[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / WebAssembly / WebAssemblyRegStackify.cpp
blobd6adc2fd155ce1198be95569934864e75d71a47d
1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "Utils/WebAssemblyUtilities.h"
24 #include "WebAssembly.h"
25 #include "WebAssemblyDebugValueManager.h"
26 #include "WebAssemblyMachineFunctionInfo.h"
27 #include "WebAssemblySubtarget.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <iterator>
40 using namespace llvm;
42 #define DEBUG_TYPE "wasm-reg-stackify"
44 namespace {
45 class WebAssemblyRegStackify final : public MachineFunctionPass {
46 StringRef getPassName() const override {
47 return "WebAssembly Register Stackify";
50 void getAnalysisUsage(AnalysisUsage &AU) const override {
51 AU.setPreservesCFG();
52 AU.addRequired<AAResultsWrapperPass>();
53 AU.addRequired<MachineDominatorTree>();
54 AU.addRequired<LiveIntervals>();
55 AU.addPreserved<MachineBlockFrequencyInfo>();
56 AU.addPreserved<SlotIndexes>();
57 AU.addPreserved<LiveIntervals>();
58 AU.addPreservedID(LiveVariablesID);
59 AU.addPreserved<MachineDominatorTree>();
60 MachineFunctionPass::getAnalysisUsage(AU);
63 bool runOnMachineFunction(MachineFunction &MF) override;
65 public:
66 static char ID; // Pass identification, replacement for typeid
67 WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
69 } // end anonymous namespace
71 char WebAssemblyRegStackify::ID = 0;
72 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
73 "Reorder instructions to use the WebAssembly value stack",
74 false, false)
76 FunctionPass *llvm::createWebAssemblyRegStackify() {
77 return new WebAssemblyRegStackify();
80 // Decorate the given instruction with implicit operands that enforce the
81 // expression stack ordering constraints for an instruction which is on
82 // the expression stack.
83 static void imposeStackOrdering(MachineInstr *MI) {
84 // Write the opaque VALUE_STACK register.
85 if (!MI->definesRegister(WebAssembly::VALUE_STACK))
86 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
87 /*isDef=*/true,
88 /*isImp=*/true));
90 // Also read the opaque VALUE_STACK register.
91 if (!MI->readsRegister(WebAssembly::VALUE_STACK))
92 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
93 /*isDef=*/false,
94 /*isImp=*/true));
97 // Convert an IMPLICIT_DEF instruction into an instruction which defines
98 // a constant zero value.
99 static void convertImplicitDefToConstZero(MachineInstr *MI,
100 MachineRegisterInfo &MRI,
101 const TargetInstrInfo *TII,
102 MachineFunction &MF,
103 LiveIntervals &LIS) {
104 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
106 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
107 if (RegClass == &WebAssembly::I32RegClass) {
108 MI->setDesc(TII->get(WebAssembly::CONST_I32));
109 MI->addOperand(MachineOperand::CreateImm(0));
110 } else if (RegClass == &WebAssembly::I64RegClass) {
111 MI->setDesc(TII->get(WebAssembly::CONST_I64));
112 MI->addOperand(MachineOperand::CreateImm(0));
113 } else if (RegClass == &WebAssembly::F32RegClass) {
114 MI->setDesc(TII->get(WebAssembly::CONST_F32));
115 auto *Val = cast<ConstantFP>(Constant::getNullValue(
116 Type::getFloatTy(MF.getFunction().getContext())));
117 MI->addOperand(MachineOperand::CreateFPImm(Val));
118 } else if (RegClass == &WebAssembly::F64RegClass) {
119 MI->setDesc(TII->get(WebAssembly::CONST_F64));
120 auto *Val = cast<ConstantFP>(Constant::getNullValue(
121 Type::getDoubleTy(MF.getFunction().getContext())));
122 MI->addOperand(MachineOperand::CreateFPImm(Val));
123 } else if (RegClass == &WebAssembly::V128RegClass) {
124 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
125 MI->addOperand(MachineOperand::CreateImm(0));
126 MI->addOperand(MachineOperand::CreateImm(0));
127 } else {
128 llvm_unreachable("Unexpected reg class");
132 // Determine whether a call to the callee referenced by
133 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
134 // effects.
135 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
136 bool &Effects, bool &StackPointer) {
137 // All calls can use the stack pointer.
138 StackPointer = true;
140 const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
141 if (MO.isGlobal()) {
142 const Constant *GV = MO.getGlobal();
143 if (const auto *GA = dyn_cast<GlobalAlias>(GV))
144 if (!GA->isInterposable())
145 GV = GA->getAliasee();
147 if (const auto *F = dyn_cast<Function>(GV)) {
148 if (!F->doesNotThrow())
149 Effects = true;
150 if (F->doesNotAccessMemory())
151 return;
152 if (F->onlyReadsMemory()) {
153 Read = true;
154 return;
159 // Assume the worst.
160 Write = true;
161 Read = true;
162 Effects = true;
165 // Determine whether MI reads memory, writes memory, has side effects,
166 // and/or uses the stack pointer value.
167 static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
168 bool &Write, bool &Effects, bool &StackPointer) {
169 assert(!MI.isTerminator());
171 if (MI.isDebugInstr() || MI.isPosition())
172 return;
174 // Check for loads.
175 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
176 Read = true;
178 // Check for stores.
179 if (MI.mayStore()) {
180 Write = true;
181 } else if (MI.hasOrderedMemoryRef()) {
182 switch (MI.getOpcode()) {
183 case WebAssembly::DIV_S_I32:
184 case WebAssembly::DIV_S_I64:
185 case WebAssembly::REM_S_I32:
186 case WebAssembly::REM_S_I64:
187 case WebAssembly::DIV_U_I32:
188 case WebAssembly::DIV_U_I64:
189 case WebAssembly::REM_U_I32:
190 case WebAssembly::REM_U_I64:
191 case WebAssembly::I32_TRUNC_S_F32:
192 case WebAssembly::I64_TRUNC_S_F32:
193 case WebAssembly::I32_TRUNC_S_F64:
194 case WebAssembly::I64_TRUNC_S_F64:
195 case WebAssembly::I32_TRUNC_U_F32:
196 case WebAssembly::I64_TRUNC_U_F32:
197 case WebAssembly::I32_TRUNC_U_F64:
198 case WebAssembly::I64_TRUNC_U_F64:
199 // These instruction have hasUnmodeledSideEffects() returning true
200 // because they trap on overflow and invalid so they can't be arbitrarily
201 // moved, however hasOrderedMemoryRef() interprets this plus their lack
202 // of memoperands as having a potential unknown memory reference.
203 break;
204 default:
205 // Record volatile accesses, unless it's a call, as calls are handled
206 // specially below.
207 if (!MI.isCall()) {
208 Write = true;
209 Effects = true;
211 break;
215 // Check for side effects.
216 if (MI.hasUnmodeledSideEffects()) {
217 switch (MI.getOpcode()) {
218 case WebAssembly::DIV_S_I32:
219 case WebAssembly::DIV_S_I64:
220 case WebAssembly::REM_S_I32:
221 case WebAssembly::REM_S_I64:
222 case WebAssembly::DIV_U_I32:
223 case WebAssembly::DIV_U_I64:
224 case WebAssembly::REM_U_I32:
225 case WebAssembly::REM_U_I64:
226 case WebAssembly::I32_TRUNC_S_F32:
227 case WebAssembly::I64_TRUNC_S_F32:
228 case WebAssembly::I32_TRUNC_S_F64:
229 case WebAssembly::I64_TRUNC_S_F64:
230 case WebAssembly::I32_TRUNC_U_F32:
231 case WebAssembly::I64_TRUNC_U_F32:
232 case WebAssembly::I32_TRUNC_U_F64:
233 case WebAssembly::I64_TRUNC_U_F64:
234 // These instructions have hasUnmodeledSideEffects() returning true
235 // because they trap on overflow and invalid so they can't be arbitrarily
236 // moved, however in the specific case of register stackifying, it is safe
237 // to move them because overflow and invalid are Undefined Behavior.
238 break;
239 default:
240 Effects = true;
241 break;
245 // Check for writes to __stack_pointer global.
246 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
247 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
248 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
249 StackPointer = true;
251 // Analyze calls.
252 if (MI.isCall()) {
253 queryCallee(MI, Read, Write, Effects, StackPointer);
257 // Test whether Def is safe and profitable to rematerialize.
258 static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
259 const WebAssemblyInstrInfo *TII) {
260 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
263 // Identify the definition for this register at this point. This is a
264 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
265 // LiveIntervals to handle complex cases.
266 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
267 const MachineRegisterInfo &MRI,
268 const LiveIntervals &LIS) {
269 // Most registers are in SSA form here so we try a quick MRI query first.
270 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
271 return Def;
273 // MRI doesn't know what the Def is. Try asking LIS.
274 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
275 LIS.getInstructionIndex(*Insert)))
276 return LIS.getInstructionFromIndex(ValNo->def);
278 return nullptr;
281 // Test whether Reg, as defined at Def, has exactly one use. This is a
282 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
283 // to handle complex cases.
284 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
285 MachineDominatorTree &MDT, LiveIntervals &LIS) {
286 // Most registers are in SSA form here so we try a quick MRI query first.
287 if (MRI.hasOneUse(Reg))
288 return true;
290 bool HasOne = false;
291 const LiveInterval &LI = LIS.getInterval(Reg);
292 const VNInfo *DefVNI =
293 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
294 assert(DefVNI);
295 for (auto &I : MRI.use_nodbg_operands(Reg)) {
296 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
297 if (Result.valueIn() == DefVNI) {
298 if (!Result.isKill())
299 return false;
300 if (HasOne)
301 return false;
302 HasOne = true;
305 return HasOne;
308 // Test whether it's safe to move Def to just before Insert.
309 // TODO: Compute memory dependencies in a way that doesn't require always
310 // walking the block.
311 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
312 // more precise.
313 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
314 const MachineInstr *Insert, AliasAnalysis &AA,
315 const WebAssemblyFunctionInfo &MFI,
316 const MachineRegisterInfo &MRI) {
317 const MachineInstr *DefI = Def->getParent();
318 const MachineInstr *UseI = Use->getParent();
319 assert(DefI->getParent() == Insert->getParent());
320 assert(UseI->getParent() == Insert->getParent());
322 // The first def of a multivalue instruction can be stackified by moving,
323 // since the later defs can always be placed into locals if necessary. Later
324 // defs can only be stackified if all previous defs are already stackified
325 // since ExplicitLocals will not know how to place a def in a local if a
326 // subsequent def is stackified. But only one def can be stackified by moving
327 // the instruction, so it must be the first one.
329 // TODO: This could be loosened to be the first *live* def, but care would
330 // have to be taken to ensure the drops of the initial dead defs can be
331 // placed. This would require checking that no previous defs are used in the
332 // same instruction as subsequent defs.
333 if (Def != DefI->defs().begin())
334 return false;
336 // If any subsequent def is used prior to the current value by the same
337 // instruction in which the current value is used, we cannot
338 // stackify. Stackifying in this case would require that def moving below the
339 // current def in the stack, which cannot be achieved, even with locals.
340 for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
341 for (const auto &PriorUse : UseI->uses()) {
342 if (&PriorUse == Use)
343 break;
344 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
345 return false;
349 // If moving is a semantic nop, it is always allowed
350 const MachineBasicBlock *MBB = DefI->getParent();
351 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
352 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
354 if (NextI == Insert)
355 return true;
357 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
358 // move.
359 if (WebAssembly::isCatch(DefI->getOpcode()))
360 return false;
362 // Check for register dependencies.
363 SmallVector<unsigned, 4> MutableRegisters;
364 for (const MachineOperand &MO : DefI->operands()) {
365 if (!MO.isReg() || MO.isUndef())
366 continue;
367 Register Reg = MO.getReg();
369 // If the register is dead here and at Insert, ignore it.
370 if (MO.isDead() && Insert->definesRegister(Reg) &&
371 !Insert->readsRegister(Reg))
372 continue;
374 if (Register::isPhysicalRegister(Reg)) {
375 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
376 // from moving down, and we've already checked for that.
377 if (Reg == WebAssembly::ARGUMENTS)
378 continue;
379 // If the physical register is never modified, ignore it.
380 if (!MRI.isPhysRegModified(Reg))
381 continue;
382 // Otherwise, it's a physical register with unknown liveness.
383 return false;
386 // If one of the operands isn't in SSA form, it has different values at
387 // different times, and we need to make sure we don't move our use across
388 // a different def.
389 if (!MO.isDef() && !MRI.hasOneDef(Reg))
390 MutableRegisters.push_back(Reg);
393 bool Read = false, Write = false, Effects = false, StackPointer = false;
394 query(*DefI, AA, Read, Write, Effects, StackPointer);
396 // If the instruction does not access memory and has no side effects, it has
397 // no additional dependencies.
398 bool HasMutableRegisters = !MutableRegisters.empty();
399 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
400 return true;
402 // Scan through the intervening instructions between DefI and Insert.
403 MachineBasicBlock::const_iterator D(DefI), I(Insert);
404 for (--I; I != D; --I) {
405 bool InterveningRead = false;
406 bool InterveningWrite = false;
407 bool InterveningEffects = false;
408 bool InterveningStackPointer = false;
409 query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
410 InterveningStackPointer);
411 if (Effects && InterveningEffects)
412 return false;
413 if (Read && InterveningWrite)
414 return false;
415 if (Write && (InterveningRead || InterveningWrite))
416 return false;
417 if (StackPointer && InterveningStackPointer)
418 return false;
420 for (unsigned Reg : MutableRegisters)
421 for (const MachineOperand &MO : I->operands())
422 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
423 return false;
426 return true;
429 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
430 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
431 const MachineBasicBlock &MBB,
432 const MachineRegisterInfo &MRI,
433 const MachineDominatorTree &MDT,
434 LiveIntervals &LIS,
435 WebAssemblyFunctionInfo &MFI) {
436 const LiveInterval &LI = LIS.getInterval(Reg);
438 const MachineInstr *OneUseInst = OneUse.getParent();
439 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
441 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
442 if (&Use == &OneUse)
443 continue;
445 const MachineInstr *UseInst = Use.getParent();
446 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
448 if (UseVNI != OneUseVNI)
449 continue;
451 if (UseInst == OneUseInst) {
452 // Another use in the same instruction. We need to ensure that the one
453 // selected use happens "before" it.
454 if (&OneUse > &Use)
455 return false;
456 } else {
457 // Test that the use is dominated by the one selected use.
458 while (!MDT.dominates(OneUseInst, UseInst)) {
459 // Actually, dominating is over-conservative. Test that the use would
460 // happen after the one selected use in the stack evaluation order.
462 // This is needed as a consequence of using implicit local.gets for
463 // uses and implicit local.sets for defs.
464 if (UseInst->getDesc().getNumDefs() == 0)
465 return false;
466 const MachineOperand &MO = UseInst->getOperand(0);
467 if (!MO.isReg())
468 return false;
469 Register DefReg = MO.getReg();
470 if (!Register::isVirtualRegister(DefReg) ||
471 !MFI.isVRegStackified(DefReg))
472 return false;
473 assert(MRI.hasOneNonDBGUse(DefReg));
474 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
475 const MachineInstr *NewUseInst = NewUse.getParent();
476 if (NewUseInst == OneUseInst) {
477 if (&OneUse > &NewUse)
478 return false;
479 break;
481 UseInst = NewUseInst;
485 return true;
488 /// Get the appropriate tee opcode for the given register class.
489 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
490 if (RC == &WebAssembly::I32RegClass)
491 return WebAssembly::TEE_I32;
492 if (RC == &WebAssembly::I64RegClass)
493 return WebAssembly::TEE_I64;
494 if (RC == &WebAssembly::F32RegClass)
495 return WebAssembly::TEE_F32;
496 if (RC == &WebAssembly::F64RegClass)
497 return WebAssembly::TEE_F64;
498 if (RC == &WebAssembly::V128RegClass)
499 return WebAssembly::TEE_V128;
500 llvm_unreachable("Unexpected register class");
503 // Shrink LI to its uses, cleaning up LI.
504 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
505 if (LIS.shrinkToUses(&LI)) {
506 SmallVector<LiveInterval *, 4> SplitLIs;
507 LIS.splitSeparateComponents(LI, SplitLIs);
511 /// A single-use def in the same block with no intervening memory or register
512 /// dependencies; move the def down and nest it with the current instruction.
513 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
514 MachineInstr *Def, MachineBasicBlock &MBB,
515 MachineInstr *Insert, LiveIntervals &LIS,
516 WebAssemblyFunctionInfo &MFI,
517 MachineRegisterInfo &MRI) {
518 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
520 WebAssemblyDebugValueManager DefDIs(Def);
521 MBB.splice(Insert, &MBB, Def);
522 DefDIs.move(Insert);
523 LIS.handleMove(*Def);
525 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
526 // No one else is using this register for anything so we can just stackify
527 // it in place.
528 MFI.stackifyVReg(MRI, Reg);
529 } else {
530 // The register may have unrelated uses or defs; create a new register for
531 // just our one def and use so that we can stackify it.
532 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
533 Def->getOperand(0).setReg(NewReg);
534 Op.setReg(NewReg);
536 // Tell LiveIntervals about the new register.
537 LIS.createAndComputeVirtRegInterval(NewReg);
539 // Tell LiveIntervals about the changes to the old register.
540 LiveInterval &LI = LIS.getInterval(Reg);
541 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
542 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
543 /*RemoveDeadValNo=*/true);
545 MFI.stackifyVReg(MRI, NewReg);
547 DefDIs.updateReg(NewReg);
549 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
552 imposeStackOrdering(Def);
553 return Def;
556 /// A trivially cloneable instruction; clone it and nest the new copy with the
557 /// current instruction.
558 static MachineInstr *rematerializeCheapDef(
559 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
560 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
561 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
562 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
563 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
564 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
566 WebAssemblyDebugValueManager DefDIs(&Def);
568 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
569 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
570 Op.setReg(NewReg);
571 MachineInstr *Clone = &*std::prev(Insert);
572 LIS.InsertMachineInstrInMaps(*Clone);
573 LIS.createAndComputeVirtRegInterval(NewReg);
574 MFI.stackifyVReg(MRI, NewReg);
575 imposeStackOrdering(Clone);
577 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
579 // Shrink the interval.
580 bool IsDead = MRI.use_empty(Reg);
581 if (!IsDead) {
582 LiveInterval &LI = LIS.getInterval(Reg);
583 shrinkToUses(LI, LIS);
584 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
587 // If that was the last use of the original, delete the original.
588 // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
589 if (IsDead) {
590 LLVM_DEBUG(dbgs() << " - Deleting original\n");
591 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
592 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
593 LIS.removeInterval(Reg);
594 LIS.RemoveMachineInstrFromMaps(Def);
595 Def.eraseFromParent();
597 DefDIs.move(&*Insert);
598 DefDIs.updateReg(NewReg);
599 } else {
600 DefDIs.clone(&*Insert, NewReg);
603 return Clone;
606 /// A multiple-use def in the same block with no intervening memory or register
607 /// dependencies; move the def down, nest it with the current instruction, and
608 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
609 /// this:
611 /// Reg = INST ... // Def
612 /// INST ..., Reg, ... // Insert
613 /// INST ..., Reg, ...
614 /// INST ..., Reg, ...
616 /// to this:
618 /// DefReg = INST ... // Def (to become the new Insert)
619 /// TeeReg, Reg = TEE_... DefReg
620 /// INST ..., TeeReg, ... // Insert
621 /// INST ..., Reg, ...
622 /// INST ..., Reg, ...
624 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
625 /// resulting code.
626 static MachineInstr *moveAndTeeForMultiUse(
627 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
628 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
629 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
630 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
632 WebAssemblyDebugValueManager DefDIs(Def);
634 // Move Def into place.
635 MBB.splice(Insert, &MBB, Def);
636 LIS.handleMove(*Def);
638 // Create the Tee and attach the registers.
639 const auto *RegClass = MRI.getRegClass(Reg);
640 Register TeeReg = MRI.createVirtualRegister(RegClass);
641 Register DefReg = MRI.createVirtualRegister(RegClass);
642 MachineOperand &DefMO = Def->getOperand(0);
643 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
644 TII->get(getTeeOpcode(RegClass)), TeeReg)
645 .addReg(Reg, RegState::Define)
646 .addReg(DefReg, getUndefRegState(DefMO.isDead()));
647 Op.setReg(TeeReg);
648 DefMO.setReg(DefReg);
649 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
650 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
652 DefDIs.move(Insert);
654 // Tell LiveIntervals we moved the original vreg def from Def to Tee.
655 LiveInterval &LI = LIS.getInterval(Reg);
656 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
657 VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
658 I->start = TeeIdx;
659 ValNo->def = TeeIdx;
660 shrinkToUses(LI, LIS);
662 // Finish stackifying the new regs.
663 LIS.createAndComputeVirtRegInterval(TeeReg);
664 LIS.createAndComputeVirtRegInterval(DefReg);
665 MFI.stackifyVReg(MRI, DefReg);
666 MFI.stackifyVReg(MRI, TeeReg);
667 imposeStackOrdering(Def);
668 imposeStackOrdering(Tee);
670 DefDIs.clone(Tee, DefReg);
671 DefDIs.clone(Insert, TeeReg);
673 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
674 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
675 return Def;
678 namespace {
679 /// A stack for walking the tree of instructions being built, visiting the
680 /// MachineOperands in DFS order.
681 class TreeWalkerState {
682 using mop_iterator = MachineInstr::mop_iterator;
683 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
684 using RangeTy = iterator_range<mop_reverse_iterator>;
685 SmallVector<RangeTy, 4> Worklist;
687 public:
688 explicit TreeWalkerState(MachineInstr *Insert) {
689 const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
690 if (!Range.empty())
691 Worklist.push_back(reverse(Range));
694 bool done() const { return Worklist.empty(); }
696 MachineOperand &pop() {
697 RangeTy &Range = Worklist.back();
698 MachineOperand &Op = *Range.begin();
699 Range = drop_begin(Range);
700 if (Range.empty())
701 Worklist.pop_back();
702 assert((Worklist.empty() || !Worklist.back().empty()) &&
703 "Empty ranges shouldn't remain in the worklist");
704 return Op;
707 /// Push Instr's operands onto the stack to be visited.
708 void pushOperands(MachineInstr *Instr) {
709 const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
710 if (!Range.empty())
711 Worklist.push_back(reverse(Range));
714 /// Some of Instr's operands are on the top of the stack; remove them and
715 /// re-insert them starting from the beginning (because we've commuted them).
716 void resetTopOperands(MachineInstr *Instr) {
717 assert(hasRemainingOperands(Instr) &&
718 "Reseting operands should only be done when the instruction has "
719 "an operand still on the stack");
720 Worklist.back() = reverse(Instr->explicit_uses());
723 /// Test whether Instr has operands remaining to be visited at the top of
724 /// the stack.
725 bool hasRemainingOperands(const MachineInstr *Instr) const {
726 if (Worklist.empty())
727 return false;
728 const RangeTy &Range = Worklist.back();
729 return !Range.empty() && Range.begin()->getParent() == Instr;
732 /// Test whether the given register is present on the stack, indicating an
733 /// operand in the tree that we haven't visited yet. Moving a definition of
734 /// Reg to a point in the tree after that would change its value.
736 /// This is needed as a consequence of using implicit local.gets for
737 /// uses and implicit local.sets for defs.
738 bool isOnStack(unsigned Reg) const {
739 for (const RangeTy &Range : Worklist)
740 for (const MachineOperand &MO : Range)
741 if (MO.isReg() && MO.getReg() == Reg)
742 return true;
743 return false;
747 /// State to keep track of whether commuting is in flight or whether it's been
748 /// tried for the current instruction and didn't work.
749 class CommutingState {
750 /// There are effectively three states: the initial state where we haven't
751 /// started commuting anything and we don't know anything yet, the tentative
752 /// state where we've commuted the operands of the current instruction and are
753 /// revisiting it, and the declined state where we've reverted the operands
754 /// back to their original order and will no longer commute it further.
755 bool TentativelyCommuting = false;
756 bool Declined = false;
758 /// During the tentative state, these hold the operand indices of the commuted
759 /// operands.
760 unsigned Operand0, Operand1;
762 public:
763 /// Stackification for an operand was not successful due to ordering
764 /// constraints. If possible, and if we haven't already tried it and declined
765 /// it, commute Insert's operands and prepare to revisit it.
766 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
767 const WebAssemblyInstrInfo *TII) {
768 if (TentativelyCommuting) {
769 assert(!Declined &&
770 "Don't decline commuting until you've finished trying it");
771 // Commuting didn't help. Revert it.
772 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
773 TentativelyCommuting = false;
774 Declined = true;
775 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
776 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
777 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
778 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
779 // Tentatively commute the operands and try again.
780 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
781 TreeWalker.resetTopOperands(Insert);
782 TentativelyCommuting = true;
783 Declined = false;
788 /// Stackification for some operand was successful. Reset to the default
789 /// state.
790 void reset() {
791 TentativelyCommuting = false;
792 Declined = false;
795 } // end anonymous namespace
797 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
798 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
799 "********** Function: "
800 << MF.getName() << '\n');
802 bool Changed = false;
803 MachineRegisterInfo &MRI = MF.getRegInfo();
804 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
805 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
806 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
807 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
808 auto &MDT = getAnalysis<MachineDominatorTree>();
809 auto &LIS = getAnalysis<LiveIntervals>();
811 // Walk the instructions from the bottom up. Currently we don't look past
812 // block boundaries, and the blocks aren't ordered so the block visitation
813 // order isn't significant, but we may want to change this in the future.
814 for (MachineBasicBlock &MBB : MF) {
815 // Don't use a range-based for loop, because we modify the list as we're
816 // iterating over it and the end iterator may change.
817 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
818 MachineInstr *Insert = &*MII;
819 // Don't nest anything inside an inline asm, because we don't have
820 // constraints for $push inputs.
821 if (Insert->isInlineAsm())
822 continue;
824 // Ignore debugging intrinsics.
825 if (Insert->isDebugValue())
826 continue;
828 // Iterate through the inputs in reverse order, since we'll be pulling
829 // operands off the stack in LIFO order.
830 CommutingState Commuting;
831 TreeWalkerState TreeWalker(Insert);
832 while (!TreeWalker.done()) {
833 MachineOperand &Use = TreeWalker.pop();
835 // We're only interested in explicit virtual register operands.
836 if (!Use.isReg())
837 continue;
839 Register Reg = Use.getReg();
840 assert(Use.isUse() && "explicit_uses() should only iterate over uses");
841 assert(!Use.isImplicit() &&
842 "explicit_uses() should only iterate over explicit operands");
843 if (Register::isPhysicalRegister(Reg))
844 continue;
846 // Identify the definition for this register at this point.
847 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
848 if (!DefI)
849 continue;
851 // Don't nest an INLINE_ASM def into anything, because we don't have
852 // constraints for $pop outputs.
853 if (DefI->isInlineAsm())
854 continue;
856 // Argument instructions represent live-in registers and not real
857 // instructions.
858 if (WebAssembly::isArgument(DefI->getOpcode()))
859 continue;
861 MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
862 assert(Def != nullptr);
864 // Decide which strategy to take. Prefer to move a single-use value
865 // over cloning it, and prefer cloning over introducing a tee.
866 // For moving, we require the def to be in the same block as the use;
867 // this makes things simpler (LiveIntervals' handleMove function only
868 // supports intra-block moves) and it's MachineSink's job to catch all
869 // the sinking opportunities anyway.
870 bool SameBlock = DefI->getParent() == &MBB;
871 bool CanMove = SameBlock &&
872 isSafeToMove(Def, &Use, Insert, AA, MFI, MRI) &&
873 !TreeWalker.isOnStack(Reg);
874 if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
875 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
877 // If we are removing the frame base reg completely, remove the debug
878 // info as well.
879 // TODO: Encode this properly as a stackified value.
880 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
881 MFI.clearFrameBaseVreg();
882 } else if (shouldRematerialize(*DefI, AA, TII)) {
883 Insert =
884 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
885 LIS, MFI, MRI, TII, TRI);
886 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
887 LIS, MFI)) {
888 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
889 MRI, TII);
890 } else {
891 // We failed to stackify the operand. If the problem was ordering
892 // constraints, Commuting may be able to help.
893 if (!CanMove && SameBlock)
894 Commuting.maybeCommute(Insert, TreeWalker, TII);
895 // Proceed to the next operand.
896 continue;
899 // Stackifying a multivalue def may unlock in-place stackification of
900 // subsequent defs. TODO: Handle the case where the consecutive uses are
901 // not all in the same instruction.
902 auto *SubsequentDef = Insert->defs().begin();
903 auto *SubsequentUse = &Use;
904 while (SubsequentDef != Insert->defs().end() &&
905 SubsequentUse != Use.getParent()->uses().end()) {
906 if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
907 break;
908 unsigned DefReg = SubsequentDef->getReg();
909 unsigned UseReg = SubsequentUse->getReg();
910 // TODO: This single-use restriction could be relaxed by using tees
911 if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
912 break;
913 MFI.stackifyVReg(MRI, DefReg);
914 ++SubsequentDef;
915 ++SubsequentUse;
918 // If the instruction we just stackified is an IMPLICIT_DEF, convert it
919 // to a constant 0 so that the def is explicit, and the push/pop
920 // correspondence is maintained.
921 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
922 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
924 // We stackified an operand. Add the defining instruction's operands to
925 // the worklist stack now to continue to build an ever deeper tree.
926 Commuting.reset();
927 TreeWalker.pushOperands(Insert);
930 // If we stackified any operands, skip over the tree to start looking for
931 // the next instruction we can build a tree on.
932 if (Insert != &*MII) {
933 imposeStackOrdering(&*MII);
934 MII = MachineBasicBlock::iterator(Insert).getReverse();
935 Changed = true;
940 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
941 // that it never looks like a use-before-def.
942 if (Changed) {
943 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
944 for (MachineBasicBlock &MBB : MF)
945 MBB.addLiveIn(WebAssembly::VALUE_STACK);
948 #ifndef NDEBUG
949 // Verify that pushes and pops are performed in LIFO order.
950 SmallVector<unsigned, 0> Stack;
951 for (MachineBasicBlock &MBB : MF) {
952 for (MachineInstr &MI : MBB) {
953 if (MI.isDebugInstr())
954 continue;
955 for (MachineOperand &MO : reverse(MI.explicit_uses())) {
956 if (!MO.isReg())
957 continue;
958 Register Reg = MO.getReg();
959 if (MFI.isVRegStackified(Reg))
960 assert(Stack.pop_back_val() == Reg &&
961 "Register stack pop should be paired with a push");
963 for (MachineOperand &MO : MI.defs()) {
964 if (!MO.isReg())
965 continue;
966 Register Reg = MO.getReg();
967 if (MFI.isVRegStackified(Reg))
968 Stack.push_back(MO.getReg());
971 // TODO: Generalize this code to support keeping values on the stack across
972 // basic block boundaries.
973 assert(Stack.empty() &&
974 "Register stack pushes and pops should be balanced");
976 #endif
978 return Changed;