1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetOptions.h"
37 #define DEBUG_TYPE "x86-fl"
39 STATISTIC(NumFrameLoopProbe
, "Number of loop stack probes used in prologue");
40 STATISTIC(NumFrameExtraProbe
,
41 "Number of extra stack probes generated in prologue");
45 X86FrameLowering::X86FrameLowering(const X86Subtarget
&STI
,
46 MaybeAlign StackAlignOverride
)
47 : TargetFrameLowering(StackGrowsDown
, StackAlignOverride
.valueOrOne(),
48 STI
.is64Bit() ? -8 : -4),
49 STI(STI
), TII(*STI
.getInstrInfo()), TRI(STI
.getRegisterInfo()) {
50 // Cache a bunch of frame-related predicates for this subtarget.
51 SlotSize
= TRI
->getSlotSize();
52 Is64Bit
= STI
.is64Bit();
53 IsLP64
= STI
.isTarget64BitLP64();
54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
55 Uses64BitFramePtr
= STI
.isTarget64BitLP64() || STI
.isTargetNaCl64();
56 StackPtr
= TRI
->getStackRegister();
59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction
&MF
) const {
60 return !MF
.getFrameInfo().hasVarSizedObjects() &&
61 !MF
.getInfo
<X86MachineFunctionInfo
>()->getHasPushSequences() &&
62 !MF
.getInfo
<X86MachineFunctionInfo
>()->hasPreallocatedCall();
65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
66 /// call frame pseudos can be simplified. Having a FP, as in the default
67 /// implementation, is not sufficient here since we can't always use it.
68 /// Use a more nuanced condition.
70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction
&MF
) const {
71 return hasReservedCallFrame(MF
) ||
72 MF
.getInfo
<X86MachineFunctionInfo
>()->hasPreallocatedCall() ||
73 (hasFP(MF
) && !TRI
->hasStackRealignment(MF
)) ||
74 TRI
->hasBasePointer(MF
);
77 // needsFrameIndexResolution - Do we need to perform FI resolution for
78 // this function. Normally, this is required only when the function
79 // has any stack objects. However, FI resolution actually has another job,
80 // not apparent from the title - it resolves callframesetup/destroy
81 // that were not simplified earlier.
82 // So, this is required for x86 functions that have push sequences even
83 // when there are no stack objects.
85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction
&MF
) const {
86 return MF
.getFrameInfo().hasStackObjects() ||
87 MF
.getInfo
<X86MachineFunctionInfo
>()->getHasPushSequences();
90 /// hasFP - Return true if the specified function should have a dedicated frame
91 /// pointer register. This is true if the function has variable sized allocas
92 /// or if frame pointer elimination is disabled.
93 bool X86FrameLowering::hasFP(const MachineFunction
&MF
) const {
94 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
95 return (MF
.getTarget().Options
.DisableFramePointerElim(MF
) ||
96 TRI
->hasStackRealignment(MF
) || MFI
.hasVarSizedObjects() ||
97 MFI
.isFrameAddressTaken() || MFI
.hasOpaqueSPAdjustment() ||
98 MF
.getInfo
<X86MachineFunctionInfo
>()->getForceFramePointer() ||
99 MF
.getInfo
<X86MachineFunctionInfo
>()->hasPreallocatedCall() ||
100 MF
.callsUnwindInit() || MF
.hasEHFunclets() || MF
.callsEHReturn() ||
101 MFI
.hasStackMap() || MFI
.hasPatchPoint() ||
102 MFI
.hasCopyImplyingStackAdjustment());
105 static unsigned getSUBriOpcode(bool IsLP64
, int64_t Imm
) {
108 return X86::SUB64ri8
;
109 return X86::SUB64ri32
;
112 return X86::SUB32ri8
;
117 static unsigned getADDriOpcode(bool IsLP64
, int64_t Imm
) {
120 return X86::ADD64ri8
;
121 return X86::ADD64ri32
;
124 return X86::ADD32ri8
;
129 static unsigned getSUBrrOpcode(bool IsLP64
) {
130 return IsLP64
? X86::SUB64rr
: X86::SUB32rr
;
133 static unsigned getADDrrOpcode(bool IsLP64
) {
134 return IsLP64
? X86::ADD64rr
: X86::ADD32rr
;
137 static unsigned getANDriOpcode(bool IsLP64
, int64_t Imm
) {
140 return X86::AND64ri8
;
141 return X86::AND64ri32
;
144 return X86::AND32ri8
;
148 static unsigned getLEArOpcode(bool IsLP64
) {
149 return IsLP64
? X86::LEA64r
: X86::LEA32r
;
152 static bool isEAXLiveIn(MachineBasicBlock
&MBB
) {
153 for (MachineBasicBlock::RegisterMaskPair RegMask
: MBB
.liveins()) {
154 unsigned Reg
= RegMask
.PhysReg
;
156 if (Reg
== X86::RAX
|| Reg
== X86::EAX
|| Reg
== X86::AX
||
157 Reg
== X86::AH
|| Reg
== X86::AL
)
164 /// Check if the flags need to be preserved before the terminators.
165 /// This would be the case, if the eflags is live-in of the region
166 /// composed by the terminators or live-out of that region, without
167 /// being defined by a terminator.
169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock
&MBB
) {
170 for (const MachineInstr
&MI
: MBB
.terminators()) {
171 bool BreakNext
= false;
172 for (const MachineOperand
&MO
: MI
.operands()) {
175 Register Reg
= MO
.getReg();
176 if (Reg
!= X86::EFLAGS
)
179 // This terminator needs an eflags that is not defined
180 // by a previous another terminator:
181 // EFLAGS is live-in of the region composed by the terminators.
184 // This terminator defines the eflags, i.e., we don't need to preserve it.
185 // However, we still need to check this specific terminator does not
186 // read a live-in value.
189 // We found a definition of the eflags, no need to preserve them.
194 // None of the terminators use or define the eflags.
195 // Check if they are live-out, that would imply we need to preserve them.
196 for (const MachineBasicBlock
*Succ
: MBB
.successors())
197 if (Succ
->isLiveIn(X86::EFLAGS
))
203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
204 /// stack pointer by a constant value.
205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock
&MBB
,
206 MachineBasicBlock::iterator
&MBBI
,
208 int64_t NumBytes
, bool InEpilogue
) const {
209 bool isSub
= NumBytes
< 0;
210 uint64_t Offset
= isSub
? -NumBytes
: NumBytes
;
211 MachineInstr::MIFlag Flag
=
212 isSub
? MachineInstr::FrameSetup
: MachineInstr::FrameDestroy
;
214 uint64_t Chunk
= (1LL << 31) - 1;
216 MachineFunction
&MF
= *MBB
.getParent();
217 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
218 const X86TargetLowering
&TLI
= *STI
.getTargetLowering();
219 const bool EmitInlineStackProbe
= TLI
.hasInlineStackProbe(MF
);
221 // It's ok to not take into account large chunks when probing, as the
222 // allocation is split in smaller chunks anyway.
223 if (EmitInlineStackProbe
&& !InEpilogue
) {
225 // This pseudo-instruction is going to be expanded, potentially using a
226 // loop, by inlineStackProbe().
227 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::STACKALLOC_W_PROBING
)).addImm(Offset
);
229 } else if (Offset
> Chunk
) {
230 // Rather than emit a long series of instructions for large offsets,
231 // load the offset into a register and do one sub/add
233 unsigned Rax
= (unsigned)(Is64Bit
? X86::RAX
: X86::EAX
);
235 if (isSub
&& !isEAXLiveIn(MBB
))
238 Reg
= TRI
->findDeadCallerSavedReg(MBB
, MBBI
);
240 unsigned MovRIOpc
= Is64Bit
? X86::MOV64ri
: X86::MOV32ri
;
241 unsigned AddSubRROpc
=
242 isSub
? getSUBrrOpcode(Is64Bit
) : getADDrrOpcode(Is64Bit
);
244 BuildMI(MBB
, MBBI
, DL
, TII
.get(MovRIOpc
), Reg
)
247 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(AddSubRROpc
), StackPtr
)
250 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
252 } else if (Offset
> 8 * Chunk
) {
253 // If we would need more than 8 add or sub instructions (a >16GB stack
254 // frame), it's worth spilling RAX to materialize this immediate.
256 // movabsq +-$Offset+-SlotSize, %rax
260 assert(Is64Bit
&& "can't have 32-bit 16GB stack frame");
261 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH64r
))
262 .addReg(Rax
, RegState::Kill
)
264 // Subtract is not commutative, so negate the offset and always use add.
265 // Subtract 8 less and add 8 more to account for the PUSH we just did.
267 Offset
= -(Offset
- SlotSize
);
269 Offset
= Offset
+ SlotSize
;
270 BuildMI(MBB
, MBBI
, DL
, TII
.get(MovRIOpc
), Rax
)
273 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::ADD64rr
), Rax
)
276 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
277 // Exchange the new SP in RAX with the top of the stack.
279 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::XCHG64rm
), Rax
).addReg(Rax
),
281 // Load new SP from the top of the stack into RSP.
282 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64rm
), StackPtr
),
289 uint64_t ThisVal
= std::min(Offset
, Chunk
);
290 if (ThisVal
== SlotSize
) {
291 // Use push / pop for slot sized adjustments as a size optimization. We
292 // need to find a dead register when using pop.
294 ? (unsigned)(Is64Bit
? X86::RAX
: X86::EAX
)
295 : TRI
->findDeadCallerSavedReg(MBB
, MBBI
);
298 ? (Is64Bit
? X86::PUSH64r
: X86::PUSH32r
)
299 : (Is64Bit
? X86::POP64r
: X86::POP32r
);
300 BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
))
301 .addReg(Reg
, getDefRegState(!isSub
) | getUndefRegState(isSub
))
308 BuildStackAdjustment(MBB
, MBBI
, DL
, isSub
? -ThisVal
: ThisVal
, InEpilogue
)
315 MachineInstrBuilder
X86FrameLowering::BuildStackAdjustment(
316 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
317 const DebugLoc
&DL
, int64_t Offset
, bool InEpilogue
) const {
318 assert(Offset
!= 0 && "zero offset stack adjustment requested");
320 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
324 // Check if inserting the prologue at the beginning
325 // of MBB would require to use LEA operations.
326 // We need to use LEA operations if EFLAGS is live in, because
327 // it means an instruction will read it before it gets defined.
328 UseLEA
= STI
.useLeaForSP() || MBB
.isLiveIn(X86::EFLAGS
);
330 // If we can use LEA for SP but we shouldn't, check that none
331 // of the terminators uses the eflags. Otherwise we will insert
332 // a ADD that will redefine the eflags and break the condition.
333 // Alternatively, we could move the ADD, but this may not be possible
334 // and is an optimization anyway.
335 UseLEA
= canUseLEAForSPInEpilogue(*MBB
.getParent());
336 if (UseLEA
&& !STI
.useLeaForSP())
337 UseLEA
= flagsNeedToBePreservedBeforeTheTerminators(MBB
);
338 // If that assert breaks, that means we do not do the right thing
339 // in canUseAsEpilogue.
340 assert((UseLEA
|| !flagsNeedToBePreservedBeforeTheTerminators(MBB
)) &&
341 "We shouldn't have allowed this insertion point");
344 MachineInstrBuilder MI
;
346 MI
= addRegOffset(BuildMI(MBB
, MBBI
, DL
,
347 TII
.get(getLEArOpcode(Uses64BitFramePtr
)),
349 StackPtr
, false, Offset
);
351 bool IsSub
= Offset
< 0;
352 uint64_t AbsOffset
= IsSub
? -Offset
: Offset
;
353 const unsigned Opc
= IsSub
? getSUBriOpcode(Uses64BitFramePtr
, AbsOffset
)
354 : getADDriOpcode(Uses64BitFramePtr
, AbsOffset
);
355 MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
358 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock
&MBB
,
364 MachineBasicBlock::iterator
&MBBI
,
365 bool doMergeWithPrevious
) const {
366 if ((doMergeWithPrevious
&& MBBI
== MBB
.begin()) ||
367 (!doMergeWithPrevious
&& MBBI
== MBB
.end()))
370 MachineBasicBlock::iterator PI
= doMergeWithPrevious
? std::prev(MBBI
) : MBBI
;
372 PI
= skipDebugInstructionsBackward(PI
, MBB
.begin());
373 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
374 // instruction, and that there are no DBG_VALUE or other instructions between
375 // ADD/SUB/LEA and its corresponding CFI instruction.
376 /* TODO: Add support for the case where there are multiple CFI instructions
377 below the ADD/SUB/LEA, e.g.:
384 if (doMergeWithPrevious
&& PI
!= MBB
.begin() && PI
->isCFIInstruction())
387 unsigned Opc
= PI
->getOpcode();
390 if ((Opc
== X86::ADD64ri32
|| Opc
== X86::ADD64ri8
||
391 Opc
== X86::ADD32ri
|| Opc
== X86::ADD32ri8
) &&
392 PI
->getOperand(0).getReg() == StackPtr
){
393 assert(PI
->getOperand(1).getReg() == StackPtr
);
394 Offset
= PI
->getOperand(2).getImm();
395 } else if ((Opc
== X86::LEA32r
|| Opc
== X86::LEA64_32r
) &&
396 PI
->getOperand(0).getReg() == StackPtr
&&
397 PI
->getOperand(1).getReg() == StackPtr
&&
398 PI
->getOperand(2).getImm() == 1 &&
399 PI
->getOperand(3).getReg() == X86::NoRegister
&&
400 PI
->getOperand(5).getReg() == X86::NoRegister
) {
401 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
402 Offset
= PI
->getOperand(4).getImm();
403 } else if ((Opc
== X86::SUB64ri32
|| Opc
== X86::SUB64ri8
||
404 Opc
== X86::SUB32ri
|| Opc
== X86::SUB32ri8
) &&
405 PI
->getOperand(0).getReg() == StackPtr
) {
406 assert(PI
->getOperand(1).getReg() == StackPtr
);
407 Offset
= -PI
->getOperand(2).getImm();
412 if (PI
!= MBB
.end() && PI
->isCFIInstruction()) {
413 auto CIs
= MBB
.getParent()->getFrameInstructions();
414 MCCFIInstruction CI
= CIs
[PI
->getOperand(0).getCFIIndex()];
415 if (CI
.getOperation() == MCCFIInstruction::OpDefCfaOffset
||
416 CI
.getOperation() == MCCFIInstruction::OpAdjustCfaOffset
)
419 if (!doMergeWithPrevious
)
420 MBBI
= skipDebugInstructionsForward(PI
, MBB
.end());
425 void X86FrameLowering::BuildCFI(MachineBasicBlock
&MBB
,
426 MachineBasicBlock::iterator MBBI
,
428 const MCCFIInstruction
&CFIInst
) const {
429 MachineFunction
&MF
= *MBB
.getParent();
430 unsigned CFIIndex
= MF
.addFrameInst(CFIInst
);
431 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
432 .addCFIIndex(CFIIndex
);
435 /// Emits Dwarf Info specifying offsets of callee saved registers and
436 /// frame pointer. This is called only when basic block sections are enabled.
437 void X86FrameLowering::emitCalleeSavedFrameMoves(
438 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
439 MachineFunction
&MF
= *MBB
.getParent();
441 emitCalleeSavedFrameMoves(MBB
, MBBI
, DebugLoc
{}, true);
444 const MachineModuleInfo
&MMI
= MF
.getMMI();
445 const MCRegisterInfo
*MRI
= MMI
.getContext().getRegisterInfo();
446 const Register FramePtr
= TRI
->getFrameRegister(MF
);
447 const Register MachineFramePtr
=
448 STI
.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr
, 64))
450 unsigned DwarfReg
= MRI
->getDwarfRegNum(MachineFramePtr
, true);
451 // Offset = space for return address + size of the frame pointer itself.
452 unsigned Offset
= (Is64Bit
? 8 : 4) + (Uses64BitFramePtr
? 8 : 4);
453 BuildCFI(MBB
, MBBI
, DebugLoc
{},
454 MCCFIInstruction::createOffset(nullptr, DwarfReg
, -Offset
));
455 emitCalleeSavedFrameMoves(MBB
, MBBI
, DebugLoc
{}, true);
458 void X86FrameLowering::emitCalleeSavedFrameMoves(
459 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
460 const DebugLoc
&DL
, bool IsPrologue
) const {
461 MachineFunction
&MF
= *MBB
.getParent();
462 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
463 MachineModuleInfo
&MMI
= MF
.getMMI();
464 const MCRegisterInfo
*MRI
= MMI
.getContext().getRegisterInfo();
466 // Add callee saved registers to move list.
467 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
468 if (CSI
.empty()) return;
470 // Calculate offsets.
471 for (std::vector
<CalleeSavedInfo
>::const_iterator
472 I
= CSI
.begin(), E
= CSI
.end(); I
!= E
; ++I
) {
473 int64_t Offset
= MFI
.getObjectOffset(I
->getFrameIdx());
474 unsigned Reg
= I
->getReg();
475 unsigned DwarfReg
= MRI
->getDwarfRegNum(Reg
, true);
478 BuildCFI(MBB
, MBBI
, DL
,
479 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
481 BuildCFI(MBB
, MBBI
, DL
,
482 MCCFIInstruction::createRestore(nullptr, DwarfReg
));
487 void X86FrameLowering::emitStackProbe(MachineFunction
&MF
,
488 MachineBasicBlock
&MBB
,
489 MachineBasicBlock::iterator MBBI
,
490 const DebugLoc
&DL
, bool InProlog
) const {
491 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
492 if (STI
.isTargetWindowsCoreCLR()) {
494 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::STACKALLOC_W_PROBING
))
495 .addImm(0 /* no explicit stack size */);
497 emitStackProbeInline(MF
, MBB
, MBBI
, DL
, false);
500 emitStackProbeCall(MF
, MBB
, MBBI
, DL
, InProlog
);
504 void X86FrameLowering::inlineStackProbe(MachineFunction
&MF
,
505 MachineBasicBlock
&PrologMBB
) const {
506 auto Where
= llvm::find_if(PrologMBB
, [](MachineInstr
&MI
) {
507 return MI
.getOpcode() == X86::STACKALLOC_W_PROBING
;
509 if (Where
!= PrologMBB
.end()) {
510 DebugLoc DL
= PrologMBB
.findDebugLoc(Where
);
511 emitStackProbeInline(MF
, PrologMBB
, Where
, DL
, true);
512 Where
->eraseFromParent();
516 void X86FrameLowering::emitStackProbeInline(MachineFunction
&MF
,
517 MachineBasicBlock
&MBB
,
518 MachineBasicBlock::iterator MBBI
,
520 bool InProlog
) const {
521 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
522 if (STI
.isTargetWindowsCoreCLR() && STI
.is64Bit())
523 emitStackProbeInlineWindowsCoreCLR64(MF
, MBB
, MBBI
, DL
, InProlog
);
525 emitStackProbeInlineGeneric(MF
, MBB
, MBBI
, DL
, InProlog
);
528 void X86FrameLowering::emitStackProbeInlineGeneric(
529 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
530 MachineBasicBlock::iterator MBBI
, const DebugLoc
&DL
, bool InProlog
) const {
531 MachineInstr
&AllocWithProbe
= *MBBI
;
532 uint64_t Offset
= AllocWithProbe
.getOperand(0).getImm();
534 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
535 const X86TargetLowering
&TLI
= *STI
.getTargetLowering();
536 assert(!(STI
.is64Bit() && STI
.isTargetWindowsCoreCLR()) &&
537 "different expansion expected for CoreCLR 64 bit");
539 const uint64_t StackProbeSize
= TLI
.getStackProbeSize(MF
);
540 uint64_t ProbeChunk
= StackProbeSize
* 8;
543 TRI
->hasStackRealignment(MF
) ? calculateMaxStackAlign(MF
) : 0;
545 // Synthesize a loop or unroll it, depending on the number of iterations.
546 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
547 // between the unaligned rsp and current rsp.
548 if (Offset
> ProbeChunk
) {
549 emitStackProbeInlineGenericLoop(MF
, MBB
, MBBI
, DL
, Offset
,
550 MaxAlign
% StackProbeSize
);
552 emitStackProbeInlineGenericBlock(MF
, MBB
, MBBI
, DL
, Offset
,
553 MaxAlign
% StackProbeSize
);
557 void X86FrameLowering::emitStackProbeInlineGenericBlock(
558 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
559 MachineBasicBlock::iterator MBBI
, const DebugLoc
&DL
, uint64_t Offset
,
560 uint64_t AlignOffset
) const {
562 const bool NeedsDwarfCFI
= needsDwarfCFI(MF
);
563 const bool HasFP
= hasFP(MF
);
564 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
565 const X86TargetLowering
&TLI
= *STI
.getTargetLowering();
566 const unsigned Opc
= getSUBriOpcode(Uses64BitFramePtr
, Offset
);
567 const unsigned MovMIOpc
= Is64Bit
? X86::MOV64mi32
: X86::MOV32mi
;
568 const uint64_t StackProbeSize
= TLI
.getStackProbeSize(MF
);
570 uint64_t CurrentOffset
= 0;
572 assert(AlignOffset
< StackProbeSize
);
574 // If the offset is so small it fits within a page, there's nothing to do.
575 if (StackProbeSize
< Offset
+ AlignOffset
) {
577 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
579 .addImm(StackProbeSize
- AlignOffset
)
580 .setMIFlag(MachineInstr::FrameSetup
);
581 if (!HasFP
&& NeedsDwarfCFI
) {
582 BuildCFI(MBB
, MBBI
, DL
,
583 MCCFIInstruction::createAdjustCfaOffset(
584 nullptr, StackProbeSize
- AlignOffset
));
586 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
588 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(MovMIOpc
))
589 .setMIFlag(MachineInstr::FrameSetup
),
592 .setMIFlag(MachineInstr::FrameSetup
);
593 NumFrameExtraProbe
++;
594 CurrentOffset
= StackProbeSize
- AlignOffset
;
597 // For the next N - 1 pages, just probe. I tried to take advantage of
598 // natural probes but it implies much more logic and there was very few
599 // interesting natural probes to interleave.
600 while (CurrentOffset
+ StackProbeSize
< Offset
) {
601 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
603 .addImm(StackProbeSize
)
604 .setMIFlag(MachineInstr::FrameSetup
);
605 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
607 if (!HasFP
&& NeedsDwarfCFI
) {
610 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize
));
612 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(MovMIOpc
))
613 .setMIFlag(MachineInstr::FrameSetup
),
616 .setMIFlag(MachineInstr::FrameSetup
);
617 NumFrameExtraProbe
++;
618 CurrentOffset
+= StackProbeSize
;
621 // No need to probe the tail, it is smaller than a Page.
622 uint64_t ChunkSize
= Offset
- CurrentOffset
;
623 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
626 .setMIFlag(MachineInstr::FrameSetup
);
627 // No need to adjust Dwarf CFA offset here, the last position of the stack has
629 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
632 void X86FrameLowering::emitStackProbeInlineGenericLoop(
633 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
634 MachineBasicBlock::iterator MBBI
, const DebugLoc
&DL
, uint64_t Offset
,
635 uint64_t AlignOffset
) const {
636 assert(Offset
&& "null offset");
638 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
639 const X86TargetLowering
&TLI
= *STI
.getTargetLowering();
640 const unsigned MovMIOpc
= Is64Bit
? X86::MOV64mi32
: X86::MOV32mi
;
641 const uint64_t StackProbeSize
= TLI
.getStackProbeSize(MF
);
644 if (AlignOffset
< StackProbeSize
) {
645 // Perform a first smaller allocation followed by a probe.
646 const unsigned SUBOpc
= getSUBriOpcode(Uses64BitFramePtr
, AlignOffset
);
647 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(SUBOpc
), StackPtr
)
650 .setMIFlag(MachineInstr::FrameSetup
);
651 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
653 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(MovMIOpc
))
654 .setMIFlag(MachineInstr::FrameSetup
),
657 .setMIFlag(MachineInstr::FrameSetup
);
658 NumFrameExtraProbe
++;
659 Offset
-= AlignOffset
;
665 const BasicBlock
*LLVM_BB
= MBB
.getBasicBlock();
667 MachineBasicBlock
*testMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
668 MachineBasicBlock
*tailMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
670 MachineFunction::iterator MBBIter
= ++MBB
.getIterator();
671 MF
.insert(MBBIter
, testMBB
);
672 MF
.insert(MBBIter
, tailMBB
);
674 Register FinalStackProbed
= Uses64BitFramePtr
? X86::R11
: X86::R11D
;
675 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::COPY
), FinalStackProbed
)
677 .setMIFlag(MachineInstr::FrameSetup
);
681 const unsigned SUBOpc
= getSUBriOpcode(Uses64BitFramePtr
, Offset
);
682 BuildMI(MBB
, MBBI
, DL
, TII
.get(SUBOpc
), FinalStackProbed
)
683 .addReg(FinalStackProbed
)
684 .addImm(Offset
/ StackProbeSize
* StackProbeSize
)
685 .setMIFlag(MachineInstr::FrameSetup
);
690 const unsigned SUBOpc
= getSUBriOpcode(Uses64BitFramePtr
, StackProbeSize
);
691 BuildMI(testMBB
, DL
, TII
.get(SUBOpc
), StackPtr
)
693 .addImm(StackProbeSize
)
694 .setMIFlag(MachineInstr::FrameSetup
);
698 addRegOffset(BuildMI(testMBB
, DL
, TII
.get(MovMIOpc
))
699 .setMIFlag(MachineInstr::FrameSetup
),
702 .setMIFlag(MachineInstr::FrameSetup
);
704 // cmp with stack pointer bound
705 BuildMI(testMBB
, DL
, TII
.get(Uses64BitFramePtr
? X86::CMP64rr
: X86::CMP32rr
))
707 .addReg(FinalStackProbed
)
708 .setMIFlag(MachineInstr::FrameSetup
);
711 BuildMI(testMBB
, DL
, TII
.get(X86::JCC_1
))
713 .addImm(X86::COND_NE
)
714 .setMIFlag(MachineInstr::FrameSetup
);
715 testMBB
->addSuccessor(testMBB
);
716 testMBB
->addSuccessor(tailMBB
);
719 tailMBB
->splice(tailMBB
->end(), &MBB
, MBBI
, MBB
.end());
720 tailMBB
->transferSuccessorsAndUpdatePHIs(&MBB
);
721 MBB
.addSuccessor(testMBB
);
724 unsigned TailOffset
= Offset
% StackProbeSize
;
726 const unsigned Opc
= getSUBriOpcode(Uses64BitFramePtr
, TailOffset
);
727 BuildMI(*tailMBB
, tailMBB
->begin(), DL
, TII
.get(Opc
), StackPtr
)
730 .setMIFlag(MachineInstr::FrameSetup
);
733 // Update Live In information
734 recomputeLiveIns(*testMBB
);
735 recomputeLiveIns(*tailMBB
);
738 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
739 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
740 MachineBasicBlock::iterator MBBI
, const DebugLoc
&DL
, bool InProlog
) const {
741 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
742 assert(STI
.is64Bit() && "different expansion needed for 32 bit");
743 assert(STI
.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
744 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
745 const BasicBlock
*LLVM_BB
= MBB
.getBasicBlock();
747 // RAX contains the number of bytes of desired stack adjustment.
748 // The handling here assumes this value has already been updated so as to
749 // maintain stack alignment.
751 // We need to exit with RSP modified by this amount and execute suitable
752 // page touches to notify the OS that we're growing the stack responsibly.
753 // All stack probing must be done without modifying RSP.
759 // Flags, TestReg = CopyReg - SizeReg
760 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
761 // LimitReg = gs magic thread env access
762 // if FinalReg >= LimitReg goto ContinueMBB
764 // RoundReg = page address of FinalReg
766 // LoopReg = PHI(LimitReg,ProbeReg)
767 // ProbeReg = LoopReg - PageSize
769 // if (ProbeReg > RoundReg) goto LoopMBB
772 // [rest of original MBB]
774 // Set up the new basic blocks
775 MachineBasicBlock
*RoundMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
776 MachineBasicBlock
*LoopMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
777 MachineBasicBlock
*ContinueMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
779 MachineFunction::iterator MBBIter
= std::next(MBB
.getIterator());
780 MF
.insert(MBBIter
, RoundMBB
);
781 MF
.insert(MBBIter
, LoopMBB
);
782 MF
.insert(MBBIter
, ContinueMBB
);
784 // Split MBB and move the tail portion down to ContinueMBB.
785 MachineBasicBlock::iterator BeforeMBBI
= std::prev(MBBI
);
786 ContinueMBB
->splice(ContinueMBB
->begin(), &MBB
, MBBI
, MBB
.end());
787 ContinueMBB
->transferSuccessorsAndUpdatePHIs(&MBB
);
789 // Some useful constants
790 const int64_t ThreadEnvironmentStackLimit
= 0x10;
791 const int64_t PageSize
= 0x1000;
792 const int64_t PageMask
= ~(PageSize
- 1);
794 // Registers we need. For the normal case we use virtual
795 // registers. For the prolog expansion we use RAX, RCX and RDX.
796 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
797 const TargetRegisterClass
*RegClass
= &X86::GR64RegClass
;
798 const Register SizeReg
= InProlog
? X86::RAX
799 : MRI
.createVirtualRegister(RegClass
),
800 ZeroReg
= InProlog
? X86::RCX
801 : MRI
.createVirtualRegister(RegClass
),
802 CopyReg
= InProlog
? X86::RDX
803 : MRI
.createVirtualRegister(RegClass
),
804 TestReg
= InProlog
? X86::RDX
805 : MRI
.createVirtualRegister(RegClass
),
806 FinalReg
= InProlog
? X86::RDX
807 : MRI
.createVirtualRegister(RegClass
),
808 RoundedReg
= InProlog
? X86::RDX
809 : MRI
.createVirtualRegister(RegClass
),
810 LimitReg
= InProlog
? X86::RCX
811 : MRI
.createVirtualRegister(RegClass
),
812 JoinReg
= InProlog
? X86::RCX
813 : MRI
.createVirtualRegister(RegClass
),
814 ProbeReg
= InProlog
? X86::RCX
815 : MRI
.createVirtualRegister(RegClass
);
817 // SP-relative offsets where we can save RCX and RDX.
818 int64_t RCXShadowSlot
= 0;
819 int64_t RDXShadowSlot
= 0;
821 // If inlining in the prolog, save RCX and RDX.
823 // Compute the offsets. We need to account for things already
824 // pushed onto the stack at this point: return address, frame
825 // pointer (if used), and callee saves.
826 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
827 const int64_t CalleeSaveSize
= X86FI
->getCalleeSavedFrameSize();
828 const bool HasFP
= hasFP(MF
);
830 // Check if we need to spill RCX and/or RDX.
831 // Here we assume that no earlier prologue instruction changes RCX and/or
832 // RDX, so checking the block live-ins is enough.
833 const bool IsRCXLiveIn
= MBB
.isLiveIn(X86::RCX
);
834 const bool IsRDXLiveIn
= MBB
.isLiveIn(X86::RDX
);
835 int64_t InitSlot
= 8 + CalleeSaveSize
+ (HasFP
? 8 : 0);
836 // Assign the initial slot to both registers, then change RDX's slot if both
837 // need to be spilled.
839 RCXShadowSlot
= InitSlot
;
841 RDXShadowSlot
= InitSlot
;
842 if (IsRDXLiveIn
&& IsRCXLiveIn
)
844 // Emit the saves if needed.
846 addRegOffset(BuildMI(&MBB
, DL
, TII
.get(X86::MOV64mr
)), X86::RSP
, false,
850 addRegOffset(BuildMI(&MBB
, DL
, TII
.get(X86::MOV64mr
)), X86::RSP
, false,
854 // Not in the prolog. Copy RAX to a virtual reg.
855 BuildMI(&MBB
, DL
, TII
.get(X86::MOV64rr
), SizeReg
).addReg(X86::RAX
);
858 // Add code to MBB to check for overflow and set the new target stack pointer
860 BuildMI(&MBB
, DL
, TII
.get(X86::XOR64rr
), ZeroReg
)
861 .addReg(ZeroReg
, RegState::Undef
)
862 .addReg(ZeroReg
, RegState::Undef
);
863 BuildMI(&MBB
, DL
, TII
.get(X86::MOV64rr
), CopyReg
).addReg(X86::RSP
);
864 BuildMI(&MBB
, DL
, TII
.get(X86::SUB64rr
), TestReg
)
867 BuildMI(&MBB
, DL
, TII
.get(X86::CMOV64rr
), FinalReg
)
870 .addImm(X86::COND_B
);
872 // FinalReg now holds final stack pointer value, or zero if
873 // allocation would overflow. Compare against the current stack
874 // limit from the thread environment block. Note this limit is the
875 // lowest touched page on the stack, not the point at which the OS
876 // will cause an overflow exception, so this is just an optimization
877 // to avoid unnecessarily touching pages that are below the current
878 // SP but already committed to the stack by the OS.
879 BuildMI(&MBB
, DL
, TII
.get(X86::MOV64rm
), LimitReg
)
883 .addImm(ThreadEnvironmentStackLimit
)
885 BuildMI(&MBB
, DL
, TII
.get(X86::CMP64rr
)).addReg(FinalReg
).addReg(LimitReg
);
886 // Jump if the desired stack pointer is at or above the stack limit.
887 BuildMI(&MBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(ContinueMBB
).addImm(X86::COND_AE
);
889 // Add code to roundMBB to round the final stack pointer to a page boundary.
890 RoundMBB
->addLiveIn(FinalReg
);
891 BuildMI(RoundMBB
, DL
, TII
.get(X86::AND64ri32
), RoundedReg
)
894 BuildMI(RoundMBB
, DL
, TII
.get(X86::JMP_1
)).addMBB(LoopMBB
);
896 // LimitReg now holds the current stack limit, RoundedReg page-rounded
897 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
898 // and probe until we reach RoundedReg.
900 BuildMI(LoopMBB
, DL
, TII
.get(X86::PHI
), JoinReg
)
907 LoopMBB
->addLiveIn(JoinReg
);
908 addRegOffset(BuildMI(LoopMBB
, DL
, TII
.get(X86::LEA64r
), ProbeReg
), JoinReg
,
911 // Probe by storing a byte onto the stack.
912 BuildMI(LoopMBB
, DL
, TII
.get(X86::MOV8mi
))
920 LoopMBB
->addLiveIn(RoundedReg
);
921 BuildMI(LoopMBB
, DL
, TII
.get(X86::CMP64rr
))
924 BuildMI(LoopMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(LoopMBB
).addImm(X86::COND_NE
);
926 MachineBasicBlock::iterator ContinueMBBI
= ContinueMBB
->getFirstNonPHI();
928 // If in prolog, restore RDX and RCX.
930 if (RCXShadowSlot
) // It means we spilled RCX in the prologue.
931 addRegOffset(BuildMI(*ContinueMBB
, ContinueMBBI
, DL
,
932 TII
.get(X86::MOV64rm
), X86::RCX
),
933 X86::RSP
, false, RCXShadowSlot
);
934 if (RDXShadowSlot
) // It means we spilled RDX in the prologue.
935 addRegOffset(BuildMI(*ContinueMBB
, ContinueMBBI
, DL
,
936 TII
.get(X86::MOV64rm
), X86::RDX
),
937 X86::RSP
, false, RDXShadowSlot
);
940 // Now that the probing is done, add code to continueMBB to update
941 // the stack pointer for real.
942 ContinueMBB
->addLiveIn(SizeReg
);
943 BuildMI(*ContinueMBB
, ContinueMBBI
, DL
, TII
.get(X86::SUB64rr
), X86::RSP
)
947 // Add the control flow edges we need.
948 MBB
.addSuccessor(ContinueMBB
);
949 MBB
.addSuccessor(RoundMBB
);
950 RoundMBB
->addSuccessor(LoopMBB
);
951 LoopMBB
->addSuccessor(ContinueMBB
);
952 LoopMBB
->addSuccessor(LoopMBB
);
954 // Mark all the instructions added to the prolog as frame setup.
956 for (++BeforeMBBI
; BeforeMBBI
!= MBB
.end(); ++BeforeMBBI
) {
957 BeforeMBBI
->setFlag(MachineInstr::FrameSetup
);
959 for (MachineInstr
&MI
: *RoundMBB
) {
960 MI
.setFlag(MachineInstr::FrameSetup
);
962 for (MachineInstr
&MI
: *LoopMBB
) {
963 MI
.setFlag(MachineInstr::FrameSetup
);
965 for (MachineBasicBlock::iterator CMBBI
= ContinueMBB
->begin();
966 CMBBI
!= ContinueMBBI
; ++CMBBI
) {
967 CMBBI
->setFlag(MachineInstr::FrameSetup
);
972 void X86FrameLowering::emitStackProbeCall(MachineFunction
&MF
,
973 MachineBasicBlock
&MBB
,
974 MachineBasicBlock::iterator MBBI
,
976 bool InProlog
) const {
977 bool IsLargeCodeModel
= MF
.getTarget().getCodeModel() == CodeModel::Large
;
979 // FIXME: Add indirect thunk support and remove this.
980 if (Is64Bit
&& IsLargeCodeModel
&& STI
.useIndirectThunkCalls())
981 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
982 "code model and indirect thunks not yet implemented.");
986 CallOp
= IsLargeCodeModel
? X86::CALL64r
: X86::CALL64pcrel32
;
988 CallOp
= X86::CALLpcrel32
;
990 StringRef Symbol
= STI
.getTargetLowering()->getStackProbeSymbolName(MF
);
992 MachineInstrBuilder CI
;
993 MachineBasicBlock::iterator ExpansionMBBI
= std::prev(MBBI
);
995 // All current stack probes take AX and SP as input, clobber flags, and
996 // preserve all registers. x86_64 probes leave RSP unmodified.
997 if (Is64Bit
&& MF
.getTarget().getCodeModel() == CodeModel::Large
) {
998 // For the large code model, we have to call through a register. Use R11,
999 // as it is scratch in all supported calling conventions.
1000 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64ri
), X86::R11
)
1001 .addExternalSymbol(MF
.createExternalSymbolName(Symbol
));
1002 CI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(CallOp
)).addReg(X86::R11
);
1004 CI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(CallOp
))
1005 .addExternalSymbol(MF
.createExternalSymbolName(Symbol
));
1008 unsigned AX
= Uses64BitFramePtr
? X86::RAX
: X86::EAX
;
1009 unsigned SP
= Uses64BitFramePtr
? X86::RSP
: X86::ESP
;
1010 CI
.addReg(AX
, RegState::Implicit
)
1011 .addReg(SP
, RegState::Implicit
)
1012 .addReg(AX
, RegState::Define
| RegState::Implicit
)
1013 .addReg(SP
, RegState::Define
| RegState::Implicit
)
1014 .addReg(X86::EFLAGS
, RegState::Define
| RegState::Implicit
);
1016 if (STI
.isTargetWin64() || !STI
.isOSWindows()) {
1017 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1018 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1019 // themselves. They also does not clobber %rax so we can reuse it when
1021 // All other platforms do not specify a particular ABI for the stack probe
1022 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1023 BuildMI(MBB
, MBBI
, DL
, TII
.get(getSUBrrOpcode(Uses64BitFramePtr
)), SP
)
1029 // Apply the frame setup flag to all inserted instrs.
1030 for (++ExpansionMBBI
; ExpansionMBBI
!= MBBI
; ++ExpansionMBBI
)
1031 ExpansionMBBI
->setFlag(MachineInstr::FrameSetup
);
1035 static unsigned calculateSetFPREG(uint64_t SPAdjust
) {
1036 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1037 // and might require smaller successive adjustments.
1038 const uint64_t Win64MaxSEHOffset
= 128;
1039 uint64_t SEHFrameOffset
= std::min(SPAdjust
, Win64MaxSEHOffset
);
1040 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1041 return SEHFrameOffset
& -16;
1044 // If we're forcing a stack realignment we can't rely on just the frame
1045 // info, we need to know the ABI stack alignment as well in case we
1046 // have a call out. Otherwise just make sure we have some alignment - we'll
1047 // go with the minimum SlotSize.
1048 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction
&MF
) const {
1049 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1050 Align MaxAlign
= MFI
.getMaxAlign(); // Desired stack alignment.
1051 Align StackAlign
= getStackAlign();
1052 if (MF
.getFunction().hasFnAttribute("stackrealign")) {
1054 MaxAlign
= (StackAlign
> MaxAlign
) ? StackAlign
: MaxAlign
;
1055 else if (MaxAlign
< SlotSize
)
1056 MaxAlign
= Align(SlotSize
);
1058 return MaxAlign
.value();
1061 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock
&MBB
,
1062 MachineBasicBlock::iterator MBBI
,
1063 const DebugLoc
&DL
, unsigned Reg
,
1064 uint64_t MaxAlign
) const {
1065 uint64_t Val
= -MaxAlign
;
1066 unsigned AndOp
= getANDriOpcode(Uses64BitFramePtr
, Val
);
1068 MachineFunction
&MF
= *MBB
.getParent();
1069 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
1070 const X86TargetLowering
&TLI
= *STI
.getTargetLowering();
1071 const uint64_t StackProbeSize
= TLI
.getStackProbeSize(MF
);
1072 const bool EmitInlineStackProbe
= TLI
.hasInlineStackProbe(MF
);
1074 // We want to make sure that (in worst case) less than StackProbeSize bytes
1075 // are not probed after the AND. This assumption is used in
1076 // emitStackProbeInlineGeneric.
1077 if (Reg
== StackPtr
&& EmitInlineStackProbe
&& MaxAlign
>= StackProbeSize
) {
1079 NumFrameLoopProbe
++;
1080 MachineBasicBlock
*entryMBB
=
1081 MF
.CreateMachineBasicBlock(MBB
.getBasicBlock());
1082 MachineBasicBlock
*headMBB
=
1083 MF
.CreateMachineBasicBlock(MBB
.getBasicBlock());
1084 MachineBasicBlock
*bodyMBB
=
1085 MF
.CreateMachineBasicBlock(MBB
.getBasicBlock());
1086 MachineBasicBlock
*footMBB
=
1087 MF
.CreateMachineBasicBlock(MBB
.getBasicBlock());
1089 MachineFunction::iterator MBBIter
= MBB
.getIterator();
1090 MF
.insert(MBBIter
, entryMBB
);
1091 MF
.insert(MBBIter
, headMBB
);
1092 MF
.insert(MBBIter
, bodyMBB
);
1093 MF
.insert(MBBIter
, footMBB
);
1094 const unsigned MovMIOpc
= Is64Bit
? X86::MOV64mi32
: X86::MOV32mi
;
1095 Register FinalStackProbed
= Uses64BitFramePtr
? X86::R11
: X86::R11D
;
1097 // Setup entry block
1100 entryMBB
->splice(entryMBB
->end(), &MBB
, MBB
.begin(), MBBI
);
1101 BuildMI(entryMBB
, DL
, TII
.get(TargetOpcode::COPY
), FinalStackProbed
)
1103 .setMIFlag(MachineInstr::FrameSetup
);
1105 BuildMI(entryMBB
, DL
, TII
.get(AndOp
), FinalStackProbed
)
1106 .addReg(FinalStackProbed
)
1108 .setMIFlag(MachineInstr::FrameSetup
);
1110 // The EFLAGS implicit def is dead.
1111 MI
->getOperand(3).setIsDead();
1113 BuildMI(entryMBB
, DL
,
1114 TII
.get(Uses64BitFramePtr
? X86::CMP64rr
: X86::CMP32rr
))
1115 .addReg(FinalStackProbed
)
1117 .setMIFlag(MachineInstr::FrameSetup
);
1118 BuildMI(entryMBB
, DL
, TII
.get(X86::JCC_1
))
1120 .addImm(X86::COND_E
)
1121 .setMIFlag(MachineInstr::FrameSetup
);
1122 entryMBB
->addSuccessor(headMBB
);
1123 entryMBB
->addSuccessor(&MBB
);
1129 const unsigned SUBOpc
=
1130 getSUBriOpcode(Uses64BitFramePtr
, StackProbeSize
);
1131 BuildMI(headMBB
, DL
, TII
.get(SUBOpc
), StackPtr
)
1133 .addImm(StackProbeSize
)
1134 .setMIFlag(MachineInstr::FrameSetup
);
1136 BuildMI(headMBB
, DL
,
1137 TII
.get(Uses64BitFramePtr
? X86::CMP64rr
: X86::CMP32rr
))
1138 .addReg(FinalStackProbed
)
1140 .setMIFlag(MachineInstr::FrameSetup
);
1143 BuildMI(headMBB
, DL
, TII
.get(X86::JCC_1
))
1145 .addImm(X86::COND_B
)
1146 .setMIFlag(MachineInstr::FrameSetup
);
1148 headMBB
->addSuccessor(bodyMBB
);
1149 headMBB
->addSuccessor(footMBB
);
1154 addRegOffset(BuildMI(bodyMBB
, DL
, TII
.get(MovMIOpc
))
1155 .setMIFlag(MachineInstr::FrameSetup
),
1158 .setMIFlag(MachineInstr::FrameSetup
);
1160 const unsigned SUBOpc
=
1161 getSUBriOpcode(Uses64BitFramePtr
, StackProbeSize
);
1162 BuildMI(bodyMBB
, DL
, TII
.get(SUBOpc
), StackPtr
)
1164 .addImm(StackProbeSize
)
1165 .setMIFlag(MachineInstr::FrameSetup
);
1167 // cmp with stack pointer bound
1168 BuildMI(bodyMBB
, DL
,
1169 TII
.get(Uses64BitFramePtr
? X86::CMP64rr
: X86::CMP32rr
))
1170 .addReg(FinalStackProbed
)
1172 .setMIFlag(MachineInstr::FrameSetup
);
1175 BuildMI(bodyMBB
, DL
, TII
.get(X86::JCC_1
))
1177 .addImm(X86::COND_B
)
1178 .setMIFlag(MachineInstr::FrameSetup
);
1179 bodyMBB
->addSuccessor(bodyMBB
);
1180 bodyMBB
->addSuccessor(footMBB
);
1183 // setup loop footer
1185 BuildMI(footMBB
, DL
, TII
.get(TargetOpcode::COPY
), StackPtr
)
1186 .addReg(FinalStackProbed
)
1187 .setMIFlag(MachineInstr::FrameSetup
);
1188 addRegOffset(BuildMI(footMBB
, DL
, TII
.get(MovMIOpc
))
1189 .setMIFlag(MachineInstr::FrameSetup
),
1192 .setMIFlag(MachineInstr::FrameSetup
);
1193 footMBB
->addSuccessor(&MBB
);
1196 recomputeLiveIns(*headMBB
);
1197 recomputeLiveIns(*bodyMBB
);
1198 recomputeLiveIns(*footMBB
);
1199 recomputeLiveIns(MBB
);
1202 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(AndOp
), Reg
)
1205 .setMIFlag(MachineInstr::FrameSetup
);
1207 // The EFLAGS implicit def is dead.
1208 MI
->getOperand(3).setIsDead();
1212 bool X86FrameLowering::has128ByteRedZone(const MachineFunction
& MF
) const {
1213 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1214 // clobbered by any interrupt handler.
1215 assert(&STI
== &MF
.getSubtarget
<X86Subtarget
>() &&
1216 "MF used frame lowering for wrong subtarget");
1217 const Function
&Fn
= MF
.getFunction();
1218 const bool IsWin64CC
= STI
.isCallingConvWin64(Fn
.getCallingConv());
1219 return Is64Bit
&& !IsWin64CC
&& !Fn
.hasFnAttribute(Attribute::NoRedZone
);
1222 bool X86FrameLowering::isWin64Prologue(const MachineFunction
&MF
) const {
1223 return MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
1226 bool X86FrameLowering::needsDwarfCFI(const MachineFunction
&MF
) const {
1227 return !isWin64Prologue(MF
) && MF
.needsFrameMoves();
1230 /// emitPrologue - Push callee-saved registers onto the stack, which
1231 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1232 /// space for local variables. Also emit labels used by the exception handler to
1233 /// generate the exception handling frames.
1236 Here's a gist of what gets emitted:
1238 ; Establish frame pointer, if needed
1241 .cfi_def_cfa_offset 16
1242 .cfi_offset %rbp, -16
1245 .cfi_def_cfa_register %rbp
1247 ; Spill general-purpose registers
1248 [for all callee-saved GPRs]
1251 .cfi_def_cfa_offset (offset from RETADDR)
1254 ; If the required stack alignment > default stack alignment
1255 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
1256 ; of unknown size in the stack frame.
1257 [if stack needs re-alignment]
1260 ; Allocate space for locals
1261 [if target is Windows and allocated space > 4096 bytes]
1262 ; Windows needs special care for allocations larger
1265 call ___chkstk_ms/___chkstk
1271 .seh_stackalloc (size of XMM spill slots)
1272 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1277 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1278 ; they may get spilled on any platform, if the current function
1279 ; calls @llvm.eh.unwind.init
1281 [for all callee-saved XMM registers]
1282 movaps %<xmm reg>, -MMM(%rbp)
1283 [for all callee-saved XMM registers]
1284 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1285 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1287 [for all callee-saved XMM registers]
1288 movaps %<xmm reg>, KKK(%rsp)
1289 [for all callee-saved XMM registers]
1290 .seh_savexmm %<xmm reg>, KKK
1294 [if needs base pointer]
1296 [if needs to restore base pointer]
1297 mov %rsp, -MMM(%rbp)
1301 [for all callee-saved registers]
1302 .cfi_offset %<reg>, (offset from %rbp)
1304 .cfi_def_cfa_offset (offset from RETADDR)
1305 [for all callee-saved registers]
1306 .cfi_offset %<reg>, (offset from %rsp)
1309 - .seh directives are emitted only for Windows 64 ABI
1310 - .cv_fpo directives are emitted on win32 when emitting CodeView
1311 - .cfi directives are emitted for all other ABIs
1312 - for 32-bit code, substitute %e?? registers for %r??
1315 void X86FrameLowering::emitPrologue(MachineFunction
&MF
,
1316 MachineBasicBlock
&MBB
) const {
1317 assert(&STI
== &MF
.getSubtarget
<X86Subtarget
>() &&
1318 "MF used frame lowering for wrong subtarget");
1319 MachineBasicBlock::iterator MBBI
= MBB
.begin();
1320 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1321 const Function
&Fn
= MF
.getFunction();
1322 MachineModuleInfo
&MMI
= MF
.getMMI();
1323 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1324 uint64_t MaxAlign
= calculateMaxStackAlign(MF
); // Desired stack alignment.
1325 uint64_t StackSize
= MFI
.getStackSize(); // Number of bytes to allocate.
1326 bool IsFunclet
= MBB
.isEHFuncletEntry();
1327 EHPersonality Personality
= EHPersonality::Unknown
;
1328 if (Fn
.hasPersonalityFn())
1329 Personality
= classifyEHPersonality(Fn
.getPersonalityFn());
1330 bool FnHasClrFunclet
=
1331 MF
.hasEHFunclets() && Personality
== EHPersonality::CoreCLR
;
1332 bool IsClrFunclet
= IsFunclet
&& FnHasClrFunclet
;
1333 bool HasFP
= hasFP(MF
);
1334 bool IsWin64Prologue
= isWin64Prologue(MF
);
1335 bool NeedsWin64CFI
= IsWin64Prologue
&& Fn
.needsUnwindTableEntry();
1336 // FIXME: Emit FPO data for EH funclets.
1338 !IsFunclet
&& STI
.isTargetWin32() && MMI
.getModule()->getCodeViewFlag();
1339 bool NeedsWinCFI
= NeedsWin64CFI
|| NeedsWinFPO
;
1340 bool NeedsDwarfCFI
= needsDwarfCFI(MF
);
1341 Register FramePtr
= TRI
->getFrameRegister(MF
);
1342 const Register MachineFramePtr
=
1343 STI
.isTarget64BitILP32()
1344 ? Register(getX86SubSuperRegister(FramePtr
, 64)) : FramePtr
;
1345 Register BasePtr
= TRI
->getBaseRegister();
1346 bool HasWinCFI
= false;
1348 // Debug location must be unknown since the first debug location is used
1349 // to determine the end of the prologue.
1352 // Space reserved for stack-based arguments when making a (ABI-guaranteed)
1354 unsigned TailCallArgReserveSize
= -X86FI
->getTCReturnAddrDelta();
1355 if (TailCallArgReserveSize
&& IsWin64Prologue
)
1356 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1358 const bool EmitStackProbeCall
=
1359 STI
.getTargetLowering()->hasStackProbeSymbol(MF
);
1360 unsigned StackProbeSize
= STI
.getTargetLowering()->getStackProbeSize(MF
);
1362 if (HasFP
&& X86FI
->hasSwiftAsyncContext()) {
1363 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::BTS64ri8
),
1365 .addUse(MachineFramePtr
)
1367 .setMIFlag(MachineInstr::FrameSetup
);
1370 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1371 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1373 if (Fn
.getCallingConv() == CallingConv::X86_INTR
&& Is64Bit
&&
1374 Fn
.arg_size() == 2) {
1376 MFI
.setStackSize(StackSize
);
1377 emitSPUpdate(MBB
, MBBI
, DL
, -8, /*InEpilogue=*/false);
1380 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1381 // function, and use up to 128 bytes of stack space, don't have a frame
1382 // pointer, calls, or dynamic alloca then we do not need to adjust the
1383 // stack pointer (we fit in the Red Zone). We also check that we don't
1384 // push and pop from the stack.
1385 if (has128ByteRedZone(MF
) && !TRI
->hasStackRealignment(MF
) &&
1386 !MFI
.hasVarSizedObjects() && // No dynamic alloca.
1387 !MFI
.adjustsStack() && // No calls.
1388 !EmitStackProbeCall
&& // No stack probes.
1389 !MFI
.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1390 !MF
.shouldSplitStack()) { // Regular stack
1392 X86FI
->getCalleeSavedFrameSize() - X86FI
->getTCReturnAddrDelta();
1393 if (HasFP
) MinSize
+= SlotSize
;
1394 X86FI
->setUsesRedZone(MinSize
> 0 || StackSize
> 0);
1395 StackSize
= std::max(MinSize
, StackSize
> 128 ? StackSize
- 128 : 0);
1396 MFI
.setStackSize(StackSize
);
1399 // Insert stack pointer adjustment for later moving of return addr. Only
1400 // applies to tail call optimized functions where the callee argument stack
1401 // size is bigger than the callers.
1402 if (TailCallArgReserveSize
!= 0) {
1403 BuildStackAdjustment(MBB
, MBBI
, DL
, -(int)TailCallArgReserveSize
,
1404 /*InEpilogue=*/false)
1405 .setMIFlag(MachineInstr::FrameSetup
);
1408 // Mapping for machine moves:
1410 // DST: VirtualFP AND
1411 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1412 // ELSE => DW_CFA_def_cfa
1414 // SRC: VirtualFP AND
1415 // DST: Register => DW_CFA_def_cfa_register
1418 // OFFSET < 0 => DW_CFA_offset_extended_sf
1419 // REG < 64 => DW_CFA_offset + Reg
1420 // ELSE => DW_CFA_offset_extended
1422 uint64_t NumBytes
= 0;
1423 int stackGrowth
= -SlotSize
;
1425 // Find the funclet establisher parameter
1426 Register Establisher
= X86::NoRegister
;
1428 Establisher
= Uses64BitFramePtr
? X86::RCX
: X86::ECX
;
1430 Establisher
= Uses64BitFramePtr
? X86::RDX
: X86::EDX
;
1432 if (IsWin64Prologue
&& IsFunclet
&& !IsClrFunclet
) {
1433 // Immediately spill establisher into the home slot.
1434 // The runtime cares about this.
1435 // MOV64mr %rdx, 16(%rsp)
1436 unsigned MOVmr
= Uses64BitFramePtr
? X86::MOV64mr
: X86::MOV32mr
;
1437 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(MOVmr
)), StackPtr
, true, 16)
1438 .addReg(Establisher
)
1439 .setMIFlag(MachineInstr::FrameSetup
);
1440 MBB
.addLiveIn(Establisher
);
1444 assert(MF
.getRegInfo().isReserved(MachineFramePtr
) && "FP reserved");
1446 // Calculate required stack adjustment.
1447 uint64_t FrameSize
= StackSize
- SlotSize
;
1448 // If required, include space for extra hidden slot for stashing base pointer.
1449 if (X86FI
->getRestoreBasePointer())
1450 FrameSize
+= SlotSize
;
1452 NumBytes
= FrameSize
-
1453 (X86FI
->getCalleeSavedFrameSize() + TailCallArgReserveSize
);
1455 // Callee-saved registers are pushed on stack before the stack is realigned.
1456 if (TRI
->hasStackRealignment(MF
) && !IsWin64Prologue
)
1457 NumBytes
= alignTo(NumBytes
, MaxAlign
);
1459 // Save EBP/RBP into the appropriate stack slot.
1460 BuildMI(MBB
, MBBI
, DL
, TII
.get(Is64Bit
? X86::PUSH64r
: X86::PUSH32r
))
1461 .addReg(MachineFramePtr
, RegState::Kill
)
1462 .setMIFlag(MachineInstr::FrameSetup
);
1464 if (NeedsDwarfCFI
) {
1465 // Mark the place where EBP/RBP was saved.
1466 // Define the current CFA rule to use the provided offset.
1468 BuildCFI(MBB
, MBBI
, DL
,
1469 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth
));
1471 // Change the rule for the FramePtr to be an "offset" rule.
1472 unsigned DwarfFramePtr
= TRI
->getDwarfRegNum(MachineFramePtr
, true);
1473 BuildCFI(MBB
, MBBI
, DL
, MCCFIInstruction::createOffset(
1474 nullptr, DwarfFramePtr
, 2 * stackGrowth
));
1479 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_PushReg
))
1481 .setMIFlag(MachineInstr::FrameSetup
);
1485 if (X86FI
->hasSwiftAsyncContext()) {
1486 const auto &Attrs
= MF
.getFunction().getAttributes();
1488 // Before we update the live frame pointer we have to ensure there's a
1489 // valid (or null) asynchronous context in its slot just before FP in
1490 // the frame record, so store it now.
1491 if (Attrs
.hasAttrSomewhere(Attribute::SwiftAsync
)) {
1492 // We have an initial context in r14, store it just before the frame
1494 MBB
.addLiveIn(X86::R14
);
1495 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH64r
))
1497 .setMIFlag(MachineInstr::FrameSetup
);
1499 // No initial context, store null so that there's no pointer that
1500 // could be misused.
1501 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH64i8
))
1503 .setMIFlag(MachineInstr::FrameSetup
);
1508 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_PushReg
))
1510 .setMIFlag(MachineInstr::FrameSetup
);
1513 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::LEA64r
), FramePtr
)
1516 .addUse(X86::NoRegister
)
1518 .addUse(X86::NoRegister
)
1519 .setMIFlag(MachineInstr::FrameSetup
);
1520 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SUB64ri8
), X86::RSP
)
1523 .setMIFlag(MachineInstr::FrameSetup
);
1526 if (!IsWin64Prologue
&& !IsFunclet
) {
1527 // Update EBP with the new base value.
1528 if (!X86FI
->hasSwiftAsyncContext())
1529 BuildMI(MBB
, MBBI
, DL
,
1530 TII
.get(Uses64BitFramePtr
? X86::MOV64rr
: X86::MOV32rr
),
1533 .setMIFlag(MachineInstr::FrameSetup
);
1535 if (NeedsDwarfCFI
) {
1536 // Mark effective beginning of when frame pointer becomes valid.
1537 // Define the current CFA to use the EBP/RBP register.
1538 unsigned DwarfFramePtr
= TRI
->getDwarfRegNum(MachineFramePtr
, true);
1541 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr
));
1545 // .cv_fpo_setframe $FramePtr
1547 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_SetFrame
))
1550 .setMIFlag(MachineInstr::FrameSetup
);
1555 assert(!IsFunclet
&& "funclets without FPs not yet implemented");
1556 NumBytes
= StackSize
-
1557 (X86FI
->getCalleeSavedFrameSize() + TailCallArgReserveSize
);
1560 // Update the offset adjustment, which is mainly used by codeview to translate
1561 // from ESP to VFRAME relative local variable offsets.
1563 if (HasFP
&& TRI
->hasStackRealignment(MF
))
1564 MFI
.setOffsetAdjustment(-NumBytes
);
1566 MFI
.setOffsetAdjustment(-StackSize
);
1569 // For EH funclets, only allocate enough space for outgoing calls. Save the
1570 // NumBytes value that we would've used for the parent frame.
1571 unsigned ParentFrameNumBytes
= NumBytes
;
1573 NumBytes
= getWinEHFuncletFrameSize(MF
);
1575 // Skip the callee-saved push instructions.
1576 bool PushedRegs
= false;
1577 int StackOffset
= 2 * stackGrowth
;
1579 while (MBBI
!= MBB
.end() &&
1580 MBBI
->getFlag(MachineInstr::FrameSetup
) &&
1581 (MBBI
->getOpcode() == X86::PUSH32r
||
1582 MBBI
->getOpcode() == X86::PUSH64r
)) {
1584 Register Reg
= MBBI
->getOperand(0).getReg();
1587 if (!HasFP
&& NeedsDwarfCFI
) {
1588 // Mark callee-saved push instruction.
1589 // Define the current CFA rule to use the provided offset.
1591 BuildCFI(MBB
, MBBI
, DL
,
1592 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset
));
1593 StackOffset
+= stackGrowth
;
1598 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_PushReg
))
1600 .setMIFlag(MachineInstr::FrameSetup
);
1604 // Realign stack after we pushed callee-saved registers (so that we'll be
1605 // able to calculate their offsets from the frame pointer).
1606 // Don't do this for Win64, it needs to realign the stack after the prologue.
1607 if (!IsWin64Prologue
&& !IsFunclet
&& TRI
->hasStackRealignment(MF
)) {
1608 assert(HasFP
&& "There should be a frame pointer if stack is realigned.");
1609 BuildStackAlignAND(MBB
, MBBI
, DL
, StackPtr
, MaxAlign
);
1613 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_StackAlign
))
1615 .setMIFlag(MachineInstr::FrameSetup
);
1619 // If there is an SUB32ri of ESP immediately before this instruction, merge
1620 // the two. This can be the case when tail call elimination is enabled and
1621 // the callee has more arguments then the caller.
1622 NumBytes
-= mergeSPUpdates(MBB
, MBBI
, true);
1624 // Adjust stack pointer: ESP -= numbytes.
1626 // Windows and cygwin/mingw require a prologue helper routine when allocating
1627 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1628 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1629 // stack and adjust the stack pointer in one go. The 64-bit version of
1630 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1631 // responsible for adjusting the stack pointer. Touching the stack at 4K
1632 // increments is necessary to ensure that the guard pages used by the OS
1633 // virtual memory manager are allocated in correct sequence.
1634 uint64_t AlignedNumBytes
= NumBytes
;
1635 if (IsWin64Prologue
&& !IsFunclet
&& TRI
->hasStackRealignment(MF
))
1636 AlignedNumBytes
= alignTo(AlignedNumBytes
, MaxAlign
);
1637 if (AlignedNumBytes
>= StackProbeSize
&& EmitStackProbeCall
) {
1638 assert(!X86FI
->getUsesRedZone() &&
1639 "The Red Zone is not accounted for in stack probes");
1641 // Check whether EAX is livein for this block.
1642 bool isEAXAlive
= isEAXLiveIn(MBB
);
1647 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH64r
))
1648 .addReg(X86::RAX
, RegState::Kill
)
1649 .setMIFlag(MachineInstr::FrameSetup
);
1652 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH32r
))
1653 .addReg(X86::EAX
, RegState::Kill
)
1654 .setMIFlag(MachineInstr::FrameSetup
);
1659 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1660 // Function prologue is responsible for adjusting the stack pointer.
1661 int64_t Alloc
= isEAXAlive
? NumBytes
- 8 : NumBytes
;
1662 if (isUInt
<32>(Alloc
)) {
1663 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
1665 .setMIFlag(MachineInstr::FrameSetup
);
1666 } else if (isInt
<32>(Alloc
)) {
1667 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64ri32
), X86::RAX
)
1669 .setMIFlag(MachineInstr::FrameSetup
);
1671 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64ri
), X86::RAX
)
1673 .setMIFlag(MachineInstr::FrameSetup
);
1676 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1677 // We'll also use 4 already allocated bytes for EAX.
1678 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
1679 .addImm(isEAXAlive
? NumBytes
- 4 : NumBytes
)
1680 .setMIFlag(MachineInstr::FrameSetup
);
1683 // Call __chkstk, __chkstk_ms, or __alloca.
1684 emitStackProbe(MF
, MBB
, MBBI
, DL
, true);
1690 MI
= addRegOffset(BuildMI(MF
, DL
, TII
.get(X86::MOV64rm
), X86::RAX
),
1691 StackPtr
, false, NumBytes
- 8);
1693 MI
= addRegOffset(BuildMI(MF
, DL
, TII
.get(X86::MOV32rm
), X86::EAX
),
1694 StackPtr
, false, NumBytes
- 4);
1695 MI
->setFlag(MachineInstr::FrameSetup
);
1696 MBB
.insert(MBBI
, MI
);
1698 } else if (NumBytes
) {
1699 emitSPUpdate(MBB
, MBBI
, DL
, -(int64_t)NumBytes
, /*InEpilogue=*/false);
1702 if (NeedsWinCFI
&& NumBytes
) {
1704 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_StackAlloc
))
1706 .setMIFlag(MachineInstr::FrameSetup
);
1709 int SEHFrameOffset
= 0;
1710 unsigned SPOrEstablisher
;
1713 // The establisher parameter passed to a CLR funclet is actually a pointer
1714 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1715 // to find the root function establisher frame by loading the PSPSym from
1716 // the intermediate frame.
1717 unsigned PSPSlotOffset
= getPSPSlotOffsetFromSP(MF
);
1718 MachinePointerInfo NoInfo
;
1719 MBB
.addLiveIn(Establisher
);
1720 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64rm
), Establisher
),
1721 Establisher
, false, PSPSlotOffset
)
1722 .addMemOperand(MF
.getMachineMemOperand(
1723 NoInfo
, MachineMemOperand::MOLoad
, SlotSize
, Align(SlotSize
)));
1725 // Save the root establisher back into the current funclet's (mostly
1726 // empty) frame, in case a sub-funclet or the GC needs it.
1727 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64mr
)), StackPtr
,
1728 false, PSPSlotOffset
)
1729 .addReg(Establisher
)
1730 .addMemOperand(MF
.getMachineMemOperand(
1732 MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
,
1733 SlotSize
, Align(SlotSize
)));
1735 SPOrEstablisher
= Establisher
;
1737 SPOrEstablisher
= StackPtr
;
1740 if (IsWin64Prologue
&& HasFP
) {
1741 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1742 // this calculation on the incoming establisher, which holds the value of
1743 // RSP from the parent frame at the end of the prologue.
1744 SEHFrameOffset
= calculateSetFPREG(ParentFrameNumBytes
);
1746 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::LEA64r
), FramePtr
),
1747 SPOrEstablisher
, false, SEHFrameOffset
);
1749 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64rr
), FramePtr
)
1750 .addReg(SPOrEstablisher
);
1752 // If this is not a funclet, emit the CFI describing our frame pointer.
1753 if (NeedsWinCFI
&& !IsFunclet
) {
1754 assert(!NeedsWinFPO
&& "this setframe incompatible with FPO data");
1756 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_SetFrame
))
1758 .addImm(SEHFrameOffset
)
1759 .setMIFlag(MachineInstr::FrameSetup
);
1760 if (isAsynchronousEHPersonality(Personality
))
1761 MF
.getWinEHFuncInfo()->SEHSetFrameOffset
= SEHFrameOffset
;
1763 } else if (IsFunclet
&& STI
.is32Bit()) {
1764 // Reset EBP / ESI to something good for funclets.
1765 MBBI
= restoreWin32EHStackPointers(MBB
, MBBI
, DL
);
1766 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1767 // into the registration node so that the runtime will restore it for us.
1768 if (!MBB
.isCleanupFuncletEntry()) {
1769 assert(Personality
== EHPersonality::MSVC_CXX
);
1771 int FI
= MF
.getWinEHFuncInfo()->EHRegNodeFrameIndex
;
1772 int64_t EHRegOffset
= getFrameIndexReference(MF
, FI
, FrameReg
).getFixed();
1773 // ESP is the first field, so no extra displacement is needed.
1774 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32mr
)), FrameReg
,
1780 while (MBBI
!= MBB
.end() && MBBI
->getFlag(MachineInstr::FrameSetup
)) {
1781 const MachineInstr
&FrameInstr
= *MBBI
;
1786 if (unsigned Reg
= TII
.isStoreToStackSlot(FrameInstr
, FI
)) {
1787 if (X86::FR64RegClass
.contains(Reg
)) {
1789 Register IgnoredFrameReg
;
1790 if (IsWin64Prologue
&& IsFunclet
)
1791 Offset
= getWin64EHFrameIndexRef(MF
, FI
, IgnoredFrameReg
);
1794 getFrameIndexReference(MF
, FI
, IgnoredFrameReg
).getFixed() +
1798 assert(!NeedsWinFPO
&& "SEH_SaveXMM incompatible with FPO data");
1799 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_SaveXMM
))
1802 .setMIFlag(MachineInstr::FrameSetup
);
1808 if (NeedsWinCFI
&& HasWinCFI
)
1809 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_EndPrologue
))
1810 .setMIFlag(MachineInstr::FrameSetup
);
1812 if (FnHasClrFunclet
&& !IsFunclet
) {
1813 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1814 // immediately after the prolog) into the PSPSlot so that funclets
1815 // and the GC can recover it.
1816 unsigned PSPSlotOffset
= getPSPSlotOffsetFromSP(MF
);
1817 auto PSPInfo
= MachinePointerInfo::getFixedStack(
1818 MF
, MF
.getWinEHFuncInfo()->PSPSymFrameIdx
);
1819 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64mr
)), StackPtr
, false,
1822 .addMemOperand(MF
.getMachineMemOperand(
1823 PSPInfo
, MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
,
1824 SlotSize
, Align(SlotSize
)));
1827 // Realign stack after we spilled callee-saved registers (so that we'll be
1828 // able to calculate their offsets from the frame pointer).
1829 // Win64 requires aligning the stack after the prologue.
1830 if (IsWin64Prologue
&& TRI
->hasStackRealignment(MF
)) {
1831 assert(HasFP
&& "There should be a frame pointer if stack is realigned.");
1832 BuildStackAlignAND(MBB
, MBBI
, DL
, SPOrEstablisher
, MaxAlign
);
1835 // We already dealt with stack realignment and funclets above.
1836 if (IsFunclet
&& STI
.is32Bit())
1839 // If we need a base pointer, set it up here. It's whatever the value
1840 // of the stack pointer is at this point. Any variable size objects
1841 // will be allocated after this, so we can still use the base pointer
1842 // to reference locals.
1843 if (TRI
->hasBasePointer(MF
)) {
1844 // Update the base pointer with the current stack pointer.
1845 unsigned Opc
= Uses64BitFramePtr
? X86::MOV64rr
: X86::MOV32rr
;
1846 BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), BasePtr
)
1847 .addReg(SPOrEstablisher
)
1848 .setMIFlag(MachineInstr::FrameSetup
);
1849 if (X86FI
->getRestoreBasePointer()) {
1850 // Stash value of base pointer. Saving RSP instead of EBP shortens
1851 // dependence chain. Used by SjLj EH.
1852 unsigned Opm
= Uses64BitFramePtr
? X86::MOV64mr
: X86::MOV32mr
;
1853 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(Opm
)),
1854 FramePtr
, true, X86FI
->getRestoreBasePointerOffset())
1855 .addReg(SPOrEstablisher
)
1856 .setMIFlag(MachineInstr::FrameSetup
);
1859 if (X86FI
->getHasSEHFramePtrSave() && !IsFunclet
) {
1860 // Stash the value of the frame pointer relative to the base pointer for
1861 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1862 // it recovers the frame pointer from the base pointer rather than the
1863 // other way around.
1864 unsigned Opm
= Uses64BitFramePtr
? X86::MOV64mr
: X86::MOV32mr
;
1867 getFrameIndexReference(MF
, X86FI
->getSEHFramePtrSaveIndex(), UsedReg
)
1869 assert(UsedReg
== BasePtr
);
1870 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(Opm
)), UsedReg
, true, Offset
)
1872 .setMIFlag(MachineInstr::FrameSetup
);
1876 if (((!HasFP
&& NumBytes
) || PushedRegs
) && NeedsDwarfCFI
) {
1877 // Mark end of stack pointer adjustment.
1878 if (!HasFP
&& NumBytes
) {
1879 // Define the current CFA rule to use the provided offset.
1883 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize
- stackGrowth
));
1886 // Emit DWARF info specifying the offsets of the callee-saved registers.
1887 emitCalleeSavedFrameMoves(MBB
, MBBI
, DL
, true);
1890 // X86 Interrupt handling function cannot assume anything about the direction
1891 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1892 // in each prologue of interrupt handler function.
1894 // FIXME: Create "cld" instruction only in these cases:
1895 // 1. The interrupt handling function uses any of the "rep" instructions.
1896 // 2. Interrupt handling function calls another function.
1898 if (Fn
.getCallingConv() == CallingConv::X86_INTR
)
1899 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::CLD
))
1900 .setMIFlag(MachineInstr::FrameSetup
);
1902 // At this point we know if the function has WinCFI or not.
1903 MF
.setHasWinCFI(HasWinCFI
);
1906 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1907 const MachineFunction
&MF
) const {
1908 // We can't use LEA instructions for adjusting the stack pointer if we don't
1909 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1910 // to deallocate the stack.
1911 // This means that we can use LEA for SP in two situations:
1912 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1913 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1914 return !MF
.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF
);
1917 static bool isFuncletReturnInstr(MachineInstr
&MI
) {
1918 switch (MI
.getOpcode()) {
1920 case X86::CLEANUPRET
:
1925 llvm_unreachable("impossible");
1928 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1929 // stack. It holds a pointer to the bottom of the root function frame. The
1930 // establisher frame pointer passed to a nested funclet may point to the
1931 // (mostly empty) frame of its parent funclet, but it will need to find
1932 // the frame of the root function to access locals. To facilitate this,
1933 // every funclet copies the pointer to the bottom of the root function
1934 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1935 // same offset for the PSPSym in the root function frame that's used in the
1936 // funclets' frames allows each funclet to dynamically accept any ancestor
1937 // frame as its establisher argument (the runtime doesn't guarantee the
1938 // immediate parent for some reason lost to history), and also allows the GC,
1939 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1940 // frame with only a single offset reported for the entire method.
1942 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction
&MF
) const {
1943 const WinEHFuncInfo
&Info
= *MF
.getWinEHFuncInfo();
1945 int Offset
= getFrameIndexReferencePreferSP(MF
, Info
.PSPSymFrameIdx
, SPReg
,
1946 /*IgnoreSPUpdates*/ true)
1948 assert(Offset
>= 0 && SPReg
== TRI
->getStackRegister());
1949 return static_cast<unsigned>(Offset
);
1953 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction
&MF
) const {
1954 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1955 // This is the size of the pushed CSRs.
1956 unsigned CSSize
= X86FI
->getCalleeSavedFrameSize();
1957 // This is the size of callee saved XMMs.
1958 const auto& WinEHXMMSlotInfo
= X86FI
->getWinEHXMMSlotInfo();
1959 unsigned XMMSize
= WinEHXMMSlotInfo
.size() *
1960 TRI
->getSpillSize(X86::VR128RegClass
);
1961 // This is the amount of stack a funclet needs to allocate.
1963 EHPersonality Personality
=
1964 classifyEHPersonality(MF
.getFunction().getPersonalityFn());
1965 if (Personality
== EHPersonality::CoreCLR
) {
1966 // CLR funclets need to hold enough space to include the PSPSym, at the
1967 // same offset from the stack pointer (immediately after the prolog) as it
1968 // resides at in the main function.
1969 UsedSize
= getPSPSlotOffsetFromSP(MF
) + SlotSize
;
1971 // Other funclets just need enough stack for outgoing call arguments.
1972 UsedSize
= MF
.getFrameInfo().getMaxCallFrameSize();
1974 // RBP is not included in the callee saved register block. After pushing RBP,
1975 // everything is 16 byte aligned. Everything we allocate before an outgoing
1976 // call must also be 16 byte aligned.
1977 unsigned FrameSizeMinusRBP
= alignTo(CSSize
+ UsedSize
, getStackAlign());
1978 // Subtract out the size of the callee saved registers. This is how much stack
1979 // each funclet will allocate.
1980 return FrameSizeMinusRBP
+ XMMSize
- CSSize
;
1983 static bool isTailCallOpcode(unsigned Opc
) {
1984 return Opc
== X86::TCRETURNri
|| Opc
== X86::TCRETURNdi
||
1985 Opc
== X86::TCRETURNmi
||
1986 Opc
== X86::TCRETURNri64
|| Opc
== X86::TCRETURNdi64
||
1987 Opc
== X86::TCRETURNmi64
;
1990 void X86FrameLowering::emitEpilogue(MachineFunction
&MF
,
1991 MachineBasicBlock
&MBB
) const {
1992 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1993 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1994 MachineBasicBlock::iterator Terminator
= MBB
.getFirstTerminator();
1995 MachineBasicBlock::iterator MBBI
= Terminator
;
1997 if (MBBI
!= MBB
.end())
1998 DL
= MBBI
->getDebugLoc();
1999 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2000 const bool Is64BitILP32
= STI
.isTarget64BitILP32();
2001 Register FramePtr
= TRI
->getFrameRegister(MF
);
2002 Register MachineFramePtr
=
2003 Is64BitILP32
? Register(getX86SubSuperRegister(FramePtr
, 64)) : FramePtr
;
2005 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
2006 bool NeedsWin64CFI
=
2007 IsWin64Prologue
&& MF
.getFunction().needsUnwindTableEntry();
2008 bool IsFunclet
= MBBI
== MBB
.end() ? false : isFuncletReturnInstr(*MBBI
);
2010 // Get the number of bytes to allocate from the FrameInfo.
2011 uint64_t StackSize
= MFI
.getStackSize();
2012 uint64_t MaxAlign
= calculateMaxStackAlign(MF
);
2013 unsigned CSSize
= X86FI
->getCalleeSavedFrameSize();
2014 unsigned TailCallArgReserveSize
= -X86FI
->getTCReturnAddrDelta();
2015 bool HasFP
= hasFP(MF
);
2016 uint64_t NumBytes
= 0;
2018 bool NeedsDwarfCFI
= (!MF
.getTarget().getTargetTriple().isOSDarwin() &&
2019 !MF
.getTarget().getTargetTriple().isOSWindows()) &&
2020 MF
.needsFrameMoves();
2023 assert(HasFP
&& "EH funclets without FP not yet implemented");
2024 NumBytes
= getWinEHFuncletFrameSize(MF
);
2026 // Calculate required stack adjustment.
2027 uint64_t FrameSize
= StackSize
- SlotSize
;
2028 NumBytes
= FrameSize
- CSSize
- TailCallArgReserveSize
;
2030 // Callee-saved registers were pushed on stack before the stack was
2032 if (TRI
->hasStackRealignment(MF
) && !IsWin64Prologue
)
2033 NumBytes
= alignTo(FrameSize
, MaxAlign
);
2035 NumBytes
= StackSize
- CSSize
- TailCallArgReserveSize
;
2037 uint64_t SEHStackAllocAmt
= NumBytes
;
2039 // AfterPop is the position to insert .cfi_restore.
2040 MachineBasicBlock::iterator AfterPop
= MBBI
;
2042 if (X86FI
->hasSwiftAsyncContext()) {
2043 // Discard the context.
2044 int Offset
= 16 + mergeSPUpdates(MBB
, MBBI
, true);
2045 emitSPUpdate(MBB
, MBBI
, DL
, Offset
, /*InEpilogue*/true);
2048 BuildMI(MBB
, MBBI
, DL
, TII
.get(Is64Bit
? X86::POP64r
: X86::POP32r
),
2050 .setMIFlag(MachineInstr::FrameDestroy
);
2052 // We need to reset FP to its untagged state on return. Bit 60 is currently
2053 // used to show the presence of an extended frame.
2054 if (X86FI
->hasSwiftAsyncContext()) {
2055 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::BTR64ri8
),
2057 .addUse(MachineFramePtr
)
2059 .setMIFlag(MachineInstr::FrameDestroy
);
2062 if (NeedsDwarfCFI
) {
2063 unsigned DwarfStackPtr
=
2064 TRI
->getDwarfRegNum(Is64Bit
? X86::RSP
: X86::ESP
, true);
2065 BuildCFI(MBB
, MBBI
, DL
,
2066 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr
, SlotSize
));
2067 if (!MBB
.succ_empty() && !MBB
.isReturnBlock()) {
2068 unsigned DwarfFramePtr
= TRI
->getDwarfRegNum(MachineFramePtr
, true);
2069 BuildCFI(MBB
, AfterPop
, DL
,
2070 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr
));
2078 MachineBasicBlock::iterator FirstCSPop
= MBBI
;
2079 // Skip the callee-saved pop instructions.
2080 while (MBBI
!= MBB
.begin()) {
2081 MachineBasicBlock::iterator PI
= std::prev(MBBI
);
2082 unsigned Opc
= PI
->getOpcode();
2084 if (Opc
!= X86::DBG_VALUE
&& !PI
->isTerminator()) {
2085 if ((Opc
!= X86::POP32r
|| !PI
->getFlag(MachineInstr::FrameDestroy
)) &&
2086 (Opc
!= X86::POP64r
|| !PI
->getFlag(MachineInstr::FrameDestroy
)) &&
2087 (Opc
!= X86::BTR64ri8
|| !PI
->getFlag(MachineInstr::FrameDestroy
)) &&
2088 (Opc
!= X86::ADD64ri8
|| !PI
->getFlag(MachineInstr::FrameDestroy
)))
2097 if (IsFunclet
&& Terminator
->getOpcode() == X86::CATCHRET
)
2098 emitCatchRetReturnValue(MBB
, FirstCSPop
, &*Terminator
);
2100 if (MBBI
!= MBB
.end())
2101 DL
= MBBI
->getDebugLoc();
2102 // If there is an ADD32ri or SUB32ri of ESP immediately before this
2103 // instruction, merge the two instructions.
2104 if (NumBytes
|| MFI
.hasVarSizedObjects())
2105 NumBytes
+= mergeSPUpdates(MBB
, MBBI
, true);
2107 // If dynamic alloca is used, then reset esp to point to the last callee-saved
2108 // slot before popping them off! Same applies for the case, when stack was
2109 // realigned. Don't do this if this was a funclet epilogue, since the funclets
2110 // will not do realignment or dynamic stack allocation.
2111 if (((TRI
->hasStackRealignment(MF
)) || MFI
.hasVarSizedObjects()) &&
2113 if (TRI
->hasStackRealignment(MF
))
2115 unsigned SEHFrameOffset
= calculateSetFPREG(SEHStackAllocAmt
);
2116 uint64_t LEAAmount
=
2117 IsWin64Prologue
? SEHStackAllocAmt
- SEHFrameOffset
: -CSSize
;
2119 if (X86FI
->hasSwiftAsyncContext())
2122 // There are only two legal forms of epilogue:
2123 // - add SEHAllocationSize, %rsp
2124 // - lea SEHAllocationSize(%FramePtr), %rsp
2126 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2127 // However, we may use this sequence if we have a frame pointer because the
2128 // effects of the prologue can safely be undone.
2129 if (LEAAmount
!= 0) {
2130 unsigned Opc
= getLEArOpcode(Uses64BitFramePtr
);
2131 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
),
2132 FramePtr
, false, LEAAmount
);
2135 unsigned Opc
= (Uses64BitFramePtr
? X86::MOV64rr
: X86::MOV32rr
);
2136 BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
2140 } else if (NumBytes
) {
2141 // Adjust stack pointer back: ESP += numbytes.
2142 emitSPUpdate(MBB
, MBBI
, DL
, NumBytes
, /*InEpilogue=*/true);
2143 if (!hasFP(MF
) && NeedsDwarfCFI
) {
2144 // Define the current CFA rule to use the provided offset.
2145 BuildCFI(MBB
, MBBI
, DL
,
2146 MCCFIInstruction::cfiDefCfaOffset(
2147 nullptr, CSSize
+ TailCallArgReserveSize
+ SlotSize
));
2152 // Windows unwinder will not invoke function's exception handler if IP is
2153 // either in prologue or in epilogue. This behavior causes a problem when a
2154 // call immediately precedes an epilogue, because the return address points
2155 // into the epilogue. To cope with that, we insert an epilogue marker here,
2156 // then replace it with a 'nop' if it ends up immediately after a CALL in the
2157 // final emitted code.
2158 if (NeedsWin64CFI
&& MF
.hasWinCFI())
2159 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_Epilogue
));
2161 if (!hasFP(MF
) && NeedsDwarfCFI
) {
2163 int64_t Offset
= -CSSize
- SlotSize
;
2164 // Mark callee-saved pop instruction.
2165 // Define the current CFA rule to use the provided offset.
2166 while (MBBI
!= MBB
.end()) {
2167 MachineBasicBlock::iterator PI
= MBBI
;
2168 unsigned Opc
= PI
->getOpcode();
2170 if (Opc
== X86::POP32r
|| Opc
== X86::POP64r
) {
2172 BuildCFI(MBB
, MBBI
, DL
,
2173 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset
));
2178 // Emit DWARF info specifying the restores of the callee-saved registers.
2179 // For epilogue with return inside or being other block without successor,
2180 // no need to generate .cfi_restore for callee-saved registers.
2181 if (NeedsDwarfCFI
&& !MBB
.succ_empty() && !MBB
.isReturnBlock()) {
2182 emitCalleeSavedFrameMoves(MBB
, AfterPop
, DL
, false);
2185 if (Terminator
== MBB
.end() || !isTailCallOpcode(Terminator
->getOpcode())) {
2186 // Add the return addr area delta back since we are not tail calling.
2187 int Offset
= -1 * X86FI
->getTCReturnAddrDelta();
2188 assert(Offset
>= 0 && "TCDelta should never be positive");
2190 // Check for possible merge with preceding ADD instruction.
2191 Offset
+= mergeSPUpdates(MBB
, Terminator
, true);
2192 emitSPUpdate(MBB
, Terminator
, DL
, Offset
, /*InEpilogue=*/true);
2196 // Emit tilerelease for AMX kernel.
2197 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2198 const TargetRegisterClass
*RC
= TRI
->getRegClass(X86::TILERegClassID
);
2199 for (unsigned I
= 0; I
< RC
->getNumRegs(); I
++)
2200 if (!MRI
.reg_nodbg_empty(X86::TMM0
+ I
)) {
2201 BuildMI(MBB
, Terminator
, DL
, TII
.get(X86::TILERELEASE
));
2206 StackOffset
X86FrameLowering::getFrameIndexReference(const MachineFunction
&MF
,
2208 Register
&FrameReg
) const {
2209 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2211 bool IsFixed
= MFI
.isFixedObjectIndex(FI
);
2212 // We can't calculate offset from frame pointer if the stack is realigned,
2213 // so enforce usage of stack/base pointer. The base pointer is used when we
2214 // have dynamic allocas in addition to dynamic realignment.
2215 if (TRI
->hasBasePointer(MF
))
2216 FrameReg
= IsFixed
? TRI
->getFramePtr() : TRI
->getBaseRegister();
2217 else if (TRI
->hasStackRealignment(MF
))
2218 FrameReg
= IsFixed
? TRI
->getFramePtr() : TRI
->getStackRegister();
2220 FrameReg
= TRI
->getFrameRegister(MF
);
2222 // Offset will hold the offset from the stack pointer at function entry to the
2224 // We need to factor in additional offsets applied during the prologue to the
2225 // frame, base, and stack pointer depending on which is used.
2226 int Offset
= MFI
.getObjectOffset(FI
) - getOffsetOfLocalArea();
2227 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2228 unsigned CSSize
= X86FI
->getCalleeSavedFrameSize();
2229 uint64_t StackSize
= MFI
.getStackSize();
2230 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
2231 int64_t FPDelta
= 0;
2233 // In an x86 interrupt, remove the offset we added to account for the return
2234 // address from any stack object allocated in the caller's frame. Interrupts
2235 // do not have a standard return address. Fixed objects in the current frame,
2236 // such as SSE register spills, should not get this treatment.
2237 if (MF
.getFunction().getCallingConv() == CallingConv::X86_INTR
&&
2239 Offset
+= getOffsetOfLocalArea();
2242 if (IsWin64Prologue
) {
2243 assert(!MFI
.hasCalls() || (StackSize
% 16) == 8);
2245 // Calculate required stack adjustment.
2246 uint64_t FrameSize
= StackSize
- SlotSize
;
2247 // If required, include space for extra hidden slot for stashing base pointer.
2248 if (X86FI
->getRestoreBasePointer())
2249 FrameSize
+= SlotSize
;
2250 uint64_t NumBytes
= FrameSize
- CSSize
;
2252 uint64_t SEHFrameOffset
= calculateSetFPREG(NumBytes
);
2253 if (FI
&& FI
== X86FI
->getFAIndex())
2254 return StackOffset::getFixed(-SEHFrameOffset
);
2256 // FPDelta is the offset from the "traditional" FP location of the old base
2257 // pointer followed by return address and the location required by the
2258 // restricted Win64 prologue.
2259 // Add FPDelta to all offsets below that go through the frame pointer.
2260 FPDelta
= FrameSize
- SEHFrameOffset
;
2261 assert((!MFI
.hasCalls() || (FPDelta
% 16) == 0) &&
2262 "FPDelta isn't aligned per the Win64 ABI!");
2265 if (FrameReg
== TRI
->getFramePtr()) {
2266 // Skip saved EBP/RBP
2269 // Account for restricted Windows prologue.
2272 // Skip the RETADDR move area
2273 int TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
2274 if (TailCallReturnAddrDelta
< 0)
2275 Offset
-= TailCallReturnAddrDelta
;
2277 return StackOffset::getFixed(Offset
);
2280 // FrameReg is either the stack pointer or a base pointer. But the base is
2281 // located at the end of the statically known StackSize so the distinction
2282 // doesn't really matter.
2283 if (TRI
->hasStackRealignment(MF
) || TRI
->hasBasePointer(MF
))
2284 assert(isAligned(MFI
.getObjectAlign(FI
), -(Offset
+ StackSize
)));
2285 return StackOffset::getFixed(Offset
+ StackSize
);
2288 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction
&MF
, int FI
,
2289 Register
&FrameReg
) const {
2290 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2291 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2292 const auto& WinEHXMMSlotInfo
= X86FI
->getWinEHXMMSlotInfo();
2293 const auto it
= WinEHXMMSlotInfo
.find(FI
);
2295 if (it
== WinEHXMMSlotInfo
.end())
2296 return getFrameIndexReference(MF
, FI
, FrameReg
).getFixed();
2298 FrameReg
= TRI
->getStackRegister();
2299 return alignDown(MFI
.getMaxCallFrameSize(), getStackAlign().value()) +
2304 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction
&MF
, int FI
,
2306 int Adjustment
) const {
2307 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2308 FrameReg
= TRI
->getStackRegister();
2309 return StackOffset::getFixed(MFI
.getObjectOffset(FI
) -
2310 getOffsetOfLocalArea() + Adjustment
);
2314 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction
&MF
,
2315 int FI
, Register
&FrameReg
,
2316 bool IgnoreSPUpdates
) const {
2318 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2319 // Does not include any dynamic realign.
2320 const uint64_t StackSize
= MFI
.getStackSize();
2321 // LLVM arranges the stack as follows:
2326 // PUSH RBP <-- RBP points here
2328 // ~~~~~~~ <-- possible stack realignment (non-win64)
2331 // ... <-- RSP after prologue points here
2332 // ~~~~~~~ <-- possible stack realignment (win64)
2334 // if (hasVarSizedObjects()):
2335 // ... <-- "base pointer" (ESI/RBX) points here
2337 // ... <-- RSP points here
2339 // Case 1: In the simple case of no stack realignment and no dynamic
2340 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2341 // with fixed offsets from RSP.
2343 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2344 // stack objects are addressed with RBP and regular stack objects with RSP.
2346 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2347 // to address stack arguments for outgoing calls and nothing else. The "base
2348 // pointer" points to local variables, and RBP points to fixed objects.
2350 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2351 // answer we give is relative to the SP after the prologue, and not the
2352 // SP in the middle of the function.
2354 if (MFI
.isFixedObjectIndex(FI
) && TRI
->hasStackRealignment(MF
) &&
2355 !STI
.isTargetWin64())
2356 return getFrameIndexReference(MF
, FI
, FrameReg
);
2358 // If !hasReservedCallFrame the function might have SP adjustement in the
2359 // body. So, even though the offset is statically known, it depends on where
2360 // we are in the function.
2361 if (!IgnoreSPUpdates
&& !hasReservedCallFrame(MF
))
2362 return getFrameIndexReference(MF
, FI
, FrameReg
);
2364 // We don't handle tail calls, and shouldn't be seeing them either.
2365 assert(MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta() >= 0 &&
2366 "we don't handle this case!");
2368 // This is how the math works out:
2370 // %rsp grows (i.e. gets lower) left to right. Each box below is
2371 // one word (eight bytes). Obj0 is the stack slot we're trying to
2374 // ----------------------------------
2375 // | BP | Obj0 | Obj1 | ... | ObjN |
2376 // ----------------------------------
2380 // A is the incoming stack pointer.
2381 // (B - A) is the local area offset (-8 for x86-64) [1]
2382 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2384 // |(E - B)| is the StackSize (absolute value, positive). For a
2385 // stack that grown down, this works out to be (B - E). [3]
2387 // E is also the value of %rsp after stack has been set up, and we
2388 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
2389 // (C - E) == (C - A) - (B - A) + (B - E)
2390 // { Using [1], [2] and [3] above }
2391 // == getObjectOffset - LocalAreaOffset + StackSize
2393 return getFrameIndexReferenceSP(MF
, FI
, FrameReg
, StackSize
);
2396 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2397 MachineFunction
&MF
, const TargetRegisterInfo
*TRI
,
2398 std::vector
<CalleeSavedInfo
> &CSI
) const {
2399 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2400 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2402 unsigned CalleeSavedFrameSize
= 0;
2403 unsigned XMMCalleeSavedFrameSize
= 0;
2404 auto &WinEHXMMSlotInfo
= X86FI
->getWinEHXMMSlotInfo();
2405 int SpillSlotOffset
= getOffsetOfLocalArea() + X86FI
->getTCReturnAddrDelta();
2407 int64_t TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
2409 if (TailCallReturnAddrDelta
< 0) {
2410 // create RETURNADDR area
2419 MFI
.CreateFixedObject(-TailCallReturnAddrDelta
,
2420 TailCallReturnAddrDelta
- SlotSize
, true);
2423 // Spill the BasePtr if it's used.
2424 if (this->TRI
->hasBasePointer(MF
)) {
2425 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2426 if (MF
.hasEHFunclets()) {
2427 int FI
= MFI
.CreateSpillStackObject(SlotSize
, Align(SlotSize
));
2428 X86FI
->setHasSEHFramePtrSave(true);
2429 X86FI
->setSEHFramePtrSaveIndex(FI
);
2434 // emitPrologue always spills frame register the first thing.
2435 SpillSlotOffset
-= SlotSize
;
2436 MFI
.CreateFixedSpillStackObject(SlotSize
, SpillSlotOffset
);
2438 // The async context lives directly before the frame pointer, and we
2439 // allocate a second slot to preserve stack alignment.
2440 if (X86FI
->hasSwiftAsyncContext()) {
2441 SpillSlotOffset
-= SlotSize
;
2442 MFI
.CreateFixedSpillStackObject(SlotSize
, SpillSlotOffset
);
2443 SpillSlotOffset
-= SlotSize
;
2446 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2447 // the frame register, we can delete it from CSI list and not have to worry
2448 // about avoiding it later.
2449 Register FPReg
= TRI
->getFrameRegister(MF
);
2450 for (unsigned i
= 0; i
< CSI
.size(); ++i
) {
2451 if (TRI
->regsOverlap(CSI
[i
].getReg(),FPReg
)) {
2452 CSI
.erase(CSI
.begin() + i
);
2458 // Assign slots for GPRs. It increases frame size.
2459 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2460 unsigned Reg
= CSI
[i
- 1].getReg();
2462 if (!X86::GR64RegClass
.contains(Reg
) && !X86::GR32RegClass
.contains(Reg
))
2465 SpillSlotOffset
-= SlotSize
;
2466 CalleeSavedFrameSize
+= SlotSize
;
2468 int SlotIndex
= MFI
.CreateFixedSpillStackObject(SlotSize
, SpillSlotOffset
);
2469 CSI
[i
- 1].setFrameIdx(SlotIndex
);
2472 X86FI
->setCalleeSavedFrameSize(CalleeSavedFrameSize
);
2473 MFI
.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize
);
2475 // Assign slots for XMMs.
2476 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2477 unsigned Reg
= CSI
[i
- 1].getReg();
2478 if (X86::GR64RegClass
.contains(Reg
) || X86::GR32RegClass
.contains(Reg
))
2481 // If this is k-register make sure we lookup via the largest legal type.
2482 MVT VT
= MVT::Other
;
2483 if (X86::VK16RegClass
.contains(Reg
))
2484 VT
= STI
.hasBWI() ? MVT::v64i1
: MVT::v16i1
;
2486 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
, VT
);
2487 unsigned Size
= TRI
->getSpillSize(*RC
);
2488 Align Alignment
= TRI
->getSpillAlign(*RC
);
2490 assert(SpillSlotOffset
< 0 && "SpillSlotOffset should always < 0 on X86");
2491 SpillSlotOffset
= -alignTo(-SpillSlotOffset
, Alignment
);
2494 SpillSlotOffset
-= Size
;
2495 int SlotIndex
= MFI
.CreateFixedSpillStackObject(Size
, SpillSlotOffset
);
2496 CSI
[i
- 1].setFrameIdx(SlotIndex
);
2497 MFI
.ensureMaxAlignment(Alignment
);
2499 // Save the start offset and size of XMM in stack frame for funclets.
2500 if (X86::VR128RegClass
.contains(Reg
)) {
2501 WinEHXMMSlotInfo
[SlotIndex
] = XMMCalleeSavedFrameSize
;
2502 XMMCalleeSavedFrameSize
+= Size
;
2509 bool X86FrameLowering::spillCalleeSavedRegisters(
2510 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2511 ArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
2512 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2514 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2515 // for us, and there are no XMM CSRs on Win32.
2516 if (MBB
.isEHFuncletEntry() && STI
.is32Bit() && STI
.isOSWindows())
2519 // Push GPRs. It increases frame size.
2520 const MachineFunction
&MF
= *MBB
.getParent();
2521 unsigned Opc
= STI
.is64Bit() ? X86::PUSH64r
: X86::PUSH32r
;
2522 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2523 unsigned Reg
= CSI
[i
- 1].getReg();
2525 if (!X86::GR64RegClass
.contains(Reg
) && !X86::GR32RegClass
.contains(Reg
))
2528 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2529 bool isLiveIn
= MRI
.isLiveIn(Reg
);
2533 // Decide whether we can add a kill flag to the use.
2534 bool CanKill
= !isLiveIn
;
2535 // Check if any subregister is live-in
2537 for (MCRegAliasIterator
AReg(Reg
, TRI
, false); AReg
.isValid(); ++AReg
) {
2538 if (MRI
.isLiveIn(*AReg
)) {
2545 // Do not set a kill flag on values that are also marked as live-in. This
2546 // happens with the @llvm-returnaddress intrinsic and with arguments
2547 // passed in callee saved registers.
2548 // Omitting the kill flags is conservatively correct even if the live-in
2549 // is not used after all.
2550 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
)).addReg(Reg
, getKillRegState(CanKill
))
2551 .setMIFlag(MachineInstr::FrameSetup
);
2554 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2555 // It can be done by spilling XMMs to stack frame.
2556 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2557 unsigned Reg
= CSI
[i
-1].getReg();
2558 if (X86::GR64RegClass
.contains(Reg
) || X86::GR32RegClass
.contains(Reg
))
2561 // If this is k-register make sure we lookup via the largest legal type.
2562 MVT VT
= MVT::Other
;
2563 if (X86::VK16RegClass
.contains(Reg
))
2564 VT
= STI
.hasBWI() ? MVT::v64i1
: MVT::v16i1
;
2566 // Add the callee-saved register as live-in. It's killed at the spill.
2568 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
, VT
);
2570 TII
.storeRegToStackSlot(MBB
, MI
, Reg
, true, CSI
[i
- 1].getFrameIdx(), RC
,
2573 MI
->setFlag(MachineInstr::FrameSetup
);
2580 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock
&MBB
,
2581 MachineBasicBlock::iterator MBBI
,
2582 MachineInstr
*CatchRet
) const {
2583 // SEH shouldn't use catchret.
2584 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2585 MBB
.getParent()->getFunction().getPersonalityFn())) &&
2586 "SEH should not use CATCHRET");
2587 const DebugLoc
&DL
= CatchRet
->getDebugLoc();
2588 MachineBasicBlock
*CatchRetTarget
= CatchRet
->getOperand(0).getMBB();
2590 // Fill EAX/RAX with the address of the target block.
2591 if (STI
.is64Bit()) {
2592 // LEA64r CatchRetTarget(%rip), %rax
2593 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::LEA64r
), X86::RAX
)
2597 .addMBB(CatchRetTarget
)
2600 // MOV32ri $CatchRetTarget, %eax
2601 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
2602 .addMBB(CatchRetTarget
);
2605 // Record that we've taken the address of CatchRetTarget and no longer just
2606 // reference it in a terminator.
2607 CatchRetTarget
->setHasAddressTaken();
2610 bool X86FrameLowering::restoreCalleeSavedRegisters(
2611 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2612 MutableArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
2616 if (MI
!= MBB
.end() && isFuncletReturnInstr(*MI
) && STI
.isOSWindows()) {
2617 // Don't restore CSRs in 32-bit EH funclets. Matches
2618 // spillCalleeSavedRegisters.
2621 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2622 // funclets. emitEpilogue transforms these to normal jumps.
2623 if (MI
->getOpcode() == X86::CATCHRET
) {
2624 const Function
&F
= MBB
.getParent()->getFunction();
2625 bool IsSEH
= isAsynchronousEHPersonality(
2626 classifyEHPersonality(F
.getPersonalityFn()));
2632 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2634 // Reload XMMs from stack frame.
2635 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2636 unsigned Reg
= CSI
[i
].getReg();
2637 if (X86::GR64RegClass
.contains(Reg
) ||
2638 X86::GR32RegClass
.contains(Reg
))
2641 // If this is k-register make sure we lookup via the largest legal type.
2642 MVT VT
= MVT::Other
;
2643 if (X86::VK16RegClass
.contains(Reg
))
2644 VT
= STI
.hasBWI() ? MVT::v64i1
: MVT::v16i1
;
2646 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
, VT
);
2647 TII
.loadRegFromStackSlot(MBB
, MI
, Reg
, CSI
[i
].getFrameIdx(), RC
, TRI
);
2651 unsigned Opc
= STI
.is64Bit() ? X86::POP64r
: X86::POP32r
;
2652 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2653 unsigned Reg
= CSI
[i
].getReg();
2654 if (!X86::GR64RegClass
.contains(Reg
) &&
2655 !X86::GR32RegClass
.contains(Reg
))
2658 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), Reg
)
2659 .setMIFlag(MachineInstr::FrameDestroy
);
2664 void X86FrameLowering::determineCalleeSaves(MachineFunction
&MF
,
2665 BitVector
&SavedRegs
,
2666 RegScavenger
*RS
) const {
2667 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
2669 // Spill the BasePtr if it's used.
2670 if (TRI
->hasBasePointer(MF
)){
2671 Register BasePtr
= TRI
->getBaseRegister();
2672 if (STI
.isTarget64BitILP32())
2673 BasePtr
= getX86SubSuperRegister(BasePtr
, 64);
2674 SavedRegs
.set(BasePtr
);
2679 HasNestArgument(const MachineFunction
*MF
) {
2680 const Function
&F
= MF
->getFunction();
2681 for (Function::const_arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
2683 if (I
->hasNestAttr() && !I
->use_empty())
2689 /// GetScratchRegister - Get a temp register for performing work in the
2690 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2691 /// and the properties of the function either one or two registers will be
2692 /// needed. Set primary to true for the first register, false for the second.
2694 GetScratchRegister(bool Is64Bit
, bool IsLP64
, const MachineFunction
&MF
, bool Primary
) {
2695 CallingConv::ID CallingConvention
= MF
.getFunction().getCallingConv();
2698 if (CallingConvention
== CallingConv::HiPE
) {
2700 return Primary
? X86::R14
: X86::R13
;
2702 return Primary
? X86::EBX
: X86::EDI
;
2707 return Primary
? X86::R11
: X86::R12
;
2709 return Primary
? X86::R11D
: X86::R12D
;
2712 bool IsNested
= HasNestArgument(&MF
);
2714 if (CallingConvention
== CallingConv::X86_FastCall
||
2715 CallingConvention
== CallingConv::Fast
||
2716 CallingConvention
== CallingConv::Tail
) {
2718 report_fatal_error("Segmented stacks does not support fastcall with "
2719 "nested function.");
2720 return Primary
? X86::EAX
: X86::ECX
;
2723 return Primary
? X86::EDX
: X86::EAX
;
2724 return Primary
? X86::ECX
: X86::EAX
;
2727 // The stack limit in the TCB is set to this many bytes above the actual stack
2729 static const uint64_t kSplitStackAvailable
= 256;
2731 void X86FrameLowering::adjustForSegmentedStacks(
2732 MachineFunction
&MF
, MachineBasicBlock
&PrologueMBB
) const {
2733 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2735 unsigned TlsReg
, TlsOffset
;
2738 // To support shrink-wrapping we would need to insert the new blocks
2739 // at the right place and update the branches to PrologueMBB.
2740 assert(&(*MF
.begin()) == &PrologueMBB
&& "Shrink-wrapping not supported yet");
2742 unsigned ScratchReg
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, true);
2743 assert(!MF
.getRegInfo().isLiveIn(ScratchReg
) &&
2744 "Scratch register is live-in");
2746 if (MF
.getFunction().isVarArg())
2747 report_fatal_error("Segmented stacks do not support vararg functions.");
2748 if (!STI
.isTargetLinux() && !STI
.isTargetDarwin() && !STI
.isTargetWin32() &&
2749 !STI
.isTargetWin64() && !STI
.isTargetFreeBSD() &&
2750 !STI
.isTargetDragonFly())
2751 report_fatal_error("Segmented stacks not supported on this platform.");
2753 // Eventually StackSize will be calculated by a link-time pass; which will
2754 // also decide whether checking code needs to be injected into this particular
2756 StackSize
= MFI
.getStackSize();
2758 // Do not generate a prologue for leaf functions with a stack of size zero.
2759 // For non-leaf functions we have to allow for the possibility that the
2760 // callis to a non-split function, as in PR37807. This function could also
2761 // take the address of a non-split function. When the linker tries to adjust
2762 // its non-existent prologue, it would fail with an error. Mark the object
2763 // file so that such failures are not errors. See this Go language bug-report
2764 // https://go-review.googlesource.com/c/go/+/148819/
2765 if (StackSize
== 0 && !MFI
.hasTailCall()) {
2766 MF
.getMMI().setHasNosplitStack(true);
2770 MachineBasicBlock
*allocMBB
= MF
.CreateMachineBasicBlock();
2771 MachineBasicBlock
*checkMBB
= MF
.CreateMachineBasicBlock();
2772 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2773 bool IsNested
= false;
2775 // We need to know if the function has a nest argument only in 64 bit mode.
2777 IsNested
= HasNestArgument(&MF
);
2779 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2780 // allocMBB needs to be last (terminating) instruction.
2782 for (const auto &LI
: PrologueMBB
.liveins()) {
2783 allocMBB
->addLiveIn(LI
);
2784 checkMBB
->addLiveIn(LI
);
2788 allocMBB
->addLiveIn(IsLP64
? X86::R10
: X86::R10D
);
2790 MF
.push_front(allocMBB
);
2791 MF
.push_front(checkMBB
);
2793 // When the frame size is less than 256 we just compare the stack
2794 // boundary directly to the value of the stack pointer, per gcc.
2795 bool CompareStackPointer
= StackSize
< kSplitStackAvailable
;
2797 // Read the limit off the current stacklet off the stack_guard location.
2799 if (STI
.isTargetLinux()) {
2801 TlsOffset
= IsLP64
? 0x70 : 0x40;
2802 } else if (STI
.isTargetDarwin()) {
2804 TlsOffset
= 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2805 } else if (STI
.isTargetWin64()) {
2807 TlsOffset
= 0x28; // pvArbitrary, reserved for application use
2808 } else if (STI
.isTargetFreeBSD()) {
2811 } else if (STI
.isTargetDragonFly()) {
2813 TlsOffset
= 0x20; // use tls_tcb.tcb_segstack
2815 report_fatal_error("Segmented stacks not supported on this platform.");
2818 if (CompareStackPointer
)
2819 ScratchReg
= IsLP64
? X86::RSP
: X86::ESP
;
2821 BuildMI(checkMBB
, DL
, TII
.get(IsLP64
? X86::LEA64r
: X86::LEA64_32r
), ScratchReg
).addReg(X86::RSP
)
2822 .addImm(1).addReg(0).addImm(-StackSize
).addReg(0);
2824 BuildMI(checkMBB
, DL
, TII
.get(IsLP64
? X86::CMP64rm
: X86::CMP32rm
)).addReg(ScratchReg
)
2825 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset
).addReg(TlsReg
);
2827 if (STI
.isTargetLinux()) {
2830 } else if (STI
.isTargetDarwin()) {
2832 TlsOffset
= 0x48 + 90*4;
2833 } else if (STI
.isTargetWin32()) {
2835 TlsOffset
= 0x14; // pvArbitrary, reserved for application use
2836 } else if (STI
.isTargetDragonFly()) {
2838 TlsOffset
= 0x10; // use tls_tcb.tcb_segstack
2839 } else if (STI
.isTargetFreeBSD()) {
2840 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2842 report_fatal_error("Segmented stacks not supported on this platform.");
2845 if (CompareStackPointer
)
2846 ScratchReg
= X86::ESP
;
2848 BuildMI(checkMBB
, DL
, TII
.get(X86::LEA32r
), ScratchReg
).addReg(X86::ESP
)
2849 .addImm(1).addReg(0).addImm(-StackSize
).addReg(0);
2851 if (STI
.isTargetLinux() || STI
.isTargetWin32() || STI
.isTargetWin64() ||
2852 STI
.isTargetDragonFly()) {
2853 BuildMI(checkMBB
, DL
, TII
.get(X86::CMP32rm
)).addReg(ScratchReg
)
2854 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset
).addReg(TlsReg
);
2855 } else if (STI
.isTargetDarwin()) {
2857 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2858 unsigned ScratchReg2
;
2860 if (CompareStackPointer
) {
2861 // The primary scratch register is available for holding the TLS offset.
2862 ScratchReg2
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, true);
2863 SaveScratch2
= false;
2865 // Need to use a second register to hold the TLS offset
2866 ScratchReg2
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, false);
2868 // Unfortunately, with fastcc the second scratch register may hold an
2870 SaveScratch2
= MF
.getRegInfo().isLiveIn(ScratchReg2
);
2873 // If Scratch2 is live-in then it needs to be saved.
2874 assert((!MF
.getRegInfo().isLiveIn(ScratchReg2
) || SaveScratch2
) &&
2875 "Scratch register is live-in and not saved");
2878 BuildMI(checkMBB
, DL
, TII
.get(X86::PUSH32r
))
2879 .addReg(ScratchReg2
, RegState::Kill
);
2881 BuildMI(checkMBB
, DL
, TII
.get(X86::MOV32ri
), ScratchReg2
)
2883 BuildMI(checkMBB
, DL
, TII
.get(X86::CMP32rm
))
2885 .addReg(ScratchReg2
).addImm(1).addReg(0)
2890 BuildMI(checkMBB
, DL
, TII
.get(X86::POP32r
), ScratchReg2
);
2894 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2895 // It jumps to normal execution of the function body.
2896 BuildMI(checkMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(&PrologueMBB
).addImm(X86::COND_A
);
2898 // On 32 bit we first push the arguments size and then the frame size. On 64
2899 // bit, we pass the stack frame size in r10 and the argument size in r11.
2901 // Functions with nested arguments use R10, so it needs to be saved across
2902 // the call to _morestack
2904 const unsigned RegAX
= IsLP64
? X86::RAX
: X86::EAX
;
2905 const unsigned Reg10
= IsLP64
? X86::R10
: X86::R10D
;
2906 const unsigned Reg11
= IsLP64
? X86::R11
: X86::R11D
;
2907 const unsigned MOVrr
= IsLP64
? X86::MOV64rr
: X86::MOV32rr
;
2908 const unsigned MOVri
= IsLP64
? X86::MOV64ri
: X86::MOV32ri
;
2911 BuildMI(allocMBB
, DL
, TII
.get(MOVrr
), RegAX
).addReg(Reg10
);
2913 BuildMI(allocMBB
, DL
, TII
.get(MOVri
), Reg10
)
2915 BuildMI(allocMBB
, DL
, TII
.get(MOVri
), Reg11
)
2916 .addImm(X86FI
->getArgumentStackSize());
2918 BuildMI(allocMBB
, DL
, TII
.get(X86::PUSHi32
))
2919 .addImm(X86FI
->getArgumentStackSize());
2920 BuildMI(allocMBB
, DL
, TII
.get(X86::PUSHi32
))
2924 // __morestack is in libgcc
2925 if (Is64Bit
&& MF
.getTarget().getCodeModel() == CodeModel::Large
) {
2926 // Under the large code model, we cannot assume that __morestack lives
2927 // within 2^31 bytes of the call site, so we cannot use pc-relative
2928 // addressing. We cannot perform the call via a temporary register,
2929 // as the rax register may be used to store the static chain, and all
2930 // other suitable registers may be either callee-save or used for
2931 // parameter passing. We cannot use the stack at this point either
2932 // because __morestack manipulates the stack directly.
2934 // To avoid these issues, perform an indirect call via a read-only memory
2935 // location containing the address.
2937 // This solution is not perfect, as it assumes that the .rodata section
2938 // is laid out within 2^31 bytes of each function body, but this seems
2939 // to be sufficient for JIT.
2940 // FIXME: Add retpoline support and remove the error here..
2941 if (STI
.useIndirectThunkCalls())
2942 report_fatal_error("Emitting morestack calls on 64-bit with the large "
2943 "code model and thunks not yet implemented.");
2944 BuildMI(allocMBB
, DL
, TII
.get(X86::CALL64m
))
2948 .addExternalSymbol("__morestack_addr")
2950 MF
.getMMI().setUsesMorestackAddr(true);
2953 BuildMI(allocMBB
, DL
, TII
.get(X86::CALL64pcrel32
))
2954 .addExternalSymbol("__morestack");
2956 BuildMI(allocMBB
, DL
, TII
.get(X86::CALLpcrel32
))
2957 .addExternalSymbol("__morestack");
2961 BuildMI(allocMBB
, DL
, TII
.get(X86::MORESTACK_RET_RESTORE_R10
));
2963 BuildMI(allocMBB
, DL
, TII
.get(X86::MORESTACK_RET
));
2965 allocMBB
->addSuccessor(&PrologueMBB
);
2967 checkMBB
->addSuccessor(allocMBB
, BranchProbability::getZero());
2968 checkMBB
->addSuccessor(&PrologueMBB
, BranchProbability::getOne());
2970 #ifdef EXPENSIVE_CHECKS
2975 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2976 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2977 /// to fields it needs, through a named metadata node "hipe.literals" containing
2978 /// name-value pairs.
2979 static unsigned getHiPELiteral(
2980 NamedMDNode
*HiPELiteralsMD
, const StringRef LiteralName
) {
2981 for (int i
= 0, e
= HiPELiteralsMD
->getNumOperands(); i
!= e
; ++i
) {
2982 MDNode
*Node
= HiPELiteralsMD
->getOperand(i
);
2983 if (Node
->getNumOperands() != 2) continue;
2984 MDString
*NodeName
= dyn_cast
<MDString
>(Node
->getOperand(0));
2985 ValueAsMetadata
*NodeVal
= dyn_cast
<ValueAsMetadata
>(Node
->getOperand(1));
2986 if (!NodeName
|| !NodeVal
) continue;
2987 ConstantInt
*ValConst
= dyn_cast_or_null
<ConstantInt
>(NodeVal
->getValue());
2988 if (ValConst
&& NodeName
->getString() == LiteralName
) {
2989 return ValConst
->getZExtValue();
2993 report_fatal_error("HiPE literal " + LiteralName
2994 + " required but not provided");
2997 // Return true if there are no non-ehpad successors to MBB and there are no
2998 // non-meta instructions between MBBI and MBB.end().
2999 static bool blockEndIsUnreachable(const MachineBasicBlock
&MBB
,
3000 MachineBasicBlock::const_iterator MBBI
) {
3001 return llvm::all_of(
3003 [](const MachineBasicBlock
*Succ
) { return Succ
->isEHPad(); }) &&
3004 std::all_of(MBBI
, MBB
.end(), [](const MachineInstr
&MI
) {
3005 return MI
.isMetaInstruction();
3009 /// Erlang programs may need a special prologue to handle the stack size they
3010 /// might need at runtime. That is because Erlang/OTP does not implement a C
3011 /// stack but uses a custom implementation of hybrid stack/heap architecture.
3012 /// (for more information see Eric Stenman's Ph.D. thesis:
3013 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3016 /// temp0 = sp - MaxStack
3017 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3021 /// call inc_stack # doubles the stack space
3022 /// temp0 = sp - MaxStack
3023 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3024 void X86FrameLowering::adjustForHiPEPrologue(
3025 MachineFunction
&MF
, MachineBasicBlock
&PrologueMBB
) const {
3026 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3029 // To support shrink-wrapping we would need to insert the new blocks
3030 // at the right place and update the branches to PrologueMBB.
3031 assert(&(*MF
.begin()) == &PrologueMBB
&& "Shrink-wrapping not supported yet");
3033 // HiPE-specific values
3034 NamedMDNode
*HiPELiteralsMD
= MF
.getMMI().getModule()
3035 ->getNamedMetadata("hipe.literals");
3036 if (!HiPELiteralsMD
)
3038 "Can't generate HiPE prologue without runtime parameters");
3039 const unsigned HipeLeafWords
3040 = getHiPELiteral(HiPELiteralsMD
,
3041 Is64Bit
? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3042 const unsigned CCRegisteredArgs
= Is64Bit
? 6 : 5;
3043 const unsigned Guaranteed
= HipeLeafWords
* SlotSize
;
3044 unsigned CallerStkArity
= MF
.getFunction().arg_size() > CCRegisteredArgs
?
3045 MF
.getFunction().arg_size() - CCRegisteredArgs
: 0;
3046 unsigned MaxStack
= MFI
.getStackSize() + CallerStkArity
*SlotSize
+ SlotSize
;
3048 assert(STI
.isTargetLinux() &&
3049 "HiPE prologue is only supported on Linux operating systems.");
3051 // Compute the largest caller's frame that is needed to fit the callees'
3052 // frames. This 'MaxStack' is computed from:
3054 // a) the fixed frame size, which is the space needed for all spilled temps,
3055 // b) outgoing on-stack parameter areas, and
3056 // c) the minimum stack space this function needs to make available for the
3057 // functions it calls (a tunable ABI property).
3058 if (MFI
.hasCalls()) {
3059 unsigned MoreStackForCalls
= 0;
3061 for (auto &MBB
: MF
) {
3062 for (auto &MI
: MBB
) {
3066 // Get callee operand.
3067 const MachineOperand
&MO
= MI
.getOperand(0);
3069 // Only take account of global function calls (no closures etc.).
3073 const Function
*F
= dyn_cast
<Function
>(MO
.getGlobal());
3077 // Do not update 'MaxStack' for primitive and built-in functions
3078 // (encoded with names either starting with "erlang."/"bif_" or not
3079 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3080 // "_", such as the BIF "suspend_0") as they are executed on another
3082 if (F
->getName().find("erlang.") != StringRef::npos
||
3083 F
->getName().find("bif_") != StringRef::npos
||
3084 F
->getName().find_first_of("._") == StringRef::npos
)
3087 unsigned CalleeStkArity
=
3088 F
->arg_size() > CCRegisteredArgs
? F
->arg_size()-CCRegisteredArgs
: 0;
3089 if (HipeLeafWords
- 1 > CalleeStkArity
)
3090 MoreStackForCalls
= std::max(MoreStackForCalls
,
3091 (HipeLeafWords
- 1 - CalleeStkArity
) * SlotSize
);
3094 MaxStack
+= MoreStackForCalls
;
3097 // If the stack frame needed is larger than the guaranteed then runtime checks
3098 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3099 if (MaxStack
> Guaranteed
) {
3100 MachineBasicBlock
*stackCheckMBB
= MF
.CreateMachineBasicBlock();
3101 MachineBasicBlock
*incStackMBB
= MF
.CreateMachineBasicBlock();
3103 for (const auto &LI
: PrologueMBB
.liveins()) {
3104 stackCheckMBB
->addLiveIn(LI
);
3105 incStackMBB
->addLiveIn(LI
);
3108 MF
.push_front(incStackMBB
);
3109 MF
.push_front(stackCheckMBB
);
3111 unsigned ScratchReg
, SPReg
, PReg
, SPLimitOffset
;
3112 unsigned LEAop
, CMPop
, CALLop
;
3113 SPLimitOffset
= getHiPELiteral(HiPELiteralsMD
, "P_NSP_LIMIT");
3117 LEAop
= X86::LEA64r
;
3118 CMPop
= X86::CMP64rm
;
3119 CALLop
= X86::CALL64pcrel32
;
3123 LEAop
= X86::LEA32r
;
3124 CMPop
= X86::CMP32rm
;
3125 CALLop
= X86::CALLpcrel32
;
3128 ScratchReg
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, true);
3129 assert(!MF
.getRegInfo().isLiveIn(ScratchReg
) &&
3130 "HiPE prologue scratch register is live-in");
3132 // Create new MBB for StackCheck:
3133 addRegOffset(BuildMI(stackCheckMBB
, DL
, TII
.get(LEAop
), ScratchReg
),
3134 SPReg
, false, -MaxStack
);
3135 // SPLimitOffset is in a fixed heap location (pointed by BP).
3136 addRegOffset(BuildMI(stackCheckMBB
, DL
, TII
.get(CMPop
))
3137 .addReg(ScratchReg
), PReg
, false, SPLimitOffset
);
3138 BuildMI(stackCheckMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(&PrologueMBB
).addImm(X86::COND_AE
);
3140 // Create new MBB for IncStack:
3141 BuildMI(incStackMBB
, DL
, TII
.get(CALLop
)).
3142 addExternalSymbol("inc_stack_0");
3143 addRegOffset(BuildMI(incStackMBB
, DL
, TII
.get(LEAop
), ScratchReg
),
3144 SPReg
, false, -MaxStack
);
3145 addRegOffset(BuildMI(incStackMBB
, DL
, TII
.get(CMPop
))
3146 .addReg(ScratchReg
), PReg
, false, SPLimitOffset
);
3147 BuildMI(incStackMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(incStackMBB
).addImm(X86::COND_LE
);
3149 stackCheckMBB
->addSuccessor(&PrologueMBB
, {99, 100});
3150 stackCheckMBB
->addSuccessor(incStackMBB
, {1, 100});
3151 incStackMBB
->addSuccessor(&PrologueMBB
, {99, 100});
3152 incStackMBB
->addSuccessor(incStackMBB
, {1, 100});
3154 #ifdef EXPENSIVE_CHECKS
3159 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock
&MBB
,
3160 MachineBasicBlock::iterator MBBI
,
3166 if (Offset
% SlotSize
)
3169 int NumPops
= Offset
/ SlotSize
;
3170 // This is only worth it if we have at most 2 pops.
3171 if (NumPops
!= 1 && NumPops
!= 2)
3174 // Handle only the trivial case where the adjustment directly follows
3175 // a call. This is the most common one, anyway.
3176 if (MBBI
== MBB
.begin())
3178 MachineBasicBlock::iterator Prev
= std::prev(MBBI
);
3179 if (!Prev
->isCall() || !Prev
->getOperand(1).isRegMask())
3183 unsigned FoundRegs
= 0;
3185 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
3186 const MachineOperand
&RegMask
= Prev
->getOperand(1);
3189 Is64Bit
? X86::GR64_NOREX_NOSPRegClass
: X86::GR32_NOREX_NOSPRegClass
;
3190 // Try to find up to NumPops free registers.
3191 for (auto Candidate
: RegClass
) {
3192 // Poor man's liveness:
3193 // Since we're immediately after a call, any register that is clobbered
3194 // by the call and not defined by it can be considered dead.
3195 if (!RegMask
.clobbersPhysReg(Candidate
))
3198 // Don't clobber reserved registers
3199 if (MRI
.isReserved(Candidate
))
3203 for (const MachineOperand
&MO
: Prev
->implicit_operands()) {
3204 if (MO
.isReg() && MO
.isDef() &&
3205 TRI
->isSuperOrSubRegisterEq(MO
.getReg(), Candidate
)) {
3214 Regs
[FoundRegs
++] = Candidate
;
3215 if (FoundRegs
== (unsigned)NumPops
)
3222 // If we found only one free register, but need two, reuse the same one twice.
3223 while (FoundRegs
< (unsigned)NumPops
)
3224 Regs
[FoundRegs
++] = Regs
[0];
3226 for (int i
= 0; i
< NumPops
; ++i
)
3227 BuildMI(MBB
, MBBI
, DL
,
3228 TII
.get(STI
.is64Bit() ? X86::POP64r
: X86::POP32r
), Regs
[i
]);
3233 MachineBasicBlock::iterator
X86FrameLowering::
3234 eliminateCallFramePseudoInstr(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
3235 MachineBasicBlock::iterator I
) const {
3236 bool reserveCallFrame
= hasReservedCallFrame(MF
);
3237 unsigned Opcode
= I
->getOpcode();
3238 bool isDestroy
= Opcode
== TII
.getCallFrameDestroyOpcode();
3239 DebugLoc DL
= I
->getDebugLoc(); // copy DebugLoc as I will be erased.
3240 uint64_t Amount
= TII
.getFrameSize(*I
);
3241 uint64_t InternalAmt
= (isDestroy
|| Amount
) ? TII
.getFrameAdjustment(*I
) : 0;
3243 auto InsertPos
= skipDebugInstructionsForward(I
, MBB
.end());
3245 // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3246 // typically because the function is marked noreturn (abort, throw,
3247 // assert_fail, etc).
3248 if (isDestroy
&& blockEndIsUnreachable(MBB
, I
))
3251 if (!reserveCallFrame
) {
3252 // If the stack pointer can be changed after prologue, turn the
3253 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3254 // adjcallstackdown instruction into 'add ESP, <amt>'
3256 // We need to keep the stack aligned properly. To do this, we round the
3257 // amount of space needed for the outgoing arguments up to the next
3258 // alignment boundary.
3259 Amount
= alignTo(Amount
, getStackAlign());
3261 const Function
&F
= MF
.getFunction();
3262 bool WindowsCFI
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
3263 bool DwarfCFI
= !WindowsCFI
&& MF
.needsFrameMoves();
3265 // If we have any exception handlers in this function, and we adjust
3266 // the SP before calls, we may need to indicate this to the unwinder
3267 // using GNU_ARGS_SIZE. Note that this may be necessary even when
3268 // Amount == 0, because the preceding function may have set a non-0
3270 // TODO: We don't need to reset this between subsequent functions,
3271 // if it didn't change.
3272 bool HasDwarfEHHandlers
= !WindowsCFI
&& !MF
.getLandingPads().empty();
3274 if (HasDwarfEHHandlers
&& !isDestroy
&&
3275 MF
.getInfo
<X86MachineFunctionInfo
>()->getHasPushSequences())
3276 BuildCFI(MBB
, InsertPos
, DL
,
3277 MCCFIInstruction::createGnuArgsSize(nullptr, Amount
));
3282 // Factor out the amount that gets handled inside the sequence
3283 // (Pushes of argument for frame setup, callee pops for frame destroy)
3284 Amount
-= InternalAmt
;
3286 // TODO: This is needed only if we require precise CFA.
3287 // If this is a callee-pop calling convention, emit a CFA adjust for
3288 // the amount the callee popped.
3289 if (isDestroy
&& InternalAmt
&& DwarfCFI
&& !hasFP(MF
))
3290 BuildCFI(MBB
, InsertPos
, DL
,
3291 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt
));
3293 // Add Amount to SP to destroy a frame, or subtract to setup.
3294 int64_t StackAdjustment
= isDestroy
? Amount
: -Amount
;
3296 if (StackAdjustment
) {
3297 // Merge with any previous or following adjustment instruction. Note: the
3298 // instructions merged with here do not have CFI, so their stack
3299 // adjustments do not feed into CfaAdjustment.
3300 StackAdjustment
+= mergeSPUpdates(MBB
, InsertPos
, true);
3301 StackAdjustment
+= mergeSPUpdates(MBB
, InsertPos
, false);
3303 if (StackAdjustment
) {
3304 if (!(F
.hasMinSize() &&
3305 adjustStackWithPops(MBB
, InsertPos
, DL
, StackAdjustment
)))
3306 BuildStackAdjustment(MBB
, InsertPos
, DL
, StackAdjustment
,
3307 /*InEpilogue=*/false);
3311 if (DwarfCFI
&& !hasFP(MF
)) {
3312 // If we don't have FP, but need to generate unwind information,
3313 // we need to set the correct CFA offset after the stack adjustment.
3314 // How much we adjust the CFA offset depends on whether we're emitting
3315 // CFI only for EH purposes or for debugging. EH only requires the CFA
3316 // offset to be correct at each call site, while for debugging we want
3317 // it to be more precise.
3319 int64_t CfaAdjustment
= -StackAdjustment
;
3320 // TODO: When not using precise CFA, we also need to adjust for the
3321 // InternalAmt here.
3322 if (CfaAdjustment
) {
3323 BuildCFI(MBB
, InsertPos
, DL
,
3324 MCCFIInstruction::createAdjustCfaOffset(nullptr,
3333 MachineBasicBlock::iterator CI
= I
;
3334 MachineBasicBlock::iterator B
= MBB
.begin();
3335 while (CI
!= B
&& !std::prev(CI
)->isCall())
3337 BuildStackAdjustment(MBB
, CI
, DL
, -InternalAmt
, /*InEpilogue=*/false);
3343 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock
&MBB
) const {
3344 assert(MBB
.getParent() && "Block is not attached to a function!");
3345 const MachineFunction
&MF
= *MBB
.getParent();
3346 if (!MBB
.isLiveIn(X86::EFLAGS
))
3349 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
3350 return !TRI
->hasStackRealignment(MF
) && !X86FI
->hasSwiftAsyncContext();
3353 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock
&MBB
) const {
3354 assert(MBB
.getParent() && "Block is not attached to a function!");
3356 // Win64 has strict requirements in terms of epilogue and we are
3357 // not taking a chance at messing with them.
3358 // I.e., unless this block is already an exit block, we can't use
3359 // it as an epilogue.
3360 if (STI
.isTargetWin64() && !MBB
.succ_empty() && !MBB
.isReturnBlock())
3363 // Swift async context epilogue has a BTR instruction that clobbers parts of
3365 const MachineFunction
&MF
= *MBB
.getParent();
3366 if (MF
.getInfo
<X86MachineFunctionInfo
>()->hasSwiftAsyncContext())
3367 return !flagsNeedToBePreservedBeforeTheTerminators(MBB
);
3369 if (canUseLEAForSPInEpilogue(*MBB
.getParent()))
3372 // If we cannot use LEA to adjust SP, we may need to use ADD, which
3373 // clobbers the EFLAGS. Check that we do not need to preserve it,
3374 // otherwise, conservatively assume this is not
3375 // safe to insert the epilogue here.
3376 return !flagsNeedToBePreservedBeforeTheTerminators(MBB
);
3379 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction
&MF
) const {
3380 // If we may need to emit frameless compact unwind information, give
3381 // up as this is currently broken: PR25614.
3382 bool CompactUnwind
=
3383 MF
.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3385 return (MF
.getFunction().hasFnAttribute(Attribute::NoUnwind
) || hasFP(MF
) ||
3387 // The lowering of segmented stack and HiPE only support entry
3388 // blocks as prologue blocks: PR26107. This limitation may be
3389 // lifted if we fix:
3390 // - adjustForSegmentedStacks
3391 // - adjustForHiPEPrologue
3392 MF
.getFunction().getCallingConv() != CallingConv::HiPE
&&
3393 !MF
.shouldSplitStack();
3396 MachineBasicBlock::iterator
X86FrameLowering::restoreWin32EHStackPointers(
3397 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
3398 const DebugLoc
&DL
, bool RestoreSP
) const {
3399 assert(STI
.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3400 assert(STI
.isTargetWin32() && "EBP/ESI restoration only required on win32");
3401 assert(STI
.is32Bit() && !Uses64BitFramePtr
&&
3402 "restoring EBP/ESI on non-32-bit target");
3404 MachineFunction
&MF
= *MBB
.getParent();
3405 Register FramePtr
= TRI
->getFrameRegister(MF
);
3406 Register BasePtr
= TRI
->getBaseRegister();
3407 WinEHFuncInfo
&FuncInfo
= *MF
.getWinEHFuncInfo();
3408 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
3409 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3411 // FIXME: Don't set FrameSetup flag in catchret case.
3413 int FI
= FuncInfo
.EHRegNodeFrameIndex
;
3414 int EHRegSize
= MFI
.getObjectSize(FI
);
3417 // MOV32rm -EHRegSize(%ebp), %esp
3418 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32rm
), X86::ESP
),
3419 X86::EBP
, true, -EHRegSize
)
3420 .setMIFlag(MachineInstr::FrameSetup
);
3424 int EHRegOffset
= getFrameIndexReference(MF
, FI
, UsedReg
).getFixed();
3425 int EndOffset
= -EHRegOffset
- EHRegSize
;
3426 FuncInfo
.EHRegNodeEndOffset
= EndOffset
;
3428 if (UsedReg
== FramePtr
) {
3429 // ADD $offset, %ebp
3430 unsigned ADDri
= getADDriOpcode(false, EndOffset
);
3431 BuildMI(MBB
, MBBI
, DL
, TII
.get(ADDri
), FramePtr
)
3434 .setMIFlag(MachineInstr::FrameSetup
)
3437 assert(EndOffset
>= 0 &&
3438 "end of registration object above normal EBP position!");
3439 } else if (UsedReg
== BasePtr
) {
3440 // LEA offset(%ebp), %esi
3441 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::LEA32r
), BasePtr
),
3442 FramePtr
, false, EndOffset
)
3443 .setMIFlag(MachineInstr::FrameSetup
);
3444 // MOV32rm SavedEBPOffset(%esi), %ebp
3445 assert(X86FI
->getHasSEHFramePtrSave());
3447 getFrameIndexReference(MF
, X86FI
->getSEHFramePtrSaveIndex(), UsedReg
)
3449 assert(UsedReg
== BasePtr
);
3450 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32rm
), FramePtr
),
3451 UsedReg
, true, Offset
)
3452 .setMIFlag(MachineInstr::FrameSetup
);
3454 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3459 int X86FrameLowering::getInitialCFAOffset(const MachineFunction
&MF
) const {
3460 return TRI
->getSlotSize();
3464 X86FrameLowering::getInitialCFARegister(const MachineFunction
&MF
) const {
3465 return TRI
->getDwarfRegNum(StackPtr
, true);
3469 // Struct used by orderFrameObjects to help sort the stack objects.
3470 struct X86FrameSortingObject
{
3471 bool IsValid
= false; // true if we care about this Object.
3472 unsigned ObjectIndex
= 0; // Index of Object into MFI list.
3473 unsigned ObjectSize
= 0; // Size of Object in bytes.
3474 Align ObjectAlignment
= Align(1); // Alignment of Object in bytes.
3475 unsigned ObjectNumUses
= 0; // Object static number of uses.
3478 // The comparison function we use for std::sort to order our local
3479 // stack symbols. The current algorithm is to use an estimated
3480 // "density". This takes into consideration the size and number of
3481 // uses each object has in order to roughly minimize code size.
3482 // So, for example, an object of size 16B that is referenced 5 times
3483 // will get higher priority than 4 4B objects referenced 1 time each.
3484 // It's not perfect and we may be able to squeeze a few more bytes out of
3485 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3486 // fringe end can have special consideration, given their size is less
3487 // important, etc.), but the algorithmic complexity grows too much to be
3488 // worth the extra gains we get. This gets us pretty close.
3489 // The final order leaves us with objects with highest priority going
3490 // at the end of our list.
3491 struct X86FrameSortingComparator
{
3492 inline bool operator()(const X86FrameSortingObject
&A
,
3493 const X86FrameSortingObject
&B
) const {
3494 uint64_t DensityAScaled
, DensityBScaled
;
3496 // For consistency in our comparison, all invalid objects are placed
3497 // at the end. This also allows us to stop walking when we hit the
3498 // first invalid item after it's all sorted.
3504 // The density is calculated by doing :
3505 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3506 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3507 // Since this approach may cause inconsistencies in
3508 // the floating point <, >, == comparisons, depending on the floating
3509 // point model with which the compiler was built, we're going
3510 // to scale both sides by multiplying with
3511 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3512 // the division and, with it, the need for any floating point
3514 DensityAScaled
= static_cast<uint64_t>(A
.ObjectNumUses
) *
3515 static_cast<uint64_t>(B
.ObjectSize
);
3516 DensityBScaled
= static_cast<uint64_t>(B
.ObjectNumUses
) *
3517 static_cast<uint64_t>(A
.ObjectSize
);
3519 // If the two densities are equal, prioritize highest alignment
3520 // objects. This allows for similar alignment objects
3521 // to be packed together (given the same density).
3522 // There's room for improvement here, also, since we can pack
3523 // similar alignment (different density) objects next to each
3524 // other to save padding. This will also require further
3525 // complexity/iterations, and the overall gain isn't worth it,
3526 // in general. Something to keep in mind, though.
3527 if (DensityAScaled
== DensityBScaled
)
3528 return A
.ObjectAlignment
< B
.ObjectAlignment
;
3530 return DensityAScaled
< DensityBScaled
;
3535 // Order the symbols in the local stack.
3536 // We want to place the local stack objects in some sort of sensible order.
3537 // The heuristic we use is to try and pack them according to static number
3538 // of uses and size of object in order to minimize code size.
3539 void X86FrameLowering::orderFrameObjects(
3540 const MachineFunction
&MF
, SmallVectorImpl
<int> &ObjectsToAllocate
) const {
3541 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3543 // Don't waste time if there's nothing to do.
3544 if (ObjectsToAllocate
.empty())
3547 // Create an array of all MFI objects. We won't need all of these
3548 // objects, but we're going to create a full array of them to make
3549 // it easier to index into when we're counting "uses" down below.
3550 // We want to be able to easily/cheaply access an object by simply
3551 // indexing into it, instead of having to search for it every time.
3552 std::vector
<X86FrameSortingObject
> SortingObjects(MFI
.getObjectIndexEnd());
3554 // Walk the objects we care about and mark them as such in our working
3556 for (auto &Obj
: ObjectsToAllocate
) {
3557 SortingObjects
[Obj
].IsValid
= true;
3558 SortingObjects
[Obj
].ObjectIndex
= Obj
;
3559 SortingObjects
[Obj
].ObjectAlignment
= MFI
.getObjectAlign(Obj
);
3561 int ObjectSize
= MFI
.getObjectSize(Obj
);
3562 if (ObjectSize
== 0)
3563 // Variable size. Just use 4.
3564 SortingObjects
[Obj
].ObjectSize
= 4;
3566 SortingObjects
[Obj
].ObjectSize
= ObjectSize
;
3569 // Count the number of uses for each object.
3570 for (auto &MBB
: MF
) {
3571 for (auto &MI
: MBB
) {
3572 if (MI
.isDebugInstr())
3574 for (const MachineOperand
&MO
: MI
.operands()) {
3575 // Check to see if it's a local stack symbol.
3578 int Index
= MO
.getIndex();
3579 // Check to see if it falls within our range, and is tagged
3580 // to require ordering.
3581 if (Index
>= 0 && Index
< MFI
.getObjectIndexEnd() &&
3582 SortingObjects
[Index
].IsValid
)
3583 SortingObjects
[Index
].ObjectNumUses
++;
3588 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3590 llvm::stable_sort(SortingObjects
, X86FrameSortingComparator());
3592 // Now modify the original list to represent the final order that
3593 // we want. The order will depend on whether we're going to access them
3594 // from the stack pointer or the frame pointer. For SP, the list should
3595 // end up with the END containing objects that we want with smaller offsets.
3596 // For FP, it should be flipped.
3598 for (auto &Obj
: SortingObjects
) {
3599 // All invalid items are sorted at the end, so it's safe to stop.
3602 ObjectsToAllocate
[i
++] = Obj
.ObjectIndex
;
3605 // Flip it if we're accessing off of the FP.
3606 if (!TRI
->hasStackRealignment(MF
) && hasFP(MF
))
3607 std::reverse(ObjectsToAllocate
.begin(), ObjectsToAllocate
.end());
3611 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction
&MF
) const {
3612 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3613 unsigned Offset
= 16;
3614 // RBP is immediately pushed.
3616 // All callee-saved registers are then pushed.
3617 Offset
+= MF
.getInfo
<X86MachineFunctionInfo
>()->getCalleeSavedFrameSize();
3618 // Every funclet allocates enough stack space for the largest outgoing call.
3619 Offset
+= getWinEHFuncletFrameSize(MF
);
3623 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3624 MachineFunction
&MF
, RegScavenger
*RS
) const {
3625 // Mark the function as not having WinCFI. We will set it back to true in
3626 // emitPrologue if it gets called and emits CFI.
3627 MF
.setHasWinCFI(false);
3629 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3630 // aligned. The format doesn't support misaligned stack adjustments.
3631 if (MF
.getTarget().getMCAsmInfo()->usesWindowsCFI())
3632 MF
.getFrameInfo().ensureMaxAlignment(Align(SlotSize
));
3634 // If this function isn't doing Win64-style C++ EH, we don't need to do
3636 if (STI
.is64Bit() && MF
.hasEHFunclets() &&
3637 classifyEHPersonality(MF
.getFunction().getPersonalityFn()) ==
3638 EHPersonality::MSVC_CXX
) {
3639 adjustFrameForMsvcCxxEh(MF
);
3643 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction
&MF
) const {
3644 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3645 // relative to RSP after the prologue. Find the offset of the last fixed
3646 // object, so that we can allocate a slot immediately following it. If there
3647 // were no fixed objects, use offset -SlotSize, which is immediately after the
3648 // return address. Fixed objects have negative frame indices.
3649 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3650 WinEHFuncInfo
&EHInfo
= *MF
.getWinEHFuncInfo();
3651 int64_t MinFixedObjOffset
= -SlotSize
;
3652 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
)
3653 MinFixedObjOffset
= std::min(MinFixedObjOffset
, MFI
.getObjectOffset(I
));
3655 for (WinEHTryBlockMapEntry
&TBME
: EHInfo
.TryBlockMap
) {
3656 for (WinEHHandlerType
&H
: TBME
.HandlerArray
) {
3657 int FrameIndex
= H
.CatchObj
.FrameIndex
;
3658 if (FrameIndex
!= INT_MAX
) {
3659 // Ensure alignment.
3660 unsigned Align
= MFI
.getObjectAlign(FrameIndex
).value();
3661 MinFixedObjOffset
-= std::abs(MinFixedObjOffset
) % Align
;
3662 MinFixedObjOffset
-= MFI
.getObjectSize(FrameIndex
);
3663 MFI
.setObjectOffset(FrameIndex
, MinFixedObjOffset
);
3668 // Ensure alignment.
3669 MinFixedObjOffset
-= std::abs(MinFixedObjOffset
) % 8;
3670 int64_t UnwindHelpOffset
= MinFixedObjOffset
- SlotSize
;
3672 MFI
.CreateFixedObject(SlotSize
, UnwindHelpOffset
, /*IsImmutable=*/false);
3673 EHInfo
.UnwindHelpFrameIdx
= UnwindHelpFI
;
3675 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3676 // other frame setup instructions.
3677 MachineBasicBlock
&MBB
= MF
.front();
3678 auto MBBI
= MBB
.begin();
3679 while (MBBI
!= MBB
.end() && MBBI
->getFlag(MachineInstr::FrameSetup
))
3682 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
3683 addFrameReference(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64mi32
)),
3688 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3689 MachineFunction
&MF
, RegScavenger
*RS
) const {
3690 if (STI
.is32Bit() && MF
.hasEHFunclets())
3691 restoreWinEHStackPointersInParent(MF
);
3694 void X86FrameLowering::restoreWinEHStackPointersInParent(
3695 MachineFunction
&MF
) const {
3696 // 32-bit functions have to restore stack pointers when control is transferred
3697 // back to the parent function. These blocks are identified as eh pads that
3698 // are not funclet entries.
3699 bool IsSEH
= isAsynchronousEHPersonality(
3700 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
3701 for (MachineBasicBlock
&MBB
: MF
) {
3702 bool NeedsRestore
= MBB
.isEHPad() && !MBB
.isEHFuncletEntry();
3704 restoreWin32EHStackPointers(MBB
, MBB
.begin(), DebugLoc(),
3705 /*RestoreSP=*/IsSEH
);