1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements a pass that removes irreducible control flow.
11 /// Irreducible control flow means multiple-entry loops, which this pass
12 /// transforms to have a single entry.
14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but
15 /// it linearizes control flow, turning diamonds into two triangles, which is
16 /// both unnecessary and undesirable for WebAssembly.
18 /// The big picture: We recursively process each "region", defined as a group
19 /// of blocks with a single entry and no branches back to that entry. A region
20 /// may be the entire function body, or the inner part of a loop, i.e., the
21 /// loop's body without branches back to the loop entry. In each region we fix
22 /// up multi-entry loops by adding a new block that can dispatch to each of the
23 /// loop entries, based on the value of a label "helper" variable, and we
24 /// replace direct branches to the entries with assignments to the label
25 /// variable and a branch to the dispatch block. Then the dispatch block is the
26 /// single entry in the loop containing the previous multiple entries. After
27 /// ensuring all the loops in a region are reducible, we recurse into them. The
28 /// total time complexity of this pass is:
30 /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
31 /// NumLoops * NumLoops)
33 /// This pass is similar to what the Relooper [1] does. Both identify looping
34 /// code that requires multiple entries, and resolve it in a similar way (in
35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
36 /// also that like the Relooper, we implement a "minimal" intervention: we only
37 /// use the "label" helper for the blocks we absolutely must and no others. We
38 /// also prioritize code size and do not duplicate code in order to resolve
39 /// irreducibility. The graph algorithms for finding loops and entries and so
40 /// forth are also similar to the Relooper. The main differences between this
41 /// pass and the Relooper are:
43 /// * We just care about irreducibility, so we just look at loops.
44 /// * The Relooper emits structured control flow (with ifs etc.), while we
47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
48 /// Proceedings of the ACM international conference companion on Object oriented
49 /// programming systems languages and applications companion (SPLASH '11). ACM,
50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
51 /// http://doi.acm.org/10.1145/2048147.2048224
53 //===----------------------------------------------------------------------===//
55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
56 #include "WebAssembly.h"
57 #include "WebAssemblySubtarget.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/Support/Debug.h"
62 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow"
66 using BlockVector
= SmallVector
<MachineBasicBlock
*, 4>;
67 using BlockSet
= SmallPtrSet
<MachineBasicBlock
*, 4>;
69 static BlockVector
getSortedEntries(const BlockSet
&Entries
) {
70 BlockVector
SortedEntries(Entries
.begin(), Entries
.end());
71 llvm::sort(SortedEntries
,
72 [](const MachineBasicBlock
*A
, const MachineBasicBlock
*B
) {
73 auto ANum
= A
->getNumber();
74 auto BNum
= B
->getNumber();
80 // Calculates reachability in a region. Ignores branches to blocks outside of
81 // the region, and ignores branches to the region entry (for the case where
82 // the region is the inner part of a loop).
83 class ReachabilityGraph
{
85 ReachabilityGraph(MachineBasicBlock
*Entry
, const BlockSet
&Blocks
)
86 : Entry(Entry
), Blocks(Blocks
) {
88 // The region must have a single entry.
89 for (auto *MBB
: Blocks
) {
91 for (auto *Pred
: MBB
->predecessors()) {
92 assert(inRegion(Pred
));
100 bool canReach(MachineBasicBlock
*From
, MachineBasicBlock
*To
) const {
101 assert(inRegion(From
) && inRegion(To
));
102 auto I
= Reachable
.find(From
);
103 if (I
== Reachable
.end())
105 return I
->second
.count(To
);
108 // "Loopers" are blocks that are in a loop. We detect these by finding blocks
109 // that can reach themselves.
110 const BlockSet
&getLoopers() const { return Loopers
; }
112 // Get all blocks that are loop entries.
113 const BlockSet
&getLoopEntries() const { return LoopEntries
; }
115 // Get all blocks that enter a particular loop from outside.
116 const BlockSet
&getLoopEnterers(MachineBasicBlock
*LoopEntry
) const {
117 assert(inRegion(LoopEntry
));
118 auto I
= LoopEnterers
.find(LoopEntry
);
119 assert(I
!= LoopEnterers
.end());
124 MachineBasicBlock
*Entry
;
125 const BlockSet
&Blocks
;
127 BlockSet Loopers
, LoopEntries
;
128 DenseMap
<MachineBasicBlock
*, BlockSet
> LoopEnterers
;
130 bool inRegion(MachineBasicBlock
*MBB
) const { return Blocks
.count(MBB
); }
132 // Maps a block to all the other blocks it can reach.
133 DenseMap
<MachineBasicBlock
*, BlockSet
> Reachable
;
136 // Reachability computation work list. Contains pairs of recent additions
137 // (A, B) where we just added a link A => B.
138 using BlockPair
= std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>;
139 SmallVector
<BlockPair
, 4> WorkList
;
141 // Add all relevant direct branches.
142 for (auto *MBB
: Blocks
) {
143 for (auto *Succ
: MBB
->successors()) {
144 if (Succ
!= Entry
&& inRegion(Succ
)) {
145 Reachable
[MBB
].insert(Succ
);
146 WorkList
.emplace_back(MBB
, Succ
);
151 while (!WorkList
.empty()) {
152 MachineBasicBlock
*MBB
, *Succ
;
153 std::tie(MBB
, Succ
) = WorkList
.pop_back_val();
154 assert(inRegion(MBB
) && Succ
!= Entry
&& inRegion(Succ
));
156 // We recently added MBB => Succ, and that means we may have enabled
157 // Pred => MBB => Succ.
158 for (auto *Pred
: MBB
->predecessors()) {
159 if (Reachable
[Pred
].insert(Succ
).second
) {
160 WorkList
.emplace_back(Pred
, Succ
);
166 // Blocks that can return to themselves are in a loop.
167 for (auto *MBB
: Blocks
) {
168 if (canReach(MBB
, MBB
)) {
172 assert(!Loopers
.count(Entry
));
174 // Find the loop entries - loopers reachable from blocks not in that loop -
175 // and those outside blocks that reach them, the "loop enterers".
176 for (auto *Looper
: Loopers
) {
177 for (auto *Pred
: Looper
->predecessors()) {
178 // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
179 // otherwise, it is a block that enters into the loop.
180 if (!canReach(Looper
, Pred
)) {
181 LoopEntries
.insert(Looper
);
182 LoopEnterers
[Looper
].insert(Pred
);
189 // Finds the blocks in a single-entry loop, given the loop entry and the
190 // list of blocks that enter the loop.
193 LoopBlocks(MachineBasicBlock
*Entry
, const BlockSet
&Enterers
)
194 : Entry(Entry
), Enterers(Enterers
) {
198 BlockSet
&getBlocks() { return Blocks
; }
201 MachineBasicBlock
*Entry
;
202 const BlockSet
&Enterers
;
207 // Going backwards from the loop entry, if we ignore the blocks entering
208 // from outside, we will traverse all the blocks in the loop.
209 BlockVector WorkList
;
210 BlockSet AddedToWorkList
;
211 Blocks
.insert(Entry
);
212 for (auto *Pred
: Entry
->predecessors()) {
213 if (!Enterers
.count(Pred
)) {
214 WorkList
.push_back(Pred
);
215 AddedToWorkList
.insert(Pred
);
219 while (!WorkList
.empty()) {
220 auto *MBB
= WorkList
.pop_back_val();
221 assert(!Enterers
.count(MBB
));
222 if (Blocks
.insert(MBB
).second
) {
223 for (auto *Pred
: MBB
->predecessors()) {
224 if (!AddedToWorkList
.count(Pred
)) {
225 WorkList
.push_back(Pred
);
226 AddedToWorkList
.insert(Pred
);
234 class WebAssemblyFixIrreducibleControlFlow final
: public MachineFunctionPass
{
235 StringRef
getPassName() const override
{
236 return "WebAssembly Fix Irreducible Control Flow";
239 bool runOnMachineFunction(MachineFunction
&MF
) override
;
241 bool processRegion(MachineBasicBlock
*Entry
, BlockSet
&Blocks
,
242 MachineFunction
&MF
);
244 void makeSingleEntryLoop(BlockSet
&Entries
, BlockSet
&Blocks
,
245 MachineFunction
&MF
, const ReachabilityGraph
&Graph
);
248 static char ID
; // Pass identification, replacement for typeid
249 WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID
) {}
252 bool WebAssemblyFixIrreducibleControlFlow::processRegion(
253 MachineBasicBlock
*Entry
, BlockSet
&Blocks
, MachineFunction
&MF
) {
254 bool Changed
= false;
255 // Remove irreducibility before processing child loops, which may take
256 // multiple iterations.
258 ReachabilityGraph
Graph(Entry
, Blocks
);
260 bool FoundIrreducibility
= false;
262 for (auto *LoopEntry
: getSortedEntries(Graph
.getLoopEntries())) {
263 // Find mutual entries - all entries which can reach this one, and
264 // are reached by it (that always includes LoopEntry itself). All mutual
265 // entries must be in the same loop, so if we have more than one, then we
266 // have irreducible control flow.
268 // (Note that we need to sort the entries here, as otherwise the order can
269 // matter: being mutual is a symmetric relationship, and each set of
270 // mutuals will be handled properly no matter which we see first. However,
271 // there can be multiple disjoint sets of mutuals, and which we process
272 // first changes the output.)
274 // Note that irreducibility may involve inner loops, e.g. imagine A
275 // starts one loop, and it has B inside it which starts an inner loop.
276 // If we add a branch from all the way on the outside to B, then in a
277 // sense B is no longer an "inner" loop, semantically speaking. We will
278 // fix that irreducibility by adding a block that dispatches to either
279 // either A or B, so B will no longer be an inner loop in our output.
280 // (A fancier approach might try to keep it as such.)
282 // Note that we still need to recurse into inner loops later, to handle
283 // the case where the irreducibility is entirely nested - we would not
284 // be able to identify that at this point, since the enclosing loop is
285 // a group of blocks all of whom can reach each other. (We'll see the
286 // irreducibility after removing branches to the top of that enclosing
288 BlockSet MutualLoopEntries
;
289 MutualLoopEntries
.insert(LoopEntry
);
290 for (auto *OtherLoopEntry
: Graph
.getLoopEntries()) {
291 if (OtherLoopEntry
!= LoopEntry
&&
292 Graph
.canReach(LoopEntry
, OtherLoopEntry
) &&
293 Graph
.canReach(OtherLoopEntry
, LoopEntry
)) {
294 MutualLoopEntries
.insert(OtherLoopEntry
);
298 if (MutualLoopEntries
.size() > 1) {
299 makeSingleEntryLoop(MutualLoopEntries
, Blocks
, MF
, Graph
);
300 FoundIrreducibility
= true;
305 // Only go on to actually process the inner loops when we are done
306 // removing irreducible control flow and changing the graph. Modifying
307 // the graph as we go is possible, and that might let us avoid looking at
308 // the already-fixed loops again if we are careful, but all that is
309 // complex and bug-prone. Since irreducible loops are rare, just starting
310 // another iteration is best.
311 if (FoundIrreducibility
) {
315 for (auto *LoopEntry
: Graph
.getLoopEntries()) {
316 LoopBlocks
InnerBlocks(LoopEntry
, Graph
.getLoopEnterers(LoopEntry
));
317 // Each of these calls to processRegion may change the graph, but are
318 // guaranteed not to interfere with each other. The only changes we make
319 // to the graph are to add blocks on the way to a loop entry. As the
320 // loops are disjoint, that means we may only alter branches that exit
321 // another loop, which are ignored when recursing into that other loop
323 if (processRegion(LoopEntry
, InnerBlocks
.getBlocks(), MF
)) {
332 // Given a set of entries to a single loop, create a single entry for that
333 // loop by creating a dispatch block for them, routing control flow using
334 // a helper variable. Also updates Blocks with any new blocks created, so
335 // that we properly track all the blocks in the region. But this does not update
336 // ReachabilityGraph; this will be updated in the caller of this function as
338 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
339 BlockSet
&Entries
, BlockSet
&Blocks
, MachineFunction
&MF
,
340 const ReachabilityGraph
&Graph
) {
341 assert(Entries
.size() >= 2);
343 // Sort the entries to ensure a deterministic build.
344 BlockVector SortedEntries
= getSortedEntries(Entries
);
347 for (auto Block
: SortedEntries
)
348 assert(Block
->getNumber() != -1);
349 if (SortedEntries
.size() > 1) {
350 for (auto I
= SortedEntries
.begin(), E
= SortedEntries
.end() - 1; I
!= E
;
352 auto ANum
= (*I
)->getNumber();
353 auto BNum
= (*(std::next(I
)))->getNumber();
354 assert(ANum
!= BNum
);
359 // Create a dispatch block which will contain a jump table to the entries.
360 MachineBasicBlock
*Dispatch
= MF
.CreateMachineBasicBlock();
361 MF
.insert(MF
.end(), Dispatch
);
362 Blocks
.insert(Dispatch
);
364 // Add the jump table.
365 const auto &TII
= *MF
.getSubtarget
<WebAssemblySubtarget
>().getInstrInfo();
366 MachineInstrBuilder MIB
=
367 BuildMI(Dispatch
, DebugLoc(), TII
.get(WebAssembly::BR_TABLE_I32
));
369 // Add the register which will be used to tell the jump table which block to
371 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
372 Register Reg
= MRI
.createVirtualRegister(&WebAssembly::I32RegClass
);
375 // Compute the indices in the superheader, one for each bad block, and
376 // add them as successors.
377 DenseMap
<MachineBasicBlock
*, unsigned> Indices
;
378 for (auto *Entry
: SortedEntries
) {
379 auto Pair
= Indices
.insert(std::make_pair(Entry
, 0));
382 unsigned Index
= MIB
.getInstr()->getNumExplicitOperands() - 1;
383 Pair
.first
->second
= Index
;
386 Dispatch
->addSuccessor(Entry
);
389 // Rewrite the problematic successors for every block that wants to reach
390 // the bad blocks. For simplicity, we just introduce a new block for every
391 // edge we need to rewrite. (Fancier things are possible.)
393 BlockVector AllPreds
;
394 for (auto *Entry
: SortedEntries
) {
395 for (auto *Pred
: Entry
->predecessors()) {
396 if (Pred
!= Dispatch
) {
397 AllPreds
.push_back(Pred
);
402 // This set stores predecessors within this loop.
403 DenseSet
<MachineBasicBlock
*> InLoop
;
404 for (auto *Pred
: AllPreds
) {
405 for (auto *Entry
: Pred
->successors()) {
406 if (!Entries
.count(Entry
))
408 if (Graph
.canReach(Entry
, Pred
)) {
415 // Record if each entry has a layout predecessor. This map stores
416 // <<loop entry, Predecessor is within the loop?>, layout predecessor>
417 DenseMap
<PointerIntPair
<MachineBasicBlock
*, 1, bool>, MachineBasicBlock
*>
419 for (auto *Pred
: AllPreds
) {
420 bool PredInLoop
= InLoop
.count(Pred
);
421 for (auto *Entry
: Pred
->successors())
422 if (Entries
.count(Entry
) && Pred
->isLayoutSuccessor(Entry
))
423 EntryToLayoutPred
[{Entry
, PredInLoop
}] = Pred
;
426 // We need to create at most two routing blocks per entry: one for
427 // predecessors outside the loop and one for predecessors inside the loop.
429 // <<loop entry, Predecessor is within the loop?>, routing block>
430 DenseMap
<PointerIntPair
<MachineBasicBlock
*, 1, bool>, MachineBasicBlock
*>
432 for (auto *Pred
: AllPreds
) {
433 bool PredInLoop
= InLoop
.count(Pred
);
434 for (auto *Entry
: Pred
->successors()) {
435 if (!Entries
.count(Entry
) || Map
.count({Entry
, PredInLoop
}))
437 // If there exists a layout predecessor of this entry and this predecessor
438 // is not that, we rather create a routing block after that layout
439 // predecessor to save a branch.
440 if (auto *OtherPred
= EntryToLayoutPred
.lookup({Entry
, PredInLoop
}))
441 if (OtherPred
!= Pred
)
444 // This is a successor we need to rewrite.
445 MachineBasicBlock
*Routing
= MF
.CreateMachineBasicBlock();
446 MF
.insert(Pred
->isLayoutSuccessor(Entry
)
447 ? MachineFunction::iterator(Entry
)
450 Blocks
.insert(Routing
);
452 // Set the jump table's register of the index of the block we wish to
453 // jump to, and jump to the jump table.
454 BuildMI(Routing
, DebugLoc(), TII
.get(WebAssembly::CONST_I32
), Reg
)
455 .addImm(Indices
[Entry
]);
456 BuildMI(Routing
, DebugLoc(), TII
.get(WebAssembly::BR
)).addMBB(Dispatch
);
457 Routing
->addSuccessor(Dispatch
);
458 Map
[{Entry
, PredInLoop
}] = Routing
;
462 for (auto *Pred
: AllPreds
) {
463 bool PredInLoop
= InLoop
.count(Pred
);
464 // Remap the terminator operands and the successor list.
465 for (MachineInstr
&Term
: Pred
->terminators())
466 for (auto &Op
: Term
.explicit_uses())
467 if (Op
.isMBB() && Indices
.count(Op
.getMBB()))
468 Op
.setMBB(Map
[{Op
.getMBB(), PredInLoop
}]);
470 for (auto *Succ
: Pred
->successors()) {
471 if (!Entries
.count(Succ
))
473 auto *Routing
= Map
[{Succ
, PredInLoop
}];
474 Pred
->replaceSuccessor(Succ
, Routing
);
478 // Create a fake default label, because br_table requires one.
479 MIB
.addMBB(MIB
.getInstr()
480 ->getOperand(MIB
.getInstr()->getNumExplicitOperands() - 1)
484 } // end anonymous namespace
486 char WebAssemblyFixIrreducibleControlFlow::ID
= 0;
487 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow
, DEBUG_TYPE
,
488 "Removes irreducible control flow", false, false)
490 FunctionPass
*llvm::createWebAssemblyFixIrreducibleControlFlow() {
491 return new WebAssemblyFixIrreducibleControlFlow();
494 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
495 MachineFunction
&MF
) {
496 LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
497 "********** Function: "
498 << MF
.getName() << '\n');
500 // Start the recursive process on the entire function body.
502 for (auto &MBB
: MF
) {
503 AllBlocks
.insert(&MBB
);
506 if (LLVM_UNLIKELY(processRegion(&*MF
.begin(), AllBlocks
, MF
))) {
507 // We rewrote part of the function; recompute relevant things.
508 MF
.getRegInfo().invalidateLiveness();