1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
24 namespace SystemZISD
{
25 enum NodeType
: unsigned {
26 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
28 // Return with a flag operand. Operand 0 is the chain operand.
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
53 // Integer comparisons. There are three operands: the two values
54 // to compare, and an integer of type SystemZICMP.
57 // Floating-point comparisons. The two operands are the values to compare.
60 // Test under mask. The first operand is ANDed with the second operand
61 // and the condition codes are set on the result. The third operand is
62 // a boolean that is true if the condition codes need to distinguish
63 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
64 // register forms do but the memory forms don't).
67 // Branches if a condition is true. Operand 0 is the chain operand;
68 // operand 1 is the 4-bit condition-code mask, with bit N in
69 // big-endian order meaning "branch if CC=N"; operand 2 is the
70 // target block and operand 3 is the flag operand.
73 // Selects between operand 0 and operand 1. Operand 2 is the
74 // mask of condition-code values for which operand 0 should be
75 // chosen over operand 1; it has the same form as BR_CCMASK.
76 // Operand 3 is the flag operand.
79 // Evaluates to the gap between the stack pointer and the
80 // base of the dynamically-allocatable area.
83 // For allocating stack space when using stack clash protector.
84 // Allocation is performed by block, and each block is probed.
87 // Count number of bits set in operand 0 per byte.
90 // Wrappers around the ISD opcodes of the same name. The output is GR128.
91 // Input operands may be GR64 or GR32, depending on the instruction.
97 // Add/subtract with overflow/carry. These have the same operands as
98 // the corresponding standard operations, except with the carry flag
99 // replaced by a condition code value.
100 SADDO
, SSUBO
, UADDO
, USUBO
, ADDCARRY
, SUBCARRY
,
102 // Set the condition code from a boolean value in operand 0.
103 // Operand 1 is a mask of all condition-code values that may result of this
104 // operation, operand 2 is a mask of condition-code values that may result
105 // if the boolean is true.
106 // Note that this operation is always optimized away, we will never
107 // generate any code for it.
110 // Use a series of MVCs to copy bytes from one memory location to another.
112 // - the target address
113 // - the source address
114 // - the constant length
116 // This isn't a memory opcode because we'd need to attach two
117 // MachineMemOperands rather than one.
120 // Like MVC, but implemented as a loop that handles X*256 bytes
121 // followed by straight-line code to handle the rest (if any).
122 // The value of X is passed as an additional operand.
125 // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
133 // Use CLC to compare two blocks of memory, with the same comments
134 // as for MVC and MVC_LOOP.
138 // Use an MVST-based sequence to implement stpcpy().
141 // Use a CLST-based sequence to implement strcmp(). The two input operands
142 // are the addresses of the strings to compare.
145 // Use an SRST-based sequence to search a block of memory. The first
146 // operand is the end address, the second is the start, and the third
147 // is the character to search for. CC is set to 1 on success and 2
151 // Store the CC value in bits 29 and 28 of an integer.
154 // Compiler barrier only; generate a no-op.
157 // Transaction begin. The first operand is the chain, the second
158 // the TDB pointer, and the third the immediate control field.
159 // Returns CC value and chain.
163 // Transaction end. Just the chain operand. Returns CC value and chain.
166 // Create a vector constant by filling byte N of the result with bit
167 // 15-N of the single operand.
170 // Create a vector constant by replicating an element-sized RISBG-style mask.
171 // The first operand specifies the starting set bit and the second operand
172 // specifies the ending set bit. Both operands count from the MSB of the
176 // Replicate a GPR scalar value into all elements of a vector.
179 // Create a vector from two i64 GPRs.
182 // Replicate one element of a vector into all elements. The first operand
183 // is the vector and the second is the index of the element to replicate.
186 // Interleave elements from the high half of operand 0 and the high half
190 // Likewise for the low halves.
193 // Concatenate the vectors in the first two operands, shift them left
194 // by the third operand, and take the first half of the result.
197 // Take one element of the first v2i64 operand and the one element of
198 // the second v2i64 operand and concatenate them to form a v2i64 result.
199 // The third operand is a 4-bit value of the form 0A0B, where A and B
200 // are the element selectors for the first operand and second operands
204 // Perform a general vector permute on vector operands 0 and 1.
205 // Each byte of operand 2 controls the corresponding byte of the result,
206 // in the same way as a byte-level VECTOR_SHUFFLE mask.
209 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
212 // Likewise, but saturate the result and set CC. PACKS_CC does signed
213 // saturation and PACKLS_CC does unsigned saturation.
217 // Unpack the first half of vector operand 0 into double-sized elements.
218 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
222 // Likewise for the second half.
226 // Shift each element of vector operand 0 by the number of bits specified
227 // by scalar operand 1.
232 // For each element of the output type, sum across all sub-elements of
233 // operand 0 belonging to the corresponding element, and add in the
234 // rightmost sub-element of the corresponding element of operand 1.
237 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
238 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
239 // and VICMPHL for "unsigned greater than".
244 // Likewise, but also set the condition codes on the result.
249 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
250 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
251 // greater than" and VFCMPHE for "ordered and greater than or equal to".
256 // Likewise, but also set the condition codes on the result.
261 // Test floating-point data class for vectors.
264 // Extend the even f32 elements of vector operand 0 to produce a vector
268 // Round the f64 elements of vector operand 0 to f32s and store them in the
269 // even elements of the result.
272 // AND the two vector operands together and set CC based on the result.
275 // String operations that set CC as a side-effect.
290 // Operand 0: the value to test
291 // Operand 1: the bit mask
294 // Strict variants of scalar floating-point comparisons.
295 // Quiet and signaling versions.
296 STRICT_FCMP
= ISD::FIRST_TARGET_STRICTFP_OPCODE
,
299 // Strict variants of vector floating-point comparisons.
300 // Quiet and signaling versions.
308 // Strict variants of VEXTEND and VROUND.
312 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
315 // Operand 0: the address of the containing 32-bit-aligned field
316 // Operand 1: the second operand of <op>, in the high bits of an i32
317 // for everything except ATOMIC_SWAPW
318 // Operand 2: how many bits to rotate the i32 left to bring the first
319 // operand into the high bits
320 // Operand 3: the negative of operand 2, for rotating the other way
321 // Operand 4: the width of the field in bits (8 or 16)
322 ATOMIC_SWAPW
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
334 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
336 // Operand 0: the address of the containing 32-bit-aligned field
337 // Operand 1: the compare value, in the low bits of an i32
338 // Operand 2: the swap value, in the low bits of an i32
339 // Operand 3: how many bits to rotate the i32 left to bring the first
340 // operand into the high bits
341 // Operand 4: the negative of operand 2, for rotating the other way
342 // Operand 5: the width of the field in bits (8 or 16)
345 // Atomic compare-and-swap returning CC value.
346 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
349 // 128-bit atomic load.
350 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
353 // 128-bit atomic store.
354 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
357 // 128-bit atomic compare-and-swap.
358 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
361 // Byte swapping load/store. Same operands as regular load/store.
364 // Element swapping load/store. Same operands as regular load/store.
367 // Prefetch from the second operand using the 4-bit control code in
368 // the first operand. The code is 1 for a load prefetch and 2 for
373 // Return true if OPCODE is some kind of PC-relative address.
374 inline bool isPCREL(unsigned Opcode
) {
375 return Opcode
== PCREL_WRAPPER
|| Opcode
== PCREL_OFFSET
;
377 } // end namespace SystemZISD
379 namespace SystemZICMP
{
380 // Describes whether an integer comparison needs to be signed or unsigned,
381 // or whether either type is OK.
387 } // end namespace SystemZICMP
389 class SystemZSubtarget
;
390 class SystemZTargetMachine
;
392 class SystemZTargetLowering
: public TargetLowering
{
394 explicit SystemZTargetLowering(const TargetMachine
&TM
,
395 const SystemZSubtarget
&STI
);
397 bool useSoftFloat() const override
;
399 // Override TargetLowering.
400 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
403 MVT
getVectorIdxTy(const DataLayout
&DL
) const override
{
404 // Only the lower 12 bits of an element index are used, so we don't
405 // want to clobber the upper 32 bits of a GPR unnecessarily.
408 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT
)
410 // Widen subvectors to the full width rather than promoting integer
411 // elements. This is better because:
413 // (a) it means that we can handle the ABI for passing and returning
414 // sub-128 vectors without having to handle them as legal types.
416 // (b) we don't have instructions to extend on load and truncate on store,
417 // so promoting the integers is less efficient.
419 // (c) there are no multiplication instructions for the widest integer
421 if (VT
.getScalarSizeInBits() % 8 == 0)
422 return TypeWidenVector
;
423 return TargetLoweringBase::getPreferredVectorAction(VT
);
426 getNumRegisters(LLVMContext
&Context
, EVT VT
,
427 Optional
<MVT
> RegisterVT
) const override
{
428 // i128 inline assembly operand.
429 if (VT
== MVT::i128
&&
430 RegisterVT
.hasValue() && RegisterVT
.getValue() == MVT::Untyped
)
432 return TargetLowering::getNumRegisters(Context
, VT
);
434 bool isCheapToSpeculateCtlz() const override
{ return true; }
435 bool preferZeroCompareBranch() const override
{ return true; }
436 bool hasBitPreservingFPLogic(EVT VT
) const override
{
437 EVT ScVT
= VT
.getScalarType();
438 return ScVT
== MVT::f32
|| ScVT
== MVT::f64
|| ScVT
== MVT::f128
;
440 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
{
441 ConstantInt
* Mask
= dyn_cast
<ConstantInt
>(AndI
.getOperand(1));
442 return Mask
&& Mask
->getValue().isIntN(16);
444 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
445 return VT
.isScalarInteger();
447 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
449 bool isFMAFasterThanFMulAndFAdd(const MachineFunction
&MF
,
450 EVT VT
) const override
;
451 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
452 bool ForCodeSize
) const override
;
453 bool hasInlineStackProbe(MachineFunction
&MF
) const override
;
454 bool isLegalICmpImmediate(int64_t Imm
) const override
;
455 bool isLegalAddImmediate(int64_t Imm
) const override
;
456 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
, Type
*Ty
,
458 Instruction
*I
= nullptr) const override
;
459 bool allowsMisalignedMemoryAccesses(EVT VT
, unsigned AS
, Align Alignment
,
460 MachineMemOperand::Flags Flags
,
461 bool *Fast
) const override
;
462 bool isTruncateFree(Type
*, Type
*) const override
;
463 bool isTruncateFree(EVT
, EVT
) const override
;
465 bool shouldFormOverflowOp(unsigned Opcode
, EVT VT
,
466 bool MathUsed
) const override
{
467 // Form add and sub with overflow intrinsics regardless of any extra
468 // users of the math result.
469 return VT
== MVT::i32
|| VT
== MVT::i64
;
472 const char *getTargetNodeName(unsigned Opcode
) const override
;
473 std::pair
<unsigned, const TargetRegisterClass
*>
474 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
475 StringRef Constraint
, MVT VT
) const override
;
476 TargetLowering::ConstraintType
477 getConstraintType(StringRef Constraint
) const override
;
478 TargetLowering::ConstraintWeight
479 getSingleConstraintMatchWeight(AsmOperandInfo
&info
,
480 const char *constraint
) const override
;
481 void LowerAsmOperandForConstraint(SDValue Op
,
482 std::string
&Constraint
,
483 std::vector
<SDValue
> &Ops
,
484 SelectionDAG
&DAG
) const override
;
486 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
487 if (ConstraintCode
.size() == 1) {
488 switch(ConstraintCode
[0]) {
492 return InlineAsm::Constraint_o
;
494 return InlineAsm::Constraint_Q
;
496 return InlineAsm::Constraint_R
;
498 return InlineAsm::Constraint_S
;
500 return InlineAsm::Constraint_T
;
503 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
506 Register
getRegisterByName(const char *RegName
, LLT VT
,
507 const MachineFunction
&MF
) const override
;
509 /// If a physical register, this returns the register that receives the
510 /// exception address on entry to an EH pad.
512 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
{
516 /// If a physical register, this returns the register that receives the
517 /// exception typeid on entry to a landing pad.
519 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
{
523 /// Override to support customized stack guard loading.
524 bool useLoadStackGuardNode() const override
{
527 void insertSSPDeclarations(Module
&M
) const override
{
531 EmitInstrWithCustomInserter(MachineInstr
&MI
,
532 MachineBasicBlock
*BB
) const override
;
533 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
534 void LowerOperationWrapper(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
535 SelectionDAG
&DAG
) const override
;
536 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
537 SelectionDAG
&DAG
) const override
;
538 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
539 bool allowTruncateForTailCall(Type
*, Type
*) const override
;
540 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
541 bool splitValueIntoRegisterParts(SelectionDAG
&DAG
, const SDLoc
&DL
,
542 SDValue Val
, SDValue
*Parts
,
543 unsigned NumParts
, MVT PartVT
,
544 Optional
<CallingConv::ID
> CC
) const override
;
546 joinRegisterPartsIntoValue(SelectionDAG
&DAG
, const SDLoc
&DL
,
547 const SDValue
*Parts
, unsigned NumParts
,
548 MVT PartVT
, EVT ValueVT
,
549 Optional
<CallingConv::ID
> CC
) const override
;
550 SDValue
LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
,
552 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
553 const SDLoc
&DL
, SelectionDAG
&DAG
,
554 SmallVectorImpl
<SDValue
> &InVals
) const override
;
555 SDValue
LowerCall(CallLoweringInfo
&CLI
,
556 SmallVectorImpl
<SDValue
> &InVals
) const override
;
558 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
560 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
561 LLVMContext
&Context
) const override
;
562 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
563 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
564 const SmallVectorImpl
<SDValue
> &OutVals
, const SDLoc
&DL
,
565 SelectionDAG
&DAG
) const override
;
566 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
568 /// Determine which of the bits specified in Mask are known to be either
569 /// zero or one and return them in the KnownZero/KnownOne bitsets.
570 void computeKnownBitsForTargetNode(const SDValue Op
,
572 const APInt
&DemandedElts
,
573 const SelectionDAG
&DAG
,
574 unsigned Depth
= 0) const override
;
576 /// Determine the number of bits in the operation that are sign bits.
577 unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
578 const APInt
&DemandedElts
,
579 const SelectionDAG
&DAG
,
580 unsigned Depth
) const override
;
582 ISD::NodeType
getExtendForAtomicOps() const override
{
583 return ISD::ANY_EXTEND
;
585 ISD::NodeType
getExtendForAtomicCmpSwapArg() const override
{
586 return ISD::ZERO_EXTEND
;
589 bool supportSwiftError() const override
{
593 unsigned getStackProbeSize(MachineFunction
&MF
) const;
596 const SystemZSubtarget
&Subtarget
;
598 // Implement LowerOperation for individual opcodes.
599 SDValue
getVectorCmp(SelectionDAG
&DAG
, unsigned Opcode
,
600 const SDLoc
&DL
, EVT VT
,
601 SDValue CmpOp0
, SDValue CmpOp1
, SDValue Chain
) const;
602 SDValue
lowerVectorSETCC(SelectionDAG
&DAG
, const SDLoc
&DL
,
603 EVT VT
, ISD::CondCode CC
,
604 SDValue CmpOp0
, SDValue CmpOp1
,
605 SDValue Chain
= SDValue(),
606 bool IsSignaling
= false) const;
607 SDValue
lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
608 SDValue
lowerSTRICT_FSETCC(SDValue Op
, SelectionDAG
&DAG
,
609 bool IsSignaling
) const;
610 SDValue
lowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const;
611 SDValue
lowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
612 SDValue
lowerGlobalAddress(GlobalAddressSDNode
*Node
,
613 SelectionDAG
&DAG
) const;
614 SDValue
lowerTLSGetOffset(GlobalAddressSDNode
*Node
,
615 SelectionDAG
&DAG
, unsigned Opcode
,
616 SDValue GOTOffset
) const;
617 SDValue
lowerThreadPointer(const SDLoc
&DL
, SelectionDAG
&DAG
) const;
618 SDValue
lowerGlobalTLSAddress(GlobalAddressSDNode
*Node
,
619 SelectionDAG
&DAG
) const;
620 SDValue
lowerBlockAddress(BlockAddressSDNode
*Node
,
621 SelectionDAG
&DAG
) const;
622 SDValue
lowerJumpTable(JumpTableSDNode
*JT
, SelectionDAG
&DAG
) const;
623 SDValue
lowerConstantPool(ConstantPoolSDNode
*CP
, SelectionDAG
&DAG
) const;
624 SDValue
lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
625 SDValue
lowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
626 SDValue
lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
627 SDValue
lowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
628 SDValue
lowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
629 SDValue
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
630 SDValue
lowerSMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const;
631 SDValue
lowerUMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const;
632 SDValue
lowerSDIVREM(SDValue Op
, SelectionDAG
&DAG
) const;
633 SDValue
lowerUDIVREM(SDValue Op
, SelectionDAG
&DAG
) const;
634 SDValue
lowerXALUO(SDValue Op
, SelectionDAG
&DAG
) const;
635 SDValue
lowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) const;
636 SDValue
lowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const;
637 SDValue
lowerOR(SDValue Op
, SelectionDAG
&DAG
) const;
638 SDValue
lowerCTPOP(SDValue Op
, SelectionDAG
&DAG
) const;
639 SDValue
lowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
) const;
640 SDValue
lowerATOMIC_LOAD(SDValue Op
, SelectionDAG
&DAG
) const;
641 SDValue
lowerATOMIC_STORE(SDValue Op
, SelectionDAG
&DAG
) const;
642 SDValue
lowerATOMIC_LOAD_OP(SDValue Op
, SelectionDAG
&DAG
,
643 unsigned Opcode
) const;
644 SDValue
lowerATOMIC_LOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) const;
645 SDValue
lowerATOMIC_CMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
646 SDValue
lowerSTACKSAVE(SDValue Op
, SelectionDAG
&DAG
) const;
647 SDValue
lowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
648 SDValue
lowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
) const;
649 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
650 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
651 bool isVectorElementLoad(SDValue Op
) const;
652 SDValue
buildVector(SelectionDAG
&DAG
, const SDLoc
&DL
, EVT VT
,
653 SmallVectorImpl
<SDValue
> &Elems
) const;
654 SDValue
lowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
655 SDValue
lowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
656 SDValue
lowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
657 SDValue
lowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
658 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
659 SDValue
lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op
, SelectionDAG
&DAG
) const;
660 SDValue
lowerZERO_EXTEND_VECTOR_INREG(SDValue Op
, SelectionDAG
&DAG
) const;
661 SDValue
lowerShift(SDValue Op
, SelectionDAG
&DAG
, unsigned ByScalar
) const;
663 bool canTreatAsByteVector(EVT VT
) const;
664 SDValue
combineExtract(const SDLoc
&DL
, EVT ElemVT
, EVT VecVT
, SDValue OrigOp
,
665 unsigned Index
, DAGCombinerInfo
&DCI
,
667 SDValue
combineTruncateExtract(const SDLoc
&DL
, EVT TruncVT
, SDValue Op
,
668 DAGCombinerInfo
&DCI
) const;
669 SDValue
combineZERO_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
670 SDValue
combineSIGN_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
671 SDValue
combineSIGN_EXTEND_INREG(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
672 SDValue
combineMERGE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
673 bool canLoadStoreByteSwapped(EVT VT
) const;
674 SDValue
combineLOAD(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
675 SDValue
combineSTORE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
676 SDValue
combineVECTOR_SHUFFLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
677 SDValue
combineEXTRACT_VECTOR_ELT(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
678 SDValue
combineJOIN_DWORDS(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
679 SDValue
combineFP_ROUND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
680 SDValue
combineFP_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
681 SDValue
combineINT_TO_FP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
682 SDValue
combineBSWAP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
683 SDValue
combineBR_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
684 SDValue
combineSELECT_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
685 SDValue
combineGET_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
686 SDValue
combineIntDIVREM(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
687 SDValue
combineINTRINSIC(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
689 SDValue
unwrapAddress(SDValue N
) const override
;
691 // If the last instruction before MBBI in MBB was some form of COMPARE,
692 // try to replace it with a COMPARE AND BRANCH just before MBBI.
693 // CCMask and Target are the BRC-like operands for the branch.
694 // Return true if the change was made.
695 bool convertPrevCompareToBranch(MachineBasicBlock
*MBB
,
696 MachineBasicBlock::iterator MBBI
,
698 MachineBasicBlock
*Target
) const;
700 // Implement EmitInstrWithCustomInserter for individual operation types.
701 MachineBasicBlock
*emitSelect(MachineInstr
&MI
, MachineBasicBlock
*BB
) const;
702 MachineBasicBlock
*emitCondStore(MachineInstr
&MI
, MachineBasicBlock
*BB
,
703 unsigned StoreOpcode
, unsigned STOCOpcode
,
705 MachineBasicBlock
*emitPair128(MachineInstr
&MI
,
706 MachineBasicBlock
*MBB
) const;
707 MachineBasicBlock
*emitExt128(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
708 bool ClearEven
) const;
709 MachineBasicBlock
*emitAtomicLoadBinary(MachineInstr
&MI
,
710 MachineBasicBlock
*BB
,
711 unsigned BinOpcode
, unsigned BitSize
,
712 bool Invert
= false) const;
713 MachineBasicBlock
*emitAtomicLoadMinMax(MachineInstr
&MI
,
714 MachineBasicBlock
*MBB
,
715 unsigned CompareOpcode
,
716 unsigned KeepOldMask
,
717 unsigned BitSize
) const;
718 MachineBasicBlock
*emitAtomicCmpSwapW(MachineInstr
&MI
,
719 MachineBasicBlock
*BB
) const;
720 MachineBasicBlock
*emitMemMemWrapper(MachineInstr
&MI
, MachineBasicBlock
*BB
,
721 unsigned Opcode
) const;
722 MachineBasicBlock
*emitStringWrapper(MachineInstr
&MI
, MachineBasicBlock
*BB
,
723 unsigned Opcode
) const;
724 MachineBasicBlock
*emitTransactionBegin(MachineInstr
&MI
,
725 MachineBasicBlock
*MBB
,
726 unsigned Opcode
, bool NoFloat
) const;
727 MachineBasicBlock
*emitLoadAndTestCmp0(MachineInstr
&MI
,
728 MachineBasicBlock
*MBB
,
729 unsigned Opcode
) const;
730 MachineBasicBlock
*emitProbedAlloca(MachineInstr
&MI
,
731 MachineBasicBlock
*MBB
) const;
733 SDValue
getBackchainAddress(SDValue SP
, SelectionDAG
&DAG
) const;
735 MachineMemOperand::Flags
736 getTargetMMOFlags(const Instruction
&I
) const override
;
737 const TargetRegisterClass
*getRepRegClassFor(MVT VT
) const override
;
740 struct SystemZVectorConstantInfo
{
742 APInt IntBits
; // The 128 bits as an integer.
743 APInt SplatBits
; // Smallest splat value.
744 APInt SplatUndef
; // Bits correspoding to undef operands of the BVN.
745 unsigned SplatBitSize
= 0;
746 bool isFP128
= false;
750 SmallVector
<unsigned, 2> OpVals
;
752 SystemZVectorConstantInfo(APFloat FPImm
);
753 SystemZVectorConstantInfo(BuildVectorSDNode
*BVN
);
754 bool isVectorConstantLegal(const SystemZSubtarget
&Subtarget
);
757 } // end namespace llvm