1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
14 //===----------------------------------------------------------------------===//
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
25 #define DEBUG_TYPE "systemztti"
27 //===----------------------------------------------------------------------===//
29 // SystemZ cost model.
31 //===----------------------------------------------------------------------===//
33 InstructionCost
SystemZTTIImpl::getIntImmCost(const APInt
&Imm
, Type
*Ty
,
34 TTI::TargetCostKind CostKind
) {
35 assert(Ty
->isIntegerTy());
37 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
38 // There is no cost model for constants with a bit size of 0. Return TCC_Free
39 // here, so that constant hoisting will ignore this constant.
42 // No cost model for operations on integers larger than 64 bit implemented yet.
49 if (Imm
.getBitWidth() <= 64) {
50 // Constants loaded via lgfi.
51 if (isInt
<32>(Imm
.getSExtValue()))
52 return TTI::TCC_Basic
;
53 // Constants loaded via llilf.
54 if (isUInt
<32>(Imm
.getZExtValue()))
55 return TTI::TCC_Basic
;
56 // Constants loaded via llihf:
57 if ((Imm
.getZExtValue() & 0xffffffff) == 0)
58 return TTI::TCC_Basic
;
60 return 2 * TTI::TCC_Basic
;
63 return 4 * TTI::TCC_Basic
;
66 InstructionCost
SystemZTTIImpl::getIntImmCostInst(unsigned Opcode
, unsigned Idx
,
67 const APInt
&Imm
, Type
*Ty
,
68 TTI::TargetCostKind CostKind
,
70 assert(Ty
->isIntegerTy());
72 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
73 // There is no cost model for constants with a bit size of 0. Return TCC_Free
74 // here, so that constant hoisting will ignore this constant.
77 // No cost model for operations on integers larger than 64 bit implemented yet.
84 case Instruction::GetElementPtr
:
85 // Always hoist the base address of a GetElementPtr. This prevents the
86 // creation of new constants for every base constant that gets constant
87 // folded with the offset.
89 return 2 * TTI::TCC_Basic
;
91 case Instruction::Store
:
92 if (Idx
== 0 && Imm
.getBitWidth() <= 64) {
93 // Any 8-bit immediate store can by implemented via mvi.
96 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
97 if (isInt
<16>(Imm
.getSExtValue()))
101 case Instruction::ICmp
:
102 if (Idx
== 1 && Imm
.getBitWidth() <= 64) {
103 // Comparisons against signed 32-bit immediates implemented via cgfi.
104 if (isInt
<32>(Imm
.getSExtValue()))
105 return TTI::TCC_Free
;
106 // Comparisons against unsigned 32-bit immediates implemented via clgfi.
107 if (isUInt
<32>(Imm
.getZExtValue()))
108 return TTI::TCC_Free
;
111 case Instruction::Add
:
112 case Instruction::Sub
:
113 if (Idx
== 1 && Imm
.getBitWidth() <= 64) {
114 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
115 if (isUInt
<32>(Imm
.getZExtValue()))
116 return TTI::TCC_Free
;
117 // Or their negation, by swapping addition vs. subtraction.
118 if (isUInt
<32>(-Imm
.getSExtValue()))
119 return TTI::TCC_Free
;
122 case Instruction::Mul
:
123 if (Idx
== 1 && Imm
.getBitWidth() <= 64) {
124 // We use msgfi to multiply by 32-bit signed immediates.
125 if (isInt
<32>(Imm
.getSExtValue()))
126 return TTI::TCC_Free
;
129 case Instruction::Or
:
130 case Instruction::Xor
:
131 if (Idx
== 1 && Imm
.getBitWidth() <= 64) {
132 // Masks supported by oilf/xilf.
133 if (isUInt
<32>(Imm
.getZExtValue()))
134 return TTI::TCC_Free
;
135 // Masks supported by oihf/xihf.
136 if ((Imm
.getZExtValue() & 0xffffffff) == 0)
137 return TTI::TCC_Free
;
140 case Instruction::And
:
141 if (Idx
== 1 && Imm
.getBitWidth() <= 64) {
142 // Any 32-bit AND operation can by implemented via nilf.
144 return TTI::TCC_Free
;
145 // 64-bit masks supported by nilf.
146 if (isUInt
<32>(~Imm
.getZExtValue()))
147 return TTI::TCC_Free
;
148 // 64-bit masks supported by nilh.
149 if ((Imm
.getZExtValue() & 0xffffffff) == 0xffffffff)
150 return TTI::TCC_Free
;
151 // Some 64-bit AND operations can be implemented via risbg.
152 const SystemZInstrInfo
*TII
= ST
->getInstrInfo();
154 if (TII
->isRxSBGMask(Imm
.getZExtValue(), BitSize
, Start
, End
))
155 return TTI::TCC_Free
;
158 case Instruction::Shl
:
159 case Instruction::LShr
:
160 case Instruction::AShr
:
161 // Always return TCC_Free for the shift value of a shift instruction.
163 return TTI::TCC_Free
;
165 case Instruction::UDiv
:
166 case Instruction::SDiv
:
167 case Instruction::URem
:
168 case Instruction::SRem
:
169 case Instruction::Trunc
:
170 case Instruction::ZExt
:
171 case Instruction::SExt
:
172 case Instruction::IntToPtr
:
173 case Instruction::PtrToInt
:
174 case Instruction::BitCast
:
175 case Instruction::PHI
:
176 case Instruction::Call
:
177 case Instruction::Select
:
178 case Instruction::Ret
:
179 case Instruction::Load
:
183 return SystemZTTIImpl::getIntImmCost(Imm
, Ty
, CostKind
);
187 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID
, unsigned Idx
,
188 const APInt
&Imm
, Type
*Ty
,
189 TTI::TargetCostKind CostKind
) {
190 assert(Ty
->isIntegerTy());
192 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
193 // There is no cost model for constants with a bit size of 0. Return TCC_Free
194 // here, so that constant hoisting will ignore this constant.
196 return TTI::TCC_Free
;
197 // No cost model for operations on integers larger than 64 bit implemented yet.
199 return TTI::TCC_Free
;
203 return TTI::TCC_Free
;
204 case Intrinsic::sadd_with_overflow
:
205 case Intrinsic::uadd_with_overflow
:
206 case Intrinsic::ssub_with_overflow
:
207 case Intrinsic::usub_with_overflow
:
208 // These get expanded to include a normal addition/subtraction.
209 if (Idx
== 1 && Imm
.getBitWidth() <= 64) {
210 if (isUInt
<32>(Imm
.getZExtValue()))
211 return TTI::TCC_Free
;
212 if (isUInt
<32>(-Imm
.getSExtValue()))
213 return TTI::TCC_Free
;
216 case Intrinsic::smul_with_overflow
:
217 case Intrinsic::umul_with_overflow
:
218 // These get expanded to include a normal multiplication.
219 if (Idx
== 1 && Imm
.getBitWidth() <= 64) {
220 if (isInt
<32>(Imm
.getSExtValue()))
221 return TTI::TCC_Free
;
224 case Intrinsic::experimental_stackmap
:
225 if ((Idx
< 2) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
226 return TTI::TCC_Free
;
228 case Intrinsic::experimental_patchpoint_void
:
229 case Intrinsic::experimental_patchpoint_i64
:
230 if ((Idx
< 4) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
231 return TTI::TCC_Free
;
234 return SystemZTTIImpl::getIntImmCost(Imm
, Ty
, CostKind
);
237 TargetTransformInfo::PopcntSupportKind
238 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth
) {
239 assert(isPowerOf2_32(TyWidth
) && "Type width must be power of 2");
240 if (ST
->hasPopulationCount() && TyWidth
<= 64)
241 return TTI::PSK_FastHardware
;
242 return TTI::PSK_Software
;
245 void SystemZTTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
246 TTI::UnrollingPreferences
&UP
,
247 OptimizationRemarkEmitter
*ORE
) {
248 // Find out if L contains a call, what the machine instruction count
249 // estimate is, and how many stores there are.
250 bool HasCall
= false;
251 InstructionCost NumStores
= 0;
252 for (auto &BB
: L
->blocks())
253 for (auto &I
: *BB
) {
254 if (isa
<CallInst
>(&I
) || isa
<InvokeInst
>(&I
)) {
255 if (const Function
*F
= cast
<CallBase
>(I
).getCalledFunction()) {
256 if (isLoweredToCall(F
))
258 if (F
->getIntrinsicID() == Intrinsic::memcpy
||
259 F
->getIntrinsicID() == Intrinsic::memset
)
261 } else { // indirect call.
265 if (isa
<StoreInst
>(&I
)) {
266 Type
*MemAccessTy
= I
.getOperand(0)->getType();
267 NumStores
+= getMemoryOpCost(Instruction::Store
, MemAccessTy
, None
, 0,
268 TTI::TCK_RecipThroughput
);
272 // The z13 processor will run out of store tags if too many stores
273 // are fed into it too quickly. Therefore make sure there are not
274 // too many stores in the resulting unrolled loop.
275 unsigned const NumStoresVal
= *NumStores
.getValue();
276 unsigned const Max
= (NumStoresVal
? (12 / NumStoresVal
) : UINT_MAX
);
279 // Only allow full unrolling if loop has any calls.
280 UP
.FullUnrollMaxCount
= Max
;
286 if (UP
.MaxCount
<= 1)
289 // Allow partial and runtime trip count unrolling.
290 UP
.Partial
= UP
.Runtime
= true;
292 UP
.PartialThreshold
= 75;
293 UP
.DefaultUnrollRuntimeCount
= 4;
295 // Allow expensive instructions in the pre-header of the loop.
296 UP
.AllowExpensiveTripCount
= true;
301 void SystemZTTIImpl::getPeelingPreferences(Loop
*L
, ScalarEvolution
&SE
,
302 TTI::PeelingPreferences
&PP
) {
303 BaseT::getPeelingPreferences(L
, SE
, PP
);
306 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost
&C1
,
307 TargetTransformInfo::LSRCost
&C2
) {
308 // SystemZ specific: check instruction count (first), and don't care about
309 // ImmCost, since offsets are checked explicitly.
310 return std::tie(C1
.Insns
, C1
.NumRegs
, C1
.AddRecCost
,
311 C1
.NumIVMuls
, C1
.NumBaseAdds
,
312 C1
.ScaleCost
, C1
.SetupCost
) <
313 std::tie(C2
.Insns
, C2
.NumRegs
, C2
.AddRecCost
,
314 C2
.NumIVMuls
, C2
.NumBaseAdds
,
315 C2
.ScaleCost
, C2
.SetupCost
);
318 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID
) const {
319 bool Vector
= (ClassID
== 1);
321 // Discount the stack pointer. Also leave out %r0, since it can't
322 // be used in an address.
330 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K
) const {
332 case TargetTransformInfo::RGK_Scalar
:
333 return TypeSize::getFixed(64);
334 case TargetTransformInfo::RGK_FixedWidthVector
:
335 return TypeSize::getFixed(ST
->hasVector() ? 128 : 0);
336 case TargetTransformInfo::RGK_ScalableVector
:
337 return TypeSize::getScalable(0);
340 llvm_unreachable("Unsupported register kind");
343 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses
,
344 unsigned NumStridedMemAccesses
,
345 unsigned NumPrefetches
,
346 bool HasCall
) const {
347 // Don't prefetch a loop with many far apart accesses.
348 if (NumPrefetches
> 16)
351 // Emit prefetch instructions for smaller strides in cases where we think
352 // the hardware prefetcher might not be able to keep up.
353 if (NumStridedMemAccesses
> 32 && !HasCall
&&
354 (NumMemAccesses
- NumStridedMemAccesses
) * 32 <= NumStridedMemAccesses
)
357 return ST
->hasMiscellaneousExtensions3() ? 8192 : 2048;
360 bool SystemZTTIImpl::hasDivRemOp(Type
*DataType
, bool IsSigned
) {
361 EVT VT
= TLI
->getValueType(DL
, DataType
);
362 return (VT
.isScalarInteger() && TLI
->isTypeLegal(VT
));
365 // Return the bit size for the scalar type or vector element
366 // type. getScalarSizeInBits() returns 0 for a pointer type.
367 static unsigned getScalarSizeInBits(Type
*Ty
) {
369 (Ty
->isPtrOrPtrVectorTy() ? 64U : Ty
->getScalarSizeInBits());
370 assert(Size
> 0 && "Element must have non-zero size.");
374 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
375 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
377 static unsigned getNumVectorRegs(Type
*Ty
) {
378 auto *VTy
= cast
<FixedVectorType
>(Ty
);
379 unsigned WideBits
= getScalarSizeInBits(Ty
) * VTy
->getNumElements();
380 assert(WideBits
> 0 && "Could not compute size of vector");
381 return ((WideBits
% 128U) ? ((WideBits
/ 128U) + 1) : (WideBits
/ 128U));
384 InstructionCost
SystemZTTIImpl::getArithmeticInstrCost(
385 unsigned Opcode
, Type
*Ty
, TTI::TargetCostKind CostKind
,
386 TTI::OperandValueKind Op1Info
, TTI::OperandValueKind Op2Info
,
387 TTI::OperandValueProperties Opd1PropInfo
,
388 TTI::OperandValueProperties Opd2PropInfo
, ArrayRef
<const Value
*> Args
,
389 const Instruction
*CxtI
) {
391 // TODO: Handle more cost kinds.
392 if (CostKind
!= TTI::TCK_RecipThroughput
)
393 return BaseT::getArithmeticInstrCost(Opcode
, Ty
, CostKind
, Op1Info
,
394 Op2Info
, Opd1PropInfo
,
395 Opd2PropInfo
, Args
, CxtI
);
397 // TODO: return a good value for BB-VECTORIZER that includes the
398 // immediate loads, which we do not want to count for the loop
399 // vectorizer, since they are hopefully hoisted out of the loop. This
400 // would require a new parameter 'InLoop', but not sure if constant
401 // args are common enough to motivate this.
403 unsigned ScalarBits
= Ty
->getScalarSizeInBits();
405 // There are thre cases of division and remainder: Dividing with a register
406 // needs a divide instruction. A divisor which is a power of two constant
407 // can be implemented with a sequence of shifts. Any other constant needs a
408 // multiply and shifts.
409 const unsigned DivInstrCost
= 20;
410 const unsigned DivMulSeqCost
= 10;
411 const unsigned SDivPow2Cost
= 4;
414 Opcode
== Instruction::SDiv
|| Opcode
== Instruction::SRem
;
415 bool UnsignedDivRem
=
416 Opcode
== Instruction::UDiv
|| Opcode
== Instruction::URem
;
418 // Check for a constant divisor.
419 bool DivRemConst
= false;
420 bool DivRemConstPow2
= false;
421 if ((SignedDivRem
|| UnsignedDivRem
) && Args
.size() == 2) {
422 if (const Constant
*C
= dyn_cast
<Constant
>(Args
[1])) {
423 const ConstantInt
*CVal
=
424 (C
->getType()->isVectorTy()
425 ? dyn_cast_or_null
<const ConstantInt
>(C
->getSplatValue())
426 : dyn_cast
<const ConstantInt
>(C
));
427 if (CVal
!= nullptr &&
428 (CVal
->getValue().isPowerOf2() || (-CVal
->getValue()).isPowerOf2()))
429 DivRemConstPow2
= true;
435 if (!Ty
->isVectorTy()) {
436 // These FP operations are supported with a dedicated instruction for
437 // float, double and fp128 (base implementation assumes float generally
439 if (Opcode
== Instruction::FAdd
|| Opcode
== Instruction::FSub
||
440 Opcode
== Instruction::FMul
|| Opcode
== Instruction::FDiv
)
443 // There is no native support for FRem.
444 if (Opcode
== Instruction::FRem
)
447 // Give discount for some combined logical operations if supported.
448 if (Args
.size() == 2 && ST
->hasMiscellaneousExtensions3()) {
449 if (Opcode
== Instruction::Xor
) {
450 for (const Value
*A
: Args
) {
451 if (const Instruction
*I
= dyn_cast
<Instruction
>(A
))
452 if (I
->hasOneUse() &&
453 (I
->getOpcode() == Instruction::And
||
454 I
->getOpcode() == Instruction::Or
||
455 I
->getOpcode() == Instruction::Xor
))
459 else if (Opcode
== Instruction::Or
|| Opcode
== Instruction::And
) {
460 for (const Value
*A
: Args
) {
461 if (const Instruction
*I
= dyn_cast
<Instruction
>(A
))
462 if (I
->hasOneUse() && I
->getOpcode() == Instruction::Xor
)
468 // Or requires one instruction, although it has custom handling for i64.
469 if (Opcode
== Instruction::Or
)
472 if (Opcode
== Instruction::Xor
&& ScalarBits
== 1) {
473 if (ST
->hasLoadStoreOnCond2())
474 return 5; // 2 * (li 0; loc 1); xor
475 return 7; // 2 * ipm sequences ; xor ; shift ; compare
479 return (SignedDivRem
? SDivPow2Cost
: 1);
481 return DivMulSeqCost
;
482 if (SignedDivRem
|| UnsignedDivRem
)
485 else if (ST
->hasVector()) {
486 auto *VTy
= cast
<FixedVectorType
>(Ty
);
487 unsigned VF
= VTy
->getNumElements();
488 unsigned NumVectors
= getNumVectorRegs(Ty
);
490 // These vector operations are custom handled, but are still supported
491 // with one instruction per vector, regardless of element size.
492 if (Opcode
== Instruction::Shl
|| Opcode
== Instruction::LShr
||
493 Opcode
== Instruction::AShr
) {
498 return (NumVectors
* (SignedDivRem
? SDivPow2Cost
: 1));
500 SmallVector
<Type
*> Tys(Args
.size(), Ty
);
501 return VF
* DivMulSeqCost
+ getScalarizationOverhead(VTy
, Args
, Tys
);
503 if ((SignedDivRem
|| UnsignedDivRem
) && VF
> 4)
504 // Temporary hack: disable high vectorization factors with integer
505 // division/remainder, which will get scalarized and handled with
506 // GR128 registers. The mischeduler is not clever enough to avoid
510 // These FP operations are supported with a single vector instruction for
511 // double (base implementation assumes float generally costs 2). For
512 // FP128, the scalar cost is 1, and there is no overhead since the values
513 // are already in scalar registers.
514 if (Opcode
== Instruction::FAdd
|| Opcode
== Instruction::FSub
||
515 Opcode
== Instruction::FMul
|| Opcode
== Instruction::FDiv
) {
516 switch (ScalarBits
) {
518 // The vector enhancements facility 1 provides v4f32 instructions.
519 if (ST
->hasVectorEnhancements1())
521 // Return the cost of multiple scalar invocation plus the cost of
522 // inserting and extracting the values.
523 InstructionCost ScalarCost
=
524 getArithmeticInstrCost(Opcode
, Ty
->getScalarType(), CostKind
);
525 SmallVector
<Type
*> Tys(Args
.size(), Ty
);
526 InstructionCost Cost
=
527 (VF
* ScalarCost
) + getScalarizationOverhead(VTy
, Args
, Tys
);
528 // FIXME: VF 2 for these FP operations are currently just as
529 // expensive as for VF 4.
542 // There is no native support for FRem.
543 if (Opcode
== Instruction::FRem
) {
544 SmallVector
<Type
*> Tys(Args
.size(), Ty
);
545 InstructionCost Cost
=
546 (VF
* LIBCALL_COST
) + getScalarizationOverhead(VTy
, Args
, Tys
);
547 // FIXME: VF 2 for float is currently just as expensive as for VF 4.
548 if (VF
== 2 && ScalarBits
== 32)
554 // Fallback to the default implementation.
555 return BaseT::getArithmeticInstrCost(Opcode
, Ty
, CostKind
, Op1Info
, Op2Info
,
556 Opd1PropInfo
, Opd2PropInfo
, Args
, CxtI
);
559 InstructionCost
SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind
,
561 ArrayRef
<int> Mask
, int Index
,
563 Kind
= improveShuffleKindFromMask(Kind
, Mask
);
564 if (ST
->hasVector()) {
565 unsigned NumVectors
= getNumVectorRegs(Tp
);
567 // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
569 // FP128 values are always in scalar registers, so there is no work
570 // involved with a shuffle, except for broadcast. In that case register
571 // moves are done with a single instruction per element.
572 if (Tp
->getScalarType()->isFP128Ty())
573 return (Kind
== TargetTransformInfo::SK_Broadcast
? NumVectors
- 1 : 0);
576 case TargetTransformInfo::SK_ExtractSubvector
:
577 // ExtractSubvector Index indicates start offset.
579 // Extracting a subvector from first index is a noop.
580 return (Index
== 0 ? 0 : NumVectors
);
582 case TargetTransformInfo::SK_Broadcast
:
583 // Loop vectorizer calls here to figure out the extra cost of
584 // broadcasting a loaded value to all elements of a vector. Since vlrep
585 // loads and replicates with a single instruction, adjust the returned
587 return NumVectors
- 1;
591 // SystemZ supports single instruction permutation / replication.
596 return BaseT::getShuffleCost(Kind
, Tp
, Mask
, Index
, SubTp
);
599 // Return the log2 difference of the element sizes of the two vector types.
600 static unsigned getElSizeLog2Diff(Type
*Ty0
, Type
*Ty1
) {
601 unsigned Bits0
= Ty0
->getScalarSizeInBits();
602 unsigned Bits1
= Ty1
->getScalarSizeInBits();
605 return (Log2_32(Bits1
) - Log2_32(Bits0
));
607 return (Log2_32(Bits0
) - Log2_32(Bits1
));
610 // Return the number of instructions needed to truncate SrcTy to DstTy.
611 unsigned SystemZTTIImpl::
612 getVectorTruncCost(Type
*SrcTy
, Type
*DstTy
) {
613 assert (SrcTy
->isVectorTy() && DstTy
->isVectorTy());
614 assert(SrcTy
->getPrimitiveSizeInBits().getFixedSize() >
615 DstTy
->getPrimitiveSizeInBits().getFixedSize() &&
616 "Packing must reduce size of vector type.");
617 assert(cast
<FixedVectorType
>(SrcTy
)->getNumElements() ==
618 cast
<FixedVectorType
>(DstTy
)->getNumElements() &&
619 "Packing should not change number of elements.");
621 // TODO: Since fp32 is expanded, the extract cost should always be 0.
623 unsigned NumParts
= getNumVectorRegs(SrcTy
);
625 // Up to 2 vector registers can be truncated efficiently with pack or
626 // permute. The latter requires an immediate mask to be loaded, which
627 // typically gets hoisted out of a loop. TODO: return a good value for
628 // BB-VECTORIZER that includes the immediate loads, which we do not want
629 // to count for the loop vectorizer.
633 unsigned Log2Diff
= getElSizeLog2Diff(SrcTy
, DstTy
);
634 unsigned VF
= cast
<FixedVectorType
>(SrcTy
)->getNumElements();
635 for (unsigned P
= 0; P
< Log2Diff
; ++P
) {
641 // Currently, a general mix of permutes and pack instructions is output by
642 // isel, which follow the cost computation above except for this case which
643 // is one instruction less:
644 if (VF
== 8 && SrcTy
->getScalarSizeInBits() == 64 &&
645 DstTy
->getScalarSizeInBits() == 8)
651 // Return the cost of converting a vector bitmask produced by a compare
652 // (SrcTy), to the type of the select or extend instruction (DstTy).
653 unsigned SystemZTTIImpl::
654 getVectorBitmaskConversionCost(Type
*SrcTy
, Type
*DstTy
) {
655 assert (SrcTy
->isVectorTy() && DstTy
->isVectorTy() &&
656 "Should only be called with vector types.");
658 unsigned PackCost
= 0;
659 unsigned SrcScalarBits
= SrcTy
->getScalarSizeInBits();
660 unsigned DstScalarBits
= DstTy
->getScalarSizeInBits();
661 unsigned Log2Diff
= getElSizeLog2Diff(SrcTy
, DstTy
);
662 if (SrcScalarBits
> DstScalarBits
)
663 // The bitmask will be truncated.
664 PackCost
= getVectorTruncCost(SrcTy
, DstTy
);
665 else if (SrcScalarBits
< DstScalarBits
) {
666 unsigned DstNumParts
= getNumVectorRegs(DstTy
);
667 // Each vector select needs its part of the bitmask unpacked.
668 PackCost
= Log2Diff
* DstNumParts
;
669 // Extra cost for moving part of mask before unpacking.
670 PackCost
+= DstNumParts
- 1;
676 // Return the type of the compared operands. This is needed to compute the
677 // cost for a Select / ZExt or SExt instruction.
678 static Type
*getCmpOpsType(const Instruction
*I
, unsigned VF
= 1) {
679 Type
*OpTy
= nullptr;
680 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
->getOperand(0)))
681 OpTy
= CI
->getOperand(0)->getType();
682 else if (Instruction
*LogicI
= dyn_cast
<Instruction
>(I
->getOperand(0)))
683 if (LogicI
->getNumOperands() == 2)
684 if (CmpInst
*CI0
= dyn_cast
<CmpInst
>(LogicI
->getOperand(0)))
685 if (isa
<CmpInst
>(LogicI
->getOperand(1)))
686 OpTy
= CI0
->getOperand(0)->getType();
688 if (OpTy
!= nullptr) {
690 assert (!OpTy
->isVectorTy() && "Expected scalar type");
693 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
694 // be either scalar or already vectorized with a same or lesser VF.
695 Type
*ElTy
= OpTy
->getScalarType();
696 return FixedVectorType::get(ElTy
, VF
);
702 // Get the cost of converting a boolean vector to a vector with same width
703 // and element size as Dst, plus the cost of zero extending if needed.
704 unsigned SystemZTTIImpl::
705 getBoolVecToIntConversionCost(unsigned Opcode
, Type
*Dst
,
706 const Instruction
*I
) {
707 auto *DstVTy
= cast
<FixedVectorType
>(Dst
);
708 unsigned VF
= DstVTy
->getNumElements();
710 // If we know what the widths of the compared operands, get any cost of
711 // converting it to match Dst. Otherwise assume same widths.
712 Type
*CmpOpTy
= ((I
!= nullptr) ? getCmpOpsType(I
, VF
) : nullptr);
713 if (CmpOpTy
!= nullptr)
714 Cost
= getVectorBitmaskConversionCost(CmpOpTy
, Dst
);
715 if (Opcode
== Instruction::ZExt
|| Opcode
== Instruction::UIToFP
)
716 // One 'vn' per dst vector with an immediate mask.
717 Cost
+= getNumVectorRegs(Dst
);
721 InstructionCost
SystemZTTIImpl::getCastInstrCost(unsigned Opcode
, Type
*Dst
,
723 TTI::CastContextHint CCH
,
724 TTI::TargetCostKind CostKind
,
725 const Instruction
*I
) {
726 // FIXME: Can the logic below also be used for these cost kinds?
727 if (CostKind
== TTI::TCK_CodeSize
|| CostKind
== TTI::TCK_SizeAndLatency
) {
728 auto BaseCost
= BaseT::getCastInstrCost(Opcode
, Dst
, Src
, CCH
, CostKind
, I
);
729 return BaseCost
== 0 ? BaseCost
: 1;
732 unsigned DstScalarBits
= Dst
->getScalarSizeInBits();
733 unsigned SrcScalarBits
= Src
->getScalarSizeInBits();
735 if (!Src
->isVectorTy()) {
736 assert (!Dst
->isVectorTy());
738 if (Opcode
== Instruction::SIToFP
|| Opcode
== Instruction::UIToFP
) {
739 if (SrcScalarBits
>= 32 ||
740 (I
!= nullptr && isa
<LoadInst
>(I
->getOperand(0))))
742 return SrcScalarBits
> 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
745 if ((Opcode
== Instruction::ZExt
|| Opcode
== Instruction::SExt
) &&
746 Src
->isIntegerTy(1)) {
747 if (ST
->hasLoadStoreOnCond2())
748 return 2; // li 0; loc 1
750 // This should be extension of a compare i1 result, which is done with
751 // ipm and a varying sequence of instructions.
753 if (Opcode
== Instruction::SExt
)
754 Cost
= (DstScalarBits
< 64 ? 3 : 4);
755 if (Opcode
== Instruction::ZExt
)
757 Type
*CmpOpTy
= ((I
!= nullptr) ? getCmpOpsType(I
) : nullptr);
758 if (CmpOpTy
!= nullptr && CmpOpTy
->isFloatingPointTy())
759 // If operands of an fp-type was compared, this costs +1.
764 else if (ST
->hasVector()) {
765 // Vector to scalar cast.
766 auto *SrcVecTy
= cast
<FixedVectorType
>(Src
);
767 auto *DstVecTy
= dyn_cast
<FixedVectorType
>(Dst
);
769 // TODO: tune vector-to-scalar cast.
770 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
, CCH
, CostKind
, I
);
772 unsigned VF
= SrcVecTy
->getNumElements();
773 unsigned NumDstVectors
= getNumVectorRegs(Dst
);
774 unsigned NumSrcVectors
= getNumVectorRegs(Src
);
776 if (Opcode
== Instruction::Trunc
) {
777 if (Src
->getScalarSizeInBits() == Dst
->getScalarSizeInBits())
778 return 0; // Check for NOOP conversions.
779 return getVectorTruncCost(Src
, Dst
);
782 if (Opcode
== Instruction::ZExt
|| Opcode
== Instruction::SExt
) {
783 if (SrcScalarBits
>= 8) {
784 // ZExt/SExt will be handled with one unpack per doubling of width.
785 unsigned NumUnpacks
= getElSizeLog2Diff(Src
, Dst
);
787 // For types that spans multiple vector registers, some additional
788 // instructions are used to setup the unpacking.
789 unsigned NumSrcVectorOps
=
790 (NumUnpacks
> 1 ? (NumDstVectors
- NumSrcVectors
)
791 : (NumDstVectors
/ 2));
793 return (NumUnpacks
* NumDstVectors
) + NumSrcVectorOps
;
795 else if (SrcScalarBits
== 1)
796 return getBoolVecToIntConversionCost(Opcode
, Dst
, I
);
799 if (Opcode
== Instruction::SIToFP
|| Opcode
== Instruction::UIToFP
||
800 Opcode
== Instruction::FPToSI
|| Opcode
== Instruction::FPToUI
) {
801 // TODO: Fix base implementation which could simplify things a bit here
802 // (seems to miss on differentiating on scalar/vector types).
804 // Only 64 bit vector conversions are natively supported before z15.
805 if (DstScalarBits
== 64 || ST
->hasVectorEnhancements2()) {
806 if (SrcScalarBits
== DstScalarBits
)
807 return NumDstVectors
;
809 if (SrcScalarBits
== 1)
810 return getBoolVecToIntConversionCost(Opcode
, Dst
, I
) + NumDstVectors
;
813 // Return the cost of multiple scalar invocation plus the cost of
814 // inserting and extracting the values. Base implementation does not
815 // realize float->int gets scalarized.
816 InstructionCost ScalarCost
= getCastInstrCost(
817 Opcode
, Dst
->getScalarType(), Src
->getScalarType(), CCH
, CostKind
);
818 InstructionCost TotCost
= VF
* ScalarCost
;
819 bool NeedsInserts
= true, NeedsExtracts
= true;
820 // FP128 registers do not get inserted or extracted.
821 if (DstScalarBits
== 128 &&
822 (Opcode
== Instruction::SIToFP
|| Opcode
== Instruction::UIToFP
))
823 NeedsInserts
= false;
824 if (SrcScalarBits
== 128 &&
825 (Opcode
== Instruction::FPToSI
|| Opcode
== Instruction::FPToUI
))
826 NeedsExtracts
= false;
828 TotCost
+= getScalarizationOverhead(SrcVecTy
, false, NeedsExtracts
);
829 TotCost
+= getScalarizationOverhead(DstVecTy
, NeedsInserts
, false);
831 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
832 if (VF
== 2 && SrcScalarBits
== 32 && DstScalarBits
== 32)
838 if (Opcode
== Instruction::FPTrunc
) {
839 if (SrcScalarBits
== 128) // fp128 -> double/float + inserts of elements.
840 return VF
/*ldxbr/lexbr*/ +
841 getScalarizationOverhead(DstVecTy
, true, false);
842 else // double -> float
843 return VF
/ 2 /*vledb*/ + std::max(1U, VF
/ 4 /*vperm*/);
846 if (Opcode
== Instruction::FPExt
) {
847 if (SrcScalarBits
== 32 && DstScalarBits
== 64) {
848 // float -> double is very rare and currently unoptimized. Instead of
849 // using vldeb, which can do two at a time, all conversions are
853 // -> fp128. VF * lxdb/lxeb + extraction of elements.
854 return VF
+ getScalarizationOverhead(SrcVecTy
, false, true);
858 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
, CCH
, CostKind
, I
);
861 // Scalar i8 / i16 operations will typically be made after first extending
862 // the operands to i32.
863 static unsigned getOperandsExtensionCost(const Instruction
*I
) {
864 unsigned ExtCost
= 0;
865 for (Value
*Op
: I
->operands())
866 // A load of i8 or i16 sign/zero extends to i32.
867 if (!isa
<LoadInst
>(Op
) && !isa
<ConstantInt
>(Op
))
873 InstructionCost
SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
875 CmpInst::Predicate VecPred
,
876 TTI::TargetCostKind CostKind
,
877 const Instruction
*I
) {
878 if (CostKind
!= TTI::TCK_RecipThroughput
)
879 return BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, VecPred
, CostKind
);
881 if (!ValTy
->isVectorTy()) {
883 case Instruction::ICmp
: {
884 // A loaded value compared with 0 with multiple users becomes Load and
885 // Test. The load is then not foldable, so return 0 cost for the ICmp.
886 unsigned ScalarBits
= ValTy
->getScalarSizeInBits();
887 if (I
!= nullptr && ScalarBits
>= 32)
888 if (LoadInst
*Ld
= dyn_cast
<LoadInst
>(I
->getOperand(0)))
889 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))
890 if (!Ld
->hasOneUse() && Ld
->getParent() == I
->getParent() &&
895 if (ValTy
->isIntegerTy() && ValTy
->getScalarSizeInBits() <= 16)
896 Cost
+= (I
!= nullptr ? getOperandsExtensionCost(I
) : 2);
899 case Instruction::Select
:
900 if (ValTy
->isFloatingPointTy())
901 return 4; // No load on condition for FP - costs a conditional jump.
902 return 1; // Load On Condition / Select Register.
905 else if (ST
->hasVector()) {
906 unsigned VF
= cast
<FixedVectorType
>(ValTy
)->getNumElements();
908 // Called with a compare instruction.
909 if (Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
) {
910 unsigned PredicateExtraCost
= 0;
912 // Some predicates cost one or two extra instructions.
913 switch (cast
<CmpInst
>(I
)->getPredicate()) {
914 case CmpInst::Predicate::ICMP_NE
:
915 case CmpInst::Predicate::ICMP_UGE
:
916 case CmpInst::Predicate::ICMP_ULE
:
917 case CmpInst::Predicate::ICMP_SGE
:
918 case CmpInst::Predicate::ICMP_SLE
:
919 PredicateExtraCost
= 1;
921 case CmpInst::Predicate::FCMP_ONE
:
922 case CmpInst::Predicate::FCMP_ORD
:
923 case CmpInst::Predicate::FCMP_UEQ
:
924 case CmpInst::Predicate::FCMP_UNO
:
925 PredicateExtraCost
= 2;
932 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
933 // floats. FIXME: <2 x float> generates same code as <4 x float>.
934 unsigned CmpCostPerVector
= (ValTy
->getScalarType()->isFloatTy() ? 10 : 1);
935 unsigned NumVecs_cmp
= getNumVectorRegs(ValTy
);
937 unsigned Cost
= (NumVecs_cmp
* (CmpCostPerVector
+ PredicateExtraCost
));
940 else { // Called with a select instruction.
941 assert (Opcode
== Instruction::Select
);
943 // We can figure out the extra cost of packing / unpacking if the
944 // instruction was passed and the compare instruction is found.
945 unsigned PackCost
= 0;
946 Type
*CmpOpTy
= ((I
!= nullptr) ? getCmpOpsType(I
, VF
) : nullptr);
947 if (CmpOpTy
!= nullptr)
949 getVectorBitmaskConversionCost(CmpOpTy
, ValTy
);
951 return getNumVectorRegs(ValTy
) /*vsel*/ + PackCost
;
955 return BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, VecPred
, CostKind
);
958 InstructionCost
SystemZTTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*Val
,
960 // vlvgp will insert two grs into a vector register, so only count half the
961 // number of instructions.
962 if (Opcode
== Instruction::InsertElement
&& Val
->isIntOrIntVectorTy(64))
963 return ((Index
% 2 == 0) ? 1 : 0);
965 if (Opcode
== Instruction::ExtractElement
) {
966 int Cost
= ((getScalarSizeInBits(Val
) == 1) ? 2 /*+test-under-mask*/ : 1);
968 // Give a slight penalty for moving out of vector pipeline to FXU unit.
969 if (Index
== 0 && Val
->isIntOrIntVectorTy())
975 return BaseT::getVectorInstrCost(Opcode
, Val
, Index
);
978 // Check if a load may be folded as a memory operand in its user.
979 bool SystemZTTIImpl::
980 isFoldableLoad(const LoadInst
*Ld
, const Instruction
*&FoldedValue
) {
981 if (!Ld
->hasOneUse())
984 const Instruction
*UserI
= cast
<Instruction
>(*Ld
->user_begin());
985 unsigned LoadedBits
= getScalarSizeInBits(Ld
->getType());
986 unsigned TruncBits
= 0;
987 unsigned SExtBits
= 0;
988 unsigned ZExtBits
= 0;
989 if (UserI
->hasOneUse()) {
990 unsigned UserBits
= UserI
->getType()->getScalarSizeInBits();
991 if (isa
<TruncInst
>(UserI
))
992 TruncBits
= UserBits
;
993 else if (isa
<SExtInst
>(UserI
))
995 else if (isa
<ZExtInst
>(UserI
))
998 if (TruncBits
|| SExtBits
|| ZExtBits
) {
1000 UserI
= cast
<Instruction
>(*UserI
->user_begin());
1001 // Load (single use) -> trunc/extend (single use) -> UserI
1003 if ((UserI
->getOpcode() == Instruction::Sub
||
1004 UserI
->getOpcode() == Instruction::SDiv
||
1005 UserI
->getOpcode() == Instruction::UDiv
) &&
1006 UserI
->getOperand(1) != FoldedValue
)
1007 return false; // Not commutative, only RHS foldable.
1008 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
1009 // extension was made of the load.
1010 unsigned LoadOrTruncBits
=
1011 ((SExtBits
|| ZExtBits
) ? 0 : (TruncBits
? TruncBits
: LoadedBits
));
1012 switch (UserI
->getOpcode()) {
1013 case Instruction::Add
: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
1014 case Instruction::Sub
:
1015 case Instruction::ICmp
:
1016 if (LoadedBits
== 32 && ZExtBits
== 64)
1019 case Instruction::Mul
: // SE: 16->32, 32->64, z14:16->64
1020 if (UserI
->getOpcode() != Instruction::ICmp
) {
1021 if (LoadedBits
== 16 &&
1023 (SExtBits
== 64 && ST
->hasMiscellaneousExtensions2())))
1025 if (LoadOrTruncBits
== 16)
1029 case Instruction::SDiv
:// SE: 32->64
1030 if (LoadedBits
== 32 && SExtBits
== 64)
1033 case Instruction::UDiv
:
1034 case Instruction::And
:
1035 case Instruction::Or
:
1036 case Instruction::Xor
:
1037 // This also makes sense for float operations, but disabled for now due
1039 // case Instruction::FCmp:
1040 // case Instruction::FAdd:
1041 // case Instruction::FSub:
1042 // case Instruction::FMul:
1043 // case Instruction::FDiv:
1045 // All possible extensions of memory checked above.
1047 // Comparison between memory and immediate.
1048 if (UserI
->getOpcode() == Instruction::ICmp
)
1049 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(UserI
->getOperand(1)))
1050 if (CI
->getValue().isIntN(16))
1052 return (LoadOrTruncBits
== 32 || LoadOrTruncBits
== 64);
1058 static bool isBswapIntrinsicCall(const Value
*V
) {
1059 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
1060 if (auto *CI
= dyn_cast
<CallInst
>(I
))
1061 if (auto *F
= CI
->getCalledFunction())
1062 if (F
->getIntrinsicID() == Intrinsic::bswap
)
1067 InstructionCost
SystemZTTIImpl::getMemoryOpCost(unsigned Opcode
, Type
*Src
,
1068 MaybeAlign Alignment
,
1069 unsigned AddressSpace
,
1070 TTI::TargetCostKind CostKind
,
1071 const Instruction
*I
) {
1072 assert(!Src
->isVoidTy() && "Invalid type");
1074 // TODO: Handle other cost kinds.
1075 if (CostKind
!= TTI::TCK_RecipThroughput
)
1078 if (!Src
->isVectorTy() && Opcode
== Instruction::Load
&& I
!= nullptr) {
1079 // Store the load or its truncated or extended value in FoldedValue.
1080 const Instruction
*FoldedValue
= nullptr;
1081 if (isFoldableLoad(cast
<LoadInst
>(I
), FoldedValue
)) {
1082 const Instruction
*UserI
= cast
<Instruction
>(*FoldedValue
->user_begin());
1083 assert (UserI
->getNumOperands() == 2 && "Expected a binop.");
1085 // UserI can't fold two loads, so in that case return 0 cost only
1086 // half of the time.
1087 for (unsigned i
= 0; i
< 2; ++i
) {
1088 if (UserI
->getOperand(i
) == FoldedValue
)
1091 if (Instruction
*OtherOp
= dyn_cast
<Instruction
>(UserI
->getOperand(i
))){
1092 LoadInst
*OtherLoad
= dyn_cast
<LoadInst
>(OtherOp
);
1094 (isa
<TruncInst
>(OtherOp
) || isa
<SExtInst
>(OtherOp
) ||
1095 isa
<ZExtInst
>(OtherOp
)))
1096 OtherLoad
= dyn_cast
<LoadInst
>(OtherOp
->getOperand(0));
1097 if (OtherLoad
&& isFoldableLoad(OtherLoad
, FoldedValue
/*dummy*/))
1098 return i
== 0; // Both operands foldable.
1102 return 0; // Only I is foldable in user.
1107 (Src
->isVectorTy() ? getNumVectorRegs(Src
) : getNumberOfParts(Src
));
1109 // Store/Load reversed saves one instruction.
1110 if (((!Src
->isVectorTy() && NumOps
== 1) || ST
->hasVectorEnhancements2()) &&
1112 if (Opcode
== Instruction::Load
&& I
->hasOneUse()) {
1113 const Instruction
*LdUser
= cast
<Instruction
>(*I
->user_begin());
1114 // In case of load -> bswap -> store, return normal cost for the load.
1115 if (isBswapIntrinsicCall(LdUser
) &&
1116 (!LdUser
->hasOneUse() || !isa
<StoreInst
>(*LdUser
->user_begin())))
1119 else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1120 const Value
*StoredVal
= SI
->getValueOperand();
1121 if (StoredVal
->hasOneUse() && isBswapIntrinsicCall(StoredVal
))
1126 if (Src
->getScalarSizeInBits() == 128)
1127 // 128 bit scalars are held in a pair of two 64 bit registers.
1133 // The generic implementation of getInterleavedMemoryOpCost() is based on
1134 // adding costs of the memory operations plus all the extracts and inserts
1135 // needed for using / defining the vector operands. The SystemZ version does
1136 // roughly the same but bases the computations on vector permutations
1138 InstructionCost
SystemZTTIImpl::getInterleavedMemoryOpCost(
1139 unsigned Opcode
, Type
*VecTy
, unsigned Factor
, ArrayRef
<unsigned> Indices
,
1140 Align Alignment
, unsigned AddressSpace
, TTI::TargetCostKind CostKind
,
1141 bool UseMaskForCond
, bool UseMaskForGaps
) {
1142 if (UseMaskForCond
|| UseMaskForGaps
)
1143 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
1144 Alignment
, AddressSpace
, CostKind
,
1145 UseMaskForCond
, UseMaskForGaps
);
1146 assert(isa
<VectorType
>(VecTy
) &&
1147 "Expect a vector type for interleaved memory op");
1149 unsigned NumElts
= cast
<FixedVectorType
>(VecTy
)->getNumElements();
1150 assert(Factor
> 1 && NumElts
% Factor
== 0 && "Invalid interleave factor");
1151 unsigned VF
= NumElts
/ Factor
;
1152 unsigned NumEltsPerVecReg
= (128U / getScalarSizeInBits(VecTy
));
1153 unsigned NumVectorMemOps
= getNumVectorRegs(VecTy
);
1154 unsigned NumPermutes
= 0;
1156 if (Opcode
== Instruction::Load
) {
1157 // Loading interleave groups may have gaps, which may mean fewer
1158 // loads. Find out how many vectors will be loaded in total, and in how
1159 // many of them each value will be in.
1160 BitVector
UsedInsts(NumVectorMemOps
, false);
1161 std::vector
<BitVector
> ValueVecs(Factor
, BitVector(NumVectorMemOps
, false));
1162 for (unsigned Index
: Indices
)
1163 for (unsigned Elt
= 0; Elt
< VF
; ++Elt
) {
1164 unsigned Vec
= (Index
+ Elt
* Factor
) / NumEltsPerVecReg
;
1166 ValueVecs
[Index
].set(Vec
);
1168 NumVectorMemOps
= UsedInsts
.count();
1170 for (unsigned Index
: Indices
) {
1171 // Estimate that each loaded source vector containing this Index
1172 // requires one operation, except that vperm can handle two input
1173 // registers first time for each dst vector.
1174 unsigned NumSrcVecs
= ValueVecs
[Index
].count();
1175 unsigned NumDstVecs
= divideCeil(VF
* getScalarSizeInBits(VecTy
), 128U);
1176 assert (NumSrcVecs
>= NumDstVecs
&& "Expected at least as many sources");
1177 NumPermutes
+= std::max(1U, NumSrcVecs
- NumDstVecs
);
1180 // Estimate the permutes for each stored vector as the smaller of the
1181 // number of elements and the number of source vectors. Subtract one per
1182 // dst vector for vperm (S.A.).
1183 unsigned NumSrcVecs
= std::min(NumEltsPerVecReg
, Factor
);
1184 unsigned NumDstVecs
= NumVectorMemOps
;
1185 assert (NumSrcVecs
> 1 && "Expected at least two source vectors.");
1186 NumPermutes
+= (NumDstVecs
* NumSrcVecs
) - NumDstVecs
;
1189 // Cost of load/store operations and the permutations needed.
1190 return NumVectorMemOps
+ NumPermutes
;
1193 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
) {
1194 if (RetTy
->isVectorTy() && ID
== Intrinsic::bswap
)
1195 return getNumVectorRegs(RetTy
); // VPERM
1200 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes
&ICA
,
1201 TTI::TargetCostKind CostKind
) {
1202 InstructionCost Cost
=
1203 getVectorIntrinsicInstrCost(ICA
.getID(), ICA
.getReturnType());
1206 return BaseT::getIntrinsicInstrCost(ICA
, CostKind
);