool SystemZTargetLowering::useSoftFloat() const {
682 return Subtarget.hasSoftFloat();
685 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
686 LLVMContext &, EVT VT) const {
687 if (!VT.isVector())
688 return MVT::i32;
689 return VT.changeVectorElementTypeToInteger();
692 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
693 const MachineFunction &MF, EVT VT) const {
694 VT = VT.getScalarType();
696 if (!VT.isSimple())
697 return false;
699 switch (VT.getSimpleVT().SimpleTy) {
700 case MVT::f32:
701 case MVT::f64:
702 return true;
703 case MVT::f128:
704 return Subtarget.hasVectorEnhancements1();
705 default:
706 break;
709 return false;
712 // Return true if the constant can be generated with a vector instruction,
713 // such as VGM, VGMB or VREPI.
714 bool SystemZVectorConstantInfo::isVectorConstantLegal(
715 const SystemZSubtarget &Subtarget) {
716 const SystemZInstrInfo *TII =
717 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
718 if (!Subtarget.hasVector() ||
719 (isFP128 && !Subtarget.hasVectorEnhancements1()))
720 return false;
722 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
723 // preferred way of creating all-zero and all-one vectors so give it
724 // priority over other methods below.
725 unsigned Mask = 0;
726 unsigned I = 0;
727 for (; I < SystemZ::VectorBytes; ++I) {
728 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
729 if (Byte == 0xff)
730 Mask |= 1ULL << I;
731 else if (Byte != 0)
732 break;
734 if (I == SystemZ::VectorBytes) {
735 Opcode = SystemZISD::BYTE_MASK;
736 OpVals.push_back(Mask);
737 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
738 return true;
741 if (SplatBitSize > 64)
742 return false;
744 auto tryValue = [&](uint64_t Value) -> bool {
745 // Try VECTOR REPLICATE IMMEDIATE
746 int64_t SignedValue = SignExtend64(Value, SplatBitSize);
747 if (isInt<16>(SignedValue)) {
748 OpVals.push_back(((unsigned) SignedValue));
749 Opcode = SystemZISD::REPLICATE;
750 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
751 SystemZ::VectorBits / SplatBitSize);
752 return true;
754 // Try VECTOR GENERATE MASK
755 unsigned Start, End;
756 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
757 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
758 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for
759 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
760 OpVals.push_back(Start - (64 - SplatBitSize));
761 OpVals.push_back(End - (64 - SplatBitSize));
762 Opcode = SystemZISD::ROTATE_MASK;
763 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
764 SystemZ::VectorBits / SplatBitSize);
765 return true;
767 return false;
770 // First try assuming that any undefined bits above the highest set bit
771 // and below the lowest set bit are 1s. This increases the likelihood of
772 // being able to use a sign-extended element value in VECTOR REPLICATE
773 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
774 uint64_t SplatBitsZ = SplatBits.getZExtValue();
775 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
776 uint64_t Lower =
777 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
778 uint64_t Upper =
779 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
780 if (tryValue(SplatBitsZ | Upper | Lower))
781 return true;
783 // Now try assuming that any undefined bits between the first and
784 // last defined set bits are set. This increases the chances of
785 // using a non-wraparound mask.
786 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
787 return tryValue(SplatBitsZ | Middle);
790 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
791 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
792 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
793 SplatBits = FPImm.bitcastToAPInt();
794 unsigned Width = SplatBits.getBitWidth();
795 IntBits <<= (SystemZ::VectorBits - Width);
797 // Find the smallest splat.
798 while (Width > 8) {
799 unsigned HalfSize = Width / 2;
800 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
801 APInt LowValue = SplatBits.trunc(HalfSize);
803 // If the two halves do not match, stop here.
804 if (HighValue != LowValue || 8 > HalfSize)
805 break;
807 SplatBits = HighValue;
808 Width = HalfSize;
810 SplatUndef = 0;
811 SplatBitSize = Width;
814 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
815 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
816 bool HasAnyUndefs;
818 // Get IntBits by finding the 128 bit splat.
819 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
820 true);
822 // Get SplatBits by finding the 8 bit or greater splat.
823 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
824 true);
827 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
828 bool ForCodeSize) const {
829 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
830 if (Imm.isZero() || Imm.isNegZero())
831 return true;
833 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
836 /// Returns true if stack probing through inline assembly is requested.
837 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
838 // If the function specifically requests inline stack probes, emit them.
839 if (MF.getFunction().hasFnAttribute("probe-stack"))
840 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
841 "inline-asm";
842 return false;
845 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
846 // We can use CGFI or CLGFI.
847 return isInt<32>(Imm) || isUInt<32>(Imm);
850 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
851 // We can use ALGFI or SLGFI.
852 return isUInt<32>(Imm) || isUInt<32>(-Imm);
855 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
856 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
857 // Unaligned accesses should never be slower than the expanded version.
858 // We check specifically for aligned accesses in the few cases where
859 // they are required.
860 if (Fast)
861 *Fast = true;
862 return true;
865 // Information about the addressing mode for a memory access.
866 struct AddressingMode {
867 // True if a long displacement is supported.
868 bool LongDisplacement;
870 // True if use of index register is supported.
871 bool IndexReg;
873 AddressingMode(bool LongDispl, bool IdxReg) :
874 LongDisplacement(LongDispl), IndexReg(IdxReg) {}
877 // Return the desired addressing mode for a Load which has only one use (in
878 // the same block) which is a Store.
879 static AddressingMode getLoadStoreAddrMode(bool HasVector,
880 Type *Ty) {
881 // With vector support a Load->Store combination may be combined to either
882 // an MVC or vector operations and it seems to work best to allow the
883 // vector addressing mode.
884 if (HasVector)
885 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
887 // Otherwise only the MVC case is special.
888 bool MVC = Ty->isIntegerTy(8);
889 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
892 // Return the addressing mode which seems most desirable given an LLVM
893 // Instruction pointer.
894 static AddressingMode
895 supportedAddressingMode(Instruction *I, bool HasVector) {
896 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
897 switch (II->getIntrinsicID()) {
898 default: break;
899 case Intrinsic::memset:
900 case Intrinsic::memmove:
901 case Intrinsic::memcpy:
902 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
906 if (isa<LoadInst>(I) && I->hasOneUse()) {
907 auto *SingleUser = cast<Instruction>(*I->user_begin());
908 if (SingleUser->getParent() == I->getParent()) {
909 if (isa<ICmpInst>(SingleUser)) {
910 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
911 if (C->getBitWidth() <= 64 &&
912 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
913 // Comparison of memory with 16 bit signed / unsigned immediate
914 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
915 } else if (isa<StoreInst>(SingleUser))
916 // Load->Store
917 return getLoadStoreAddrMode(HasVector, I->getType());
919 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
920 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
921 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
922 // Load->Store
923 return getLoadStoreAddrMode(HasVector, LoadI->getType());
926 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
928 // * Use LDE instead of LE/LEY for z13 to avoid partial register
929 // dependencies (LDE only supports small offsets).
930 // * Utilize the vector registers to hold floating point
931 // values (vector load / store instructions only support small
932 // offsets).
934 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
935 I->getOperand(0)->getType());
936 bool IsFPAccess = MemAccessTy->isFloatingPointTy();
937 bool IsVectorAccess = MemAccessTy->isVectorTy();
939 // A store of an extracted vector element will be combined into a VSTE type
940 // instruction.
941 if (!IsVectorAccess && isa<StoreInst>(I)) {
942 Value *DataOp = I->getOperand(0);
943 if (isa<ExtractElementInst>(DataOp))
944 IsVectorAccess = true;
947 // A load which gets inserted into a vector element will be combined into a
948 // VLE type instruction.
949 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
950 User *LoadUser = *I->user_begin();
951 if (isa<InsertElementInst>(LoadUser))
952 IsVectorAccess = true;
955 if (IsFPAccess || IsVectorAccess)
956 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
959 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
962 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
963 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
964 // Punt on globals for now, although they can be used in limited
965 // RELATIVE LONG cases.
966 if (AM.BaseGV)
967 return false;
969 // Require a 20-bit signed offset.
970 if (!isInt<20>(AM.BaseOffs))
971 return false;
973 AddressingMode SupportedAM(true, true);
974 if (I != nullptr)
975 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
977 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
978 return false;
980 if (!SupportedAM.IndexReg)
981 // No indexing allowed.
982 return AM.Scale == 0;
983 else
984 // Indexing is OK but no scale factor can be applied.
985 return AM.Scale == 0 || AM.Scale == 1;
988 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
989 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
990 return false;
991 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
992 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
993 return FromBits > ToBits;
996 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
997 if (!FromVT.isInteger() || !ToVT.isInteger())
998 return false;
999 unsigned FromBits = FromVT.getFixedSizeInBits();
1000 unsigned ToBits = ToVT.getFixedSizeInBits();
1001 return FromBits > ToBits;
1004 //===----------------------------------------------------------------------===//
1005 // Inline asm support
1006 //===----------------------------------------------------------------------===//
1008 TargetLowering::ConstraintType
1009 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1010 if (Constraint.size() == 1) {
1011 switch (Constraint[0]) {
1012 case 'a': // Address register
1013 case 'd': // Data register (equivalent to 'r')
1014 case 'f': // Floating-point register
1015 case 'h': // High-part register
1016 case 'r': // General-purpose register
1017 case 'v': // Vector register
1018 return C_RegisterClass;
1020 case 'Q': // Memory with base and unsigned 12-bit displacement
1021 case 'R': // Likewise, plus an index
1022 case 'S': // Memory with base and signed 20-bit displacement
1023 case 'T': // Likewise, plus an index
1024 case 'm': // Equivalent to 'T'.
1025 return C_Memory;
1027 case 'I': // Unsigned 8-bit constant
1028 case 'J': // Unsigned 12-bit constant
1029 case 'K': // Signed 16-bit constant
1030 case 'L': // Signed 20-bit displacement (on all targets we support)
1031 case 'M': // 0x7fffffff
1032 return C_Immediate;
1034 default:
1035 break;
1038 return TargetLowering::getConstraintType(Constraint);
1041 TargetLowering::ConstraintWeight SystemZTargetLowering::
1042 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1043 const char *constraint) const {
1044 ConstraintWeight weight = CW_Invalid;
1045 Value *CallOperandVal = info.CallOperandVal;
1046 // If we don't have a value, we can't do a match,
1047 // but allow it at the lowest weight.
1048 if (!CallOperandVal)
1049 return CW_Default;
1050 Type *type = CallOperandVal->getType();
1051 // Look at the constraint type.
1052 switch (*constraint) {
1053 default:
1054 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1055 break;
1057 case 'a': // Address register
1058 case 'd': // Data register (equivalent to 'r')
1059 case 'h': // High-part register
1060 case 'r': // General-purpose register
1061 if (CallOperandVal->getType()->isIntegerTy())
1062 weight = CW_Register;
1063 break;
1065 case 'f': // Floating-point register
1066 if (type->isFloatingPointTy())
1067 weight = CW_Register;
1068 break;
1070 case 'v': // Vector register
1071 if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1072 Subtarget.hasVector())
1073 weight = CW_Register;
1074 break;
1076 case 'I': // Unsigned 8-bit constant
1077 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1078 if (isUInt<8>(C->getZExtValue()))
1079 weight = CW_Constant;
1080 break;
1082 case 'J': // Unsigned 12-bit constant
1083 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1084 if (isUInt<12>(C->getZExtValue()))
1085 weight = CW_Constant;
1086 break;
1088 case 'K': // Signed 16-bit constant
1089 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1090 if (isInt<16>(C->getSExtValue()))
1091 weight = CW_Constant;
1092 break;
1094 case 'L': // Signed 20-bit displacement (on all targets we support)
1095 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1096 if (isInt<20>(C->getSExtValue()))
1097 weight = CW_Constant;
1098 break;
1100 case 'M': // 0x7fffffff
1101 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1102 if (C->getZExtValue() == 0x7fffffff)
1103 weight = CW_Constant;
1104 break;
1106 return weight;
1109 // Parse a "{tNNN}" register constraint for which the register type "t"
1110 // has already been verified. MC is the class associated with "t" and
1111 // Map maps 0-based register numbers to LLVM register numbers.
1112 static std::pair<unsigned, const TargetRegisterClass *>
1113 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1114 const unsigned *Map, unsigned Size) {
1115 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1116 if (isdigit(Constraint[2])) {
1117 unsigned Index;
1118 bool Failed =
1119 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1120 if (!Failed && Index < Size && Map[Index])
1121 return std::make_pair(Map[Index], RC);
1123 return std::make_pair(0U, nullptr);
1126 std::pair<unsigned, const TargetRegisterClass *>
1127 SystemZTargetLowering::getRegForInlineAsmConstraint(
1128 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1129 if (Constraint.size() == 1) {
1130 // GCC Constraint Letters
1131 switch (Constraint[0]) {
1132 default: break;
1133 case 'd': // Data register (equivalent to 'r')
1134 case 'r': // General-purpose register
1135 if (VT == MVT::i64)
1136 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1137 else if (VT == MVT::i128)
1138 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1139 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1141 case 'a': // Address register
1142 if (VT == MVT::i64)
1143 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1144 else if (VT == MVT::i128)
1145 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1146 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1148 case 'h': // High-part register (an LLVM extension)
1149 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1151 case 'f': // Floating-point register
1152 if (!useSoftFloat()) {
1153 if (VT == MVT::f64)
1154 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1155 else if (VT == MVT::f128)
1156 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1157 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1159 break;
1160 case 'v': // Vector register
1161 if (Subtarget.hasVector()) {
1162 if (VT == MVT::f32)
1163 return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1164 if (VT == MVT::f64)
1165 return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1166 return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1168 break;
1171 if (Constraint.size() > 0 && Constraint[0] == '{') {
1172 // We need to override the default register parsing for GPRs and FPRs
1173 // because the interpretation depends on VT. The internal names of
1174 // the registers are also different from the external names
1175 // (F0D and F0S instead of F0, etc.).
1176 if (Constraint[1] == 'r') {
1177 if (VT == MVT::i32)
1178 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1179 SystemZMC::GR32Regs, 16);
1180 if (VT == MVT::i128)
1181 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1182 SystemZMC::GR128Regs, 16);
1183 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1184 SystemZMC::GR64Regs, 16);
1186 if (Constraint[1] == 'f') {
1187 if (useSoftFloat())
1188 return std::make_pair(
1189 0u, static_cast<const TargetRegisterClass *>(nullptr));
1190 if (VT == MVT::f32)
1191 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1192 SystemZMC::FP32Regs, 16);
1193 if (VT == MVT::f128)
1194 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1195 SystemZMC::FP128Regs, 16);
1196 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1197 SystemZMC::FP64Regs, 16);
1199 if (Constraint[1] == 'v') {
1200 if (!Subtarget.hasVector())
1201 return std::make_pair(
1202 0u, static_cast<const TargetRegisterClass *>(nullptr));
1203 if (VT == MVT::f32)
1204 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1205 SystemZMC::VR32Regs, 32);
1206 if (VT == MVT::f64)
1207 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1208 SystemZMC::VR64Regs, 32);
1209 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1210 SystemZMC::VR128Regs, 32);
1213 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1216 // FIXME? Maybe this could be a TableGen attribute on some registers and
1217 // this table could be generated automatically from RegInfo.
1218 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1219 const MachineFunction &MF) const {
1221 Register Reg = StringSwitch<Register>(RegName)
1222 .Case("r15", SystemZ::R15D)
1223 .Default(0);
1224 if (Reg)
1225 return Reg;
1226 report_fatal_error("Invalid register name global variable");
1229 void SystemZTargetLowering::
1230 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1231 std::vector<SDValue> &Ops,
1232 SelectionDAG &DAG) const {
1233 // Only support length 1 constraints for now.
1234 if (Constraint.length() == 1) {
1235 switch (Constraint[0]) {
1236 case 'I': // Unsigned 8-bit constant
1237 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1238 if (isUInt<8>(C->getZExtValue()))
1239 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1240 Op.getValueType()));
1241 return;
1243 case 'J': // Unsigned 12-bit constant
1244 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1245 if (isUInt<12>(C->getZExtValue()))
1246 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1247 Op.getValueType()));
1248 return;
1250 case 'K': // Signed 16-bit constant
1251 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1252 if (isInt<16>(C->getSExtValue()))
1253 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1254 Op.getValueType()));
1255 return;
1257 case 'L': // Signed 20-bit displacement (on all targets we support)
1258 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1259 if (isInt<20>(C->getSExtValue()))
1260 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1261 Op.getValueType()));
1262 return;
1264 case 'M': // 0x7fffffff
1265 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1266 if (C->getZExtValue() == 0x7fffffff)
1267 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1268 Op.getValueType()));
1269 return;
1272 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1275 //===----------------------------------------------------------------------===//
1276 // Calling conventions
1277 //===----------------------------------------------------------------------===//
1279 #include "SystemZGenCallingConv.inc"
1281 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1282 CallingConv::ID) const {
1283 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1284 SystemZ::R14D, 0 };
1285 return ScratchRegs;
1288 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1289 Type *ToType) const {
1290 return isTruncateFree(FromType, ToType);
1293 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1294 return CI->isTailCall();
1297 // We do not yet support 128-bit single-element vector types. If the user
1298 // attempts to use such types as function argument or return type, prefer
1299 // to error out instead of emitting code violating the ABI.
1300 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1301 if (ArgVT.isVector() && !VT.isVector())
1302 report_fatal_error("Unsupported vector argument or return type");
1305 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1306 for (unsigned i = 0; i < Ins.size(); ++i)
1307 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1311 for (unsigned i = 0; i < Outs.size(); ++i)
1312 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1315 // Value is a value that has been passed to us in the location described by VA
1316 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
1317 // any loads onto Chain.
1318 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1319 CCValAssign &VA, SDValue Chain,
1320 SDValue Value) {
1321 // If the argument has been promoted from a smaller type, insert an
1322 // assertion to capture this.
1323 if (VA.getLocInfo() == CCValAssign::SExt)
1324 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1325 DAG.getValueType(VA.getValVT()));
1326 else if (VA.getLocInfo() == CCValAssign::ZExt)
1327 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1328 DAG.getValueType(VA.getValVT()));
1330 if (VA.isExtInLoc())
1331 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1332 else if (VA.getLocInfo() == CCValAssign::BCvt) {
1333 // If this is a short vector argument loaded from the stack,
1334 // extend from i64 to full vector size and then bitcast.
1335 assert(VA.getLocVT() == MVT::i64);
1336 assert(VA.getValVT().isVector());
1337 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1338 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1339 } else
1340 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1341 return Value;
1344 // Value is a value of type VA.getValVT() that we need to copy into
1345 // the location described by VA. Return a copy of Value converted to
1346 // VA.getValVT(). The caller is responsible for handling indirect values.
1347 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1348 CCValAssign &VA, SDValue Value) {
1349 switch (VA.getLocInfo()) {
1350 case CCValAssign::SExt:
1351 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1352 case CCValAssign::ZExt:
1353 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1354 case CCValAssign::AExt:
1355 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1356 case CCValAssign::BCvt:
1357 // If this is a short vector argument to be stored to the stack,
1358 // bitcast to v2i64 and then extract first element.
1359 assert(VA.getLocVT() == MVT::i64);
1360 assert(VA.getValVT().isVector());
1361 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1362 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1363 DAG.getConstant(0, DL, MVT::i32));
1364 case CCValAssign::Full:
1365 return Value;
1366 default:
1367 llvm_unreachable("Unhandled getLocInfo()");
1371 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1372 SDLoc DL(In);
1373 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1374 DAG.getIntPtrConstant(0, DL));
1375 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1376 DAG.getIntPtrConstant(1, DL));
1377 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1378 MVT::Untyped, Hi, Lo);
1379 return SDValue(Pair, 0);
1382 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1383 SDLoc DL(In);
1384 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1385 DL, MVT::i64, In);
1386 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1387 DL, MVT::i64, In);
1388 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1391 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1392 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1393 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1394 EVT ValueVT = Val.getValueType();
1395 assert((ValueVT != MVT::i128 ||
1396 ((NumParts == 1 && PartVT == MVT::Untyped) ||
1397 (NumParts == 2 && PartVT == MVT::i64))) &&
1398 "Unknown handling of i128 value.");
1399 if (ValueVT == MVT::i128 && NumParts == 1) {
1400 // Inline assembly operand.
1401 Parts[0] = lowerI128ToGR128(DAG, Val);
1402 return true;
1404 return false;
1407 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1408 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1409 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1410 assert((ValueVT != MVT::i128 ||
1411 ((NumParts == 1 && PartVT == MVT::Untyped) ||
1412 (NumParts == 2 && PartVT == MVT::i64))) &&
1413 "Unknown handling of i128 value.");
1414 if (ValueVT == MVT::i128 && NumParts == 1)
1415 // Inline assembly operand.
1416 return lowerGR128ToI128(DAG, Parts[0]);
1417 return SDValue();
1420 SDValue SystemZTargetLowering::LowerFormalArguments(
1421 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1422 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1423 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1424 MachineFunction &MF = DAG.getMachineFunction();
1425 MachineFrameInfo &MFI = MF.getFrameInfo();
1426 MachineRegisterInfo &MRI = MF.getRegInfo();
1427 SystemZMachineFunctionInfo *FuncInfo =
1428 MF.getInfo<SystemZMachineFunctionInfo>();
1429 auto *TFL =
1430 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1431 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1433 // Detect unsupported vector argument types.
1434 if (Subtarget.hasVector())
1435 VerifyVectorTypes(Ins);
1437 // Assign locations to all of the incoming arguments.
1438 SmallVector<CCValAssign, 16> ArgLocs;
1439 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1440 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1442 unsigned NumFixedGPRs = 0;
1443 unsigned NumFixedFPRs = 0;
1444 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1445 SDValue ArgValue;
1446 CCValAssign &VA = ArgLocs[I];
1447 EVT LocVT = VA.getLocVT();
1448 if (VA.isRegLoc()) {
1449 // Arguments passed in registers
1450 const TargetRegisterClass *RC;
1451 switch (LocVT.getSimpleVT().SimpleTy) {
1452 default:
1453 // Integers smaller than i64 should be promoted to i64.
1454 llvm_unreachable("Unexpected argument type");
1455 case MVT::i32:
1456 NumFixedGPRs += 1;
1457 RC = &SystemZ::GR32BitRegClass;
1458 break;
1459 case MVT::i64:
1460 NumFixedGPRs += 1;
1461 RC = &SystemZ::GR64BitRegClass;
1462 break;
1463 case MVT::f32:
1464 NumFixedFPRs += 1;
1465 RC = &SystemZ::FP32BitRegClass;
1466 break;
1467 case MVT::f64:
1468 NumFixedFPRs += 1;
1469 RC = &SystemZ::FP64BitRegClass;
1470 break;
1471 case MVT::v16i8:
1472 case MVT::v8i16:
1473 case MVT::v4i32:
1474 case MVT::v2i64:
1475 case MVT::v4f32:
1476 case MVT::v2f64:
1477 RC = &SystemZ::VR128BitRegClass;
1478 break;
1481 Register VReg = MRI.createVirtualRegister(RC);
1482 MRI.addLiveIn(VA.getLocReg(), VReg);
1483 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1484 } else {
1485 assert(VA.isMemLoc() && "Argument not register or memory");
1487 // Create the frame index object for this incoming parameter.
1488 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1489 VA.getLocMemOffset(), true);
1491 // Create the SelectionDAG nodes corresponding to a load
1492 // from this parameter. Unpromoted ints and floats are
1493 // passed as right-justified 8-byte values.
1494 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1495 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1496 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1497 DAG.getIntPtrConstant(4, DL));
1498 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1499 MachinePointerInfo::getFixedStack(MF, FI));
1502 // Convert the value of the argument register into the value that's
1503 // being passed.
1504 if (VA.getLocInfo() == CCValAssign::Indirect) {
1505 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1506 MachinePointerInfo()));
1507 // If the original argument was split (e.g. i128), we need
1508 // to load all parts of it here (using the same address).
1509 unsigned ArgIndex = Ins[I].OrigArgIndex;
1510 assert (Ins[I].PartOffset == 0);
1511 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1512 CCValAssign &PartVA = ArgLocs[I + 1];
1513 unsigned PartOffset = Ins[I + 1].PartOffset;
1514 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1515 DAG.getIntPtrConstant(PartOffset, DL));
1516 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1517 MachinePointerInfo()));
1518 ++I;
1520 } else
1521 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1524 if (IsVarArg) {
1525 // Save the number of non-varargs registers for later use by va_start, etc.
1526 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1527 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1529 // Likewise the address (in the form of a frame index) of where the
1530 // first stack vararg would be. The 1-byte size here is arbitrary.
1531 int64_t StackSize = CCInfo.getNextStackOffset();
1532 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1534 // ...and a similar frame index for the caller-allocated save area
1535 // that will be used to store the incoming registers.
1536 int64_t RegSaveOffset =
1537 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1538 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1539 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1541 // Store the FPR varargs in the reserved frame slots. (We store the
1542 // GPRs as part of the prologue.)
1543 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1544 SDValue MemOps[SystemZ::ELFNumArgFPRs];
1545 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1546 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1547 int FI =
1548 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1549 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1550 unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1551 &SystemZ::FP64BitRegClass);
1552 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1553 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1554 MachinePointerInfo::getFixedStack(MF, FI));
1556 // Join the stores, which are independent of one another.
1557 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1558 makeArrayRef(&MemOps[NumFixedFPRs],
1559 SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1563 return Chain;
1566 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1567 SmallVectorImpl<CCValAssign> &ArgLocs,
1568 SmallVectorImpl<ISD::OutputArg> &Outs) {
1569 // Punt if there are any indirect or stack arguments, or if the call
1570 // needs the callee-saved argument register R6, or if the call uses
1571 // the callee-saved register arguments SwiftSelf and SwiftError.
1572 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1573 CCValAssign &VA = ArgLocs[I];
1574 if (VA.getLocInfo() == CCValAssign::Indirect)
1575 return false;
1576 if (!VA.isRegLoc())
1577 return false;
1578 Register Reg = VA.getLocReg();
1579 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1580 return false;
1581 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1582 return false;
1584 return true;
1587 SDValue
1588 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1589 SmallVectorImpl<SDValue> &InVals) const {
1590 SelectionDAG &DAG = CLI.DAG;
1591 SDLoc &DL = CLI.DL;
1592 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1593 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1594 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1595 SDValue Chain = CLI.Chain;
1596 SDValue Callee = CLI.Callee;
1597 bool &IsTailCall = CLI.IsTailCall;
1598 CallingConv::ID CallConv = CLI.CallConv;
1599 bool IsVarArg = CLI.IsVarArg;
1600 MachineFunction &MF = DAG.getMachineFunction();
1601 EVT PtrVT = getPointerTy(MF.getDataLayout());
1602 LLVMContext &Ctx = *DAG.getContext();
1604 // Detect unsupported vector argument and return types.
1605 if (Subtarget.hasVector()) {
1606 VerifyVectorTypes(Outs);
1607 VerifyVectorTypes(Ins);
1610 // Analyze the operands of the call, assigning locations to each operand.
1611 SmallVector<CCValAssign, 16> ArgLocs;
1612 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1613 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1615 // We don't support GuaranteedTailCallOpt, only automatically-detected
1616 // sibling calls.
1617 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1618 IsTailCall = false;
1620 // Get a count of how many bytes are to be pushed on the stack.
1621 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1623 // Mark the start of the call.
1624 if (!IsTailCall)
1625 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1627 // Copy argument values to their designated locations.
1628 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1629 SmallVector<SDValue, 8> MemOpChains;
1630 SDValue StackPtr;
1631 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1632 CCValAssign &VA = ArgLocs[I];
1633 SDValue ArgValue = OutVals[I];
1635 if (VA.getLocInfo() == CCValAssign::Indirect) {
1636 // Store the argument in a stack slot and pass its address.
1637 unsigned ArgIndex = Outs[I].OrigArgIndex;
1638 EVT SlotVT;
1639 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1640 // Allocate the full stack space for a promoted (and split) argument.
1641 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1642 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1643 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1644 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1645 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1646 } else {
1647 SlotVT = Outs[I].ArgVT;
1649 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1650 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1651 MemOpChains.push_back(
1652 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1653 MachinePointerInfo::getFixedStack(MF, FI)));
1654 // If the original argument was split (e.g. i128), we need
1655 // to store all parts of it here (and pass just one address).
1656 assert (Outs[I].PartOffset == 0);
1657 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1658 SDValue PartValue = OutVals[I + 1];
1659 unsigned PartOffset = Outs[I + 1].PartOffset;
1660 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1661 DAG.getIntPtrConstant(PartOffset, DL));
1662 MemOpChains.push_back(
1663 DAG.getStore(Chain, DL, PartValue, Address,
1664 MachinePointerInfo::getFixedStack(MF, FI)));
1665 assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1666 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1667 ++I;
1669 ArgValue = SpillSlot;
1670 } else
1671 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1673 if (VA.isRegLoc())
1674 // Queue up the argument copies and emit them at the end.
1675 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1676 else {
1677 assert(VA.isMemLoc() && "Argument not register or memory");
1679 // Work out the address of the stack slot. Unpromoted ints and
1680 // floats are passed as right-justified 8-byte values.
1681 if (!StackPtr.getNode())
1682 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1683 unsigned Offset = SystemZMC::ELFCallFrameSize + VA.getLocMemOffset();
1684 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1685 Offset += 4;
1686 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1687 DAG.getIntPtrConstant(Offset, DL));
1689 // Emit the store.
1690 MemOpChains.push_back(
1691 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1695 // Join the stores, which are independent of one another.
1696 if (!MemOpChains.empty())
1697 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1699 // Accept direct calls by converting symbolic call addresses to the
1700 // associated Target* opcodes. Force %r1 to be used for indirect
1701 // tail calls.
1702 SDValue Glue;
1703 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1704 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1705 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1706 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1707 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1708 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1709 } else if (IsTailCall) {
1710 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1711 Glue = Chain.getValue(1);
1712 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1715 // Build a sequence of copy-to-reg nodes, chained and glued together.
1716 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1717 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1718 RegsToPass[I].second, Glue);
1719 Glue = Chain.getValue(1);
1722 // The first call operand is the chain and the second is the target address.
1723 SmallVector<SDValue, 8> Ops;
1724 Ops.push_back(Chain);
1725 Ops.push_back(Callee);
1727 // Add argument registers to the end of the list so that they are
1728 // known live into the call.
1729 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1730 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1731 RegsToPass[I].second.getValueType()));
1733 // Add a register mask operand representing the call-preserved registers.
1734 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1735 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1736 assert(Mask && "Missing call preserved mask for calling convention");
1737 Ops.push_back(DAG.getRegisterMask(Mask));
1739 // Glue the call to the argument copies, if any.
1740 if (Glue.getNode())
1741 Ops.push_back(Glue);
1743 // Emit the call.
1744 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1745 if (IsTailCall)
1746 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1747 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1748 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1749 Glue = Chain.getValue(1);
1751 // Mark the end of the call, which is glued to the call itself.
1752 Chain = DAG.getCALLSEQ_END(Chain,
1753 DAG.getConstant(NumBytes, DL, PtrVT, true),
1754 DAG.getConstant(0, DL, PtrVT, true),
1755 Glue, DL);
1756 Glue = Chain.getValue(1);
1758 // Assign locations to each value returned by this call.
1759 SmallVector<CCValAssign, 16> RetLocs;
1760 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1761 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1763 // Copy all of the result registers out of their specified physreg.
1764 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1765 CCValAssign &VA = RetLocs[I];
1767 // Copy the value out, gluing the copy to the end of the call sequence.
1768 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1769 VA.getLocVT(), Glue);
1770 Chain = RetValue.getValue(1);
1771 Glue = RetValue.getValue(2);
1773 // Convert the value of the return register into the value that's
1774 // being returned.
1775 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1778 return Chain;
1781 bool SystemZTargetLowering::
1782 CanLowerReturn(CallingConv::ID CallConv,
1783 MachineFunction &MF, bool isVarArg,
1784 const SmallVectorImpl<ISD::OutputArg> &Outs,
1785 LLVMContext &Context) const {
1786 // Detect unsupported vector return types.
1787 if (Subtarget.hasVector())
1788 VerifyVectorTypes(Outs);
1790 // Special case that we cannot easily detect in RetCC_SystemZ since
1791 // i128 is not a legal type.
1792 for (auto &Out : Outs)
1793 if (Out.ArgVT == MVT::i128)
1794 return false;
1796 SmallVector<CCValAssign, 16> RetLocs;
1797 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1798 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1801 SDValue
1802 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1803 bool IsVarArg,
1804 const SmallVectorImpl<ISD::OutputArg> &Outs,
1805 const SmallVectorImpl<SDValue> &OutVals,
1806 const SDLoc &DL, SelectionDAG &DAG) const {
1807 MachineFunction &MF = DAG.getMachineFunction();
1809 // Detect unsupported vector return types.
1810 if (Subtarget.hasVector())
1811 VerifyVectorTypes(Outs);
1813 // Assign locations to each returned value.
1814 SmallVector<CCValAssign, 16> RetLocs;
1815 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1816 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1818 // Quick exit for void returns
1819 if (RetLocs.empty())
1820 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1822 if (CallConv == CallingConv::GHC)
1823 report_fatal_error("GHC functions return void only");
1825 // Copy the result values into the output registers.
1826 SDValue Glue;
1827 SmallVector<SDValue, 4> RetOps;
1828 RetOps.push_back(Chain);
1829 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1830 CCValAssign &VA = RetLocs[I];
1831 SDValue RetValue = OutVals[I];
1833 // Make the return register live on exit.
1834 assert(VA.isRegLoc() && "Can only return in registers!");
1836 // Promote the value as required.
1837 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1839 // Chain and glue the copies together.
1840 Register Reg = VA.getLocReg();
1841 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1842 Glue = Chain.getValue(1);
1843 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1846 // Update chain and glue.
1847 RetOps[0] = Chain;
1848 if (Glue.getNode())
1849 RetOps.push_back(Glue);
1851 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1854 // Return true if Op is an intrinsic node with chain that returns the CC value
1855 // as its only (other) argument. Provide the associated SystemZISD opcode and
1856 // the mask of valid CC values if so.
1857 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1858 unsigned &CCValid) {
1859 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1860 switch (Id) {
1861 case Intrinsic::s390_tbegin:
1862 Opcode = SystemZISD::TBEGIN;
1863 CCValid = SystemZ::CCMASK_TBEGIN;
1864 return true;
1866 case Intrinsic::s390_tbegin_nofloat:
1867 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1868 CCValid = SystemZ::CCMASK_TBEGIN;
1869 return true;
1871 case Intrinsic::s390_tend:
1872 Opcode = SystemZISD::TEND;
1873 CCValid = SystemZ::CCMASK_TEND;
1874 return true;
1876 default:
1877 return false;
1881 // Return true if Op is an intrinsic node without chain that returns the
1882 // CC value as its final argument. Provide the associated SystemZISD
1883 // opcode and the mask of valid CC values if so.
1884 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1885 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1886 switch (Id) {
1887 case Intrinsic::s390_vpkshs:
1888 case Intrinsic::s390_vpksfs:
1889 case Intrinsic::s390_vpksgs:
1890 Opcode = SystemZISD::PACKS_CC;
1891 CCValid = SystemZ::CCMASK_VCMP;
1892 return true;
1894 case Intrinsic::s390_vpklshs:
1895 case Intrinsic::s390_vpklsfs:
1896 case Intrinsic::s390_vpklsgs:
1897 Opcode = SystemZISD::PACKLS_CC;
1898 CCValid = SystemZ::CCMASK_VCMP;
1899 return true;
1901 case Intrinsic::s390_vceqbs:
1902 case Intrinsic::s390_vceqhs:
1903 case Intrinsic::s390_vceqfs:
1904 case Intrinsic::s390_vceqgs:
1905 Opcode = SystemZISD::VICMPES;
1906 CCValid = SystemZ::CCMASK_VCMP;
1907 return true;
1909 case Intrinsic::s390_vchbs:
1910 case Intrinsic::s390_vchhs:
1911 case Intrinsic::s390_vchfs:
1912 case Intrinsic::s390_vchgs:
1913 Opcode = SystemZISD::VICMPHS;
1914 CCValid = SystemZ::CCMASK_VCMP;
1915 return true;
1917 case Intrinsic::s390_vchlbs:
1918 case Intrinsic::s390_vchlhs:
1919 case Intrinsic::s390_vchlfs:
1920 case Intrinsic::s390_vchlgs:
1921 Opcode = SystemZISD::VICMPHLS;
1922 CCValid = SystemZ::CCMASK_VCMP;
1923 return true;
1925 case Intrinsic::s390_vtm:
1926 Opcode = SystemZISD::VTM;
1927 CCValid = SystemZ::CCMASK_VCMP;
1928 return true;
1930 case Intrinsic::s390_vfaebs:
1931 case Intrinsic::s390_vfaehs:
1932 case Intrinsic::s390_vfaefs:
1933 Opcode = SystemZISD::VFAE_CC;
1934 CCValid = SystemZ::CCMASK_ANY;
1935 return true;
1937 case Intrinsic::s390_vfaezbs:
1938 case Intrinsic::s390_vfaezhs:
1939 case Intrinsic::s390_vfaezfs:
1940 Opcode = SystemZISD::VFAEZ_CC;
1941 CCValid = SystemZ::CCMASK_ANY;
1942 return true;
1944 case Intrinsic::s390_vfeebs:
1945 case Intrinsic::s390_vfeehs:
1946 case Intrinsic::s390_vfeefs:
1947 Opcode = SystemZISD::VFEE_CC;
1948 CCValid = SystemZ::CCMASK_ANY;
1949 return true;
1951 case Intrinsic::s390_vfeezbs:
1952 case Intrinsic::s390_vfeezhs:
1953 case Intrinsic::s390_vfeezfs:
1954 Opcode = SystemZISD::VFEEZ_CC;
1955 CCValid = SystemZ::CCMASK_ANY;
1956 return true;
1958 case Intrinsic::s390_vfenebs:
1959 case Intrinsic::s390_vfenehs:
1960 case Intrinsic::s390_vfenefs:
1961 Opcode = SystemZISD::VFENE_CC;
1962 CCValid = SystemZ::CCMASK_ANY;
1963 return true;
1965 case Intrinsic::s390_vfenezbs:
1966 case Intrinsic::s390_vfenezhs:
1967 case Intrinsic::s390_vfenezfs:
1968 Opcode = SystemZISD::VFENEZ_CC;
1969 CCValid = SystemZ::CCMASK_ANY;
1970 return true;
1972 case Intrinsic::s390_vistrbs:
1973 case Intrinsic::s390_vistrhs:
1974 case Intrinsic::s390_vistrfs:
1975 Opcode = SystemZISD::VISTR_CC;
1976 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1977 return true;
1979 case Intrinsic::s390_vstrcbs:
1980 case Intrinsic::s390_vstrchs:
1981 case Intrinsic::s390_vstrcfs:
1982 Opcode = SystemZISD::VSTRC_CC;
1983 CCValid = SystemZ::CCMASK_ANY;
1984 return true;
1986 case Intrinsic::s390_vstrczbs:
1987 case Intrinsic::s390_vstrczhs:
1988 case Intrinsic::s390_vstrczfs:
1989 Opcode = SystemZISD::VSTRCZ_CC;
1990 CCValid = SystemZ::CCMASK_ANY;
1991 return true;
1993 case Intrinsic::s390_vstrsb:
1994 case Intrinsic::s390_vstrsh:
1995 case Intrinsic::s390_vstrsf:
1996 Opcode = SystemZISD::VSTRS_CC;
1997 CCValid = SystemZ::CCMASK_ANY;
1998 return true;
2000 case Intrinsic::s390_vstrszb:
2001 case Intrinsic::s390_vstrszh:
2002 case Intrinsic::s390_vstrszf:
2003 Opcode = SystemZISD::VSTRSZ_CC;
2004 CCValid = SystemZ::CCMASK_ANY;
2005 return true;
2007 case Intrinsic::s390_vfcedbs:
2008 case Intrinsic::s390_vfcesbs:
2009 Opcode = SystemZISD::VFCMPES;
2010 CCValid = SystemZ::CCMASK_VCMP;
2011 return true;
2013 case Intrinsic::s390_vfchdbs:
2014 case Intrinsic::s390_vfchsbs:
2015 Opcode = SystemZISD::VFCMPHS;
2016 CCValid = SystemZ::CCMASK_VCMP;
2017 return true;
2019 case Intrinsic::s390_vfchedbs:
2020 case Intrinsic::s390_vfchesbs:
2021 Opcode = SystemZISD::VFCMPHES;
2022 CCValid = SystemZ::CCMASK_VCMP;
2023 return true;
2025 case Intrinsic::s390_vftcidb:
2026 case Intrinsic::s390_vftcisb:
2027 Opcode = SystemZISD::VFTCI;
2028 CCValid = SystemZ::CCMASK_VCMP;
2029 return true;
2031 case Intrinsic::s390_tdc:
2032 Opcode = SystemZISD::TDC;
2033 CCValid = SystemZ::CCMASK_TDC;
2034 return true;
2036 default:
2037 return false;
2041 // Emit an intrinsic with chain and an explicit CC register result.
2042 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2043 unsigned Opcode) {
2044 // Copy all operands except the intrinsic ID.
2045 unsigned NumOps = Op.getNumOperands();
2046 SmallVector<SDValue, 6> Ops;
2047 Ops.reserve(NumOps - 1);
2048 Ops.push_back(Op.getOperand(0));
2049 for (unsigned I = 2; I < NumOps; ++I)
2050 Ops.push_back(Op.getOperand(I));
2052 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2053 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2054 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2055 SDValue OldChain = SDValue(Op.getNode(), 1);
2056 SDValue NewChain = SDValue(Intr.getNode(), 1);
2057 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2058 return Intr.getNode();
2061 // Emit an intrinsic with an explicit CC register result.
2062 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2063 unsigned Opcode) {
2064 // Copy all operands except the intrinsic ID.
2065 unsigned NumOps = Op.getNumOperands();
2066 SmallVector<SDValue, 6> Ops;
2067 Ops.reserve(NumOps - 1);
2068 for (unsigned I = 1; I < NumOps; ++I)
2069 Ops.push_back(Op.getOperand(I));
2071 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2072 return Intr.getNode();
2075 // CC is a comparison that will be implemented using an integer or
2076 // floating-point comparison. Return the condition code mask for
2077 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
2078 // unsigned comparisons and clear for signed ones. In the floating-point
2079 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2080 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2081 #define CONV(X) \
2082 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2083 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2084 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2086 switch (CC) {
2087 default:
2088 llvm_unreachable("Invalid integer condition!");
2090 CONV(EQ);
2091 CONV(NE);
2092 CONV(GT);
2093 CONV(GE);
2094 CONV(LT);
2095 CONV(LE);
2097 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
2098 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2100 #undef CONV
2103 // If C can be converted to a comparison against zero, adjust the operands
2104 // as necessary.
2105 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2106 if (C.ICmpType == SystemZICMP::UnsignedOnly)
2107 return;
2109 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2110 if (!ConstOp1)
2111 return;
2113 int64_t Value = ConstOp1->getSExtValue();
2114 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2115 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2116 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2117 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2118 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2119 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2123 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2124 // adjust the operands as necessary.
2125 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2126 Comparison &C) {
2127 // For us to make any changes, it must a comparison between a single-use
2128 // load and a constant.
2129 if (!C.Op0.hasOneUse() ||
2130 C.Op0.getOpcode() != ISD::LOAD ||
2131 C.Op1.getOpcode() != ISD::Constant)
2132 return;
2134 // We must have an 8- or 16-bit load.
2135 auto *Load = cast<LoadSDNode>(C.Op0);
2136 unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2137 if ((NumBits != 8 && NumBits != 16) ||
2138 NumBits != Load->getMemoryVT().getStoreSizeInBits())
2139 return;
2141 // The load must be an extending one and the constant must be within the
2142 // range of the unextended value.
2143 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2144 uint64_t Value = ConstOp1->getZExtValue();
2145 uint64_t Mask = (1 << NumBits) - 1;
2146 if (Load->getExtensionType() == ISD::SEXTLOAD) {
2147 // Make sure that ConstOp1 is in range of C.Op0.
2148 int64_t SignedValue = ConstOp1->getSExtValue();
2149 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2150 return;
2151 if (C.ICmpType != SystemZICMP::SignedOnly) {
2152 // Unsigned comparison between two sign-extended values is equivalent
2153 // to unsigned comparison between two zero-extended values.
2154 Value &= Mask;
2155 } else if (NumBits == 8) {
2156 // Try to treat the comparison as unsigned, so that we can use CLI.
2157 // Adjust CCMask and Value as necessary.
2158 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2159 // Test whether the high bit of the byte is set.
2160 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2161 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2162 // Test whether the high bit of the byte is clear.
2163 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2164 else
2165 // No instruction exists for this combination.
2166 return;
2167 C.ICmpType = SystemZICMP::UnsignedOnly;
2169 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2170 if (Value > Mask)
2171 return;
2172 // If the constant is in range, we can use any comparison.
2173 C.ICmpType = SystemZICMP::Any;
2174 } else
2175 return;
2177 // Make sure that the first operand is an i32 of the right extension type.
2178 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2179 ISD::SEXTLOAD :
2180 ISD::ZEXTLOAD);
2181 if (C.Op0.getValueType() != MVT::i32 ||
2182 Load->getExtensionType() != ExtType) {
2183 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2184 Load->getBasePtr(), Load->getPointerInfo(),
2185 Load->getMemoryVT(), Load->getAlignment(),
2186 Load->getMemOperand()->getFlags());
2187 // Update the chain uses.
2188 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2191 // Make sure that the second operand is an i32 with the right value.
2192 if (C.Op1.getValueType() != MVT::i32 ||
2193 Value != ConstOp1->getZExtValue())
2194 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2197 // Return true if Op is either an unextended load, or a load suitable
2198 // for integer register-memory comparisons of type ICmpType.
2199 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2200 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2201 if (Load) {
2202 // There are no instructions to compare a register with a memory byte.
2203 if (Load->getMemoryVT() == MVT::i8)
2204 return false;
2205 // Otherwise decide on extension type.
2206 switch (Load->getExtensionType()) {
2207 case ISD::NON_EXTLOAD:
2208 return true;
2209 case ISD::SEXTLOAD:
2210 return ICmpType != SystemZICMP::UnsignedOnly;
2211 case ISD::ZEXTLOAD:
2212 return ICmpType != SystemZICMP::SignedOnly;
2213 default:
2214 break;
2217 return false;
2220 // Return true if it is better to swap the operands of C.
2221 static bool shouldSwapCmpOperands(const Comparison &C) {
2222 // Leave f128 comparisons alone, since they have no memory forms.
2223 if (C.Op0.getValueType() == MVT::f128)
2224 return false;
2226 // Always keep a floating-point constant second, since comparisons with
2227 // zero can use LOAD TEST and comparisons with other constants make a
2228 // natural memory operand.
2229 if (isa<ConstantFPSDNode>(C.Op1))
2230 return false;
2232 // Never swap comparisons with zero since there are many ways to optimize
2233 // those later.
2234 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2235 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2236 return false;
2238 // Also keep natural memory operands second if the loaded value is
2239 // only used here. Several comparisons have memory forms.
2240 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2241 return false;
2243 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2244 // In that case we generally prefer the memory to be second.
2245 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2246 // The only exceptions are when the second operand is a constant and
2247 // we can use things like CHHSI.
2248 if (!ConstOp1)
2249 return true;
2250 // The unsigned memory-immediate instructions can handle 16-bit
2251 // unsigned integers.
2252 if (C.ICmpType != SystemZICMP::SignedOnly &&
2253 isUInt<16>(ConstOp1->getZExtValue()))
2254 return false;
2255 // The signed memory-immediate instructions can handle 16-bit
2256 // signed integers.
2257 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2258 isInt<16>(ConstOp1->getSExtValue()))
2259 return false;
2260 return true;
2263 // Try to promote the use of CGFR and CLGFR.
2264 unsigned Opcode0 = C.Op0.getOpcode();
2265 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2266 return true;
2267 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2268 return true;
2269 if (C.ICmpType != SystemZICMP::SignedOnly &&
2270 Opcode0 == ISD::AND &&
2271 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2272 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2273 return true;
2275 return false;
2278 // Check whether C tests for equality between X and Y and whether X - Y
2279 // or Y - X is also computed. In that case it's better to compare the
2280 // result of the subtraction against zero.
2281 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2282 Comparison &C) {
2283 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2284 C.CCMask == SystemZ::CCMASK_CMP_NE) {
2285 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2286 SDNode *N = *I;
2287 if (N->getOpcode() == ISD::SUB &&
2288 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2289 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2290 C.Op0 = SDValue(N, 0);
2291 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2292 return;
2298 // Check whether C compares a floating-point value with zero and if that
2299 // floating-point value is also negated. In this case we can use the
2300 // negation to set CC, so avoiding separate LOAD AND TEST and
2301 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2302 static void adjustForFNeg(Comparison &C) {
2303 // This optimization is invalid for strict comparisons, since FNEG
2304 // does not raise any exceptions.
2305 if (C.Chain)
2306 return;
2307 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2308 if (C1 && C1->isZero()) {
2309 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2310 SDNode *N = *I;
2311 if (N->getOpcode() == ISD::FNEG) {
2312 C.Op0 = SDValue(N, 0);
2313 C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2314 return;
2320 // Check whether C compares (shl X, 32) with 0 and whether X is
2321 // also sign-extended. In that case it is better to test the result
2322 // of the sign extension using LTGFR.
2324 // This case is important because InstCombine transforms a comparison
2325 // with (sext (trunc X)) into a comparison with (shl X, 32).
2326 static void adjustForLTGFR(Comparison &C) {
2327 // Check for a comparison between (shl X, 32) and 0.
2328 if (C.Op0.getOpcode() == ISD::SHL &&
2329 C.Op0.getValueType() == MVT::i64 &&
2330 C.Op1.getOpcode() == ISD::Constant &&
2331 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2332 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2333 if (C1 && C1->getZExtValue() == 32) {
2334 SDValue ShlOp0 = C.Op0.getOperand(0);
2335 // See whether X has any SIGN_EXTEND_INREG uses.
2336 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2337 SDNode *N = *I;
2338 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2339 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2340 C.Op0 = SDValue(N, 0);
2341 return;
2348 // If C compares the truncation of an extending load, try to compare
2349 // the untruncated value instead. This exposes more opportunities to
2350 // reuse CC.
2351 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2352 Comparison &C) {
2353 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2354 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2355 C.Op1.getOpcode() == ISD::Constant &&
2356 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2357 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2358 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2359 C.Op0.getValueSizeInBits().getFixedSize()) {
2360 unsigned Type = L->getExtensionType();
2361 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2362 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2363 C.Op0 = C.Op0.getOperand(0);
2364 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2370 // Return true if shift operation N has an in-range constant shift value.
2371 // Store it in ShiftVal if so.
2372 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2373 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2374 if (!Shift)
2375 return false;
2377 uint64_t Amount = Shift->getZExtValue();
2378 if (Amount >= N.getValueSizeInBits())
2379 return false;
2381 ShiftVal = Amount;
2382 return true;
2385 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2386 // instruction and whether the CC value is descriptive enough to handle
2387 // a comparison of type Opcode between the AND result and CmpVal.
2388 // CCMask says which comparison result is being tested and BitSize is
2389 // the number of bits in the operands. If TEST UNDER MASK can be used,
2390 // return the corresponding CC mask, otherwise return 0.
2391 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2392 uint64_t Mask, uint64_t CmpVal,
2393 unsigned ICmpType) {
2394 assert(Mask != 0 && "ANDs with zero should have been removed by now");
2396 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2397 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2398 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2399 return 0;
2401 // Work out the masks for the lowest and highest bits.
2402 unsigned HighShift = 63 - countLeadingZeros(Mask);
2403 uint64_t High = uint64_t(1) << HighShift;
2404 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2406 // Signed ordered comparisons are effectively unsigned if the sign
2407 // bit is dropped.
2408 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2410 // Check for equality comparisons with 0, or the equivalent.
2411 if (CmpVal == 0) {
2412 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2413 return SystemZ::CCMASK_TM_ALL_0;
2414 if (CCMask == SystemZ::CCMASK_CMP_NE)
2415 return SystemZ::CCMASK_TM_SOME_1;
2417 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2418 if (CCMask == SystemZ::CCMASK_CMP_LT)
2419 return SystemZ::CCMASK_TM_ALL_0;
2420 if (CCMask == SystemZ::CCMASK_CMP_GE)
2421 return SystemZ::CCMASK_TM_SOME_1;
2423 if (EffectivelyUnsigned && CmpVal < Low) {
2424 if (CCMask == SystemZ::CCMASK_CMP_LE)
2425 return SystemZ::CCMASK_TM_ALL_0;
2426 if (CCMask == SystemZ::CCMASK_CMP_GT)
2427 return SystemZ::CCMASK_TM_SOME_1;
2430 // Check for equality comparisons with the mask, or the equivalent.
2431 if (CmpVal == Mask) {
2432 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2433 return SystemZ::CCMASK_TM_ALL_1;
2434 if (CCMask == SystemZ::CCMASK_CMP_NE)
2435 return SystemZ::CCMASK_TM_SOME_0;
2437 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2438 if (CCMask == SystemZ::CCMASK_CMP_GT)
2439 return SystemZ::CCMASK_TM_ALL_1;
2440 if (CCMask == SystemZ::CCMASK_CMP_LE)
2441 return SystemZ::CCMASK_TM_SOME_0;
2443 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2444 if (CCMask == SystemZ::CCMASK_CMP_GE)
2445 return SystemZ::CCMASK_TM_ALL_1;
2446 if (CCMask == SystemZ::CCMASK_CMP_LT)
2447 return SystemZ::CCMASK_TM_SOME_0;
2450 // Check for ordered comparisons with the top bit.
2451 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2452 if (CCMask == SystemZ::CCMASK_CMP_LE)
2453 return SystemZ::CCMASK_TM_MSB_0;
2454 if (CCMask == SystemZ::CCMASK_CMP_GT)
2455 return SystemZ::CCMASK_TM_MSB_1;
2457 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2458 if (CCMask == SystemZ::CCMASK_CMP_LT)
2459 return SystemZ::CCMASK_TM_MSB_0;
2460 if (CCMask == SystemZ::CCMASK_CMP_GE)
2461 return SystemZ::CCMASK_TM_MSB_1;
2464 // If there are just two bits, we can do equality checks for Low and High
2465 // as well.
2466 if (Mask == Low + High) {
2467 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2468 return SystemZ::CCMASK_TM_MIXED_MSB_0;
2469 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2470 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2471 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2472 return SystemZ::CCMASK_TM_MIXED_MSB_1;
2473 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2474 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2477 // Looks like we've exhausted our options.
2478 return 0;
2481 // See whether C can be implemented as a TEST UNDER MASK instruction.
2482 // Update the arguments with the TM version if so.
2483 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2484 Comparison &C) {
2485 // Check that we have a comparison with a constant.
2486 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2487 if (!ConstOp1)
2488 return;
2489 uint64_t CmpVal = ConstOp1->getZExtValue();
2491 // Check whether the nonconstant input is an AND with a constant mask.
2492 Comparison NewC(C);
2493 uint64_t MaskVal;
2494 ConstantSDNode *Mask = nullptr;
2495 if (C.Op0.getOpcode() == ISD::AND) {
2496 NewC.Op0 = C.Op0.getOperand(0);
2497 NewC.Op1 = C.Op0.getOperand(1);
2498 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2499 if (!Mask)
2500 return;
2501 MaskVal = Mask->getZExtValue();
2502 } else {
2503 // There is no instruction to compare with a 64-bit immediate
2504 // so use TMHH instead if possible. We need an unsigned ordered
2505 // comparison with an i64 immediate.
2506 if (NewC.Op0.getValueType() != MVT::i64 ||
2507 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2508 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2509 NewC.ICmpType == SystemZICMP::SignedOnly)
2510 return;
2511 // Convert LE and GT comparisons into LT and GE.
2512 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2513 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2514 if (CmpVal == uint64_t(-1))
2515 return;
2516 CmpVal += 1;
2517 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2519 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2520 // be masked off without changing the result.
2521 MaskVal = -(CmpVal & -CmpVal);
2522 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2524 if (!MaskVal)
2525 return;
2527 // Check whether the combination of mask, comparison value and comparison
2528 // type are suitable.
2529 unsigned BitSize = NewC.Op0.getValueSizeInBits();
2530 unsigned NewCCMask, ShiftVal;
2531 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2532 NewC.Op0.getOpcode() == ISD::SHL &&
2533 isSimpleShift(NewC.Op0, ShiftVal) &&
2534 (MaskVal >> ShiftVal != 0) &&
2535 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2536 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2537 MaskVal >> ShiftVal,
2538 CmpVal >> ShiftVal,
2539 SystemZICMP::Any))) {
2540 NewC.Op0 = NewC.Op0.getOperand(0);
2541 MaskVal >>= ShiftVal;
2542 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2543 NewC.Op0.getOpcode() == ISD::SRL &&
2544 isSimpleShift(NewC.Op0, ShiftVal) &&
2545 (MaskVal << ShiftVal != 0) &&
2546 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2547 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2548 MaskVal << ShiftVal,
2549 CmpVal << ShiftVal,
2550 SystemZICMP::UnsignedOnly))) {
2551 NewC.Op0 = NewC.Op0.getOperand(0);
2552 MaskVal <<= ShiftVal;
2553 } else {
2554 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2555 NewC.ICmpType);
2556 if (!NewCCMask)
2557 return;
2560 // Go ahead and make the change.
2561 C.Opcode = SystemZISD::TM;
2562 C.Op0 = NewC.Op0;
2563 if (Mask && Mask->getZExtValue() == MaskVal)
2564 C.Op1 = SDValue(Mask, 0);
2565 else
2566 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2567 C.CCValid = SystemZ::CCMASK_TM;
2568 C.CCMask = NewCCMask;
2571 // See whether the comparison argument contains a redundant AND
2572 // and remove it if so. This sometimes happens due to the generic
2573 // BRCOND expansion.
2574 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2575 Comparison &C) {
2576 if (C.Op0.getOpcode() != ISD::AND)
2577 return;
2578 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2579 if (!Mask)
2580 return;
2581 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2582 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2583 return;
2585 C.Op0 = C.Op0.getOperand(0);
2588 // Return a Comparison that tests the condition-code result of intrinsic
2589 // node Call against constant integer CC using comparison code Cond.
2590 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2591 // and CCValid is the set of possible condition-code results.
2592 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2593 SDValue Call, unsigned CCValid, uint64_t CC,
2594 ISD::CondCode Cond) {
2595 Comparison C(Call, SDValue(), SDValue());
2596 C.Opcode = Opcode;
2597 C.CCValid = CCValid;
2598 if (Cond == ISD::SETEQ)
2599 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2600 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2601 else if (Cond == ISD::SETNE)
2602 // ...and the inverse of that.
2603 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2604 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2605 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2606 // always true for CC>3.
2607 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2608 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2609 // ...and the inverse of that.
2610 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2611 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2612 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2613 // always true for CC>3.
2614 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2615 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2616 // ...and the inverse of that.
2617 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2618 else
2619 llvm_unreachable("Unexpected integer comparison type");
2620 C.CCMask &= CCValid;
2621 return C;
2624 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2625 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2626 ISD::CondCode Cond, const SDLoc &DL,
2627 SDValue Chain = SDValue(),
2628 bool IsSignaling = false) {
2629 if (CmpOp1.getOpcode() == ISD::Constant) {
2630 assert(!Chain);
2631 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2632 unsigned Opcode, CCValid;
2633 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2634 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2635 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2636 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2637 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2638 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2639 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2640 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2642 Comparison C(CmpOp0, CmpOp1, Chain);
2643 C.CCMask = CCMaskForCondCode(Cond);
2644 if (C.Op0.getValueType().isFloatingPoint()) {
2645 C.CCValid = SystemZ::CCMASK_FCMP;
2646 if (!C.Chain)
2647 C.Opcode = SystemZISD::FCMP;
2648 else if (!IsSignaling)
2649 C.Opcode = SystemZISD::STRICT_FCMP;
2650 else
2651 C.Opcode = SystemZISD::STRICT_FCMPS;
2652 adjustForFNeg(C);
2653 } else {
2654 assert(!C.Chain);
2655 C.CCValid = SystemZ::CCMASK_ICMP;
2656 C.Opcode = SystemZISD::ICMP;
2657 // Choose the type of comparison. Equality and inequality tests can
2658 // use either signed or unsigned comparisons. The choice also doesn't
2659 // matter if both sign bits are known to be clear. In those cases we
2660 // want to give the main isel code the freedom to choose whichever
2661 // form fits best.
2662 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2663 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2664 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2665 C.ICmpType = SystemZICMP::Any;
2666 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2667 C.ICmpType = SystemZICMP::UnsignedOnly;
2668 else
2669 C.ICmpType = SystemZICMP::SignedOnly;
2670 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2671 adjustForRedundantAnd(DAG, DL, C);
2672 adjustZeroCmp(DAG, DL, C);
2673 adjustSubwordCmp(DAG, DL, C);
2674 adjustForSubtraction(DAG, DL, C);
2675 adjustForLTGFR(C);
2676 adjustICmpTruncate(DAG, DL, C);
2679 if (shouldSwapCmpOperands(C)) {
2680 std::swap(C.Op0, C.Op1);
2681 C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2684 adjustForTestUnderMask(DAG, DL, C);
2685 return C;
2688 // Emit the comparison instruction described by C.
2689 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2690 if (!C.Op1.getNode()) {
2691 SDNode *Node;
2692 switch (C.Op0.getOpcode()) {
2693 case ISD::INTRINSIC_W_CHAIN:
2694 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2695 return SDValue(Node, 0);
2696 case ISD::INTRINSIC_WO_CHAIN:
2697 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2698 return SDValue(Node, Node->getNumValues() - 1);
2699 default:
2700 llvm_unreachable("Invalid comparison operands");
2703 if (C.Opcode == SystemZISD::ICMP)
2704 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2705 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2706 if (C.Opcode == SystemZISD::TM) {
2707 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2708 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2709 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2710 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2712 if (C.Chain) {
2713 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2714 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2716 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2719 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2720 // 64 bits. Extend is the extension type to use. Store the high part
2721 // in Hi and the low part in Lo.
2722 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2723 SDValue Op0, SDValue Op1, SDValue &Hi,
2724 SDValue &Lo) {
2725 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2726 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2727 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2728 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2729 DAG.getConstant(32, DL, MVT::i64));
2730 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2731 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2734 // Lower a binary operation that produces two VT results, one in each
2735 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2736 // and Opcode performs the GR128 operation. Store the even register result
2737 // in Even and the odd register result in Odd.
2738 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2739 unsigned Opcode, SDValue Op0, SDValue Op1,
2740 SDValue &Even, SDValue &Odd) {
2741 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2742 bool Is32Bit = is32Bit(VT);
2743 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2744 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2747 // Return an i32 value that is 1 if the CC value produced by CCReg is
2748 // in the mask CCMask and 0 otherwise. CC is known to have a value
2749 // in CCValid, so other values can be ignored.
2750 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2751 unsigned CCValid, unsigned CCMask) {
2752 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2753 DAG.getConstant(0, DL, MVT::i32),
2754 DAG.getTargetConstant(CCValid, DL, MVT::i32),
2755 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2756 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2759 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2760 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2761 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2762 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2763 // floating-point comparisons.
2764 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2765 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2766 switch (CC) {
2767 case ISD::SETOEQ:
2768 case ISD::SETEQ:
2769 switch (Mode) {
2770 case CmpMode::Int: return SystemZISD::VICMPE;
2771 case CmpMode::FP: return SystemZISD::VFCMPE;
2772 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE;
2773 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2775 llvm_unreachable("Bad mode");
2777 case ISD::SETOGE:
2778 case ISD::SETGE:
2779 switch (Mode) {
2780 case CmpMode::Int: return 0;
2781 case CmpMode::FP: return SystemZISD::VFCMPHE;
2782 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE;
2783 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2785 llvm_unreachable("Bad mode");
2787 case ISD::SETOGT:
2788 case ISD::SETGT:
2789 switch (Mode) {
2790 case CmpMode::Int: return SystemZISD::VICMPH;
2791 case CmpMode::FP: return SystemZISD::VFCMPH;
2792 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH;
2793 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2795 llvm_unreachable("Bad mode");
2797 case ISD::SETUGT:
2798 switch (Mode) {
2799 case CmpMode::Int: return SystemZISD::VICMPHL;
2800 case CmpMode::FP: return 0;
2801 case CmpMode::StrictFP: return 0;
2802 case CmpMode::SignalingFP: return 0;
2804 llvm_unreachable("Bad mode");
2806 default:
2807 return 0;
2811 // Return the SystemZISD vector comparison operation for CC or its inverse,
2812 // or 0 if neither can be done directly. Indicate in Invert whether the
2813 // result is for the inverse of CC. Mode is as above.
2814 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2815 bool &Invert) {
2816 if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2817 Invert = false;
2818 return Opcode;
2821 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2822 if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2823 Invert = true;
2824 return Opcode;
2827 return 0;
2830 // Return a v2f64 that contains the extended form of elements Start and Start+1
2831 // of v4f32 value Op. If Chain is nonnull, return the strict form.
2832 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2833 SDValue Op, SDValue Chain) {
2834 int Mask[] = { Start, -1, Start + 1, -1 };
2835 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2836 if (Chain) {
2837 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2838 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2840 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2843 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2844 // producing a result of type VT. If Chain is nonnull, return the strict form.
2845 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2846 const SDLoc &DL, EVT VT,
2847 SDValue CmpOp0,
2848 SDValue CmpOp1,
2849 SDValue Chain) const {
2850 // There is no hardware support for v4f32 (unless we have the vector
2851 // enhancements facility 1), so extend the vector into two v2f64s
2852 // and compare those.
2853 if (CmpOp0.getValueType() == MVT::v4f32 &&
2854 !Subtarget.hasVectorEnhancements1()) {
2855 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2856 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2857 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2858 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2859 if (Chain) {
2860 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2861 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2862 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2863 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2864 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2865 H1.getValue(1), L1.getValue(1),
2866 HRes.getValue(1), LRes.getValue(1) };
2867 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2868 SDValue Ops[2] = { Res, NewChain };
2869 return DAG.getMergeValues(Ops, DL);
2871 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2872 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2873 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2875 if (Chain) {
2876 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2877 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2879 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2882 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2883 // an integer mask of type VT. If Chain is nonnull, we have a strict
2884 // floating-point comparison. If in addition IsSignaling is true, we have
2885 // a strict signaling floating-point comparison.
2886 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2887 const SDLoc &DL, EVT VT,
2888 ISD::CondCode CC,
2889 SDValue CmpOp0,
2890 SDValue CmpOp1,
2891 SDValue Chain,
2892 bool IsSignaling) const {
2893 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2894 assert (!Chain || IsFP);
2895 assert (!IsSignaling || Chain);
2896 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2897 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2898 bool Invert = false;
2899 SDValue Cmp;
2900 switch (CC) {
2901 // Handle tests for order using (or (ogt y x) (oge x y)).
2902 case ISD::SETUO:
2903 Invert = true;
2904 LLVM_FALLTHROUGH;
2905 case ISD::SETO: {
2906 assert(IsFP && "Unexpected integer comparison");
2907 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2908 DL, VT, CmpOp1, CmpOp0, Chain);
2909 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2910 DL, VT, CmpOp0, CmpOp1, Chain);
2911 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2912 if (Chain)
2913 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2914 LT.getValue(1), GE.getValue(1));
2915 break;
2918 // Handle <> tests using (or (ogt y x) (ogt x y)).
2919 case ISD::SETUEQ:
2920 Invert = true;
2921 LLVM_FALLTHROUGH;
2922 case ISD::SETONE: {
2923 assert(IsFP && "Unexpected integer comparison");
2924 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2925 DL, VT, CmpOp1, CmpOp0, Chain);
2926 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2927 DL, VT, CmpOp0, CmpOp1, Chain);
2928 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2929 if (Chain)
2930 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2931 LT.getValue(1), GT.getValue(1));
2932 break;
2935 // Otherwise a single comparison is enough. It doesn't really
2936 // matter whether we try the inversion or the swap first, since
2937 // there are no cases where both work.
2938 default:
2939 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2940 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2941 else {
2942 CC = ISD::getSetCCSwappedOperands(CC);
2943 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2944 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2945 else
2946 llvm_unreachable("Unhandled comparison");
2948 if (Chain)
2949 Chain = Cmp.getValue(1);
2950 break;
2952 if (Invert) {
2953 SDValue Mask =
2954 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2955 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2957 if (Chain && Chain.getNode() != Cmp.getNode()) {
2958 SDValue Ops[2] = { Cmp, Chain };
2959 Cmp = DAG.getMergeValues(Ops, DL);
2961 return Cmp;
2964 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2965 SelectionDAG &DAG) const {
2966 SDValue CmpOp0 = Op.getOperand(0);
2967 SDValue CmpOp1 = Op.getOperand(1);
2968 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2969 SDLoc DL(Op);
2970 EVT VT = Op.getValueType();
2971 if (VT.isVector())
2972 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2974 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2975 SDValue CCReg = emitCmp(DAG, DL, C);
2976 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2979 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2980 SelectionDAG &DAG,
2981 bool IsSignaling) const {
2982 SDValue Chain = Op.getOperand(0);
2983 SDValue CmpOp0 = Op.getOperand(1);
2984 SDValue CmpOp1 = Op.getOperand(2);
2985 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2986 SDLoc DL(Op);
2987 EVT VT = Op.getNode()->getValueType(0);
2988 if (VT.isVector()) {
2989 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2990 Chain, IsSignaling);
2991 return Res.getValue(Op.getResNo());
2994 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2995 SDValue CCReg = emitCmp(DAG, DL, C);
2996 CCReg->setFlags(Op->getFlags());
2997 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2998 SDValue Ops[2] = { Result, CCReg.getValue(1) };
2999 return DAG.getMergeValues(Ops, DL);
3002 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3003 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3004 SDValue CmpOp0 = Op.getOperand(2);
3005 SDValue CmpOp1 = Op.getOperand(3);
3006 SDValue Dest = Op.getOperand(4);
3007 SDLoc DL(Op);
3009 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3010 SDValue CCReg = emitCmp(DAG, DL, C);
3011 return DAG.getNode(
3012 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3013 DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3014 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3017 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3018 // allowing Pos and Neg to be wider than CmpOp.
3019 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3020 return (Neg.getOpcode() == ISD::SUB &&
3021 Neg.getOperand(0).getOpcode() == ISD::Constant &&
3022 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3023 Neg.getOperand(1) == Pos &&
3024 (Pos == CmpOp ||
3025 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3026 Pos.getOperand(0) == CmpOp)));
3029 // Return the absolute or negative absolute of Op; IsNegative decides which.
3030 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3031 bool IsNegative) {
3032 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3033 if (IsNegative)
3034 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3035 DAG.getConstant(0, DL, Op.getValueType()), Op);
3036 return Op;
3039 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3040 SelectionDAG &DAG) const {
3041 SDValue CmpOp0 = Op.getOperand(0);
3042 SDValue CmpOp1 = Op.getOperand(1);
3043 SDValue TrueOp = Op.getOperand(2);
3044 SDValue FalseOp = Op.getOperand(3);
3045 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3046 SDLoc DL(Op);
3048 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3050 // Check for absolute and negative-absolute selections, including those
3051 // where the comparison value is sign-extended (for LPGFR and LNGFR).
3052 // This check supplements the one in DAGCombiner.
3053 if (C.Opcode == SystemZISD::ICMP &&
3054 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3055 C.CCMask != SystemZ::CCMASK_CMP_NE &&
3056 C.Op1.getOpcode() == ISD::Constant &&
3057 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3058 if (isAbsolute(C.Op0, TrueOp, FalseOp))
3059 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3060 if (isAbsolute(C.Op0, FalseOp, TrueOp))
3061 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3064 SDValue CCReg = emitCmp(DAG, DL, C);
3065 SDValue Ops[] = {TrueOp, FalseOp,
3066 DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3067 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3069 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3072 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3073 SelectionDAG &DAG) const {
3074 SDLoc DL(Node);
3075 const GlobalValue *GV = Node->getGlobal();
3076 int64_t Offset = Node->getOffset();
3077 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3078 CodeModel::Model CM = DAG.getTarget().getCodeModel();
3080 SDValue Result;
3081 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3082 if (isInt<32>(Offset)) {
3083 // Assign anchors at 1<<12 byte boundaries.
3084 uint64_t Anchor = Offset & ~uint64_t(0xfff);
3085 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3086 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3088 // The offset can be folded into the address if it is aligned to a
3089 // halfword.
3090 Offset -= Anchor;
3091 if (Offset != 0 && (Offset & 1) == 0) {
3092 SDValue Full =
3093 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3094 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3095 Offset = 0;
3097 } else {
3098 // Conservatively load a constant offset greater than 32 bits into a
3099 // register below.
3100 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3101 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3103 } else {
3104 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3105 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3106 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3107 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3110 // If there was a non-zero offset that we didn't fold, create an explicit
3111 // addition for it.
3112 if (Offset != 0)
3113 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3114 DAG.getConstant(Offset, DL, PtrVT));
3116 return Result;
3119 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3120 SelectionDAG &DAG,
3121 unsigned Opcode,
3122 SDValue GOTOffset) const {
3123 SDLoc DL(Node);
3124 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3125 SDValue Chain = DAG.getEntryNode();
3126 SDValue Glue;
3128 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3129 CallingConv::GHC)
3130 report_fatal_error("In GHC calling convention TLS is not supported");
3132 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3133 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3134 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3135 Glue = Chain.getValue(1);
3136 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3137 Glue = Chain.getValue(1);
3139 // The first call operand is the chain and the second is the TLS symbol.
3140 SmallVector<SDValue, 8> Ops;
3141 Ops.push_back(Chain);
3142 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3143 Node->getValueType(0),
3144 0, 0));
3146 // Add argument registers to the end of the list so that they are
3147 // known live into the call.
3148 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3149 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3151 // Add a register mask operand representing the call-preserved registers.
3152 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3153 const uint32_t *Mask =
3154 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3155 assert(Mask && "Missing call preserved mask for calling convention");
3156 Ops.push_back(DAG.getRegisterMask(Mask));
3158 // Glue the call to the argument copies.
3159 Ops.push_back(Glue);
3161 // Emit the call.
3162 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3163 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3164 Glue = Chain.getValue(1);
3166 // Copy the return value from %r2.
3167 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3170 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3171 SelectionDAG &DAG) const {
3172 SDValue Chain = DAG.getEntryNode();
3173 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3175 // The high part of the thread pointer is in access register 0.
3176 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3177 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3179 // The low part of the thread pointer is in access register 1.
3180 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3181 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3183 // Merge them into a single 64-bit address.
3184 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3185 DAG.getConstant(32, DL, PtrVT));
3186 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3189 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3190 SelectionDAG &DAG) const {
3191 if (DAG.getTarget().useEmulatedTLS())
3192 return LowerToTLSEmulatedModel(Node, DAG);
3193 SDLoc DL(Node);
3194 const GlobalValue *GV = Node->getGlobal();
3195 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3196 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3198 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3199 CallingConv::GHC)
3200 report_fatal_error("In GHC calling convention TLS is not supported");
3202 SDValue TP = lowerThreadPointer(DL, DAG);
3204 // Get the offset of GA from the thread pointer, based on the TLS model.
3205 SDValue Offset;
3206 switch (model) {
3207 case TLSModel::GeneralDynamic: {
3208 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3209 SystemZConstantPoolValue *CPV =
3210 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3212 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3213 Offset = DAG.getLoad(
3214 PtrVT, DL, DAG.getEntryNode(), Offset,
3215 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3217 // Call __tls_get_offset to retrieve the offset.
3218 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3219 break;
3222 case TLSModel::LocalDynamic: {
3223 // Load the GOT offset of the module ID.
3224 SystemZConstantPoolValue *CPV =
3225 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3227 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3228 Offset = DAG.getLoad(
3229 PtrVT, DL, DAG.getEntryNode(), Offset,
3230 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3232 // Call __tls_get_offset to retrieve the module base offset.
3233 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3235 // Note: The SystemZLDCleanupPass will remove redundant computations
3236 // of the module base offset. Count total number of local-dynamic
3237 // accesses to trigger execution of that pass.
3238 SystemZMachineFunctionInfo* MFI =
3239 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3240 MFI->incNumLocalDynamicTLSAccesses();
3242 // Add the per-symbol offset.
3243 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3245 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3246 DTPOffset = DAG.getLoad(
3247 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3248 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3250 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3251 break;
3254 case TLSModel::InitialExec: {
3255 // Load the offset from the GOT.
3256 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3257 SystemZII::MO_INDNTPOFF);
3258 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3259 Offset =
3260 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3261 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3262 break;
3265 case TLSModel::LocalExec: {
3266 // Force the offset into the constant pool and load it from there.
3267 SystemZConstantPoolValue *CPV =
3268 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3270 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3271 Offset = DAG.getLoad(
3272 PtrVT, DL, DAG.getEntryNode(), Offset,
3273 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3274 break;
3278 // Add the base and offset together.
3279 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3282 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3283 SelectionDAG &DAG) const {
3284 SDLoc DL(Node);
3285 const BlockAddress *BA = Node->getBlockAddress();
3286 int64_t Offset = Node->getOffset();
3287 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3289 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3290 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3291 return Result;
3294 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3295 SelectionDAG &DAG) const {
3296 SDLoc DL(JT);
3297 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3298 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3300 // Use LARL to load the address of the table.
3301 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3304 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3305 SelectionDAG &DAG) const {
3306 SDLoc DL(CP);
3307 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3309 SDValue Result;
3310 if (CP->isMachineConstantPoolEntry())
3311 Result =
3312 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3313 else
3314 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3315 CP->getOffset());
3317 // Use LARL to load the address of the constant pool entry.
3318 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3321 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3322 SelectionDAG &DAG) const {
3323 auto *TFL =
3324 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3325 MachineFunction &MF = DAG.getMachineFunction();
3326 MachineFrameInfo &MFI = MF.getFrameInfo();
3327 MFI.setFrameAddressIsTaken(true);
3329 SDLoc DL(Op);
3330 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3331 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3333 // By definition, the frame address is the address of the back chain. (In
3334 // the case of packed stack without backchain, return the address where the
3335 // backchain would have been stored. This will either be an unused space or
3336 // contain a saved register).
3337 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3338 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3340 // FIXME The frontend should detect this case.
3341 if (Depth > 0) {
3342 report_fatal_error("Unsupported stack frame traversal count");
3345 return BackChain;
3348 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3349 SelectionDAG &DAG) const {
3350 MachineFunction &MF = DAG.getMachineFunction();
3351 MachineFrameInfo &MFI = MF.getFrameInfo();
3352 MFI.setReturnAddressIsTaken(true);
3354 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3355 return SDValue();
3357 SDLoc DL(Op);
3358 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3359 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3361 // FIXME The frontend should detect this case.
3362 if (Depth > 0) {
3363 report_fatal_error("Unsupported stack frame traversal count");
3366 // Return R14D, which has the return address. Mark it an implicit live-in.
3367 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3368 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3371 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3372 SelectionDAG &DAG) const {
3373 SDLoc DL(Op);
3374 SDValue In = Op.getOperand(0);
3375 EVT InVT = In.getValueType();
3376 EVT ResVT = Op.getValueType();
3378 // Convert loads directly. This is normally done by DAGCombiner,
3379 // but we need this case for bitcasts that are created during lowering
3380 // and which are then lowered themselves.
3381 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3382 if (ISD::isNormalLoad(LoadN)) {
3383 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3384 LoadN->getBasePtr(), LoadN->getMemOperand());
3385 // Update the chain uses.
3386 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3387 return NewLoad;
3390 if (InVT == MVT::i32 && ResVT == MVT::f32) {
3391 SDValue In64;
3392 if (Subtarget.hasHighWord()) {
3393 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3394 MVT::i64);
3395 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3396 MVT::i64, SDValue(U64, 0), In);
3397 } else {
3398 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3399 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3400 DAG.getConstant(32, DL, MVT::i64));
3402 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3403 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3404 DL, MVT::f32, Out64);
3406 if (InVT == MVT::f32 && ResVT == MVT::i32) {
3407 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3408 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3409 MVT::f64, SDValue(U64, 0), In);
3410 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3411 if (Subtarget.hasHighWord())
3412 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3413 MVT::i32, Out64);
3414 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3415 DAG.getConstant(32, DL, MVT::i64));
3416 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3418 llvm_unreachable("Unexpected bitcast combination");
3421 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3422 SelectionDAG &DAG) const {
3423 MachineFunction &MF = DAG.getMachineFunction();
3424 SystemZMachineFunctionInfo *FuncInfo =
3425 MF.getInfo<SystemZMachineFunctionInfo>();
3426 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3428 SDValue Chain = Op.getOperand(0);
3429 SDValue Addr = Op.getOperand(1);
3430 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3431 SDLoc DL(Op);
3433 // The initial values of each field.
3434 const unsigned NumFields = 4;
3435 SDValue Fields[NumFields] = {
3436 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3437 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3438 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3439 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3442 // Store each field into its respective slot.
3443 SDValue MemOps[NumFields];
3444 unsigned Offset = 0;
3445 for (unsigned I = 0; I < NumFields; ++I) {
3446 SDValue FieldAddr = Addr;
3447 if (Offset != 0)
3448 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3449 DAG.getIntPtrConstant(Offset, DL));
3450 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3451 MachinePointerInfo(SV, Offset));
3452 Offset += 8;
3454 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3457 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3458 SelectionDAG &DAG) const {
3459 SDValue Chain = Op.getOperand(0);
3460 SDValue DstPtr = Op.getOperand(1);
3461 SDValue SrcPtr = Op.getOperand(2);
3462 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3463 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3464 SDLoc DL(Op);
3466 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3467 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3468 /*isTailCall*/ false, MachinePointerInfo(DstSV),
3469 MachinePointerInfo(SrcSV));
3472 SDValue SystemZTargetLowering::
3473 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3474 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3475 MachineFunction &MF = DAG.getMachineFunction();
3476 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3477 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3479 SDValue Chain = Op.getOperand(0);
3480 SDValue Size = Op.getOperand(1);
3481 SDValue Align = Op.getOperand(2);
3482 SDLoc DL(Op);
3484 // If user has set the no alignment function attribute, ignore
3485 // alloca alignments.
3486 uint64_t AlignVal =
3487 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3489 uint64_t StackAlign = TFI->getStackAlignment();
3490 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3491 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3493 Register SPReg = getStackPointerRegisterToSaveRestore();
3494 SDValue NeededSpace = Size;
3496 // Get a reference to the stack pointer.
3497 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3499 // If we need a backchain, save it now.
3500 SDValue Backchain;
3501 if (StoreBackchain)
3502 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3503 MachinePointerInfo());
3505 // Add extra space for alignment if needed.
3506 if (ExtraAlignSpace)
3507 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3508 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3510 // Get the new stack pointer value.
3511 SDValue NewSP;
3512 if (hasInlineStackProbe(MF)) {
3513 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3514 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3515 Chain = NewSP.getValue(1);
3517 else {
3518 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3519 // Copy the new stack pointer back.
3520 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3523 // The allocated data lives above the 160 bytes allocated for the standard
3524 // frame, plus any outgoing stack arguments. We don't know how much that
3525 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3526 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3527 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3529 // Dynamically realign if needed.
3530 if (RequiredAlign > StackAlign) {
3531 Result =
3532 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3533 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3534 Result =
3535 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3536 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3539 if (StoreBackchain)
3540 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3541 MachinePointerInfo());
3543 SDValue Ops[2] = { Result, Chain };
3544 return DAG.getMergeValues(Ops, DL);
3547 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3548 SDValue Op, SelectionDAG &DAG) const {
3549 SDLoc DL(Op);
3551 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3554 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3555 SelectionDAG &DAG) const {
3556 EVT VT = Op.getValueType();
3557 SDLoc DL(Op);
3558 SDValue Ops[2];
3559 if (is32Bit(VT))
3560 // Just do a normal 64-bit multiplication and extract the results.
3561 // We define this so that it can be used for constant division.
3562 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3563 Op.getOperand(1), Ops[1], Ops[0]);
3564 else if (Subtarget.hasMiscellaneousExtensions2())
3565 // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3566 // the high result in the even register. ISD::SMUL_LOHI is defined to
3567 // return the low half first, so the results are in reverse order.
3568 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3569 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3570 else {
3571 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3573 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3575 // but using the fact that the upper halves are either all zeros
3576 // or all ones:
3578 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3580 // and grouping the right terms together since they are quicker than the
3581 // multiplication:
3583 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3584 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3585 SDValue LL = Op.getOperand(0);
3586 SDValue RL = Op.getOperand(1);
3587 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3588 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3589 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3590 // the high result in the even register. ISD::SMUL_LOHI is defined to
3591 // return the low half first, so the results are in reverse order.
3592 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3593 LL, RL, Ops[1], Ops[0]);
3594 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3595 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3596 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3597 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3599 return DAG.getMergeValues(Ops, DL);
3602 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3603 SelectionDAG &DAG) const {
3604 EVT VT = Op.getValueType();
3605 SDLoc DL(Op);
3606 SDValue Ops[2];
3607 if (is32Bit(VT))
3608 // Just do a normal 64-bit multiplication and extract the results.
3609 // We define this so that it can be used for constant division.
3610 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3611 Op.getOperand(1), Ops[1], Ops[0]);
3612 else
3613 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3614 // the high result in the even register. ISD::UMUL_LOHI is defined to
3615 // return the low half first, so the results are in reverse order.
3616 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3617 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3618 return DAG.getMergeValues(Ops, DL);
3621 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3622 SelectionDAG &DAG) const {
3623 SDValue Op0 = Op.getOperand(0);
3624 SDValue Op1 = Op.getOperand(1);
3625 EVT VT = Op.getValueType();
3626 SDLoc DL(Op);
3628 // We use DSGF for 32-bit division. This means the first operand must
3629 // always be 64-bit, and the second operand should be 32-bit whenever
3630 // that is possible, to improve performance.
3631 if (is32Bit(VT))
3632 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3633 else if (DAG.ComputeNumSignBits(Op1) > 32)
3634 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3636 // DSG(F) returns the remainder in the even register and the
3637 // quotient in the odd register.
3638 SDValue Ops[2];
3639 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3640 return DAG.getMergeValues(Ops, DL);
3643 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3644 SelectionDAG &DAG) const {
3645 EVT VT = Op.getValueType();
3646 SDLoc DL(Op);
3648 // DL(G) returns the remainder in the even register and the
3649 // quotient in the odd register.
3650 SDValue Ops[2];
3651 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3652 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3653 return DAG.getMergeValues(Ops, DL);
3656 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3657 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3659 // Get the known-zero masks for each operand.
3660 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3661 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3662 DAG.computeKnownBits(Ops[1])};
3664 // See if the upper 32 bits of one operand and the lower 32 bits of the
3665 // other are known zero. They are the low and high operands respectively.
3666 uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3667 Known[1].Zero.getZExtValue() };
3668 unsigned High, Low;
3669 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3670 High = 1, Low = 0;
3671 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3672 High = 0, Low = 1;
3673 else
3674 return Op;
3676 SDValue LowOp = Ops[Low];
3677 SDValue HighOp = Ops[High];
3679 // If the high part is a constant, we're better off using IILH.
3680 if (HighOp.getOpcode() == ISD::Constant)
3681 return Op;
3683 // If the low part is a constant that is outside the range of LHI,
3684 // then we're better off using IILF.
3685 if (LowOp.getOpcode() == ISD::Constant) {
3686 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3687 if (!isInt<16>(Value))
3688 return Op;
3691 // Check whether the high part is an AND that doesn't change the
3692 // high 32 bits and just masks out low bits. We can skip it if so.
3693 if (HighOp.getOpcode() == ISD::AND &&
3694 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3695 SDValue HighOp0 = HighOp.getOperand(0);
3696 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3697 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3698 HighOp = HighOp0;
3701 // Take advantage of the fact that all GR32 operations only change the
3702 // low 32 bits by truncating Low to an i32 and inserting it directly
3703 // using a subreg. The interesting cases are those where the truncation
3704 // can be folded.
3705 SDLoc DL(Op);
3706 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3707 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3708 MVT::i64, HighOp, Low32);
3711 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3712 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3713 SelectionDAG &DAG) const {
3714 SDNode *N = Op.getNode();
3715 SDValue LHS = N->getOperand(0);
3716 SDValue RHS = N->getOperand(1);
3717 SDLoc DL(N);
3718 unsigned BaseOp = 0;
3719 unsigned CCValid = 0;
3720 unsigned CCMask = 0;
3722 switch (Op.getOpcode()) {
3723 default: llvm_unreachable("Unknown instruction!");
3724 case ISD::SADDO:
3725 BaseOp = SystemZISD::SADDO;
3726 CCValid = SystemZ::CCMASK_ARITH;
3727 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3728 break;
3729 case ISD::SSUBO:
3730 BaseOp = SystemZISD::SSUBO;
3731 CCValid = SystemZ::CCMASK_ARITH;
3732 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3733 break;
3734 case ISD::UADDO:
3735 BaseOp = SystemZISD::UADDO;
3736 CCValid = SystemZ::CCMASK_LOGICAL;
3737 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3738 break;
3739 case ISD::USUBO:
3740 BaseOp = SystemZISD::USUBO;
3741 CCValid = SystemZ::CCMASK_LOGICAL;
3742 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3743 break;
3746 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3747 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3749 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3750 if (N->getValueType(1) == MVT::i1)
3751 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3753 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3756 static bool isAddCarryChain(SDValue Carry) {
3757 while (Carry.getOpcode() == ISD::ADDCARRY)
3758 Carry = Carry.getOperand(2);
3759 return Carry.getOpcode() == ISD::UADDO;
3762 static bool isSubBorrowChain(SDValue Carry) {
3763 while (Carry.getOpcode() == ISD::SUBCARRY)
3764 Carry = Carry.getOperand(2);
3765 return Carry.getOpcode() == ISD::USUBO;
3768 // Lower ADDCARRY/SUBCARRY nodes.
3769 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3770 SelectionDAG &DAG) const {
3772 SDNode *N = Op.getNode();
3773 MVT VT = N->getSimpleValueType(0);
3775 // Let legalize expand this if it isn't a legal type yet.
3776 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3777 return SDValue();
3779 SDValue LHS = N->getOperand(0);
3780 SDValue RHS = N->getOperand(1);
3781 SDValue Carry = Op.getOperand(2);
3782 SDLoc DL(N);
3783 unsigned BaseOp = 0;
3784 unsigned CCValid = 0;
3785 unsigned CCMask = 0;
3787 switch (Op.getOpcode()) {
3788 default: llvm_unreachable("Unknown instruction!");
3789 case ISD::ADDCARRY:
3790 if (!isAddCarryChain(Carry))
3791 return SDValue();
3793 BaseOp = SystemZISD::ADDCARRY;
3794 CCValid = SystemZ::CCMASK_LOGICAL;
3795 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3796 break;
3797 case ISD::SUBCARRY:
3798 if (!isSubBorrowChain(Carry))
3799 return SDValue();
3801 BaseOp = SystemZISD::SUBCARRY;
3802 CCValid = SystemZ::CCMASK_LOGICAL;
3803 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3804 break;
3807 // Set the condition code from the carry flag.
3808 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3809 DAG.getConstant(CCValid, DL, MVT::i32),
3810 DAG.getConstant(CCMask, DL, MVT::i32));
3812 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3813 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3815 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3816 if (N->getValueType(1) == MVT::i1)
3817 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3819 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3822 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3823 SelectionDAG &DAG) const {
3824 EVT VT = Op.getValueType();
3825 SDLoc DL(Op);
3826 Op = Op.getOperand(0);
3828 // Handle vector types via VPOPCT.
3829 if (VT.isVector()) {
3830 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3831 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3832 switch (VT.getScalarSizeInBits()) {
3833 case 8:
3834 break;
3835 case 16: {
3836 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3837 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3838 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3839 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3840 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3841 break;
3843 case 32: {
3844 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3845 DAG.getConstant(0, DL, MVT::i32));
3846 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3847 break;
3849 case 64: {
3850 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3851 DAG.getConstant(0, DL, MVT::i32));
3852 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3853 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3854 break;
3856 default:
3857 llvm_unreachable("Unexpected type");
3859 return Op;
3862 // Get the known-zero mask for the operand.
3863 KnownBits Known = DAG.computeKnownBits(Op);
3864 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3865 if (NumSignificantBits == 0)
3866 return DAG.getConstant(0, DL, VT);
3868 // Skip known-zero high parts of the operand.
3869 int64_t OrigBitSize = VT.getSizeInBits();
3870 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3871 BitSize = std::min(BitSize, OrigBitSize);
3873 // The POPCNT instruction counts the number of bits in each byte.
3874 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3875 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3876 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3878 // Add up per-byte counts in a binary tree. All bits of Op at
3879 // position larger than BitSize remain zero throughout.
3880 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3881 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3882 if (BitSize != OrigBitSize)
3883 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3884 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3885 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3888 // Extract overall result from high byte.
3889 if (BitSize > 8)
3890 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3891 DAG.getConstant(BitSize - 8, DL, VT));
3893 return Op;
3896 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3897 SelectionDAG &DAG) const {
3898 SDLoc DL(Op);
3899 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3900 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3901 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3902 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3904 // The only fence that needs an instruction is a sequentially-consistent
3905 // cross-thread fence.
3906 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3907 FenceSSID == SyncScope::System) {
3908 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3909 Op.getOperand(0)),
3913 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3914 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3917 // Op is an atomic load. Lower it into a normal volatile load.
3918 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3919 SelectionDAG &DAG) const {
3920 auto *Node = cast<AtomicSDNode>(Op.getNode());
3921 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3922 Node->getChain(), Node->getBasePtr(),
3923 Node->getMemoryVT(), Node->getMemOperand());
3926 // Op is an atomic store. Lower it into a normal volatile store.
3927 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3928 SelectionDAG &DAG) const {
3929 auto *Node = cast<AtomicSDNode>(Op.getNode());
3930 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3931 Node->getBasePtr(), Node->getMemoryVT(),
3932 Node->getMemOperand());
3933 // We have to enforce sequential consistency by performing a
3934 // serialization operation after the store.
3935 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
3936 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3937 MVT::Other, Chain), 0);
3938 return Chain;
3941 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3942 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3943 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3944 SelectionDAG &DAG,
3945 unsigned Opcode) const {
3946 auto *Node = cast<AtomicSDNode>(Op.getNode());
3948 // 32-bit operations need no code outside the main loop.
3949 EVT NarrowVT = Node->getMemoryVT();
3950 EVT WideVT = MVT::i32;
3951 if (NarrowVT == WideVT)
3952 return Op;
3954 int64_t BitSize = NarrowVT.getSizeInBits();
3955 SDValue ChainIn = Node->getChain();
3956 SDValue Addr = Node->getBasePtr();
3957 SDValue Src2 = Node->getVal();
3958 MachineMemOperand *MMO = Node->getMemOperand();
3959 SDLoc DL(Node);
3960 EVT PtrVT = Addr.getValueType();
3962 // Convert atomic subtracts of constants into additions.
3963 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3964 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3965 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3966 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3969 // Get the address of the containing word.
3970 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3971 DAG.getConstant(-4, DL, PtrVT));
3973 // Get the number of bits that the word must be rotated left in order
3974 // to bring the field to the top bits of a GR32.
3975 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3976 DAG.getConstant(3, DL, PtrVT));
3977 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3979 // Get the complementing shift amount, for rotating a field in the top
3980 // bits back to its proper position.
3981 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3982 DAG.getConstant(0, DL, WideVT), BitShift);
3984 // Extend the source operand to 32 bits and prepare it for the inner loop.
3985 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3986 // operations require the source to be shifted in advance. (This shift
3987 // can be folded if the source is constant.) For AND and NAND, the lower
3988 // bits must be set, while for other opcodes they should be left clear.
3989 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3990 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3991 DAG.getConstant(32 - BitSize, DL, WideVT));
3992 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3993 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3994 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3995 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3997 // Construct the ATOMIC_LOADW_* node.
3998 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3999 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4000 DAG.getConstant(BitSize, DL, WideVT) };
4001 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4002 NarrowVT, MMO);
4004 // Rotate the result of the final CS so that the field is in the lower
4005 // bits of a GR32, then truncate it.
4006 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4007 DAG.getConstant(BitSize, DL, WideVT));
4008 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4010 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4011 return DAG.getMergeValues(RetOps, DL);
4014 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
4015 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4016 // operations into additions.
4017 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4018 SelectionDAG &DAG) const {
4019 auto *Node = cast<AtomicSDNode>(Op.getNode());
4020 EVT MemVT = Node->getMemoryVT();
4021 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4022 // A full-width operation.
4023 assert(Op.getValueType() == MemVT && "Mismatched VTs");
4024 SDValue Src2 = Node->getVal();
4025 SDValue NegSrc2;
4026 SDLoc DL(Src2);
4028 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4029 // Use an addition if the operand is constant and either LAA(G) is
4030 // available or the negative value is in the range of A(G)FHI.
4031 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4032 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4033 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4034 } else if (Subtarget.hasInterlockedAccess1())
4035 // Use LAA(G) if available.
4036 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4037 Src2);
4039 if (NegSrc2.getNode())
4040 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4041 Node->getChain(), Node->getBasePtr(), NegSrc2,
4042 Node->getMemOperand());
4044 // Use the node as-is.
4045 return Op;
4048 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4051 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4052 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4053 SelectionDAG &DAG) const {
4054 auto *Node = cast<AtomicSDNode>(Op.getNode());
4055 SDValue ChainIn = Node->getOperand(0);
4056 SDValue Addr = Node->getOperand(1);
4057 SDValue CmpVal = Node->getOperand(2);
4058 SDValue SwapVal = Node->getOperand(3);
4059 MachineMemOperand *MMO = Node->getMemOperand();
4060 SDLoc DL(Node);
4062 // We have native support for 32-bit and 64-bit compare and swap, but we
4063 // still need to expand extracting the "success" result from the CC.
4064 EVT NarrowVT = Node->getMemoryVT();
4065 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4066 if (NarrowVT == WideVT) {
4067 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4068 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4069 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4070 DL, Tys, Ops, NarrowVT, MMO);
4071 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4072 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4074 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4075 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4076 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4077 return SDValue();
4080 // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4081 // via a fullword ATOMIC_CMP_SWAPW operation.
4082 int64_t BitSize = NarrowVT.getSizeInBits();
4083 EVT PtrVT = Addr.getValueType();
4085 // Get the address of the containing word.
4086 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4087 DAG.getConstant(-4, DL, PtrVT));
4089 // Get the number of bits that the word must be rotated left in order
4090 // to bring the field to the top bits of a GR32.
4091 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4092 DAG.getConstant(3, DL, PtrVT));
4093 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4095 // Get the complementing shift amount, for rotating a field in the top
4096 // bits back to its proper position.
4097 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4098 DAG.getConstant(0, DL, WideVT), BitShift);
4100 // Construct the ATOMIC_CMP_SWAPW node.
4101 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4102 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4103 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4104 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4105 VTList, Ops, NarrowVT, MMO);
4106 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4107 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4109 // emitAtomicCmpSwapW() will zero extend the result (original value).
4110 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4111 DAG.getValueType(NarrowVT));
4112 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4113 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4114 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4115 return SDValue();
4118 MachineMemOperand::Flags
4119 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4120 // Because of how we convert atomic_load and atomic_store to normal loads and
4121 // stores in the DAG, we need to ensure that the MMOs are marked volatile
4122 // since DAGCombine hasn't been updated to account for atomic, but non
4123 // volatile loads. (See D57601)
4124 if (auto *SI = dyn_cast<StoreInst>(&I))
4125 if (SI->isAtomic())
4126 return MachineMemOperand::MOVolatile;
4127 if (auto *LI = dyn_cast<LoadInst>(&I))
4128 if (LI->isAtomic())
4129 return MachineMemOperand::MOVolatile;
4130 if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4131 if (AI->isAtomic())
4132 return MachineMemOperand::MOVolatile;
4133 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4134 if (AI->isAtomic())
4135 return MachineMemOperand::MOVolatile;
4136 return MachineMemOperand::MONone;
4139 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4140 SelectionDAG &DAG) const {
4141 MachineFunction &MF = DAG.getMachineFunction();
4142 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4143 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4144 report_fatal_error("Variable-sized stack allocations are not supported "
4145 "in GHC calling convention");
4146 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4147 SystemZ::R15D, Op.getValueType());
4150 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4151 SelectionDAG &DAG) const {
4152 MachineFunction &MF = DAG.getMachineFunction();
4153 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4154 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4156 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4157 report_fatal_error("Variable-sized stack allocations are not supported "
4158 "in GHC calling convention");
4160 SDValue Chain = Op.getOperand(0);
4161 SDValue NewSP = Op.getOperand(1);
4162 SDValue Backchain;
4163 SDLoc DL(Op);
4165 if (StoreBackchain) {
4166 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4167 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4168 MachinePointerInfo());
4171 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4173 if (StoreBackchain)
4174 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4175 MachinePointerInfo());
4177 return Chain;
4180 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4181 SelectionDAG &DAG) const {
4182 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4183 if (!IsData)
4184 // Just preserve the chain.
4185 return Op.getOperand(0);
4187 SDLoc DL(Op);
4188 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4189 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4190 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4191 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4192 Op.getOperand(1)};
4193 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4194 Node->getVTList(), Ops,
4195 Node->getMemoryVT(), Node->getMemOperand());
4198 // Convert condition code in CCReg to an i32 value.
4199 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4200 SDLoc DL(CCReg);
4201 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4202 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4203 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4206 SDValue
4207 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4208 SelectionDAG &DAG) const {
4209 unsigned Opcode, CCValid;
4210 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4211 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4212 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4213 SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4214 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4215 return SDValue();
4218 return SDValue();
4221 SDValue
4222 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4223 SelectionDAG &DAG) const {
4224 unsigned Opcode, CCValid;
4225 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4226 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4227 if (Op->getNumValues() == 1)
4228 return getCCResult(DAG, SDValue(Node, 0));
4229 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4230 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4231 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4234 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4235 switch (Id) {
4236 case Intrinsic::thread_pointer:
4237 return lowerThreadPointer(SDLoc(Op), DAG);
4239 case Intrinsic::s390_vpdi:
4240 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4241 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4243 case Intrinsic::s390_vperm:
4244 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4245 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4247 case Intrinsic::s390_vuphb:
4248 case Intrinsic::s390_vuphh:
4249 case Intrinsic::s390_vuphf:
4250 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4251 Op.getOperand(1));
4253 case Intrinsic::s390_vuplhb:
4254 case Intrinsic::s390_vuplhh:
4255 case Intrinsic::s390_vuplhf:
4256 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4257 Op.getOperand(1));
4259 case Intrinsic::s390_vuplb:
4260 case Intrinsic::s390_vuplhw:
4261 case Intrinsic::s390_vuplf:
4262 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4263 Op.getOperand(1));
4265 case Intrinsic::s390_vupllb:
4266 case Intrinsic::s390_vupllh:
4267 case Intrinsic::s390_vupllf:
4268 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4269 Op.getOperand(1));
4271 case Intrinsic::s390_vsumb:
4272 case Intrinsic::s390_vsumh:
4273 case Intrinsic::s390_vsumgh:
4274 case Intrinsic::s390_vsumgf:
4275 case Intrinsic::s390_vsumqf:
4276 case Intrinsic::s390_vsumqg:
4277 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4278 Op.getOperand(1), Op.getOperand(2));
4281 return SDValue();
4284 namespace {
4285 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4286 // of a VPERM with permute vector Bytes. If Opcode takes three operands,
4287 // Operand is the constant third operand, otherwise it is the number of
4288 // bytes in each element of the result.
4289 struct Permute {
4290 unsigned Opcode;
4291 unsigned Operand;
4292 unsigned char Bytes[SystemZ::VectorBytes];
4296 static const Permute PermuteForms[] = {
4297 // VMRHG
4298 { SystemZISD::MERGE_HIGH, 8,
4299 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4300 // VMRHF
4301 { SystemZISD::MERGE_HIGH, 4,
4302 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4303 // VMRHH
4304 { SystemZISD::MERGE_HIGH, 2,
4305 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4306 // VMRHB
4307 { SystemZISD::MERGE_HIGH, 1,
4308 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4309 // VMRLG
4310 { SystemZISD::MERGE_LOW, 8,
4311 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4312 // VMRLF
4313 { SystemZISD::MERGE_LOW, 4,
4314 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4315 // VMRLH
4316 { SystemZISD::MERGE_LOW, 2,
4317 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4318 // VMRLB
4319 { SystemZISD::MERGE_LOW, 1,
4320 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4321 // VPKG
4322 { SystemZISD::PACK, 4,
4323 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4324 // VPKF
4325 { SystemZISD::PACK, 2,
4326 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4327 // VPKH
4328 { SystemZISD::PACK, 1,
4329 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4330 // VPDI V1, V2, 4 (low half of V1, high half of V2)
4331 { SystemZISD::PERMUTE_DWORDS, 4,
4332 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4333 // VPDI V1, V2, 1 (high half of V1, low half of V2)
4334 { SystemZISD::PERMUTE_DWORDS, 1,
4335 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4338 // Called after matching a vector shuffle against a particular pattern.
4339 // Both the original shuffle and the pattern have two vector operands.
4340 // OpNos[0] is the operand of the original shuffle that should be used for
4341 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4342 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
4343 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4344 // for operands 0 and 1 of the pattern.
4345 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4346 if (OpNos[0] < 0) {
4347 if (OpNos[1] < 0)
4348 return false;
4349 OpNo0 = OpNo1 = OpNos[1];
4350 } else if (OpNos[1] < 0) {
4351 OpNo0 = OpNo1 = OpNos[0];
4352 } else {
4353 OpNo0 = OpNos[0];
4354 OpNo1 = OpNos[1];
4356 return true;
4359 // Bytes is a VPERM-like permute vector, except that -1 is used for
4360 // undefined bytes. Return true if the VPERM can be implemented using P.
4361 // When returning true set OpNo0 to the VPERM operand that should be
4362 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4364 // For example, if swapping the VPERM operands allows P to match, OpNo0
4365 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
4366 // operand, but rewriting it to use two duplicated operands allows it to
4367 // match P, then OpNo0 and OpNo1 will be the same.
4368 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4369 unsigned &OpNo0, unsigned &OpNo1) {
4370 int OpNos[] = { -1, -1 };
4371 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4372 int Elt = Bytes[I];
4373 if (Elt >= 0) {
4374 // Make sure that the two permute vectors use the same suboperand
4375 // byte number. Only the operand numbers (the high bits) are
4376 // allowed to differ.
4377 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4378 return false;
4379 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4380 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4381 // Make sure that the operand mappings are consistent with previous
4382 // elements.
4383 if (OpNos[ModelOpNo] == 1 - RealOpNo)
4384 return false;
4385 OpNos[ModelOpNo] = RealOpNo;
4388 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4391 // As above, but search for a matching permute.
4392 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4393 unsigned &OpNo0, unsigned &OpNo1) {
4394 for (auto &P : PermuteForms)
4395 if (matchPermute(Bytes, P, OpNo0, OpNo1))
4396 return &P;
4397 return nullptr;
4400 // Bytes is a VPERM-like permute vector, except that -1 is used for
4401 // undefined bytes. This permute is an operand of an outer permute.
4402 // See whether redistributing the -1 bytes gives a shuffle that can be
4403 // implemented using P. If so, set Transform to a VPERM-like permute vector
4404 // that, when applied to the result of P, gives the original permute in Bytes.
4405 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4406 const Permute &P,
4407 SmallVectorImpl<int> &Transform) {
4408 unsigned To = 0;
4409 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4410 int Elt = Bytes[From];
4411 if (Elt < 0)
4412 // Byte number From of the result is undefined.
4413 Transform[From] = -1;
4414 else {
4415 while (P.Bytes[To] != Elt) {
4416 To += 1;
4417 if (To == SystemZ::VectorBytes)
4418 return false;
4420 Transform[From] = To;
4423 return true;
4426 // As above, but search for a matching permute.
4427 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4428 SmallVectorImpl<int> &Transform) {
4429 for (auto &P : PermuteForms)
4430 if (matchDoublePermute(Bytes, P, Transform))
4431 return &P;
4432 return nullptr;
4435 // Convert the mask of the given shuffle op into a byte-level mask,
4436 // as if it had type vNi8.
4437 static bool getVPermMask(SDValue ShuffleOp,
4438 SmallVectorImpl<int> &Bytes) {
4439 EVT VT = ShuffleOp.getValueType();
4440 unsigned NumElements = VT.getVectorNumElements();
4441 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4443 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4444 Bytes.resize(NumElements * BytesPerElement, -1);
4445 for (unsigned I = 0; I < NumElements; ++I) {
4446 int Index = VSN->getMaskElt(I);
4447 if (Index >= 0)
4448 for (unsigned J = 0; J < BytesPerElement; ++J)
4449 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4451 return true;
4453 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4454 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4455 unsigned Index = ShuffleOp.getConstantOperandVal(1);
4456 Bytes.resize(NumElements * BytesPerElement, -1);
4457 for (unsigned I = 0; I < NumElements; ++I)
4458 for (unsigned J = 0; J < BytesPerElement; ++J)
4459 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4460 return true;
4462 return false;
4465 // Bytes is a VPERM-like permute vector, except that -1 is used for
4466 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
4467 // the result come from a contiguous sequence of bytes from one input.
4468 // Set Base to the selector for the first byte if so.
4469 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4470 unsigned BytesPerElement, int &Base) {
4471 Base = -1;
4472 for (unsigned I = 0; I < BytesPerElement; ++I) {
4473 if (Bytes[Start + I] >= 0) {
4474 unsigned Elem = Bytes[Start + I];
4475 if (Base < 0) {
4476 Base = Elem - I;
4477 // Make sure the bytes would come from one input operand.
4478 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4479 return false;
4480 } else if (unsigned(Base) != Elem - I)
4481 return false;
4484 return true;
4487 // Bytes is a VPERM-like permute vector, except that -1 is used for
4488 // undefined bytes. Return true if it can be performed using VSLDB.
4489 // When returning true, set StartIndex to the shift amount and OpNo0
4490 // and OpNo1 to the VPERM operands that should be used as the first
4491 // and second shift operand respectively.
4492 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4493 unsigned &StartIndex, unsigned &OpNo0,
4494 unsigned &OpNo1) {
4495 int OpNos[] = { -1, -1 };
4496 int Shift = -1;
4497 for (unsigned I = 0; I < 16; ++I) {
4498 int Index = Bytes[I];
4499 if (Index >= 0) {
4500 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4501 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4502 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4503 if (Shift < 0)
4504 Shift = ExpectedShift;
4505 else if (Shift != ExpectedShift)
4506 return false;
4507 // Make sure that the operand mappings are consistent with previous
4508 // elements.
4509 if (OpNos[ModelOpNo] == 1 - RealOpNo)
4510 return false;
4511 OpNos[ModelOpNo] = RealOpNo;
4514 StartIndex = Shift;
4515 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4518 // Create a node that performs P on operands Op0 and Op1, casting the
4519 // operands to the appropriate type. The type of the result is determined by P.
4520 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4521 const Permute &P, SDValue Op0, SDValue Op1) {
4522 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
4523 // elements of a PACK are twice as wide as the outputs.
4524 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4525 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4526 P.Operand);
4527 // Cast both operands to the appropriate type.
4528 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4529 SystemZ::VectorBytes / InBytes);
4530 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4531 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4532 SDValue Op;
4533 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4534 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4535 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4536 } else if (P.Opcode == SystemZISD::PACK) {
4537 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4538 SystemZ::VectorBytes / P.Operand);
4539 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4540 } else {
4541 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4543 return Op;
4546 static bool isZeroVector(SDValue N) {
4547 if (N->getOpcode() == ISD::BITCAST)
4548 N = N->getOperand(0);
4549 if (N->getOpcode() == ISD::SPLAT_VECTOR)
4550 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4551 return Op->getZExtValue() == 0;
4552 return ISD::isBuildVectorAllZeros(N.getNode());
4555 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4556 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4557 for (unsigned I = 0; I < Num ; I++)
4558 if (isZeroVector(Ops[I]))
4559 return I;
4560 return UINT32_MAX;
4563 // Bytes is a VPERM-like permute vector, except that -1 is used for
4564 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using
4565 // VSLDB or VPERM.
4566 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4567 SDValue *Ops,
4568 const SmallVectorImpl<int> &Bytes) {
4569 for (unsigned I = 0; I < 2; ++I)
4570 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4572 // First see whether VSLDB can be used.
4573 unsigned StartIndex, OpNo0, OpNo1;
4574 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4575 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4576 Ops[OpNo1],
4577 DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4579 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to
4580 // eliminate a zero vector by reusing any zero index in the permute vector.
4581 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4582 if (ZeroVecIdx != UINT32_MAX) {
4583 bool MaskFirst = true;
4584 int ZeroIdx = -1;
4585 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4586 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4587 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4588 if (OpNo == ZeroVecIdx && I == 0) {
4589 // If the first byte is zero, use mask as first operand.
4590 ZeroIdx = 0;
4591 break;
4593 if (OpNo != ZeroVecIdx && Byte == 0) {
4594 // If mask contains a zero, use it by placing that vector first.
4595 ZeroIdx = I + SystemZ::VectorBytes;
4596 MaskFirst = false;
4597 break;
4600 if (ZeroIdx != -1) {
4601 SDValue IndexNodes[SystemZ::VectorBytes];
4602 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4603 if (Bytes[I] >= 0) {
4604 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4605 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4606 if (OpNo == ZeroVecIdx)
4607 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4608 else {
4609 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4610 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4612 } else
4613 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4615 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4616 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4617 if (MaskFirst)
4618 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4619 Mask);
4620 else
4621 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4622 Mask);
4626 SDValue IndexNodes[SystemZ::VectorBytes];
4627 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4628 if (Bytes[I] >= 0)
4629 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4630 else
4631 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4632 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4633 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4634 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4637 namespace {
4638 // Describes a general N-operand vector shuffle.
4639 struct GeneralShuffle {
4640 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4641 void addUndef();
4642 bool add(SDValue, unsigned);
4643 SDValue getNode(SelectionDAG &, const SDLoc &);
4644 void tryPrepareForUnpack();
4645 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4646 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4648 // The operands of the shuffle.
4649 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4651 // Index I is -1 if byte I of the result is undefined. Otherwise the
4652 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4653 // Bytes[I] / SystemZ::VectorBytes.
4654 SmallVector<int, SystemZ::VectorBytes> Bytes;
4656 // The type of the shuffle result.
4657 EVT VT;
4659 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4660 unsigned UnpackFromEltSize;
4664 // Add an extra undefined element to the shuffle.
4665 void GeneralShuffle::addUndef() {
4666 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4667 for (unsigned I = 0; I < BytesPerElement; ++I)
4668 Bytes.push_back(-1);
4671 // Add an extra element to the shuffle, taking it from element Elem of Op.
4672 // A null Op indicates a vector input whose value will be calculated later;
4673 // there is at most one such input per shuffle and it always has the same
4674 // type as the result. Aborts and returns false if the source vector elements
4675 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4676 // LLVM they become implicitly extended, but this is rare and not optimized.
4677 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4678 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4680 // The source vector can have wider elements than the result,
4681 // either through an explicit TRUNCATE or because of type legalization.
4682 // We want the least significant part.
4683 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4684 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4686 // Return false if the source elements are smaller than their destination
4687 // elements.
4688 if (FromBytesPerElement < BytesPerElement)
4689 return false;
4691 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4692 (FromBytesPerElement - BytesPerElement));
4694 // Look through things like shuffles and bitcasts.
4695 while (Op.getNode()) {
4696 if (Op.getOpcode() == ISD::BITCAST)
4697 Op = Op.getOperand(0);
4698 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4699 // See whether the bytes we need come from a contiguous part of one
4700 // operand.
4701 SmallVector<int, SystemZ::VectorBytes> OpBytes;
4702 if (!getVPermMask(Op, OpBytes))
4703 break;
4704 int NewByte;
4705 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4706 break;
4707 if (NewByte < 0) {
4708 addUndef();
4709 return true;
4711 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4712 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4713 } else if (Op.isUndef()) {
4714 addUndef();
4715 return true;
4716 } else
4717 break;
4720 // Make sure that the source of the extraction is in Ops.
4721 unsigned OpNo = 0;
4722 for (; OpNo < Ops.size(); ++OpNo)
4723 if (Ops[OpNo] == Op)
4724 break;
4725 if (OpNo == Ops.size())
4726 Ops.push_back(Op);
4728 // Add the element to Bytes.
4729 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4730 for (unsigned I = 0; I < BytesPerElement; ++I)
4731 Bytes.push_back(Base + I);
4733 return true;
4736 // Return SDNodes for the completed shuffle.
4737 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4738 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4740 if (Ops.size() == 0)
4741 return DAG.getUNDEF(VT);
4743 // Use a single unpack if possible as the last operation.
4744 tryPrepareForUnpack();
4746 // Make sure that there are at least two shuffle operands.
4747 if (Ops.size() == 1)
4748 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4750 // Create a tree of shuffles, deferring root node until after the loop.
4751 // Try to redistribute the undefined elements of non-root nodes so that
4752 // the non-root shuffles match something like a pack or merge, then adjust
4753 // the parent node's permute vector to compensate for the new order.
4754 // Among other things, this copes with vectors like <2 x i16> that were
4755 // padded with undefined elements during type legalization.
4757 // In the best case this redistribution will lead to the whole tree
4758 // using packs and merges. It should rarely be a loss in other cases.
4759 unsigned Stride = 1;
4760 for (; Stride * 2 < Ops.size(); Stride *= 2) {
4761 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4762 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4764 // Create a mask for just these two operands.
4765 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4766 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4767 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4768 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4769 if (OpNo == I)
4770 NewBytes[J] = Byte;
4771 else if (OpNo == I + Stride)
4772 NewBytes[J] = SystemZ::VectorBytes + Byte;
4773 else
4774 NewBytes[J] = -1;
4776 // See if it would be better to reorganize NewMask to avoid using VPERM.
4777 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4778 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4779 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4780 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4781 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4782 if (NewBytes[J] >= 0) {
4783 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4784 "Invalid double permute");
4785 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4786 } else
4787 assert(NewBytesMap[J] < 0 && "Invalid double permute");
4789 } else {
4790 // Just use NewBytes on the operands.
4791 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4792 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4793 if (NewBytes[J] >= 0)
4794 Bytes[J] = I * SystemZ::VectorBytes + J;
4799 // Now we just have 2 inputs. Put the second operand in Ops[1].
4800 if (Stride > 1) {
4801 Ops[1] = Ops[Stride];
4802 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4803 if (Bytes[I] >= int(SystemZ::VectorBytes))
4804 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4807 // Look for an instruction that can do the permute without resorting
4808 // to VPERM.
4809 unsigned OpNo0, OpNo1;
4810 SDValue Op;
4811 if (unpackWasPrepared() && Ops[1].isUndef())
4812 Op = Ops[0];
4813 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4814 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4815 else
4816 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4818 Op = insertUnpackIfPrepared(DAG, DL, Op);
4820 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4823 #ifndef NDEBUG
4824 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4825 dbgs() << Msg.c_str() << " { ";
4826 for (unsigned i = 0; i < Bytes.size(); i++)
4827 dbgs() << Bytes[i] << " ";
4828 dbgs() << "}\n";
4830 #endif
4832 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4833 // after all else by removing the zero vector and the effect of the unpack on
4834 // Bytes.
4835 void GeneralShuffle::tryPrepareForUnpack() {
4836 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4837 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4838 return;
4840 // Only do this if removing the zero vector reduces the depth, otherwise
4841 // the critical path will increase with the final unpack.
4842 if (Ops.size() > 2 &&
4843 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4844 return;
4846 // Find an unpack that would allow removing the zero vector from Ops.
4847 UnpackFromEltSize = 1;
4848 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4849 bool MatchUnpack = true;
4850 SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4851 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4852 unsigned ToEltSize = UnpackFromEltSize * 2;
4853 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4854 if (!IsZextByte)
4855 SrcBytes.push_back(Bytes[Elt]);
4856 if (Bytes[Elt] != -1) {
4857 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4858 if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4859 MatchUnpack = false;
4860 break;
4864 if (MatchUnpack) {
4865 if (Ops.size() == 2) {
4866 // Don't use unpack if a single source operand needs rearrangement.
4867 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4868 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4869 UnpackFromEltSize = UINT_MAX;
4870 return;
4873 break;
4876 if (UnpackFromEltSize > 4)
4877 return;
4879 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4880 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4881 << ".\n";
4882 dumpBytes(Bytes, "Original Bytes vector:"););
4884 // Apply the unpack in reverse to the Bytes array.
4885 unsigned B = 0;
4886 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4887 Elt += UnpackFromEltSize;
4888 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4889 Bytes[B] = Bytes[Elt];
4891 while (B < SystemZ::VectorBytes)
4892 Bytes[B++] = -1;
4894 // Remove the zero vector from Ops
4895 Ops.erase(&Ops[ZeroVecOpNo]);
4896 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4897 if (Bytes[I] >= 0) {
4898 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4899 if (OpNo > ZeroVecOpNo)
4900 Bytes[I] -= SystemZ::VectorBytes;
4903 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4904 dbgs() << "\n";);
4907 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4908 const SDLoc &DL,
4909 SDValue Op) {
4910 if (!unpackWasPrepared())
4911 return Op;
4912 unsigned InBits = UnpackFromEltSize * 8;
4913 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4914 SystemZ::VectorBits / InBits);
4915 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4916 unsigned OutBits = InBits * 2;
4917 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4918 SystemZ::VectorBits / OutBits);
4919 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4922 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4923 static bool isScalarToVector(SDValue Op) {
4924 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4925 if (!Op.getOperand(I).isUndef())
4926 return false;
4927 return true;
4930 // Return a vector of type VT that contains Value in the first element.
4931 // The other elements don't matter.
4932 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4933 SDValue Value) {
4934 // If we have a constant, replicate it to all elements and let the
4935 // BUILD_VECTOR lowering take care of it.
4936 if (Value.getOpcode() == ISD::Constant ||
4937 Value.getOpcode() == ISD::ConstantFP) {
4938 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4939 return DAG.getBuildVector(VT, DL, Ops);
4941 if (Value.isUndef())
4942 return DAG.getUNDEF(VT);
4943 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4946 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4947 // element 1. Used for cases in which replication is cheap.
4948 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4949 SDValue Op0, SDValue Op1) {
4950 if (Op0.isUndef()) {
4951 if (Op1.isUndef())
4952 return DAG.getUNDEF(VT);
4953 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4955 if (Op1.isUndef())
4956 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4957 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4958 buildScalarToVector(DAG, DL, VT, Op0),
4959 buildScalarToVector(DAG, DL, VT, Op1));
4962 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4963 // vector for them.
4964 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4965 SDValue Op1) {
4966 if (Op0.isUndef() && Op1.isUndef())
4967 return DAG.getUNDEF(MVT::v2i64);
4968 // If one of the two inputs is undefined then replicate the other one,
4969 // in order to avoid using another register unnecessarily.
4970 if (Op0.isUndef())
4971 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4972 else if (Op1.isUndef())
4973 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4974 else {
4975 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4976 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4978 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4981 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4982 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4983 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
4984 // would benefit from this representation and return it if so.
4985 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4986 BuildVectorSDNode *BVN) {
4987 EVT VT = BVN->getValueType(0);
4988 unsigned NumElements = VT.getVectorNumElements();
4990 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4991 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
4992 // need a BUILD_VECTOR, add an additional placeholder operand for that
4993 // BUILD_VECTOR and store its operands in ResidueOps.
4994 GeneralShuffle GS(VT);
4995 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4996 bool FoundOne = false;
4997 for (unsigned I = 0; I < NumElements; ++I) {
4998 SDValue Op = BVN->getOperand(I);
4999 if (Op.getOpcode() == ISD::TRUNCATE)
5000 Op = Op.getOperand(0);
5001 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5002 Op.getOperand(1).getOpcode() == ISD::Constant) {
5003 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5004 if (!GS.add(Op.getOperand(0), Elem))
5005 return SDValue();
5006 FoundOne = true;
5007 } else if (Op.isUndef()) {
5008 GS.addUndef();
5009 } else {
5010 if (!GS.add(SDValue(), ResidueOps.size()))
5011 return SDValue();
5012 ResidueOps.push_back(BVN->getOperand(I));
5016 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5017 if (!FoundOne)
5018 return SDValue();
5020 // Create the BUILD_VECTOR for the remaining elements, if any.
5021 if (!ResidueOps.empty()) {
5022 while (ResidueOps.size() < NumElements)
5023 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5024 for (auto &Op : GS.Ops) {
5025 if (!Op.getNode()) {
5026 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5027 break;
5031 return GS.getNode(DAG, SDLoc(BVN));
5034 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5035 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5036 return true;
5037 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5038 return true;
5039 return false;
5042 // Combine GPR scalar values Elems into a vector of type VT.
5043 SDValue
5044 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5045 SmallVectorImpl<SDValue> &Elems) const {
5046 // See whether there is a single replicated value.
5047 SDValue Single;
5048 unsigned int NumElements = Elems.size();
5049 unsigned int Count = 0;
5050 for (auto Elem : Elems) {
5051 if (!Elem.isUndef()) {
5052 if (!Single.getNode())
5053 Single = Elem;
5054 else if (Elem != Single) {
5055 Single = SDValue();
5056 break;
5058 Count += 1;
5061 // There are three cases here:
5063 // - if the only defined element is a loaded one, the best sequence
5064 // is a replicating load.
5066 // - otherwise, if the only defined element is an i64 value, we will
5067 // end up with the same VLVGP sequence regardless of whether we short-cut
5068 // for replication or fall through to the later code.
5070 // - otherwise, if the only defined element is an i32 or smaller value,
5071 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5072 // This is only a win if the single defined element is used more than once.
5073 // In other cases we're better off using a single VLVGx.
5074 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5075 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5077 // If all elements are loads, use VLREP/VLEs (below).
5078 bool AllLoads = true;
5079 for (auto Elem : Elems)
5080 if (!isVectorElementLoad(Elem)) {
5081 AllLoads = false;
5082 break;
5085 // The best way of building a v2i64 from two i64s is to use VLVGP.
5086 if (VT == MVT::v2i64 && !AllLoads)
5087 return joinDwords(DAG, DL, Elems[0], Elems[1]);
5089 // Use a 64-bit merge high to combine two doubles.
5090 if (VT == MVT::v2f64 && !AllLoads)
5091 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5093 // Build v4f32 values directly from the FPRs:
5095 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5096 // V V VMRHF
5097 // <ABxx> <CDxx>
5098 // V VMRHG
5099 // <ABCD>
5100 if (VT == MVT::v4f32 && !AllLoads) {
5101 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5102 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5103 // Avoid unnecessary undefs by reusing the other operand.
5104 if (Op01.isUndef())
5105 Op01 = Op23;
5106 else if (Op23.isUndef())
5107 Op23 = Op01;
5108 // Merging identical replications is a no-op.
5109 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5110 return Op01;
5111 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5112 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5113 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5114 DL, MVT::v2i64, Op01, Op23);
5115 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5118 // Collect the constant terms.
5119 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5120 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5122 unsigned NumConstants = 0;
5123 for (unsigned I = 0; I < NumElements; ++I) {
5124 SDValue Elem = Elems[I];
5125 if (Elem.getOpcode() == ISD::Constant ||
5126 Elem.getOpcode() == ISD::ConstantFP) {
5127 NumConstants += 1;
5128 Constants[I] = Elem;
5129 Done[I] = true;
5132 // If there was at least one constant, fill in the other elements of
5133 // Constants with undefs to get a full vector constant and use that
5134 // as the starting point.
5135 SDValue Result;
5136 SDValue ReplicatedVal;
5137 if (NumConstants > 0) {
5138 for (unsigned I = 0; I < NumElements; ++I)
5139 if (!Constants[I].getNode())
5140 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5141 Result = DAG.getBuildVector(VT, DL, Constants);
5142 } else {
5143 // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5144 // avoid a false dependency on any previous contents of the vector
5145 // register.
5147 // Use a VLREP if at least one element is a load. Make sure to replicate
5148 // the load with the most elements having its value.
5149 std::map<const SDNode*, unsigned> UseCounts;
5150 SDNode *LoadMaxUses = nullptr;
5151 for (unsigned I = 0; I < NumElements; ++I)
5152 if (isVectorElementLoad(Elems[I])) {
5153 SDNode *Ld = Elems[I].getNode();
5154 UseCounts[Ld]++;
5155 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5156 LoadMaxUses = Ld;
5158 if (LoadMaxUses != nullptr) {
5159 ReplicatedVal = SDValue(LoadMaxUses, 0);
5160 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5161 } else {
5162 // Try to use VLVGP.
5163 unsigned I1 = NumElements / 2 - 1;
5164 unsigned I2 = NumElements - 1;
5165 bool Def1 = !Elems[I1].isUndef();
5166 bool Def2 = !Elems[I2].isUndef();
5167 if (Def1 || Def2) {
5168 SDValue Elem1 = Elems[Def1 ? I1 : I2];
5169 SDValue Elem2 = Elems[Def2 ? I2 : I1];
5170 Result = DAG.getNode(ISD::BITCAST, DL, VT,
5171 joinDwords(DAG, DL, Elem1, Elem2));
5172 Done[I1] = true;
5173 Done[I2] = true;
5174 } else
5175 Result = DAG.getUNDEF(VT);
5179 // Use VLVGx to insert the other elements.
5180 for (unsigned I = 0; I < NumElements; ++I)
5181 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5182 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5183 DAG.getConstant(I, DL, MVT::i32));
5184 return Result;
5187 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5188 SelectionDAG &DAG) const {
5189 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5190 SDLoc DL(Op);
5191 EVT VT = Op.getValueType();
5193 if (BVN->isConstant()) {
5194 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5195 return Op;
5197 // Fall back to loading it from memory.
5198 return SDValue();
5201 // See if we should use shuffles to construct the vector from other vectors.
5202 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5203 return Res;
5205 // Detect SCALAR_TO_VECTOR conversions.
5206 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5207 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5209 // Otherwise use buildVector to build the vector up from GPRs.
5210 unsigned NumElements = Op.getNumOperands();
5211 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5212 for (unsigned I = 0; I < NumElements; ++I)
5213 Ops[I] = Op.getOperand(I);
5214 return buildVector(DAG, DL, VT, Ops);
5217 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5218 SelectionDAG &DAG) const {
5219 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5220 SDLoc DL(Op);
5221 EVT VT = Op.getValueType();
5222 unsigned NumElements = VT.getVectorNumElements();
5224 if (VSN->isSplat()) {
5225 SDValue Op0 = Op.getOperand(0);
5226 unsigned Index = VSN->getSplatIndex();
5227 assert(Index < VT.getVectorNumElements() &&
5228 "Splat index should be defined and in first operand");
5229 // See whether the value we're splatting is directly available as a scalar.
5230 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5231 Op0.getOpcode() == ISD::BUILD_VECTOR)
5232 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5233 // Otherwise keep it as a vector-to-vector operation.
5234 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5235 DAG.getTargetConstant(Index, DL, MVT::i32));
5238 GeneralShuffle GS(VT);
5239 for (unsigned I = 0; I < NumElements; ++I) {
5240 int Elt = VSN->getMaskElt(I);
5241 if (Elt < 0)
5242 GS.addUndef();
5243 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5244 unsigned(Elt) % NumElements))
5245 return SDValue();
5247 return GS.getNode(DAG, SDLoc(VSN));
5250 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5251 SelectionDAG &DAG) const {
5252 SDLoc DL(Op);
5253 // Just insert the scalar into element 0 of an undefined vector.
5254 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5255 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5256 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5259 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5260 SelectionDAG &DAG) const {
5261 // Handle insertions of floating-point values.
5262 SDLoc DL(Op);
5263 SDValue Op0 = Op.getOperand(0);
5264 SDValue Op1 = Op.getOperand(1);
5265 SDValue Op2 = Op.getOperand(2);
5266 EVT VT = Op.getValueType();
5268 // Insertions into constant indices of a v2f64 can be done using VPDI.
5269 // However, if the inserted value is a bitcast or a constant then it's
5270 // better to use GPRs, as below.
5271 if (VT == MVT::v2f64 &&
5272 Op1.getOpcode() != ISD::BITCAST &&
5273 Op1.getOpcode() != ISD::ConstantFP &&
5274 Op2.getOpcode() == ISD::Constant) {
5275 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5276 unsigned Mask = VT.getVectorNumElements() - 1;
5277 if (Index <= Mask)
5278 return Op;
5281 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5282 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5283 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5284 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5285 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5286 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5287 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5290 SDValue
5291 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5292 SelectionDAG &DAG) const {
5293 // Handle extractions of floating-point values.
5294 SDLoc DL(Op);
5295 SDValue Op0 = Op.getOperand(0);
5296 SDValue Op1 = Op.getOperand(1);
5297 EVT VT = Op.getValueType();
5298 EVT VecVT = Op0.getValueType();
5300 // Extractions of constant indices can be done directly.
5301 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5302 uint64_t Index = CIndexN->getZExtValue();
5303 unsigned Mask = VecVT.getVectorNumElements() - 1;
5304 if (Index <= Mask)
5305 return Op;
5308 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5309 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5310 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5311 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5312 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5313 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5316 SDValue SystemZTargetLowering::
5317 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5318 SDValue PackedOp = Op.getOperand(0);
5319 EVT OutVT = Op.getValueType();
5320 EVT InVT = PackedOp.getValueType();
5321 unsigned ToBits = OutVT.getScalarSizeInBits();
5322 unsigned FromBits = InVT.getScalarSizeInBits();
5323 do {
5324 FromBits *= 2;
5325 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5326 SystemZ::VectorBits / FromBits);
5327 PackedOp =
5328 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5329 } while (FromBits != ToBits);
5330 return PackedOp;
5333 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5334 SDValue SystemZTargetLowering::
5335 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5336 SDValue PackedOp = Op.getOperand(0);
5337 SDLoc DL(Op);
5338 EVT OutVT = Op.getValueType();
5339 EVT InVT = PackedOp.getValueType();
5340 unsigned InNumElts = InVT.getVectorNumElements();
5341 unsigned OutNumElts = OutVT.getVectorNumElements();
5342 unsigned NumInPerOut = InNumElts / OutNumElts;
5344 SDValue ZeroVec =
5345 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5347 SmallVector<int, 16> Mask(InNumElts);
5348 unsigned ZeroVecElt = InNumElts;
5349 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5350 unsigned MaskElt = PackedElt * NumInPerOut;
5351 unsigned End = MaskElt + NumInPerOut - 1;
5352 for (; MaskElt < End; MaskElt++)
5353 Mask[MaskElt] = ZeroVecElt++;
5354 Mask[MaskElt] = PackedElt;
5356 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5357 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5360 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5361 unsigned ByScalar) const {
5362 // Look for cases where a vector shift can use the *_BY_SCALAR form.
5363 SDValue Op0 = Op.getOperand(0);
5364 SDValue Op1 = Op.getOperand(1);
5365 SDLoc DL(Op);
5366 EVT VT = Op.getValueType();
5367 unsigned ElemBitSize = VT.getScalarSizeInBits();
5369 // See whether the shift vector is a splat represented as BUILD_VECTOR.
5370 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5371 APInt SplatBits, SplatUndef;
5372 unsigned SplatBitSize;
5373 bool HasAnyUndefs;
5374 // Check for constant splats. Use ElemBitSize as the minimum element
5375 // width and reject splats that need wider elements.
5376 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5377 ElemBitSize, true) &&
5378 SplatBitSize == ElemBitSize) {
5379 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5380 DL, MVT::i32);
5381 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5383 // Check for variable splats.
5384 BitVector UndefElements;
5385 SDValue Splat = BVN->getSplatValue(&UndefElements);
5386 if (Splat) {
5387 // Since i32 is the smallest legal type, we either need a no-op
5388 // or a truncation.
5389 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5390 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5394 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5395 // and the shift amount is directly available in a GPR.
5396 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5397 if (VSN->isSplat()) {
5398 SDValue VSNOp0 = VSN->getOperand(0);
5399 unsigned Index = VSN->getSplatIndex();
5400 assert(Index < VT.getVectorNumElements() &&
5401 "Splat index should be defined and in first operand");
5402 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5403 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5404 // Since i32 is the smallest legal type, we either need a no-op
5405 // or a truncation.
5406 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5407 VSNOp0.getOperand(Index));
5408 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5413 // Otherwise just treat the current form as legal.
5414 return Op;
5417 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5418 SelectionDAG &DAG) const {
5419 switch (Op.getOpcode()) {
5420 case ISD::FRAMEADDR:
5421 return lowerFRAMEADDR(Op, DAG);
5422 case ISD::RETURNADDR:
5423 return lowerRETURNADDR(Op, DAG);
5424 case ISD::BR_CC:
5425 return lowerBR_CC(Op, DAG);
5426 case ISD::SELECT_CC:
5427 return lowerSELECT_CC(Op, DAG);
5428 case ISD::SETCC:
5429 return lowerSETCC(Op, DAG);
5430 case ISD::STRICT_FSETCC:
5431 return lowerSTRICT_FSETCC(Op, DAG, false);
5432 case ISD::STRICT_FSETCCS:
5433 return lowerSTRICT_FSETCC(Op, DAG, true);
5434 case ISD::GlobalAddress:
5435 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5436 case ISD::GlobalTLSAddress:
5437 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5438 case ISD::BlockAddress:
5439 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5440 case ISD::JumpTable:
5441 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5442 case ISD::ConstantPool:
5443 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5444 case ISD::BITCAST:
5445 return lowerBITCAST(Op, DAG);
5446 case ISD::VASTART:
5447 return lowerVASTART(Op, DAG);
5448 case ISD::VACOPY:
5449 return lowerVACOPY(Op, DAG);
5450 case ISD::DYNAMIC_STACKALLOC:
5451 return lowerDYNAMIC_STACKALLOC(Op, DAG);
5452 case ISD::GET_DYNAMIC_AREA_OFFSET:
5453 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5454 case ISD::SMUL_LOHI:
5455 return lowerSMUL_LOHI(Op, DAG);
5456 case ISD::UMUL_LOHI:
5457 return lowerUMUL_LOHI(Op, DAG);
5458 case ISD::SDIVREM:
5459 return lowerSDIVREM(Op, DAG);
5460 case ISD::UDIVREM:
5461 return lowerUDIVREM(Op, DAG);
5462 case ISD::SADDO:
5463 case ISD::SSUBO:
5464 case ISD::UADDO:
5465 case ISD::USUBO:
5466 return lowerXALUO(Op, DAG);
5467 case ISD::ADDCARRY:
5468 case ISD::SUBCARRY:
5469 return lowerADDSUBCARRY(Op, DAG);
5470 case ISD::OR:
5471 return lowerOR(Op, DAG);
5472 case ISD::CTPOP:
5473 return lowerCTPOP(Op, DAG);
5474 case ISD::ATOMIC_FENCE:
5475 return lowerATOMIC_FENCE(Op, DAG);
5476 case ISD::ATOMIC_SWAP:
5477 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5478 case ISD::ATOMIC_STORE:
5479 return lowerATOMIC_STORE(Op, DAG);
5480 case ISD::ATOMIC_LOAD:
5481 return lowerATOMIC_LOAD(Op, DAG);
5482 case ISD::ATOMIC_LOAD_ADD:
5483 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5484 case ISD::ATOMIC_LOAD_SUB:
5485 return lowerATOMIC_LOAD_SUB(Op, DAG);
5486 case ISD::ATOMIC_LOAD_AND:
5487 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5488 case ISD::ATOMIC_LOAD_OR:
5489 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5490 case ISD::ATOMIC_LOAD_XOR:
5491 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5492 case ISD::ATOMIC_LOAD_NAND:
5493 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5494 case ISD::ATOMIC_LOAD_MIN:
5495 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5496 case ISD::ATOMIC_LOAD_MAX:
5497 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5498 case ISD::ATOMIC_LOAD_UMIN:
5499 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5500 case ISD::ATOMIC_LOAD_UMAX:
5501 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5502 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5503 return lowerATOMIC_CMP_SWAP(Op, DAG);
5504 case ISD::STACKSAVE:
5505 return lowerSTACKSAVE(Op, DAG);
5506 case ISD::STACKRESTORE:
5507 return lowerSTACKRESTORE(Op, DAG);
5508 case ISD::PREFETCH:
5509 return lowerPREFETCH(Op, DAG);
5510 case ISD::INTRINSIC_W_CHAIN:
5511 return lowerINTRINSIC_W_CHAIN(Op, DAG);
5512 case ISD::INTRINSIC_WO_CHAIN:
5513 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5514 case ISD::BUILD_VECTOR:
5515 return lowerBUILD_VECTOR(Op, DAG);
5516 case ISD::VECTOR_SHUFFLE:
5517 return lowerVECTOR_SHUFFLE(Op, DAG);
5518 case ISD::SCALAR_TO_VECTOR:
5519 return lowerSCALAR_TO_VECTOR(Op, DAG);
5520 case ISD::INSERT_VECTOR_ELT:
5521 return lowerINSERT_VECTOR_ELT(Op, DAG);
5522 case ISD::EXTRACT_VECTOR_ELT:
5523 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5524 case ISD::SIGN_EXTEND_VECTOR_INREG:
5525 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5526 case ISD::ZERO_EXTEND_VECTOR_INREG:
5527 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5528 case ISD::SHL:
5529 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5530 case ISD::SRL:
5531 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5532 case ISD::SRA:
5533 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5534 default:
5535 llvm_unreachable("Unexpected node to lower");
5539 // Lower operations with invalid operand or result types (currently used
5540 // only for 128-bit integer types).
5541 void
5542 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5543 SmallVectorImpl<SDValue> &Results,
5544 SelectionDAG &DAG) const {
5545 switch (N->getOpcode()) {
5546 case ISD::ATOMIC_LOAD: {
5547 SDLoc DL(N);
5548 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5549 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5550 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5551 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5552 DL, Tys, Ops, MVT::i128, MMO);
5553 Results.push_back(lowerGR128ToI128(DAG, Res));
5554 Results.push_back(Res.getValue(1));
5555 break;
5557 case ISD::ATOMIC_STORE: {
5558 SDLoc DL(N);
5559 SDVTList Tys = DAG.getVTList(MVT::Other);
5560 SDValue Ops[] = { N->getOperand(0),
5561 lowerI128ToGR128(DAG, N->getOperand(2)),
5562 N->getOperand(1) };
5563 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5564 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5565 DL, Tys, Ops, MVT::i128, MMO);
5566 // We have to enforce sequential consistency by performing a
5567 // serialization operation after the store.
5568 if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5569 AtomicOrdering::SequentiallyConsistent)
5570 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5571 MVT::Other, Res), 0);
5572 Results.push_back(Res);
5573 break;
5575 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5576 SDLoc DL(N);
5577 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5578 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5579 lowerI128ToGR128(DAG, N->getOperand(2)),
5580 lowerI128ToGR128(DAG, N->getOperand(3)) };
5581 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5582 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5583 DL, Tys, Ops, MVT::i128, MMO);
5584 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5585 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5586 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5587 Results.push_back(lowerGR128ToI128(DAG, Res));
5588 Results.push_back(Success);
5589 Results.push_back(Res.getValue(2));
5590 break;
5592 default:
5593 llvm_unreachable("Unexpected node to lower");
5597 void
5598 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5599 SmallVectorImpl<SDValue> &Results,
5600 SelectionDAG &DAG) const {
5601 return LowerOperationWrapper(N, Results, DAG);
5604 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5605 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5606 switch ((SystemZISD::NodeType)Opcode) {
5607 case SystemZISD::FIRST_NUMBER: break;
5608 OPCODE(RET_FLAG);
5609 OPCODE(CALL);
5610 OPCODE(SIBCALL);
5611 OPCODE(TLS_GDCALL);
5612 OPCODE(TLS_LDCALL);
5613 OPCODE(PCREL_WRAPPER);
5614 OPCODE(PCREL_OFFSET);
5615 OPCODE(ICMP);
5616 OPCODE(FCMP);
5617 OPCODE(STRICT_FCMP);
5618 OPCODE(STRICT_FCMPS);
5619 OPCODE(TM);
5620 OPCODE(BR_CCMASK);
5621 OPCODE(SELECT_CCMASK);
5622 OPCODE(ADJDYNALLOC);
5623 OPCODE(PROBED_ALLOCA);
5624 OPCODE(POPCNT);
5625 OPCODE(SMUL_LOHI);
5626 OPCODE(UMUL_LOHI);
5627 OPCODE(SDIVREM);
5628 OPCODE(UDIVREM);
5629 OPCODE(SADDO);
5630 OPCODE(SSUBO);
5631 OPCODE(UADDO);
5632 OPCODE(USUBO);
5633 OPCODE(ADDCARRY);
5634 OPCODE(SUBCARRY);
5635 OPCODE(GET_CCMASK);
5636 OPCODE(MVC);
5637 OPCODE(MVC_LOOP);
5638 OPCODE(NC);
5639 OPCODE(NC_LOOP);
5640 OPCODE(OC);
5641 OPCODE(OC_LOOP);
5642 OPCODE(XC);
5643 OPCODE(XC_LOOP);
5644 OPCODE(CLC);
5645 OPCODE(CLC_LOOP);
5646 OPCODE(STPCPY);
5647 OPCODE(STRCMP);
5648 OPCODE(SEARCH_STRING);
5649 OPCODE(IPM);
5650 OPCODE(MEMBARRIER);
5651 OPCODE(TBEGIN);
5652 OPCODE(TBEGIN_NOFLOAT);
5653 OPCODE(TEND);
5654 OPCODE(BYTE_MASK);
5655 OPCODE(ROTATE_MASK);
5656 OPCODE(REPLICATE);
5657 OPCODE(JOIN_DWORDS);
5658 OPCODE(SPLAT);
5659 OPCODE(MERGE_HIGH);
5660 OPCODE(MERGE_LOW);
5661 OPCODE(SHL_DOUBLE);
5662 OPCODE(PERMUTE_DWORDS);
5663 OPCODE(PERMUTE);
5664 OPCODE(PACK);
5665 OPCODE(PACKS_CC);
5666 OPCODE(PACKLS_CC);
5667 OPCODE(UNPACK_HIGH);
5668 OPCODE(UNPACKL_HIGH);
5669 OPCODE(UNPACK_LOW);
5670 OPCODE(UNPACKL_LOW);
5671 OPCODE(VSHL_BY_SCALAR);
5672 OPCODE(VSRL_BY_SCALAR);
5673 OPCODE(VSRA_BY_SCALAR);
5674 OPCODE(VSUM);
5675 OPCODE(VICMPE);
5676 OPCODE(VICMPH);
5677 OPCODE(VICMPHL);
5678 OPCODE(VICMPES);
5679 OPCODE(VICMPHS);
5680 OPCODE(VICMPHLS);
5681 OPCODE(VFCMPE);
5682 OPCODE(STRICT_VFCMPE);
5683 OPCODE(STRICT_VFCMPES);
5684 OPCODE(VFCMPH);
5685 OPCODE(STRICT_VFCMPH);
5686 OPCODE(STRICT_VFCMPHS);
5687 OPCODE(VFCMPHE);
5688 OPCODE(STRICT_VFCMPHE);
5689 OPCODE(STRICT_VFCMPHES);
5690 OPCODE(VFCMPES);
5691 OPCODE(VFCMPHS);
5692 OPCODE(VFCMPHES);
5693 OPCODE(VFTCI);
5694 OPCODE(VEXTEND);
5695 OPCODE(STRICT_VEXTEND);
5696 OPCODE(VROUND);
5697 OPCODE(STRICT_VROUND);
5698 OPCODE(VTM);
5699 OPCODE(VFAE_CC);
5700 OPCODE(VFAEZ_CC);
5701 OPCODE(VFEE_CC);
5702 OPCODE(VFEEZ_CC);
5703 OPCODE(VFENE_CC);
5704 OPCODE(VFENEZ_CC);
5705 OPCODE(VISTR_CC);
5706 OPCODE(VSTRC_CC);
5707 OPCODE(VSTRCZ_CC);
5708 OPCODE(VSTRS_CC);
5709 OPCODE(VSTRSZ_CC);
5710 OPCODE(TDC);
5711 OPCODE(ATOMIC_SWAPW);
5712 OPCODE(ATOMIC_LOADW_ADD);
5713 OPCODE(ATOMIC_LOADW_SUB);
5714 OPCODE(ATOMIC_LOADW_AND);
5715 OPCODE(ATOMIC_LOADW_OR);
5716 OPCODE(ATOMIC_LOADW_XOR);
5717 OPCODE(ATOMIC_LOADW_NAND);
5718 OPCODE(ATOMIC_LOADW_MIN);
5719 OPCODE(ATOMIC_LOADW_MAX);
5720 OPCODE(ATOMIC_LOADW_UMIN);
5721 OPCODE(ATOMIC_LOADW_UMAX);
5722 OPCODE(ATOMIC_CMP_SWAPW);
5723 OPCODE(ATOMIC_CMP_SWAP);
5724 OPCODE(ATOMIC_LOAD_128);
5725 OPCODE(ATOMIC_STORE_128);
5726 OPCODE(ATOMIC_CMP_SWAP_128);
5727 OPCODE(LRV);
5728 OPCODE(STRV);
5729 OPCODE(VLER);
5730 OPCODE(VSTER);
5731 OPCODE(PREFETCH);
5733 return nullptr;
5734 #undef OPCODE
5737 // Return true if VT is a vector whose elements are a whole number of bytes
5738 // in width. Also check for presence of vector support.
5739 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5740 if (!Subtarget.hasVector())
5741 return false;
5743 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5746 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5747 // producing a result of type ResVT. Op is a possibly bitcast version
5748 // of the input vector and Index is the index (based on type VecVT) that
5749 // should be extracted. Return the new extraction if a simplification
5750 // was possible or if Force is true.
5751 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5752 EVT VecVT, SDValue Op,
5753 unsigned Index,
5754 DAGCombinerInfo &DCI,
5755 bool Force) const {
5756 SelectionDAG &DAG = DCI.DAG;
5758 // The number of bytes being extracted.
5759 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5761 for (;;) {
5762 unsigned Opcode = Op.getOpcode();
5763 if (Opcode == ISD::BITCAST)
5764 // Look through bitcasts.
5765 Op = Op.getOperand(0);
5766 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5767 canTreatAsByteVector(Op.getValueType())) {
5768 // Get a VPERM-like permute mask and see whether the bytes covered
5769 // by the extracted element are a contiguous sequence from one
5770 // source operand.
5771 SmallVector<int, SystemZ::VectorBytes> Bytes;
5772 if (!getVPermMask(Op, Bytes))
5773 break;
5774 int First;
5775 if (!getShuffleInput(Bytes, Index * BytesPerElement,
5776 BytesPerElement, First))
5777 break;
5778 if (First < 0)
5779 return DAG.getUNDEF(ResVT);
5780 // Make sure the contiguous sequence starts at a multiple of the
5781 // original element size.
5782 unsigned Byte = unsigned(First) % Bytes.size();
5783 if (Byte % BytesPerElement != 0)
5784 break;
5785 // We can get the extracted value directly from an input.
5786 Index = Byte / BytesPerElement;
5787 Op = Op.getOperand(unsigned(First) / Bytes.size());
5788 Force = true;
5789 } else if (Opcode == ISD::BUILD_VECTOR &&
5790 canTreatAsByteVector(Op.getValueType())) {
5791 // We can only optimize this case if the BUILD_VECTOR elements are
5792 // at least as wide as the extracted value.
5793 EVT OpVT = Op.getValueType();
5794 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5795 if (OpBytesPerElement < BytesPerElement)
5796 break;
5797 // Make sure that the least-significant bit of the extracted value
5798 // is the least significant bit of an input.
5799 unsigned End = (Index + 1) * BytesPerElement;
5800 if (End % OpBytesPerElement != 0)
5801 break;
5802 // We're extracting the low part of one operand of the BUILD_VECTOR.
5803 Op = Op.getOperand(End / OpBytesPerElement - 1);
5804 if (!Op.getValueType().isInteger()) {
5805 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5806 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5807 DCI.AddToWorklist(Op.getNode());
5809 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5810 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5811 if (VT != ResVT) {
5812 DCI.AddToWorklist(Op.getNode());
5813 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5815 return Op;
5816 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5817 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5818 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5819 canTreatAsByteVector(Op.getValueType()) &&
5820 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5821 // Make sure that only the unextended bits are significant.
5822 EVT ExtVT = Op.getValueType();
5823 EVT OpVT = Op.getOperand(0).getValueType();
5824 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5825 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5826 unsigned Byte = Index * BytesPerElement;
5827 unsigned SubByte = Byte % ExtBytesPerElement;
5828 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5829 if (SubByte < MinSubByte ||
5830 SubByte + BytesPerElement > ExtBytesPerElement)
5831 break;
5832 // Get the byte offset of the unextended element
5833 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5834 // ...then add the byte offset relative to that element.
5835 Byte += SubByte - MinSubByte;
5836 if (Byte % BytesPerElement != 0)
5837 break;
5838 Op = Op.getOperand(0);
5839 Index = Byte / BytesPerElement;
5840 Force = true;
5841 } else
5842 break;
5844 if (Force) {
5845 if (Op.getValueType() != VecVT) {
5846 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5847 DCI.AddToWorklist(Op.getNode());
5849 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5850 DAG.getConstant(Index, DL, MVT::i32));
5852 return SDValue();
5855 // Optimize vector operations in scalar value Op on the basis that Op
5856 // is truncated to TruncVT.
5857 SDValue SystemZTargetLowering::combineTruncateExtract(
5858 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5859 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5860 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5861 // of type TruncVT.
5862 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5863 TruncVT.getSizeInBits() % 8 == 0) {
5864 SDValue Vec = Op.getOperand(0);
5865 EVT VecVT = Vec.getValueType();
5866 if (canTreatAsByteVector(VecVT)) {
5867 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5868 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5869 unsigned TruncBytes = TruncVT.getStoreSize();
5870 if (BytesPerElement % TruncBytes == 0) {
5871 // Calculate the value of Y' in the above description. We are
5872 // splitting the original elements into Scale equal-sized pieces
5873 // and for truncation purposes want the last (least-significant)
5874 // of these pieces for IndexN. This is easiest to do by calculating
5875 // the start index of the following element and then subtracting 1.
5876 unsigned Scale = BytesPerElement / TruncBytes;
5877 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5879 // Defer the creation of the bitcast from X to combineExtract,
5880 // which might be able to optimize the extraction.
5881 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5882 VecVT.getStoreSize() / TruncBytes);
5883 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5884 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5889 return SDValue();
5892 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5893 SDNode *N, DAGCombinerInfo &DCI) const {
5894 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5895 SelectionDAG &DAG = DCI.DAG;
5896 SDValue N0 = N->getOperand(0);
5897 EVT VT = N->getValueType(0);
5898 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5899 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5900 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5901 if (TrueOp && FalseOp) {
5902 SDLoc DL(N0);
5903 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5904 DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5905 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5906 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5907 // If N0 has multiple uses, change other uses as well.
5908 if (!N0.hasOneUse()) {
5909 SDValue TruncSelect =
5910 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5911 DCI.CombineTo(N0.getNode(), TruncSelect);
5913 return NewSelect;
5916 return SDValue();
5919 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5920 SDNode *N, DAGCombinerInfo &DCI) const {
5921 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5922 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5923 // into (select_cc LHS, RHS, -1, 0, COND)
5924 SelectionDAG &DAG = DCI.DAG;
5925 SDValue N0 = N->getOperand(0);
5926 EVT VT = N->getValueType(0);
5927 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5928 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5929 N0 = N0.getOperand(0);
5930 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5931 SDLoc DL(N0);
5932 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5933 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5934 N0.getOperand(2) };
5935 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5937 return SDValue();
5940 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5941 SDNode *N, DAGCombinerInfo &DCI) const {
5942 // Convert (sext (ashr (shl X, C1), C2)) to
5943 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5944 // cheap as narrower ones.
5945 SelectionDAG &DAG = DCI.DAG;
5946 SDValue N0 = N->getOperand(0);
5947 EVT VT = N->getValueType(0);
5948 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5949 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5950 SDValue Inner = N0.getOperand(0);
5951 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5952 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5953 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5954 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5955 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5956 EVT ShiftVT = N0.getOperand(1).getValueType();
5957 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5958 Inner.getOperand(0));
5959 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5960 DAG.getConstant(NewShlAmt, SDLoc(Inner),
5961 ShiftVT));
5962 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5963 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5967 return SDValue();
5970 SDValue SystemZTargetLowering::combineMERGE(
5971 SDNode *N, DAGCombinerInfo &DCI) const {
5972 SelectionDAG &DAG = DCI.DAG;
5973 unsigned Opcode = N->getOpcode();
5974 SDValue Op0 = N->getOperand(0);
5975 SDValue Op1 = N->getOperand(1);
5976 if (Op0.getOpcode() == ISD::BITCAST)
5977 Op0 = Op0.getOperand(0);
5978 if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5979 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
5980 // for v4f32.
5981 if (Op1 == N->getOperand(0))
5982 return Op1;
5983 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5984 EVT VT = Op1.getValueType();
5985 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5986 if (ElemBytes <= 4) {
5987 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5988 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5989 EVT InVT = VT.changeVectorElementTypeToInteger();
5990 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5991 SystemZ::VectorBytes / ElemBytes / 2);
5992 if (VT != InVT) {
5993 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5994 DCI.AddToWorklist(Op1.getNode());
5996 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5997 DCI.AddToWorklist(Op.getNode());
5998 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6001 return SDValue();
6004 SDValue SystemZTargetLowering::combineLOAD(
6005 SDNode *N, DAGCombinerInfo &DCI) const {
6006 SelectionDAG &DAG = DCI.DAG;
6007 EVT LdVT = N->getValueType(0);
6008 if (LdVT.isVector() || LdVT.isInteger())
6009 return SDValue();
6010 // Transform a scalar load that is REPLICATEd as well as having other
6011 // use(s) to the form where the other use(s) use the first element of the
6012 // REPLICATE instead of the load. Otherwise instruction selection will not
6013 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6014 // point loads.
6016 SDValue Replicate;
6017 SmallVector<SDNode*, 8> OtherUses;
6018 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6019 UI != UE; ++UI) {
6020 if (UI->getOpcode() == SystemZISD::REPLICATE) {
6021 if (Replicate)
6022 return SDValue(); // Should never happen
6023 Replicate = SDValue(*UI, 0);
6025 else if (UI.getUse().getResNo() == 0)
6026 OtherUses.push_back(*UI);
6028 if (!Replicate || OtherUses.empty())
6029 return SDValue();
6031 SDLoc DL(N);
6032 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6033 Replicate, DAG.getConstant(0, DL, MVT::i32));
6034 // Update uses of the loaded Value while preserving old chains.
6035 for (SDNode *U : OtherUses) {
6036 SmallVector<SDValue, 8> Ops;
6037 for (SDValue Op : U->ops())
6038 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6039 DAG.UpdateNodeOperands(U, Ops);
6041 return SDValue(N, 0);
6044 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6045 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6046 return true;
6047 if (Subtarget.hasVectorEnhancements2())
6048 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6049 return true;
6050 return false;
6053 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6054 if (!VT.isVector() || !VT.isSimple() ||
6055 VT.getSizeInBits() != 128 ||
6056 VT.getScalarSizeInBits() % 8 != 0)
6057 return false;
6059 unsigned NumElts = VT.getVectorNumElements();
6060 for (unsigned i = 0; i < NumElts; ++i) {
6061 if (M[i] < 0) continue; // ignore UNDEF indices
6062 if ((unsigned) M[i] != NumElts - 1 - i)
6063 return false;
6066 return true;
6069 SDValue SystemZTargetLowering::combineSTORE(
6070 SDNode *N, DAGCombinerInfo &DCI) const {
6071 SelectionDAG &DAG = DCI.DAG;
6072 auto *SN = cast<StoreSDNode>(N);
6073 auto &Op1 = N->getOperand(1);
6074 EVT MemVT = SN->getMemoryVT();
6075 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6076 // for the extraction to be done on a vMiN value, so that we can use VSTE.
6077 // If X has wider elements then convert it to:
6078 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6079 if (MemVT.isInteger() && SN->isTruncatingStore()) {
6080 if (SDValue Value =
6081 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6082 DCI.AddToWorklist(Value.getNode());
6084 // Rewrite the store with the new form of stored value.
6085 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6086 SN->getBasePtr(), SN->getMemoryVT(),
6087 SN->getMemOperand());
6090 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6091 if (!SN->isTruncatingStore() &&
6092 Op1.getOpcode() == ISD::BSWAP &&
6093 Op1.getNode()->hasOneUse() &&
6094 canLoadStoreByteSwapped(Op1.getValueType())) {
6096 SDValue BSwapOp = Op1.getOperand(0);
6098 if (BSwapOp.getValueType() == MVT::i16)
6099 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6101 SDValue Ops[] = {
6102 N->getOperand(0), BSwapOp, N->getOperand(2)
6105 return
6106 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6107 Ops, MemVT, SN->getMemOperand());
6109 // Combine STORE (element-swap) into VSTER
6110 if (!SN->isTruncatingStore() &&
6111 Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6112 Op1.getNode()->hasOneUse() &&
6113 Subtarget.hasVectorEnhancements2()) {
6114 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6115 ArrayRef<int> ShuffleMask = SVN->getMask();
6116 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6117 SDValue Ops[] = {
6118 N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6121 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6122 DAG.getVTList(MVT::Other),
6123 Ops, MemVT, SN->getMemOperand());
6127 return SDValue();
6130 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6131 SDNode *N, DAGCombinerInfo &DCI) const {
6132 SelectionDAG &DAG = DCI.DAG;
6133 // Combine element-swap (LOAD) into VLER
6134 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6135 N->getOperand(0).hasOneUse() &&
6136 Subtarget.hasVectorEnhancements2()) {
6137 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6138 ArrayRef<int> ShuffleMask = SVN->getMask();
6139 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6140 SDValue Load = N->getOperand(0);
6141 LoadSDNode *LD = cast<LoadSDNode>(Load);
6143 // Create the element-swapping load.
6144 SDValue Ops[] = {
6145 LD->getChain(), // Chain
6146 LD->getBasePtr() // Ptr
6148 SDValue ESLoad =
6149 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6150 DAG.getVTList(LD->getValueType(0), MVT::Other),
6151 Ops, LD->getMemoryVT(), LD->getMemOperand());
6153 // First, combine the VECTOR_SHUFFLE away. This makes the value produced
6154 // by the load dead.
6155 DCI.CombineTo(N, ESLoad);
6157 // Next, combine the load away, we give it a bogus result value but a real
6158 // chain result. The result value is dead because the shuffle is dead.
6159 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6161 // Return N so it doesn't get rechecked!
6162 return SDValue(N, 0);
6166 return SDValue();
6169 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6170 SDNode *N, DAGCombinerInfo &DCI) const {
6171 SelectionDAG &DAG = DCI.DAG;
6173 if (!Subtarget.hasVector())
6174 return SDValue();
6176 // Look through bitcasts that retain the number of vector elements.
6177 SDValue Op = N->getOperand(0);
6178 if (Op.getOpcode() == ISD::BITCAST &&
6179 Op.getValueType().isVector() &&
6180 Op.getOperand(0).getValueType().isVector() &&
6181 Op.getValueType().getVectorNumElements() ==
6182 Op.getOperand(0).getValueType().getVectorNumElements())
6183 Op = Op.getOperand(0);
6185 // Pull BSWAP out of a vector extraction.
6186 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6187 EVT VecVT = Op.getValueType();
6188 EVT EltVT = VecVT.getVectorElementType();
6189 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6190 Op.getOperand(0), N->getOperand(1));
6191 DCI.AddToWorklist(Op.getNode());
6192 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6193 if (EltVT != N->getValueType(0)) {
6194 DCI.AddToWorklist(Op.getNode());
6195 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6197 return Op;
6200 // Try to simplify a vector extraction.
6201 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6202 SDValue Op0 = N->getOperand(0);
6203 EVT VecVT = Op0.getValueType();
6204 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6205 IndexN->getZExtValue(), DCI, false);
6207 return SDValue();
6210 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6211 SDNode *N, DAGCombinerInfo &DCI) const {
6212 SelectionDAG &DAG = DCI.DAG;
6213 // (join_dwords X, X) == (replicate X)
6214 if (N->getOperand(0) == N->getOperand(1))
6215 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6216 N->getOperand(0));
6217 return SDValue();
6220 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6221 SDValue Chain1 = N1->getOperand(0);
6222 SDValue Chain2 = N2->getOperand(0);
6224 // Trivial case: both nodes take the same chain.
6225 if (Chain1 == Chain2)
6226 return Chain1;
6228 // FIXME - we could handle more complex cases via TokenFactor,
6229 // assuming we can verify that this would not create a cycle.
6230 return SDValue();
6233 SDValue SystemZTargetLowering::combineFP_ROUND(
6234 SDNode *N, DAGCombinerInfo &DCI) const {
6236 if (!Subtarget.hasVector())
6237 return SDValue();
6239 // (fpround (extract_vector_elt X 0))
6240 // (fpround (extract_vector_elt X 1)) ->
6241 // (extract_vector_elt (VROUND X) 0)
6242 // (extract_vector_elt (VROUND X) 2)
6244 // This is a special case since the target doesn't really support v2f32s.
6245 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6246 SelectionDAG &DAG = DCI.DAG;
6247 SDValue Op0 = N->getOperand(OpNo);
6248 if (N->getValueType(0) == MVT::f32 &&
6249 Op0.hasOneUse() &&
6250 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6251 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6252 Op0.getOperand(1).getOpcode() == ISD::Constant &&
6253 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6254 SDValue Vec = Op0.getOperand(0);
6255 for (auto *U : Vec->uses()) {
6256 if (U != Op0.getNode() &&
6257 U->hasOneUse() &&
6258 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6259 U->getOperand(0) == Vec &&
6260 U->getOperand(1).getOpcode() == ISD::Constant &&
6261 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6262 SDValue OtherRound = SDValue(*U->use_begin(), 0);
6263 if (OtherRound.getOpcode() == N->getOpcode() &&
6264 OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6265 OtherRound.getValueType() == MVT::f32) {
6266 SDValue VRound, Chain;
6267 if (N->isStrictFPOpcode()) {
6268 Chain = MergeInputChains(N, OtherRound.getNode());
6269 if (!Chain)
6270 continue;
6271 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6272 {MVT::v4f32, MVT::Other}, {Chain, Vec});
6273 Chain = VRound.getValue(1);
6274 } else
6275 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6276 MVT::v4f32, Vec);
6277 DCI.AddToWorklist(VRound.getNode());
6278 SDValue Extract1 =
6279 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6280 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6281 DCI.AddToWorklist(Extract1.getNode());
6282 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6283 if (Chain)
6284 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6285 SDValue Extract0 =
6286 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6287 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6288 if (Chain)
6289 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6290 N->getVTList(), Extract0, Chain);
6291 return Extract0;
6296 return SDValue();
6299 SDValue SystemZTargetLowering::combineFP_EXTEND(
6300 SDNode *N, DAGCombinerInfo &DCI) const {
6302 if (!Subtarget.hasVector())
6303 return SDValue();
6305 // (fpextend (extract_vector_elt X 0))
6306 // (fpextend (extract_vector_elt X 2)) ->
6307 // (extract_vector_elt (VEXTEND X) 0)
6308 // (extract_vector_elt (VEXTEND X) 1)
6310 // This is a special case since the target doesn't really support v2f32s.
6311 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6312 SelectionDAG &DAG = DCI.DAG;
6313 SDValue Op0 = N->getOperand(OpNo);
6314 if (N->getValueType(0) == MVT::f64 &&
6315 Op0.hasOneUse() &&
6316 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6317 Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6318 Op0.getOperand(1).getOpcode() == ISD::Constant &&
6319 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6320 SDValue Vec = Op0.getOperand(0);
6321 for (auto *U : Vec->uses()) {
6322 if (U != Op0.getNode() &&
6323 U->hasOneUse() &&
6324 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6325 U->getOperand(0) == Vec &&
6326 U->getOperand(1).getOpcode() == ISD::Constant &&
6327 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6328 SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6329 if (OtherExtend.getOpcode() == N->getOpcode() &&
6330 OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6331 OtherExtend.getValueType() == MVT::f64) {
6332 SDValue VExtend, Chain;
6333 if (N->isStrictFPOpcode()) {
6334 Chain = MergeInputChains(N, OtherExtend.getNode());
6335 if (!Chain)
6336 continue;
6337 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6338 {MVT::v2f64, MVT::Other}, {Chain, Vec});
6339 Chain = VExtend.getValue(1);
6340 } else
6341 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6342 MVT::v2f64, Vec);
6343 DCI.AddToWorklist(VExtend.getNode());
6344 SDValue Extract1 =
6345 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6346 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6347 DCI.AddToWorklist(Extract1.getNode());
6348 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6349 if (Chain)
6350 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6351 SDValue Extract0 =
6352 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6353 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6354 if (Chain)
6355 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6356 N->getVTList(), Extract0, Chain);
6357 return Extract0;
6362 return SDValue();
6365 SDValue SystemZTargetLowering::combineINT_TO_FP(
6366 SDNode *N, DAGCombinerInfo &DCI) const {
6367 if (DCI.Level != BeforeLegalizeTypes)
6368 return SDValue();
6369 unsigned Opcode = N->getOpcode();
6370 EVT OutVT = N->getValueType(0);
6371 SelectionDAG &DAG = DCI.DAG;
6372 SDValue Op = N->getOperand(0);
6373 unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6374 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6376 // Insert an extension before type-legalization to avoid scalarization, e.g.:
6377 // v2f64 = uint_to_fp v2i16
6378 // =>
6379 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6380 if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6381 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6382 OutVT.getVectorNumElements());
6383 unsigned ExtOpcode =
6384 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6385 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6386 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6388 return SDValue();
6391 SDValue SystemZTargetLowering::combineBSWAP(
6392 SDNode *N, DAGCombinerInfo &DCI) const {
6393 SelectionDAG &DAG = DCI.DAG;
6394 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6395 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6396 N->getOperand(0).hasOneUse() &&
6397 canLoadStoreByteSwapped(N->getValueType(0))) {
6398 SDValue Load = N->getOperand(0);
6399 LoadSDNode *LD = cast<LoadSDNode>(Load);
6401 // Create the byte-swapping load.
6402 SDValue Ops[] = {
6403 LD->getChain(), // Chain
6404 LD->getBasePtr() // Ptr
6406 EVT LoadVT = N->getValueType(0);
6407 if (LoadVT == MVT::i16)
6408 LoadVT = MVT::i32;
6409 SDValue BSLoad =
6410 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6411 DAG.getVTList(LoadVT, MVT::Other),
6412 Ops, LD->getMemoryVT(), LD->getMemOperand());
6414 // If this is an i16 load, insert the truncate.
6415 SDValue ResVal = BSLoad;
6416 if (N->getValueType(0) == MVT::i16)
6417 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6419 // First, combine the bswap away. This makes the value produced by the
6420 // load dead.
6421 DCI.CombineTo(N, ResVal);
6423 // Next, combine the load away, we give it a bogus result value but a real
6424 // chain result. The result value is dead because the bswap is dead.
6425 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6427 // Return N so it doesn't get rechecked!
6428 return SDValue(N, 0);
6431 // Look through bitcasts that retain the number of vector elements.
6432 SDValue Op = N->getOperand(0);
6433 if (Op.getOpcode() == ISD::BITCAST &&
6434 Op.getValueType().isVector() &&
6435 Op.getOperand(0).getValueType().isVector() &&
6436 Op.getValueType().getVectorNumElements() ==
6437 Op.getOperand(0).getValueType().getVectorNumElements())
6438 Op = Op.getOperand(0);
6440 // Push BSWAP into a vector insertion if at least one side then simplifies.
6441 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6442 SDValue Vec = Op.getOperand(0);
6443 SDValue Elt = Op.getOperand(1);
6444 SDValue Idx = Op.getOperand(2);
6446 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6447 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6448 DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6449 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6450 (canLoadStoreByteSwapped(N->getValueType(0)) &&
6451 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6452 EVT VecVT = N->getValueType(0);
6453 EVT EltVT = N->getValueType(0).getVectorElementType();
6454 if (VecVT != Vec.getValueType()) {
6455 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6456 DCI.AddToWorklist(Vec.getNode());
6458 if (EltVT != Elt.getValueType()) {
6459 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6460 DCI.AddToWorklist(Elt.getNode());
6462 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6463 DCI.AddToWorklist(Vec.getNode());
6464 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6465 DCI.AddToWorklist(Elt.getNode());
6466 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6467 Vec, Elt, Idx);
6471 // Push BSWAP into a vector shuffle if at least one side then simplifies.
6472 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6473 if (SV && Op.hasOneUse()) {
6474 SDValue Op0 = Op.getOperand(0);
6475 SDValue Op1 = Op.getOperand(1);
6477 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6478 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6479 DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6480 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6481 EVT VecVT = N->getValueType(0);
6482 if (VecVT != Op0.getValueType()) {
6483 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6484 DCI.AddToWorklist(Op0.getNode());
6486 if (VecVT != Op1.getValueType()) {
6487 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6488 DCI.AddToWorklist(Op1.getNode());
6490 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6491 DCI.AddToWorklist(Op0.getNode());
6492 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6493 DCI.AddToWorklist(Op1.getNode());
6494 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6498 return SDValue();
6501 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6502 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6503 // set by the CCReg instruction using the CCValid / CCMask masks,
6504 // If the CCReg instruction is itself a ICMP testing the condition
6505 // code set by some other instruction, see whether we can directly
6506 // use that condition code.
6508 // Verify that we have an ICMP against some constant.
6509 if (CCValid != SystemZ::CCMASK_ICMP)
6510 return false;
6511 auto *ICmp = CCReg.getNode();
6512 if (ICmp->getOpcode() != SystemZISD::ICMP)
6513 return false;
6514 auto *CompareLHS = ICmp->getOperand(0).getNode();
6515 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6516 if (!CompareRHS)
6517 return false;
6519 // Optimize the case where CompareLHS is a SELECT_CCMASK.
6520 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6521 // Verify that we have an appropriate mask for a EQ or NE comparison.
6522 bool Invert = false;
6523 if (CCMask == SystemZ::CCMASK_CMP_NE)
6524 Invert = !Invert;
6525 else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6526 return false;
6528 // Verify that the ICMP compares against one of select values.
6529 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6530 if (!TrueVal)
6531 return false;
6532 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6533 if (!FalseVal)
6534 return false;
6535 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6536 Invert = !Invert;
6537 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6538 return false;
6540 // Compute the effective CC mask for the new branch or select.
6541 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6542 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6543 if (!NewCCValid || !NewCCMask)
6544 return false;
6545 CCValid = NewCCValid->getZExtValue();
6546 CCMask = NewCCMask->getZExtValue();
6547 if (Invert)
6548 CCMask ^= CCValid;
6550 // Return the updated CCReg link.
6551 CCReg = CompareLHS->getOperand(4);
6552 return true;
6555 // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6556 if (CompareLHS->getOpcode() == ISD::SRA) {
6557 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6558 if (!SRACount || SRACount->getZExtValue() != 30)
6559 return false;
6560 auto *SHL = CompareLHS->getOperand(0).getNode();
6561 if (SHL->getOpcode() != ISD::SHL)
6562 return false;
6563 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6564 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6565 return false;
6566 auto *IPM = SHL->getOperand(0).getNode();
6567 if (IPM->getOpcode() != SystemZISD::IPM)
6568 return false;
6570 // Avoid introducing CC spills (because SRA would clobber CC).
6571 if (!CompareLHS->hasOneUse())
6572 return false;
6573 // Verify that the ICMP compares against zero.
6574 if (CompareRHS->getZExtValue() != 0)
6575 return false;
6577 // Compute the effective CC mask for the new branch or select.
6578 CCMask = SystemZ::reverseCCMask(CCMask);
6580 // Return the updated CCReg link.
6581 CCReg = IPM->getOperand(0);
6582 return true;
6585 return false;
6588 SDValue SystemZTargetLowering::combineBR_CCMASK(
6589 SDNode *N, DAGCombinerInfo &DCI) const {
6590 SelectionDAG &DAG = DCI.DAG;
6592 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6593 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6594 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6595 if (!CCValid || !CCMask)
6596 return SDValue();
6598 int CCValidVal = CCValid->getZExtValue();
6599 int CCMaskVal = CCMask->getZExtValue();
6600 SDValue Chain = N->getOperand(0);
6601 SDValue CCReg = N->getOperand(4);
6603 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6604 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6605 Chain,
6606 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6607 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6608 N->getOperand(3), CCReg);
6609 return SDValue();
6612 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6613 SDNode *N, DAGCombinerInfo &DCI) const {
6614 SelectionDAG &DAG = DCI.DAG;
6616 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6617 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6618 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6619 if (!CCValid || !CCMask)
6620 return SDValue();
6622 int CCValidVal = CCValid->getZExtValue();
6623 int CCMaskVal = CCMask->getZExtValue();
6624 SDValue CCReg = N->getOperand(4);
6626 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6627 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6628 N->getOperand(0), N->getOperand(1),
6629 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6630 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6631 CCReg);
6632 return SDValue();
6636 SDValue SystemZTargetLowering::combineGET_CCMASK(
6637 SDNode *N, DAGCombinerInfo &DCI) const {
6639 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6640 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6641 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6642 if (!CCValid || !CCMask)
6643 return SDValue();
6644 int CCValidVal = CCValid->getZExtValue();
6645 int CCMaskVal = CCMask->getZExtValue();
6647 SDValue Select = N->getOperand(0);
6648 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6649 return SDValue();
6651 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6652 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6653 if (!SelectCCValid || !SelectCCMask)
6654 return SDValue();
6655 int SelectCCValidVal = SelectCCValid->getZExtValue();
6656 int SelectCCMaskVal = SelectCCMask->getZExtValue();
6658 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6659 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6660 if (!TrueVal || !FalseVal)
6661 return SDValue();
6662 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6664 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6665 SelectCCMaskVal ^= SelectCCValidVal;
6666 else
6667 return SDValue();
6669 if (SelectCCValidVal & ~CCValidVal)
6670 return SDValue();
6671 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6672 return SDValue();
6674 return Select->getOperand(4);
6677 SDValue SystemZTargetLowering::combineIntDIVREM(
6678 SDNode *N, DAGCombinerInfo &DCI) const {
6679 SelectionDAG &DAG = DCI.DAG;
6680 EVT VT = N->getValueType(0);
6681 // In the case where the divisor is a vector of constants a cheaper
6682 // sequence of instructions can replace the divide. BuildSDIV is called to
6683 // do this during DAG combining, but it only succeeds when it can build a
6684 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6685 // since it is not Legal but Custom it can only happen before
6686 // legalization. Therefore we must scalarize this early before Combine
6687 // 1. For widened vectors, this is already the result of type legalization.
6688 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6689 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6690 return DAG.UnrollVectorOp(N);
6691 return SDValue();
6694 SDValue SystemZTargetLowering::combineINTRINSIC(
6695 SDNode *N, DAGCombinerInfo &DCI) const {
6696 SelectionDAG &DAG = DCI.DAG;
6698 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6699 switch (Id) {
6700 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6701 // or larger is simply a vector load.
6702 case Intrinsic::s390_vll:
6703 case Intrinsic::s390_vlrl:
6704 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6705 if (C->getZExtValue() >= 15)
6706 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6707 N->getOperand(3), MachinePointerInfo());
6708 break;
6709 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6710 case Intrinsic::s390_vstl:
6711 case Intrinsic::s390_vstrl:
6712 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6713 if (C->getZExtValue() >= 15)
6714 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6715 N->getOperand(4), MachinePointerInfo());
6716 break;
6719 return SDValue();
6722 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6723 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6724 return N->getOperand(0);
6725 return N;
6728 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6729 DAGCombinerInfo &DCI) const {
6730 switch(N->getOpcode()) {
6731 default: break;
6732 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
6733 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
6734 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
6735 case SystemZISD::MERGE_HIGH:
6736 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
6737 case ISD::LOAD: return combineLOAD(N, DCI);
6738 case ISD::STORE: return combineSTORE(N, DCI);
6739 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI);
6740 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6741 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6742 case ISD::STRICT_FP_ROUND:
6743 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
6744 case ISD::STRICT_FP_EXTEND:
6745 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI);
6746 case ISD::SINT_TO_FP:
6747 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI);
6748 case ISD::BSWAP: return combineBSWAP(N, DCI);
6749 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
6750 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6751 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
6752 case ISD::SDIV:
6753 case ISD::UDIV:
6754 case ISD::SREM:
6755 case ISD::UREM: return combineIntDIVREM(N, DCI);
6756 case ISD::INTRINSIC_W_CHAIN:
6757 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI);
6760 return SDValue();
6763 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6764 // are for Op.
6765 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6766 unsigned OpNo) {
6767 EVT VT = Op.getValueType();
6768 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6769 APInt SrcDemE;
6770 unsigned Opcode = Op.getOpcode();
6771 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6772 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6773 switch (Id) {
6774 case Intrinsic::s390_vpksh: // PACKS
6775 case Intrinsic::s390_vpksf:
6776 case Intrinsic::s390_vpksg:
6777 case Intrinsic::s390_vpkshs: // PACKS_CC
6778 case Intrinsic::s390_vpksfs:
6779 case Intrinsic::s390_vpksgs:
6780 case Intrinsic::s390_vpklsh: // PACKLS
6781 case Intrinsic::s390_vpklsf:
6782 case Intrinsic::s390_vpklsg:
6783 case Intrinsic::s390_vpklshs: // PACKLS_CC
6784 case Intrinsic::s390_vpklsfs:
6785 case Intrinsic::s390_vpklsgs:
6786 // VECTOR PACK truncates the elements of two source vectors into one.
6787 SrcDemE = DemandedElts;
6788 if (OpNo == 2)
6789 SrcDemE.lshrInPlace(NumElts / 2);
6790 SrcDemE = SrcDemE.trunc(NumElts / 2);
6791 break;
6792 // VECTOR UNPACK extends half the elements of the source vector.
6793 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6794 case Intrinsic::s390_vuphh:
6795 case Intrinsic::s390_vuphf:
6796 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6797 case Intrinsic::s390_vuplhh:
6798 case Intrinsic::s390_vuplhf:
6799 SrcDemE = APInt(NumElts * 2, 0);
6800 SrcDemE.insertBits(DemandedElts, 0);
6801 break;
6802 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6803 case Intrinsic::s390_vuplhw:
6804 case Intrinsic::s390_vuplf:
6805 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6806 case Intrinsic::s390_vupllh:
6807 case Intrinsic::s390_vupllf:
6808 SrcDemE = APInt(NumElts * 2, 0);
6809 SrcDemE.insertBits(DemandedElts, NumElts);
6810 break;
6811 case Intrinsic::s390_vpdi: {
6812 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6813 SrcDemE = APInt(NumElts, 0);
6814 if (!DemandedElts[OpNo - 1])
6815 break;
6816 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6817 unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6818 // Demand input element 0 or 1, given by the mask bit value.
6819 SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6820 break;
6822 case Intrinsic::s390_vsldb: {
6823 // VECTOR SHIFT LEFT DOUBLE BY BYTE
6824 assert(VT == MVT::v16i8 && "Unexpected type.");
6825 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6826 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6827 unsigned NumSrc0Els = 16 - FirstIdx;
6828 SrcDemE = APInt(NumElts, 0);
6829 if (OpNo == 1) {
6830 APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6831 SrcDemE.insertBits(DemEls, FirstIdx);
6832 } else {
6833 APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6834 SrcDemE.insertBits(DemEls, 0);
6836 break;
6838 case Intrinsic::s390_vperm:
6839 SrcDemE = APInt(NumElts, 1);
6840 break;
6841 default:
6842 llvm_unreachable("Unhandled intrinsic.");
6843 break;
6845 } else {
6846 switch (Opcode) {
6847 case SystemZISD::JOIN_DWORDS:
6848 // Scalar operand.
6849 SrcDemE = APInt(1, 1);
6850 break;
6851 case SystemZISD::SELECT_CCMASK:
6852 SrcDemE = DemandedElts;
6853 break;
6854 default:
6855 llvm_unreachable("Unhandled opcode.");
6856 break;
6859 return SrcDemE;
6862 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6863 const APInt &DemandedElts,
6864 const SelectionDAG &DAG, unsigned Depth,
6865 unsigned OpNo) {
6866 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6867 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6868 KnownBits LHSKnown =
6869 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6870 KnownBits RHSKnown =
6871 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6872 Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6875 void
6876 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6877 KnownBits &Known,
6878 const APInt &DemandedElts,
6879 const SelectionDAG &DAG,
6880 unsigned Depth) const {
6881 Known.resetAll();
6883 // Intrinsic CC result is returned in the two low bits.
6884 unsigned tmp0, tmp1; // not used
6885 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6886 Known.Zero.setBitsFrom(2);
6887 return;
6889 EVT VT = Op.getValueType();
6890 if (Op.getResNo() != 0 || VT == MVT::Untyped)
6891 return;
6892 assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6893 "KnownBits does not match VT in bitwidth");
6894 assert ((!VT.isVector() ||
6895 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6896 "DemandedElts does not match VT number of elements");
6897 unsigned BitWidth = Known.getBitWidth();
6898 unsigned Opcode = Op.getOpcode();
6899 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6900 bool IsLogical = false;
6901 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6902 switch (Id) {
6903 case Intrinsic::s390_vpksh: // PACKS
6904 case Intrinsic::s390_vpksf:
6905 case Intrinsic::s390_vpksg:
6906 case Intrinsic::s390_vpkshs: // PACKS_CC
6907 case Intrinsic::s390_vpksfs:
6908 case Intrinsic::s390_vpksgs:
6909 case Intrinsic::s390_vpklsh: // PACKLS
6910 case Intrinsic::s390_vpklsf:
6911 case Intrinsic::s390_vpklsg:
6912 case Intrinsic::s390_vpklshs: // PACKLS_CC
6913 case Intrinsic::s390_vpklsfs:
6914 case Intrinsic::s390_vpklsgs:
6915 case Intrinsic::s390_vpdi:
6916 case Intrinsic::s390_vsldb:
6917 case Intrinsic::s390_vperm:
6918 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6919 break;
6920 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6921 case Intrinsic::s390_vuplhh:
6922 case Intrinsic::s390_vuplhf:
6923 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6924 case Intrinsic::s390_vupllh:
6925 case Intrinsic::s390_vupllf:
6926 IsLogical = true;
6927 LLVM_FALLTHROUGH;
6928 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6929 case Intrinsic::s390_vuphh:
6930 case Intrinsic::s390_vuphf:
6931 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6932 case Intrinsic::s390_vuplhw:
6933 case Intrinsic::s390_vuplf: {
6934 SDValue SrcOp = Op.getOperand(1);
6935 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6936 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6937 if (IsLogical) {
6938 Known = Known.zext(BitWidth);
6939 } else
6940 Known = Known.sext(BitWidth);
6941 break;
6943 default:
6944 break;
6946 } else {
6947 switch (Opcode) {
6948 case SystemZISD::JOIN_DWORDS:
6949 case SystemZISD::SELECT_CCMASK:
6950 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6951 break;
6952 case SystemZISD::REPLICATE: {
6953 SDValue SrcOp = Op.getOperand(0);
6954 Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6955 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6956 Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6957 break;
6959 default:
6960 break;
6964 // Known has the width of the source operand(s). Adjust if needed to match
6965 // the passed bitwidth.
6966 if (Known.getBitWidth() != BitWidth)
6967 Known = Known.anyextOrTrunc(BitWidth);
6970 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6971 const SelectionDAG &DAG, unsigned Depth,
6972 unsigned OpNo) {
6973 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6974 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6975 if (LHS == 1) return 1; // Early out.
6976 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6977 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6978 if (RHS == 1) return 1; // Early out.
6979 unsigned Common = std::min(LHS, RHS);
6980 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6981 EVT VT = Op.getValueType();
6982 unsigned VTBits = VT.getScalarSizeInBits();
6983 if (SrcBitWidth > VTBits) { // PACK
6984 unsigned SrcExtraBits = SrcBitWidth - VTBits;
6985 if (Common > SrcExtraBits)
6986 return (Common - SrcExtraBits);
6987 return 1;
6989 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6990 return Common;
6993 unsigned
6994 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6995 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6996 unsigned Depth) const {
6997 if (Op.getResNo() != 0)
6998 return 1;
6999 unsigned Opcode = Op.getOpcode();
7000 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7001 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7002 switch (Id) {
7003 case Intrinsic::s390_vpksh: // PACKS
7004 case Intrinsic::s390_vpksf:
7005 case Intrinsic::s390_vpksg:
7006 case Intrinsic::s390_vpkshs: // PACKS_CC
7007 case Intrinsic::s390_vpksfs:
7008 case Intrinsic::s390_vpksgs:
7009 case Intrinsic::s390_vpklsh: // PACKLS
7010 case Intrinsic::s390_vpklsf:
7011 case Intrinsic::s390_vpklsg:
7012 case Intrinsic::s390_vpklshs: // PACKLS_CC
7013 case Intrinsic::s390_vpklsfs:
7014 case Intrinsic::s390_vpklsgs:
7015 case Intrinsic::s390_vpdi:
7016 case Intrinsic::s390_vsldb:
7017 case Intrinsic::s390_vperm:
7018 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7019 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
7020 case Intrinsic::s390_vuphh:
7021 case Intrinsic::s390_vuphf:
7022 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
7023 case Intrinsic::s390_vuplhw:
7024 case Intrinsic::s390_vuplf: {
7025 SDValue PackedOp = Op.getOperand(1);
7026 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7027 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7028 EVT VT = Op.getValueType();
7029 unsigned VTBits = VT.getScalarSizeInBits();
7030 Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7031 return Tmp;
7033 default:
7034 break;
7036 } else {
7037 switch (Opcode) {
7038 case SystemZISD::SELECT_CCMASK:
7039 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7040 default:
7041 break;
7045 return 1;
7048 unsigned
7049 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7050 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7051 unsigned StackAlign = TFI->getStackAlignment();
7052 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7053 "Unexpected stack alignment");
7054 // The default stack probe size is 4096 if the function has no
7055 // stack-probe-size attribute.
7056 unsigned StackProbeSize = 4096;
7057 const Function &Fn = MF.getFunction();
7058 if (Fn.hasFnAttribute("stack-probe-size"))
7059 Fn.getFnAttribute("stack-probe-size")
7060 .getValueAsString()
7061 .getAsInteger(0, StackProbeSize);
7062 // Round down to the stack alignment.
7063 StackProbeSize &= ~(StackAlign - 1);
7064 return StackProbeSize ? StackProbeSize : StackAlign;
7067 //===----------------------------------------------------------------------===//
7068 // Custom insertion
7069 //===----------------------------------------------------------------------===//
7071 // Force base value Base into a register before MI. Return the register.
7072 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7073 const SystemZInstrInfo *TII) {
7074 if (Base.isReg())
7075 return Base.getReg();
7077 MachineBasicBlock *MBB = MI.getParent();
7078 MachineFunction &MF = *MBB->getParent();
7079 MachineRegisterInfo &MRI = MF.getRegInfo();
7081 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7082 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7083 .add(Base)
7084 .addImm(0)
7085 .addReg(0);
7086 return Reg;
7089 // The CC operand of MI might be missing a kill marker because there
7090 // were multiple uses of CC, and ISel didn't know which to mark.
7091 // Figure out whether MI should have had a kill marker.
7092 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7093 // Scan forward through BB for a use/def of CC.
7094 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7095 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7096 const MachineInstr& mi = *miI;
7097 if (mi.readsRegister(SystemZ::CC))
7098 return false;
7099 if (mi.definesRegister(SystemZ::CC))
7100 break; // Should have kill-flag - update below.
7103 // If we hit the end of the block, check whether CC is live into a
7104 // successor.
7105 if (miI == MBB->end()) {
7106 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7107 if ((*SI)->isLiveIn(SystemZ::CC))
7108 return false;
7111 return true;
7114 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7115 // together with other Select pseudo-opcodes into a single basic-block with
7116 // a conditional jump around it.
7117 static bool isSelectPseudo(MachineInstr &MI) {
7118 switch (MI.getOpcode()) {
7119 case SystemZ::Select32:
7120 case SystemZ::Select64:
7121 case SystemZ::SelectF32:
7122 case SystemZ::SelectF64:
7123 case SystemZ::SelectF128:
7124 case SystemZ::SelectVR32:
7125 case SystemZ::SelectVR64:
7126 case SystemZ::SelectVR128:
7127 return true;
7129 default:
7130 return false;
7134 // Helper function, which inserts PHI functions into SinkMBB:
7135 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7136 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7137 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7138 MachineBasicBlock *TrueMBB,
7139 MachineBasicBlock *FalseMBB,
7140 MachineBasicBlock *SinkMBB) {
7141 MachineFunction *MF = TrueMBB->getParent();
7142 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7144 MachineInstr *FirstMI = Selects.front();
7145 unsigned CCValid = FirstMI->getOperand(3).getImm();
7146 unsigned CCMask = FirstMI->getOperand(4).getImm();
7148 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7150 // As we are creating the PHIs, we have to be careful if there is more than
7151 // one. Later Selects may reference the results of earlier Selects, but later
7152 // PHIs have to reference the individual true/false inputs from earlier PHIs.
7153 // That also means that PHI construction must work forward from earlier to
7154 // later, and that the code must maintain a mapping from earlier PHI's
7155 // destination registers, and the registers that went into the PHI.
7156 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7158 for (auto MI : Selects) {
7159 Register DestReg = MI->getOperand(0).getReg();
7160 Register TrueReg = MI->getOperand(1).getReg();
7161 Register FalseReg = MI->getOperand(2).getReg();
7163 // If this Select we are generating is the opposite condition from
7164 // the jump we generated, then we have to swap the operands for the
7165 // PHI that is going to be generated.
7166 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7167 std::swap(TrueReg, FalseReg);
7169 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7170 TrueReg = RegRewriteTable[TrueReg].first;
7172 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7173 FalseReg = RegRewriteTable[FalseReg].second;
7175 DebugLoc DL = MI->getDebugLoc();
7176 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7177 .addReg(TrueReg).addMBB(TrueMBB)
7178 .addReg(FalseReg).addMBB(FalseMBB);
7180 // Add this PHI to the rewrite table.
7181 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7184 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7187 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7188 MachineBasicBlock *
7189 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7190 MachineBasicBlock *MBB) const {
7191 assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7192 const SystemZInstrInfo *TII =
7193 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7195 unsigned CCValid = MI.getOperand(3).getImm();
7196 unsigned CCMask = MI.getOperand(4).getImm();
7198 // If we have a sequence of Select* pseudo instructions using the
7199 // same condition code value, we want to expand all of them into
7200 // a single pair of basic blocks using the same condition.
7201 SmallVector<MachineInstr*, 8> Selects;
7202 SmallVector<MachineInstr*, 8> DbgValues;
7203 Selects.push_back(&MI);
7204 unsigned Count = 0;
7205 for (MachineBasicBlock::iterator NextMIIt =
7206 std::next(MachineBasicBlock::iterator(MI));
7207 NextMIIt != MBB->end(); ++NextMIIt) {
7208 if (isSelectPseudo(*NextMIIt)) {
7209 assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7210 "Bad CCValid operands since CC was not redefined.");
7211 if (NextMIIt->getOperand(4).getImm() == CCMask ||
7212 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7213 Selects.push_back(&*NextMIIt);
7214 continue;
7216 break;
7218 if (NextMIIt->definesRegister(SystemZ::CC) ||
7219 NextMIIt->usesCustomInsertionHook())
7220 break;
7221 bool User = false;
7222 for (auto SelMI : Selects)
7223 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7224 User = true;
7225 break;
7227 if (NextMIIt->isDebugInstr()) {
7228 if (User) {
7229 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7230 DbgValues.push_back(&*NextMIIt);
7233 else if (User || ++Count > 20)
7234 break;
7237 MachineInstr *LastMI = Selects.back();
7238 bool CCKilled =
7239 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7240 MachineBasicBlock *StartMBB = MBB;
7241 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB);
7242 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7244 // Unless CC was killed in the last Select instruction, mark it as
7245 // live-in to both FalseMBB and JoinMBB.
7246 if (!CCKilled) {
7247 FalseMBB->addLiveIn(SystemZ::CC);
7248 JoinMBB->addLiveIn(SystemZ::CC);
7251 // StartMBB:
7252 // BRC CCMask, JoinMBB
7253 // # fallthrough to FalseMBB
7254 MBB = StartMBB;
7255 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7256 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7257 MBB->addSuccessor(JoinMBB);
7258 MBB->addSuccessor(FalseMBB);
7260 // FalseMBB:
7261 // # fallthrough to JoinMBB
7262 MBB = FalseMBB;
7263 MBB->addSuccessor(JoinMBB);
7265 // JoinMBB:
7266 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7267 // ...
7268 MBB = JoinMBB;
7269 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7270 for (auto SelMI : Selects)
7271 SelMI->eraseFromParent();
7273 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7274 for (auto DbgMI : DbgValues)
7275 MBB->splice(InsertPos, StartMBB, DbgMI);
7277 return JoinMBB;
7280 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7281 // StoreOpcode is the store to use and Invert says whether the store should
7282 // happen when the condition is false rather than true. If a STORE ON
7283 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7284 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7285 MachineBasicBlock *MBB,
7286 unsigned StoreOpcode,
7287 unsigned STOCOpcode,
7288 bool Invert) const {
7289 const SystemZInstrInfo *TII =
7290 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7292 Register SrcReg = MI.getOperand(0).getReg();
7293 MachineOperand Base = MI.getOperand(1);
7294 int64_t Disp = MI.getOperand(2).getImm();
7295 Register IndexReg = MI.getOperand(3).getReg();
7296 unsigned CCValid = MI.getOperand(4).getImm();
7297 unsigned CCMask = MI.getOperand(5).getImm();
7298 DebugLoc DL = MI.getDebugLoc();
7300 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7302 // ISel pattern matching also adds a load memory operand of the same
7303 // address, so take special care to find the storing memory operand.
7304 MachineMemOperand *MMO = nullptr;
7305 for (auto *I : MI.memoperands())
7306 if (I->isStore()) {
7307 MMO = I;
7308 break;
7311 // Use STOCOpcode if possible. We could use different store patterns in
7312 // order to avoid matching the index register, but the performance trade-offs
7313 // might be more complicated in that case.
7314 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7315 if (Invert)
7316 CCMask ^= CCValid;
7318 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7319 .addReg(SrcReg)
7320 .add(Base)
7321 .addImm(Disp)
7322 .addImm(CCValid)
7323 .addImm(CCMask)
7324 .addMemOperand(MMO);
7326 MI.eraseFromParent();
7327 return MBB;
7330 // Get the condition needed to branch around the store.
7331 if (!Invert)
7332 CCMask ^= CCValid;
7334 MachineBasicBlock *StartMBB = MBB;
7335 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB);
7336 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7338 // Unless CC was killed in the CondStore instruction, mark it as
7339 // live-in to both FalseMBB and JoinMBB.
7340 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7341 FalseMBB->addLiveIn(SystemZ::CC);
7342 JoinMBB->addLiveIn(SystemZ::CC);
7345 // StartMBB:
7346 // BRC CCMask, JoinMBB
7347 // # fallthrough to FalseMBB
7348 MBB = StartMBB;
7349 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7350 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7351 MBB->addSuccessor(JoinMBB);
7352 MBB->addSuccessor(FalseMBB);
7354 // FalseMBB:
7355 // store %SrcReg, %Disp(%Index,%Base)
7356 // # fallthrough to JoinMBB
7357 MBB = FalseMBB;
7358 BuildMI(MBB, DL, TII->get(StoreOpcode))
7359 .addReg(SrcReg)
7360 .add(Base)
7361 .addImm(Disp)
7362 .addReg(IndexReg)
7363 .addMemOperand(MMO);
7364 MBB->addSuccessor(JoinMBB);
7366 MI.eraseFromParent();
7367 return JoinMBB;
7370 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7371 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
7372 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7373 // BitSize is the width of the field in bits, or 0 if this is a partword
7374 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7375 // is one of the operands. Invert says whether the field should be
7376 // inverted after performing BinOpcode (e.g. for NAND).
7377 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7378 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7379 unsigned BitSize, bool Invert) const {
7380 MachineFunction &MF = *MBB->getParent();
7381 const SystemZInstrInfo *TII =
7382 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7383 MachineRegisterInfo &MRI = MF.getRegInfo();
7384 bool IsSubWord = (BitSize < 32);
7386 // Extract the operands. Base can be a register or a frame index.
7387 // Src2 can be a register or immediate.
7388 Register Dest = MI.getOperand(0).getReg();
7389 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7390 int64_t Disp = MI.getOperand(2).getImm();
7391 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7392 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7393 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7394 DebugLoc DL = MI.getDebugLoc();
7395 if (IsSubWord)
7396 BitSize = MI.getOperand(6).getImm();
7398 // Subword operations use 32-bit registers.
7399 const TargetRegisterClass *RC = (BitSize <= 32 ?
7400 &SystemZ::GR32BitRegClass :
7401 &SystemZ::GR64BitRegClass);
7402 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
7403 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7405 // Get the right opcodes for the displacement.
7406 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
7407 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7408 assert(LOpcode && CSOpcode && "Displacement out of range");
7410 // Create virtual registers for temporary results.
7411 Register OrigVal = MRI.createVirtualRegister(RC);
7412 Register OldVal = MRI.createVirtualRegister(RC);
7413 Register NewVal = (BinOpcode || IsSubWord ?
7414 MRI.createVirtualRegister(RC) : Src2.getReg());
7415 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7416 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7418 // Insert a basic block for the main loop.
7419 MachineBasicBlock *StartMBB = MBB;
7420 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7421 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7423 // StartMBB:
7424 // ...
7425 // %OrigVal = L Disp(%Base)
7426 // # fall through to LoopMBB
7427 MBB = StartMBB;
7428 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7429 MBB->addSuccessor(LoopMBB);
7431 // LoopMBB:
7432 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7433 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7434 // %RotatedNewVal = OP %RotatedOldVal, %Src2
7435 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
7436 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
7437 // JNE LoopMBB
7438 // # fall through to DoneMBB
7439 MBB = LoopMBB;
7440 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7441 .addReg(OrigVal).addMBB(StartMBB)
7442 .addReg(Dest).addMBB(LoopMBB);
7443 if (IsSubWord)
7444 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7445 .addReg(OldVal).addReg(BitShift).addImm(0);
7446 if (Invert) {
7447 // Perform the operation normally and then invert every bit of the field.
7448 Register Tmp = MRI.createVirtualRegister(RC);
7449 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7450 if (BitSize <= 32)
7451 // XILF with the upper BitSize bits set.
7452 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7453 .addReg(Tmp).addImm(-1U << (32 - BitSize));
7454 else {
7455 // Use LCGR and add -1 to the result, which is more compact than
7456 // an XILF, XILH pair.
7457 Register Tmp2 = MRI.createVirtualRegister(RC);
7458 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7459 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7460 .addReg(Tmp2).addImm(-1);
7462 } else if (BinOpcode)
7463 // A simply binary operation.
7464 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7465 .addReg(RotatedOldVal)
7466 .add(Src2);
7467 else if (IsSubWord)
7468 // Use RISBG to rotate Src2 into position and use it to replace the
7469 // field in RotatedOldVal.
7470 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7471 .addReg(RotatedOldVal).addReg(Src2.getReg())
7472 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7473 if (IsSubWord)
7474 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7475 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7476 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7477 .addReg(OldVal)
7478 .addReg(NewVal)
7479 .add(Base)
7480 .addImm(Disp);
7481 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7482 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7483 MBB->addSuccessor(LoopMBB);
7484 MBB->addSuccessor(DoneMBB);
7486 MI.eraseFromParent();
7487 return DoneMBB;
7490 // Implement EmitInstrWithCustomInserter for pseudo
7491 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
7492 // instruction that should be used to compare the current field with the
7493 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
7494 // for when the current field should be kept. BitSize is the width of
7495 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7496 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7497 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7498 unsigned KeepOldMask, unsigned BitSize) const {
7499 MachineFunction &MF = *MBB->getParent();
7500 const SystemZInstrInfo *TII =
7501 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7502 MachineRegisterInfo &MRI = MF.getRegInfo();
7503 bool IsSubWord = (BitSize < 32);
7505 // Extract the operands. Base can be a register or a frame index.
7506 Register Dest = MI.getOperand(0).getReg();
7507 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7508 int64_t Disp = MI.getOperand(2).getImm();
7509 Register Src2 = MI.getOperand(3).getReg();
7510 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7511 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7512 DebugLoc DL = MI.getDebugLoc();
7513 if (IsSubWord)
7514 BitSize = MI.getOperand(6).getImm();
7516 // Subword operations use 32-bit registers.
7517 const TargetRegisterClass *RC = (BitSize <= 32 ?
7518 &SystemZ::GR32BitRegClass :
7519 &SystemZ::GR64BitRegClass);
7520 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
7521 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7523 // Get the right opcodes for the displacement.
7524 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
7525 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7526 assert(LOpcode && CSOpcode && "Displacement out of range");
7528 // Create virtual registers for temporary results.
7529 Register OrigVal = MRI.createVirtualRegister(RC);
7530 Register OldVal = MRI.createVirtualRegister(RC);
7531 Register NewVal = MRI.createVirtualRegister(RC);
7532 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7533 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7534 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7536 // Insert 3 basic blocks for the loop.
7537 MachineBasicBlock *StartMBB = MBB;
7538 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7539 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7540 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7541 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7543 // StartMBB:
7544 // ...
7545 // %OrigVal = L Disp(%Base)
7546 // # fall through to LoopMBB
7547 MBB = StartMBB;
7548 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7549 MBB->addSuccessor(LoopMBB);
7551 // LoopMBB:
7552 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7553 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7554 // CompareOpcode %RotatedOldVal, %Src2
7555 // BRC KeepOldMask, UpdateMBB
7556 MBB = LoopMBB;
7557 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7558 .addReg(OrigVal).addMBB(StartMBB)
7559 .addReg(Dest).addMBB(UpdateMBB);
7560 if (IsSubWord)
7561 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7562 .addReg(OldVal).addReg(BitShift).addImm(0);
7563 BuildMI(MBB, DL, TII->get(CompareOpcode))
7564 .addReg(RotatedOldVal).addReg(Src2);
7565 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7566 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7567 MBB->addSuccessor(UpdateMBB);
7568 MBB->addSuccessor(UseAltMBB);
7570 // UseAltMBB:
7571 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7572 // # fall through to UpdateMBB
7573 MBB = UseAltMBB;
7574 if (IsSubWord)
7575 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7576 .addReg(RotatedOldVal).addReg(Src2)
7577 .addImm(32).addImm(31 + BitSize).addImm(0);
7578 MBB->addSuccessor(UpdateMBB);
7580 // UpdateMBB:
7581 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7582 // [ %RotatedAltVal, UseAltMBB ]
7583 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
7584 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
7585 // JNE LoopMBB
7586 // # fall through to DoneMBB
7587 MBB = UpdateMBB;
7588 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7589 .addReg(RotatedOldVal).addMBB(LoopMBB)
7590 .addReg(RotatedAltVal).addMBB(UseAltMBB);
7591 if (IsSubWord)
7592 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7593 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7594 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7595 .addReg(OldVal)
7596 .addReg(NewVal)
7597 .add(Base)
7598 .addImm(Disp);
7599 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7600 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7601 MBB->addSuccessor(LoopMBB);
7602 MBB->addSuccessor(DoneMBB);
7604 MI.eraseFromParent();
7605 return DoneMBB;
7608 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7609 // instruction MI.
7610 MachineBasicBlock *
7611 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7612 MachineBasicBlock *MBB) const {
7613 MachineFunction &MF = *MBB->getParent();
7614 const SystemZInstrInfo *TII =
7615 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7616 MachineRegisterInfo &MRI = MF.getRegInfo();
7618 // Extract the operands. Base can be a register or a frame index.
7619 Register Dest = MI.getOperand(0).getReg();
7620 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7621 int64_t Disp = MI.getOperand(2).getImm();
7622 Register CmpVal = MI.getOperand(3).getReg();
7623 Register OrigSwapVal = MI.getOperand(4).getReg();
7624 Register BitShift = MI.getOperand(5).getReg();
7625 Register NegBitShift = MI.getOperand(6).getReg();
7626 int64_t BitSize = MI.getOperand(7).getImm();
7627 DebugLoc DL = MI.getDebugLoc();
7629 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7631 // Get the right opcodes for the displacement and zero-extension.
7632 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
7633 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7634 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7635 assert(LOpcode && CSOpcode && "Displacement out of range");
7637 // Create virtual registers for temporary results.
7638 Register OrigOldVal = MRI.createVirtualRegister(RC);
7639 Register OldVal = MRI.createVirtualRegister(RC);
7640 Register SwapVal = MRI.createVirtualRegister(RC);
7641 Register StoreVal = MRI.createVirtualRegister(RC);
7642 Register OldValRot = MRI.createVirtualRegister(RC);
7643 Register RetryOldVal = MRI.createVirtualRegister(RC);
7644 Register RetrySwapVal = MRI.createVirtualRegister(RC);
7646 // Insert 2 basic blocks for the loop.
7647 MachineBasicBlock *StartMBB = MBB;
7648 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7649 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7650 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB);
7652 // StartMBB:
7653 // ...
7654 // %OrigOldVal = L Disp(%Base)
7655 // # fall through to LoopMBB
7656 MBB = StartMBB;
7657 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7658 .add(Base)
7659 .addImm(Disp)
7660 .addReg(0);
7661 MBB->addSuccessor(LoopMBB);
7663 // LoopMBB:
7664 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7665 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7666 // %OldValRot = RLL %OldVal, BitSize(%BitShift)
7667 // ^^ The low BitSize bits contain the field
7668 // of interest.
7669 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7670 // ^^ Replace the upper 32-BitSize bits of the
7671 // swap value with those that we loaded and rotated.
7672 // %Dest = LL[CH] %OldValRot
7673 // CR %Dest, %CmpVal
7674 // JNE DoneMBB
7675 // # Fall through to SetMBB
7676 MBB = LoopMBB;
7677 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7678 .addReg(OrigOldVal).addMBB(StartMBB)
7679 .addReg(RetryOldVal).addMBB(SetMBB);
7680 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7681 .addReg(OrigSwapVal).addMBB(StartMBB)
7682 .addReg(RetrySwapVal).addMBB(SetMBB);
7683 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7684 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7685 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7686 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7687 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7688 .addReg(OldValRot);
7689 BuildMI(MBB, DL, TII->get(SystemZ::CR))
7690 .addReg(Dest).addReg(CmpVal);
7691 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7692 .addImm(SystemZ::CCMASK_ICMP)
7693 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7694 MBB->addSuccessor(DoneMBB);
7695 MBB->addSuccessor(SetMBB);
7697 // SetMBB:
7698 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7699 // ^^ Rotate the new field to its proper position.
7700 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base)
7701 // JNE LoopMBB
7702 // # fall through to ExitMBB
7703 MBB = SetMBB;
7704 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7705 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7706 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7707 .addReg(OldVal)
7708 .addReg(StoreVal)
7709 .add(Base)
7710 .addImm(Disp);
7711 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7712 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7713 MBB->addSuccessor(LoopMBB);
7714 MBB->addSuccessor(DoneMBB);
7716 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7717 // to the block after the loop. At this point, CC may have been defined
7718 // either by the CR in LoopMBB or by the CS in SetMBB.
7719 if (!MI.registerDefIsDead(SystemZ::CC))
7720 DoneMBB->addLiveIn(SystemZ::CC);
7722 MI.eraseFromParent();
7723 return DoneMBB;
7726 // Emit a move from two GR64s to a GR128.
7727 MachineBasicBlock *
7728 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7729 MachineBasicBlock *MBB) const {
7730 MachineFunction &MF = *MBB->getParent();
7731 const SystemZInstrInfo *TII =
7732 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7733 MachineRegisterInfo &MRI = MF.getRegInfo();
7734 DebugLoc DL = MI.getDebugLoc();
7736 Register Dest = MI.getOperand(0).getReg();
7737 Register Hi = MI.getOperand(1).getReg();
7738 Register Lo = MI.getOperand(2).getReg();
7739 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7740 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7742 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7743 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7744 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7745 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7746 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7748 MI.eraseFromParent();
7749 return MBB;
7752 // Emit an extension from a GR64 to a GR128. ClearEven is true
7753 // if the high register of the GR128 value must be cleared or false if
7754 // it's "don't care".
7755 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7756 MachineBasicBlock *MBB,
7757 bool ClearEven) const {
7758 MachineFunction &MF = *MBB->getParent();
7759 const SystemZInstrInfo *TII =
7760 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7761 MachineRegisterInfo &MRI = MF.getRegInfo();
7762 DebugLoc DL = MI.getDebugLoc();
7764 Register Dest = MI.getOperand(0).getReg();
7765 Register Src = MI.getOperand(1).getReg();
7766 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7768 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7769 if (ClearEven) {
7770 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7771 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7773 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7774 .addImm(0);
7775 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7776 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7777 In128 = NewIn128;
7779 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7780 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7782 MI.eraseFromParent();
7783 return MBB;
7786 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7787 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7788 MachineFunction &MF = *MBB->getParent();
7789 const SystemZInstrInfo *TII =
7790 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7791 MachineRegisterInfo &MRI = MF.getRegInfo();
7792 DebugLoc DL = MI.getDebugLoc();
7794 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7795 uint64_t DestDisp = MI.getOperand(1).getImm();
7796 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7797 uint64_t SrcDisp = MI.getOperand(3).getImm();
7798 MachineOperand &LengthMO = MI.getOperand(4);
7799 uint64_t ImmLength = LengthMO.isImm() ? LengthMO.getImm() : 0;
7800 Register LenMinus1Reg =
7801 LengthMO.isReg() ? LengthMO.getReg() : SystemZ::NoRegister;
7803 // When generating more than one CLC, all but the last will need to
7804 // branch to the end when a difference is found.
7805 MachineBasicBlock *EndMBB = (ImmLength > 256 && Opcode == SystemZ::CLC
7806 ? SystemZ::splitBlockAfter(MI, MBB)
7807 : nullptr);
7809 // Check for the loop form, in which operand 5 is the trip count.
7810 if (MI.getNumExplicitOperands() > 5) {
7811 Register StartCountReg = MI.getOperand(5).getReg();
7812 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7814 auto loadZeroAddress = [&]() -> MachineOperand {
7815 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7816 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
7817 return MachineOperand::CreateReg(Reg, false);
7819 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
7820 DestBase = loadZeroAddress();
7821 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
7822 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
7824 MachineBasicBlock *StartMBB = nullptr;
7825 MachineBasicBlock *LoopMBB = nullptr;
7826 MachineBasicBlock *NextMBB = nullptr;
7827 MachineBasicBlock *DoneMBB = nullptr;
7828 MachineBasicBlock *AllDoneMBB = nullptr;
7830 Register StartSrcReg = forceReg(MI, SrcBase, TII);
7831 Register StartDestReg =
7832 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
7834 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7835 Register ThisSrcReg = MRI.createVirtualRegister(RC);
7836 Register ThisDestReg =
7837 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
7838 Register NextSrcReg = MRI.createVirtualRegister(RC);
7839 Register NextDestReg =
7840 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
7841 RC = &SystemZ::GR64BitRegClass;
7842 Register ThisCountReg = MRI.createVirtualRegister(RC);
7843 Register NextCountReg = MRI.createVirtualRegister(RC);
7845 if (LengthMO.isReg()) {
7846 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7847 StartMBB = SystemZ::emitBlockAfter(MBB);
7848 LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7849 NextMBB = LoopMBB;
7850 DoneMBB = SystemZ::emitBlockAfter(LoopMBB);
7852 // MBB:
7853 // # Jump to AllDoneMBB if LenMinus1Reg is -1, or fall thru to StartMBB.
7854 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7855 .addReg(LenMinus1Reg).addImm(-1);
7856 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7857 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7858 .addMBB(AllDoneMBB);
7859 MBB->addSuccessor(AllDoneMBB);
7860 MBB->addSuccessor(StartMBB);
7862 // StartMBB:
7863 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
7864 MBB = StartMBB;
7865 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7866 .addReg(StartCountReg).addImm(0);
7867 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7868 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7869 .addMBB(DoneMBB);
7870 MBB->addSuccessor(DoneMBB);
7871 MBB->addSuccessor(LoopMBB);
7873 else {
7874 StartMBB = MBB;
7875 DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7876 LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7877 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7879 // StartMBB:
7880 // # fall through to LoopMBB
7881 MBB->addSuccessor(LoopMBB);
7883 DestBase = MachineOperand::CreateReg(NextDestReg, false);
7884 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7885 ImmLength &= 255;
7886 if (EndMBB && !ImmLength)
7887 // If the loop handled the whole CLC range, DoneMBB will be empty with
7888 // CC live-through into EndMBB, so add it as live-in.
7889 DoneMBB->addLiveIn(SystemZ::CC);
7892 // LoopMBB:
7893 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7894 // [ %NextDestReg, NextMBB ]
7895 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7896 // [ %NextSrcReg, NextMBB ]
7897 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7898 // [ %NextCountReg, NextMBB ]
7899 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
7900 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7901 // ( JLH EndMBB )
7903 // The prefetch is used only for MVC. The JLH is used only for CLC.
7904 MBB = LoopMBB;
7905 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7906 .addReg(StartDestReg).addMBB(StartMBB)
7907 .addReg(NextDestReg).addMBB(NextMBB);
7908 if (!HaveSingleBase)
7909 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7910 .addReg(StartSrcReg).addMBB(StartMBB)
7911 .addReg(NextSrcReg).addMBB(NextMBB);
7912 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7913 .addReg(StartCountReg).addMBB(StartMBB)
7914 .addReg(NextCountReg).addMBB(NextMBB);
7915 if (Opcode == SystemZ::MVC)
7916 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7917 .addImm(SystemZ::PFD_WRITE)
7918 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7919 BuildMI(MBB, DL, TII->get(Opcode))
7920 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7921 .addReg(ThisSrcReg).addImm(SrcDisp);
7922 if (EndMBB) {
7923 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7924 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7925 .addMBB(EndMBB);
7926 MBB->addSuccessor(EndMBB);
7927 MBB->addSuccessor(NextMBB);
7930 // NextMBB:
7931 // %NextDestReg = LA 256(%ThisDestReg)
7932 // %NextSrcReg = LA 256(%ThisSrcReg)
7933 // %NextCountReg = AGHI %ThisCountReg, -1
7934 // CGHI %NextCountReg, 0
7935 // JLH LoopMBB
7936 // # fall through to DoneMBB
7938 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7939 MBB = NextMBB;
7940 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7941 .addReg(ThisDestReg).addImm(256).addReg(0);
7942 if (!HaveSingleBase)
7943 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7944 .addReg(ThisSrcReg).addImm(256).addReg(0);
7945 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7946 .addReg(ThisCountReg).addImm(-1);
7947 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7948 .addReg(NextCountReg).addImm(0);
7949 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7950 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7951 .addMBB(LoopMBB);
7952 MBB->addSuccessor(LoopMBB);
7953 MBB->addSuccessor(DoneMBB);
7955 MBB = DoneMBB;
7956 if (LengthMO.isReg()) {
7957 // DoneMBB:
7958 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
7959 // # Use EXecute Relative Long for the remainder of the bytes. The target
7960 // instruction of the EXRL will have a length field of 1 since 0 is an
7961 // illegal value. The number of bytes processed becomes (%LenMinus1Reg &
7962 // 0xff) + 1.
7963 // # Fall through to AllDoneMBB.
7964 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7965 Register RemDestReg = HaveSingleBase ? RemSrcReg
7966 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7967 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
7968 .addReg(StartDestReg).addMBB(StartMBB)
7969 .addReg(NextDestReg).addMBB(LoopMBB);
7970 if (!HaveSingleBase)
7971 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
7972 .addReg(StartSrcReg).addMBB(StartMBB)
7973 .addReg(NextSrcReg).addMBB(LoopMBB);
7974 MRI.constrainRegClass(LenMinus1Reg, &SystemZ::ADDR64BitRegClass);
7975 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
7976 .addImm(Opcode)
7977 .addReg(LenMinus1Reg)
7978 .addReg(RemDestReg).addImm(DestDisp)
7979 .addReg(RemSrcReg).addImm(SrcDisp);
7980 MBB->addSuccessor(AllDoneMBB);
7981 MBB = AllDoneMBB;
7985 // Handle any remaining bytes with straight-line code.
7986 while (ImmLength > 0) {
7987 uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
7988 // The previous iteration might have created out-of-range displacements.
7989 // Apply them using LAY if so.
7990 if (!isUInt<12>(DestDisp)) {
7991 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7992 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7993 .add(DestBase)
7994 .addImm(DestDisp)
7995 .addReg(0);
7996 DestBase = MachineOperand::CreateReg(Reg, false);
7997 DestDisp = 0;
7999 if (!isUInt<12>(SrcDisp)) {
8000 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8001 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
8002 .add(SrcBase)
8003 .addImm(SrcDisp)
8004 .addReg(0);
8005 SrcBase = MachineOperand::CreateReg(Reg, false);
8006 SrcDisp = 0;
8008 BuildMI(*MBB, MI, DL, TII->get(Opcode))
8009 .add(DestBase)
8010 .addImm(DestDisp)
8011 .addImm(ThisLength)
8012 .add(SrcBase)
8013 .addImm(SrcDisp)
8014 .setMemRefs(MI.memoperands());
8015 DestDisp += ThisLength;
8016 SrcDisp += ThisLength;
8017 ImmLength -= ThisLength;
8018 // If there's another CLC to go, branch to the end if a difference
8019 // was found.
8020 if (EndMBB && ImmLength > 0) {
8021 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8022 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8023 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8024 .addMBB(EndMBB);
8025 MBB->addSuccessor(EndMBB);
8026 MBB->addSuccessor(NextMBB);
8027 MBB = NextMBB;
8030 if (EndMBB) {
8031 MBB->addSuccessor(EndMBB);
8032 MBB = EndMBB;
8033 MBB->addLiveIn(SystemZ::CC);
8036 MI.eraseFromParent();
8037 return MBB;
8040 // Decompose string pseudo-instruction MI into a loop that continually performs
8041 // Opcode until CC != 3.
8042 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8043 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8044 MachineFunction &MF = *MBB->getParent();
8045 const SystemZInstrInfo *TII =
8046 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8047 MachineRegisterInfo &MRI = MF.getRegInfo();
8048 DebugLoc DL = MI.getDebugLoc();
8050 uint64_t End1Reg = MI.getOperand(0).getReg();
8051 uint64_t Start1Reg = MI.getOperand(1).getReg();
8052 uint64_t Start2Reg = MI.getOperand(2).getReg();
8053 uint64_t CharReg = MI.getOperand(3).getReg();
8055 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8056 uint64_t This1Reg = MRI.createVirtualRegister(RC);
8057 uint64_t This2Reg = MRI.createVirtualRegister(RC);
8058 uint64_t End2Reg = MRI.createVirtualRegister(RC);
8060 MachineBasicBlock *StartMBB = MBB;
8061 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8062 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8064 // StartMBB:
8065 // # fall through to LoopMBB
8066 MBB->addSuccessor(LoopMBB);
8068 // LoopMBB:
8069 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8070 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8071 // R0L = %CharReg
8072 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8073 // JO LoopMBB
8074 // # fall through to DoneMBB
8076 // The load of R0L can be hoisted by post-RA LICM.
8077 MBB = LoopMBB;
8079 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8080 .addReg(Start1Reg).addMBB(StartMBB)
8081 .addReg(End1Reg).addMBB(LoopMBB);
8082 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8083 .addReg(Start2Reg).addMBB(StartMBB)
8084 .addReg(End2Reg).addMBB(LoopMBB);
8085 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8086 BuildMI(MBB, DL, TII->get(Opcode))
8087 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8088 .addReg(This1Reg).addReg(This2Reg);
8089 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8090 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8091 MBB->addSuccessor(LoopMBB);
8092 MBB->addSuccessor(DoneMBB);
8094 DoneMBB->addLiveIn(SystemZ::CC);
8096 MI.eraseFromParent();
8097 return DoneMBB;
8100 // Update TBEGIN instruction with final opcode and register clobbers.
8101 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8102 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8103 bool NoFloat) const {
8104 MachineFunction &MF = *MBB->getParent();
8105 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8106 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8108 // Update opcode.
8109 MI.setDesc(TII->get(Opcode));
8111 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8112 // Make sure to add the corresponding GRSM bits if they are missing.
8113 uint64_t Control = MI.getOperand(2).getImm();
8114 static const unsigned GPRControlBit[16] = {
8115 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8116 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8118 Control |= GPRControlBit[15];
8119 if (TFI->hasFP(MF))
8120 Control |= GPRControlBit[11];
8121 MI.getOperand(2).setImm(Control);
8123 // Add GPR clobbers.
8124 for (int I = 0; I < 16; I++) {
8125 if ((Control & GPRControlBit[I]) == 0) {
8126 unsigned Reg = SystemZMC::GR64Regs[I];
8127 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8131 // Add FPR/VR clobbers.
8132 if (!NoFloat && (Control & 4) != 0) {
8133 if (Subtarget.hasVector()) {
8134 for (int I = 0; I < 32; I++) {
8135 unsigned Reg = SystemZMC::VR128Regs[I];
8136 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8138 } else {
8139 for (int I = 0; I < 16; I++) {
8140 unsigned Reg = SystemZMC::FP64Regs[I];
8141 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8146 return MBB;
8149 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8150 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8151 MachineFunction &MF = *MBB->getParent();
8152 MachineRegisterInfo *MRI = &MF.getRegInfo();
8153 const SystemZInstrInfo *TII =
8154 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8155 DebugLoc DL = MI.getDebugLoc();
8157 Register SrcReg = MI.getOperand(0).getReg();
8159 // Create new virtual register of the same class as source.
8160 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8161 Register DstReg = MRI->createVirtualRegister(RC);
8163 // Replace pseudo with a normal load-and-test that models the def as
8164 // well.
8165 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8166 .addReg(SrcReg)
8167 .setMIFlags(MI.getFlags());
8168 MI.eraseFromParent();
8170 return MBB;
8173 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8174 MachineInstr &MI, MachineBasicBlock *MBB) const {
8175 MachineFunction &MF = *MBB->getParent();
8176 MachineRegisterInfo *MRI = &MF.getRegInfo();
8177 const SystemZInstrInfo *TII =
8178 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8179 DebugLoc DL = MI.getDebugLoc();
8180 const unsigned ProbeSize = getStackProbeSize(MF);
8181 Register DstReg = MI.getOperand(0).getReg();
8182 Register SizeReg = MI.getOperand(2).getReg();
8184 MachineBasicBlock *StartMBB = MBB;
8185 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB);
8186 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB);
8187 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8188 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8189 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8191 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8192 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8194 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8195 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8197 // LoopTestMBB
8198 // BRC TailTestMBB
8199 // # fallthrough to LoopBodyMBB
8200 StartMBB->addSuccessor(LoopTestMBB);
8201 MBB = LoopTestMBB;
8202 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8203 .addReg(SizeReg)
8204 .addMBB(StartMBB)
8205 .addReg(IncReg)
8206 .addMBB(LoopBodyMBB);
8207 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8208 .addReg(PHIReg)
8209 .addImm(ProbeSize);
8210 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8211 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8212 .addMBB(TailTestMBB);
8213 MBB->addSuccessor(LoopBodyMBB);
8214 MBB->addSuccessor(TailTestMBB);
8216 // LoopBodyMBB: Allocate and probe by means of a volatile compare.
8217 // J LoopTestMBB
8218 MBB = LoopBodyMBB;
8219 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8220 .addReg(PHIReg)
8221 .addImm(ProbeSize);
8222 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8223 .addReg(SystemZ::R15D)
8224 .addImm(ProbeSize);
8225 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8226 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8227 .setMemRefs(VolLdMMO);
8228 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8229 MBB->addSuccessor(LoopTestMBB);
8231 // TailTestMBB
8232 // BRC DoneMBB
8233 // # fallthrough to TailMBB
8234 MBB = TailTestMBB;
8235 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8236 .addReg(PHIReg)
8237 .addImm(0);
8238 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8239 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8240 .addMBB(DoneMBB);
8241 MBB->addSuccessor(TailMBB);
8242 MBB->addSuccessor(DoneMBB);
8244 // TailMBB
8245 // # fallthrough to DoneMBB
8246 MBB = TailMBB;
8247 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8248 .addReg(SystemZ::R15D)
8249 .addReg(PHIReg);
8250 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8251 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8252 .setMemRefs(VolLdMMO);
8253 MBB->addSuccessor(DoneMBB);
8255 // DoneMBB
8256 MBB = DoneMBB;
8257 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8258 .addReg(SystemZ::R15D);
8260 MI.eraseFromParent();
8261 return DoneMBB;
8264 SDValue SystemZTargetLowering::
8265 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8266 MachineFunction &MF = DAG.getMachineFunction();
8267 auto *TFL =
8268 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
8269 SDLoc DL(SP);
8270 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8271 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8274 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8275 MachineInstr &MI, MachineBasicBlock *MBB) const {
8276 switch (MI.getOpcode()) {
8277 case SystemZ::Select32:
8278 case SystemZ::Select64:
8279 case SystemZ::SelectF32:
8280 case SystemZ::SelectF64:
8281 case SystemZ::SelectF128:
8282 case SystemZ::SelectVR32:
8283 case SystemZ::SelectVR64:
8284 case SystemZ::SelectVR128:
8285 return emitSelect(MI, MBB);
8287 case SystemZ::CondStore8Mux:
8288 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8289 case SystemZ::CondStore8MuxInv:
8290 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8291 case SystemZ::CondStore16Mux:
8292 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8293 case SystemZ::CondStore16MuxInv:
8294 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8295 case SystemZ::CondStore32Mux:
8296 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8297 case SystemZ::CondStore32MuxInv:
8298 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8299 case SystemZ::CondStore8:
8300 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8301 case SystemZ::CondStore8Inv:
8302 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8303 case SystemZ::CondStore16:
8304 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8305 case SystemZ::CondStore16Inv:
8306 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8307 case SystemZ::CondStore32:
8308 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8309 case SystemZ::CondStore32Inv:
8310 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8311 case SystemZ::CondStore64:
8312 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8313 case SystemZ::CondStore64Inv:
8314 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8315 case SystemZ::CondStoreF32:
8316 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8317 case SystemZ::CondStoreF32Inv:
8318 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8319 case SystemZ::CondStoreF64:
8320 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8321 case SystemZ::CondStoreF64Inv:
8322 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8324 case SystemZ::PAIR128:
8325 return emitPair128(MI, MBB);
8326 case SystemZ::AEXT128:
8327 return emitExt128(MI, MBB, false);
8328 case SystemZ::ZEXT128:
8329 return emitExt128(MI, MBB, true);
8331 case SystemZ::ATOMIC_SWAPW:
8332 return emitAtomicLoadBinary(MI, MBB, 0, 0);
8333 case SystemZ::ATOMIC_SWAP_32:
8334 return emitAtomicLoadBinary(MI, MBB, 0, 32);
8335 case SystemZ::ATOMIC_SWAP_64:
8336 return emitAtomicLoadBinary(MI, MBB, 0, 64);
8338 case SystemZ::ATOMIC_LOADW_AR:
8339 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8340 case SystemZ::ATOMIC_LOADW_AFI:
8341 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8342 case SystemZ::ATOMIC_LOAD_AR:
8343 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8344 case SystemZ::ATOMIC_LOAD_AHI:
8345 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8346 case SystemZ::ATOMIC_LOAD_AFI:
8347 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8348 case SystemZ::ATOMIC_LOAD_AGR:
8349 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8350 case SystemZ::ATOMIC_LOAD_AGHI:
8351 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8352 case SystemZ::ATOMIC_LOAD_AGFI:
8353 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8355 case SystemZ::ATOMIC_LOADW_SR:
8356 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8357 case SystemZ::ATOMIC_LOAD_SR:
8358 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8359 case SystemZ::ATOMIC_LOAD_SGR:
8360 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8362 case SystemZ::ATOMIC_LOADW_NR:
8363 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8364 case SystemZ::ATOMIC_LOADW_NILH:
8365 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8366 case SystemZ::ATOMIC_LOAD_NR:
8367 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8368 case SystemZ::ATOMIC_LOAD_NILL:
8369 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8370 case SystemZ::ATOMIC_LOAD_NILH:
8371 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8372 case SystemZ::ATOMIC_LOAD_NILF:
8373 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8374 case SystemZ::ATOMIC_LOAD_NGR:
8375 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8376 case SystemZ::ATOMIC_LOAD_NILL64:
8377 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8378 case SystemZ::ATOMIC_LOAD_NILH64:
8379 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8380 case SystemZ::ATOMIC_LOAD_NIHL64:
8381 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8382 case SystemZ::ATOMIC_LOAD_NIHH64:
8383 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8384 case SystemZ::ATOMIC_LOAD_NILF64:
8385 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8386 case SystemZ::ATOMIC_LOAD_NIHF64:
8387 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8389 case SystemZ::ATOMIC_LOADW_OR:
8390 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8391 case SystemZ::ATOMIC_LOADW_OILH:
8392 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8393 case SystemZ::ATOMIC_LOAD_OR:
8394 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8395 case SystemZ::ATOMIC_LOAD_OILL:
8396 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8397 case SystemZ::ATOMIC_LOAD_OILH:
8398 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8399 case SystemZ::ATOMIC_LOAD_OILF:
8400 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8401 case SystemZ::ATOMIC_LOAD_OGR:
8402 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8403 case SystemZ::ATOMIC_LOAD_OILL64:
8404 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8405 case SystemZ::ATOMIC_LOAD_OILH64:
8406 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8407 case SystemZ::ATOMIC_LOAD_OIHL64:
8408 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8409 case SystemZ::ATOMIC_LOAD_OIHH64:
8410 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8411 case SystemZ::ATOMIC_LOAD_OILF64:
8412 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8413 case SystemZ::ATOMIC_LOAD_OIHF64:
8414 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8416 case SystemZ::ATOMIC_LOADW_XR:
8417 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8418 case SystemZ::ATOMIC_LOADW_XILF:
8419 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8420 case SystemZ::ATOMIC_LOAD_XR:
8421 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8422 case SystemZ::ATOMIC_LOAD_XILF:
8423 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8424 case SystemZ::ATOMIC_LOAD_XGR:
8425 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8426 case SystemZ::ATOMIC_LOAD_XILF64:
8427 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8428 case SystemZ::ATOMIC_LOAD_XIHF64:
8429 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8431 case SystemZ::ATOMIC_LOADW_NRi:
8432 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8433 case SystemZ::ATOMIC_LOADW_NILHi:
8434 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8435 case SystemZ::ATOMIC_LOAD_NRi:
8436 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8437 case SystemZ::ATOMIC_LOAD_NILLi:
8438 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8439 case SystemZ::ATOMIC_LOAD_NILHi:
8440 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8441 case SystemZ::ATOMIC_LOAD_NILFi:
8442 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8443 case SystemZ::ATOMIC_LOAD_NGRi:
8444 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8445 case SystemZ::ATOMIC_LOAD_NILL64i:
8446 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8447 case SystemZ::ATOMIC_LOAD_NILH64i:
8448 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8449 case SystemZ::ATOMIC_LOAD_NIHL64i:
8450 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8451 case SystemZ::ATOMIC_LOAD_NIHH64i:
8452 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8453 case SystemZ::ATOMIC_LOAD_NILF64i:
8454 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8455 case SystemZ::ATOMIC_LOAD_NIHF64i:
8456 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8458 case SystemZ::ATOMIC_LOADW_MIN:
8459 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8460 SystemZ::CCMASK_CMP_LE, 0);
8461 case SystemZ::ATOMIC_LOAD_MIN_32:
8462 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8463 SystemZ::CCMASK_CMP_LE, 32);
8464 case SystemZ::ATOMIC_LOAD_MIN_64:
8465 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8466 SystemZ::CCMASK_CMP_LE, 64);
8468 case SystemZ::ATOMIC_LOADW_MAX:
8469 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8470 SystemZ::CCMASK_CMP_GE, 0);
8471 case SystemZ::ATOMIC_LOAD_MAX_32:
8472 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8473 SystemZ::CCMASK_CMP_GE, 32);
8474 case SystemZ::ATOMIC_LOAD_MAX_64:
8475 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8476 SystemZ::CCMASK_CMP_GE, 64);
8478 case SystemZ::ATOMIC_LOADW_UMIN:
8479 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8480 SystemZ::CCMASK_CMP_LE, 0);
8481 case SystemZ::ATOMIC_LOAD_UMIN_32:
8482 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8483 SystemZ::CCMASK_CMP_LE, 32);
8484 case SystemZ::ATOMIC_LOAD_UMIN_64:
8485 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8486 SystemZ::CCMASK_CMP_LE, 64);
8488 case SystemZ::ATOMIC_LOADW_UMAX:
8489 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8490 SystemZ::CCMASK_CMP_GE, 0);
8491 case SystemZ::ATOMIC_LOAD_UMAX_32:
8492 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8493 SystemZ::CCMASK_CMP_GE, 32);
8494 case SystemZ::ATOMIC_LOAD_UMAX_64:
8495 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8496 SystemZ::CCMASK_CMP_GE, 64);
8498 case SystemZ::ATOMIC_CMP_SWAPW:
8499 return emitAtomicCmpSwapW(MI, MBB);
8500 case SystemZ::MVCSequence:
8501 case SystemZ::MVCLoop:
8502 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8503 case SystemZ::NCSequence:
8504 case SystemZ::NCLoop:
8505 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8506 case SystemZ::OCSequence:
8507 case SystemZ::OCLoop:
8508 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8509 case SystemZ::XCSequence:
8510 case SystemZ::XCLoop:
8511 case SystemZ::XCLoopVarLen:
8512 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8513 case SystemZ::CLCSequence:
8514 case SystemZ::CLCLoop:
8515 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8516 case SystemZ::CLSTLoop:
8517 return emitStringWrapper(MI, MBB, SystemZ::CLST);
8518 case SystemZ::MVSTLoop:
8519 return emitStringWrapper(MI, MBB, SystemZ::MVST);
8520 case SystemZ::SRSTLoop:
8521 return emitStringWrapper(MI, MBB, SystemZ::SRST);
8522 case SystemZ::TBEGIN:
8523 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8524 case SystemZ::TBEGIN_nofloat:
8525 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8526 case SystemZ::TBEGINC:
8527 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8528 case SystemZ::LTEBRCompare_VecPseudo:
8529 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8530 case SystemZ::LTDBRCompare_VecPseudo:
8531 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8532 case SystemZ::LTXBRCompare_VecPseudo:
8533 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8535 case SystemZ::PROBED_ALLOCA:
8536 return emitProbedAlloca(MI, MBB);
8538 case TargetOpcode::STACKMAP:
8539 case TargetOpcode::PATCHPOINT:
8540 return emitPatchPoint(MI, MBB);
8542 default:
8543 llvm_unreachable("Unexpected instr type to insert");
8547 // This is only used by the isel schedulers, and is needed only to prevent
8548 // compiler from crashing when list-ilp is used.
8549 const TargetRegisterClass *
8550 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8551 if (VT == MVT::Untyped)
8552 return &SystemZ::ADDR128BitRegClass;
8553 return TargetLowering::getRepRegClassFor(VT);