[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / WebAssembly / WebAssemblyFixIrreducibleControlFlow.cpp
blob1ceae59dc99395a3b4210f2f7dabc950b3f403ca
1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a pass that removes irreducible control flow.
11 /// Irreducible control flow means multiple-entry loops, which this pass
12 /// transforms to have a single entry.
13 ///
14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but
15 /// it linearizes control flow, turning diamonds into two triangles, which is
16 /// both unnecessary and undesirable for WebAssembly.
17 ///
18 /// The big picture: We recursively process each "region", defined as a group
19 /// of blocks with a single entry and no branches back to that entry. A region
20 /// may be the entire function body, or the inner part of a loop, i.e., the
21 /// loop's body without branches back to the loop entry. In each region we fix
22 /// up multi-entry loops by adding a new block that can dispatch to each of the
23 /// loop entries, based on the value of a label "helper" variable, and we
24 /// replace direct branches to the entries with assignments to the label
25 /// variable and a branch to the dispatch block. Then the dispatch block is the
26 /// single entry in the loop containing the previous multiple entries. After
27 /// ensuring all the loops in a region are reducible, we recurse into them. The
28 /// total time complexity of this pass is:
29 ///
30 /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
31 /// NumLoops * NumLoops)
32 ///
33 /// This pass is similar to what the Relooper [1] does. Both identify looping
34 /// code that requires multiple entries, and resolve it in a similar way (in
35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
36 /// also that like the Relooper, we implement a "minimal" intervention: we only
37 /// use the "label" helper for the blocks we absolutely must and no others. We
38 /// also prioritize code size and do not duplicate code in order to resolve
39 /// irreducibility. The graph algorithms for finding loops and entries and so
40 /// forth are also similar to the Relooper. The main differences between this
41 /// pass and the Relooper are:
42 ///
43 /// * We just care about irreducibility, so we just look at loops.
44 /// * The Relooper emits structured control flow (with ifs etc.), while we
45 /// emit a CFG.
46 ///
47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
48 /// Proceedings of the ACM international conference companion on Object oriented
49 /// programming systems languages and applications companion (SPLASH '11). ACM,
50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
51 /// http://doi.acm.org/10.1145/2048147.2048224
52 ///
53 //===----------------------------------------------------------------------===//
55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
56 #include "WebAssembly.h"
57 #include "WebAssemblySubtarget.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/Support/Debug.h"
60 using namespace llvm;
62 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow"
64 namespace {
66 using BlockVector = SmallVector<MachineBasicBlock *, 4>;
67 using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;
69 static BlockVector getSortedEntries(const BlockSet &Entries) {
70 BlockVector SortedEntries(Entries.begin(), Entries.end());
71 llvm::sort(SortedEntries,
72 [](const MachineBasicBlock *A, const MachineBasicBlock *B) {
73 auto ANum = A->getNumber();
74 auto BNum = B->getNumber();
75 return ANum < BNum;
76 });
77 return SortedEntries;
80 // Calculates reachability in a region. Ignores branches to blocks outside of
81 // the region, and ignores branches to the region entry (for the case where
82 // the region is the inner part of a loop).
83 class ReachabilityGraph {
84 public:
85 ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
86 : Entry(Entry), Blocks(Blocks) {
87 #ifndef NDEBUG
88 // The region must have a single entry.
89 for (auto *MBB : Blocks) {
90 if (MBB != Entry) {
91 for (auto *Pred : MBB->predecessors()) {
92 assert(inRegion(Pred));
96 #endif
97 calculate();
100 bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
101 assert(inRegion(From) && inRegion(To));
102 auto I = Reachable.find(From);
103 if (I == Reachable.end())
104 return false;
105 return I->second.count(To);
108 // "Loopers" are blocks that are in a loop. We detect these by finding blocks
109 // that can reach themselves.
110 const BlockSet &getLoopers() const { return Loopers; }
112 // Get all blocks that are loop entries.
113 const BlockSet &getLoopEntries() const { return LoopEntries; }
115 // Get all blocks that enter a particular loop from outside.
116 const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
117 assert(inRegion(LoopEntry));
118 auto I = LoopEnterers.find(LoopEntry);
119 assert(I != LoopEnterers.end());
120 return I->second;
123 private:
124 MachineBasicBlock *Entry;
125 const BlockSet &Blocks;
127 BlockSet Loopers, LoopEntries;
128 DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;
130 bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }
132 // Maps a block to all the other blocks it can reach.
133 DenseMap<MachineBasicBlock *, BlockSet> Reachable;
135 void calculate() {
136 // Reachability computation work list. Contains pairs of recent additions
137 // (A, B) where we just added a link A => B.
138 using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
139 SmallVector<BlockPair, 4> WorkList;
141 // Add all relevant direct branches.
142 for (auto *MBB : Blocks) {
143 for (auto *Succ : MBB->successors()) {
144 if (Succ != Entry && inRegion(Succ)) {
145 Reachable[MBB].insert(Succ);
146 WorkList.emplace_back(MBB, Succ);
151 while (!WorkList.empty()) {
152 MachineBasicBlock *MBB, *Succ;
153 std::tie(MBB, Succ) = WorkList.pop_back_val();
154 assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
155 if (MBB != Entry) {
156 // We recently added MBB => Succ, and that means we may have enabled
157 // Pred => MBB => Succ.
158 for (auto *Pred : MBB->predecessors()) {
159 if (Reachable[Pred].insert(Succ).second) {
160 WorkList.emplace_back(Pred, Succ);
166 // Blocks that can return to themselves are in a loop.
167 for (auto *MBB : Blocks) {
168 if (canReach(MBB, MBB)) {
169 Loopers.insert(MBB);
172 assert(!Loopers.count(Entry));
174 // Find the loop entries - loopers reachable from blocks not in that loop -
175 // and those outside blocks that reach them, the "loop enterers".
176 for (auto *Looper : Loopers) {
177 for (auto *Pred : Looper->predecessors()) {
178 // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
179 // otherwise, it is a block that enters into the loop.
180 if (!canReach(Looper, Pred)) {
181 LoopEntries.insert(Looper);
182 LoopEnterers[Looper].insert(Pred);
189 // Finds the blocks in a single-entry loop, given the loop entry and the
190 // list of blocks that enter the loop.
191 class LoopBlocks {
192 public:
193 LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
194 : Entry(Entry), Enterers(Enterers) {
195 calculate();
198 BlockSet &getBlocks() { return Blocks; }
200 private:
201 MachineBasicBlock *Entry;
202 const BlockSet &Enterers;
204 BlockSet Blocks;
206 void calculate() {
207 // Going backwards from the loop entry, if we ignore the blocks entering
208 // from outside, we will traverse all the blocks in the loop.
209 BlockVector WorkList;
210 BlockSet AddedToWorkList;
211 Blocks.insert(Entry);
212 for (auto *Pred : Entry->predecessors()) {
213 if (!Enterers.count(Pred)) {
214 WorkList.push_back(Pred);
215 AddedToWorkList.insert(Pred);
219 while (!WorkList.empty()) {
220 auto *MBB = WorkList.pop_back_val();
221 assert(!Enterers.count(MBB));
222 if (Blocks.insert(MBB).second) {
223 for (auto *Pred : MBB->predecessors()) {
224 if (!AddedToWorkList.count(Pred)) {
225 WorkList.push_back(Pred);
226 AddedToWorkList.insert(Pred);
234 class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
235 StringRef getPassName() const override {
236 return "WebAssembly Fix Irreducible Control Flow";
239 bool runOnMachineFunction(MachineFunction &MF) override;
241 bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
242 MachineFunction &MF);
244 void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
245 MachineFunction &MF, const ReachabilityGraph &Graph);
247 public:
248 static char ID; // Pass identification, replacement for typeid
249 WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
252 bool WebAssemblyFixIrreducibleControlFlow::processRegion(
253 MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
254 bool Changed = false;
255 // Remove irreducibility before processing child loops, which may take
256 // multiple iterations.
257 while (true) {
258 ReachabilityGraph Graph(Entry, Blocks);
260 bool FoundIrreducibility = false;
262 for (auto *LoopEntry : getSortedEntries(Graph.getLoopEntries())) {
263 // Find mutual entries - all entries which can reach this one, and
264 // are reached by it (that always includes LoopEntry itself). All mutual
265 // entries must be in the same loop, so if we have more than one, then we
266 // have irreducible control flow.
268 // (Note that we need to sort the entries here, as otherwise the order can
269 // matter: being mutual is a symmetric relationship, and each set of
270 // mutuals will be handled properly no matter which we see first. However,
271 // there can be multiple disjoint sets of mutuals, and which we process
272 // first changes the output.)
274 // Note that irreducibility may involve inner loops, e.g. imagine A
275 // starts one loop, and it has B inside it which starts an inner loop.
276 // If we add a branch from all the way on the outside to B, then in a
277 // sense B is no longer an "inner" loop, semantically speaking. We will
278 // fix that irreducibility by adding a block that dispatches to either
279 // either A or B, so B will no longer be an inner loop in our output.
280 // (A fancier approach might try to keep it as such.)
282 // Note that we still need to recurse into inner loops later, to handle
283 // the case where the irreducibility is entirely nested - we would not
284 // be able to identify that at this point, since the enclosing loop is
285 // a group of blocks all of whom can reach each other. (We'll see the
286 // irreducibility after removing branches to the top of that enclosing
287 // loop.)
288 BlockSet MutualLoopEntries;
289 MutualLoopEntries.insert(LoopEntry);
290 for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
291 if (OtherLoopEntry != LoopEntry &&
292 Graph.canReach(LoopEntry, OtherLoopEntry) &&
293 Graph.canReach(OtherLoopEntry, LoopEntry)) {
294 MutualLoopEntries.insert(OtherLoopEntry);
298 if (MutualLoopEntries.size() > 1) {
299 makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
300 FoundIrreducibility = true;
301 Changed = true;
302 break;
305 // Only go on to actually process the inner loops when we are done
306 // removing irreducible control flow and changing the graph. Modifying
307 // the graph as we go is possible, and that might let us avoid looking at
308 // the already-fixed loops again if we are careful, but all that is
309 // complex and bug-prone. Since irreducible loops are rare, just starting
310 // another iteration is best.
311 if (FoundIrreducibility) {
312 continue;
315 for (auto *LoopEntry : Graph.getLoopEntries()) {
316 LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
317 // Each of these calls to processRegion may change the graph, but are
318 // guaranteed not to interfere with each other. The only changes we make
319 // to the graph are to add blocks on the way to a loop entry. As the
320 // loops are disjoint, that means we may only alter branches that exit
321 // another loop, which are ignored when recursing into that other loop
322 // anyhow.
323 if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
324 Changed = true;
328 return Changed;
332 // Given a set of entries to a single loop, create a single entry for that
333 // loop by creating a dispatch block for them, routing control flow using
334 // a helper variable. Also updates Blocks with any new blocks created, so
335 // that we properly track all the blocks in the region. But this does not update
336 // ReachabilityGraph; this will be updated in the caller of this function as
337 // needed.
338 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
339 BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
340 const ReachabilityGraph &Graph) {
341 assert(Entries.size() >= 2);
343 // Sort the entries to ensure a deterministic build.
344 BlockVector SortedEntries = getSortedEntries(Entries);
346 #ifndef NDEBUG
347 for (auto Block : SortedEntries)
348 assert(Block->getNumber() != -1);
349 if (SortedEntries.size() > 1) {
350 for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
351 ++I) {
352 auto ANum = (*I)->getNumber();
353 auto BNum = (*(std::next(I)))->getNumber();
354 assert(ANum != BNum);
357 #endif
359 // Create a dispatch block which will contain a jump table to the entries.
360 MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
361 MF.insert(MF.end(), Dispatch);
362 Blocks.insert(Dispatch);
364 // Add the jump table.
365 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
366 MachineInstrBuilder MIB =
367 BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));
369 // Add the register which will be used to tell the jump table which block to
370 // jump to.
371 MachineRegisterInfo &MRI = MF.getRegInfo();
372 Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
373 MIB.addReg(Reg);
375 // Compute the indices in the superheader, one for each bad block, and
376 // add them as successors.
377 DenseMap<MachineBasicBlock *, unsigned> Indices;
378 for (auto *Entry : SortedEntries) {
379 auto Pair = Indices.insert(std::make_pair(Entry, 0));
380 assert(Pair.second);
382 unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
383 Pair.first->second = Index;
385 MIB.addMBB(Entry);
386 Dispatch->addSuccessor(Entry);
389 // Rewrite the problematic successors for every block that wants to reach
390 // the bad blocks. For simplicity, we just introduce a new block for every
391 // edge we need to rewrite. (Fancier things are possible.)
393 BlockVector AllPreds;
394 for (auto *Entry : SortedEntries) {
395 for (auto *Pred : Entry->predecessors()) {
396 if (Pred != Dispatch) {
397 AllPreds.push_back(Pred);
402 // This set stores predecessors within this loop.
403 DenseSet<MachineBasicBlock *> InLoop;
404 for (auto *Pred : AllPreds) {
405 for (auto *Entry : Pred->successors()) {
406 if (!Entries.count(Entry))
407 continue;
408 if (Graph.canReach(Entry, Pred)) {
409 InLoop.insert(Pred);
410 break;
415 // Record if each entry has a layout predecessor. This map stores
416 // <<loop entry, Predecessor is within the loop?>, layout predecessor>
417 DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
418 EntryToLayoutPred;
419 for (auto *Pred : AllPreds) {
420 bool PredInLoop = InLoop.count(Pred);
421 for (auto *Entry : Pred->successors())
422 if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
423 EntryToLayoutPred[{Entry, PredInLoop}] = Pred;
426 // We need to create at most two routing blocks per entry: one for
427 // predecessors outside the loop and one for predecessors inside the loop.
428 // This map stores
429 // <<loop entry, Predecessor is within the loop?>, routing block>
430 DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
431 Map;
432 for (auto *Pred : AllPreds) {
433 bool PredInLoop = InLoop.count(Pred);
434 for (auto *Entry : Pred->successors()) {
435 if (!Entries.count(Entry) || Map.count({Entry, PredInLoop}))
436 continue;
437 // If there exists a layout predecessor of this entry and this predecessor
438 // is not that, we rather create a routing block after that layout
439 // predecessor to save a branch.
440 if (auto *OtherPred = EntryToLayoutPred.lookup({Entry, PredInLoop}))
441 if (OtherPred != Pred)
442 continue;
444 // This is a successor we need to rewrite.
445 MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
446 MF.insert(Pred->isLayoutSuccessor(Entry)
447 ? MachineFunction::iterator(Entry)
448 : MF.end(),
449 Routing);
450 Blocks.insert(Routing);
452 // Set the jump table's register of the index of the block we wish to
453 // jump to, and jump to the jump table.
454 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
455 .addImm(Indices[Entry]);
456 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
457 Routing->addSuccessor(Dispatch);
458 Map[{Entry, PredInLoop}] = Routing;
462 for (auto *Pred : AllPreds) {
463 bool PredInLoop = InLoop.count(Pred);
464 // Remap the terminator operands and the successor list.
465 for (MachineInstr &Term : Pred->terminators())
466 for (auto &Op : Term.explicit_uses())
467 if (Op.isMBB() && Indices.count(Op.getMBB()))
468 Op.setMBB(Map[{Op.getMBB(), PredInLoop}]);
470 for (auto *Succ : Pred->successors()) {
471 if (!Entries.count(Succ))
472 continue;
473 auto *Routing = Map[{Succ, PredInLoop}];
474 Pred->replaceSuccessor(Succ, Routing);
478 // Create a fake default label, because br_table requires one.
479 MIB.addMBB(MIB.getInstr()
480 ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
481 .getMBB());
484 } // end anonymous namespace
486 char WebAssemblyFixIrreducibleControlFlow::ID = 0;
487 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
488 "Removes irreducible control flow", false, false)
490 FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
491 return new WebAssemblyFixIrreducibleControlFlow();
494 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
495 MachineFunction &MF) {
496 LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
497 "********** Function: "
498 << MF.getName() << '\n');
500 // Start the recursive process on the entire function body.
501 BlockSet AllBlocks;
502 for (auto &MBB : MF) {
503 AllBlocks.insert(&MBB);
506 if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
507 // We rewrote part of the function; recompute relevant things.
508 MF.getRegInfo().invalidateLiveness();
509 MF.RenumberBlocks();
510 return true;
513 return false;