1 //===-- X86DisassemblerDecoderInternal.h - Disassembler decoder -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is part of the X86 Disassembler.
10 // It contains the public interface of the instruction decoder.
11 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
16 #define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/X86DisassemblerDecoderCommon.h"
22 namespace X86Disassembler
{
24 // Accessor functions for various fields of an Intel instruction
25 #define modFromModRM(modRM) (((modRM) & 0xc0) >> 6)
26 #define regFromModRM(modRM) (((modRM) & 0x38) >> 3)
27 #define rmFromModRM(modRM) ((modRM) & 0x7)
28 #define scaleFromSIB(sib) (((sib) & 0xc0) >> 6)
29 #define indexFromSIB(sib) (((sib) & 0x38) >> 3)
30 #define baseFromSIB(sib) ((sib) & 0x7)
31 #define wFromREX(rex) (((rex) & 0x8) >> 3)
32 #define rFromREX(rex) (((rex) & 0x4) >> 2)
33 #define xFromREX(rex) (((rex) & 0x2) >> 1)
34 #define bFromREX(rex) ((rex) & 0x1)
36 #define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7)
37 #define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6)
38 #define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5)
39 #define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4)
40 #define mmmFromEVEX2of4(evex) ((evex) & 0x7)
41 #define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7)
42 #define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3)
43 #define ppFromEVEX3of4(evex) ((evex) & 0x3)
44 #define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7)
45 #define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6)
46 #define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5)
47 #define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4)
48 #define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3)
49 #define aaaFromEVEX4of4(evex) ((evex) & 0x7)
51 #define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7)
52 #define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6)
53 #define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5)
54 #define mmmmmFromVEX2of3(vex) ((vex) & 0x1f)
55 #define wFromVEX3of3(vex) (((vex) & 0x80) >> 7)
56 #define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3)
57 #define lFromVEX3of3(vex) (((vex) & 0x4) >> 2)
58 #define ppFromVEX3of3(vex) ((vex) & 0x3)
60 #define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7)
61 #define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3)
62 #define lFromVEX2of2(vex) (((vex) & 0x4) >> 2)
63 #define ppFromVEX2of2(vex) ((vex) & 0x3)
65 #define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7)
66 #define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6)
67 #define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5)
68 #define mmmmmFromXOP2of3(xop) ((xop) & 0x1f)
69 #define wFromXOP3of3(xop) (((xop) & 0x80) >> 7)
70 #define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3)
71 #define lFromXOP3of3(xop) (((xop) & 0x4) >> 2)
72 #define ppFromXOP3of3(xop) ((xop) & 0x3)
74 // These enums represent Intel registers for use by the decoder.
97 #define EA_BASES_16BIT \
133 #define EA_BASES_32BIT \
169 #define EA_BASES_64BIT \
327 #define REGS_MASK_PAIRS \
333 #define REGS_SEGMENT \
359 #define REGS_CONTROL \
394 #define ALL_EA_BASES \
399 #define ALL_SIB_BASES \
421 /// All possible values of the base field for effective-address
422 /// computations, a.k.a. the Mod and R/M fields of the ModR/M byte.
423 /// We distinguish between bases (EA_BASE_*) and registers that just happen
424 /// to be referred to when Mod == 0b11 (EA_REG_*).
427 #define ENTRY(x) EA_BASE_##x,
430 #define ENTRY(x) EA_REG_##x,
436 /// All possible values of the SIB index field.
437 /// borrows entries from ALL_EA_BASES with the special case that
438 /// sib is synonymous with NONE.
439 /// Vector SIB: index can be XMM or YMM.
442 #define ENTRY(x) SIB_INDEX_##x,
451 /// All possible values of the SIB base field.
454 #define ENTRY(x) SIB_BASE_##x,
460 /// Possible displacement types for effective-address computations.
461 enum EADisplacement
{
468 /// All possible values of the reg field in the ModR/M byte.
470 #define ENTRY(x) MODRM_REG_##x,
476 /// All possible segment overrides.
477 enum SegmentOverride
{
488 /// Possible values for the VEX.m-mmmm field
489 enum VEXLeadingOpcodeByte
{
498 XOP_MAP_SELECT_8
= 0x8,
499 XOP_MAP_SELECT_9
= 0x9,
500 XOP_MAP_SELECT_A
= 0xA
503 /// Possible values for the VEX.pp/EVEX.pp field
505 VEX_PREFIX_NONE
= 0x0,
511 enum VectorExtensionType
{
512 TYPE_NO_VEX_XOP
= 0x0,
519 /// The specification for how to extract and interpret a full instruction and
521 struct InstructionSpecifier
{
525 /// The x86 internal instruction, which is produced by the decoder.
526 struct InternalInstruction
{
527 // Opaque value passed to the reader
528 llvm::ArrayRef
<uint8_t> bytes
;
529 // The address of the next byte to read via the reader
530 uint64_t readerCursor
;
532 // General instruction information
534 // The mode to disassemble for (64-bit, protected, real)
535 DisassemblerMode mode
;
536 // The start of the instruction, usable with the reader
537 uint64_t startLocation
;
538 // The length of the instruction, in bytes
543 // The possible mandatory prefix
544 uint8_t mandatoryPrefix
;
545 // The value of the vector extension prefix(EVEX/VEX/XOP), if present
546 uint8_t vectorExtensionPrefix
[4];
547 // The type of the vector extension prefix
548 VectorExtensionType vectorExtensionType
;
549 // The value of the REX prefix, if present
551 // The segment override type
552 SegmentOverride segmentOverride
;
553 // 1 if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease
554 bool xAcquireRelease
;
556 // Address-size override
558 // Operand-size override
562 // The repeat prefix if any
563 uint8_t repeatPrefix
;
565 // Sizes of various critical pieces of data, in bytes
566 uint8_t registerSize
;
568 uint8_t displacementSize
;
569 uint8_t immediateSize
;
571 // Offsets from the start of the instruction to the pieces of data, which is
572 // needed to find relocation entries for adding symbolic operands.
573 uint8_t displacementOffset
;
574 uint8_t immediateOffset
;
578 // The last byte of the opcode, not counting any ModR/M extension
583 // The type of opcode, used for indexing into the array of decode tables
584 OpcodeType opcodeType
;
585 // The instruction ID, extracted from the decode table
586 uint16_t instructionID
;
587 // The specifier for the instruction, from the instruction info table
588 const InstructionSpecifier
*spec
;
590 // state for additional bytes, consumed during operand decode. Pattern:
591 // consumed___ indicates that the byte was already consumed and does not
592 // need to be consumed again.
594 // The VEX.vvvv field, which contains a third register operand for some AVX
598 // The writemask for AVX-512 instructions which is contained in EVEX.aaa
601 // The ModR/M byte, which contains most register operands and some portion of
602 // all memory operands.
606 // The SIB byte, used for more complex 32- or 64-bit memory operands
609 // The displacement, used for memory operands
610 int32_t displacement
;
612 // Immediates. There can be two in some cases
613 uint8_t numImmediatesConsumed
;
614 uint8_t numImmediatesTranslated
;
615 uint64_t immediates
[2];
617 // A register or immediate operand encoded into the opcode
620 // Portions of the ModR/M byte
622 // These fields determine the allowable values for the ModR/M fields, which
623 // depend on operand and address widths.
627 // The Mod and R/M fields can encode a base for an effective address, or a
628 // register. These are separated into two fields here.
630 EADisplacement eaDisplacement
;
631 // The reg field always encodes a register
635 SIBIndex sibIndexBase
;
640 // Embedded rounding control.
643 ArrayRef
<OperandSpecifier
> operands
;
646 } // namespace X86Disassembler