[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / X86 / X86FlagsCopyLowering.cpp
blob2d9886e3f238cf2ab03f152fe89c00cf8be86b7f
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
11 /// flag bits.
12 ///
13 /// We have to do this by carefully analyzing and rewriting the usage of the
14 /// copied EFLAGS register because there is no general way to rematerialize the
15 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
16 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
17 /// and other non-status flags being overwritten. Using sequences involving
18 /// SAHF don't work on all x86 processors and are often quite slow compared to
19 /// directly testing a single status preserved in its own GPR.
20 ///
21 //===----------------------------------------------------------------------===//
23 #include "X86.h"
24 #include "X86InstrBuilder.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineConstantPool.h"
39 #include "llvm/CodeGen/MachineDominators.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/MachineSSAUpdater.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSchedule.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/MC/MCSchedule.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <utility>
63 using namespace llvm;
65 #define PASS_KEY "x86-flags-copy-lowering"
66 #define DEBUG_TYPE PASS_KEY
68 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
69 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
70 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
71 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
73 namespace {
75 // Convenient array type for storing registers associated with each condition.
76 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
78 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
79 public:
80 X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
82 StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
83 bool runOnMachineFunction(MachineFunction &MF) override;
84 void getAnalysisUsage(AnalysisUsage &AU) const override;
86 /// Pass identification, replacement for typeid.
87 static char ID;
89 private:
90 MachineRegisterInfo *MRI = nullptr;
91 const X86Subtarget *Subtarget = nullptr;
92 const X86InstrInfo *TII = nullptr;
93 const TargetRegisterInfo *TRI = nullptr;
94 const TargetRegisterClass *PromoteRC = nullptr;
95 MachineDominatorTree *MDT = nullptr;
97 CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
98 MachineBasicBlock::iterator CopyDefI);
100 Register promoteCondToReg(MachineBasicBlock &MBB,
101 MachineBasicBlock::iterator TestPos,
102 const DebugLoc &TestLoc, X86::CondCode Cond);
103 std::pair<unsigned, bool> getCondOrInverseInReg(
104 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
105 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs);
106 void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
107 const DebugLoc &Loc, unsigned Reg);
109 void rewriteArithmetic(MachineBasicBlock &TestMBB,
110 MachineBasicBlock::iterator TestPos,
111 const DebugLoc &TestLoc, MachineInstr &MI,
112 MachineOperand &FlagUse, CondRegArray &CondRegs);
113 void rewriteCMov(MachineBasicBlock &TestMBB,
114 MachineBasicBlock::iterator TestPos, const DebugLoc &TestLoc,
115 MachineInstr &CMovI, MachineOperand &FlagUse,
116 CondRegArray &CondRegs);
117 void rewriteFCMov(MachineBasicBlock &TestMBB,
118 MachineBasicBlock::iterator TestPos,
119 const DebugLoc &TestLoc, MachineInstr &CMovI,
120 MachineOperand &FlagUse, CondRegArray &CondRegs);
121 void rewriteCondJmp(MachineBasicBlock &TestMBB,
122 MachineBasicBlock::iterator TestPos,
123 const DebugLoc &TestLoc, MachineInstr &JmpI,
124 CondRegArray &CondRegs);
125 void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
126 MachineInstr &CopyDefI);
127 void rewriteSetCC(MachineBasicBlock &TestMBB,
128 MachineBasicBlock::iterator TestPos,
129 const DebugLoc &TestLoc, MachineInstr &SetCCI,
130 MachineOperand &FlagUse, CondRegArray &CondRegs);
133 } // end anonymous namespace
135 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
136 "X86 EFLAGS copy lowering", false, false)
137 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
138 "X86 EFLAGS copy lowering", false, false)
140 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
141 return new X86FlagsCopyLoweringPass();
144 char X86FlagsCopyLoweringPass::ID = 0;
146 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
147 AU.addRequired<MachineDominatorTree>();
148 MachineFunctionPass::getAnalysisUsage(AU);
151 namespace {
152 /// An enumeration of the arithmetic instruction mnemonics which have
153 /// interesting flag semantics.
155 /// We can map instruction opcodes into these mnemonics to make it easy to
156 /// dispatch with specific functionality.
157 enum class FlagArithMnemonic {
158 ADC,
159 ADCX,
160 ADOX,
161 RCL,
162 RCR,
163 SBB,
164 SETB,
166 } // namespace
168 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
169 switch (Opcode) {
170 default:
171 report_fatal_error("No support for lowering a copy into EFLAGS when used "
172 "by this instruction!");
174 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
175 case X86::MNEMONIC##8##SUFFIX: \
176 case X86::MNEMONIC##16##SUFFIX: \
177 case X86::MNEMONIC##32##SUFFIX: \
178 case X86::MNEMONIC##64##SUFFIX:
180 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
181 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
182 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
183 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
184 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
185 case X86::MNEMONIC##8ri: \
186 case X86::MNEMONIC##16ri8: \
187 case X86::MNEMONIC##32ri8: \
188 case X86::MNEMONIC##64ri8: \
189 case X86::MNEMONIC##16ri: \
190 case X86::MNEMONIC##32ri: \
191 case X86::MNEMONIC##64ri32: \
192 case X86::MNEMONIC##8mi: \
193 case X86::MNEMONIC##16mi8: \
194 case X86::MNEMONIC##32mi8: \
195 case X86::MNEMONIC##64mi8: \
196 case X86::MNEMONIC##16mi: \
197 case X86::MNEMONIC##32mi: \
198 case X86::MNEMONIC##64mi32: \
199 case X86::MNEMONIC##8i8: \
200 case X86::MNEMONIC##16i16: \
201 case X86::MNEMONIC##32i32: \
202 case X86::MNEMONIC##64i32:
204 LLVM_EXPAND_ADC_SBB_INSTR(ADC)
205 return FlagArithMnemonic::ADC;
207 LLVM_EXPAND_ADC_SBB_INSTR(SBB)
208 return FlagArithMnemonic::SBB;
210 #undef LLVM_EXPAND_ADC_SBB_INSTR
212 LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
213 LLVM_EXPAND_INSTR_SIZES(RCL, r1)
214 LLVM_EXPAND_INSTR_SIZES(RCL, ri)
215 return FlagArithMnemonic::RCL;
217 LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
218 LLVM_EXPAND_INSTR_SIZES(RCR, r1)
219 LLVM_EXPAND_INSTR_SIZES(RCR, ri)
220 return FlagArithMnemonic::RCR;
222 #undef LLVM_EXPAND_INSTR_SIZES
224 case X86::ADCX32rr:
225 case X86::ADCX64rr:
226 case X86::ADCX32rm:
227 case X86::ADCX64rm:
228 return FlagArithMnemonic::ADCX;
230 case X86::ADOX32rr:
231 case X86::ADOX64rr:
232 case X86::ADOX32rm:
233 case X86::ADOX64rm:
234 return FlagArithMnemonic::ADOX;
236 case X86::SETB_C32r:
237 case X86::SETB_C64r:
238 return FlagArithMnemonic::SETB;
242 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
243 MachineInstr &SplitI,
244 const X86InstrInfo &TII) {
245 MachineFunction &MF = *MBB.getParent();
247 assert(SplitI.getParent() == &MBB &&
248 "Split instruction must be in the split block!");
249 assert(SplitI.isBranch() &&
250 "Only designed to split a tail of branch instructions!");
251 assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
252 "Must split on an actual jCC instruction!");
254 // Dig out the previous instruction to the split point.
255 MachineInstr &PrevI = *std::prev(SplitI.getIterator());
256 assert(PrevI.isBranch() && "Must split after a branch!");
257 assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
258 "Must split after an actual jCC instruction!");
259 assert(!std::prev(PrevI.getIterator())->isTerminator() &&
260 "Must only have this one terminator prior to the split!");
262 // Grab the one successor edge that will stay in `MBB`.
263 MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
265 // Analyze the original block to see if we are actually splitting an edge
266 // into two edges. This can happen when we have multiple conditional jumps to
267 // the same successor.
268 bool IsEdgeSplit =
269 std::any_of(SplitI.getIterator(), MBB.instr_end(),
270 [&](MachineInstr &MI) {
271 assert(MI.isTerminator() &&
272 "Should only have spliced terminators!");
273 return llvm::any_of(
274 MI.operands(), [&](MachineOperand &MOp) {
275 return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
277 }) ||
278 MBB.getFallThrough() == &UnsplitSucc;
280 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
282 // Insert the new block immediately after the current one. Any existing
283 // fallthrough will be sunk into this new block anyways.
284 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
286 // Splice the tail of instructions into the new block.
287 NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
289 // Copy the necessary succesors (and their probability info) into the new
290 // block.
291 for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
292 if (IsEdgeSplit || *SI != &UnsplitSucc)
293 NewMBB.copySuccessor(&MBB, SI);
294 // Normalize the probabilities if we didn't end up splitting the edge.
295 if (!IsEdgeSplit)
296 NewMBB.normalizeSuccProbs();
298 // Now replace all of the moved successors in the original block with the new
299 // block. This will merge their probabilities.
300 for (MachineBasicBlock *Succ : NewMBB.successors())
301 if (Succ != &UnsplitSucc)
302 MBB.replaceSuccessor(Succ, &NewMBB);
304 // We should always end up replacing at least one successor.
305 assert(MBB.isSuccessor(&NewMBB) &&
306 "Failed to make the new block a successor!");
308 // Now update all the PHIs.
309 for (MachineBasicBlock *Succ : NewMBB.successors()) {
310 for (MachineInstr &MI : *Succ) {
311 if (!MI.isPHI())
312 break;
314 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
315 OpIdx += 2) {
316 MachineOperand &OpV = MI.getOperand(OpIdx);
317 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
318 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
319 if (OpMBB.getMBB() != &MBB)
320 continue;
322 // Replace the operand for unsplit successors
323 if (!IsEdgeSplit || Succ != &UnsplitSucc) {
324 OpMBB.setMBB(&NewMBB);
326 // We have to continue scanning as there may be multiple entries in
327 // the PHI.
328 continue;
331 // When we have split the edge append a new successor.
332 MI.addOperand(MF, OpV);
333 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
334 break;
339 return NewMBB;
342 static X86::CondCode getCondFromFCMOV(unsigned Opcode) {
343 switch (Opcode) {
344 default: return X86::COND_INVALID;
345 case X86::CMOVBE_Fp32: case X86::CMOVBE_Fp64: case X86::CMOVBE_Fp80:
346 return X86::COND_BE;
347 case X86::CMOVB_Fp32: case X86::CMOVB_Fp64: case X86::CMOVB_Fp80:
348 return X86::COND_B;
349 case X86::CMOVE_Fp32: case X86::CMOVE_Fp64: case X86::CMOVE_Fp80:
350 return X86::COND_E;
351 case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80:
352 return X86::COND_A;
353 case X86::CMOVNB_Fp32: case X86::CMOVNB_Fp64: case X86::CMOVNB_Fp80:
354 return X86::COND_AE;
355 case X86::CMOVNE_Fp32: case X86::CMOVNE_Fp64: case X86::CMOVNE_Fp80:
356 return X86::COND_NE;
357 case X86::CMOVNP_Fp32: case X86::CMOVNP_Fp64: case X86::CMOVNP_Fp80:
358 return X86::COND_NP;
359 case X86::CMOVP_Fp32: case X86::CMOVP_Fp64: case X86::CMOVP_Fp80:
360 return X86::COND_P;
364 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
365 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
366 << " **********\n");
368 Subtarget = &MF.getSubtarget<X86Subtarget>();
369 MRI = &MF.getRegInfo();
370 TII = Subtarget->getInstrInfo();
371 TRI = Subtarget->getRegisterInfo();
372 MDT = &getAnalysis<MachineDominatorTree>();
373 PromoteRC = &X86::GR8RegClass;
375 if (MF.begin() == MF.end())
376 // Nothing to do for a degenerate empty function...
377 return false;
379 // Collect the copies in RPO so that when there are chains where a copy is in
380 // turn copied again we visit the first one first. This ensures we can find
381 // viable locations for testing the original EFLAGS that dominate all the
382 // uses across complex CFGs.
383 SmallVector<MachineInstr *, 4> Copies;
384 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
385 for (MachineBasicBlock *MBB : RPOT)
386 for (MachineInstr &MI : *MBB)
387 if (MI.getOpcode() == TargetOpcode::COPY &&
388 MI.getOperand(0).getReg() == X86::EFLAGS)
389 Copies.push_back(&MI);
391 for (MachineInstr *CopyI : Copies) {
392 MachineBasicBlock &MBB = *CopyI->getParent();
394 MachineOperand &VOp = CopyI->getOperand(1);
395 assert(VOp.isReg() &&
396 "The input to the copy for EFLAGS should always be a register!");
397 MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
398 if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
399 // FIXME: The big likely candidate here are PHI nodes. We could in theory
400 // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
401 // enough that it is probably better to change every other part of LLVM
402 // to avoid creating them. The issue is that once we have PHIs we won't
403 // know which original EFLAGS value we need to capture with our setCCs
404 // below. The end result will be computing a complete set of setCCs that
405 // we *might* want, computing them in every place where we copy *out* of
406 // EFLAGS and then doing SSA formation on all of them to insert necessary
407 // PHI nodes and consume those here. Then hoping that somehow we DCE the
408 // unnecessary ones. This DCE seems very unlikely to be successful and so
409 // we will almost certainly end up with a glut of dead setCC
410 // instructions. Until we have a motivating test case and fail to avoid
411 // it by changing other parts of LLVM's lowering, we refuse to handle
412 // this complex case here.
413 LLVM_DEBUG(
414 dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
415 CopyDefI.dump());
416 report_fatal_error(
417 "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
420 auto Cleanup = make_scope_exit([&] {
421 // All uses of the EFLAGS copy are now rewritten, kill the copy into
422 // eflags and if dead the copy from.
423 CopyI->eraseFromParent();
424 if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
425 CopyDefI.eraseFromParent();
426 ++NumCopiesEliminated;
429 MachineOperand &DOp = CopyI->getOperand(0);
430 assert(DOp.isDef() && "Expected register def!");
431 assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
432 if (DOp.isDead())
433 continue;
435 MachineBasicBlock *TestMBB = CopyDefI.getParent();
436 auto TestPos = CopyDefI.getIterator();
437 DebugLoc TestLoc = CopyDefI.getDebugLoc();
439 LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
441 // Walk up across live-in EFLAGS to find where they were actually def'ed.
443 // This copy's def may just be part of a region of blocks covered by
444 // a single def of EFLAGS and we want to find the top of that region where
445 // possible.
447 // This is essentially a search for a *candidate* reaching definition
448 // location. We don't need to ever find the actual reaching definition here,
449 // but we want to walk up the dominator tree to find the highest point which
450 // would be viable for such a definition.
451 auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
452 MachineBasicBlock::iterator End) {
453 // Scan backwards as we expect these to be relatively short and often find
454 // a clobber near the end.
455 return llvm::any_of(
456 llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
457 // Flag any instruction (other than the copy we are
458 // currently rewriting) that defs EFLAGS.
459 return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
462 auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
463 MachineBasicBlock *EndMBB) {
464 assert(MDT->dominates(BeginMBB, EndMBB) &&
465 "Only support paths down the dominator tree!");
466 SmallPtrSet<MachineBasicBlock *, 4> Visited;
467 SmallVector<MachineBasicBlock *, 4> Worklist;
468 // We terminate at the beginning. No need to scan it.
469 Visited.insert(BeginMBB);
470 Worklist.push_back(EndMBB);
471 do {
472 auto *MBB = Worklist.pop_back_val();
473 for (auto *PredMBB : MBB->predecessors()) {
474 if (!Visited.insert(PredMBB).second)
475 continue;
476 if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
477 return true;
478 // Enqueue this block to walk its predecessors.
479 Worklist.push_back(PredMBB);
481 } while (!Worklist.empty());
482 // No clobber found along a path from the begin to end.
483 return false;
485 while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
486 !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
487 // Find the nearest common dominator of the predecessors, as
488 // that will be the best candidate to hoist into.
489 MachineBasicBlock *HoistMBB =
490 std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
491 *TestMBB->pred_begin(),
492 [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
493 return MDT->findNearestCommonDominator(LHS, RHS);
496 // Now we need to scan all predecessors that may be reached along paths to
497 // the hoist block. A clobber anywhere in any of these blocks the hoist.
498 // Note that this even handles loops because we require *no* clobbers.
499 if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
500 break;
502 // We also need the terminators to not sneakily clobber flags.
503 if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
504 HoistMBB->instr_end()))
505 break;
507 // We found a viable location, hoist our test position to it.
508 TestMBB = HoistMBB;
509 TestPos = TestMBB->getFirstTerminator()->getIterator();
510 // Clear the debug location as it would just be confusing after hoisting.
511 TestLoc = DebugLoc();
513 LLVM_DEBUG({
514 auto DefIt = llvm::find_if(
515 llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
516 [&](MachineInstr &MI) {
517 return MI.findRegisterDefOperand(X86::EFLAGS);
519 if (DefIt.base() != TestMBB->instr_begin()) {
520 dbgs() << " Using EFLAGS defined by: ";
521 DefIt->dump();
522 } else {
523 dbgs() << " Using live-in flags for BB:\n";
524 TestMBB->dump();
528 // While rewriting uses, we buffer jumps and rewrite them in a second pass
529 // because doing so will perturb the CFG that we are walking to find the
530 // uses in the first place.
531 SmallVector<MachineInstr *, 4> JmpIs;
533 // Gather the condition flags that have already been preserved in
534 // registers. We do this from scratch each time as we expect there to be
535 // very few of them and we expect to not revisit the same copy definition
536 // many times. If either of those change sufficiently we could build a map
537 // of these up front instead.
538 CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
540 // Collect the basic blocks we need to scan. Typically this will just be
541 // a single basic block but we may have to scan multiple blocks if the
542 // EFLAGS copy lives into successors.
543 SmallVector<MachineBasicBlock *, 2> Blocks;
544 SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
545 Blocks.push_back(&MBB);
547 do {
548 MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
550 // Track when if/when we find a kill of the flags in this block.
551 bool FlagsKilled = false;
553 // In most cases, we walk from the beginning to the end of the block. But
554 // when the block is the same block as the copy is from, we will visit it
555 // twice. The first time we start from the copy and go to the end. The
556 // second time we start from the beginning and go to the copy. This lets
557 // us handle copies inside of cycles.
558 // FIXME: This loop is *super* confusing. This is at least in part
559 // a symptom of all of this routine needing to be refactored into
560 // documentable components. Once done, there may be a better way to write
561 // this loop.
562 for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
563 ? std::next(CopyI->getIterator())
564 : UseMBB.instr_begin(),
565 MIE = UseMBB.instr_end();
566 MII != MIE;) {
567 MachineInstr &MI = *MII++;
568 // If we are in the original copy block and encounter either the copy
569 // def or the copy itself, break so that we don't re-process any part of
570 // the block or process the instructions in the range that was copied
571 // over.
572 if (&MI == CopyI || &MI == &CopyDefI) {
573 assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
574 "Should only encounter these on the second pass over the "
575 "original block.");
576 break;
579 MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
580 if (!FlagUse) {
581 if (MI.findRegisterDefOperand(X86::EFLAGS)) {
582 // If EFLAGS are defined, it's as-if they were killed. We can stop
583 // scanning here.
585 // NB!!! Many instructions only modify some flags. LLVM currently
586 // models this as clobbering all flags, but if that ever changes
587 // this will need to be carefully updated to handle that more
588 // complex logic.
589 FlagsKilled = true;
590 break;
592 continue;
595 LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
597 // Check the kill flag before we rewrite as that may change it.
598 if (FlagUse->isKill())
599 FlagsKilled = true;
601 // Once we encounter a branch, the rest of the instructions must also be
602 // branches. We can't rewrite in place here, so we handle them below.
604 // Note that we don't have to handle tail calls here, even conditional
605 // tail calls, as those are not introduced into the X86 MI until post-RA
606 // branch folding or black placement. As a consequence, we get to deal
607 // with the simpler formulation of conditional branches followed by tail
608 // calls.
609 if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
610 auto JmpIt = MI.getIterator();
611 do {
612 JmpIs.push_back(&*JmpIt);
613 ++JmpIt;
614 } while (JmpIt != UseMBB.instr_end() &&
615 X86::getCondFromBranch(*JmpIt) !=
616 X86::COND_INVALID);
617 break;
620 // Otherwise we can just rewrite in-place.
621 if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
622 rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
623 } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) {
624 rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
625 } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
626 rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
627 } else if (MI.getOpcode() == TargetOpcode::COPY) {
628 rewriteCopy(MI, *FlagUse, CopyDefI);
629 } else {
630 // We assume all other instructions that use flags also def them.
631 assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
632 "Expected a def of EFLAGS for this instruction!");
634 // NB!!! Several arithmetic instructions only *partially* update
635 // flags. Theoretically, we could generate MI code sequences that
636 // would rely on this fact and observe different flags independently.
637 // But currently LLVM models all of these instructions as clobbering
638 // all the flags in an undef way. We rely on that to simplify the
639 // logic.
640 FlagsKilled = true;
642 // Generically handle remaining uses as arithmetic instructions.
643 rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
644 CondRegs);
647 // If this was the last use of the flags, we're done.
648 if (FlagsKilled)
649 break;
652 // If the flags were killed, we're done with this block.
653 if (FlagsKilled)
654 continue;
656 // Otherwise we need to scan successors for ones where the flags live-in
657 // and queue those up for processing.
658 for (MachineBasicBlock *SuccMBB : UseMBB.successors())
659 if (SuccMBB->isLiveIn(X86::EFLAGS) &&
660 VisitedBlocks.insert(SuccMBB).second) {
661 // We currently don't do any PHI insertion and so we require that the
662 // test basic block dominates all of the use basic blocks. Further, we
663 // can't have a cycle from the test block back to itself as that would
664 // create a cycle requiring a PHI to break it.
666 // We could in theory do PHI insertion here if it becomes useful by
667 // just taking undef values in along every edge that we don't trace
668 // this EFLAGS copy along. This isn't as bad as fully general PHI
669 // insertion, but still seems like a great deal of complexity.
671 // Because it is theoretically possible that some earlier MI pass or
672 // other lowering transformation could induce this to happen, we do
673 // a hard check even in non-debug builds here.
674 if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
675 LLVM_DEBUG({
676 dbgs()
677 << "ERROR: Encountered use that is not dominated by our test "
678 "basic block! Rewriting this would require inserting PHI "
679 "nodes to track the flag state across the CFG.\n\nTest "
680 "block:\n";
681 TestMBB->dump();
682 dbgs() << "Use block:\n";
683 SuccMBB->dump();
685 report_fatal_error(
686 "Cannot lower EFLAGS copy when original copy def "
687 "does not dominate all uses.");
690 Blocks.push_back(SuccMBB);
692 // After this, EFLAGS will be recreated before each use.
693 SuccMBB->removeLiveIn(X86::EFLAGS);
695 } while (!Blocks.empty());
697 // Now rewrite the jumps that use the flags. These we handle specially
698 // because if there are multiple jumps in a single basic block we'll have
699 // to do surgery on the CFG.
700 MachineBasicBlock *LastJmpMBB = nullptr;
701 for (MachineInstr *JmpI : JmpIs) {
702 // Past the first jump within a basic block we need to split the blocks
703 // apart.
704 if (JmpI->getParent() == LastJmpMBB)
705 splitBlock(*JmpI->getParent(), *JmpI, *TII);
706 else
707 LastJmpMBB = JmpI->getParent();
709 rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
712 // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
713 // the copy's def operand is itself a kill.
716 #ifndef NDEBUG
717 for (MachineBasicBlock &MBB : MF)
718 for (MachineInstr &MI : MBB)
719 if (MI.getOpcode() == TargetOpcode::COPY &&
720 (MI.getOperand(0).getReg() == X86::EFLAGS ||
721 MI.getOperand(1).getReg() == X86::EFLAGS)) {
722 LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
723 MI.dump());
724 llvm_unreachable("Unlowered EFLAGS copy!");
726 #endif
728 return true;
731 /// Collect any conditions that have already been set in registers so that we
732 /// can re-use them rather than adding duplicates.
733 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
734 MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
735 CondRegArray CondRegs = {};
737 // Scan backwards across the range of instructions with live EFLAGS.
738 for (MachineInstr &MI :
739 llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
740 X86::CondCode Cond = X86::getCondFromSETCC(MI);
741 if (Cond != X86::COND_INVALID && !MI.mayStore() &&
742 MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) {
743 assert(MI.getOperand(0).isDef() &&
744 "A non-storing SETcc should always define a register!");
745 CondRegs[Cond] = MI.getOperand(0).getReg();
748 // Stop scanning when we see the first definition of the EFLAGS as prior to
749 // this we would potentially capture the wrong flag state.
750 if (MI.findRegisterDefOperand(X86::EFLAGS))
751 break;
753 return CondRegs;
756 Register X86FlagsCopyLoweringPass::promoteCondToReg(
757 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
758 const DebugLoc &TestLoc, X86::CondCode Cond) {
759 Register Reg = MRI->createVirtualRegister(PromoteRC);
760 auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
761 TII->get(X86::SETCCr), Reg).addImm(Cond);
762 (void)SetI;
763 LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
764 ++NumSetCCsInserted;
765 return Reg;
768 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
769 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
770 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
771 unsigned &CondReg = CondRegs[Cond];
772 unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
773 if (!CondReg && !InvCondReg)
774 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
776 if (CondReg)
777 return {CondReg, false};
778 else
779 return {InvCondReg, true};
782 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
783 MachineBasicBlock::iterator Pos,
784 const DebugLoc &Loc, unsigned Reg) {
785 auto TestI =
786 BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
787 (void)TestI;
788 LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
789 ++NumTestsInserted;
792 void X86FlagsCopyLoweringPass::rewriteArithmetic(
793 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
794 const DebugLoc &TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
795 CondRegArray &CondRegs) {
796 // Arithmetic is either reading CF or OF. Figure out which condition we need
797 // to preserve in a register.
798 X86::CondCode Cond = X86::COND_INVALID;
800 // The addend to use to reset CF or OF when added to the flag value.
801 int Addend = 0;
803 switch (getMnemonicFromOpcode(MI.getOpcode())) {
804 case FlagArithMnemonic::ADC:
805 case FlagArithMnemonic::ADCX:
806 case FlagArithMnemonic::RCL:
807 case FlagArithMnemonic::RCR:
808 case FlagArithMnemonic::SBB:
809 case FlagArithMnemonic::SETB:
810 Cond = X86::COND_B; // CF == 1
811 // Set up an addend that when one is added will need a carry due to not
812 // having a higher bit available.
813 Addend = 255;
814 break;
816 case FlagArithMnemonic::ADOX:
817 Cond = X86::COND_O; // OF == 1
818 // Set up an addend that when one is added will turn from positive to
819 // negative and thus overflow in the signed domain.
820 Addend = 127;
821 break;
824 // Now get a register that contains the value of the flag input to the
825 // arithmetic. We require exactly this flag to simplify the arithmetic
826 // required to materialize it back into the flag.
827 unsigned &CondReg = CondRegs[Cond];
828 if (!CondReg)
829 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
831 MachineBasicBlock &MBB = *MI.getParent();
833 // Insert an instruction that will set the flag back to the desired value.
834 Register TmpReg = MRI->createVirtualRegister(PromoteRC);
835 auto AddI =
836 BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
837 .addDef(TmpReg, RegState::Dead)
838 .addReg(CondReg)
839 .addImm(Addend);
840 (void)AddI;
841 LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
842 ++NumAddsInserted;
843 FlagUse.setIsKill(true);
846 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
847 MachineBasicBlock::iterator TestPos,
848 const DebugLoc &TestLoc,
849 MachineInstr &CMovI,
850 MachineOperand &FlagUse,
851 CondRegArray &CondRegs) {
852 // First get the register containing this specific condition.
853 X86::CondCode Cond = X86::getCondFromCMov(CMovI);
854 unsigned CondReg;
855 bool Inverted;
856 std::tie(CondReg, Inverted) =
857 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
859 MachineBasicBlock &MBB = *CMovI.getParent();
861 // Insert a direct test of the saved register.
862 insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
864 // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
865 // of the flags afterward.
866 CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
867 .setImm(Inverted ? X86::COND_E : X86::COND_NE);
868 FlagUse.setIsKill(true);
869 LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
872 void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB,
873 MachineBasicBlock::iterator TestPos,
874 const DebugLoc &TestLoc,
875 MachineInstr &CMovI,
876 MachineOperand &FlagUse,
877 CondRegArray &CondRegs) {
878 // First get the register containing this specific condition.
879 X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode());
880 unsigned CondReg;
881 bool Inverted;
882 std::tie(CondReg, Inverted) =
883 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
885 MachineBasicBlock &MBB = *CMovI.getParent();
887 // Insert a direct test of the saved register.
888 insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
890 auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) {
891 switch (Opcode) {
892 default: llvm_unreachable("Unexpected opcode!");
893 case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32:
894 case X86::CMOVB_Fp32: case X86::CMOVNB_Fp32:
895 case X86::CMOVE_Fp32: case X86::CMOVNE_Fp32:
896 case X86::CMOVP_Fp32: case X86::CMOVNP_Fp32:
897 return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32;
898 case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64:
899 case X86::CMOVB_Fp64: case X86::CMOVNB_Fp64:
900 case X86::CMOVE_Fp64: case X86::CMOVNE_Fp64:
901 case X86::CMOVP_Fp64: case X86::CMOVNP_Fp64:
902 return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64;
903 case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80:
904 case X86::CMOVB_Fp80: case X86::CMOVNB_Fp80:
905 case X86::CMOVE_Fp80: case X86::CMOVNE_Fp80:
906 case X86::CMOVP_Fp80: case X86::CMOVNP_Fp80:
907 return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80;
911 // Rewrite the CMov to use the !ZF flag from the test.
912 CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted)));
913 FlagUse.setIsKill(true);
914 LLVM_DEBUG(dbgs() << " fixed fcmov: "; CMovI.dump());
917 void X86FlagsCopyLoweringPass::rewriteCondJmp(
918 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
919 const DebugLoc &TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
920 // First get the register containing this specific condition.
921 X86::CondCode Cond = X86::getCondFromBranch(JmpI);
922 unsigned CondReg;
923 bool Inverted;
924 std::tie(CondReg, Inverted) =
925 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
927 MachineBasicBlock &JmpMBB = *JmpI.getParent();
929 // Insert a direct test of the saved register.
930 insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
932 // Rewrite the jump to use the !ZF flag from the test, and kill its use of
933 // flags afterward.
934 JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
935 JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
936 LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
939 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
940 MachineOperand &FlagUse,
941 MachineInstr &CopyDefI) {
942 // Just replace this copy with the original copy def.
943 MRI->replaceRegWith(MI.getOperand(0).getReg(),
944 CopyDefI.getOperand(0).getReg());
945 MI.eraseFromParent();
948 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
949 MachineBasicBlock::iterator TestPos,
950 const DebugLoc &TestLoc,
951 MachineInstr &SetCCI,
952 MachineOperand &FlagUse,
953 CondRegArray &CondRegs) {
954 X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
955 // Note that we can't usefully rewrite this to the inverse without complex
956 // analysis of the users of the setCC. Largely we rely on duplicates which
957 // could have been avoided already being avoided here.
958 unsigned &CondReg = CondRegs[Cond];
959 if (!CondReg)
960 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
962 // Rewriting a register def is trivial: we just replace the register and
963 // remove the setcc.
964 if (!SetCCI.mayStore()) {
965 assert(SetCCI.getOperand(0).isReg() &&
966 "Cannot have a non-register defined operand to SETcc!");
967 MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
968 SetCCI.eraseFromParent();
969 return;
972 // Otherwise, we need to emit a store.
973 auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
974 SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
975 // Copy the address operands.
976 for (int i = 0; i < X86::AddrNumOperands; ++i)
977 MIB.add(SetCCI.getOperand(i));
979 MIB.addReg(CondReg);
981 MIB.setMemRefs(SetCCI.memoperands());
983 SetCCI.eraseFromParent();