[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZSelectionDAGInfo.cpp
blob4a9ea69d101c2eaa4853879c343f1820d7bd3ee2
1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZSelectionDAGInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZTargetMachine.h"
14 #include "llvm/CodeGen/SelectionDAG.h"
16 using namespace llvm;
18 #define DEBUG_TYPE "systemz-selectiondag-info"
20 // Decide whether it is best to use a loop or straight-line code for
21 // a block operation of Size bytes with source address Src and destination
22 // address Dest. Sequence is the opcode to use for straight-line code
23 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
24 // Return the chain for the completed operation.
25 static SDValue emitMemMem(SelectionDAG &DAG, const SDLoc &DL, unsigned Sequence,
26 unsigned Loop, SDValue Chain, SDValue Dst,
27 SDValue Src, uint64_t Size) {
28 EVT PtrVT = Src.getValueType();
29 // The heuristic we use is to prefer loops for anything that would
30 // require 7 or more MVCs. With these kinds of sizes there isn't
31 // much to choose between straight-line code and looping code,
32 // since the time will be dominated by the MVCs themselves.
33 // However, the loop has 4 or 5 instructions (depending on whether
34 // the base addresses can be proved equal), so there doesn't seem
35 // much point using a loop for 5 * 256 bytes or fewer. Anything in
36 // the range (5 * 256, 6 * 256) will need another instruction after
37 // the loop, so it doesn't seem worth using a loop then either.
38 // The next value up, 6 * 256, can be implemented in the same
39 // number of straight-line MVCs as 6 * 256 - 1.
40 if (Size > 6 * 256)
41 return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
42 DAG.getConstant(Size, DL, PtrVT),
43 DAG.getConstant(Size / 256, DL, PtrVT));
44 return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
45 DAG.getConstant(Size, DL, PtrVT));
48 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy(
49 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, SDValue Src,
50 SDValue Size, Align Alignment, bool IsVolatile, bool AlwaysInline,
51 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
52 if (IsVolatile)
53 return SDValue();
55 if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
56 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
57 Chain, Dst, Src, CSize->getZExtValue());
58 return SDValue();
61 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
62 // Chain, Dst, ByteVal and Size. These cases are expected to use
63 // MVI, MVHHI, MVHI and MVGHI respectively.
64 static SDValue memsetStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
65 SDValue Dst, uint64_t ByteVal, uint64_t Size,
66 unsigned Align, MachinePointerInfo DstPtrInfo) {
67 uint64_t StoreVal = ByteVal;
68 for (unsigned I = 1; I < Size; ++I)
69 StoreVal |= ByteVal << (I * 8);
70 return DAG.getStore(
71 Chain, DL, DAG.getConstant(StoreVal, DL, MVT::getIntegerVT(Size * 8)),
72 Dst, DstPtrInfo, Align);
75 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemset(
76 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst,
77 SDValue Byte, SDValue Size, Align Alignment, bool IsVolatile,
78 MachinePointerInfo DstPtrInfo) const {
79 EVT PtrVT = Dst.getValueType();
81 if (IsVolatile)
82 return SDValue();
84 auto *CByte = dyn_cast<ConstantSDNode>(Byte);
85 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
86 uint64_t Bytes = CSize->getZExtValue();
87 if (Bytes == 0)
88 return SDValue();
89 if (CByte) {
90 // Handle cases that can be done using at most two of
91 // MVI, MVHI, MVHHI and MVGHI. The latter two can only be
92 // used if ByteVal is all zeros or all ones; in other casees,
93 // we can move at most 2 halfwords.
94 uint64_t ByteVal = CByte->getZExtValue();
95 if (ByteVal == 0 || ByteVal == 255 ?
96 Bytes <= 16 && countPopulation(Bytes) <= 2 :
97 Bytes <= 4) {
98 unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
99 unsigned Size2 = Bytes - Size1;
100 SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
101 Alignment.value(), DstPtrInfo);
102 if (Size2 == 0)
103 return Chain1;
104 Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
105 DAG.getConstant(Size1, DL, PtrVT));
106 DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
107 SDValue Chain2 = memsetStore(
108 DAG, DL, Chain, Dst, ByteVal, Size2,
109 std::min((unsigned)Alignment.value(), Size1), DstPtrInfo);
110 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
112 } else {
113 // Handle one and two bytes using STC.
114 if (Bytes <= 2) {
115 SDValue Chain1 =
116 DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Alignment);
117 if (Bytes == 1)
118 return Chain1;
119 SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
120 DAG.getConstant(1, DL, PtrVT));
121 SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
122 DstPtrInfo.getWithOffset(1), Align(1));
123 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
126 assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
128 // Handle the special case of a memset of 0, which can use XC.
129 if (CByte && CByte->getZExtValue() == 0)
130 return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
131 Chain, Dst, Dst, Bytes);
133 // Copy the byte to the first location and then use MVC to copy
134 // it to the rest.
135 Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Alignment);
136 SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
137 DAG.getConstant(1, DL, PtrVT));
138 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
139 Chain, DstPlus1, Dst, Bytes - 1);
142 // Variable length
143 if (CByte && CByte->getZExtValue() == 0) {
144 // Handle the special case of a variable length memset of 0 with XC.
145 SDValue LenMinus1 = DAG.getNode(ISD::ADD, DL, MVT::i64,
146 DAG.getZExtOrTrunc(Size, DL, MVT::i64),
147 DAG.getConstant(-1, DL, MVT::i64));
148 SDValue TripC = DAG.getNode(ISD::SRL, DL, MVT::i64, LenMinus1,
149 DAG.getConstant(8, DL, MVT::i64));
150 return DAG.getNode(SystemZISD::XC_LOOP, DL, MVT::Other, Chain, Dst, Dst,
151 LenMinus1, TripC);
153 return SDValue();
156 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
157 // deciding whether to use a loop or straight-line code.
158 static SDValue emitCLC(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
159 SDValue Src1, SDValue Src2, uint64_t Size) {
160 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
161 EVT PtrVT = Src1.getValueType();
162 // A two-CLC sequence is a clear win over a loop, not least because it
163 // needs only one branch. A three-CLC sequence needs the same number
164 // of branches as a loop (i.e. 2), but is shorter. That brings us to
165 // lengths greater than 768 bytes. It seems relatively likely that
166 // a difference will be found within the first 768 bytes, so we just
167 // optimize for the smallest number of branch instructions, in order
168 // to avoid polluting the prediction buffer too much. A loop only ever
169 // needs 2 branches, whereas a straight-line sequence would need 3 or more.
170 if (Size > 3 * 256)
171 return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
172 DAG.getConstant(Size, DL, PtrVT),
173 DAG.getConstant(Size / 256, DL, PtrVT));
174 return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
175 DAG.getConstant(Size, DL, PtrVT));
178 // Convert the current CC value into an integer that is 0 if CC == 0,
179 // greater than zero if CC == 1 and less than zero if CC >= 2.
180 // The sequence starts with IPM, which puts CC into bits 29 and 28
181 // of an integer and clears bits 30 and 31.
182 static SDValue addIPMSequence(const SDLoc &DL, SDValue CCReg,
183 SelectionDAG &DAG) {
184 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
185 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, IPM,
186 DAG.getConstant(30 - SystemZ::IPM_CC, DL, MVT::i32));
187 SDValue SRA = DAG.getNode(ISD::SRA, DL, MVT::i32, SHL,
188 DAG.getConstant(30, DL, MVT::i32));
189 return SRA;
192 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp(
193 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
194 SDValue Src2, SDValue Size, MachinePointerInfo Op1PtrInfo,
195 MachinePointerInfo Op2PtrInfo) const {
196 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
197 uint64_t Bytes = CSize->getZExtValue();
198 assert(Bytes > 0 && "Caller should have handled 0-size case");
199 // Swap operands to invert CC == 1 vs. CC == 2 cases.
200 SDValue CCReg = emitCLC(DAG, DL, Chain, Src2, Src1, Bytes);
201 Chain = CCReg.getValue(1);
202 return std::make_pair(addIPMSequence(DL, CCReg, DAG), Chain);
204 return std::make_pair(SDValue(), SDValue());
207 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr(
208 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
209 SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const {
210 // Use SRST to find the character. End is its address on success.
211 EVT PtrVT = Src.getValueType();
212 SDVTList VTs = DAG.getVTList(PtrVT, MVT::i32, MVT::Other);
213 Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
214 Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
215 Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
216 DAG.getConstant(255, DL, MVT::i32));
217 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
218 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
219 Limit, Src, Char);
220 SDValue CCReg = End.getValue(1);
221 Chain = End.getValue(2);
223 // Now select between End and null, depending on whether the character
224 // was found.
225 SDValue Ops[] = {
226 End, DAG.getConstant(0, DL, PtrVT),
227 DAG.getTargetConstant(SystemZ::CCMASK_SRST, DL, MVT::i32),
228 DAG.getTargetConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32), CCReg};
229 End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, PtrVT, Ops);
230 return std::make_pair(End, Chain);
233 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy(
234 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest,
235 SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo,
236 bool isStpcpy) const {
237 SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
238 SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
239 DAG.getConstant(0, DL, MVT::i32));
240 return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
243 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp(
244 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
245 SDValue Src2, MachinePointerInfo Op1PtrInfo,
246 MachinePointerInfo Op2PtrInfo) const {
247 SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::i32, MVT::Other);
248 // Swap operands to invert CC == 1 vs. CC == 2 cases.
249 SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src2, Src1,
250 DAG.getConstant(0, DL, MVT::i32));
251 SDValue CCReg = Unused.getValue(1);
252 Chain = Unused.getValue(2);
253 return std::make_pair(addIPMSequence(DL, CCReg, DAG), Chain);
256 // Search from Src for a null character, stopping once Src reaches Limit.
257 // Return a pair of values, the first being the number of nonnull characters
258 // and the second being the out chain.
260 // This can be used for strlen by setting Limit to 0.
261 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG,
262 const SDLoc &DL,
263 SDValue Chain, SDValue Src,
264 SDValue Limit) {
265 EVT PtrVT = Src.getValueType();
266 SDVTList VTs = DAG.getVTList(PtrVT, MVT::i32, MVT::Other);
267 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
268 Limit, Src, DAG.getConstant(0, DL, MVT::i32));
269 Chain = End.getValue(2);
270 SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
271 return std::make_pair(Len, Chain);
274 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen(
275 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
276 MachinePointerInfo SrcPtrInfo) const {
277 EVT PtrVT = Src.getValueType();
278 return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT));
281 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen(
282 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
283 SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const {
284 EVT PtrVT = Src.getValueType();
285 MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
286 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
287 return getBoundedStrlen(DAG, DL, Chain, Src, Limit);