[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / WebAssembly / WebAssemblyLowerEmscriptenEHSjLj.cpp
blobdaf5114a5405957517078af0295281e31deb1e57
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten.
17 ///
18 /// * Exception handling
19 /// This pass lowers invokes and landingpads into library functions in JS glue
20 /// code. Invokes are lowered into function wrappers called invoke wrappers that
21 /// exist in JS side, which wraps the original function call with JS try-catch.
22 /// If an exception occurred, cxa_throw() function in JS side sets some
23 /// variables (see below) so we can check whether an exception occurred from
24 /// wasm code and handle it appropriately.
25 ///
26 /// * Setjmp-longjmp handling
27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
28 /// The idea is that each block with a setjmp is broken up into two parts: the
29 /// part containing setjmp and the part right after the setjmp. The latter part
30 /// is either reached from the setjmp, or later from a longjmp. To handle the
31 /// longjmp, all calls that might longjmp are also called using invoke wrappers
32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
33 /// we can check / whether a longjmp occurred from wasm code. Each block with a
34 /// function call that might longjmp is also split up after the longjmp call.
35 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
36 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
37 /// We assume setjmp-longjmp handling always run after EH handling, which means
38 /// we don't expect any exception-related instructions when SjLj runs.
39 /// FIXME Currently this scheme does not support indirect call of setjmp,
40 /// because of the limitation of the scheme itself. fastcomp does not support it
41 /// either.
42 ///
43 /// In detail, this pass does following things:
44 ///
45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
46 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
47 /// These variables are used for both exceptions and setjmp/longjmps.
48 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
49 /// means nothing occurred, 1 means an exception occurred, and other numbers
50 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable
51 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
52 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of
53 /// longjmp.
54 ///
55 /// * Exception handling
56 ///
57 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
58 /// at link time. setThrew exists in Emscripten's compiler-rt:
59 ///
60 /// void setThrew(uintptr_t threw, int value) {
61 /// if (__THREW__ == 0) {
62 /// __THREW__ = threw;
63 /// __threwValue = value;
64 /// }
65 /// }
67 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
68 /// In exception handling, getTempRet0 indicates the type of an exception
69 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
70 /// function.
71 ///
72 /// 3) Lower
73 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
74 /// into
75 /// __THREW__ = 0;
76 /// call @__invoke_SIG(func, arg1, arg2)
77 /// %__THREW__.val = __THREW__;
78 /// __THREW__ = 0;
79 /// if (%__THREW__.val == 1)
80 /// goto %lpad
81 /// else
82 /// goto %invoke.cont
83 /// SIG is a mangled string generated based on the LLVM IR-level function
84 /// signature. After LLVM IR types are lowered to the target wasm types,
85 /// the names for these wrappers will change based on wasm types as well,
86 /// as in invoke_vi (function takes an int and returns void). The bodies of
87 /// these wrappers will be generated in JS glue code, and inside those
88 /// wrappers we use JS try-catch to generate actual exception effects. It
89 /// also calls the original callee function. An example wrapper in JS code
90 /// would look like this:
91 /// function invoke_vi(index,a1) {
92 /// try {
93 /// Module["dynCall_vi"](index,a1); // This calls original callee
94 /// } catch(e) {
95 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
96 /// _setThrew(1, 0); // setThrew is called here
97 /// }
98 /// }
99 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
100 /// so we can jump to the right BB based on this value.
102 /// 4) Lower
103 /// %val = landingpad catch c1 catch c2 catch c3 ...
104 /// ... use %val ...
105 /// into
106 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
107 /// %val = {%fmc, getTempRet0()}
108 /// ... use %val ...
109 /// Here N is a number calculated based on the number of clauses.
110 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
112 /// 5) Lower
113 /// resume {%a, %b}
114 /// into
115 /// call @__resumeException(%a)
116 /// where __resumeException() is a function in JS glue code.
118 /// 6) Lower
119 /// call @llvm.eh.typeid.for(type) (intrinsic)
120 /// into
121 /// call @llvm_eh_typeid_for(type)
122 /// llvm_eh_typeid_for function will be generated in JS glue code.
124 /// * Setjmp / Longjmp handling
126 /// In case calls to longjmp() exists
128 /// 1) Lower
129 /// longjmp(buf, value)
130 /// into
131 /// emscripten_longjmp(buf, value)
133 /// In case calls to setjmp() exists
135 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
136 /// sejmpTableSize as follows:
137 /// setjmpTableSize = 4;
138 /// setjmpTable = (int *) malloc(40);
139 /// setjmpTable[0] = 0;
140 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
141 /// Emscripten compiler-rt.
143 /// 3) Lower
144 /// setjmp(buf)
145 /// into
146 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
147 /// setjmpTableSize = getTempRet0();
148 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
149 /// is incrementally assigned from 0) and its label (a unique number that
150 /// represents each callsite of setjmp). When we need more entries in
151 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
152 /// compiler-rt and it will return the new table address, and assign the new
153 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
154 /// the buffer buf. A BB with setjmp is split into two after setjmp call in
155 /// order to make the post-setjmp BB the possible destination of longjmp BB.
158 /// 4) Lower every call that might longjmp into
159 /// __THREW__ = 0;
160 /// call @__invoke_SIG(func, arg1, arg2)
161 /// %__THREW__.val = __THREW__;
162 /// __THREW__ = 0;
163 /// %__threwValue.val = __threwValue;
164 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
165 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
166 /// setjmpTableSize);
167 /// if (%label == 0)
168 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
169 /// setTempRet0(%__threwValue.val);
170 /// } else {
171 /// %label = -1;
172 /// }
173 /// longjmp_result = getTempRet0();
174 /// switch label {
175 /// label 1: goto post-setjmp BB 1
176 /// label 2: goto post-setjmp BB 2
177 /// ...
178 /// default: goto splitted next BB
179 /// }
180 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
181 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
182 /// will be the address of matching jmp_buf buffer and __threwValue be the
183 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
184 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
185 /// each setjmp callsite. Label 0 means this longjmp buffer does not
186 /// correspond to one of the setjmp callsites in this function, so in this
187 /// case we just chain the longjmp to the caller. Label -1 means no longjmp
188 /// occurred. Otherwise we jump to the right post-setjmp BB based on the
189 /// label.
191 ///===----------------------------------------------------------------------===//
193 #include "WebAssembly.h"
194 #include "WebAssemblyTargetMachine.h"
195 #include "llvm/ADT/StringExtras.h"
196 #include "llvm/CodeGen/TargetPassConfig.h"
197 #include "llvm/IR/DebugInfoMetadata.h"
198 #include "llvm/IR/Dominators.h"
199 #include "llvm/IR/IRBuilder.h"
200 #include "llvm/Support/CommandLine.h"
201 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
202 #include "llvm/Transforms/Utils/SSAUpdater.h"
204 using namespace llvm;
206 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
208 static cl::list<std::string>
209 EHAllowlist("emscripten-cxx-exceptions-allowed",
210 cl::desc("The list of function names in which Emscripten-style "
211 "exception handling is enabled (see emscripten "
212 "EMSCRIPTEN_CATCHING_ALLOWED options)"),
213 cl::CommaSeparated);
215 namespace {
216 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
217 bool EnableEmEH; // Enable Emscripten exception handling
218 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling
219 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling
221 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten)
222 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
223 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten)
224 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten)
225 Function *ResumeF = nullptr; // __resumeException() (Emscripten)
226 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic)
227 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten)
228 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten)
229 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten)
231 // __cxa_find_matching_catch_N functions.
232 // Indexed by the number of clauses in an original landingpad instruction.
233 DenseMap<int, Function *> FindMatchingCatches;
234 // Map of <function signature string, invoke_ wrappers>
235 StringMap<Function *> InvokeWrappers;
236 // Set of allowed function names for exception handling
237 std::set<std::string> EHAllowlistSet;
238 // Functions that contains calls to setjmp
239 SmallPtrSet<Function *, 8> SetjmpUsers;
241 StringRef getPassName() const override {
242 return "WebAssembly Lower Emscripten Exceptions";
245 bool runEHOnFunction(Function &F);
246 bool runSjLjOnFunction(Function &F);
247 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
249 Value *wrapInvoke(CallBase *CI);
250 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
251 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
252 Value *&LongjmpResult, BasicBlock *&EndBB);
253 Function *getInvokeWrapper(CallBase *CI);
255 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
256 bool supportsException(const Function *F) const {
257 return EnableEmEH && (areAllExceptionsAllowed() ||
258 EHAllowlistSet.count(std::string(F->getName())));
261 void rebuildSSA(Function &F);
263 public:
264 static char ID;
266 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEmEH = true,
267 bool EnableEmSjLj = true)
268 : ModulePass(ID), EnableEmEH(EnableEmEH), EnableEmSjLj(EnableEmSjLj) {
269 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
271 bool runOnModule(Module &M) override;
273 void getAnalysisUsage(AnalysisUsage &AU) const override {
274 AU.addRequired<DominatorTreeWrapperPass>();
277 } // End anonymous namespace
279 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
280 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
281 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
282 false, false)
284 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEmEH,
285 bool EnableEmSjLj) {
286 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEmEH, EnableEmSjLj);
289 static bool canThrow(const Value *V) {
290 if (const auto *F = dyn_cast<const Function>(V)) {
291 // Intrinsics cannot throw
292 if (F->isIntrinsic())
293 return false;
294 StringRef Name = F->getName();
295 // leave setjmp and longjmp (mostly) alone, we process them properly later
296 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
297 return false;
298 return !F->doesNotThrow();
300 // not a function, so an indirect call - can throw, we can't tell
301 return true;
304 // Get a global variable with the given name. If it doesn't exist declare it,
305 // which will generate an import and assume that it will exist at link time.
306 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
307 WebAssemblyTargetMachine &TM,
308 const char *Name) {
309 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
310 if (!GV)
311 report_fatal_error(Twine("unable to create global: ") + Name);
313 // If the target supports TLS, make this variable thread-local. We can't just
314 // unconditionally make it thread-local and depend on
315 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
316 // the side effect of disallowing the object from being linked into a
317 // shared-memory module, which we don't want to be responsible for.
318 auto *Subtarget = TM.getSubtargetImpl();
319 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
320 ? GlobalValue::LocalExecTLSModel
321 : GlobalValue::NotThreadLocal;
322 GV->setThreadLocalMode(TLS);
323 return GV;
326 // Simple function name mangler.
327 // This function simply takes LLVM's string representation of parameter types
328 // and concatenate them with '_'. There are non-alphanumeric characters but llc
329 // is ok with it, and we need to postprocess these names after the lowering
330 // phase anyway.
331 static std::string getSignature(FunctionType *FTy) {
332 std::string Sig;
333 raw_string_ostream OS(Sig);
334 OS << *FTy->getReturnType();
335 for (Type *ParamTy : FTy->params())
336 OS << "_" << *ParamTy;
337 if (FTy->isVarArg())
338 OS << "_...";
339 Sig = OS.str();
340 erase_if(Sig, isSpace);
341 // When s2wasm parses .s file, a comma means the end of an argument. So a
342 // mangled function name can contain any character but a comma.
343 std::replace(Sig.begin(), Sig.end(), ',', '.');
344 return Sig;
347 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
348 Module *M) {
349 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
350 // Tell the linker that this function is expected to be imported from the
351 // 'env' module.
352 if (!F->hasFnAttribute("wasm-import-module")) {
353 llvm::AttrBuilder B;
354 B.addAttribute("wasm-import-module", "env");
355 F->addFnAttrs(B);
357 if (!F->hasFnAttribute("wasm-import-name")) {
358 llvm::AttrBuilder B;
359 B.addAttribute("wasm-import-name", F->getName());
360 F->addFnAttrs(B);
362 return F;
365 // Returns an integer type for the target architecture's address space.
366 // i32 for wasm32 and i64 for wasm64.
367 static Type *getAddrIntType(Module *M) {
368 IRBuilder<> IRB(M->getContext());
369 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
372 // Returns an integer pointer type for the target architecture's address space.
373 // i32* for wasm32 and i64* for wasm64.
374 static Type *getAddrPtrType(Module *M) {
375 return Type::getIntNPtrTy(M->getContext(),
376 M->getDataLayout().getPointerSizeInBits());
379 // Returns an integer whose type is the integer type for the target's address
380 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
381 // integer.
382 static Value *getAddrSizeInt(Module *M, uint64_t C) {
383 IRBuilder<> IRB(M->getContext());
384 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
387 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
388 // This is because a landingpad instruction contains two more arguments, a
389 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
390 // functions are named after the number of arguments in the original landingpad
391 // instruction.
392 Function *
393 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
394 unsigned NumClauses) {
395 if (FindMatchingCatches.count(NumClauses))
396 return FindMatchingCatches[NumClauses];
397 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
398 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
399 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
400 Function *F = getEmscriptenFunction(
401 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
402 FindMatchingCatches[NumClauses] = F;
403 return F;
406 // Generate invoke wrapper seqence with preamble and postamble
407 // Preamble:
408 // __THREW__ = 0;
409 // Postamble:
410 // %__THREW__.val = __THREW__; __THREW__ = 0;
411 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
412 // whether longjmp occurred), for future use.
413 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
414 Module *M = CI->getModule();
415 LLVMContext &C = M->getContext();
417 // If we are calling a function that is noreturn, we must remove that
418 // attribute. The code we insert here does expect it to return, after we
419 // catch the exception.
420 if (CI->doesNotReturn()) {
421 if (auto *F = CI->getCalledFunction())
422 F->removeFnAttr(Attribute::NoReturn);
423 CI->removeFnAttr(Attribute::NoReturn);
426 IRBuilder<> IRB(C);
427 IRB.SetInsertPoint(CI);
429 // Pre-invoke
430 // __THREW__ = 0;
431 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
433 // Invoke function wrapper in JavaScript
434 SmallVector<Value *, 16> Args;
435 // Put the pointer to the callee as first argument, so it can be called
436 // within the invoke wrapper later
437 Args.push_back(CI->getCalledOperand());
438 Args.append(CI->arg_begin(), CI->arg_end());
439 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
440 NewCall->takeName(CI);
441 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
442 NewCall->setDebugLoc(CI->getDebugLoc());
444 // Because we added the pointer to the callee as first argument, all
445 // argument attribute indices have to be incremented by one.
446 SmallVector<AttributeSet, 8> ArgAttributes;
447 const AttributeList &InvokeAL = CI->getAttributes();
449 // No attributes for the callee pointer.
450 ArgAttributes.push_back(AttributeSet());
451 // Copy the argument attributes from the original
452 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
453 ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
455 AttrBuilder FnAttrs(InvokeAL.getFnAttrs());
456 if (FnAttrs.contains(Attribute::AllocSize)) {
457 // The allocsize attribute (if any) referes to parameters by index and needs
458 // to be adjusted.
459 unsigned SizeArg;
460 Optional<unsigned> NEltArg;
461 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
462 SizeArg += 1;
463 if (NEltArg.hasValue())
464 NEltArg = NEltArg.getValue() + 1;
465 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
468 // Reconstruct the AttributesList based on the vector we constructed.
469 AttributeList NewCallAL = AttributeList::get(
470 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
471 NewCall->setAttributes(NewCallAL);
473 CI->replaceAllUsesWith(NewCall);
475 // Post-invoke
476 // %__THREW__.val = __THREW__; __THREW__ = 0;
477 Value *Threw =
478 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
479 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
480 return Threw;
483 // Get matching invoke wrapper based on callee signature
484 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
485 Module *M = CI->getModule();
486 SmallVector<Type *, 16> ArgTys;
487 FunctionType *CalleeFTy = CI->getFunctionType();
489 std::string Sig = getSignature(CalleeFTy);
490 if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
491 return InvokeWrappers[Sig];
493 // Put the pointer to the callee as first argument
494 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
495 // Add argument types
496 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
498 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
499 CalleeFTy->isVarArg());
500 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
501 InvokeWrappers[Sig] = F;
502 return F;
505 static bool canLongjmp(const Value *Callee) {
506 if (auto *CalleeF = dyn_cast<Function>(Callee))
507 if (CalleeF->isIntrinsic())
508 return false;
510 // Attempting to transform inline assembly will result in something like:
511 // call void @__invoke_void(void ()* asm ...)
512 // which is invalid because inline assembly blocks do not have addresses
513 // and can't be passed by pointer. The result is a crash with illegal IR.
514 if (isa<InlineAsm>(Callee))
515 return false;
516 StringRef CalleeName = Callee->getName();
518 // The reason we include malloc/free here is to exclude the malloc/free
519 // calls generated in setjmp prep / cleanup routines.
520 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
521 return false;
523 // There are functions in Emscripten's JS glue code or compiler-rt
524 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
525 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
526 CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
527 return false;
529 // __cxa_find_matching_catch_N functions cannot longjmp
530 if (Callee->getName().startswith("__cxa_find_matching_catch_"))
531 return false;
533 // Exception-catching related functions
534 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
535 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
536 CalleeName == "__clang_call_terminate")
537 return false;
539 // Otherwise we don't know
540 return true;
543 static bool isEmAsmCall(const Value *Callee) {
544 StringRef CalleeName = Callee->getName();
545 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
546 return CalleeName == "emscripten_asm_const_int" ||
547 CalleeName == "emscripten_asm_const_double" ||
548 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
549 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
550 CalleeName == "emscripten_asm_const_async_on_main_thread";
553 // Generate testSetjmp function call seqence with preamble and postamble.
554 // The code this generates is equivalent to the following JavaScript code:
555 // %__threwValue.val = __threwValue;
556 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
557 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
558 // if (%label == 0)
559 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
560 // setTempRet0(%__threwValue.val);
561 // } else {
562 // %label = -1;
563 // }
564 // %longjmp_result = getTempRet0();
566 // As output parameters. returns %label, %longjmp_result, and the BB the last
567 // instruction (%longjmp_result = ...) is in.
568 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
569 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
570 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
571 BasicBlock *&EndBB) {
572 Function *F = BB->getParent();
573 Module *M = F->getParent();
574 LLVMContext &C = M->getContext();
575 IRBuilder<> IRB(C);
576 IRB.SetCurrentDebugLocation(DL);
578 // if (%__THREW__.val != 0 & %__threwValue.val != 0)
579 IRB.SetInsertPoint(BB);
580 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
581 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
582 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
583 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
584 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
585 ThrewValueGV->getName() + ".val");
586 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
587 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
588 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
590 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
591 // if (%label == 0)
592 IRB.SetInsertPoint(ThenBB1);
593 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
594 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
595 Value *ThrewPtr =
596 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
597 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
598 ThrewPtr->getName() + ".loaded");
599 Value *ThenLabel = IRB.CreateCall(
600 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
601 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
602 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
604 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
605 IRB.SetInsertPoint(ThenBB2);
606 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
607 IRB.CreateUnreachable();
609 // setTempRet0(%__threwValue.val);
610 IRB.SetInsertPoint(EndBB2);
611 IRB.CreateCall(SetTempRet0F, ThrewValue);
612 IRB.CreateBr(EndBB1);
614 IRB.SetInsertPoint(ElseBB1);
615 IRB.CreateBr(EndBB1);
617 // longjmp_result = getTempRet0();
618 IRB.SetInsertPoint(EndBB1);
619 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
620 LabelPHI->addIncoming(ThenLabel, EndBB2);
622 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
624 // Output parameter assignment
625 Label = LabelPHI;
626 EndBB = EndBB1;
627 LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
630 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
631 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
632 DT.recalculate(F); // CFG has been changed
633 SSAUpdater SSA;
634 for (BasicBlock &BB : F) {
635 for (Instruction &I : BB) {
636 SSA.Initialize(I.getType(), I.getName());
637 SSA.AddAvailableValue(&BB, &I);
638 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
639 Use &U = *UI;
640 ++UI;
641 auto *User = cast<Instruction>(U.getUser());
642 if (auto *UserPN = dyn_cast<PHINode>(User))
643 if (UserPN->getIncomingBlock(U) == &BB)
644 continue;
646 if (DT.dominates(&I, User))
647 continue;
648 SSA.RewriteUseAfterInsertions(U);
654 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
655 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
656 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
657 // match. jmp_buf* will eventually be lowered to i32/i64 in the wasm backend.
658 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
659 Function *EmLongjmpF) {
660 Module *M = LongjmpF->getParent();
661 SmallVector<CallInst *, 8> ToErase;
662 LLVMContext &C = LongjmpF->getParent()->getContext();
663 IRBuilder<> IRB(C);
665 // For calls to longjmp, replace it with emscripten_longjmp and cast its first
666 // argument (jmp_buf*) to int
667 for (User *U : LongjmpF->users()) {
668 auto *CI = dyn_cast<CallInst>(U);
669 if (CI && CI->getCalledFunction() == LongjmpF) {
670 IRB.SetInsertPoint(CI);
671 Value *JmpBuf =
672 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
673 IRB.CreateCall(EmLongjmpF, {JmpBuf, CI->getArgOperand(1)});
674 ToErase.push_back(CI);
677 for (auto *I : ToErase)
678 I->eraseFromParent();
680 // If we have any remaining uses of longjmp's function pointer, replace it
681 // with (int(*)(jmp_buf*, int))emscripten_longjmp.
682 if (!LongjmpF->uses().empty()) {
683 Value *EmLongjmp =
684 IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
685 LongjmpF->replaceAllUsesWith(EmLongjmp);
689 static bool containsLongjmpableCalls(const Function *F) {
690 for (const auto &BB : *F)
691 for (const auto &I : BB)
692 if (const auto *CB = dyn_cast<CallBase>(&I))
693 if (canLongjmp(CB->getCalledOperand()))
694 return true;
695 return false;
698 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
699 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
701 LLVMContext &C = M.getContext();
702 IRBuilder<> IRB(C);
704 Function *SetjmpF = M.getFunction("setjmp");
705 Function *LongjmpF = M.getFunction("longjmp");
707 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
708 assert(TPC && "Expected a TargetPassConfig");
709 auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
711 if (EnableEmEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
712 report_fatal_error("-exception-model=wasm not allowed with "
713 "-enable-emscripten-cxx-exceptions");
715 // Declare (or get) global variables __THREW__, __threwValue, and
716 // getTempRet0/setTempRet0 function which are used in common for both
717 // exception handling and setjmp/longjmp handling
718 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
719 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
720 GetTempRet0F = getEmscriptenFunction(
721 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
722 SetTempRet0F = getEmscriptenFunction(
723 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
724 "setTempRet0", &M);
725 GetTempRet0F->setDoesNotThrow();
726 SetTempRet0F->setDoesNotThrow();
728 bool Changed = false;
730 // Function registration for exception handling
731 if (EnableEmEH) {
732 // Register __resumeException function
733 FunctionType *ResumeFTy =
734 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
735 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
737 // Register llvm_eh_typeid_for function
738 FunctionType *EHTypeIDTy =
739 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
740 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
743 if (EnableEmSjLj && SetjmpF) {
744 // Precompute setjmp users
745 for (User *U : SetjmpF->users()) {
746 Function *UserF = cast<Instruction>(U)->getFunction();
747 // If a function that calls setjmp does not contain any other calls that
748 // can longjmp, we don't need to do any transformation on that function,
749 // so can ignore it
750 if (containsLongjmpableCalls(UserF))
751 SetjmpUsers.insert(UserF);
755 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
756 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
757 DoSjLj = EnableEmSjLj && (SetjmpUsed || LongjmpUsed);
759 // Function registration and data pre-gathering for setjmp/longjmp handling
760 if (DoSjLj) {
761 // Register emscripten_longjmp function
762 FunctionType *FTy = FunctionType::get(
763 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
764 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
766 if (SetjmpF) {
767 // Register saveSetjmp function
768 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
769 FTy = FunctionType::get(Type::getInt32PtrTy(C),
770 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
771 Type::getInt32PtrTy(C), IRB.getInt32Ty()},
772 false);
773 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
775 // Register testSetjmp function
776 FTy = FunctionType::get(
777 IRB.getInt32Ty(),
778 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
779 false);
780 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
784 // Exception handling transformation
785 if (EnableEmEH) {
786 for (Function &F : M) {
787 if (F.isDeclaration())
788 continue;
789 Changed |= runEHOnFunction(F);
793 // Setjmp/longjmp handling transformation
794 if (DoSjLj) {
795 Changed = true; // We have setjmp or longjmp somewhere
796 if (LongjmpF)
797 replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
798 // Only traverse functions that uses setjmp in order not to insert
799 // unnecessary prep / cleanup code in every function
800 if (SetjmpF)
801 for (Function *F : SetjmpUsers)
802 runSjLjOnFunction(*F);
805 if (!Changed) {
806 // Delete unused global variables and functions
807 if (ResumeF)
808 ResumeF->eraseFromParent();
809 if (EHTypeIDF)
810 EHTypeIDF->eraseFromParent();
811 if (EmLongjmpF)
812 EmLongjmpF->eraseFromParent();
813 if (SaveSetjmpF)
814 SaveSetjmpF->eraseFromParent();
815 if (TestSetjmpF)
816 TestSetjmpF->eraseFromParent();
817 return false;
820 return true;
823 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
824 Module &M = *F.getParent();
825 LLVMContext &C = F.getContext();
826 IRBuilder<> IRB(C);
827 bool Changed = false;
828 SmallVector<Instruction *, 64> ToErase;
829 SmallPtrSet<LandingPadInst *, 32> LandingPads;
831 for (BasicBlock &BB : F) {
832 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
833 if (!II)
834 continue;
835 Changed = true;
836 LandingPads.insert(II->getLandingPadInst());
837 IRB.SetInsertPoint(II);
839 const Value *Callee = II->getCalledOperand();
840 bool NeedInvoke = supportsException(&F) && canThrow(Callee);
841 if (NeedInvoke) {
842 // Wrap invoke with invoke wrapper and generate preamble/postamble
843 Value *Threw = wrapInvoke(II);
844 ToErase.push_back(II);
846 // If setjmp/longjmp handling is enabled, the thrown value can be not an
847 // exception but a longjmp. If the current function contains calls to
848 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
849 // if the function does not contain setjmp calls, we shouldn't silently
850 // ignore longjmps; we should rethrow them so they can be correctly
851 // handled in somewhere up the call chain where setjmp is. __THREW__'s
852 // value is 0 when nothing happened, 1 when an exception is thrown, and
853 // other values when longjmp is thrown.
855 // if (%__THREW__.val == 0 || %__THREW__.val == 1)
856 // goto %tail
857 // else
858 // goto %longjmp.rethrow
860 // longjmp.rethrow: ;; This is longjmp. Rethrow it
861 // %__threwValue.val = __threwValue
862 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
864 // tail: ;; Nothing happened or an exception is thrown
865 // ... Continue exception handling ...
866 if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(Callee)) {
867 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
868 BasicBlock *RethrowBB = BasicBlock::Create(C, "longjmp.rethrow", &F);
869 Value *CmpEqOne =
870 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
871 Value *CmpEqZero =
872 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
873 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
874 IRB.CreateCondBr(Or, Tail, RethrowBB);
875 IRB.SetInsertPoint(RethrowBB);
876 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
877 ThrewValueGV->getName() + ".val");
878 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
880 IRB.CreateUnreachable();
881 IRB.SetInsertPoint(Tail);
884 // Insert a branch based on __THREW__ variable
885 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
886 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
888 } else {
889 // This can't throw, and we don't need this invoke, just replace it with a
890 // call+branch
891 SmallVector<Value *, 16> Args(II->args());
892 CallInst *NewCall =
893 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
894 NewCall->takeName(II);
895 NewCall->setCallingConv(II->getCallingConv());
896 NewCall->setDebugLoc(II->getDebugLoc());
897 NewCall->setAttributes(II->getAttributes());
898 II->replaceAllUsesWith(NewCall);
899 ToErase.push_back(II);
901 IRB.CreateBr(II->getNormalDest());
903 // Remove any PHI node entries from the exception destination
904 II->getUnwindDest()->removePredecessor(&BB);
908 // Process resume instructions
909 for (BasicBlock &BB : F) {
910 // Scan the body of the basic block for resumes
911 for (Instruction &I : BB) {
912 auto *RI = dyn_cast<ResumeInst>(&I);
913 if (!RI)
914 continue;
915 Changed = true;
917 // Split the input into legal values
918 Value *Input = RI->getValue();
919 IRB.SetInsertPoint(RI);
920 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
921 // Create a call to __resumeException function
922 IRB.CreateCall(ResumeF, {Low});
923 // Add a terminator to the block
924 IRB.CreateUnreachable();
925 ToErase.push_back(RI);
929 // Process llvm.eh.typeid.for intrinsics
930 for (BasicBlock &BB : F) {
931 for (Instruction &I : BB) {
932 auto *CI = dyn_cast<CallInst>(&I);
933 if (!CI)
934 continue;
935 const Function *Callee = CI->getCalledFunction();
936 if (!Callee)
937 continue;
938 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
939 continue;
940 Changed = true;
942 IRB.SetInsertPoint(CI);
943 CallInst *NewCI =
944 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
945 CI->replaceAllUsesWith(NewCI);
946 ToErase.push_back(CI);
950 // Look for orphan landingpads, can occur in blocks with no predecessors
951 for (BasicBlock &BB : F) {
952 Instruction *I = BB.getFirstNonPHI();
953 if (auto *LPI = dyn_cast<LandingPadInst>(I))
954 LandingPads.insert(LPI);
956 Changed |= !LandingPads.empty();
958 // Handle all the landingpad for this function together, as multiple invokes
959 // may share a single lp
960 for (LandingPadInst *LPI : LandingPads) {
961 IRB.SetInsertPoint(LPI);
962 SmallVector<Value *, 16> FMCArgs;
963 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
964 Constant *Clause = LPI->getClause(I);
965 // TODO Handle filters (= exception specifications).
966 // https://bugs.llvm.org/show_bug.cgi?id=50396
967 if (LPI->isCatch(I))
968 FMCArgs.push_back(Clause);
971 // Create a call to __cxa_find_matching_catch_N function
972 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
973 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
974 Value *Undef = UndefValue::get(LPI->getType());
975 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
976 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
977 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
979 LPI->replaceAllUsesWith(Pair1);
980 ToErase.push_back(LPI);
983 // Erase everything we no longer need in this function
984 for (Instruction *I : ToErase)
985 I->eraseFromParent();
987 return Changed;
990 // This tries to get debug info from the instruction before which a new
991 // instruction will be inserted, and if there's no debug info in that
992 // instruction, tries to get the info instead from the previous instruction (if
993 // any). If none of these has debug info and a DISubprogram is provided, it
994 // creates a dummy debug info with the first line of the function, because IR
995 // verifier requires all inlinable callsites should have debug info when both a
996 // caller and callee have DISubprogram. If none of these conditions are met,
997 // returns empty info.
998 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
999 DISubprogram *SP) {
1000 assert(InsertBefore);
1001 if (InsertBefore->getDebugLoc())
1002 return InsertBefore->getDebugLoc();
1003 const Instruction *Prev = InsertBefore->getPrevNode();
1004 if (Prev && Prev->getDebugLoc())
1005 return Prev->getDebugLoc();
1006 if (SP)
1007 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1008 return DebugLoc();
1011 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1012 Module &M = *F.getParent();
1013 LLVMContext &C = F.getContext();
1014 IRBuilder<> IRB(C);
1015 SmallVector<Instruction *, 64> ToErase;
1016 // Vector of %setjmpTable values
1017 SmallVector<Instruction *, 4> SetjmpTableInsts;
1018 // Vector of %setjmpTableSize values
1019 SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1021 // Setjmp preparation
1023 // This instruction effectively means %setjmpTableSize = 4.
1024 // We create this as an instruction intentionally, and we don't want to fold
1025 // this instruction to a constant 4, because this value will be used in
1026 // SSAUpdater.AddAvailableValue(...) later.
1027 BasicBlock *Entry = &F.getEntryBlock();
1028 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1029 BinaryOperator *SetjmpTableSize =
1030 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1031 "setjmpTableSize", &*Entry->getFirstInsertionPt());
1032 SetjmpTableSize->setDebugLoc(FirstDL);
1033 // setjmpTable = (int *) malloc(40);
1034 Instruction *SetjmpTable = CallInst::CreateMalloc(
1035 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1036 nullptr, nullptr, "setjmpTable");
1037 SetjmpTable->setDebugLoc(FirstDL);
1038 // CallInst::CreateMalloc may return a bitcast instruction if the result types
1039 // mismatch. We need to set the debug loc for the original call too.
1040 auto *MallocCall = SetjmpTable->stripPointerCasts();
1041 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1042 MallocCallI->setDebugLoc(FirstDL);
1044 // setjmpTable[0] = 0;
1045 IRB.SetInsertPoint(SetjmpTableSize);
1046 IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1047 SetjmpTableInsts.push_back(SetjmpTable);
1048 SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1050 // Setjmp transformation
1051 SmallVector<PHINode *, 4> SetjmpRetPHIs;
1052 Function *SetjmpF = M.getFunction("setjmp");
1053 for (User *U : SetjmpF->users()) {
1054 auto *CI = dyn_cast<CallInst>(U);
1055 if (!CI)
1056 report_fatal_error("Does not support indirect calls to setjmp");
1058 BasicBlock *BB = CI->getParent();
1059 if (BB->getParent() != &F) // in other function
1060 continue;
1062 // The tail is everything right after the call, and will be reached once
1063 // when setjmp is called, and later when longjmp returns to the setjmp
1064 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1065 // Add a phi to the tail, which will be the output of setjmp, which
1066 // indicates if this is the first call or a longjmp back. The phi directly
1067 // uses the right value based on where we arrive from
1068 IRB.SetInsertPoint(Tail->getFirstNonPHI());
1069 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1071 // setjmp initial call returns 0
1072 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1073 // The proper output is now this, not the setjmp call itself
1074 CI->replaceAllUsesWith(SetjmpRet);
1075 // longjmp returns to the setjmp will add themselves to this phi
1076 SetjmpRetPHIs.push_back(SetjmpRet);
1078 // Fix call target
1079 // Our index in the function is our place in the array + 1 to avoid index
1080 // 0, because index 0 means the longjmp is not ours to handle.
1081 IRB.SetInsertPoint(CI);
1082 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1083 SetjmpTable, SetjmpTableSize};
1084 Instruction *NewSetjmpTable =
1085 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1086 Instruction *NewSetjmpTableSize =
1087 IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1088 SetjmpTableInsts.push_back(NewSetjmpTable);
1089 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1090 ToErase.push_back(CI);
1093 // Update each call that can longjmp so it can return to a setjmp where
1094 // relevant.
1096 // Because we are creating new BBs while processing and don't want to make
1097 // all these newly created BBs candidates again for longjmp processing, we
1098 // first make the vector of candidate BBs.
1099 std::vector<BasicBlock *> BBs;
1100 for (BasicBlock &BB : F)
1101 BBs.push_back(&BB);
1103 // BBs.size() will change within the loop, so we query it every time
1104 for (unsigned I = 0; I < BBs.size(); I++) {
1105 BasicBlock *BB = BBs[I];
1106 for (Instruction &I : *BB) {
1107 if (isa<InvokeInst>(&I))
1108 report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1109 "a restriction that `setjmp` function call and "
1110 "exception cannot be used within the same function");
1111 auto *CI = dyn_cast<CallInst>(&I);
1112 if (!CI)
1113 continue;
1115 const Value *Callee = CI->getCalledOperand();
1116 if (!canLongjmp(Callee))
1117 continue;
1118 if (isEmAsmCall(Callee))
1119 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1120 F.getName() +
1121 ". Please consider using EM_JS, or move the "
1122 "EM_ASM into another function.",
1123 false);
1125 Value *Threw = nullptr;
1126 BasicBlock *Tail;
1127 if (Callee->getName().startswith("__invoke_")) {
1128 // If invoke wrapper has already been generated for this call in
1129 // previous EH phase, search for the load instruction
1130 // %__THREW__.val = __THREW__;
1131 // in postamble after the invoke wrapper call
1132 LoadInst *ThrewLI = nullptr;
1133 StoreInst *ThrewResetSI = nullptr;
1134 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1135 I != IE; ++I) {
1136 if (auto *LI = dyn_cast<LoadInst>(I))
1137 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1138 if (GV == ThrewGV) {
1139 Threw = ThrewLI = LI;
1140 break;
1143 // Search for the store instruction after the load above
1144 // __THREW__ = 0;
1145 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1146 I != IE; ++I) {
1147 if (auto *SI = dyn_cast<StoreInst>(I)) {
1148 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1149 if (GV == ThrewGV &&
1150 SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1151 ThrewResetSI = SI;
1152 break;
1157 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1158 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1159 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1161 } else {
1162 // Wrap call with invoke wrapper and generate preamble/postamble
1163 Threw = wrapInvoke(CI);
1164 ToErase.push_back(CI);
1165 Tail = SplitBlock(BB, CI->getNextNode());
1167 // If exception handling is enabled, the thrown value can be not a
1168 // longjmp but an exception, in which case we shouldn't silently ignore
1169 // exceptions; we should rethrow them.
1170 // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1171 // thrown, other values when longjmp is thrown.
1173 // if (%__THREW__.val == 1)
1174 // goto %eh.rethrow
1175 // else
1176 // goto %normal
1178 // eh.rethrow: ;; Rethrow exception
1179 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1180 // __resumeException(%exn)
1182 // normal:
1183 // <-- Insertion point. Will insert sjlj handling code from here
1184 // goto %tail
1186 // tail:
1187 // ...
1188 if (supportsException(&F) && canThrow(Callee)) {
1189 IRB.SetInsertPoint(CI);
1190 // We will add a new conditional branch. So remove the branch created
1191 // when we split the BB
1192 ToErase.push_back(BB->getTerminator());
1193 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1194 BasicBlock *RethrowBB = BasicBlock::Create(C, "eh.rethrow", &F);
1195 Value *CmpEqOne =
1196 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1197 IRB.CreateCondBr(CmpEqOne, RethrowBB, NormalBB);
1198 IRB.SetInsertPoint(RethrowBB);
1199 CallInst *Exn = IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1200 IRB.CreateCall(ResumeF, {Exn});
1201 IRB.CreateUnreachable();
1202 IRB.SetInsertPoint(NormalBB);
1203 IRB.CreateBr(Tail);
1204 BB = NormalBB; // New insertion point to insert testSetjmp()
1208 // We need to replace the terminator in Tail - SplitBlock makes BB go
1209 // straight to Tail, we need to check if a longjmp occurred, and go to the
1210 // right setjmp-tail if so
1211 ToErase.push_back(BB->getTerminator());
1213 // Generate a function call to testSetjmp function and preamble/postamble
1214 // code to figure out (1) whether longjmp occurred (2) if longjmp
1215 // occurred, which setjmp it corresponds to
1216 Value *Label = nullptr;
1217 Value *LongjmpResult = nullptr;
1218 BasicBlock *EndBB = nullptr;
1219 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1220 Label, LongjmpResult, EndBB);
1221 assert(Label && LongjmpResult && EndBB);
1223 // Create switch instruction
1224 IRB.SetInsertPoint(EndBB);
1225 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1226 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1227 // -1 means no longjmp happened, continue normally (will hit the default
1228 // switch case). 0 means a longjmp that is not ours to handle, needs a
1229 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1230 // 0).
1231 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1232 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1233 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1236 // We are splitting the block here, and must continue to find other calls
1237 // in the block - which is now split. so continue to traverse in the Tail
1238 BBs.push_back(Tail);
1242 // Erase everything we no longer need in this function
1243 for (Instruction *I : ToErase)
1244 I->eraseFromParent();
1246 // Free setjmpTable buffer before each return instruction + function-exiting
1247 // call
1248 SmallVector<Instruction *, 16> ExitingInsts;
1249 for (BasicBlock &BB : F) {
1250 Instruction *TI = BB.getTerminator();
1251 if (isa<ReturnInst>(TI))
1252 ExitingInsts.push_back(TI);
1253 for (auto &I : BB) {
1254 if (auto *CB = dyn_cast<CallBase>(&I)) {
1255 StringRef CalleeName = CB->getCalledOperand()->getName();
1256 if (CalleeName == "__resumeException" ||
1257 CalleeName == "emscripten_longjmp" || CalleeName == "__cxa_throw")
1258 ExitingInsts.push_back(&I);
1262 for (auto *I : ExitingInsts) {
1263 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1264 auto *Free = CallInst::CreateFree(SetjmpTable, I);
1265 Free->setDebugLoc(DL);
1266 // CallInst::CreateFree may create a bitcast instruction if its argument
1267 // types mismatch. We need to set the debug loc for the bitcast too.
1268 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1269 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1270 BitCastI->setDebugLoc(DL);
1274 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1275 // (when buffer reallocation occurs)
1276 // entry:
1277 // setjmpTableSize = 4;
1278 // setjmpTable = (int *) malloc(40);
1279 // setjmpTable[0] = 0;
1280 // ...
1281 // somebb:
1282 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1283 // setjmpTableSize = getTempRet0();
1284 // So we need to make sure the SSA for these variables is valid so that every
1285 // saveSetjmp and testSetjmp calls have the correct arguments.
1286 SSAUpdater SetjmpTableSSA;
1287 SSAUpdater SetjmpTableSizeSSA;
1288 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1289 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1290 for (Instruction *I : SetjmpTableInsts)
1291 SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1292 for (Instruction *I : SetjmpTableSizeInsts)
1293 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1295 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1296 UI != UE;) {
1297 // Grab the use before incrementing the iterator.
1298 Use &U = *UI;
1299 // Increment the iterator before removing the use from the list.
1300 ++UI;
1301 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1302 if (I->getParent() != Entry)
1303 SetjmpTableSSA.RewriteUse(U);
1305 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1306 UI != UE;) {
1307 Use &U = *UI;
1308 ++UI;
1309 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1310 if (I->getParent() != Entry)
1311 SetjmpTableSizeSSA.RewriteUse(U);
1314 // Finally, our modifications to the cfg can break dominance of SSA variables.
1315 // For example, in this code,
1316 // if (x()) { .. setjmp() .. }
1317 // if (y()) { .. longjmp() .. }
1318 // We must split the longjmp block, and it can jump into the block splitted
1319 // from setjmp one. But that means that when we split the setjmp block, it's
1320 // first part no longer dominates its second part - there is a theoretically
1321 // possible control flow path where x() is false, then y() is true and we
1322 // reach the second part of the setjmp block, without ever reaching the first
1323 // part. So, we rebuild SSA form here.
1324 rebuildSSA(F);
1325 return true;