[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / X86 / X86DiscriminateMemOps.cpp
blob2ff8ee19561b1e460618b23cc5f7dc2ddc9eab61
1 //===- X86DiscriminateMemOps.cpp - Unique IDs for Mem Ops -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This pass aids profile-driven cache prefetch insertion by ensuring all
10 /// instructions that have a memory operand are distinguishible from each other.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/ProfileData/SampleProf.h"
22 #include "llvm/ProfileData/SampleProfReader.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 using namespace llvm;
27 #define DEBUG_TYPE "x86-discriminate-memops"
29 static cl::opt<bool> EnableDiscriminateMemops(
30 DEBUG_TYPE, cl::init(false),
31 cl::desc("Generate unique debug info for each instruction with a memory "
32 "operand. Should be enabled for profile-driven cache prefetching, "
33 "both in the build of the binary being profiled, as well as in "
34 "the build of the binary consuming the profile."),
35 cl::Hidden);
37 static cl::opt<bool> BypassPrefetchInstructions(
38 "x86-bypass-prefetch-instructions", cl::init(true),
39 cl::desc("When discriminating instructions with memory operands, ignore "
40 "prefetch instructions. This ensures the other memory operand "
41 "instructions have the same identifiers after inserting "
42 "prefetches, allowing for successive insertions."),
43 cl::Hidden);
45 namespace {
47 using Location = std::pair<StringRef, unsigned>;
49 Location diToLocation(const DILocation *Loc) {
50 return std::make_pair(Loc->getFilename(), Loc->getLine());
53 /// Ensure each instruction having a memory operand has a distinct <LineNumber,
54 /// Discriminator> pair.
55 void updateDebugInfo(MachineInstr *MI, const DILocation *Loc) {
56 DebugLoc DL(Loc);
57 MI->setDebugLoc(DL);
60 class X86DiscriminateMemOps : public MachineFunctionPass {
61 bool runOnMachineFunction(MachineFunction &MF) override;
62 StringRef getPassName() const override {
63 return "X86 Discriminate Memory Operands";
66 public:
67 static char ID;
69 /// Default construct and initialize the pass.
70 X86DiscriminateMemOps();
73 bool IsPrefetchOpcode(unsigned Opcode) {
74 return Opcode == X86::PREFETCHNTA || Opcode == X86::PREFETCHT0 ||
75 Opcode == X86::PREFETCHT1 || Opcode == X86::PREFETCHT2;
77 } // end anonymous namespace
79 //===----------------------------------------------------------------------===//
80 // Implementation
81 //===----------------------------------------------------------------------===//
83 char X86DiscriminateMemOps::ID = 0;
85 /// Default construct and initialize the pass.
86 X86DiscriminateMemOps::X86DiscriminateMemOps() : MachineFunctionPass(ID) {}
88 bool X86DiscriminateMemOps::runOnMachineFunction(MachineFunction &MF) {
89 if (!EnableDiscriminateMemops)
90 return false;
92 DISubprogram *FDI = MF.getFunction().getSubprogram();
93 if (!FDI || !FDI->getUnit()->getDebugInfoForProfiling())
94 return false;
96 // Have a default DILocation, if we find instructions with memops that don't
97 // have any debug info.
98 const DILocation *ReferenceDI =
99 DILocation::get(FDI->getContext(), FDI->getLine(), 0, FDI);
100 assert(ReferenceDI && "ReferenceDI should not be nullptr");
101 DenseMap<Location, unsigned> MemOpDiscriminators;
102 MemOpDiscriminators[diToLocation(ReferenceDI)] = 0;
104 // Figure out the largest discriminator issued for each Location. When we
105 // issue new discriminators, we can thus avoid issuing discriminators
106 // belonging to instructions that don't have memops. This isn't a requirement
107 // for the goals of this pass, however, it avoids unnecessary ambiguity.
108 for (auto &MBB : MF) {
109 for (auto &MI : MBB) {
110 const auto &DI = MI.getDebugLoc();
111 if (!DI)
112 continue;
113 if (BypassPrefetchInstructions && IsPrefetchOpcode(MI.getDesc().Opcode))
114 continue;
115 Location Loc = diToLocation(DI);
116 MemOpDiscriminators[Loc] =
117 std::max(MemOpDiscriminators[Loc], DI->getBaseDiscriminator());
121 // Keep track of the discriminators seen at each Location. If an instruction's
122 // DebugInfo has a Location and discriminator we've already seen, replace its
123 // discriminator with a new one, to guarantee uniqueness.
124 DenseMap<Location, DenseSet<unsigned>> Seen;
126 bool Changed = false;
127 for (auto &MBB : MF) {
128 for (auto &MI : MBB) {
129 if (X86II::getMemoryOperandNo(MI.getDesc().TSFlags) < 0)
130 continue;
131 if (BypassPrefetchInstructions && IsPrefetchOpcode(MI.getDesc().Opcode))
132 continue;
133 const DILocation *DI = MI.getDebugLoc();
134 bool HasDebug = DI;
135 if (!HasDebug) {
136 DI = ReferenceDI;
138 Location L = diToLocation(DI);
139 DenseSet<unsigned> &Set = Seen[L];
140 const std::pair<DenseSet<unsigned>::iterator, bool> TryInsert =
141 Set.insert(DI->getBaseDiscriminator());
142 if (!TryInsert.second || !HasDebug) {
143 unsigned BF, DF, CI = 0;
144 DILocation::decodeDiscriminator(DI->getDiscriminator(), BF, DF, CI);
145 Optional<unsigned> EncodedDiscriminator = DILocation::encodeDiscriminator(
146 MemOpDiscriminators[L] + 1, DF, CI);
148 if (!EncodedDiscriminator) {
149 // FIXME(mtrofin): The assumption is that this scenario is infrequent/OK
150 // not to support. If evidence points otherwise, we can explore synthesizeing
151 // unique DIs by adding fake line numbers, or by constructing 64 bit
152 // discriminators.
153 LLVM_DEBUG(dbgs() << "Unable to create a unique discriminator "
154 "for instruction with memory operand in: "
155 << DI->getFilename() << " Line: " << DI->getLine()
156 << " Column: " << DI->getColumn()
157 << ". This is likely due to a large macro expansion. \n");
158 continue;
160 // Since we were able to encode, bump the MemOpDiscriminators.
161 ++MemOpDiscriminators[L];
162 DI = DI->cloneWithDiscriminator(EncodedDiscriminator.getValue());
163 assert(DI && "DI should not be nullptr");
164 updateDebugInfo(&MI, DI);
165 Changed = true;
166 std::pair<DenseSet<unsigned>::iterator, bool> MustInsert =
167 Set.insert(DI->getBaseDiscriminator());
168 (void)MustInsert; // Silence warning in release build.
169 assert(MustInsert.second && "New discriminator shouldn't be present in set");
172 // Bump the reference DI to avoid cramming discriminators on line 0.
173 // FIXME(mtrofin): pin ReferenceDI on blocks or first instruction with DI
174 // in a block. It's more consistent than just relying on the last memop
175 // instruction we happened to see.
176 ReferenceDI = DI;
179 return Changed;
182 FunctionPass *llvm::createX86DiscriminateMemOpsPass() {
183 return new X86DiscriminateMemOps();