[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / X86 / Disassembler / X86Disassembler.cpp
blob44d83ef3a967331f0fe04d17685173fb65a09f49
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 // MCInsts.
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets. The main decode sequence for an assembly
16 // instruction in this disassembler is:
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 // These attributes, recorded in enum attributeBits
20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
21 // provides a mapping from bitmasks to contexts, which are represented by
22 // enum InstructionContext (ibid.).
24 // 2. Read the opcode, and determine what kind of opcode it is. The
25 // disassembler distinguishes four kinds of opcodes, which are enumerated in
26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
33 // a ModRMDecision (ibid.).
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 // ModR/M byte is required and how to interpret it.
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 // meanings of its operands.
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 // OperandType (ibid.). The encoding indicates how to read it from the
49 // instruction; the type indicates how to interpret the value once it has
50 // been read. For example, a register operand could be stored in the R/M
51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
53 // register, for instance). Given this information, the operands can be
54 // extracted and interpreted.
56 // 7. As the last step, the disassembler translates the instruction information
57 // and operands into a format understandable by the client - in this case, an
58 // MCInst for use by the MC infrastructure.
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself. The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 // invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 // table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 // factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 // responsible for steps 1-6.
74 //===----------------------------------------------------------------------===//
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/TargetRegistry.h"
89 #include "llvm/Support/raw_ostream.h"
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
94 #define DEBUG_TYPE "x86-disassembler"
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to. Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102 uint8_t modrm_type;
103 uint16_t instructionIDs;
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109 ModRMDecision modRMDecisions[256];
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes). Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes. Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118 OpcodeDecision opcodeDecisions[IC_max];
121 #include "X86GenDisassemblerTables.inc"
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124 uint8_t opcode, uint8_t modRM) {
125 const struct ModRMDecision *dec;
127 switch (type) {
128 case ONEBYTE:
129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130 break;
131 case TWOBYTE:
132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133 break;
134 case THREEBYTE_38:
135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136 break;
137 case THREEBYTE_3A:
138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139 break;
140 case XOP8_MAP:
141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142 break;
143 case XOP9_MAP:
144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145 break;
146 case XOPA_MAP:
147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148 break;
149 case THREEDNOW_MAP:
150 dec =
151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152 break;
153 case MAP5:
154 dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155 break;
156 case MAP6:
157 dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158 break;
161 switch (dec->modrm_type) {
162 default:
163 llvm_unreachable("Corrupt table! Unknown modrm_type");
164 return 0;
165 case MODRM_ONEENTRY:
166 return modRMTable[dec->instructionIDs];
167 case MODRM_SPLITRM:
168 if (modFromModRM(modRM) == 0x3)
169 return modRMTable[dec->instructionIDs + 1];
170 return modRMTable[dec->instructionIDs];
171 case MODRM_SPLITREG:
172 if (modFromModRM(modRM) == 0x3)
173 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
174 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
175 case MODRM_SPLITMISC:
176 if (modFromModRM(modRM) == 0x3)
177 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
178 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
179 case MODRM_FULL:
180 return modRMTable[dec->instructionIDs + modRM];
184 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
185 uint64_t offset = insn->readerCursor - insn->startLocation;
186 if (offset >= insn->bytes.size())
187 return true;
188 byte = insn->bytes[offset];
189 return false;
192 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
193 auto r = insn->bytes;
194 uint64_t offset = insn->readerCursor - insn->startLocation;
195 if (offset + sizeof(T) > r.size())
196 return true;
197 T ret = 0;
198 for (unsigned i = 0; i < sizeof(T); ++i)
199 ret |= (uint64_t)r[offset + i] << (i * 8);
200 ptr = ret;
201 insn->readerCursor += sizeof(T);
202 return false;
205 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
206 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
209 // Consumes all of an instruction's prefix bytes, and marks the
210 // instruction as having them. Also sets the instruction's default operand,
211 // address, and other relevant data sizes to report operands correctly.
213 // insn must not be empty.
214 static int readPrefixes(struct InternalInstruction *insn) {
215 bool isPrefix = true;
216 uint8_t byte = 0;
217 uint8_t nextByte;
219 LLVM_DEBUG(dbgs() << "readPrefixes()");
221 while (isPrefix) {
222 // If we fail reading prefixes, just stop here and let the opcode reader
223 // deal with it.
224 if (consume(insn, byte))
225 break;
227 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
228 // break and let it be disassembled as a normal "instruction".
229 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
230 break;
232 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
233 // If the byte is 0xf2 or 0xf3, and any of the following conditions are
234 // met:
235 // - it is followed by a LOCK (0xf0) prefix
236 // - it is followed by an xchg instruction
237 // then it should be disassembled as a xacquire/xrelease not repne/rep.
238 if (((nextByte == 0xf0) ||
239 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
240 insn->xAcquireRelease = true;
241 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
242 break;
244 // Also if the byte is 0xf3, and the following condition is met:
245 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
246 // "mov mem, imm" (opcode 0xc6/0xc7) instructions.
247 // then it should be disassembled as an xrelease not rep.
248 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
249 nextByte == 0xc6 || nextByte == 0xc7)) {
250 insn->xAcquireRelease = true;
251 break;
253 if (isREX(insn, nextByte)) {
254 uint8_t nnextByte;
255 // Go to REX prefix after the current one
256 if (consume(insn, nnextByte))
257 return -1;
258 // We should be able to read next byte after REX prefix
259 if (peek(insn, nnextByte))
260 return -1;
261 --insn->readerCursor;
265 switch (byte) {
266 case 0xf0: // LOCK
267 insn->hasLockPrefix = true;
268 break;
269 case 0xf2: // REPNE/REPNZ
270 case 0xf3: { // REP or REPE/REPZ
271 uint8_t nextByte;
272 if (peek(insn, nextByte))
273 break;
274 // TODO:
275 // 1. There could be several 0x66
276 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
277 // it's not mandatory prefix
278 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
279 // 0x0f exactly after it to be mandatory prefix
280 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
281 // The last of 0xf2 /0xf3 is mandatory prefix
282 insn->mandatoryPrefix = byte;
283 insn->repeatPrefix = byte;
284 break;
286 case 0x2e: // CS segment override -OR- Branch not taken
287 insn->segmentOverride = SEG_OVERRIDE_CS;
288 break;
289 case 0x36: // SS segment override -OR- Branch taken
290 insn->segmentOverride = SEG_OVERRIDE_SS;
291 break;
292 case 0x3e: // DS segment override
293 insn->segmentOverride = SEG_OVERRIDE_DS;
294 break;
295 case 0x26: // ES segment override
296 insn->segmentOverride = SEG_OVERRIDE_ES;
297 break;
298 case 0x64: // FS segment override
299 insn->segmentOverride = SEG_OVERRIDE_FS;
300 break;
301 case 0x65: // GS segment override
302 insn->segmentOverride = SEG_OVERRIDE_GS;
303 break;
304 case 0x66: { // Operand-size override {
305 uint8_t nextByte;
306 insn->hasOpSize = true;
307 if (peek(insn, nextByte))
308 break;
309 // 0x66 can't overwrite existing mandatory prefix and should be ignored
310 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
311 insn->mandatoryPrefix = byte;
312 break;
314 case 0x67: // Address-size override
315 insn->hasAdSize = true;
316 break;
317 default: // Not a prefix byte
318 isPrefix = false;
319 break;
322 if (isPrefix)
323 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
326 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
328 if (byte == 0x62) {
329 uint8_t byte1, byte2;
330 if (consume(insn, byte1)) {
331 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
332 return -1;
335 if (peek(insn, byte2)) {
336 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
337 return -1;
340 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
341 ((~byte1 & 0x8) == 0x8) && ((byte2 & 0x4) == 0x4)) {
342 insn->vectorExtensionType = TYPE_EVEX;
343 } else {
344 --insn->readerCursor; // unconsume byte1
345 --insn->readerCursor; // unconsume byte
348 if (insn->vectorExtensionType == TYPE_EVEX) {
349 insn->vectorExtensionPrefix[0] = byte;
350 insn->vectorExtensionPrefix[1] = byte1;
351 if (consume(insn, insn->vectorExtensionPrefix[2])) {
352 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
353 return -1;
355 if (consume(insn, insn->vectorExtensionPrefix[3])) {
356 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
357 return -1;
360 // We simulate the REX prefix for simplicity's sake
361 if (insn->mode == MODE_64BIT) {
362 insn->rexPrefix = 0x40 |
363 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
364 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
365 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
366 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
369 LLVM_DEBUG(
370 dbgs() << format(
371 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
372 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
373 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
375 } else if (byte == 0xc4) {
376 uint8_t byte1;
377 if (peek(insn, byte1)) {
378 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
379 return -1;
382 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
383 insn->vectorExtensionType = TYPE_VEX_3B;
384 else
385 --insn->readerCursor;
387 if (insn->vectorExtensionType == TYPE_VEX_3B) {
388 insn->vectorExtensionPrefix[0] = byte;
389 consume(insn, insn->vectorExtensionPrefix[1]);
390 consume(insn, insn->vectorExtensionPrefix[2]);
392 // We simulate the REX prefix for simplicity's sake
394 if (insn->mode == MODE_64BIT)
395 insn->rexPrefix = 0x40 |
396 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
397 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
398 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
399 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
401 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
402 insn->vectorExtensionPrefix[0],
403 insn->vectorExtensionPrefix[1],
404 insn->vectorExtensionPrefix[2]));
406 } else if (byte == 0xc5) {
407 uint8_t byte1;
408 if (peek(insn, byte1)) {
409 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
410 return -1;
413 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
414 insn->vectorExtensionType = TYPE_VEX_2B;
415 else
416 --insn->readerCursor;
418 if (insn->vectorExtensionType == TYPE_VEX_2B) {
419 insn->vectorExtensionPrefix[0] = byte;
420 consume(insn, insn->vectorExtensionPrefix[1]);
422 if (insn->mode == MODE_64BIT)
423 insn->rexPrefix =
424 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
426 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
427 default:
428 break;
429 case VEX_PREFIX_66:
430 insn->hasOpSize = true;
431 break;
434 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
435 insn->vectorExtensionPrefix[0],
436 insn->vectorExtensionPrefix[1]));
438 } else if (byte == 0x8f) {
439 uint8_t byte1;
440 if (peek(insn, byte1)) {
441 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
442 return -1;
445 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
446 insn->vectorExtensionType = TYPE_XOP;
447 else
448 --insn->readerCursor;
450 if (insn->vectorExtensionType == TYPE_XOP) {
451 insn->vectorExtensionPrefix[0] = byte;
452 consume(insn, insn->vectorExtensionPrefix[1]);
453 consume(insn, insn->vectorExtensionPrefix[2]);
455 // We simulate the REX prefix for simplicity's sake
457 if (insn->mode == MODE_64BIT)
458 insn->rexPrefix = 0x40 |
459 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
460 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
461 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
462 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
464 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
465 default:
466 break;
467 case VEX_PREFIX_66:
468 insn->hasOpSize = true;
469 break;
472 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
473 insn->vectorExtensionPrefix[0],
474 insn->vectorExtensionPrefix[1],
475 insn->vectorExtensionPrefix[2]));
477 } else if (isREX(insn, byte)) {
478 if (peek(insn, nextByte))
479 return -1;
480 insn->rexPrefix = byte;
481 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
482 } else
483 --insn->readerCursor;
485 if (insn->mode == MODE_16BIT) {
486 insn->registerSize = (insn->hasOpSize ? 4 : 2);
487 insn->addressSize = (insn->hasAdSize ? 4 : 2);
488 insn->displacementSize = (insn->hasAdSize ? 4 : 2);
489 insn->immediateSize = (insn->hasOpSize ? 4 : 2);
490 } else if (insn->mode == MODE_32BIT) {
491 insn->registerSize = (insn->hasOpSize ? 2 : 4);
492 insn->addressSize = (insn->hasAdSize ? 2 : 4);
493 insn->displacementSize = (insn->hasAdSize ? 2 : 4);
494 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
495 } else if (insn->mode == MODE_64BIT) {
496 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
497 insn->registerSize = 8;
498 insn->addressSize = (insn->hasAdSize ? 4 : 8);
499 insn->displacementSize = 4;
500 insn->immediateSize = 4;
501 insn->hasOpSize = false;
502 } else {
503 insn->registerSize = (insn->hasOpSize ? 2 : 4);
504 insn->addressSize = (insn->hasAdSize ? 4 : 8);
505 insn->displacementSize = (insn->hasOpSize ? 2 : 4);
506 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
510 return 0;
513 // Consumes the SIB byte to determine addressing information.
514 static int readSIB(struct InternalInstruction *insn) {
515 SIBBase sibBaseBase = SIB_BASE_NONE;
516 uint8_t index, base;
518 LLVM_DEBUG(dbgs() << "readSIB()");
519 switch (insn->addressSize) {
520 case 2:
521 default:
522 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
523 case 4:
524 insn->sibIndexBase = SIB_INDEX_EAX;
525 sibBaseBase = SIB_BASE_EAX;
526 break;
527 case 8:
528 insn->sibIndexBase = SIB_INDEX_RAX;
529 sibBaseBase = SIB_BASE_RAX;
530 break;
533 if (consume(insn, insn->sib))
534 return -1;
536 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
538 if (index == 0x4) {
539 insn->sibIndex = SIB_INDEX_NONE;
540 } else {
541 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
544 insn->sibScale = 1 << scaleFromSIB(insn->sib);
546 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
548 switch (base) {
549 case 0x5:
550 case 0xd:
551 switch (modFromModRM(insn->modRM)) {
552 case 0x0:
553 insn->eaDisplacement = EA_DISP_32;
554 insn->sibBase = SIB_BASE_NONE;
555 break;
556 case 0x1:
557 insn->eaDisplacement = EA_DISP_8;
558 insn->sibBase = (SIBBase)(sibBaseBase + base);
559 break;
560 case 0x2:
561 insn->eaDisplacement = EA_DISP_32;
562 insn->sibBase = (SIBBase)(sibBaseBase + base);
563 break;
564 default:
565 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
567 break;
568 default:
569 insn->sibBase = (SIBBase)(sibBaseBase + base);
570 break;
573 return 0;
576 static int readDisplacement(struct InternalInstruction *insn) {
577 int8_t d8;
578 int16_t d16;
579 int32_t d32;
580 LLVM_DEBUG(dbgs() << "readDisplacement()");
582 insn->displacementOffset = insn->readerCursor - insn->startLocation;
583 switch (insn->eaDisplacement) {
584 case EA_DISP_NONE:
585 break;
586 case EA_DISP_8:
587 if (consume(insn, d8))
588 return -1;
589 insn->displacement = d8;
590 break;
591 case EA_DISP_16:
592 if (consume(insn, d16))
593 return -1;
594 insn->displacement = d16;
595 break;
596 case EA_DISP_32:
597 if (consume(insn, d32))
598 return -1;
599 insn->displacement = d32;
600 break;
603 return 0;
606 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
607 static int readModRM(struct InternalInstruction *insn) {
608 uint8_t mod, rm, reg, evexrm;
609 LLVM_DEBUG(dbgs() << "readModRM()");
611 if (insn->consumedModRM)
612 return 0;
614 if (consume(insn, insn->modRM))
615 return -1;
616 insn->consumedModRM = true;
618 mod = modFromModRM(insn->modRM);
619 rm = rmFromModRM(insn->modRM);
620 reg = regFromModRM(insn->modRM);
622 // This goes by insn->registerSize to pick the correct register, which messes
623 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
624 // fixupReg().
625 switch (insn->registerSize) {
626 case 2:
627 insn->regBase = MODRM_REG_AX;
628 insn->eaRegBase = EA_REG_AX;
629 break;
630 case 4:
631 insn->regBase = MODRM_REG_EAX;
632 insn->eaRegBase = EA_REG_EAX;
633 break;
634 case 8:
635 insn->regBase = MODRM_REG_RAX;
636 insn->eaRegBase = EA_REG_RAX;
637 break;
640 reg |= rFromREX(insn->rexPrefix) << 3;
641 rm |= bFromREX(insn->rexPrefix) << 3;
643 evexrm = 0;
644 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
645 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
646 evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
649 insn->reg = (Reg)(insn->regBase + reg);
651 switch (insn->addressSize) {
652 case 2: {
653 EABase eaBaseBase = EA_BASE_BX_SI;
655 switch (mod) {
656 case 0x0:
657 if (rm == 0x6) {
658 insn->eaBase = EA_BASE_NONE;
659 insn->eaDisplacement = EA_DISP_16;
660 if (readDisplacement(insn))
661 return -1;
662 } else {
663 insn->eaBase = (EABase)(eaBaseBase + rm);
664 insn->eaDisplacement = EA_DISP_NONE;
666 break;
667 case 0x1:
668 insn->eaBase = (EABase)(eaBaseBase + rm);
669 insn->eaDisplacement = EA_DISP_8;
670 insn->displacementSize = 1;
671 if (readDisplacement(insn))
672 return -1;
673 break;
674 case 0x2:
675 insn->eaBase = (EABase)(eaBaseBase + rm);
676 insn->eaDisplacement = EA_DISP_16;
677 if (readDisplacement(insn))
678 return -1;
679 break;
680 case 0x3:
681 insn->eaBase = (EABase)(insn->eaRegBase + rm);
682 if (readDisplacement(insn))
683 return -1;
684 break;
686 break;
688 case 4:
689 case 8: {
690 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
692 switch (mod) {
693 case 0x0:
694 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
695 // In determining whether RIP-relative mode is used (rm=5),
696 // or whether a SIB byte is present (rm=4),
697 // the extension bits (REX.b and EVEX.x) are ignored.
698 switch (rm & 7) {
699 case 0x4: // SIB byte is present
700 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
701 if (readSIB(insn) || readDisplacement(insn))
702 return -1;
703 break;
704 case 0x5: // RIP-relative
705 insn->eaBase = EA_BASE_NONE;
706 insn->eaDisplacement = EA_DISP_32;
707 if (readDisplacement(insn))
708 return -1;
709 break;
710 default:
711 insn->eaBase = (EABase)(eaBaseBase + rm);
712 break;
714 break;
715 case 0x1:
716 insn->displacementSize = 1;
717 LLVM_FALLTHROUGH;
718 case 0x2:
719 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
720 switch (rm & 7) {
721 case 0x4: // SIB byte is present
722 insn->eaBase = EA_BASE_sib;
723 if (readSIB(insn) || readDisplacement(insn))
724 return -1;
725 break;
726 default:
727 insn->eaBase = (EABase)(eaBaseBase + rm);
728 if (readDisplacement(insn))
729 return -1;
730 break;
732 break;
733 case 0x3:
734 insn->eaDisplacement = EA_DISP_NONE;
735 insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
736 break;
738 break;
740 } // switch (insn->addressSize)
742 return 0;
745 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \
746 static uint16_t name(struct InternalInstruction *insn, OperandType type, \
747 uint8_t index, uint8_t *valid) { \
748 *valid = 1; \
749 switch (type) { \
750 default: \
751 debug("Unhandled register type"); \
752 *valid = 0; \
753 return 0; \
754 case TYPE_Rv: \
755 return base + index; \
756 case TYPE_R8: \
757 index &= mask; \
758 if (index > 0xf) \
759 *valid = 0; \
760 if (insn->rexPrefix && index >= 4 && index <= 7) { \
761 return prefix##_SPL + (index - 4); \
762 } else { \
763 return prefix##_AL + index; \
765 case TYPE_R16: \
766 index &= mask; \
767 if (index > 0xf) \
768 *valid = 0; \
769 return prefix##_AX + index; \
770 case TYPE_R32: \
771 index &= mask; \
772 if (index > 0xf) \
773 *valid = 0; \
774 return prefix##_EAX + index; \
775 case TYPE_R64: \
776 index &= mask; \
777 if (index > 0xf) \
778 *valid = 0; \
779 return prefix##_RAX + index; \
780 case TYPE_ZMM: \
781 return prefix##_ZMM0 + index; \
782 case TYPE_YMM: \
783 return prefix##_YMM0 + index; \
784 case TYPE_XMM: \
785 return prefix##_XMM0 + index; \
786 case TYPE_TMM: \
787 if (index > 7) \
788 *valid = 0; \
789 return prefix##_TMM0 + index; \
790 case TYPE_VK: \
791 index &= 0xf; \
792 if (index > 7) \
793 *valid = 0; \
794 return prefix##_K0 + index; \
795 case TYPE_VK_PAIR: \
796 if (index > 7) \
797 *valid = 0; \
798 return prefix##_K0_K1 + (index / 2); \
799 case TYPE_MM64: \
800 return prefix##_MM0 + (index & 0x7); \
801 case TYPE_SEGMENTREG: \
802 if ((index & 7) > 5) \
803 *valid = 0; \
804 return prefix##_ES + (index & 7); \
805 case TYPE_DEBUGREG: \
806 return prefix##_DR0 + index; \
807 case TYPE_CONTROLREG: \
808 return prefix##_CR0 + index; \
809 case TYPE_BNDR: \
810 if (index > 3) \
811 *valid = 0; \
812 return prefix##_BND0 + index; \
813 case TYPE_MVSIBX: \
814 return prefix##_XMM0 + index; \
815 case TYPE_MVSIBY: \
816 return prefix##_YMM0 + index; \
817 case TYPE_MVSIBZ: \
818 return prefix##_ZMM0 + index; \
822 // Consult an operand type to determine the meaning of the reg or R/M field. If
823 // the operand is an XMM operand, for example, an operand would be XMM0 instead
824 // of AX, which readModRM() would otherwise misinterpret it as.
826 // @param insn - The instruction containing the operand.
827 // @param type - The operand type.
828 // @param index - The existing value of the field as reported by readModRM().
829 // @param valid - The address of a uint8_t. The target is set to 1 if the
830 // field is valid for the register class; 0 if not.
831 // @return - The proper value.
832 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
833 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
835 // Consult an operand specifier to determine which of the fixup*Value functions
836 // to use in correcting readModRM()'ss interpretation.
838 // @param insn - See fixup*Value().
839 // @param op - The operand specifier.
840 // @return - 0 if fixup was successful; -1 if the register returned was
841 // invalid for its class.
842 static int fixupReg(struct InternalInstruction *insn,
843 const struct OperandSpecifier *op) {
844 uint8_t valid;
845 LLVM_DEBUG(dbgs() << "fixupReg()");
847 switch ((OperandEncoding)op->encoding) {
848 default:
849 debug("Expected a REG or R/M encoding in fixupReg");
850 return -1;
851 case ENCODING_VVVV:
852 insn->vvvv =
853 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
854 if (!valid)
855 return -1;
856 break;
857 case ENCODING_REG:
858 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
859 insn->reg - insn->regBase, &valid);
860 if (!valid)
861 return -1;
862 break;
863 case ENCODING_SIB:
864 CASE_ENCODING_RM:
865 if (insn->eaBase >= insn->eaRegBase) {
866 insn->eaBase = (EABase)fixupRMValue(
867 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
868 if (!valid)
869 return -1;
871 break;
874 return 0;
877 // Read the opcode (except the ModR/M byte in the case of extended or escape
878 // opcodes).
879 static bool readOpcode(struct InternalInstruction *insn) {
880 uint8_t current;
881 LLVM_DEBUG(dbgs() << "readOpcode()");
883 insn->opcodeType = ONEBYTE;
884 if (insn->vectorExtensionType == TYPE_EVEX) {
885 switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
886 default:
887 LLVM_DEBUG(
888 dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
889 mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
890 return true;
891 case VEX_LOB_0F:
892 insn->opcodeType = TWOBYTE;
893 return consume(insn, insn->opcode);
894 case VEX_LOB_0F38:
895 insn->opcodeType = THREEBYTE_38;
896 return consume(insn, insn->opcode);
897 case VEX_LOB_0F3A:
898 insn->opcodeType = THREEBYTE_3A;
899 return consume(insn, insn->opcode);
900 case VEX_LOB_MAP5:
901 insn->opcodeType = MAP5;
902 return consume(insn, insn->opcode);
903 case VEX_LOB_MAP6:
904 insn->opcodeType = MAP6;
905 return consume(insn, insn->opcode);
907 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
908 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
909 default:
910 LLVM_DEBUG(
911 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
912 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
913 return true;
914 case VEX_LOB_0F:
915 insn->opcodeType = TWOBYTE;
916 return consume(insn, insn->opcode);
917 case VEX_LOB_0F38:
918 insn->opcodeType = THREEBYTE_38;
919 return consume(insn, insn->opcode);
920 case VEX_LOB_0F3A:
921 insn->opcodeType = THREEBYTE_3A;
922 return consume(insn, insn->opcode);
923 case VEX_LOB_MAP5:
924 insn->opcodeType = MAP5;
925 return consume(insn, insn->opcode);
926 case VEX_LOB_MAP6:
927 insn->opcodeType = MAP6;
928 return consume(insn, insn->opcode);
930 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
931 insn->opcodeType = TWOBYTE;
932 return consume(insn, insn->opcode);
933 } else if (insn->vectorExtensionType == TYPE_XOP) {
934 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
935 default:
936 LLVM_DEBUG(
937 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
938 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
939 return true;
940 case XOP_MAP_SELECT_8:
941 insn->opcodeType = XOP8_MAP;
942 return consume(insn, insn->opcode);
943 case XOP_MAP_SELECT_9:
944 insn->opcodeType = XOP9_MAP;
945 return consume(insn, insn->opcode);
946 case XOP_MAP_SELECT_A:
947 insn->opcodeType = XOPA_MAP;
948 return consume(insn, insn->opcode);
952 if (consume(insn, current))
953 return true;
955 if (current == 0x0f) {
956 LLVM_DEBUG(
957 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
958 if (consume(insn, current))
959 return true;
961 if (current == 0x38) {
962 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
963 current));
964 if (consume(insn, current))
965 return true;
967 insn->opcodeType = THREEBYTE_38;
968 } else if (current == 0x3a) {
969 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
970 current));
971 if (consume(insn, current))
972 return true;
974 insn->opcodeType = THREEBYTE_3A;
975 } else if (current == 0x0f) {
976 LLVM_DEBUG(
977 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
979 // Consume operands before the opcode to comply with the 3DNow encoding
980 if (readModRM(insn))
981 return true;
983 if (consume(insn, current))
984 return true;
986 insn->opcodeType = THREEDNOW_MAP;
987 } else {
988 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
989 insn->opcodeType = TWOBYTE;
991 } else if (insn->mandatoryPrefix)
992 // The opcode with mandatory prefix must start with opcode escape.
993 // If not it's legacy repeat prefix
994 insn->mandatoryPrefix = 0;
996 // At this point we have consumed the full opcode.
997 // Anything we consume from here on must be unconsumed.
998 insn->opcode = current;
1000 return false;
1003 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1004 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1005 for (int i = 0;; i++) {
1006 if (orig[i] == '\0' && equiv[i] == '\0')
1007 return true;
1008 if (orig[i] == '\0' || equiv[i] == '\0')
1009 return false;
1010 if (orig[i] != equiv[i]) {
1011 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1012 continue;
1013 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1014 continue;
1015 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1016 continue;
1017 return false;
1022 // Determine whether this instruction is a 64-bit instruction.
1023 static bool is64Bit(const char *name) {
1024 for (int i = 0;; ++i) {
1025 if (name[i] == '\0')
1026 return false;
1027 if (name[i] == '6' && name[i + 1] == '4')
1028 return true;
1032 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1033 // for extended and escape opcodes, and using a supplied attribute mask.
1034 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1035 struct InternalInstruction *insn,
1036 uint16_t attrMask) {
1037 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1038 const ContextDecision *decision;
1039 switch (insn->opcodeType) {
1040 case ONEBYTE:
1041 decision = &ONEBYTE_SYM;
1042 break;
1043 case TWOBYTE:
1044 decision = &TWOBYTE_SYM;
1045 break;
1046 case THREEBYTE_38:
1047 decision = &THREEBYTE38_SYM;
1048 break;
1049 case THREEBYTE_3A:
1050 decision = &THREEBYTE3A_SYM;
1051 break;
1052 case XOP8_MAP:
1053 decision = &XOP8_MAP_SYM;
1054 break;
1055 case XOP9_MAP:
1056 decision = &XOP9_MAP_SYM;
1057 break;
1058 case XOPA_MAP:
1059 decision = &XOPA_MAP_SYM;
1060 break;
1061 case THREEDNOW_MAP:
1062 decision = &THREEDNOW_MAP_SYM;
1063 break;
1064 case MAP5:
1065 decision = &MAP5_SYM;
1066 break;
1067 case MAP6:
1068 decision = &MAP6_SYM;
1069 break;
1072 if (decision->opcodeDecisions[insnCtx]
1073 .modRMDecisions[insn->opcode]
1074 .modrm_type != MODRM_ONEENTRY) {
1075 if (readModRM(insn))
1076 return -1;
1077 *instructionID =
1078 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1079 } else {
1080 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1083 return 0;
1086 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1087 // for extended and escape opcodes. Determines the attributes and context for
1088 // the instruction before doing so.
1089 static int getInstructionID(struct InternalInstruction *insn,
1090 const MCInstrInfo *mii) {
1091 uint16_t attrMask;
1092 uint16_t instructionID;
1094 LLVM_DEBUG(dbgs() << "getID()");
1096 attrMask = ATTR_NONE;
1098 if (insn->mode == MODE_64BIT)
1099 attrMask |= ATTR_64BIT;
1101 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1102 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1104 if (insn->vectorExtensionType == TYPE_EVEX) {
1105 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1106 case VEX_PREFIX_66:
1107 attrMask |= ATTR_OPSIZE;
1108 break;
1109 case VEX_PREFIX_F3:
1110 attrMask |= ATTR_XS;
1111 break;
1112 case VEX_PREFIX_F2:
1113 attrMask |= ATTR_XD;
1114 break;
1117 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1118 attrMask |= ATTR_EVEXKZ;
1119 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1120 attrMask |= ATTR_EVEXB;
1121 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1122 attrMask |= ATTR_EVEXK;
1123 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1124 attrMask |= ATTR_VEXL;
1125 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1126 attrMask |= ATTR_EVEXL2;
1127 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1128 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1129 case VEX_PREFIX_66:
1130 attrMask |= ATTR_OPSIZE;
1131 break;
1132 case VEX_PREFIX_F3:
1133 attrMask |= ATTR_XS;
1134 break;
1135 case VEX_PREFIX_F2:
1136 attrMask |= ATTR_XD;
1137 break;
1140 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1141 attrMask |= ATTR_VEXL;
1142 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1143 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1144 case VEX_PREFIX_66:
1145 attrMask |= ATTR_OPSIZE;
1146 if (insn->hasAdSize)
1147 attrMask |= ATTR_ADSIZE;
1148 break;
1149 case VEX_PREFIX_F3:
1150 attrMask |= ATTR_XS;
1151 break;
1152 case VEX_PREFIX_F2:
1153 attrMask |= ATTR_XD;
1154 break;
1157 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1158 attrMask |= ATTR_VEXL;
1159 } else if (insn->vectorExtensionType == TYPE_XOP) {
1160 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1161 case VEX_PREFIX_66:
1162 attrMask |= ATTR_OPSIZE;
1163 break;
1164 case VEX_PREFIX_F3:
1165 attrMask |= ATTR_XS;
1166 break;
1167 case VEX_PREFIX_F2:
1168 attrMask |= ATTR_XD;
1169 break;
1172 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1173 attrMask |= ATTR_VEXL;
1174 } else {
1175 return -1;
1177 } else if (!insn->mandatoryPrefix) {
1178 // If we don't have mandatory prefix we should use legacy prefixes here
1179 if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1180 attrMask |= ATTR_OPSIZE;
1181 if (insn->hasAdSize)
1182 attrMask |= ATTR_ADSIZE;
1183 if (insn->opcodeType == ONEBYTE) {
1184 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1185 // Special support for PAUSE
1186 attrMask |= ATTR_XS;
1187 } else {
1188 if (insn->repeatPrefix == 0xf2)
1189 attrMask |= ATTR_XD;
1190 else if (insn->repeatPrefix == 0xf3)
1191 attrMask |= ATTR_XS;
1193 } else {
1194 switch (insn->mandatoryPrefix) {
1195 case 0xf2:
1196 attrMask |= ATTR_XD;
1197 break;
1198 case 0xf3:
1199 attrMask |= ATTR_XS;
1200 break;
1201 case 0x66:
1202 if (insn->mode != MODE_16BIT)
1203 attrMask |= ATTR_OPSIZE;
1204 if (insn->hasAdSize)
1205 attrMask |= ATTR_ADSIZE;
1206 break;
1207 case 0x67:
1208 attrMask |= ATTR_ADSIZE;
1209 break;
1213 if (insn->rexPrefix & 0x08) {
1214 attrMask |= ATTR_REXW;
1215 attrMask &= ~ATTR_ADSIZE;
1218 if (insn->mode == MODE_16BIT) {
1219 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1220 // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1221 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1222 attrMask ^= ATTR_ADSIZE;
1223 // If we're in 16-bit mode and this is one of the relative jumps and opsize
1224 // prefix isn't present, we need to force the opsize attribute since the
1225 // prefix is inverted relative to 32-bit mode.
1226 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1227 (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1228 attrMask |= ATTR_OPSIZE;
1230 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1231 insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1232 attrMask |= ATTR_OPSIZE;
1236 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1237 return -1;
1239 // The following clauses compensate for limitations of the tables.
1241 if (insn->mode != MODE_64BIT &&
1242 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1243 // The tables can't distinquish between cases where the W-bit is used to
1244 // select register size and cases where its a required part of the opcode.
1245 if ((insn->vectorExtensionType == TYPE_EVEX &&
1246 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1247 (insn->vectorExtensionType == TYPE_VEX_3B &&
1248 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1249 (insn->vectorExtensionType == TYPE_XOP &&
1250 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1252 uint16_t instructionIDWithREXW;
1253 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1254 attrMask | ATTR_REXW)) {
1255 insn->instructionID = instructionID;
1256 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1257 return 0;
1260 auto SpecName = mii->getName(instructionIDWithREXW);
1261 // If not a 64-bit instruction. Switch the opcode.
1262 if (!is64Bit(SpecName.data())) {
1263 insn->instructionID = instructionIDWithREXW;
1264 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1265 return 0;
1270 // Absolute moves, umonitor, and movdir64b need special handling.
1271 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1272 // inverted w.r.t.
1273 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1274 // any position.
1275 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1276 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1277 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1278 // Make sure we observed the prefixes in any position.
1279 if (insn->hasAdSize)
1280 attrMask |= ATTR_ADSIZE;
1281 if (insn->hasOpSize)
1282 attrMask |= ATTR_OPSIZE;
1284 // In 16-bit, invert the attributes.
1285 if (insn->mode == MODE_16BIT) {
1286 attrMask ^= ATTR_ADSIZE;
1288 // The OpSize attribute is only valid with the absolute moves.
1289 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1290 attrMask ^= ATTR_OPSIZE;
1293 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1294 return -1;
1296 insn->instructionID = instructionID;
1297 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1298 return 0;
1301 if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1302 !(attrMask & ATTR_OPSIZE)) {
1303 // The instruction tables make no distinction between instructions that
1304 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1305 // particular spot (i.e., many MMX operations). In general we're
1306 // conservative, but in the specific case where OpSize is present but not in
1307 // the right place we check if there's a 16-bit operation.
1308 const struct InstructionSpecifier *spec;
1309 uint16_t instructionIDWithOpsize;
1310 llvm::StringRef specName, specWithOpSizeName;
1312 spec = &INSTRUCTIONS_SYM[instructionID];
1314 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1315 attrMask | ATTR_OPSIZE)) {
1316 // ModRM required with OpSize but not present. Give up and return the
1317 // version without OpSize set.
1318 insn->instructionID = instructionID;
1319 insn->spec = spec;
1320 return 0;
1323 specName = mii->getName(instructionID);
1324 specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1326 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1327 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1328 insn->instructionID = instructionIDWithOpsize;
1329 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1330 } else {
1331 insn->instructionID = instructionID;
1332 insn->spec = spec;
1334 return 0;
1337 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1338 insn->rexPrefix & 0x01) {
1339 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1340 // as XCHG %r8, %eax.
1341 const struct InstructionSpecifier *spec;
1342 uint16_t instructionIDWithNewOpcode;
1343 const struct InstructionSpecifier *specWithNewOpcode;
1345 spec = &INSTRUCTIONS_SYM[instructionID];
1347 // Borrow opcode from one of the other XCHGar opcodes
1348 insn->opcode = 0x91;
1350 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1351 attrMask)) {
1352 insn->opcode = 0x90;
1354 insn->instructionID = instructionID;
1355 insn->spec = spec;
1356 return 0;
1359 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1361 // Change back
1362 insn->opcode = 0x90;
1364 insn->instructionID = instructionIDWithNewOpcode;
1365 insn->spec = specWithNewOpcode;
1367 return 0;
1370 insn->instructionID = instructionID;
1371 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1373 return 0;
1376 // Read an operand from the opcode field of an instruction and interprets it
1377 // appropriately given the operand width. Handles AddRegFrm instructions.
1379 // @param insn - the instruction whose opcode field is to be read.
1380 // @param size - The width (in bytes) of the register being specified.
1381 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1382 // RAX.
1383 // @return - 0 on success; nonzero otherwise.
1384 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1385 LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1387 if (size == 0)
1388 size = insn->registerSize;
1390 switch (size) {
1391 case 1:
1392 insn->opcodeRegister = (Reg)(
1393 MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1394 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1395 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1396 insn->opcodeRegister =
1397 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1400 break;
1401 case 2:
1402 insn->opcodeRegister = (Reg)(
1403 MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1404 break;
1405 case 4:
1406 insn->opcodeRegister =
1407 (Reg)(MODRM_REG_EAX +
1408 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1409 break;
1410 case 8:
1411 insn->opcodeRegister =
1412 (Reg)(MODRM_REG_RAX +
1413 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1414 break;
1417 return 0;
1420 // Consume an immediate operand from an instruction, given the desired operand
1421 // size.
1423 // @param insn - The instruction whose operand is to be read.
1424 // @param size - The width (in bytes) of the operand.
1425 // @return - 0 if the immediate was successfully consumed; nonzero
1426 // otherwise.
1427 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1428 uint8_t imm8;
1429 uint16_t imm16;
1430 uint32_t imm32;
1431 uint64_t imm64;
1433 LLVM_DEBUG(dbgs() << "readImmediate()");
1435 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1437 insn->immediateSize = size;
1438 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1440 switch (size) {
1441 case 1:
1442 if (consume(insn, imm8))
1443 return -1;
1444 insn->immediates[insn->numImmediatesConsumed] = imm8;
1445 break;
1446 case 2:
1447 if (consume(insn, imm16))
1448 return -1;
1449 insn->immediates[insn->numImmediatesConsumed] = imm16;
1450 break;
1451 case 4:
1452 if (consume(insn, imm32))
1453 return -1;
1454 insn->immediates[insn->numImmediatesConsumed] = imm32;
1455 break;
1456 case 8:
1457 if (consume(insn, imm64))
1458 return -1;
1459 insn->immediates[insn->numImmediatesConsumed] = imm64;
1460 break;
1461 default:
1462 llvm_unreachable("invalid size");
1465 insn->numImmediatesConsumed++;
1467 return 0;
1470 // Consume vvvv from an instruction if it has a VEX prefix.
1471 static int readVVVV(struct InternalInstruction *insn) {
1472 LLVM_DEBUG(dbgs() << "readVVVV()");
1474 int vvvv;
1475 if (insn->vectorExtensionType == TYPE_EVEX)
1476 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1477 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1478 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1479 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1480 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1481 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1482 else if (insn->vectorExtensionType == TYPE_XOP)
1483 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1484 else
1485 return -1;
1487 if (insn->mode != MODE_64BIT)
1488 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1490 insn->vvvv = static_cast<Reg>(vvvv);
1491 return 0;
1494 // Read an mask register from the opcode field of an instruction.
1496 // @param insn - The instruction whose opcode field is to be read.
1497 // @return - 0 on success; nonzero otherwise.
1498 static int readMaskRegister(struct InternalInstruction *insn) {
1499 LLVM_DEBUG(dbgs() << "readMaskRegister()");
1501 if (insn->vectorExtensionType != TYPE_EVEX)
1502 return -1;
1504 insn->writemask =
1505 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1506 return 0;
1509 // Consults the specifier for an instruction and consumes all
1510 // operands for that instruction, interpreting them as it goes.
1511 static int readOperands(struct InternalInstruction *insn) {
1512 int hasVVVV, needVVVV;
1513 int sawRegImm = 0;
1515 LLVM_DEBUG(dbgs() << "readOperands()");
1517 // If non-zero vvvv specified, make sure one of the operands uses it.
1518 hasVVVV = !readVVVV(insn);
1519 needVVVV = hasVVVV && (insn->vvvv != 0);
1521 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1522 switch (Op.encoding) {
1523 case ENCODING_NONE:
1524 case ENCODING_SI:
1525 case ENCODING_DI:
1526 break;
1527 CASE_ENCODING_VSIB:
1528 // VSIB can use the V2 bit so check only the other bits.
1529 if (needVVVV)
1530 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1531 if (readModRM(insn))
1532 return -1;
1534 // Reject if SIB wasn't used.
1535 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1536 return -1;
1538 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1539 if (insn->sibIndex == SIB_INDEX_NONE)
1540 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1542 // If EVEX.v2 is set this is one of the 16-31 registers.
1543 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1544 v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1545 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1547 // Adjust the index register to the correct size.
1548 switch ((OperandType)Op.type) {
1549 default:
1550 debug("Unhandled VSIB index type");
1551 return -1;
1552 case TYPE_MVSIBX:
1553 insn->sibIndex =
1554 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1555 break;
1556 case TYPE_MVSIBY:
1557 insn->sibIndex =
1558 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1559 break;
1560 case TYPE_MVSIBZ:
1561 insn->sibIndex =
1562 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1563 break;
1566 // Apply the AVX512 compressed displacement scaling factor.
1567 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1568 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1569 break;
1570 case ENCODING_SIB:
1571 // Reject if SIB wasn't used.
1572 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1573 return -1;
1574 if (readModRM(insn))
1575 return -1;
1576 if (fixupReg(insn, &Op))
1577 return -1;
1578 break;
1579 case ENCODING_REG:
1580 CASE_ENCODING_RM:
1581 if (readModRM(insn))
1582 return -1;
1583 if (fixupReg(insn, &Op))
1584 return -1;
1585 // Apply the AVX512 compressed displacement scaling factor.
1586 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1587 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1588 break;
1589 case ENCODING_IB:
1590 if (sawRegImm) {
1591 // Saw a register immediate so don't read again and instead split the
1592 // previous immediate. FIXME: This is a hack.
1593 insn->immediates[insn->numImmediatesConsumed] =
1594 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1595 ++insn->numImmediatesConsumed;
1596 break;
1598 if (readImmediate(insn, 1))
1599 return -1;
1600 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1601 sawRegImm = 1;
1602 break;
1603 case ENCODING_IW:
1604 if (readImmediate(insn, 2))
1605 return -1;
1606 break;
1607 case ENCODING_ID:
1608 if (readImmediate(insn, 4))
1609 return -1;
1610 break;
1611 case ENCODING_IO:
1612 if (readImmediate(insn, 8))
1613 return -1;
1614 break;
1615 case ENCODING_Iv:
1616 if (readImmediate(insn, insn->immediateSize))
1617 return -1;
1618 break;
1619 case ENCODING_Ia:
1620 if (readImmediate(insn, insn->addressSize))
1621 return -1;
1622 break;
1623 case ENCODING_IRC:
1624 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1625 lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1626 break;
1627 case ENCODING_RB:
1628 if (readOpcodeRegister(insn, 1))
1629 return -1;
1630 break;
1631 case ENCODING_RW:
1632 if (readOpcodeRegister(insn, 2))
1633 return -1;
1634 break;
1635 case ENCODING_RD:
1636 if (readOpcodeRegister(insn, 4))
1637 return -1;
1638 break;
1639 case ENCODING_RO:
1640 if (readOpcodeRegister(insn, 8))
1641 return -1;
1642 break;
1643 case ENCODING_Rv:
1644 if (readOpcodeRegister(insn, 0))
1645 return -1;
1646 break;
1647 case ENCODING_CC:
1648 insn->immediates[1] = insn->opcode & 0xf;
1649 break;
1650 case ENCODING_FP:
1651 break;
1652 case ENCODING_VVVV:
1653 needVVVV = 0; // Mark that we have found a VVVV operand.
1654 if (!hasVVVV)
1655 return -1;
1656 if (insn->mode != MODE_64BIT)
1657 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1658 if (fixupReg(insn, &Op))
1659 return -1;
1660 break;
1661 case ENCODING_WRITEMASK:
1662 if (readMaskRegister(insn))
1663 return -1;
1664 break;
1665 case ENCODING_DUP:
1666 break;
1667 default:
1668 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1669 return -1;
1673 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1674 if (needVVVV)
1675 return -1;
1677 return 0;
1680 namespace llvm {
1682 // Fill-ins to make the compiler happy. These constants are never actually
1683 // assigned; they are just filler to make an automatically-generated switch
1684 // statement work.
1685 namespace X86 {
1686 enum {
1687 BX_SI = 500,
1688 BX_DI = 501,
1689 BP_SI = 502,
1690 BP_DI = 503,
1691 sib = 504,
1692 sib64 = 505
1694 } // namespace X86
1696 } // namespace llvm
1698 static bool translateInstruction(MCInst &target,
1699 InternalInstruction &source,
1700 const MCDisassembler *Dis);
1702 namespace {
1704 /// Generic disassembler for all X86 platforms. All each platform class should
1705 /// have to do is subclass the constructor, and provide a different
1706 /// disassemblerMode value.
1707 class X86GenericDisassembler : public MCDisassembler {
1708 std::unique_ptr<const MCInstrInfo> MII;
1709 public:
1710 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1711 std::unique_ptr<const MCInstrInfo> MII);
1712 public:
1713 DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1714 ArrayRef<uint8_t> Bytes, uint64_t Address,
1715 raw_ostream &cStream) const override;
1717 private:
1718 DisassemblerMode fMode;
1721 } // namespace
1723 X86GenericDisassembler::X86GenericDisassembler(
1724 const MCSubtargetInfo &STI,
1725 MCContext &Ctx,
1726 std::unique_ptr<const MCInstrInfo> MII)
1727 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1728 const FeatureBitset &FB = STI.getFeatureBits();
1729 if (FB[X86::Mode16Bit]) {
1730 fMode = MODE_16BIT;
1731 return;
1732 } else if (FB[X86::Mode32Bit]) {
1733 fMode = MODE_32BIT;
1734 return;
1735 } else if (FB[X86::Mode64Bit]) {
1736 fMode = MODE_64BIT;
1737 return;
1740 llvm_unreachable("Invalid CPU mode");
1743 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1744 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1745 raw_ostream &CStream) const {
1746 CommentStream = &CStream;
1748 InternalInstruction Insn;
1749 memset(&Insn, 0, sizeof(InternalInstruction));
1750 Insn.bytes = Bytes;
1751 Insn.startLocation = Address;
1752 Insn.readerCursor = Address;
1753 Insn.mode = fMode;
1755 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1756 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1757 readOperands(&Insn)) {
1758 Size = Insn.readerCursor - Address;
1759 return Fail;
1762 Insn.operands = x86OperandSets[Insn.spec->operands];
1763 Insn.length = Insn.readerCursor - Insn.startLocation;
1764 Size = Insn.length;
1765 if (Size > 15)
1766 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1768 bool Ret = translateInstruction(Instr, Insn, this);
1769 if (!Ret) {
1770 unsigned Flags = X86::IP_NO_PREFIX;
1771 if (Insn.hasAdSize)
1772 Flags |= X86::IP_HAS_AD_SIZE;
1773 if (!Insn.mandatoryPrefix) {
1774 if (Insn.hasOpSize)
1775 Flags |= X86::IP_HAS_OP_SIZE;
1776 if (Insn.repeatPrefix == 0xf2)
1777 Flags |= X86::IP_HAS_REPEAT_NE;
1778 else if (Insn.repeatPrefix == 0xf3 &&
1779 // It should not be 'pause' f3 90
1780 Insn.opcode != 0x90)
1781 Flags |= X86::IP_HAS_REPEAT;
1782 if (Insn.hasLockPrefix)
1783 Flags |= X86::IP_HAS_LOCK;
1785 Instr.setFlags(Flags);
1787 return (!Ret) ? Success : Fail;
1791 // Private code that translates from struct InternalInstructions to MCInsts.
1794 /// translateRegister - Translates an internal register to the appropriate LLVM
1795 /// register, and appends it as an operand to an MCInst.
1797 /// @param mcInst - The MCInst to append to.
1798 /// @param reg - The Reg to append.
1799 static void translateRegister(MCInst &mcInst, Reg reg) {
1800 #define ENTRY(x) X86::x,
1801 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1802 #undef ENTRY
1804 MCPhysReg llvmRegnum = llvmRegnums[reg];
1805 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1808 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
1809 /// immediate Value in the MCInst.
1811 /// @param Value - The immediate Value, has had any PC adjustment made by
1812 /// the caller.
1813 /// @param isBranch - If the instruction is a branch instruction
1814 /// @param Address - The starting address of the instruction
1815 /// @param Offset - The byte offset to this immediate in the instruction
1816 /// @param Width - The byte width of this immediate in the instruction
1818 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
1819 /// called then that function is called to get any symbolic information for the
1820 /// immediate in the instruction using the Address, Offset and Width. If that
1821 /// returns non-zero then the symbolic information it returns is used to create
1822 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
1823 /// returns zero and isBranch is true then a symbol look up for immediate Value
1824 /// is done and if a symbol is found an MCExpr is created with that, else
1825 /// an MCExpr with the immediate Value is created. This function returns true
1826 /// if it adds an operand to the MCInst and false otherwise.
1827 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
1828 uint64_t Address, uint64_t Offset,
1829 uint64_t Width, MCInst &MI,
1830 const MCDisassembler *Dis) {
1831 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
1832 Offset, Width);
1835 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
1836 /// referenced by a load instruction with the base register that is the rip.
1837 /// These can often be addresses in a literal pool. The Address of the
1838 /// instruction and its immediate Value are used to determine the address
1839 /// being referenced in the literal pool entry. The SymbolLookUp call back will
1840 /// return a pointer to a literal 'C' string if the referenced address is an
1841 /// address into a section with 'C' string literals.
1842 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
1843 const void *Decoder) {
1844 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
1845 Dis->tryAddingPcLoadReferenceComment(Value, Address);
1848 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1849 0, // SEG_OVERRIDE_NONE
1850 X86::CS,
1851 X86::SS,
1852 X86::DS,
1853 X86::ES,
1854 X86::FS,
1855 X86::GS
1858 /// translateSrcIndex - Appends a source index operand to an MCInst.
1860 /// @param mcInst - The MCInst to append to.
1861 /// @param insn - The internal instruction.
1862 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1863 unsigned baseRegNo;
1865 if (insn.mode == MODE_64BIT)
1866 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1867 else if (insn.mode == MODE_32BIT)
1868 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1869 else {
1870 assert(insn.mode == MODE_16BIT);
1871 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1873 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1874 mcInst.addOperand(baseReg);
1876 MCOperand segmentReg;
1877 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1878 mcInst.addOperand(segmentReg);
1879 return false;
1882 /// translateDstIndex - Appends a destination index operand to an MCInst.
1884 /// @param mcInst - The MCInst to append to.
1885 /// @param insn - The internal instruction.
1887 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1888 unsigned baseRegNo;
1890 if (insn.mode == MODE_64BIT)
1891 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1892 else if (insn.mode == MODE_32BIT)
1893 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1894 else {
1895 assert(insn.mode == MODE_16BIT);
1896 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1898 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1899 mcInst.addOperand(baseReg);
1900 return false;
1903 /// translateImmediate - Appends an immediate operand to an MCInst.
1905 /// @param mcInst - The MCInst to append to.
1906 /// @param immediate - The immediate value to append.
1907 /// @param operand - The operand, as stored in the descriptor table.
1908 /// @param insn - The internal instruction.
1909 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1910 const OperandSpecifier &operand,
1911 InternalInstruction &insn,
1912 const MCDisassembler *Dis) {
1913 // Sign-extend the immediate if necessary.
1915 OperandType type = (OperandType)operand.type;
1917 bool isBranch = false;
1918 uint64_t pcrel = 0;
1919 if (type == TYPE_REL) {
1920 isBranch = true;
1921 pcrel = insn.startLocation +
1922 insn.immediateOffset + insn.immediateSize;
1923 switch (operand.encoding) {
1924 default:
1925 break;
1926 case ENCODING_Iv:
1927 switch (insn.displacementSize) {
1928 default:
1929 break;
1930 case 1:
1931 if(immediate & 0x80)
1932 immediate |= ~(0xffull);
1933 break;
1934 case 2:
1935 if(immediate & 0x8000)
1936 immediate |= ~(0xffffull);
1937 break;
1938 case 4:
1939 if(immediate & 0x80000000)
1940 immediate |= ~(0xffffffffull);
1941 break;
1942 case 8:
1943 break;
1945 break;
1946 case ENCODING_IB:
1947 if(immediate & 0x80)
1948 immediate |= ~(0xffull);
1949 break;
1950 case ENCODING_IW:
1951 if(immediate & 0x8000)
1952 immediate |= ~(0xffffull);
1953 break;
1954 case ENCODING_ID:
1955 if(immediate & 0x80000000)
1956 immediate |= ~(0xffffffffull);
1957 break;
1960 // By default sign-extend all X86 immediates based on their encoding.
1961 else if (type == TYPE_IMM) {
1962 switch (operand.encoding) {
1963 default:
1964 break;
1965 case ENCODING_IB:
1966 if(immediate & 0x80)
1967 immediate |= ~(0xffull);
1968 break;
1969 case ENCODING_IW:
1970 if(immediate & 0x8000)
1971 immediate |= ~(0xffffull);
1972 break;
1973 case ENCODING_ID:
1974 if(immediate & 0x80000000)
1975 immediate |= ~(0xffffffffull);
1976 break;
1977 case ENCODING_IO:
1978 break;
1982 switch (type) {
1983 case TYPE_XMM:
1984 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
1985 return;
1986 case TYPE_YMM:
1987 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
1988 return;
1989 case TYPE_ZMM:
1990 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
1991 return;
1992 default:
1993 // operand is 64 bits wide. Do nothing.
1994 break;
1997 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
1998 insn.immediateOffset, insn.immediateSize,
1999 mcInst, Dis))
2000 mcInst.addOperand(MCOperand::createImm(immediate));
2002 if (type == TYPE_MOFFS) {
2003 MCOperand segmentReg;
2004 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2005 mcInst.addOperand(segmentReg);
2009 /// translateRMRegister - Translates a register stored in the R/M field of the
2010 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2011 /// @param mcInst - The MCInst to append to.
2012 /// @param insn - The internal instruction to extract the R/M field
2013 /// from.
2014 /// @return - 0 on success; -1 otherwise
2015 static bool translateRMRegister(MCInst &mcInst,
2016 InternalInstruction &insn) {
2017 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2018 debug("A R/M register operand may not have a SIB byte");
2019 return true;
2022 switch (insn.eaBase) {
2023 default:
2024 debug("Unexpected EA base register");
2025 return true;
2026 case EA_BASE_NONE:
2027 debug("EA_BASE_NONE for ModR/M base");
2028 return true;
2029 #define ENTRY(x) case EA_BASE_##x:
2030 ALL_EA_BASES
2031 #undef ENTRY
2032 debug("A R/M register operand may not have a base; "
2033 "the operand must be a register.");
2034 return true;
2035 #define ENTRY(x) \
2036 case EA_REG_##x: \
2037 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2038 ALL_REGS
2039 #undef ENTRY
2042 return false;
2045 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2046 /// fields of an internal instruction (and possibly its SIB byte) to a memory
2047 /// operand in LLVM's format, and appends it to an MCInst.
2049 /// @param mcInst - The MCInst to append to.
2050 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2051 /// from.
2052 /// @param ForceSIB - The instruction must use SIB.
2053 /// @return - 0 on success; nonzero otherwise
2054 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2055 const MCDisassembler *Dis,
2056 bool ForceSIB = false) {
2057 // Addresses in an MCInst are represented as five operands:
2058 // 1. basereg (register) The R/M base, or (if there is a SIB) the
2059 // SIB base
2060 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
2061 // scale amount
2062 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
2063 // the index (which is multiplied by the
2064 // scale amount)
2065 // 4. displacement (immediate) 0, or the displacement if there is one
2066 // 5. segmentreg (register) x86_registerNONE for now, but could be set
2067 // if we have segment overrides
2069 MCOperand baseReg;
2070 MCOperand scaleAmount;
2071 MCOperand indexReg;
2072 MCOperand displacement;
2073 MCOperand segmentReg;
2074 uint64_t pcrel = 0;
2076 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2077 if (insn.sibBase != SIB_BASE_NONE) {
2078 switch (insn.sibBase) {
2079 default:
2080 debug("Unexpected sibBase");
2081 return true;
2082 #define ENTRY(x) \
2083 case SIB_BASE_##x: \
2084 baseReg = MCOperand::createReg(X86::x); break;
2085 ALL_SIB_BASES
2086 #undef ENTRY
2088 } else {
2089 baseReg = MCOperand::createReg(X86::NoRegister);
2092 if (insn.sibIndex != SIB_INDEX_NONE) {
2093 switch (insn.sibIndex) {
2094 default:
2095 debug("Unexpected sibIndex");
2096 return true;
2097 #define ENTRY(x) \
2098 case SIB_INDEX_##x: \
2099 indexReg = MCOperand::createReg(X86::x); break;
2100 EA_BASES_32BIT
2101 EA_BASES_64BIT
2102 REGS_XMM
2103 REGS_YMM
2104 REGS_ZMM
2105 #undef ENTRY
2107 } else {
2108 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2109 // but no index is used and modrm alone should have been enough.
2110 // -No base register in 32-bit mode. In 64-bit mode this is used to
2111 // avoid rip-relative addressing.
2112 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2113 // base always requires a SIB byte.
2114 // -A scale other than 1 is used.
2115 if (!ForceSIB &&
2116 (insn.sibScale != 1 ||
2117 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2118 (insn.sibBase != SIB_BASE_NONE &&
2119 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2120 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2121 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2122 X86::RIZ);
2123 } else
2124 indexReg = MCOperand::createReg(X86::NoRegister);
2127 scaleAmount = MCOperand::createImm(insn.sibScale);
2128 } else {
2129 switch (insn.eaBase) {
2130 case EA_BASE_NONE:
2131 if (insn.eaDisplacement == EA_DISP_NONE) {
2132 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2133 return true;
2135 if (insn.mode == MODE_64BIT){
2136 pcrel = insn.startLocation +
2137 insn.displacementOffset + insn.displacementSize;
2138 tryAddingPcLoadReferenceComment(insn.startLocation +
2139 insn.displacementOffset,
2140 insn.displacement + pcrel, Dis);
2141 // Section 2.2.1.6
2142 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2143 X86::RIP);
2145 else
2146 baseReg = MCOperand::createReg(X86::NoRegister);
2148 indexReg = MCOperand::createReg(X86::NoRegister);
2149 break;
2150 case EA_BASE_BX_SI:
2151 baseReg = MCOperand::createReg(X86::BX);
2152 indexReg = MCOperand::createReg(X86::SI);
2153 break;
2154 case EA_BASE_BX_DI:
2155 baseReg = MCOperand::createReg(X86::BX);
2156 indexReg = MCOperand::createReg(X86::DI);
2157 break;
2158 case EA_BASE_BP_SI:
2159 baseReg = MCOperand::createReg(X86::BP);
2160 indexReg = MCOperand::createReg(X86::SI);
2161 break;
2162 case EA_BASE_BP_DI:
2163 baseReg = MCOperand::createReg(X86::BP);
2164 indexReg = MCOperand::createReg(X86::DI);
2165 break;
2166 default:
2167 indexReg = MCOperand::createReg(X86::NoRegister);
2168 switch (insn.eaBase) {
2169 default:
2170 debug("Unexpected eaBase");
2171 return true;
2172 // Here, we will use the fill-ins defined above. However,
2173 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2174 // sib and sib64 were handled in the top-level if, so they're only
2175 // placeholders to keep the compiler happy.
2176 #define ENTRY(x) \
2177 case EA_BASE_##x: \
2178 baseReg = MCOperand::createReg(X86::x); break;
2179 ALL_EA_BASES
2180 #undef ENTRY
2181 #define ENTRY(x) case EA_REG_##x:
2182 ALL_REGS
2183 #undef ENTRY
2184 debug("A R/M memory operand may not be a register; "
2185 "the base field must be a base.");
2186 return true;
2190 scaleAmount = MCOperand::createImm(1);
2193 displacement = MCOperand::createImm(insn.displacement);
2195 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2197 mcInst.addOperand(baseReg);
2198 mcInst.addOperand(scaleAmount);
2199 mcInst.addOperand(indexReg);
2200 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
2201 insn.startLocation, insn.displacementOffset,
2202 insn.displacementSize, mcInst, Dis))
2203 mcInst.addOperand(displacement);
2204 mcInst.addOperand(segmentReg);
2205 return false;
2208 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2209 /// byte of an instruction to LLVM form, and appends it to an MCInst.
2211 /// @param mcInst - The MCInst to append to.
2212 /// @param operand - The operand, as stored in the descriptor table.
2213 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2214 /// from.
2215 /// @return - 0 on success; nonzero otherwise
2216 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2217 InternalInstruction &insn, const MCDisassembler *Dis) {
2218 switch (operand.type) {
2219 default:
2220 debug("Unexpected type for a R/M operand");
2221 return true;
2222 case TYPE_R8:
2223 case TYPE_R16:
2224 case TYPE_R32:
2225 case TYPE_R64:
2226 case TYPE_Rv:
2227 case TYPE_MM64:
2228 case TYPE_XMM:
2229 case TYPE_YMM:
2230 case TYPE_ZMM:
2231 case TYPE_TMM:
2232 case TYPE_VK_PAIR:
2233 case TYPE_VK:
2234 case TYPE_DEBUGREG:
2235 case TYPE_CONTROLREG:
2236 case TYPE_BNDR:
2237 return translateRMRegister(mcInst, insn);
2238 case TYPE_M:
2239 case TYPE_MVSIBX:
2240 case TYPE_MVSIBY:
2241 case TYPE_MVSIBZ:
2242 return translateRMMemory(mcInst, insn, Dis);
2243 case TYPE_MSIB:
2244 return translateRMMemory(mcInst, insn, Dis, true);
2248 /// translateFPRegister - Translates a stack position on the FPU stack to its
2249 /// LLVM form, and appends it to an MCInst.
2251 /// @param mcInst - The MCInst to append to.
2252 /// @param stackPos - The stack position to translate.
2253 static void translateFPRegister(MCInst &mcInst,
2254 uint8_t stackPos) {
2255 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2258 /// translateMaskRegister - Translates a 3-bit mask register number to
2259 /// LLVM form, and appends it to an MCInst.
2261 /// @param mcInst - The MCInst to append to.
2262 /// @param maskRegNum - Number of mask register from 0 to 7.
2263 /// @return - false on success; true otherwise.
2264 static bool translateMaskRegister(MCInst &mcInst,
2265 uint8_t maskRegNum) {
2266 if (maskRegNum >= 8) {
2267 debug("Invalid mask register number");
2268 return true;
2271 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2272 return false;
2275 /// translateOperand - Translates an operand stored in an internal instruction
2276 /// to LLVM's format and appends it to an MCInst.
2278 /// @param mcInst - The MCInst to append to.
2279 /// @param operand - The operand, as stored in the descriptor table.
2280 /// @param insn - The internal instruction.
2281 /// @return - false on success; true otherwise.
2282 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2283 InternalInstruction &insn,
2284 const MCDisassembler *Dis) {
2285 switch (operand.encoding) {
2286 default:
2287 debug("Unhandled operand encoding during translation");
2288 return true;
2289 case ENCODING_REG:
2290 translateRegister(mcInst, insn.reg);
2291 return false;
2292 case ENCODING_WRITEMASK:
2293 return translateMaskRegister(mcInst, insn.writemask);
2294 case ENCODING_SIB:
2295 CASE_ENCODING_RM:
2296 CASE_ENCODING_VSIB:
2297 return translateRM(mcInst, operand, insn, Dis);
2298 case ENCODING_IB:
2299 case ENCODING_IW:
2300 case ENCODING_ID:
2301 case ENCODING_IO:
2302 case ENCODING_Iv:
2303 case ENCODING_Ia:
2304 translateImmediate(mcInst,
2305 insn.immediates[insn.numImmediatesTranslated++],
2306 operand,
2307 insn,
2308 Dis);
2309 return false;
2310 case ENCODING_IRC:
2311 mcInst.addOperand(MCOperand::createImm(insn.RC));
2312 return false;
2313 case ENCODING_SI:
2314 return translateSrcIndex(mcInst, insn);
2315 case ENCODING_DI:
2316 return translateDstIndex(mcInst, insn);
2317 case ENCODING_RB:
2318 case ENCODING_RW:
2319 case ENCODING_RD:
2320 case ENCODING_RO:
2321 case ENCODING_Rv:
2322 translateRegister(mcInst, insn.opcodeRegister);
2323 return false;
2324 case ENCODING_CC:
2325 mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2326 return false;
2327 case ENCODING_FP:
2328 translateFPRegister(mcInst, insn.modRM & 7);
2329 return false;
2330 case ENCODING_VVVV:
2331 translateRegister(mcInst, insn.vvvv);
2332 return false;
2333 case ENCODING_DUP:
2334 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2335 insn, Dis);
2339 /// translateInstruction - Translates an internal instruction and all its
2340 /// operands to an MCInst.
2342 /// @param mcInst - The MCInst to populate with the instruction's data.
2343 /// @param insn - The internal instruction.
2344 /// @return - false on success; true otherwise.
2345 static bool translateInstruction(MCInst &mcInst,
2346 InternalInstruction &insn,
2347 const MCDisassembler *Dis) {
2348 if (!insn.spec) {
2349 debug("Instruction has no specification");
2350 return true;
2353 mcInst.clear();
2354 mcInst.setOpcode(insn.instructionID);
2355 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2356 // prefix bytes should be disassembled as xrelease and xacquire then set the
2357 // opcode to those instead of the rep and repne opcodes.
2358 if (insn.xAcquireRelease) {
2359 if(mcInst.getOpcode() == X86::REP_PREFIX)
2360 mcInst.setOpcode(X86::XRELEASE_PREFIX);
2361 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2362 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2365 insn.numImmediatesTranslated = 0;
2367 for (const auto &Op : insn.operands) {
2368 if (Op.encoding != ENCODING_NONE) {
2369 if (translateOperand(mcInst, Op, insn, Dis)) {
2370 return true;
2375 return false;
2378 static MCDisassembler *createX86Disassembler(const Target &T,
2379 const MCSubtargetInfo &STI,
2380 MCContext &Ctx) {
2381 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2382 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2385 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2386 // Register the disassembler.
2387 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2388 createX86Disassembler);
2389 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2390 createX86Disassembler);