[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZISelLowering.h
blob248efc11b87fd61e19594a64ad92a38f0a5a6814
1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
17 #include "SystemZ.h"
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
23 namespace llvm {
24 namespace SystemZISD {
25 enum NodeType : unsigned {
26 FIRST_NUMBER = ISD::BUILTIN_OP_END,
28 // Return with a flag operand. Operand 0 is the chain operand.
29 RET_FLAG,
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
34 CALL,
35 SIBCALL,
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
39 TLS_GDCALL,
40 TLS_LDCALL,
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
44 PCREL_WRAPPER,
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
51 PCREL_OFFSET,
53 // Integer comparisons. There are three operands: the two values
54 // to compare, and an integer of type SystemZICMP.
55 ICMP,
57 // Floating-point comparisons. The two operands are the values to compare.
58 FCMP,
60 // Test under mask. The first operand is ANDed with the second operand
61 // and the condition codes are set on the result. The third operand is
62 // a boolean that is true if the condition codes need to distinguish
63 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
64 // register forms do but the memory forms don't).
65 TM,
67 // Branches if a condition is true. Operand 0 is the chain operand;
68 // operand 1 is the 4-bit condition-code mask, with bit N in
69 // big-endian order meaning "branch if CC=N"; operand 2 is the
70 // target block and operand 3 is the flag operand.
71 BR_CCMASK,
73 // Selects between operand 0 and operand 1. Operand 2 is the
74 // mask of condition-code values for which operand 0 should be
75 // chosen over operand 1; it has the same form as BR_CCMASK.
76 // Operand 3 is the flag operand.
77 SELECT_CCMASK,
79 // Evaluates to the gap between the stack pointer and the
80 // base of the dynamically-allocatable area.
81 ADJDYNALLOC,
83 // For allocating stack space when using stack clash protector.
84 // Allocation is performed by block, and each block is probed.
85 PROBED_ALLOCA,
87 // Count number of bits set in operand 0 per byte.
88 POPCNT,
90 // Wrappers around the ISD opcodes of the same name. The output is GR128.
91 // Input operands may be GR64 or GR32, depending on the instruction.
92 SMUL_LOHI,
93 UMUL_LOHI,
94 SDIVREM,
95 UDIVREM,
97 // Add/subtract with overflow/carry. These have the same operands as
98 // the corresponding standard operations, except with the carry flag
99 // replaced by a condition code value.
100 SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
102 // Set the condition code from a boolean value in operand 0.
103 // Operand 1 is a mask of all condition-code values that may result of this
104 // operation, operand 2 is a mask of condition-code values that may result
105 // if the boolean is true.
106 // Note that this operation is always optimized away, we will never
107 // generate any code for it.
108 GET_CCMASK,
110 // Use a series of MVCs to copy bytes from one memory location to another.
111 // The operands are:
112 // - the target address
113 // - the source address
114 // - the constant length
116 // This isn't a memory opcode because we'd need to attach two
117 // MachineMemOperands rather than one.
118 MVC,
120 // Like MVC, but implemented as a loop that handles X*256 bytes
121 // followed by straight-line code to handle the rest (if any).
122 // The value of X is passed as an additional operand.
123 MVC_LOOP,
125 // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
127 NC_LOOP,
129 OC_LOOP,
131 XC_LOOP,
133 // Use CLC to compare two blocks of memory, with the same comments
134 // as for MVC and MVC_LOOP.
135 CLC,
136 CLC_LOOP,
138 // Use an MVST-based sequence to implement stpcpy().
139 STPCPY,
141 // Use a CLST-based sequence to implement strcmp(). The two input operands
142 // are the addresses of the strings to compare.
143 STRCMP,
145 // Use an SRST-based sequence to search a block of memory. The first
146 // operand is the end address, the second is the start, and the third
147 // is the character to search for. CC is set to 1 on success and 2
148 // on failure.
149 SEARCH_STRING,
151 // Store the CC value in bits 29 and 28 of an integer.
152 IPM,
154 // Compiler barrier only; generate a no-op.
155 MEMBARRIER,
157 // Transaction begin. The first operand is the chain, the second
158 // the TDB pointer, and the third the immediate control field.
159 // Returns CC value and chain.
160 TBEGIN,
161 TBEGIN_NOFLOAT,
163 // Transaction end. Just the chain operand. Returns CC value and chain.
164 TEND,
166 // Create a vector constant by filling byte N of the result with bit
167 // 15-N of the single operand.
168 BYTE_MASK,
170 // Create a vector constant by replicating an element-sized RISBG-style mask.
171 // The first operand specifies the starting set bit and the second operand
172 // specifies the ending set bit. Both operands count from the MSB of the
173 // element.
174 ROTATE_MASK,
176 // Replicate a GPR scalar value into all elements of a vector.
177 REPLICATE,
179 // Create a vector from two i64 GPRs.
180 JOIN_DWORDS,
182 // Replicate one element of a vector into all elements. The first operand
183 // is the vector and the second is the index of the element to replicate.
184 SPLAT,
186 // Interleave elements from the high half of operand 0 and the high half
187 // of operand 1.
188 MERGE_HIGH,
190 // Likewise for the low halves.
191 MERGE_LOW,
193 // Concatenate the vectors in the first two operands, shift them left
194 // by the third operand, and take the first half of the result.
195 SHL_DOUBLE,
197 // Take one element of the first v2i64 operand and the one element of
198 // the second v2i64 operand and concatenate them to form a v2i64 result.
199 // The third operand is a 4-bit value of the form 0A0B, where A and B
200 // are the element selectors for the first operand and second operands
201 // respectively.
202 PERMUTE_DWORDS,
204 // Perform a general vector permute on vector operands 0 and 1.
205 // Each byte of operand 2 controls the corresponding byte of the result,
206 // in the same way as a byte-level VECTOR_SHUFFLE mask.
207 PERMUTE,
209 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
210 PACK,
212 // Likewise, but saturate the result and set CC. PACKS_CC does signed
213 // saturation and PACKLS_CC does unsigned saturation.
214 PACKS_CC,
215 PACKLS_CC,
217 // Unpack the first half of vector operand 0 into double-sized elements.
218 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
219 UNPACK_HIGH,
220 UNPACKL_HIGH,
222 // Likewise for the second half.
223 UNPACK_LOW,
224 UNPACKL_LOW,
226 // Shift each element of vector operand 0 by the number of bits specified
227 // by scalar operand 1.
228 VSHL_BY_SCALAR,
229 VSRL_BY_SCALAR,
230 VSRA_BY_SCALAR,
232 // For each element of the output type, sum across all sub-elements of
233 // operand 0 belonging to the corresponding element, and add in the
234 // rightmost sub-element of the corresponding element of operand 1.
235 VSUM,
237 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
238 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
239 // and VICMPHL for "unsigned greater than".
240 VICMPE,
241 VICMPH,
242 VICMPHL,
244 // Likewise, but also set the condition codes on the result.
245 VICMPES,
246 VICMPHS,
247 VICMPHLS,
249 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
250 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
251 // greater than" and VFCMPHE for "ordered and greater than or equal to".
252 VFCMPE,
253 VFCMPH,
254 VFCMPHE,
256 // Likewise, but also set the condition codes on the result.
257 VFCMPES,
258 VFCMPHS,
259 VFCMPHES,
261 // Test floating-point data class for vectors.
262 VFTCI,
264 // Extend the even f32 elements of vector operand 0 to produce a vector
265 // of f64 elements.
266 VEXTEND,
268 // Round the f64 elements of vector operand 0 to f32s and store them in the
269 // even elements of the result.
270 VROUND,
272 // AND the two vector operands together and set CC based on the result.
273 VTM,
275 // String operations that set CC as a side-effect.
276 VFAE_CC,
277 VFAEZ_CC,
278 VFEE_CC,
279 VFEEZ_CC,
280 VFENE_CC,
281 VFENEZ_CC,
282 VISTR_CC,
283 VSTRC_CC,
284 VSTRCZ_CC,
285 VSTRS_CC,
286 VSTRSZ_CC,
288 // Test Data Class.
290 // Operand 0: the value to test
291 // Operand 1: the bit mask
292 TDC,
294 // Strict variants of scalar floating-point comparisons.
295 // Quiet and signaling versions.
296 STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
297 STRICT_FCMPS,
299 // Strict variants of vector floating-point comparisons.
300 // Quiet and signaling versions.
301 STRICT_VFCMPE,
302 STRICT_VFCMPH,
303 STRICT_VFCMPHE,
304 STRICT_VFCMPES,
305 STRICT_VFCMPHS,
306 STRICT_VFCMPHES,
308 // Strict variants of VEXTEND and VROUND.
309 STRICT_VEXTEND,
310 STRICT_VROUND,
312 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
313 // ATOMIC_LOAD_<op>.
315 // Operand 0: the address of the containing 32-bit-aligned field
316 // Operand 1: the second operand of <op>, in the high bits of an i32
317 // for everything except ATOMIC_SWAPW
318 // Operand 2: how many bits to rotate the i32 left to bring the first
319 // operand into the high bits
320 // Operand 3: the negative of operand 2, for rotating the other way
321 // Operand 4: the width of the field in bits (8 or 16)
322 ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
323 ATOMIC_LOADW_ADD,
324 ATOMIC_LOADW_SUB,
325 ATOMIC_LOADW_AND,
326 ATOMIC_LOADW_OR,
327 ATOMIC_LOADW_XOR,
328 ATOMIC_LOADW_NAND,
329 ATOMIC_LOADW_MIN,
330 ATOMIC_LOADW_MAX,
331 ATOMIC_LOADW_UMIN,
332 ATOMIC_LOADW_UMAX,
334 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
336 // Operand 0: the address of the containing 32-bit-aligned field
337 // Operand 1: the compare value, in the low bits of an i32
338 // Operand 2: the swap value, in the low bits of an i32
339 // Operand 3: how many bits to rotate the i32 left to bring the first
340 // operand into the high bits
341 // Operand 4: the negative of operand 2, for rotating the other way
342 // Operand 5: the width of the field in bits (8 or 16)
343 ATOMIC_CMP_SWAPW,
345 // Atomic compare-and-swap returning CC value.
346 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
347 ATOMIC_CMP_SWAP,
349 // 128-bit atomic load.
350 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
351 ATOMIC_LOAD_128,
353 // 128-bit atomic store.
354 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
355 ATOMIC_STORE_128,
357 // 128-bit atomic compare-and-swap.
358 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
359 ATOMIC_CMP_SWAP_128,
361 // Byte swapping load/store. Same operands as regular load/store.
362 LRV, STRV,
364 // Element swapping load/store. Same operands as regular load/store.
365 VLER, VSTER,
367 // Prefetch from the second operand using the 4-bit control code in
368 // the first operand. The code is 1 for a load prefetch and 2 for
369 // a store prefetch.
370 PREFETCH
373 // Return true if OPCODE is some kind of PC-relative address.
374 inline bool isPCREL(unsigned Opcode) {
375 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
377 } // end namespace SystemZISD
379 namespace SystemZICMP {
380 // Describes whether an integer comparison needs to be signed or unsigned,
381 // or whether either type is OK.
382 enum {
383 Any,
384 UnsignedOnly,
385 SignedOnly
387 } // end namespace SystemZICMP
389 class SystemZSubtarget;
390 class SystemZTargetMachine;
392 class SystemZTargetLowering : public TargetLowering {
393 public:
394 explicit SystemZTargetLowering(const TargetMachine &TM,
395 const SystemZSubtarget &STI);
397 bool useSoftFloat() const override;
399 // Override TargetLowering.
400 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
401 return MVT::i32;
403 MVT getVectorIdxTy(const DataLayout &DL) const override {
404 // Only the lower 12 bits of an element index are used, so we don't
405 // want to clobber the upper 32 bits of a GPR unnecessarily.
406 return MVT::i32;
408 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
409 const override {
410 // Widen subvectors to the full width rather than promoting integer
411 // elements. This is better because:
413 // (a) it means that we can handle the ABI for passing and returning
414 // sub-128 vectors without having to handle them as legal types.
416 // (b) we don't have instructions to extend on load and truncate on store,
417 // so promoting the integers is less efficient.
419 // (c) there are no multiplication instructions for the widest integer
420 // type (v2i64).
421 if (VT.getScalarSizeInBits() % 8 == 0)
422 return TypeWidenVector;
423 return TargetLoweringBase::getPreferredVectorAction(VT);
425 unsigned
426 getNumRegisters(LLVMContext &Context, EVT VT,
427 Optional<MVT> RegisterVT) const override {
428 // i128 inline assembly operand.
429 if (VT == MVT::i128 &&
430 RegisterVT.hasValue() && RegisterVT.getValue() == MVT::Untyped)
431 return 1;
432 return TargetLowering::getNumRegisters(Context, VT);
434 bool isCheapToSpeculateCtlz() const override { return true; }
435 bool preferZeroCompareBranch() const override { return true; }
436 bool hasBitPreservingFPLogic(EVT VT) const override {
437 EVT ScVT = VT.getScalarType();
438 return ScVT == MVT::f32 || ScVT == MVT::f64 || ScVT == MVT::f128;
440 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override {
441 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
442 return Mask && Mask->getValue().isIntN(16);
444 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
445 return VT.isScalarInteger();
447 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
448 EVT) const override;
449 bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
450 EVT VT) const override;
451 bool isFPImmLegal(const APFloat &Imm, EVT VT,
452 bool ForCodeSize) const override;
453 bool hasInlineStackProbe(MachineFunction &MF) const override;
454 bool isLegalICmpImmediate(int64_t Imm) const override;
455 bool isLegalAddImmediate(int64_t Imm) const override;
456 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
457 unsigned AS,
458 Instruction *I = nullptr) const override;
459 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
460 MachineMemOperand::Flags Flags,
461 bool *Fast) const override;
462 bool isTruncateFree(Type *, Type *) const override;
463 bool isTruncateFree(EVT, EVT) const override;
465 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
466 bool MathUsed) const override {
467 // Form add and sub with overflow intrinsics regardless of any extra
468 // users of the math result.
469 return VT == MVT::i32 || VT == MVT::i64;
472 const char *getTargetNodeName(unsigned Opcode) const override;
473 std::pair<unsigned, const TargetRegisterClass *>
474 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
475 StringRef Constraint, MVT VT) const override;
476 TargetLowering::ConstraintType
477 getConstraintType(StringRef Constraint) const override;
478 TargetLowering::ConstraintWeight
479 getSingleConstraintMatchWeight(AsmOperandInfo &info,
480 const char *constraint) const override;
481 void LowerAsmOperandForConstraint(SDValue Op,
482 std::string &Constraint,
483 std::vector<SDValue> &Ops,
484 SelectionDAG &DAG) const override;
486 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
487 if (ConstraintCode.size() == 1) {
488 switch(ConstraintCode[0]) {
489 default:
490 break;
491 case 'o':
492 return InlineAsm::Constraint_o;
493 case 'Q':
494 return InlineAsm::Constraint_Q;
495 case 'R':
496 return InlineAsm::Constraint_R;
497 case 'S':
498 return InlineAsm::Constraint_S;
499 case 'T':
500 return InlineAsm::Constraint_T;
503 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
506 Register getRegisterByName(const char *RegName, LLT VT,
507 const MachineFunction &MF) const override;
509 /// If a physical register, this returns the register that receives the
510 /// exception address on entry to an EH pad.
511 Register
512 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
513 return SystemZ::R6D;
516 /// If a physical register, this returns the register that receives the
517 /// exception typeid on entry to a landing pad.
518 Register
519 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
520 return SystemZ::R7D;
523 /// Override to support customized stack guard loading.
524 bool useLoadStackGuardNode() const override {
525 return true;
527 void insertSSPDeclarations(Module &M) const override {
530 MachineBasicBlock *
531 EmitInstrWithCustomInserter(MachineInstr &MI,
532 MachineBasicBlock *BB) const override;
533 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
534 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
535 SelectionDAG &DAG) const override;
536 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
537 SelectionDAG &DAG) const override;
538 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
539 bool allowTruncateForTailCall(Type *, Type *) const override;
540 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
541 bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL,
542 SDValue Val, SDValue *Parts,
543 unsigned NumParts, MVT PartVT,
544 Optional<CallingConv::ID> CC) const override;
545 SDValue
546 joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
547 const SDValue *Parts, unsigned NumParts,
548 MVT PartVT, EVT ValueVT,
549 Optional<CallingConv::ID> CC) const override;
550 SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
551 bool isVarArg,
552 const SmallVectorImpl<ISD::InputArg> &Ins,
553 const SDLoc &DL, SelectionDAG &DAG,
554 SmallVectorImpl<SDValue> &InVals) const override;
555 SDValue LowerCall(CallLoweringInfo &CLI,
556 SmallVectorImpl<SDValue> &InVals) const override;
558 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
559 bool isVarArg,
560 const SmallVectorImpl<ISD::OutputArg> &Outs,
561 LLVMContext &Context) const override;
562 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
563 const SmallVectorImpl<ISD::OutputArg> &Outs,
564 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
565 SelectionDAG &DAG) const override;
566 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
568 /// Determine which of the bits specified in Mask are known to be either
569 /// zero or one and return them in the KnownZero/KnownOne bitsets.
570 void computeKnownBitsForTargetNode(const SDValue Op,
571 KnownBits &Known,
572 const APInt &DemandedElts,
573 const SelectionDAG &DAG,
574 unsigned Depth = 0) const override;
576 /// Determine the number of bits in the operation that are sign bits.
577 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
578 const APInt &DemandedElts,
579 const SelectionDAG &DAG,
580 unsigned Depth) const override;
582 ISD::NodeType getExtendForAtomicOps() const override {
583 return ISD::ANY_EXTEND;
585 ISD::NodeType getExtendForAtomicCmpSwapArg() const override {
586 return ISD::ZERO_EXTEND;
589 bool supportSwiftError() const override {
590 return true;
593 unsigned getStackProbeSize(MachineFunction &MF) const;
595 private:
596 const SystemZSubtarget &Subtarget;
598 // Implement LowerOperation for individual opcodes.
599 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
600 const SDLoc &DL, EVT VT,
601 SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
602 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
603 EVT VT, ISD::CondCode CC,
604 SDValue CmpOp0, SDValue CmpOp1,
605 SDValue Chain = SDValue(),
606 bool IsSignaling = false) const;
607 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
608 SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
609 bool IsSignaling) const;
610 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
611 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
612 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
613 SelectionDAG &DAG) const;
614 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
615 SelectionDAG &DAG, unsigned Opcode,
616 SDValue GOTOffset) const;
617 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
618 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
619 SelectionDAG &DAG) const;
620 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
621 SelectionDAG &DAG) const;
622 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
623 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
624 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
625 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
626 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
627 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
628 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
629 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
630 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
631 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
632 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
633 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
634 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
635 SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
636 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
637 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
638 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
639 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
640 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
641 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
642 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
643 unsigned Opcode) const;
644 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
645 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
646 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
647 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
648 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
649 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
650 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
651 bool isVectorElementLoad(SDValue Op) const;
652 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
653 SmallVectorImpl<SDValue> &Elems) const;
654 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
655 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
656 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
657 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
658 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
659 SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
660 SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
661 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
663 bool canTreatAsByteVector(EVT VT) const;
664 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
665 unsigned Index, DAGCombinerInfo &DCI,
666 bool Force) const;
667 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
668 DAGCombinerInfo &DCI) const;
669 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
670 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
671 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
672 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
673 bool canLoadStoreByteSwapped(EVT VT) const;
674 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
675 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
676 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
677 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
678 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
679 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
680 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
681 SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
682 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
683 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
684 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
685 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
686 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
687 SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
689 SDValue unwrapAddress(SDValue N) const override;
691 // If the last instruction before MBBI in MBB was some form of COMPARE,
692 // try to replace it with a COMPARE AND BRANCH just before MBBI.
693 // CCMask and Target are the BRC-like operands for the branch.
694 // Return true if the change was made.
695 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
696 MachineBasicBlock::iterator MBBI,
697 unsigned CCMask,
698 MachineBasicBlock *Target) const;
700 // Implement EmitInstrWithCustomInserter for individual operation types.
701 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
702 MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
703 unsigned StoreOpcode, unsigned STOCOpcode,
704 bool Invert) const;
705 MachineBasicBlock *emitPair128(MachineInstr &MI,
706 MachineBasicBlock *MBB) const;
707 MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
708 bool ClearEven) const;
709 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
710 MachineBasicBlock *BB,
711 unsigned BinOpcode, unsigned BitSize,
712 bool Invert = false) const;
713 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
714 MachineBasicBlock *MBB,
715 unsigned CompareOpcode,
716 unsigned KeepOldMask,
717 unsigned BitSize) const;
718 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
719 MachineBasicBlock *BB) const;
720 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
721 unsigned Opcode) const;
722 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
723 unsigned Opcode) const;
724 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
725 MachineBasicBlock *MBB,
726 unsigned Opcode, bool NoFloat) const;
727 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
728 MachineBasicBlock *MBB,
729 unsigned Opcode) const;
730 MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
731 MachineBasicBlock *MBB) const;
733 SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const;
735 MachineMemOperand::Flags
736 getTargetMMOFlags(const Instruction &I) const override;
737 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
740 struct SystemZVectorConstantInfo {
741 private:
742 APInt IntBits; // The 128 bits as an integer.
743 APInt SplatBits; // Smallest splat value.
744 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
745 unsigned SplatBitSize = 0;
746 bool isFP128 = false;
748 public:
749 unsigned Opcode = 0;
750 SmallVector<unsigned, 2> OpVals;
751 MVT VecVT;
752 SystemZVectorConstantInfo(APFloat FPImm);
753 SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
754 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
757 } // end namespace llvm
759 #endif