1 //===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes FMA (Fused Multiply-Add) instructions.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // FMA3 - Intel 3 operand Fused Multiply-Add instructions
15 //===----------------------------------------------------------------------===//
17 // For all FMA opcodes declared in fma3p_rm_* and fma3s_rm_* multiclasses
18 // defined below, both the register and memory variants are commutable.
19 // For the register form the commutable operands are 1, 2 and 3.
20 // For the memory variant the folded operand must be in 3. Thus,
21 // in that case, only the operands 1 and 2 can be swapped.
22 // Commuting some of operands may require the opcode change.
24 // operands 1 and 2 (memory & register forms): *213* --> *213*(no changes);
25 // operands 1 and 3 (register forms only): *213* --> *231*;
26 // operands 2 and 3 (register forms only): *213* --> *132*.
28 // operands 1 and 2 (memory & register forms): *132* --> *231*;
29 // operands 1 and 3 (register forms only): *132* --> *132*(no changes);
30 // operands 2 and 3 (register forms only): *132* --> *213*.
32 // operands 1 and 2 (memory & register forms): *231* --> *132*;
33 // operands 1 and 3 (register forms only): *231* --> *213*;
34 // operands 2 and 3 (register forms only): *231* --> *231*(no changes).
36 multiclass fma3p_rm_213<bits<8> opc, string OpcodeStr, RegisterClass RC,
37 ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
38 SDPatternOperator Op, X86FoldableSchedWrite sched> {
39 def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
40 (ins RC:$src1, RC:$src2, RC:$src3),
42 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
43 [(set RC:$dst, (VT (Op RC:$src2, RC:$src1, RC:$src3)))]>,
47 def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
48 (ins RC:$src1, RC:$src2, x86memop:$src3),
50 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
51 [(set RC:$dst, (VT (Op RC:$src2, RC:$src1,
52 (MemFrag addr:$src3))))]>,
53 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
56 multiclass fma3p_rm_231<bits<8> opc, string OpcodeStr, RegisterClass RC,
57 ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
58 SDPatternOperator Op, X86FoldableSchedWrite sched> {
59 let hasSideEffects = 0 in
60 def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
61 (ins RC:$src1, RC:$src2, RC:$src3),
63 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
67 def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
68 (ins RC:$src1, RC:$src2, x86memop:$src3),
70 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
71 [(set RC:$dst, (VT (Op RC:$src2, (MemFrag addr:$src3),
73 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
76 multiclass fma3p_rm_132<bits<8> opc, string OpcodeStr, RegisterClass RC,
77 ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
78 SDPatternOperator Op, X86FoldableSchedWrite sched> {
79 let hasSideEffects = 0 in
80 def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
81 (ins RC:$src1, RC:$src2, RC:$src3),
83 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
86 // Pattern is 312 order so that the load is in a different place from the
87 // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
89 def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
90 (ins RC:$src1, RC:$src2, x86memop:$src3),
92 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
93 [(set RC:$dst, (VT (Op (MemFrag addr:$src3), RC:$src1,
95 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
98 let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1,
99 Uses = [MXCSR], mayRaiseFPException = 1 in
100 multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
101 string OpcodeStr, string PackTy, string Suff,
102 PatFrag MemFrag128, PatFrag MemFrag256,
103 SDPatternOperator Op, ValueType OpTy128, ValueType OpTy256,
104 X86SchedWriteWidths sched> {
105 defm NAME#213#Suff : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
106 VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
107 defm NAME#231#Suff : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
108 VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
109 defm NAME#132#Suff : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
110 VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
112 defm NAME#213#Suff#Y : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
113 VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
115 defm NAME#231#Suff#Y : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
116 VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
118 defm NAME#132#Suff#Y : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
119 VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
123 // Fused Multiply-Add
124 let ExeDomain = SSEPackedSingle in {
125 defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", "PS",
126 loadv4f32, loadv8f32, any_fma, v4f32, v8f32,
128 defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", "PS",
129 loadv4f32, loadv8f32, X86any_Fmsub, v4f32, v8f32,
131 defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", "PS",
132 loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32,
134 defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", "PS",
135 loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32,
139 let ExeDomain = SSEPackedDouble in {
140 defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", "PD",
141 loadv2f64, loadv4f64, any_fma, v2f64,
142 v4f64, SchedWriteFMA>, VEX_W;
143 defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", "PD",
144 loadv2f64, loadv4f64, X86any_Fmsub, v2f64,
145 v4f64, SchedWriteFMA>, VEX_W;
146 defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", "PD",
147 loadv2f64, loadv4f64, X86Fmaddsub,
148 v2f64, v4f64, SchedWriteFMA>, VEX_W;
149 defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", "PD",
150 loadv2f64, loadv4f64, X86Fmsubadd,
151 v2f64, v4f64, SchedWriteFMA>, VEX_W;
154 // Fused Negative Multiply-Add
155 let ExeDomain = SSEPackedSingle in {
156 defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", "PS", loadv4f32,
157 loadv8f32, X86any_Fnmadd, v4f32, v8f32, SchedWriteFMA>;
158 defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", "PS", loadv4f32,
159 loadv8f32, X86any_Fnmsub, v4f32, v8f32, SchedWriteFMA>;
161 let ExeDomain = SSEPackedDouble in {
162 defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", "PD", loadv2f64,
163 loadv4f64, X86any_Fnmadd, v2f64, v4f64, SchedWriteFMA>, VEX_W;
164 defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", "PD", loadv2f64,
165 loadv4f64, X86any_Fnmsub, v2f64, v4f64, SchedWriteFMA>, VEX_W;
168 // All source register operands of FMA opcodes defined in fma3s_rm multiclass
169 // can be commuted. In many cases such commute transformation requires an opcode
170 // adjustment, for example, commuting the operands 1 and 2 in FMA*132 form
171 // would require an opcode change to FMA*231:
172 // FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2;
174 // FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2;
175 // Please see more detailed comment at the very beginning of the section
176 // defining FMA3 opcodes above.
177 multiclass fma3s_rm_213<bits<8> opc, string OpcodeStr,
178 X86MemOperand x86memop, RegisterClass RC,
179 SDPatternOperator OpNode,
180 X86FoldableSchedWrite sched> {
181 def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
182 (ins RC:$src1, RC:$src2, RC:$src3),
183 !strconcat(OpcodeStr,
184 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
185 [(set RC:$dst, (OpNode RC:$src2, RC:$src1, RC:$src3))]>,
189 def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
190 (ins RC:$src1, RC:$src2, x86memop:$src3),
191 !strconcat(OpcodeStr,
192 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
194 (OpNode RC:$src2, RC:$src1, (load addr:$src3)))]>,
195 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
198 multiclass fma3s_rm_231<bits<8> opc, string OpcodeStr,
199 X86MemOperand x86memop, RegisterClass RC,
200 SDPatternOperator OpNode, X86FoldableSchedWrite sched> {
201 let hasSideEffects = 0 in
202 def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
203 (ins RC:$src1, RC:$src2, RC:$src3),
204 !strconcat(OpcodeStr,
205 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
209 def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
210 (ins RC:$src1, RC:$src2, x86memop:$src3),
211 !strconcat(OpcodeStr,
212 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
214 (OpNode RC:$src2, (load addr:$src3), RC:$src1))]>,
215 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
218 multiclass fma3s_rm_132<bits<8> opc, string OpcodeStr,
219 X86MemOperand x86memop, RegisterClass RC,
220 SDPatternOperator OpNode, X86FoldableSchedWrite sched> {
221 let hasSideEffects = 0 in
222 def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
223 (ins RC:$src1, RC:$src2, RC:$src3),
224 !strconcat(OpcodeStr,
225 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
228 // Pattern is 312 order so that the load is in a different place from the
229 // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
231 def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
232 (ins RC:$src1, RC:$src2, x86memop:$src3),
233 !strconcat(OpcodeStr,
234 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
236 (OpNode (load addr:$src3), RC:$src1, RC:$src2))]>,
237 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
240 let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1,
241 hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1 in
242 multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
243 string OpStr, string PackTy, string Suff,
244 SDPatternOperator OpNode, RegisterClass RC,
245 X86MemOperand x86memop, X86FoldableSchedWrite sched> {
246 defm NAME#213#Suff : fma3s_rm_213<opc213, !strconcat(OpStr, "213", PackTy),
247 x86memop, RC, OpNode, sched>;
248 defm NAME#231#Suff : fma3s_rm_231<opc231, !strconcat(OpStr, "231", PackTy),
249 x86memop, RC, OpNode, sched>;
250 defm NAME#132#Suff : fma3s_rm_132<opc132, !strconcat(OpStr, "132", PackTy),
251 x86memop, RC, OpNode, sched>;
254 // These FMA*_Int instructions are defined specially for being used when
255 // the scalar FMA intrinsics are lowered to machine instructions, and in that
256 // sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc.
259 // All of the FMA*_Int opcodes are defined as commutable here.
260 // Commuting the 2nd and 3rd source register operands of FMAs is quite trivial
261 // and the corresponding optimizations have been developed.
262 // Commuting the 1st operand of FMA*_Int requires some additional analysis,
263 // the commute optimization is legal only if all users of FMA*_Int use only
264 // the lowest element of the FMA*_Int instruction. Even though such analysis
265 // may be not implemented yet we allow the routines doing the actual commute
266 // transformation to decide if one or another instruction is commutable or not.
267 let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0,
268 Uses = [MXCSR], mayRaiseFPException = 1 in
269 multiclass fma3s_rm_int<bits<8> opc, string OpcodeStr,
270 Operand memopr, RegisterClass RC,
271 X86FoldableSchedWrite sched> {
272 def r_Int : FMA3S_Int<opc, MRMSrcReg, (outs RC:$dst),
273 (ins RC:$src1, RC:$src2, RC:$src3),
274 !strconcat(OpcodeStr,
275 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
279 def m_Int : FMA3S_Int<opc, MRMSrcMem, (outs RC:$dst),
280 (ins RC:$src1, RC:$src2, memopr:$src3),
281 !strconcat(OpcodeStr,
282 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
283 []>, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
286 // The FMA 213 form is created for lowering of scalar FMA intrinsics
287 // to machine instructions.
288 // The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands
290 // The FMA 231 form can be get only by commuting the 1st operand of 213 or 132
291 // forms and is possible only after special analysis of all uses of the initial
292 // instruction. Such analysis do not exist yet and thus introducing the 231
293 // form of FMA*_Int instructions is done using an optimistic assumption that
294 // such analysis will be implemented eventually.
295 multiclass fma3s_int_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
296 string OpStr, string PackTy, string Suff,
297 RegisterClass RC, Operand memop,
298 X86FoldableSchedWrite sched> {
299 defm NAME#132#Suff : fma3s_rm_int<opc132, !strconcat(OpStr, "132", PackTy),
301 defm NAME#213#Suff : fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy),
303 defm NAME#231#Suff : fma3s_rm_int<opc231, !strconcat(OpStr, "231", PackTy),
307 multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231,
308 string OpStr, SDPatternOperator OpNode, X86FoldableSchedWrite sched> {
309 let ExeDomain = SSEPackedSingle in
310 defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", OpNode,
311 FR32, f32mem, sched>,
312 fma3s_int_forms<opc132, opc213, opc231, OpStr, "ss", "SS",
313 VR128, ssmem, sched>;
315 let ExeDomain = SSEPackedDouble in
316 defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "SD", OpNode,
317 FR64, f64mem, sched>,
318 fma3s_int_forms<opc132, opc213, opc231, OpStr, "sd", "SD",
319 VR128, sdmem, sched>, VEX_W;
322 defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", any_fma,
323 SchedWriteFMA.Scl>, VEX_LIG;
324 defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", X86any_Fmsub,
325 SchedWriteFMA.Scl>, VEX_LIG;
327 defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", X86any_Fnmadd,
328 SchedWriteFMA.Scl>, VEX_LIG;
329 defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", X86any_Fnmsub,
330 SchedWriteFMA.Scl>, VEX_LIG;
332 multiclass scalar_fma_patterns<SDPatternOperator Op, string Prefix, string Suffix,
333 SDNode Move, ValueType VT, ValueType EltVT,
334 RegisterClass RC, PatFrag mem_frag> {
335 let Predicates = [HasFMA, NoAVX512] in {
336 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
338 (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
340 (!cast<Instruction>(Prefix#"213"#Suffix#"r_Int")
341 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
342 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
344 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
345 (Op RC:$src2, RC:$src3,
346 (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))),
347 (!cast<Instruction>(Prefix#"231"#Suffix#"r_Int")
348 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
349 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
351 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
353 (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
354 (mem_frag addr:$src3)))))),
355 (!cast<Instruction>(Prefix#"213"#Suffix#"m_Int")
356 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
359 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
360 (Op (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
361 (mem_frag addr:$src3), RC:$src2))))),
362 (!cast<Instruction>(Prefix#"132"#Suffix#"m_Int")
363 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
366 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
367 (Op RC:$src2, (mem_frag addr:$src3),
368 (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))),
369 (!cast<Instruction>(Prefix#"231"#Suffix#"m_Int")
370 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
375 defm : scalar_fma_patterns<any_fma, "VFMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
376 defm : scalar_fma_patterns<X86any_Fmsub, "VFMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
377 defm : scalar_fma_patterns<X86any_Fnmadd, "VFNMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
378 defm : scalar_fma_patterns<X86any_Fnmsub, "VFNMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
380 defm : scalar_fma_patterns<any_fma, "VFMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
381 defm : scalar_fma_patterns<X86any_Fmsub, "VFMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
382 defm : scalar_fma_patterns<X86any_Fnmadd, "VFNMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
383 defm : scalar_fma_patterns<X86any_Fnmsub, "VFNMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
385 //===----------------------------------------------------------------------===//
386 // FMA4 - AMD 4 operand Fused Multiply-Add instructions
387 //===----------------------------------------------------------------------===//
389 let Uses = [MXCSR], mayRaiseFPException = 1 in
390 multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC,
391 X86MemOperand x86memop, ValueType OpVT, SDPatternOperator OpNode,
392 PatFrag mem_frag, X86FoldableSchedWrite sched> {
393 let isCommutable = 1 in
394 def rr : FMA4S<opc, MRMSrcRegOp4, (outs RC:$dst),
395 (ins RC:$src1, RC:$src2, RC:$src3),
396 !strconcat(OpcodeStr,
397 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
399 (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG,
401 def rm : FMA4S<opc, MRMSrcMemOp4, (outs RC:$dst),
402 (ins RC:$src1, RC:$src2, x86memop:$src3),
403 !strconcat(OpcodeStr,
404 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
405 [(set RC:$dst, (OpNode RC:$src1, RC:$src2,
406 (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG,
407 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
408 def mr : FMA4S<opc, MRMSrcMem, (outs RC:$dst),
409 (ins RC:$src1, x86memop:$src2, RC:$src3),
410 !strconcat(OpcodeStr,
411 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
413 (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG,
414 Sched<[sched.Folded, sched.ReadAfterFold,
416 ReadDefault, ReadDefault, ReadDefault, ReadDefault,
419 sched.ReadAfterFold]>;
421 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
422 def rr_REV : FMA4S<opc, MRMSrcReg, (outs RC:$dst),
423 (ins RC:$src1, RC:$src2, RC:$src3),
424 !strconcat(OpcodeStr,
425 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
426 VEX_LIG, FoldGenData<NAME#rr>, Sched<[sched]>;
429 multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop,
430 ValueType VT, X86FoldableSchedWrite sched> {
431 let isCodeGenOnly = 1, hasSideEffects = 0,
432 Uses = [MXCSR], mayRaiseFPException = 1 in {
433 def rr_Int : FMA4S_Int<opc, MRMSrcRegOp4, (outs VR128:$dst),
434 (ins VR128:$src1, VR128:$src2, VR128:$src3),
435 !strconcat(OpcodeStr,
436 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
437 []>, VEX_W, VEX_LIG, Sched<[sched]>;
439 def rm_Int : FMA4S_Int<opc, MRMSrcMemOp4, (outs VR128:$dst),
440 (ins VR128:$src1, VR128:$src2, memop:$src3),
441 !strconcat(OpcodeStr,
442 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
444 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
446 def mr_Int : FMA4S_Int<opc, MRMSrcMem, (outs VR128:$dst),
447 (ins VR128:$src1, memop:$src2, VR128:$src3),
448 !strconcat(OpcodeStr,
449 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
451 VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold,
453 ReadDefault, ReadDefault, ReadDefault,
454 ReadDefault, ReadDefault,
456 sched.ReadAfterFold]>;
457 def rr_Int_REV : FMA4S_Int<opc, MRMSrcReg, (outs VR128:$dst),
458 (ins VR128:$src1, VR128:$src2, VR128:$src3),
459 !strconcat(OpcodeStr,
460 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
461 []>, VEX_LIG, FoldGenData<NAME#rr_Int>, Sched<[sched]>;
462 } // isCodeGenOnly = 1
465 let Uses = [MXCSR], mayRaiseFPException = 1 in
466 multiclass fma4p<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode,
467 ValueType OpVT128, ValueType OpVT256,
468 PatFrag ld_frag128, PatFrag ld_frag256,
469 X86SchedWriteWidths sched> {
470 let isCommutable = 1 in
471 def rr : FMA4<opc, MRMSrcRegOp4, (outs VR128:$dst),
472 (ins VR128:$src1, VR128:$src2, VR128:$src3),
473 !strconcat(OpcodeStr,
474 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
476 (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>,
477 VEX_W, Sched<[sched.XMM]>;
478 def rm : FMA4<opc, MRMSrcMemOp4, (outs VR128:$dst),
479 (ins VR128:$src1, VR128:$src2, f128mem:$src3),
480 !strconcat(OpcodeStr,
481 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
482 [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2,
483 (ld_frag128 addr:$src3)))]>, VEX_W,
484 Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold, sched.XMM.ReadAfterFold]>;
485 def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
486 (ins VR128:$src1, f128mem:$src2, VR128:$src3),
487 !strconcat(OpcodeStr,
488 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
490 (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>,
491 Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold,
493 ReadDefault, ReadDefault, ReadDefault, ReadDefault,
496 sched.XMM.ReadAfterFold]>;
497 let isCommutable = 1 in
498 def Yrr : FMA4<opc, MRMSrcRegOp4, (outs VR256:$dst),
499 (ins VR256:$src1, VR256:$src2, VR256:$src3),
500 !strconcat(OpcodeStr,
501 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
503 (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>,
504 VEX_W, VEX_L, Sched<[sched.YMM]>;
505 def Yrm : FMA4<opc, MRMSrcMemOp4, (outs VR256:$dst),
506 (ins VR256:$src1, VR256:$src2, f256mem:$src3),
507 !strconcat(OpcodeStr,
508 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
509 [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2,
510 (ld_frag256 addr:$src3)))]>, VEX_W, VEX_L,
511 Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold, sched.YMM.ReadAfterFold]>;
512 def Ymr : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
513 (ins VR256:$src1, f256mem:$src2, VR256:$src3),
514 !strconcat(OpcodeStr,
515 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
516 [(set VR256:$dst, (OpNode VR256:$src1,
517 (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L,
518 Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold,
520 ReadDefault, ReadDefault, ReadDefault, ReadDefault,
523 sched.YMM.ReadAfterFold]>;
525 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
526 def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
527 (ins VR128:$src1, VR128:$src2, VR128:$src3),
528 !strconcat(OpcodeStr,
529 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
530 Sched<[sched.XMM]>, FoldGenData<NAME#rr>;
531 def Yrr_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
532 (ins VR256:$src1, VR256:$src2, VR256:$src3),
533 !strconcat(OpcodeStr,
534 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
535 VEX_L, Sched<[sched.YMM]>, FoldGenData<NAME#Yrr>;
536 } // isCodeGenOnly = 1
539 let ExeDomain = SSEPackedSingle in {
540 // Scalar Instructions
541 defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, any_fma, loadf32,
543 fma4s_int<0x6A, "vfmaddss", ssmem, v4f32,
545 defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86any_Fmsub, loadf32,
547 fma4s_int<0x6E, "vfmsubss", ssmem, v4f32,
549 defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32,
550 X86any_Fnmadd, loadf32, SchedWriteFMA.Scl>,
551 fma4s_int<0x7A, "vfnmaddss", ssmem, v4f32,
553 defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32,
554 X86any_Fnmsub, loadf32, SchedWriteFMA.Scl>,
555 fma4s_int<0x7E, "vfnmsubss", ssmem, v4f32,
557 // Packed Instructions
558 defm VFMADDPS4 : fma4p<0x68, "vfmaddps", any_fma, v4f32, v8f32,
559 loadv4f32, loadv8f32, SchedWriteFMA>;
560 defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86any_Fmsub, v4f32, v8f32,
561 loadv4f32, loadv8f32, SchedWriteFMA>;
562 defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86any_Fnmadd, v4f32, v8f32,
563 loadv4f32, loadv8f32, SchedWriteFMA>;
564 defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86any_Fnmsub, v4f32, v8f32,
565 loadv4f32, loadv8f32, SchedWriteFMA>;
566 defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32,
567 loadv4f32, loadv8f32, SchedWriteFMA>;
568 defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32,
569 loadv4f32, loadv8f32, SchedWriteFMA>;
572 let ExeDomain = SSEPackedDouble in {
573 // Scalar Instructions
574 defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, any_fma, loadf64,
576 fma4s_int<0x6B, "vfmaddsd", sdmem, v2f64,
578 defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86any_Fmsub, loadf64,
580 fma4s_int<0x6F, "vfmsubsd", sdmem, v2f64,
582 defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64,
583 X86any_Fnmadd, loadf64, SchedWriteFMA.Scl>,
584 fma4s_int<0x7B, "vfnmaddsd", sdmem, v2f64,
586 defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64,
587 X86any_Fnmsub, loadf64, SchedWriteFMA.Scl>,
588 fma4s_int<0x7F, "vfnmsubsd", sdmem, v2f64,
590 // Packed Instructions
591 defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", any_fma, v2f64, v4f64,
592 loadv2f64, loadv4f64, SchedWriteFMA>;
593 defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86any_Fmsub, v2f64, v4f64,
594 loadv2f64, loadv4f64, SchedWriteFMA>;
595 defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86any_Fnmadd, v2f64, v4f64,
596 loadv2f64, loadv4f64, SchedWriteFMA>;
597 defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86any_Fnmsub, v2f64, v4f64,
598 loadv2f64, loadv4f64, SchedWriteFMA>;
599 defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64,
600 loadv2f64, loadv4f64, SchedWriteFMA>;
601 defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64,
602 loadv2f64, loadv4f64, SchedWriteFMA>;
605 multiclass scalar_fma4_patterns<SDPatternOperator Op, string Name,
606 ValueType VT, ValueType EltVT,
607 RegisterClass RC, PatFrag mem_frag> {
608 let Predicates = [HasFMA4] in {
609 def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
610 (Op RC:$src1, RC:$src2, RC:$src3))))),
611 (!cast<Instruction>(Name#"rr_Int")
612 (VT (COPY_TO_REGCLASS RC:$src1, VR128)),
613 (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
614 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
616 def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
617 (Op RC:$src1, RC:$src2,
618 (mem_frag addr:$src3)))))),
619 (!cast<Instruction>(Name#"rm_Int")
620 (VT (COPY_TO_REGCLASS RC:$src1, VR128)),
621 (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>;
623 def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
624 (Op RC:$src1, (mem_frag addr:$src2),
626 (!cast<Instruction>(Name#"mr_Int")
627 (VT (COPY_TO_REGCLASS RC:$src1, VR128)), addr:$src2,
628 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
632 defm : scalar_fma4_patterns<any_fma, "VFMADDSS4", v4f32, f32, FR32, loadf32>;
633 defm : scalar_fma4_patterns<X86any_Fmsub, "VFMSUBSS4", v4f32, f32, FR32, loadf32>;
634 defm : scalar_fma4_patterns<X86any_Fnmadd, "VFNMADDSS4", v4f32, f32, FR32, loadf32>;
635 defm : scalar_fma4_patterns<X86any_Fnmsub, "VFNMSUBSS4", v4f32, f32, FR32, loadf32>;
637 defm : scalar_fma4_patterns<any_fma, "VFMADDSD4", v2f64, f64, FR64, loadf64>;
638 defm : scalar_fma4_patterns<X86any_Fmsub, "VFMSUBSD4", v2f64, f64, FR64, loadf64>;
639 defm : scalar_fma4_patterns<X86any_Fnmadd, "VFNMADDSD4", v2f64, f64, FR64, loadf64>;
640 defm : scalar_fma4_patterns<X86any_Fnmsub, "VFNMSUBSD4", v2f64, f64, FR64, loadf64>;