[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / X86 / X86CallLowering.cpp
blobc8bffb4d4d371f3eaa2c7e6261163630ae1cbd34
1 //===- llvm/lib/Target/X86/X86CallLowering.cpp - Call lowering ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
13 //===----------------------------------------------------------------------===//
15 #include "X86CallLowering.h"
16 #include "X86CallingConv.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/GlobalISel/Utils.h"
27 #include "llvm/CodeGen/LowLevelType.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Support/LowLevelTypeImpl.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include <cassert>
46 #include <cstdint>
48 using namespace llvm;
50 X86CallLowering::X86CallLowering(const X86TargetLowering &TLI)
51 : CallLowering(&TLI) {}
53 namespace {
55 struct X86OutgoingValueAssigner : public CallLowering::OutgoingValueAssigner {
56 private:
57 uint64_t StackSize = 0;
58 unsigned NumXMMRegs = 0;
60 public:
61 uint64_t getStackSize() { return StackSize; }
62 unsigned getNumXmmRegs() { return NumXMMRegs; }
64 X86OutgoingValueAssigner(CCAssignFn *AssignFn_)
65 : CallLowering::OutgoingValueAssigner(AssignFn_) {}
67 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
68 CCValAssign::LocInfo LocInfo,
69 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
70 CCState &State) override {
71 bool Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
72 StackSize = State.getNextStackOffset();
74 static const MCPhysReg XMMArgRegs[] = {X86::XMM0, X86::XMM1, X86::XMM2,
75 X86::XMM3, X86::XMM4, X86::XMM5,
76 X86::XMM6, X86::XMM7};
77 if (!Info.IsFixed)
78 NumXMMRegs = State.getFirstUnallocated(XMMArgRegs);
80 return Res;
84 struct X86OutgoingValueHandler : public CallLowering::OutgoingValueHandler {
85 X86OutgoingValueHandler(MachineIRBuilder &MIRBuilder,
86 MachineRegisterInfo &MRI, MachineInstrBuilder &MIB)
87 : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB),
88 DL(MIRBuilder.getMF().getDataLayout()),
89 STI(MIRBuilder.getMF().getSubtarget<X86Subtarget>()) {}
91 Register getStackAddress(uint64_t Size, int64_t Offset,
92 MachinePointerInfo &MPO,
93 ISD::ArgFlagsTy Flags) override {
94 LLT p0 = LLT::pointer(0, DL.getPointerSizeInBits(0));
95 LLT SType = LLT::scalar(DL.getPointerSizeInBits(0));
96 auto SPReg =
97 MIRBuilder.buildCopy(p0, STI.getRegisterInfo()->getStackRegister());
99 auto OffsetReg = MIRBuilder.buildConstant(SType, Offset);
101 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
103 MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset);
104 return AddrReg.getReg(0);
107 void assignValueToReg(Register ValVReg, Register PhysReg,
108 CCValAssign &VA) override {
109 MIB.addUse(PhysReg, RegState::Implicit);
110 Register ExtReg = extendRegister(ValVReg, VA);
111 MIRBuilder.buildCopy(PhysReg, ExtReg);
114 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
115 MachinePointerInfo &MPO, CCValAssign &VA) override {
116 MachineFunction &MF = MIRBuilder.getMF();
117 Register ExtReg = extendRegister(ValVReg, VA);
119 auto *MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy,
120 inferAlignFromPtrInfo(MF, MPO));
121 MIRBuilder.buildStore(ExtReg, Addr, *MMO);
124 protected:
125 MachineInstrBuilder &MIB;
126 const DataLayout &DL;
127 const X86Subtarget &STI;
130 } // end anonymous namespace
132 bool X86CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
133 const Value *Val, ArrayRef<Register> VRegs,
134 FunctionLoweringInfo &FLI) const {
135 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
136 "Return value without a vreg");
137 auto MIB = MIRBuilder.buildInstrNoInsert(X86::RET).addImm(0);
139 if (!VRegs.empty()) {
140 MachineFunction &MF = MIRBuilder.getMF();
141 const Function &F = MF.getFunction();
142 MachineRegisterInfo &MRI = MF.getRegInfo();
143 const DataLayout &DL = MF.getDataLayout();
145 ArgInfo OrigRetInfo(VRegs, Val->getType(), 0);
146 setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
148 SmallVector<ArgInfo, 4> SplitRetInfos;
149 splitToValueTypes(OrigRetInfo, SplitRetInfos, DL, F.getCallingConv());
151 X86OutgoingValueAssigner Assigner(RetCC_X86);
152 X86OutgoingValueHandler Handler(MIRBuilder, MRI, MIB);
153 if (!determineAndHandleAssignments(Handler, Assigner, SplitRetInfos,
154 MIRBuilder, F.getCallingConv(),
155 F.isVarArg()))
156 return false;
159 MIRBuilder.insertInstr(MIB);
160 return true;
163 namespace {
165 struct X86IncomingValueHandler : public CallLowering::IncomingValueHandler {
166 X86IncomingValueHandler(MachineIRBuilder &MIRBuilder,
167 MachineRegisterInfo &MRI)
168 : IncomingValueHandler(MIRBuilder, MRI),
169 DL(MIRBuilder.getMF().getDataLayout()) {}
171 Register getStackAddress(uint64_t Size, int64_t Offset,
172 MachinePointerInfo &MPO,
173 ISD::ArgFlagsTy Flags) override {
174 auto &MFI = MIRBuilder.getMF().getFrameInfo();
176 // Byval is assumed to be writable memory, but other stack passed arguments
177 // are not.
178 const bool IsImmutable = !Flags.isByVal();
180 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
181 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
183 return MIRBuilder
184 .buildFrameIndex(LLT::pointer(0, DL.getPointerSizeInBits(0)), FI)
185 .getReg(0);
188 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
189 MachinePointerInfo &MPO, CCValAssign &VA) override {
190 MachineFunction &MF = MIRBuilder.getMF();
191 auto *MMO = MF.getMachineMemOperand(
192 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
193 inferAlignFromPtrInfo(MF, MPO));
194 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
197 void assignValueToReg(Register ValVReg, Register PhysReg,
198 CCValAssign &VA) override {
199 markPhysRegUsed(PhysReg);
200 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
203 /// How the physical register gets marked varies between formal
204 /// parameters (it's a basic-block live-in), and a call instruction
205 /// (it's an implicit-def of the BL).
206 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
208 protected:
209 const DataLayout &DL;
212 struct FormalArgHandler : public X86IncomingValueHandler {
213 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
214 : X86IncomingValueHandler(MIRBuilder, MRI) {}
216 void markPhysRegUsed(unsigned PhysReg) override {
217 MIRBuilder.getMRI()->addLiveIn(PhysReg);
218 MIRBuilder.getMBB().addLiveIn(PhysReg);
222 struct CallReturnHandler : public X86IncomingValueHandler {
223 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
224 MachineInstrBuilder &MIB)
225 : X86IncomingValueHandler(MIRBuilder, MRI), MIB(MIB) {}
227 void markPhysRegUsed(unsigned PhysReg) override {
228 MIB.addDef(PhysReg, RegState::Implicit);
231 protected:
232 MachineInstrBuilder &MIB;
235 } // end anonymous namespace
237 bool X86CallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
238 const Function &F,
239 ArrayRef<ArrayRef<Register>> VRegs,
240 FunctionLoweringInfo &FLI) const {
241 if (F.arg_empty())
242 return true;
244 // TODO: handle variadic function
245 if (F.isVarArg())
246 return false;
248 MachineFunction &MF = MIRBuilder.getMF();
249 MachineRegisterInfo &MRI = MF.getRegInfo();
250 auto DL = MF.getDataLayout();
252 SmallVector<ArgInfo, 8> SplitArgs;
253 unsigned Idx = 0;
254 for (const auto &Arg : F.args()) {
255 // TODO: handle not simple cases.
256 if (Arg.hasAttribute(Attribute::ByVal) ||
257 Arg.hasAttribute(Attribute::InReg) ||
258 Arg.hasAttribute(Attribute::StructRet) ||
259 Arg.hasAttribute(Attribute::SwiftSelf) ||
260 Arg.hasAttribute(Attribute::SwiftError) ||
261 Arg.hasAttribute(Attribute::Nest) || VRegs[Idx].size() > 1)
262 return false;
264 ArgInfo OrigArg(VRegs[Idx], Arg.getType(), Idx);
265 setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
266 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv());
267 Idx++;
270 MachineBasicBlock &MBB = MIRBuilder.getMBB();
271 if (!MBB.empty())
272 MIRBuilder.setInstr(*MBB.begin());
274 X86OutgoingValueAssigner Assigner(CC_X86);
275 FormalArgHandler Handler(MIRBuilder, MRI);
276 if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
277 F.getCallingConv(), F.isVarArg()))
278 return false;
280 // Move back to the end of the basic block.
281 MIRBuilder.setMBB(MBB);
283 return true;
286 bool X86CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
287 CallLoweringInfo &Info) const {
288 MachineFunction &MF = MIRBuilder.getMF();
289 const Function &F = MF.getFunction();
290 MachineRegisterInfo &MRI = MF.getRegInfo();
291 const DataLayout &DL = F.getParent()->getDataLayout();
292 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
293 const TargetInstrInfo &TII = *STI.getInstrInfo();
294 const X86RegisterInfo *TRI = STI.getRegisterInfo();
296 // Handle only Linux C, X86_64_SysV calling conventions for now.
297 if (!STI.isTargetLinux() || !(Info.CallConv == CallingConv::C ||
298 Info.CallConv == CallingConv::X86_64_SysV))
299 return false;
301 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
302 auto CallSeqStart = MIRBuilder.buildInstr(AdjStackDown);
304 // Create a temporarily-floating call instruction so we can add the implicit
305 // uses of arg registers.
306 bool Is64Bit = STI.is64Bit();
307 unsigned CallOpc = Info.Callee.isReg()
308 ? (Is64Bit ? X86::CALL64r : X86::CALL32r)
309 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
311 auto MIB = MIRBuilder.buildInstrNoInsert(CallOpc)
312 .add(Info.Callee)
313 .addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv));
315 SmallVector<ArgInfo, 8> SplitArgs;
316 for (const auto &OrigArg : Info.OrigArgs) {
318 // TODO: handle not simple cases.
319 if (OrigArg.Flags[0].isByVal())
320 return false;
322 if (OrigArg.Regs.size() > 1)
323 return false;
325 splitToValueTypes(OrigArg, SplitArgs, DL, Info.CallConv);
327 // Do the actual argument marshalling.
328 X86OutgoingValueAssigner Assigner(CC_X86);
329 X86OutgoingValueHandler Handler(MIRBuilder, MRI, MIB);
330 if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
331 Info.CallConv, Info.IsVarArg))
332 return false;
334 bool IsFixed = Info.OrigArgs.empty() ? true : Info.OrigArgs.back().IsFixed;
335 if (STI.is64Bit() && !IsFixed && !STI.isCallingConvWin64(Info.CallConv)) {
336 // From AMD64 ABI document:
337 // For calls that may call functions that use varargs or stdargs
338 // (prototype-less calls or calls to functions containing ellipsis (...) in
339 // the declaration) %al is used as hidden argument to specify the number
340 // of SSE registers used. The contents of %al do not need to match exactly
341 // the number of registers, but must be an ubound on the number of SSE
342 // registers used and is in the range 0 - 8 inclusive.
344 MIRBuilder.buildInstr(X86::MOV8ri)
345 .addDef(X86::AL)
346 .addImm(Assigner.getNumXmmRegs());
347 MIB.addUse(X86::AL, RegState::Implicit);
350 // Now we can add the actual call instruction to the correct basic block.
351 MIRBuilder.insertInstr(MIB);
353 // If Callee is a reg, since it is used by a target specific
354 // instruction, it must have a register class matching the
355 // constraint of that instruction.
356 if (Info.Callee.isReg())
357 MIB->getOperand(0).setReg(constrainOperandRegClass(
358 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
359 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
360 0));
362 // Finally we can copy the returned value back into its virtual-register. In
363 // symmetry with the arguments, the physical register must be an
364 // implicit-define of the call instruction.
366 if (!Info.OrigRet.Ty->isVoidTy()) {
367 if (Info.OrigRet.Regs.size() > 1)
368 return false;
370 SplitArgs.clear();
371 SmallVector<Register, 8> NewRegs;
373 splitToValueTypes(Info.OrigRet, SplitArgs, DL, Info.CallConv);
375 X86OutgoingValueAssigner Assigner(RetCC_X86);
376 CallReturnHandler Handler(MIRBuilder, MRI, MIB);
377 if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
378 Info.CallConv, Info.IsVarArg))
379 return false;
381 if (!NewRegs.empty())
382 MIRBuilder.buildMerge(Info.OrigRet.Regs[0], NewRegs);
385 CallSeqStart.addImm(Assigner.getStackSize())
386 .addImm(0 /* see getFrameTotalSize */)
387 .addImm(0 /* see getFrameAdjustment */);
389 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
390 MIRBuilder.buildInstr(AdjStackUp)
391 .addImm(Assigner.getStackSize())
392 .addImm(0 /* NumBytesForCalleeToPop */);
394 return true;